WO2022230374A1 - Power storage device structure - Google Patents

Power storage device structure Download PDF

Info

Publication number
WO2022230374A1
WO2022230374A1 PCT/JP2022/010192 JP2022010192W WO2022230374A1 WO 2022230374 A1 WO2022230374 A1 WO 2022230374A1 JP 2022010192 W JP2022010192 W JP 2022010192W WO 2022230374 A1 WO2022230374 A1 WO 2022230374A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electricity storage
meth
acrylate
device structure
Prior art date
Application number
PCT/JP2022/010192
Other languages
French (fr)
Japanese (ja)
Inventor
稔 八木
満 野末
淳 金子
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2022230374A1 publication Critical patent/WO2022230374A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electric storage device structure enclosing an electric storage device such as a lithium ion battery, a lithium ion capacitor, an electric double layer capacitor, etc., and particularly to reduce the risk of ignition in the event of an abnormality such as damage or overcharging of the electric storage device.
  • an electricity storage device structure capable of
  • Such power storage devices usually have a specified upper voltage limit, and are controlled so that they do not exceed the upper voltage limit by combining with an appropriate protection circuit. However, if the protection circuit malfunctions and the upper limit voltage is exceeded, if charging and discharging are repeated, or if a short circuit occurs due to an external factor, the storage device will fall into an overcharged state, and the electrolyte will interfere with the electrode material. Gas is generated by the reaction, and the generated gas increases the internal pressure.
  • the generated gas may contain combustible gases such as electrolytic solution, methane, carbon monoxide, ethylene, ethane, and propane, and there is a risk of ignition or explosion when released outside the power storage device. be.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 2 Japanese Patent Document 1
  • Patent Document 3 a method has also been proposed in which a fire extinguishing agent is placed inside the lithium-ion battery to lower the temperature of the gas released to the outside when the safety valve opens due to an increase in internal pressure due to the generation of gas inside the battery. Furthermore, by placing a porous material in which a nonflammable gas, an aqueous solvent, or a nonflammable solvent is adsorbed in the pores and on the surface inside the lithium-ion battery, ignition by the gas generated from the lithium-ion battery is suppressed. A preventive method has also been proposed (Patent Document 4).
  • the present invention has been made in view of the above problems, and is capable of reducing the risk of an electric storage device, particularly an electric storage device stack in which a plurality of electric storage devices are stacked, igniting in the event of an abnormality such as damage or overcharging.
  • the purpose is to provide a structure.
  • the present invention provides an electricity storage device structure comprising an electricity storage device and a casing enclosing the electricity storage device with a gap therebetween, wherein an acrylic Provided is an electricity storage device structure in which a molded body containing a system adhesive is arranged (Invention 1).
  • invention 1 by arranging the molded body containing the acrylic pressure-sensitive adhesive in the space of the casing that encloses the electricity storage device instead of inside the electricity storage device, when ignition occurs in the electricity storage device The risk of fire spreading to the outside of the casing can be reduced.
  • the electricity storage device uses a non-aqueous electrolyte (invention 2).
  • the molded body containing the acrylic pressure-sensitive adhesive contains 10% by weight or more of the acrylic polymer part of the whole (invention 3).
  • invention 3 it is possible to suitably exhibit the effect of preventing the spread of fire to the outside when ignition occurs within the electricity storage device.
  • the acrylic pressure-sensitive adhesive comprises an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. It is preferable that the pressure-sensitive adhesive is used as a base polymer (invention 4).
  • the molded article containing the acrylic pressure-sensitive adhesive is preferably tape-shaped, film-shaped or sheet-shaped (Invention 5).
  • invention 5 by making it tape-shaped, film-shaped, or sheet-shaped, it can be stuck in the casing, inserted into a gap, and can be installed in a wide variety of ways. It can be made to have excellent properties.
  • the tape-like, film-like, or sheet-like molding preferably has a thickness of 1 ⁇ m to 5000 ⁇ m (invention 6).
  • the weight per area of the tape-shaped, film-shaped or sheet-shaped molding is 10 g to 2000 g/m 2 (invention 7).
  • a tape-shaped, film-shaped or sheet-shaped formed body having a predetermined thickness and weight is placed in the gap between the power storage device and the casing, thereby igniting inside the power storage device. It is possible to suitably exhibit the effect of preventing the spread of fire to the outside when this occurs.
  • invention 8 a plurality of the electricity storage devices may be laminated.
  • the present invention by arranging a molded body containing an acrylic pressure-sensitive adhesive in the gap between the electricity storage device and the casing, it is possible to prevent the acrylic adhesive from sticking out due to high-temperature spouts or gas emitted from the electricity storage device due to a short circuit of the electricity storage device or the like.
  • the components generated by thermal decomposition of the system adhesive can greatly reduce the risk of ignition of the electrical storage device structure.
  • the electricity storage device structure of the present embodiment is composed of an electricity storage device and a casing that encloses the electricity storage device with a gap therebetween. have a structure.
  • the electric storage device is not particularly limited, and either a primary battery or a secondary battery can be used, but the secondary battery is preferable.
  • the type of the secondary battery is not particularly limited, and examples include lithium ion batteries, lithium ion polymer batteries, all-solid batteries, lead batteries, nickel-hydrogen batteries, nickel-cadmium batteries, and nickel-iron batteries. , nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like can be used. Among these, those using a non-aqueous electrolyte can be preferably used.
  • lithium-ion batteries, lithium-ion polymer batteries, lithium-ion capacitors, all-solid-state batteries, and the like can be suitably used as suitable application targets for the battery material of the present embodiment.
  • nonaqueous electrolyte examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), and chain carbonates such as dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • chain carbonates such as dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC).
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • the non-aqueous electrolyte may be an electrolyte in which a lithium salt such as lithium hexafluorophosphate is dissolved, if necessary.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the power storage device as described above may be in the form of a power storage device stack in which a plurality of devices are stacked.
  • the electricity storage device stack even if one electricity storage device falls into an overcharged state, the other electricity storage devices are functioning, so a large current continues to flow. It is particularly suitable because when generated, the temperature tends to be higher than the ignition temperature.
  • the casing is not particularly limited as long as it has a gap with respect to the power storage device (power storage device stack) described above and can be wrapped around the power storage device (power storage device stack). Cases and housings of equipment that use power storage devices (power storage device stacks) fall under this category.
  • the material of the casing is not limited, and may be synthetic resin, metal, or the like.
  • a molded body containing an acrylic pressure-sensitive adhesive is placed as the fire-preventing material placed in the gap between the electricity storage device and the casing.
  • acrylic pressure-sensitive adhesive examples include, for example, an acrylic pressure-sensitive adhesive whose base polymer is an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. etc.
  • the acrylic polymer preferably has an alkyl ester having 4 or more carbon atoms, more preferably an alkyl ester having 6 or more carbon atoms, and an alkyl ester having 8 or more carbon atoms as a side chain. is more preferred, with alkyl esters having 8 to 20 carbon atoms being particularly preferred, and having alkyl esters having 8 to 18 carbon atoms being most preferred.
  • the content of structural units having an alkyl ester having 4 or more carbon atoms as a side chain is preferably 30% by weight or more based on the total structural units constituting the acrylic polymer, and more It is preferably 50% by weight or more, more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight.
  • the acrylic pressure-sensitive adhesive may contain multiple types of acrylic polymers, but the content of the acrylic polymer having an alkyl ester having 4 or more carbon atoms in the side chain is based on 100 parts by weight of the total acrylic polymer. , preferably 30 to 100 parts by weight, more preferably 70 to 100 parts by weight.
  • (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, ( isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, (meth)acrylic acid Octyl, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, (meth)acrylic undecyl acid, dodecyl (meth)acrylate,
  • (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 4 to 20 carbon atoms (more preferably 6 to 20, particularly preferably 8 to 18 carbon atoms) are more preferable.
  • the acrylic polymer may optionally be a unit corresponding to another monomer component copolymerizable with the (meth)acrylic acid alkyl ester.
  • monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride and icotanic anhydride; Acid anhydride monomers such as; hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate, hydroxyoctyl (meth)acrylate, (meth)acrylate Hydroxyl group-containing monomers such as hydroxydecyl acrylate, hydroxyllauryl (meth)acrylate, (4
  • cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth)acrylate; polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, (meth)acrylic acid Glycol-based acrylic ester monomers such as methoxyethylene glycol and methoxypolypropylene glycol (meth)acrylate; heterocycles such as tetrahydrofurfuryl (meth)acrylate, fluorine (meth)acrylate, and silicone (meth)acrylate, halogen atoms, silicon atoms Acrylic acid ester-based monomers having, etc.; hexanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol Polyfunctional mono
  • a carboxyl group-containing monomer (particularly preferably acrylic acid) or a hydroxyl group-containing monomer (particularly preferably hydroxyethyl (meth)acrylate) is more preferred.
  • the content of structural units derived from a carboxyl group-containing monomer is preferably 0.1% by weight to 10% by weight, more preferably 0.5% by weight to 5% by weight, based on all structural units constituting the acrylic polymer. % by weight, particularly preferably 1% to 4% by weight.
  • the content of the structural units derived from the hydroxyl group-containing monomer is preferably 0.1% by weight to 20% by weight, more preferably 0.5% by weight, based on all the structural units constituting the acrylic polymer. to 10% by weight, particularly preferably 1% to 7% by weight.
  • the acrylic pressure-sensitive adhesive may contain any suitable additive as necessary.
  • the additives include, for example, cross-linking agents, tackifiers, plasticizers (e.g., trimellitic acid ester plasticizers, pyromellitic acid ester plasticizers, etc.), pigments, dyes, fillers, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, light stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants, and the like.
  • cross-linking agent contained in the acrylic pressure-sensitive adhesive examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, melamine-based cross-linking agents, peroxide-based cross-linking agents, urea-based cross-linking agents, metal alkoxide cross-linking agents, Examples include metal chelate cross-linking agents, metal salt cross-linking agents, carbodiimide cross-linking agents, oxazoline cross-linking agents, aziridine cross-linking agents, and amine cross-linking agents. Among them, an isocyanate-based cross-linking agent or an epoxy-based cross-linking agent is preferable.
  • the isocyanate-based cross-linking agent contained in the acrylic pressure-sensitive adhesive include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; group isocyanates; 2,4-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate and other aromatic isocyanates; name "Coronate L”), trimethylolpropane/hexamethylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate HL”), isocyanurate of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., product isocyanate adducts such as the name "Coronate HX");
  • the content of the isocyanate-based cross-linking agent can be set to any appropriate amount depending on the
  • epoxy-based cross-linking agent contained in the acrylic pressure-sensitive adhesive examples include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N- glycidylaminomethyl)cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name "Tetrad C”), 1,6-hexanediol diglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., trade name "Epolite 1600"), neopentyl glycol diglycidyl ether ( Kyoeisha Chemical Co., Ltd., trade name "Epolite 1500NP”), ethylene glycol diglycidyl ether (Kyoeisha Chemical Co., Ltd., trade name "Epolite 40E”), propylene glycol diglycidyl ether (Kyoeisha Chemical Co., Ltd., trade
  • tackifier is used as the tackifier contained in the acrylic pressure-sensitive adhesive.
  • a tackifier resin is used.
  • the tackifying resin include rosin-based tackifying resins (e.g., unmodified rosin, modified rosin, rosin phenol-based resin, rosin ester-based resin, etc.), terpene-based tackifying resins (e.g., terpene-based resin, terpene phenolic resin, styrene-modified terpene-based resin, aromatic-modified terpene-based resin, hydrogenated terpene-based resin), hydrocarbon-based tackifying resin (e.g., aliphatic hydrocarbon resin, aliphatic cyclic hydrocarbon resin, aromatic Hydrocarbon resins (e.g., styrene resins, xylene resins, etc.), aliphatic/aromatic petroleum resins, aliphatic hydrocarbon resins, alipha
  • rosin-based tackifying resins terpene-based tackifying resins, and hydrocarbon-based tackifying resins (styrene-based resins, etc.) are preferred.
  • a tackifier may be used alone or in combination of two or more.
  • the amount of the tackifier added is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, relative to 100 parts by weight of the base polymer.
  • a resin with a high softening point or glass transition temperature (Tg) is preferably used as the tackifying resin. If a resin with a high softening point or glass transition temperature (Tg) is used, a pressure-sensitive adhesive layer that can exhibit high adhesiveness even in a high-temperature environment (for example, in a high-temperature environment during processing when sealing semiconductor chips) is formed. can do.
  • the softening point of the tackifier is preferably 100°C to 180°C, more preferably 110°C to 180°C, even more preferably 120°C to 180°C.
  • the glass transition temperature (Tg) of the tackifier is preferably 100°C to 180°C, more preferably 110°C to 180°C, even more preferably 120°C to 180°C.
  • a low-polarity tackifying resin is preferably used as the tackifying resin.
  • Low-polar tackifying resins include, for example, aliphatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aromatic hydrocarbon resins (e.g., styrene resins, xylene resins, etc.), aliphatic/ Aromatic petroleum resins, aliphatic/alicyclic petroleum resins, and hydrocarbon-based tackifying resins such as hydrogenated hydrocarbon resins can be used.
  • a tackifier having 5 to 9 carbon atoms is preferred. This is because such a tackifier has low polarity, is excellent in compatibility with acrylic polymers, does not undergo phase separation in a wide temperature range, and can form a highly stable adhesive layer. .
  • the acid value of the tackifying resin is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less.
  • the hydroxyl value of the tackifier resin is preferably 60 or less, more preferably 40 or less, still more preferably 20 or less.
  • the shape of the molded body to be placed in the gap between the electricity storage device and the casing is not particularly limited. It is preferably in the form of a shape or a sheet.
  • the ignition preventing material tape-like, film-like, or sheet-like it can be attached to the inside of the casing, inserted into a gap, or installed in a wide variety of ways.
  • the base materials for forming tapes, films, or sheets containing the present acrylic pressure-sensitive adhesive include paper, nonwoven fabric, resin films (PET, polyimide, etc.), metal foil, acrylic foam, and woven fabric. , expanded butyl rubber, and the like, but are not limited to these.
  • a tape-shaped, film-shaped, or sheet-shaped molded article is formed using only an acrylic pressure-sensitive adhesive without using these base materials.
  • these ignition-preventing materials have a cooling effect by heat transfer absorption, an effect of suppressing combustion radical reaction, and an extinguishing effect that makes the flame unstable on the surface of the adsorbent for the ejected matter and ejected gas from the storage device. It is also possible to add and use a material that exhibits
  • the ignition-preventing material as described above may be used alone or in combination of two or more.
  • the present invention only needs to place a molded body containing an acrylic pressure-sensitive adhesive in the gap between the electricity storage device (electricity storage device stack) and the casing.
  • the size, shape, etc. of the electricity storage device (electricity storage device stack) are not particularly limited. Therefore, it can be applied to power storage devices (power storage device stacks) of a wide range of sizes, from smartphones to vehicles.
  • a PP resin container (inner diameter: 80 mm wide x 105 mm long x 34 mm deep, resin thickness 2 mm, the electrode side of the aluminum laminate lithium ion battery is placed on the 80 mm wide side of this PP resin container assuming a storage device container.
  • a 1500 mAh aluminum laminate lithium ion battery (35 mm wide, 75 mm long) with a positive electrode ternary system is installed, and a PP resin plate with a resin thickness of 4 mm is placed on top of it.
  • the periphery of the battery was sealed with heat-resistant tape so that there were no gaps, and ejected substances from the lithium-ion battery due to overcharge were discharged only through five holes.
  • a PP resin container assuming the casing container (inner diameter: 98 mm wide x 148 mm long x 48 mm deep, resin thickness 2 mm, diameter 10 mm on the side of 98 mm wide) Place a container with an open top with five holes (a container with holes on the opposite side of the PP resin container assuming the above storage device container)) so that the battery can be overcharged.
  • Example 1 In the electricity storage device structure used in Comparative Example 1, a double-sided tape (thickness 160 ⁇ m, weight per area 180 g/m 2 , base material non-woven fabric) to which an acrylic adhesive was applied was made of PP resin assuming a casing. A 0.011 m 2 sheet was attached to the inner upper surface of the PP resin plate of the upper lid of the container to form an electric storage device structure.
  • Example 2 In the electric storage device structure used in Comparative Example 1, a double-sided tape (45 ⁇ m thick, 100 g/m 2 weight per area, polyimide base material) to which an acrylic adhesive was applied was used as a casing. A 0.011 m 2 sheet was attached to the inner upper surface of the PP resin plate of the upper lid of the container to form an electric storage device structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This power storage device structure comprises: a power storage device; and a casing that encloses the power storage device with a gap therebetween. The power storage device structure is configured such that a shaped body containing an acrylic adhesive is disposed in the gap between the power storage device and the casing. This shaped body preferably has a tape-like, film-like or sheet-like shape. With such a power storage device structure, it is possible to reduce the risk of the structure catching fire when the power storage device, or in particular, a power storage device stack in which a plurality of power storage devices are stacked, is in an abnormal state such as being damaged or overcharged.

Description

蓄電デバイス構造体Storage device structure
 本発明は、リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスを外包した蓄電デバイス構造体に関し、特に蓄電デバイスの破損時や過充電時などの異常時に発火するリスクを低減することが可能な蓄電デバイス構造体に関する。 TECHNICAL FIELD The present invention relates to an electric storage device structure enclosing an electric storage device such as a lithium ion battery, a lithium ion capacitor, an electric double layer capacitor, etc., and particularly to reduce the risk of ignition in the event of an abnormality such as damage or overcharging of the electric storage device. relates to an electricity storage device structure capable of
 近年、高出力用途の携帯機器や電気自動車などの電源として、非水電解質を用いた蓄電デバイスをケーシングに収容してなる二次電池、リチウムイオンキャパシタおよび電気二重層キャパシタなどの蓄電デバイスが用いられている。 In recent years, power storage devices such as secondary batteries, lithium ion capacitors, and electric double layer capacitors, in which a power storage device using a non-aqueous electrolyte is housed in a casing, have been used as power sources for high-output portable devices and electric vehicles. ing.
 このような蓄電デバイスは、通常、上限電圧が定められており、適切な保護回路と組み合わせることで上限電圧を超えないよう制御されている。しかしながら、保護回路が誤動作を起こし上限電圧を超えた場合、充放電を繰り返した場合、あるいは外的要因により短絡した場合などには、蓄電デバイスが過充電状態に陥り、電解液が電極材料などと反応してガスが発生し、この発生したガスによって内圧が上昇する。この発生するガスは、電解液、メタン、一酸化炭素、エチレン、エタン、プロパンなどの可燃性ガスを含むことがあり、蓄電デバイス外部に放出された際に、発火や爆発などを起こす危険性がある。 Such power storage devices usually have a specified upper voltage limit, and are controlled so that they do not exceed the upper voltage limit by combining with an appropriate protection circuit. However, if the protection circuit malfunctions and the upper limit voltage is exceeded, if charging and discharging are repeated, or if a short circuit occurs due to an external factor, the storage device will fall into an overcharged state, and the electrolyte will interfere with the electrode material. Gas is generated by the reaction, and the generated gas increases the internal pressure. The generated gas may contain combustible gases such as electrolytic solution, methane, carbon monoxide, ethylene, ethane, and propane, and there is a risk of ignition or explosion when released outside the power storage device. be.
 そして、近年、リチウムイオンキャパシタや電気二重層キャパシタなどの蓄電デバイスにおいては、高出力および大容量化が求められてきており、蓄電デバイス単体や、複数の蓄電デバイスをスタックしたモジュール構成で大電流を使用する機会が増えてきている。例えば、複数の蓄電デバイスをスタックしたモジュールにおいて、1つの蓄電デバイスが過充電状態に陥った場合に、ガスが電解液と共に放出された後も、その他の蓄電デバイスが機能しているため、大電流を流し続けることがある。そのため、短絡により激しく過熱される場合があり、上述したような発火や爆発などを起こす危険性は大きくなる。 In recent years, there has been a demand for high output and large capacity in power storage devices such as lithium-ion capacitors and electric double layer capacitors. Opportunities to use it are increasing. For example, in a module in which a plurality of power storage devices are stacked, if one power storage device falls into an overcharged state, even after the gas is released together with the electrolyte, the other power storage devices are still functioning. may continue to flow. As a result, the short circuit may cause severe overheating, increasing the risk of fire or explosion as described above.
 このような蓄電デバイスの発火を防止する技術として、例えば、リチウムイオン電池の内部で発生したガスを可燃性ガス吸収材によって吸収し、電池の破裂を防止する方法が提案されている(特許文献1,2)。 As a technique for preventing ignition of such an electricity storage device, for example, a method has been proposed in which gas generated inside a lithium ion battery is absorbed by a combustible gas absorbent to prevent the battery from exploding (Patent Document 1). , 2).
 一方、リチウムイオン電池内部に消火剤を配置することにより、電池内部でのガスの発生による内圧上昇によって安全弁が開放した際に外部に放出されるガスの温度を低下させる方法も提案されている(特許文献3)。さらには、リチウムイオン電池内部に、不燃性ガス、水系溶媒、あるいは不燃性溶媒を細孔内及び表面に吸着させた多孔質素材を配置することにより、リチウムイオン電池からの発生するガスによる発火を防止する方法も提案されている(特許文献4)。 On the other hand, a method has also been proposed in which a fire extinguishing agent is placed inside the lithium-ion battery to lower the temperature of the gas released to the outside when the safety valve opens due to an increase in internal pressure due to the generation of gas inside the battery ( Patent document 3). Furthermore, by placing a porous material in which a nonflammable gas, an aqueous solvent, or a nonflammable solvent is adsorbed in the pores and on the surface inside the lithium-ion battery, ignition by the gas generated from the lithium-ion battery is suppressed. A preventive method has also been proposed (Patent Document 4).
特開2001-155790号公報JP-A-2001-155790 特開2003-077549号公報JP-A-2003-077549 特開2010-287488号公報JP 2010-287488 A 特開2013-187089号公報JP 2013-187089 A
 しかしながら、電気的異常時や熱暴走時には瞬間的に大量のガスが発生するため、特許文献1及び2に記載されているようなガス吸着材を蓄電デバイス内に配置する方法では、蓄電デバイスという限られた空間に対しては、ガス吸着量及びガス吸着速度ともに不十分であり、蓄電デバイスからのガスの噴出を抑制しきれない、という問題点があった。また、特許文献3及び4に記載されているように、リチウムイオン電池の内部の温度を低下させるために消火剤や、多孔質素材の細孔内および表面に不燃性ガスあるいは水系溶媒又は不燃性溶媒を吸着される材を蓄電デバイス内に配置する方法では、ガス吸着量が不十分だとその効果が十分に発揮されず、さらにガスの噴出を抑制しきれない、という問題点があった。 However, in the event of an electrical abnormality or thermal runaway, a large amount of gas is instantaneously generated. There is a problem that both the amount of gas adsorbed and the gas adsorption rate are insufficient for the space provided with the space, and the ejection of gas from the electricity storage device cannot be suppressed. In addition, as described in Patent Documents 3 and 4, a fire extinguishing agent is used to lower the internal temperature of the lithium ion battery, and a nonflammable gas, aqueous solvent, or nonflammable gas is added to the pores and surface of the porous material. In the method of arranging a material capable of adsorbing a solvent inside an electricity storage device, there is a problem that if the amount of gas adsorbed is insufficient, the effect is not sufficiently exhibited, and furthermore, the ejection of gas cannot be suppressed completely.
 本発明は、上記課題に鑑みてなされたものであり、蓄電デバイス、特に複数の蓄電デバイスを積層した蓄電デバイススタックの破損や過充電などの異常時に発火するリスクを低減することが可能な蓄電デバイス構造体を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of reducing the risk of an electric storage device, particularly an electric storage device stack in which a plurality of electric storage devices are stacked, igniting in the event of an abnormality such as damage or overcharging. The purpose is to provide a structure.
 上記課題を解決するために、本発明は、蓄電デバイスと、該蓄電デバイスを空隙を有して外包するケーシングとからなる蓄電デバイス構造体であって、前記蓄電デバイスとケーシングとの空隙に、アクリル系粘着剤を含む成形体を配置した、蓄電デバイス構造体を提供する(発明1)。 In order to solve the above problems, the present invention provides an electricity storage device structure comprising an electricity storage device and a casing enclosing the electricity storage device with a gap therebetween, wherein an acrylic Provided is an electricity storage device structure in which a molded body containing a system adhesive is arranged (Invention 1).
 かかる発明(発明1)によれば、蓄電デバイス内ではなく、蓄電デバイスを外包するケーシングの空間に、アクリル系粘着剤を含む成形体を配置することにより、蓄電デバイス内で発火が生じた際のケーシング外まで延焼するリスクを低減することができる。 According to this invention (Invention 1), by arranging the molded body containing the acrylic pressure-sensitive adhesive in the space of the casing that encloses the electricity storage device instead of inside the electricity storage device, when ignition occurs in the electricity storage device The risk of fire spreading to the outside of the casing can be reduced.
 上記発明(発明1)においては、前記蓄電デバイスが非水電解質を用いたものであることが好ましい(発明2)。 In the above invention (invention 1), it is preferable that the electricity storage device uses a non-aqueous electrolyte (invention 2).
 上記発明(発明1,2)においては、前記アクリル系粘着剤を含む成形体は、アクリル系ポリマー部が全体の10重量%以上含まれることが好ましい(発明3)。 In the above inventions (inventions 1 and 2), it is preferable that the molded body containing the acrylic pressure-sensitive adhesive contains 10% by weight or more of the acrylic polymer part of the whole (invention 3).
 かかる発明(発明3)によれば、蓄電デバイス内で発火が生じた際の外部への延焼防止効果を好適に発揮することができる。 According to this invention (Invention 3), it is possible to suitably exhibit the effect of preventing the spread of fire to the outside when ignition occurs within the electricity storage device.
 上記発明(発明1~3)においては、前記アクリル系粘着剤が、(メタ)アクリル酸アルキルエステルの1種または2種以上を単量体成分として用いたアクリル系ポリマー(ホモポリマーまたはコポリマー)をベースポリマーとする粘着剤であることが好ましい(発明4)。 In the above inventions (inventions 1 to 3), the acrylic pressure-sensitive adhesive comprises an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. It is preferable that the pressure-sensitive adhesive is used as a base polymer (invention 4).
 上記発明(発明1~4)においては、前記アクリル系粘着剤を含む成形体が、テープ状、フィルム状またはシート状であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the molded article containing the acrylic pressure-sensitive adhesive is preferably tape-shaped, film-shaped or sheet-shaped (Invention 5).
 かかる発明(発明5)によれば、テープ状、フィルム状またはシート状とすることにより、ケーシング内に張り付けたり、隙間部に挿入したり、その設置バリエーションを豊富なものとすることができ、取扱い性に優れたものとすることができる。 According to this invention (invention 5), by making it tape-shaped, film-shaped, or sheet-shaped, it can be stuck in the casing, inserted into a gap, and can be installed in a wide variety of ways. It can be made to have excellent properties.
 上記発明(発明5)においては、前記テープ状、フィルム状、またはシート状の成形体が、厚さ1μm~5000μmであることが好ましい(発明6)。特に上記発明(発明5又は6)においては、前記テープ状、フィルム状またはシート状の成形体の面積当たりの重量が、10g~2000g/mであることが好ましい(発明7)。 In the above invention (invention 5), the tape-like, film-like, or sheet-like molding preferably has a thickness of 1 μm to 5000 μm (invention 6). In particular, in the above invention (invention 5 or 6), it is preferable that the weight per area of the tape-shaped, film-shaped or sheet-shaped molding is 10 g to 2000 g/m 2 (invention 7).
 かかる発明(発明6,7)によれば、所定の厚さ及び重量のテープ状、フィルム状またはシート状の成形体を、蓄電デバイスとケーシングとの空隙に配置することにより、蓄電デバイス内で発火が生じた際の外部への延焼防止効果を好適に発揮することができる。 According to such inventions (inventions 6 and 7), a tape-shaped, film-shaped or sheet-shaped formed body having a predetermined thickness and weight is placed in the gap between the power storage device and the casing, thereby igniting inside the power storage device. It is possible to suitably exhibit the effect of preventing the spread of fire to the outside when this occurs.
 上記発明(発明1~7)においては、前記蓄電デバイスが複数積層されていてもよい(発明8)。 In the above inventions (inventions 1 to 7), a plurality of the electricity storage devices may be laminated (invention 8).
 蓄電デバイスを複数積層した蓄電デバイススタックは、1つの蓄電デバイスが過充電状態に陥った場合であってもその他の蓄電デバイスが機能しているため大電流を流し続けるので、激しく過熱され、可燃性のガスが発火温度以上となりやすい。このとき、かかる発明(発明8)によれば、蓄電デバイスから可燃性ガスが噴出してケーシングの空間に流出したとしても、本件発明の素材が可燃性ガスに影響を与えることにより、ケーシング外にまで延焼するリスクを大幅に低減することができるので、蓄電デバイススタックに特に好適に適用することができる。 In a power storage device stack in which multiple power storage devices are stacked, even if one power storage device falls into an overcharged state, the other power storage devices are functioning and a large amount of current continues to flow. gas tends to be higher than the ignition temperature. At this time, according to this invention (invention 8), even if the combustible gas blows out from the electricity storage device and flows out into the space of the casing, the material of the present invention affects the combustible gas, so that the combustible gas is discharged outside the casing. Since it is possible to significantly reduce the risk of fire spreading, it can be particularly preferably applied to the electricity storage device stack.
 本発明は、前記蓄電デバイスとケーシングとの空隙に、アクリル系粘着剤を含む成形体を配置することで、蓄電デバイスの短絡などにより蓄電デバイスから放出される高温の噴出物や噴出ガスにより、アクリル系粘着剤が熱分解して発生する成分が、蓄電デバイス構造体の発火リスクを大幅に低減することができる。 In the present invention, by arranging a molded body containing an acrylic pressure-sensitive adhesive in the gap between the electricity storage device and the casing, it is possible to prevent the acrylic adhesive from sticking out due to high-temperature spouts or gas emitted from the electricity storage device due to a short circuit of the electricity storage device or the like. The components generated by thermal decomposition of the system adhesive can greatly reduce the risk of ignition of the electrical storage device structure.
 以下の本発明の蓄電デバイス構造体について、以下の実施形態に基づいて詳細に説明する。 The following electric storage device structure of the present invention will be described in detail based on the following embodiments.
[蓄電デバイス構造体]
 本実施形態の蓄電デバイス構造体は、蓄電デバイスと、この蓄電デバイスを空隙を有して外包するケーシングとからなり、蓄電デバイスとケーシングとの空隙に、アクリル系粘着剤を含む成形体を配置した構造を有する。
[Electric storage device structure]
The electricity storage device structure of the present embodiment is composed of an electricity storage device and a casing that encloses the electricity storage device with a gap therebetween. have a structure.
(蓄電デバイス)
 本実施形態において、蓄電デバイスとしては、特に制限はなく、一次電池、二次電池のいずれも用いることができるが、好ましくは二次電池である。この二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサ、キャパシタ等を用いることができる。これらの中では、非水電解質を用いたものを好適に用いることができる。これらの二次電池の中でも、本実施形態の電池用材料の好適な適用対象として、リチウムイオン電池、リチウムイオンポリマー電池、リチウムイオンキャパシタ、全固体電池などを好適に用いることができる。
(storage device)
In this embodiment, the electric storage device is not particularly limited, and either a primary battery or a secondary battery can be used, but the secondary battery is preferable. The type of the secondary battery is not particularly limited, and examples include lithium ion batteries, lithium ion polymer batteries, all-solid batteries, lead batteries, nickel-hydrogen batteries, nickel-cadmium batteries, and nickel-iron batteries. , nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like can be used. Among these, those using a non-aqueous electrolyte can be preferably used. Among these secondary batteries, lithium-ion batteries, lithium-ion polymer batteries, lithium-ion capacitors, all-solid-state batteries, and the like can be suitably used as suitable application targets for the battery material of the present embodiment.
 上記非水電解質としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネートと、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートとの混合溶液などを用いることができる。また、上記非水電解質は、必要に応じて、電解質として六フッ化リン酸リチウムなどのリチウム塩が溶解したものであってもよい。例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びジメチルカーボネート(DMC)を1:1:1の割合で混合した混合液、あるいはプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を1:1:1の割合で混合した混合液に、1mol/Lの六フッ化リン酸リチウムを添加したものを用いることができる。 Examples of the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), and chain carbonates such as dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC). can be used. Moreover, the non-aqueous electrolyte may be an electrolyte in which a lithium salt such as lithium hexafluorophosphate is dissolved, if necessary. For example, a mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) at a ratio of 1:1:1, or propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate ( DEC) at a ratio of 1:1:1 to which 1 mol/L of lithium hexafluorophosphate is added.
 上述したような蓄電デバイスは、複数が積層されてなる蓄電デバイススタックの形態であってもよい。蓄電デバイススタックは、1つの蓄電デバイスが過充電状態に陥った場合であっても、その他の蓄電デバイスが機能しているため大電流を流し続けるので、非水電解質に起因して可燃性ガスが発生した際に、発火温度以上となりやすいため特に好適である。 The power storage device as described above may be in the form of a power storage device stack in which a plurality of devices are stacked. In the electricity storage device stack, even if one electricity storage device falls into an overcharged state, the other electricity storage devices are functioning, so a large current continues to flow. It is particularly suitable because when generated, the temperature tends to be higher than the ignition temperature.
(ケーシング)
 本実施形態において、ケーシングとしては上述した蓄電デバイス(蓄電デバイススタック)に対して空隙を有して外包しうるものであれば特に制限はなく、電池ケースなどの蓄電デバイス(蓄電デバイススタック)の収納ケースや、蓄電デバイス(蓄電デバイススタック)を使用する機器の筐体などがこれに該当する。このケーシングは、合成樹脂製、金属製などその素材については限定されない。
(casing)
In the present embodiment, the casing is not particularly limited as long as it has a gap with respect to the power storage device (power storage device stack) described above and can be wrapped around the power storage device (power storage device stack). Cases and housings of equipment that use power storage devices (power storage device stacks) fall under this category. The material of the casing is not limited, and may be synthetic resin, metal, or the like.
(発火防止素材)
 本実施形態において、蓄電デバイスとケーシングとの空隙に設置する発火防止素材としては、アクリル系粘着剤を含む成形体を配置する。
(Fire prevention material)
In this embodiment, a molded body containing an acrylic pressure-sensitive adhesive is placed as the fire-preventing material placed in the gap between the electricity storage device and the casing.
(アクリル系粘着剤)
上記アクリル系粘着剤としては、例えば、(メタ)アクリル酸アルキルエステルの1種または2種以上を単量体成分として用いたアクリル系ポリマー(ホモポリマーまたはコポリマー)をベースポリマーとするアクリル系粘着剤等が挙げられる。
(Acrylic adhesive)
Examples of the acrylic pressure-sensitive adhesive include, for example, an acrylic pressure-sensitive adhesive whose base polymer is an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. etc.
 上記アクリル系ポリマーは、側鎖として、炭素数が4以上のアルキルエステルを有することが好ましく、炭素数が6以上のアルキルエステルを有することがより好ましく、炭素数が8以上のアルキルエステルを有することがさらに好ましく、炭素数が8~20のアルキルエステルを有することが特に好ましく、炭素数が8~18のアルキルエステルを有することが最も好ましい。上記アクリル系ポリマーにおいて、側鎖として炭素数が4以上のアルキルエステルを有する構成単位の含有割合は、該アクリル系ポリマーを構成する全構成単位に対して、好ましくは30重量%以上であり、より好ましくは50重量%以上であり、さらに好ましくは70重量%~100重量%であり、特に好ましくは80重量%~100重量%である。 The acrylic polymer preferably has an alkyl ester having 4 or more carbon atoms, more preferably an alkyl ester having 6 or more carbon atoms, and an alkyl ester having 8 or more carbon atoms as a side chain. is more preferred, with alkyl esters having 8 to 20 carbon atoms being particularly preferred, and having alkyl esters having 8 to 18 carbon atoms being most preferred. In the acrylic polymer, the content of structural units having an alkyl ester having 4 or more carbon atoms as a side chain is preferably 30% by weight or more based on the total structural units constituting the acrylic polymer, and more It is preferably 50% by weight or more, more preferably 70% by weight to 100% by weight, and particularly preferably 80% by weight to 100% by weight.
 上記アクリル系粘着剤は、複数種のアクリル系ポリマーを含み得るが、上記側鎖に炭素数が4以上のアルキルエスエルを有するアクリル系ポリマーの含有割合は、全アクリル系ポリマー100重量部に対して、好ましくは30重量部~100重量部であり、より好ましくは70重量部~100重量部である。 The acrylic pressure-sensitive adhesive may contain multiple types of acrylic polymers, but the content of the acrylic polymer having an alkyl ester having 4 or more carbon atoms in the side chain is based on 100 parts by weight of the total acrylic polymer. , preferably 30 to 100 parts by weight, more preferably 70 to 100 parts by weight.
 上記(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等の(メタ)アクリル酸C1-20アルキルエステルが挙げられる。なかでも好ましくは、炭素数が4~20(より好ましくは6~20、特に好ましくは8~18)の直鎖状もしくは分岐状のアルキル基を有する(メタ)アクリル酸アルキルエステルであり、より好ましくは(メタ)アクリル酸2-エチルヘキシルである。 Specific examples of the (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, ( isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, (meth)acrylic acid Octyl, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, (meth)acrylic undecyl acid, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, (meth)acrylic acid Examples include (meth)acrylic acid C1-20 alkyl esters such as octadecyl, nonadecyl (meth)acrylate and eicosyl (meth)acrylate. Among them, (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 4 to 20 carbon atoms (more preferably 6 to 20, particularly preferably 8 to 18 carbon atoms) are more preferable. is 2-ethylhexyl (meth)acrylate.
 上記アクリル系ポリマーは、凝集力、耐熱性、架橋性等の改質を目的として、必要に応じて、上記(メタ)アクリル酸アルキルエステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸等の酸無水物モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等の(N-置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等の(メタ)アクリル酸アルコキシアルキル系モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミド等のイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクルロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー;酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-ビニルカルボン酸アミド類、スチレン、α-メチルスチレン、N-ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレートモノマー;(メタ)アクリル酸グリシジル等のエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール等のグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート等の複素環、ハロゲン原子、ケイ素原子等を有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等の多官能モノマー;イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;ビニルエーテル等のビニルエーテル系モノマー等が挙げられる。これらの単量体成分は、単独で、または2種以上組み合わせて用いてもよい。上記の中でも、より好ましくはカルボキシル基含有モノマー(特に好ましくはアクリル酸)またはヒドロキシル基含有モノマー(特に好ましくは(メタ)アクリル酸ヒドロキシエチル)である。カルボキシル基含有モノマー由来の構成単位の含有量は、アクリル系ポリマーを構成する全構成単位に対して、好ましくは0.1重量%~10重量%であり、より好ましくは0.5重量%~5重量%であり、特に好ましは1重量%~4重量%である。また、ヒドロキシル基含有モノマー由来の構成単位の含有量は、アクリル系ポリマーを構成する全構成単位に対して、好ましくは0.1重量%~20重量%であり、より好ましくは0.5重量%~10重量%であり、特に好ましは1重量%~7重量%である。 For the purpose of modifying cohesive strength, heat resistance, crosslinkability, etc., the acrylic polymer may optionally be a unit corresponding to another monomer component copolymerizable with the (meth)acrylic acid alkyl ester. may contain Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride and icotanic anhydride; Acid anhydride monomers such as; hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate, hydroxyoctyl (meth)acrylate, (meth)acrylate Hydroxyl group-containing monomers such as hydroxydecyl acrylate, hydroxyllauryl (meth)acrylate, (4-hydroxymethylcyclohexyl)methyl methacrylate; styrenesulfonic acid, allylsulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid , (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, (meth)acryloyloxynaphthalenesulfonic acid and other sulfonic acid group-containing monomers; (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N-butyl (N-substituted) amide-based monomers such as (meth)acrylamide, N-methylol (meth)acrylamide, N-methylolpropane (meth)acrylamide; aminoethyl (meth)acrylate, N,N-dimethyl (meth)acrylate Aminoalkyl (meth)acrylate monomers such as aminoethyl and t-butylaminoethyl (meth)acrylate; Alkoxyalkyl (meth)acrylates such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate Monomers: Maleimide monomers such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N-methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide , N-2-ethylhexyl itaconimide, N-cyclohexyl itaconimide, N-lauryl itaconimide and other itaconimide monomers; N-(meth)acryloyloxymethylenesuccinimide, N-(meth)acryloyl-6-oxyhexamethylenesuccinimide, Succinimide-based monomers such as N-(meth)acryloyl-8-oxyoctamethylenesuccinimide; vinyl acetate, vinyl propionate, N-vinylpyrrolidone, methylvinylpyrrolidone Vinyls such as lydone, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, vinylmorpholine, N-vinylcarboxylic acid amides, styrene, α-methylstyrene, N-vinylcaprolactam, etc. cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth)acrylate; polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, (meth)acrylic acid Glycol-based acrylic ester monomers such as methoxyethylene glycol and methoxypolypropylene glycol (meth)acrylate; heterocycles such as tetrahydrofurfuryl (meth)acrylate, fluorine (meth)acrylate, and silicone (meth)acrylate, halogen atoms, silicon atoms Acrylic acid ester-based monomers having, etc.; hexanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol Polyfunctional monomers such as di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, epoxy acrylate, polyester acrylate, urethane acrylate; isoprene, butadiene, Olefin monomers such as isobutylene; vinyl ether monomers such as vinyl ether; These monomer components may be used alone or in combination of two or more. Among the above, a carboxyl group-containing monomer (particularly preferably acrylic acid) or a hydroxyl group-containing monomer (particularly preferably hydroxyethyl (meth)acrylate) is more preferred. The content of structural units derived from a carboxyl group-containing monomer is preferably 0.1% by weight to 10% by weight, more preferably 0.5% by weight to 5% by weight, based on all structural units constituting the acrylic polymer. % by weight, particularly preferably 1% to 4% by weight. In addition, the content of the structural units derived from the hydroxyl group-containing monomer is preferably 0.1% by weight to 20% by weight, more preferably 0.5% by weight, based on all the structural units constituting the acrylic polymer. to 10% by weight, particularly preferably 1% to 7% by weight.
 上記アクリル系粘着剤は、必要に応じて、任意の適切な添加剤を含み得る。該添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤(例えば、トリメリット酸エステル系可塑剤、ピロメリット酸エステル系可塑剤等)、顔料、染料、充填剤、老化防止剤、導電材、帯電防止剤、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。 The acrylic pressure-sensitive adhesive may contain any suitable additive as necessary. The additives include, for example, cross-linking agents, tackifiers, plasticizers (e.g., trimellitic acid ester plasticizers, pyromellitic acid ester plasticizers, etc.), pigments, dyes, fillers, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, light stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants, and the like.
 上記アクリル系粘着剤に含まれる架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤の他、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤などが挙げられる。なかでも好ましくは、イソシアネート系架橋剤またはエポキシ系架橋剤である。 Examples of the cross-linking agent contained in the acrylic pressure-sensitive adhesive include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, melamine-based cross-linking agents, peroxide-based cross-linking agents, urea-based cross-linking agents, metal alkoxide cross-linking agents, Examples include metal chelate cross-linking agents, metal salt cross-linking agents, carbodiimide cross-linking agents, oxazoline cross-linking agents, aziridine cross-linking agents, and amine cross-linking agents. Among them, an isocyanate-based cross-linking agent or an epoxy-based cross-linking agent is preferable.
 上記アクリル系粘着剤に含まれる上記イソシアネート系架橋剤の具体例としては、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、イソホロン ジイソシアネート等の脂環族イソシアネート類;2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類;トリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名「コロネートL」)、トリメチロールプロパン/へキサメチレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名「コロネートHL」)、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名「コロネートHX」)等のイソシアネート付加物;等が挙げられる。イソシアネート系架橋剤の含有量は、所望とする粘着力に応じて、任意の適切な量に設定され得、ベースポリマー100重量部に対して、代表的には0.1重量部~20重量部であり、より好ましくは0.5重量部~10重量部である。 Specific examples of the isocyanate-based cross-linking agent contained in the acrylic pressure-sensitive adhesive include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; group isocyanates; 2,4-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate and other aromatic isocyanates; name "Coronate L"), trimethylolpropane/hexamethylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate HL"), isocyanurate of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., product isocyanate adducts such as the name "Coronate HX"); The content of the isocyanate-based cross-linking agent can be set to any appropriate amount depending on the desired adhesive strength, and is typically 0.1 to 20 parts by weight with respect to 100 parts by weight of the base polymer. and more preferably 0.5 to 10 parts by weight.
 上記アクリル系粘着剤に含まれる前記エポキシ系架橋剤としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製、商品名「テトラッドC」)、1,6-ヘキサンジオールジグリシジルエーテル(共栄社化学社製、商品名「エポライト1600」)、ネオペンチルグリコールジグリシジルエーテル(共栄社化学社製、商品名「エポライト1500NP」)、エチレングリコールジグリシジルエーテル(共栄社化学社製、商品名「エポライト40E」)、プロピレングリコールジグリシジルエーテル(共栄社化学社製、商品名「エポライト70P」)、ポリエチレングリコールジグリシジルエーテル(日本油脂社製、商品名「エピオールE-400」)、ポリプロピレングリコールジグリシジルエーテル(日本油脂社製、商品名「エピオールP-200」)、ソルビトールポリグリシジルエーテル(ナガセケムテックス社製、商品名「デナコール EX-611」)、グリセロールポリグリシジルエーテル(ナガセケムテックス社製、商品名「デナコール EX-314」)、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製、商品名「デナコール EX-512」)、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、分子内にエポキシ基を2つ以上有するエポキシ系樹脂等が挙げられる。エポキシ系架橋剤の含有量は、所望とする粘着力に応じて、任意の適切な量に設定され得、ベースポリマー100重量部に対して、代表的には0.01重量部~10重量部であり、より好ましくは0.03重量部~5重量部である。 Examples of the epoxy-based cross-linking agent contained in the acrylic pressure-sensitive adhesive include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N- glycidylaminomethyl)cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name "Tetrad C"), 1,6-hexanediol diglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., trade name "Epolite 1600"), neopentyl glycol diglycidyl ether ( Kyoeisha Chemical Co., Ltd., trade name "Epolite 1500NP"), ethylene glycol diglycidyl ether (Kyoeisha Chemical Co., Ltd., trade name "Epolite 40E"), propylene glycol diglycidyl ether (Kyoeisha Chemical Co., Ltd., trade name "Epolite 70P") , polyethylene glycol diglycidyl ether (manufactured by NOF Corporation, trade name "Epiol E-400"), polypropylene glycol diglycidyl ether (manufactured by NOF Corporation, trade name "Epiol P-200"), sorbitol polyglycidyl ether (Nagasechem Tex Corporation, trade name "Denacol EX-611"), glycerol polyglycidyl ether (Nagase ChemteX Corporation, trade name "Denacol EX-314"), pentaerythritol polyglycidyl ether, polyglycerol polyglycidyl ether (Nagase ChemteX Corporation) company, product name "Denacol EX-512"), sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, diglycidyl adipate, o-diglycidyl phthalate, triglycidyl-tris(2-hydroxyethyl) isocyanate Examples include nurate, resorcinol diglycidyl ether, bisphenol-S-diglycidyl ether, and epoxy resins having two or more epoxy groups in the molecule. The content of the epoxy-based cross-linking agent can be set to any appropriate amount depending on the desired adhesive strength, and is typically 0.01 to 10 parts by weight with respect to 100 parts by weight of the base polymer. and more preferably 0.03 to 5 parts by weight.
 上記アクリル系粘着剤に含まれる上記粘着付与剤としては、任意の適切な粘着付与剤が用いられる。粘着付与剤としては、例えば、粘着付与樹脂が用いられる。該粘着付与樹脂の具体例としては、ロジン系粘着付与樹脂(例えば、未変性ロジン、変性ロジン、ロジンフェノール系樹脂、ロジンエステル系樹脂など)、テルペン系粘着付与樹脂(例えば、テルペン系樹脂、テルペンフェノール系樹脂、スチレン変性テルペン系樹脂、芳香族変性テルペン系樹脂、水素添加テルペン系樹脂)、炭化水素系粘着付与樹脂(例えば、脂肪族系炭化水素樹脂、脂肪族系環状炭化水素樹脂、芳香族系炭化水素樹脂(例えば、スチレン系樹脂、キシレン系樹脂など)、脂肪族・芳香族系石油樹脂、脂肪族・脂環族系石油樹脂、水素添加炭化水素樹脂、クマロン系樹脂、クマロンインデン系樹脂など)、フェノール系粘着付与樹脂(例えば、アルキルフェノール系樹脂、キシレンホルムアルデヒド系樹脂、レゾール、ノボラックなど)、ケトン系粘着付与樹脂、ポリアミド系粘着付与樹脂、エポキシ系粘着付与樹脂、エラストマー系粘着付与樹脂などが挙げられる。なかでも好ましくは、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂または炭化水素系粘着付与樹脂(スチレン系樹脂など)である。粘着付与剤は、単独で、または2種以上組み合わせて用いてもよい。上記粘着付与剤の添加量は、ベースポリマー100重量部に対して、好ましくは5重量部~100重量部であり、より好ましくは10重量部~50重量部である。 Any appropriate tackifier is used as the tackifier contained in the acrylic pressure-sensitive adhesive. As the tackifier, for example, a tackifier resin is used. Specific examples of the tackifying resin include rosin-based tackifying resins (e.g., unmodified rosin, modified rosin, rosin phenol-based resin, rosin ester-based resin, etc.), terpene-based tackifying resins (e.g., terpene-based resin, terpene phenolic resin, styrene-modified terpene-based resin, aromatic-modified terpene-based resin, hydrogenated terpene-based resin), hydrocarbon-based tackifying resin (e.g., aliphatic hydrocarbon resin, aliphatic cyclic hydrocarbon resin, aromatic Hydrocarbon resins (e.g., styrene resins, xylene resins, etc.), aliphatic/aromatic petroleum resins, aliphatic/alicyclic petroleum resins, hydrogenated hydrocarbon resins, coumarone resins, coumarone-indene resins resins, etc.), phenolic tackifying resins (e.g., alkylphenolic resins, xylene-formaldehyde-based resins, resols, novolacs, etc.), ketone-based tackifying resins, polyamide-based tackifying resins, epoxy-based tackifying resins, elastomer-based tackifying resins etc. Among them, rosin-based tackifying resins, terpene-based tackifying resins, and hydrocarbon-based tackifying resins (styrene-based resins, etc.) are preferred. A tackifier may be used alone or in combination of two or more. The amount of the tackifier added is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, relative to 100 parts by weight of the base polymer.
 好ましくは、上記粘着付与樹脂として、軟化点またはガラス転移温度(Tg)の高い樹脂が用いられる。軟化点またはガラス転移温度(Tg)の高い樹脂を用いれば、高温環境下(例えば、半導体チップ封止時の加工等における高温環境下)においても、高い粘着性を発現し得る粘着剤層を形成することができる。粘着付与剤の軟化点は、好ましくは100℃~180℃であり、より好ましくは110℃~180℃であり、さらに好ましくは120℃~180℃である。粘着付与剤のガラス転位温度(Tg)は、好ましくは100℃~180℃であり、より好ましくは110℃~180℃であり、さらに好ましくは120℃~180℃である。 A resin with a high softening point or glass transition temperature (Tg) is preferably used as the tackifying resin. If a resin with a high softening point or glass transition temperature (Tg) is used, a pressure-sensitive adhesive layer that can exhibit high adhesiveness even in a high-temperature environment (for example, in a high-temperature environment during processing when sealing semiconductor chips) is formed. can do. The softening point of the tackifier is preferably 100°C to 180°C, more preferably 110°C to 180°C, even more preferably 120°C to 180°C. The glass transition temperature (Tg) of the tackifier is preferably 100°C to 180°C, more preferably 110°C to 180°C, even more preferably 120°C to 180°C.
 好ましくは、上記粘着付与樹脂として、低極性の粘着付与樹脂が用いられる。低極性の粘着付与樹脂を用いれば、封止材料との親和性が低い粘着剤層を形成することができる。低極性の粘着付与樹脂としては、例えば、例えば、脂肪族系炭化水素樹脂、脂肪族系環状炭化水素樹脂、芳香族系炭化水素樹脂(例えば、スチレン系樹脂、キシレン系樹脂など)、脂肪族・芳香族系石油樹脂、脂肪族・脂環族系石油樹脂、水素添加炭化水素樹脂当の炭化水素系粘着付与樹脂が挙げられる。なかでも好ましくは、炭素数が5~9である粘着付与剤である。このような粘着付与剤は、低極性であるとともに、アクリル系ポリマーとの相溶性に優れ、広い温度範囲で相分離せず、安定性に優れた粘着剤層を形成することができるからである。 A low-polarity tackifying resin is preferably used as the tackifying resin. By using a low-polarity tackifier resin, it is possible to form a pressure-sensitive adhesive layer with low affinity for the sealing material. Low-polar tackifying resins include, for example, aliphatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aromatic hydrocarbon resins (e.g., styrene resins, xylene resins, etc.), aliphatic/ Aromatic petroleum resins, aliphatic/alicyclic petroleum resins, and hydrocarbon-based tackifying resins such as hydrogenated hydrocarbon resins can be used. Among them, a tackifier having 5 to 9 carbon atoms is preferred. This is because such a tackifier has low polarity, is excellent in compatibility with acrylic polymers, does not undergo phase separation in a wide temperature range, and can form a highly stable adhesive layer. .
 上記粘着付与樹脂の酸価は、好ましくは40以下であり、より好ましくは20以下であり、さらに好ましくは10以下である。上記粘着付与樹脂の水酸基価は、好ましくは60以下であり、より好ましくは40以下であり、さらに好ましくは20以下である。 The acid value of the tackifying resin is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less. The hydroxyl value of the tackifier resin is preferably 60 or less, more preferably 40 or less, still more preferably 20 or less.
 本実施形態においては、蓄電デバイスとケーシングとの空隙に配置する成形体の形状は特に制限はないが、蓄電デバイスとケーシングとの空隙に設置する際の取扱い易さを考慮すると、テープ状、フィルム状、またはシート状とすることが好ましい。発火防止素材をテープ状、フィルム状、またはシート状とすることにより、ケーシング内に張り付けたり、隙間部に挿入したり、その設置バリエーションを豊富なものとすることができる。 In the present embodiment, the shape of the molded body to be placed in the gap between the electricity storage device and the casing is not particularly limited. It is preferably in the form of a shape or a sheet. By making the ignition preventing material tape-like, film-like, or sheet-like, it can be attached to the inside of the casing, inserted into a gap, or installed in a wide variety of ways.
 本アクリル系粘着剤を含む成形体として、テープ状、フィルム状、またはシート状とする場合の基材としては、紙、不織布、樹脂フィルム(PET、ポリイミドなど)、金属箔、アクリルフォーム、織布、発砲ブチルゴムなどがあるが、これらに限定されるものではない。また、これらの基材を使用せず、アクリル系粘着剤だけで、テープ状、フィルム状、またはシート状の成形体とする場合もある。 The base materials for forming tapes, films, or sheets containing the present acrylic pressure-sensitive adhesive include paper, nonwoven fabric, resin films (PET, polyimide, etc.), metal foil, acrylic foam, and woven fabric. , expanded butyl rubber, and the like, but are not limited to these. In addition, there are cases in which a tape-shaped, film-shaped, or sheet-shaped molded article is formed using only an acrylic pressure-sensitive adhesive without using these base materials.
 さらには、これらの発火防止素材は、蓄電デバイスからの噴出物および噴出ガスに対し、伝熱吸収による冷却効果、燃焼ラジカル反応を抑制する効果、吸着材表面での火炎が不安定となる消炎効果を発揮する素材を付与して使用することも可能である。 Furthermore, these ignition-preventing materials have a cooling effect by heat transfer absorption, an effect of suppressing combustion radical reaction, and an extinguishing effect that makes the flame unstable on the surface of the adsorbent for the ejected matter and ejected gas from the storage device. It is also possible to add and use a material that exhibits
 上述したような発火防止素材は、単独で用いてもよいし2種類以上の素材を併用してもよい。 The ignition-preventing material as described above may be used alone or in combination of two or more.
 以上、本発明の蓄電デバイス構造体について説明してきたが、本発明は蓄電デバイス(蓄電デバイススタック)とケーシングとの間の空隙に、アクリル系粘着剤を含む成形体を配置しさえすればよく、蓄電デバイス(蓄電デバイススタック)の大きさ、形状などは特に制限されない。そのため、スマートフォンから車載用など幅広い大きさの蓄電デバイス(蓄電デバイススタック)にまで適用可能である。 Although the electricity storage device structure of the present invention has been described above, the present invention only needs to place a molded body containing an acrylic pressure-sensitive adhesive in the gap between the electricity storage device (electricity storage device stack) and the casing. The size, shape, etc. of the electricity storage device (electricity storage device stack) are not particularly limited. Therefore, it can be applied to power storage devices (power storage device stacks) of a wide range of sizes, from smartphones to vehicles.
 以下の具体的な実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。
[過充電試験]
The present invention will be described in more detail based on the following specific examples, but the present invention is not limited to the following examples.
[Overcharge test]
(比較例1)
 蓄電デバイスの容器を想定したPP樹脂製容器(内径:横80mm×縦105mm×深さ34mm、樹脂厚さ2mm、アルミラミネートリチウムイオン電池の極側をこのPP樹脂製容器の横80mm側に配置し、PP樹脂製容器の横80mmの側に直径10mmの穴を5個開けた上面が開放した容器)を用意した。このPP樹脂製容器の内側に、正極三元系で1500mAhのアルミラミネートリチウムイオン電池(横35mm、縦75mm)を設置し、その上から樹脂厚さ4mmのPP樹脂製板で蓋をして蓋の周縁を耐熱性テープを使用して隙間がないように密閉し、過充電によるリチウムイオン電池からの噴出物は、5個開けた穴からだけ放出されるように構成した。
(Comparative example 1)
A PP resin container (inner diameter: 80 mm wide x 105 mm long x 34 mm deep, resin thickness 2 mm, the electrode side of the aluminum laminate lithium ion battery is placed on the 80 mm wide side of this PP resin container assuming a storage device container. , a container made of PP resin and having an open top in which five holes with a diameter of 10 mm were drilled on the 80 mm side of the PP resin container) were prepared. Inside this PP resin container, a 1500 mAh aluminum laminate lithium ion battery (35 mm wide, 75 mm long) with a positive electrode ternary system is installed, and a PP resin plate with a resin thickness of 4 mm is placed on top of it. The periphery of the battery was sealed with heat-resistant tape so that there were no gaps, and ejected substances from the lithium-ion battery due to overcharge were discharged only through five holes.
 この蓄電デバイスの容器を想定したPP樹脂製容器の外側に、ケーシングの容器を想定したPP樹脂製容器(内径:横98mm×縦148mm×深さ48mm、樹脂厚さ2mm、横98mm側に直径10mmの穴を5個開けた上面が開放した容器(上記の蓄電デバイスの容器を想定したPP樹脂製容器の穴あけ場所とは反対側に穴あけした容器))を配置し、電池を過充電できるように配線し、その上から厚さ4mmのPP樹脂製板で蓋をして、蓋の周縁を耐熱性テープを使用して隙間がないように密閉し、過充電での電池の噴出物が、5個開けた穴からだけから放出されるようにして、蓄電デバイス構造体とした。 Outside the PP resin container assuming the container for this electricity storage device, a PP resin container assuming the casing container (inner diameter: 98 mm wide x 148 mm long x 48 mm deep, resin thickness 2 mm, diameter 10 mm on the side of 98 mm wide) Place a container with an open top with five holes (a container with holes on the opposite side of the PP resin container assuming the above storage device container)) so that the battery can be overcharged. Wire it, cover it with a PP resin plate with a thickness of 4 mm from above, and seal the periphery of the cover with heat-resistant tape so that there is no gap, and the spout of the battery due to overcharging An electricity storage device structure was obtained in which the energy was discharged only from the holes that were made.
 この蓄電デバイス構造体に、15V、7.5Aで過充電を行ったところ、約19分後に電池は破壊され、ケーシングの外側で激しい発火が確認された。 When this power storage device structure was overcharged at 15 V and 7.5 A, the battery was destroyed after about 19 minutes, and violent ignition was confirmed outside the casing.
(実施例1)
 比較例1で使用した蓄電デバイス構造体において、アクリル系粘着剤が付与された両面テープ(厚さ160μm、面積当たりの重量180g/m、基材は不織布)を、ケーシングを想定したPP樹脂製容器の上蓋のPP樹脂製板の内側の上面に0.011m貼り付けて蓄電デバイス構造体とした。
(Example 1)
In the electricity storage device structure used in Comparative Example 1, a double-sided tape (thickness 160 μm, weight per area 180 g/m 2 , base material non-woven fabric) to which an acrylic adhesive was applied was made of PP resin assuming a casing. A 0.011 m 2 sheet was attached to the inner upper surface of the PP resin plate of the upper lid of the container to form an electric storage device structure.
 この蓄電デバイス構造体に、比較例1と同じ条件、すなわち15V、7.5Aで過充電を行ったところ、約19分後に電池は破壊されたが、ケーシングの外側での発火は認められなかった。 When this power storage device structure was overcharged under the same conditions as in Comparative Example 1, that is, at 15 V and 7.5 A, the battery was destroyed after about 19 minutes, but no ignition was observed outside the casing. .
(実施例2)
 比較例1で使用した蓄電デバイス構造体において、アクリル系粘着剤が付与された両面テープ(厚さ45μm、面積当たりの重量100g/m、基材はポリイミド)を、ケーシングを想定したPP樹脂製容器の上蓋のPP樹脂製板の内側の上面に0.011m貼り付けて蓄電デバイス構造体とした。
(Example 2)
In the electric storage device structure used in Comparative Example 1, a double-sided tape (45 μm thick, 100 g/m 2 weight per area, polyimide base material) to which an acrylic adhesive was applied was used as a casing. A 0.011 m 2 sheet was attached to the inner upper surface of the PP resin plate of the upper lid of the container to form an electric storage device structure.
 この蓄電デバイス構造体に、比較例1と同じ条件、すなわち15V、7.5Aで過充電を行ったところ、約19分後に電池は破壊されたが、ケーシングの外側での発火は認められなかった。 When this power storage device structure was overcharged under the same conditions as in Comparative Example 1, that is, at 15 V and 7.5 A, the battery was destroyed after about 19 minutes, but no ignition was observed outside the casing. .

Claims (8)

  1.  蓄電デバイスと、該蓄電デバイスを空隙を有して外包するケーシングとからなる蓄電デバイス構造体であって、
     前記蓄電デバイスとケーシングとの空隙に、アクリル系粘着剤を含む成形体を配置した、蓄電デバイス構造体。
    An electricity storage device structure comprising an electricity storage device and a casing surrounding the electricity storage device with a gap,
    An electricity storage device structure in which a molded body containing an acrylic pressure-sensitive adhesive is placed in a gap between the electricity storage device and a casing.
  2.  前記蓄電デバイスが非水電解質を用いたものである、請求項1に記載の蓄電デバイス構造体。 The electricity storage device structure according to claim 1, wherein the electricity storage device uses a non-aqueous electrolyte.
  3.  前記アクリル系粘着剤を含む成形体において、アクリル系ポリマー部が全体の10重量%以上含まれる、請求項1または2に記載の蓄電デバイス構造体。 The electricity storage device structure according to claim 1 or 2, wherein the acrylic polymer part is contained in an amount of 10% by weight or more of the entire molded article containing the acrylic pressure-sensitive adhesive.
  4.  前記アクリル系粘着剤が、(メタ)アクリル酸アルキルエステルの1種または2種以上を単量体成分として用いたアクリル系ポリマー(ホモポリマーまたはコポリマー)をベースポリマーとするアクリル系粘着剤である、請求項1~3のいずれか1項に記載の蓄電デバイス構造体。 The acrylic pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive whose base polymer is an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. The electricity storage device structure according to any one of claims 1 to 3.
  5.  前記アクリル系粘着剤を含む成形体が、テープ状、フィルム状、またはシート状である、請求項1~4のいずれか1項に記載の蓄電デバイス構造体。 The electricity storage device structure according to any one of claims 1 to 4, wherein the molded body containing the acrylic pressure-sensitive adhesive is tape-shaped, film-shaped, or sheet-shaped.
  6.  前記テープ状、フィルム状、またはシート状の成形体が、厚さ1μm~5000μmである、請求項5に記載の蓄電デバイス構造体。 The electricity storage device structure according to claim 5, wherein the tape-shaped, film-shaped, or sheet-shaped molded body has a thickness of 1 µm to 5000 µm.
  7.  前記テープ状、フィルム状、またはシート状の成形体の面積当たりの重量が、10g~2000g/mである、請求項5又は6に記載の蓄電デバイス構造体。 7. The electricity storage device structure according to claim 5, wherein the tape-like, film-like, or sheet-like molding has a weight per area of 10 g to 2000 g/m 2 .
  8.  前記蓄電デバイスが複数積層されている、請求項1~7のいずれか1項に記載の蓄電デバイス構造体。 The electricity storage device structure according to any one of claims 1 to 7, wherein a plurality of said electricity storage devices are laminated.
PCT/JP2022/010192 2021-04-27 2022-03-09 Power storage device structure WO2022230374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075370 2021-04-27
JP2021075370A JP2022169369A (en) 2021-04-27 2021-04-27 Storage device structure

Publications (1)

Publication Number Publication Date
WO2022230374A1 true WO2022230374A1 (en) 2022-11-03

Family

ID=83848316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010192 WO2022230374A1 (en) 2021-04-27 2022-03-09 Power storage device structure

Country Status (2)

Country Link
JP (1) JP2022169369A (en)
WO (1) WO2022230374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039457A1 (en) * 2010-09-22 2012-03-29 日本ゼオン株式会社 Adhesive film for organic electrolyte accumulator devices
JP2014534303A (en) * 2011-10-11 2014-12-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Automotive adhesive tape
JP2017016733A (en) * 2015-06-26 2017-01-19 日立化成株式会社 Large capacity secondary battery
JP2017059510A (en) * 2015-09-18 2017-03-23 株式会社Gsユアサ Power storage device
CN210778777U (en) * 2019-10-31 2020-06-16 江苏塔菲尔动力系统有限公司 Integrated battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039457A1 (en) * 2010-09-22 2012-03-29 日本ゼオン株式会社 Adhesive film for organic electrolyte accumulator devices
JP2014534303A (en) * 2011-10-11 2014-12-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Automotive adhesive tape
JP2017016733A (en) * 2015-06-26 2017-01-19 日立化成株式会社 Large capacity secondary battery
JP2017059510A (en) * 2015-09-18 2017-03-23 株式会社Gsユアサ Power storage device
CN210778777U (en) * 2019-10-31 2020-06-16 江苏塔菲尔动力系统有限公司 Integrated battery pack

Also Published As

Publication number Publication date
JP2022169369A (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US9755207B2 (en) Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
KR101829585B1 (en) Thermally releasable sheet-integrated film for semiconductor back surface, method of collecting semiconductor element, and method of producing semiconductor device
US9679797B2 (en) Dicing-tape integrated film for backside of semiconductor and method of manufacturing semiconductor device
JP6932513B2 (en) Insulation tape
CN107118704B (en) Insulating tape
TWI591150B (en) Dicing tape-integrated wafer back surface protective film, manufacturing method for semiconductor device, flip chip-mounted semiconductor device
KR102479621B1 (en) Film for semiconductor back surface and use thereof
US10833350B2 (en) Pressure sensitive adhesive composition, pressure sensitive adhesive sheet for batteries, and lithium-ion battery
KR20120053966A (en) Film for flip chip type semiconductor backside, film for semiconductor backside integrated with dicing tape, method for manufacturing film for flip chip type semiconductor backside and semiconductor device
US9324616B2 (en) Method of manufacturing flip-chip type semiconductor device
EP2514794A1 (en) Pressure-sensitive adhesive tape for electrochemical device
US20180159166A1 (en) Pressure sensitive adhesive composition, pressure sensitive adhesive sheet for batteries, and lithium-ion battery
JP2010129700A (en) Dicing die-bonding film and method for producing semiconductor device
KR20120024390A (en) Dicing tape-integrated film for semiconductor back surface, and process for producing semiconductor device
US20160240523A1 (en) Method for Manufacturing Semiconductor Device, Sheet-Shaped Resin Composition, and Dicing Tape-Integrated Sheet-Shaped Resin Composition
US20180155582A1 (en) Pressure sensitive adhesive sheet for batteries and lithium-ion battery
WO2022230374A1 (en) Power storage device structure
US20210257684A1 (en) Gas adsorption sheet for secondary batteries
TW202104495A (en) Adhesive tape for nonaqueous batteries
JP2020184522A (en) Adhesive for nonaqueous battery and adhesive tape for nonaqueous battery
WO2020218364A1 (en) Adhesive tape for nonaqueous batteries
US11302976B2 (en) Pressure-sensitive adhesive tape for battery outer packaging
US20220213359A1 (en) Adhesive for nonaqueous batteries and adhesive tape for nonaqueous batteries
WO2020218363A1 (en) Adhesive tape for nonaqueous batteries
JP7364019B1 (en) Energy storage device structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795297

Country of ref document: EP

Kind code of ref document: A1