WO2022230318A1 - 量子計算制御装置、量子コンピュータ及び量子計算制御方法 - Google Patents

量子計算制御装置、量子コンピュータ及び量子計算制御方法 Download PDF

Info

Publication number
WO2022230318A1
WO2022230318A1 PCT/JP2022/006684 JP2022006684W WO2022230318A1 WO 2022230318 A1 WO2022230318 A1 WO 2022230318A1 JP 2022006684 W JP2022006684 W JP 2022006684W WO 2022230318 A1 WO2022230318 A1 WO 2022230318A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
control
qubit
qubits
signal
Prior art date
Application number
PCT/JP2022/006684
Other languages
English (en)
French (fr)
Inventor
泰信 中村
豊 田渕
修平 玉手
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to JP2023517082A priority Critical patent/JP7530125B2/ja
Priority to CN202280030966.2A priority patent/CN117203648A/zh
Priority to EP22795241.3A priority patent/EP4332842A1/en
Priority to CA3216798A priority patent/CA3216798A1/en
Publication of WO2022230318A1 publication Critical patent/WO2022230318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/70Quantum error correction, detection or prevention, e.g. surface codes or magic state distillation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control

Definitions

  • the present invention relates to a quantum computation control device, a quantum computer, and a quantum computation control method.
  • Patent Document 1 A superconducting decoding quantum computing circuit with a three-dimensional structure in which signal lines enter and leave the qubit from the bottom surface or top surface of the substrate has been proposed (for example, Patent Document 1).
  • the present invention has been made in view of these problems, and its purpose is to reduce the number of wires in a device using quantum bits. Another object of the present invention is to achieve robust control against variations in circuit parameters even if the number of wires is reduced.
  • a quantum computation control device includes a control signal generation unit, an observation unit that receives an observation signal indicating the state of each qubit, and a qubit module.
  • the qubit module includes a qubit substrate section on which a plurality of qubits are mounted, a control circuit section, an observation circuit section, and a signal processing circuit section.
  • the plurality of qubits are grouped into a plurality of groups each composed of a plurality of qubits having the same positional relationship among the qubits, and arranged on the qubit substrate.
  • the control signal generator performs one or more types of spatially uniform first operations and one or more types of first operations less frequently on the qubits on the qubit substrate.
  • a control signal for performing a second, spatially non-uniform operation to be performed and command signals for causing the control circuitry to perform control of the first and second operations are generated.
  • the control circuit section divides the control signal into groups and controls transmission of the control signal to each quantum bit on the quantum bit substrate section according to the command signal.
  • the observation circuitry observes the state of each quantum bit subjected to the first operation or the second operation.
  • the signal processing circuit unit transmits an observation signal of each quantum bit to the observation unit.
  • the number of wires in a device using quantum bits can be reduced.
  • control circuit unit transmits control signals to all the qubits on the qubit substrate unit in the first operation based on the command signal, and performs the second operation.
  • transmission of the control signal may be controlled so as to transmit the control signal only to a specific control target qubit on the qubit substrate unit.
  • the first operation may be a syndrome extraction operation and the second operation may be a logical quantum gate operation.
  • the signal processing circuit section may perform quantum error correction decoding processing.
  • control circuit unit transmits a common control signal to each group of the qubit substrate units in the first operation based on the command signal, and in the second operation may send control signals individually to each qubit on the qubit substrate.
  • the control signal generation unit and the quantum bit module are connected.
  • the number of wires may be k'+s or less.
  • the signal processing circuit unit transmits only the quantum state of the logical qubit to which the error correction processing is applied to the observation unit, thereby reducing wiring that connects the observation unit and the qubit module. You can reduce the number.
  • the ratio between the frequency of the first operation and the frequency of the second operation is d or more good too.
  • the qubits may be solid-state qubits.
  • At least the qubit module may be placed inside the refrigerator.
  • the qubits may be qubits that operate at cryogenic temperatures, including superconducting qubits.
  • control circuit section may include a memory that stores the waveform of the control signal.
  • quantum computer includes the quantum computation control device of any of the above-described embodiments.
  • Yet another aspect of the present invention is a quantum computation control method using a quantum bit substrate section, a control circuit section, an observation circuit section, and a signal processing circuit section.
  • This method is an operation for a plurality of qubits arranged on the qubit substrate portion by grouping them into a plurality of groups each composed of a plurality of qubits having the same positional relationship between the qubits.
  • the number of wires in a device using quantum bits can be reduced.
  • the number of wires in a device using quantum bits can be reduced. Moreover, even if the number of wirings is reduced, it is possible to realize robust control against variations in circuit parameters.
  • FIG. 1 is a schematic diagram showing the configuration of a conventional quantum computer;
  • FIG. 1 is a functional block diagram of a quantum computation control device according to a first embodiment;
  • FIG. FIG. 4 is a schematic diagram showing a unit cell of a qubit arranged on a qubit substrate.
  • FIG. 4 is a schematic diagram showing qubits arranged in groups on a qubit substrate;
  • FIG. 4 is a schematic diagram showing how a syndrome extraction operation and a logic quantum gate operation are performed;
  • FIG. 3 is a detailed diagram of a control signal generator, a qubit substrate, and a control circuit of the quantum computation controller of FIG. 2;
  • 3 is a detailed diagram of a control switch of the quantum computation controller of FIG. 2;
  • FIG. 10 is a diagram showing control switches related to the syndrome extraction operation; Fig. 10 shows the control switches involved in the syndrome extraction operation and the subsequent logic quantum gate operation; FIG. 10 is a detailed diagram of a quantum bit substrate section and a control circuit section of a quantum computation control device according to a second embodiment; FIG. 11 is a flowchart of a quantum computation control method according to a fourth embodiment; FIG. It is a functional block diagram of a quantum computation control device according to a modification.
  • FIG. 2 is a schematic diagram showing qubits arranged in a square lattice;
  • qubits and associated electronic circuits are placed inside a refrigerator.
  • the inside of the refrigerator is kept at a low temperature of several K (Kelvin) to several tens of mK (milliKelvin).
  • superconducting qubits are placed under cryogenic temperatures of the order of 10 mK.
  • syndrome extraction operations and logic quantum gate operations for quantum error correction processing on qubits are performed from a control device or PC placed outside the refrigerator.
  • the outside of such a refrigerator is normally in a normal temperature environment.
  • the observation signal output from the quantum bit is also observed by a measuring device placed in a room temperature environment outside the refrigerator.
  • Conventionally, such manipulations and observations have been performed mainly using software. For this reason, it is necessary to connect the electronic circuits in the refrigerator and the device under the normal temperature environment with a large number of cables. For example, if the total number of qubits is N, typically 2 ⁇ N cables are required to individually control and observe each qubit.
  • the cables used for such wiring are radio coaxial or microwave coaxial and have dimensions of a few millimeters. Since this is larger than the wiring used in current integrated circuits, it poses a major problem in integration. Therefore, in order to integrate a superconducting quantum computer, it is important to reduce the number of wires connecting the refrigerator and the normal temperature environment.
  • FIG. 1 schematically shows the configuration of a conventional quantum computer 100.
  • Quantum computer 100 includes control device 101 , observation device 102 , qubit substrate 103 on which qubits are mounted, first electronic circuit 104 , and second electronic circuit 105 .
  • the control device 101 and observation device 102 are placed in a normal temperature environment.
  • the qubit substrate 103 and the first electronic circuit 104 are placed in a cryogenic environment of about 0.01 K inside the refrigerator 106 .
  • the second electronic circuit 105 is placed in a low temperature environment of about 4K inside the refrigerator 106 .
  • Control device 101 and refrigerator 106 are connected by control line 107 .
  • Observation device 102 and refrigerator 106 are connected by observation line 108 .
  • N be the number of qubits mounted on the qubit substrate 103 . It is said that N is practically required to be about 10 8 . Therefore, N control lines 107 and N observation lines 108 are required to independently control and observe all the qubits on the qubit substrate 103, and the total number of these lines is 2 ⁇ 10 8 . As described above, in the current method, which requires such a large number of wirings, it is difficult to integrate the device due to the limitation of the space inside the refrigerator and the cooling capacity.
  • quantum computers use quantum error correction using surface codes (hereinafter simply referred to as "codes”) as a method for protecting information from noise.
  • codes surface codes
  • one logical qubit is redundantly encoded using a plurality of physical qubits (hereinafter, “physical qubits” are simply abbreviated as “qubits”).
  • qubits are arranged in a grid on a two-dimensional plane. Increasing the size of the lattice (ie, increasing the number of physical qubits) can increase code redundancy and increase error resilience.
  • Quantum bit operations in quantum computers handled in this specification are roughly divided into “syndrome extraction operations” and “logical quantum gate operations”.
  • a syndrome extraction operation (an operation to read syndrome bits at high speed for quantum error correction) is an operation that has translational symmetry in a two-dimensional space (that is, the positional relationship between quantum bits is the same). It is to perform the same control operation on multiple groups composed of a certain number of qubits).
  • the control signal for the syndrome extraction operation can be generated by the control signal generation unit, branched by the control circuit unit, and transmitted to each quantum bit group.
  • the syndrome extraction operation is a spatially uniform operation. Furthermore, the syndrome extraction operation is performed periodically in time.
  • logical quantum gate operations on qubits do not have spatial translational symmetry. That is, a control signal for logical quantum gate operation is transmitted only to a specific control target qubit. In other words, logical quantum gate operations are spatially non-uniform operations. Logical quantum gate operations are performed between syndrome extraction operations that are performed periodically and repeatedly.
  • the frequency of logical quantum gate operations is lower than the frequency of syndrome extraction operations.
  • the code length of the logical qubit formed by the physical qubit is d
  • the ratio of the frequency of the syndrome extraction operation and the frequency of the logical quantum gate operation is d or more, the logical quantum after error correction Bits enable logical quantum gate operations.
  • FIG. 2 shows a functional block diagram of the quantum computation control device 1 according to the first embodiment.
  • the quantum computation control device 1 includes a control signal generator 11 , an observer 12 and a quantum bit module 13 .
  • the qubit module 13 includes a qubit substrate section 14 on which a plurality of qubits are mounted, a control circuit section 15 , an observation circuit section 16 and a signal processing circuit section 17 .
  • the control signal generation section 11 and the control circuit section 15 are connected by a control line 20 .
  • the observation section 12 and the signal processing circuit section 17 are connected by an observation line 21 .
  • the qubit substrate section 14 and the control circuit section 15 are connected by a first internal wiring 22 .
  • the qubit substrate section 14 and the observation circuit section 16 are connected by a second internal wiring 23 .
  • the observation circuit section 16 and the signal processing circuit section 17 are connected by a third observation line 24 .
  • the control signal generation unit 11 generates control signals for performing operations on the qubits on the qubit substrate unit 14 and command signals for causing the control circuit unit 15 to control these operations. These control and command signals will be described in detail later.
  • the observation unit 12 receives an observation signal indicating the state of each quantum bit.
  • a plurality of qubits are mounted on the qubit substrate section 14 . These qubits are grouped into a plurality of groups each composed of a plurality of qubits having the same positional relationship, and arranged on the qubit substrate section 14 . This grouping will be described in detail later.
  • the control circuit unit 15 branches control signals into the above groups, and controls transmission of control signals to the respective qubits on the qubit substrate unit 14 according to the command signal generated by the control signal generation unit 11 .
  • the observation circuit unit 16 observes the state of each quantum bit subjected to the above operation.
  • the signal processing circuit unit 17 transmits the observation signal of each quantum bit to the observation unit 12.
  • FIG. 3 schematically shows the quantum bits arranged on the quantum bit substrate section 14 in this embodiment.
  • Each quantum bit is regularly arranged in a two-dimensional space. Specifically, this arrangement has one qubit at each vertex, edge, and interior (a total of 4 qubits, with 1/4 qubits at the vertices and 1/2 qubits on the edges). It has a structure in which the provided rectangular configuration (hereinafter referred to as "unit cell") is repeated in two dimensions. That is, the quantum bits are arranged on the quantum bit substrate 14 so as to have translational symmetry.
  • the qubits located on the sides of the unit cell are used to form a code and called data qubits.
  • the qubits located in the vertex and unit cell are used as auxiliary qubits for observing the quantum state of the data qubits by cross-resonant gating operations, and are called syndrome qubits.
  • These qubits may be fixed-frequency transmon-type qubits, each having a unique resonant frequency.
  • the qubit is a transmon-type qubit and the cross-resonant gate is adopted as a two-qubit gate.
  • 10 types of quantum bit frequency relationships are assigned, such as syndrome qubits AE and data qubits ae in FIG.
  • a square lattice G1 as shown in FIG. 9 is defined.
  • the lattice G1 spans multiple unit cells, it has translational symmetry in units of 20 qubits due to the role determined by the sign and the method of operation in the extraction operation.
  • FIG. 4 clearly shows gratings G1, G2, G3 and G4 as representatives of such gratings.
  • Gratings G1, G2, G3 and G4 have identical qubit arrangements.
  • GP all have the same geometrical qubit arrangement. That is, the qubits on the qubit substrate 14 are grouped and arranged in groups each composed of a plurality of qubits having the same positional relationship among the qubits. In other words, these qubits are repeatedly arranged in a tile shape (lattice G1, G2, G3, G4, .
  • the above lattice may also be referred to as a "group”.
  • the syndrome extraction operation for quantum error correction can be commonly performed on all lattices.
  • a control line is connected to each of the k (20 in this example) qubits that make up the lattice G1, and control for the syndrome extraction operation is performed.
  • the syndrome extraction operation can then be performed on grids G2, G3, G4, . . . , GP using the same control signals as for grid G1.
  • the control signal transmitted from the control circuit unit 15 to the qubit substrate unit 14 is periodically and repeatedly transmitted in units of lattices (groups) to be controlled. In other words, the syndrome extraction operation is periodically performed temporally.
  • the syndrome extraction operation can be commonly performed on all lattices.
  • the control line 20 connecting the control signal generator 11 and the control circuit unit 15 is made common among the grids (groups), and then branched to each grid (group) by the control circuit unit 15. , the number of wires can be reduced.
  • the number of wires can be reduced. For example, if the total number of qubits on the qubit substrate 14 is N, the number of lattices (groups) is N/k.
  • the syndrome extraction operation can be performed in common for all lattices, so there are as many control lines 20 as there are qubits in the lattice (group). Therefore, the number of control lines, which conventionally required the order of the total number N of quantum bits, can be reduced to k/N (fold).
  • the control line for the syndrome extraction operation can be shared by utilizing the code symmetry and the grouping of the qubits.
  • an operation having spatial translational symmetry such as a syndrome extraction operation will be referred to as a "first operation".
  • a logical quantum gate operation is performed by manipulating a specific target qubit during a syndrome extraction operation that is periodically and repeatedly performed. That is, logical quantum gate operations do not have spatial translational symmetry and temporal periodicity. Therefore, unlike the syndrome extraction operation, the logical quantum gate operation cannot be performed commonly on the lattices (groups) described above. That is, a control signal for logical quantum gate operation needs to be transmitted only to a specific control target quantum bit. Therefore, the logical quantum gate operation cannot be executed simply by sharing the control line 20 and branching it to each lattice (group).
  • an operation without translational symmetry (more generally, a spatially non-uniform operation) such as a logical quantum gate operation will be referred to as a "second operation".
  • the number of syndrome extraction operations (quantum error correction) required for one logical quantum gate operation is determined by the code length d (d>1) of the quantum bit. Typically, the number of syndrome extraction operations required is d or more. Therefore, in this case, the ratio between the frequency of the syndrome extraction operation and the frequency of the logic quantum gate operation (the ratio of the execution time of the syndrome extraction operation to the execution time of the logic quantum gate operation) is d or more.
  • FIG. 5 schematically shows how the syndrome extraction operation and the logical quantum gate operation are performed.
  • lattices G1, G2, and G3 are shown representatively, and each lattice contains 6 qubits. It should be noted that the boxes labeled "syndrome extraction operation" in FIG. 5 mean the same processing, and FIG. 5 shows that this is periodically performed in terms of time.
  • the arrangement of qubits on the lattice described above is an example, and is not limited to this.
  • FIG. 13 schematically shows qubits arranged in lattices GI, GII, GIII, and GIV different from FIG.
  • four types of syndrome qubits AD and four types of data qubits xw that is, eight types of qubits in total are assigned.
  • a surface code which is one of the error-correcting codes with translational symmetry, requires only close interaction. That is, no interaction between remote qubits is required. For example, in qubits that are tightly packed in a two-dimensional lattice, it is sufficient if two-qubit gates can be performed only next to adjacent qubits.
  • qubits are classified into two types of qubits with different roles.
  • One is a qubit for holding a quantum state called a data qubit.
  • the other is a qubit for detecting the parity value of the data qubit, which is called a syndrome qubit.
  • Data qubits and syndrome qubits are staggered on a square lattice. That is, adjacent qubits above, below, to the left, and to the right of the data qubit are syndrome qubits, and vice versa.
  • quantum error correcting codes do not allow direct observation of data qubit values, but allow parity values to be obtained.
  • parity values are aggregated into syndrome qubits by executing four 2-qubit gates for one data qubit. Quantum entanglement is used in this process. By measuring only the syndrome qubits, the parity value of the data qubits can be obtained.
  • This parity value is obtained by calculating the sum of the bit values (0 in mod 2 for even numbers, 1 in mod 2 for odd numbers) using a two-qubit gate and observing the syndrome qubits. be done.
  • Fig. 13 the squares in Fig. 13 are color-coded with two shades of gray.
  • the parity value for Quantum error correction constructs a parity check matrix from the parity provided by the syndrome qubits for bit flipping and corrects bit flipping errors through the decoding process.
  • Quantum error correction also constructs a parity check matrix from the parity values provided by the syndrome qubits for phase reversal and corrects phase reversal errors through the decoding process.
  • the square grid is filled with squares of two shades of gray (areas of responsibility for syndrome extraction).
  • the qubit is They are classified as (1) data qubits and (2) syndrome qubits, which are staggered in a square lattice.
  • the syndrome qubit is (2-A) obtains a parity value related to bit inversion and (2-B) obtains a parity related to phase inversion.
  • the present inventors controlled the transmission of control signals to the qubits on the qubit substrate unit 14, and used the configuration in which the aforementioned control line 20 was shared to perform the first operation and the second operation. I have found that it is possible to do both. For example, in the first operation, a control signal is sent to all the qubits on the qubit substrate unit 14, and in the second operation, only to specific control target qubits on the qubit substrate unit 14 Both the first operation and the second operation can be performed by controlling the sending of the control signal to send the control signal.
  • FIG. 6 shows the details of the control signal generation unit 11, the quantum bit substrate unit 14, and the control circuit unit 15 of the quantum computation control device 1.
  • the control circuit unit 15 includes an instruction decoder 151, a maximum of N ⁇ k′ (N is the total number of qubits on the qubit substrate unit 14, k′ is the number of control signal lines described below) control switches 152, Prepare.
  • the control line 20 connecting the control signal generation unit 11 and the control circuit unit 15 includes k′ (k ⁇ k′ ⁇ N) control signal lines 201 and s command signal lines 202 .
  • FIG. 7 shows the details of the control switch 152 of the control circuit section 15 of the quantum computation control device 1.
  • Control switches 152 are arranged in a matrix.
  • Each row (horizontal alignment) of this matrix corresponds to the qubit control lines 221 , 222 , 223 , and each column (vertical alignment) corresponds to the control signal line 201 .
  • the rows of this matrix are referred to as 1st row, 2nd row, . . . , 18th row from the bottom.
  • the columns of this matrix are referred to as the 1st column, the 2nd column, . . . , the 10th column from the left.
  • the control signal lines 201 are drawn in the horizontal direction in FIG.
  • Each control switch 152 is composed of one input, one output, and one switch control line (not shown).
  • the control switch 152 operates to output or not to output the control signal input to the input line to the output line (that is, performs ON/OFF operation) according to the enable signal input to the switch control line.
  • the control signal generated by the control signal generation unit 11 is input to the control circuit unit 15 through k′ control signal lines 201 .
  • Each control signal input to the control circuit section 15 is P-branched for grids G1, G2, G3, .
  • the command signal generated by the control signal generator 11 is input to the command decoder 151 through the command signal line 202 .
  • the instruction decoder 151 decodes the input instruction signal and sequentially instructs each control switch 152 on/off timing of the output of the control switch through the switch control line.
  • the total number of switch control lines is N ⁇ k'. Also, since the number of signal lines is s, a maximum of 2 s kinds of instructions can be provided by decoding.
  • the control signal for executing the first operation generated by the control signal generator 11 is applied to all lattices (G1, G2, G3, . . . , GP), the control switch 152 is controlled so that the corresponding qubits are sent out at the same timing.
  • Fig. 8 shows the control switches related to the syndrome extraction operation.
  • the control switches used for the syndrome extraction operation are SW(1,6), SW(2,5), SW(3,4), SW(4,3), SW(5,2), SW(6,1), SW(7,6), SW(8,5), SW(9,4), SW(10,3), SW(11,2), SW(12,1), SW (13, 6), SW (14, 5), SW (15, 4), SW (16, 3), SW (17, 2), SW (18, 1), 18 in total.
  • the command signal turns on only the switch related to the specific control target qubit among the N ⁇ k′ control switches 152 .
  • the control signal for executing the second operation generated by the control signal generation unit 11 is sent only to the specific control target qubit on the qubit substrate unit 14 .
  • FIG. 9 extracts and shows only the necessary control switches related to the first operation and the subsequent second operation.
  • Quantum bits included in each lattice G1, G2, G3 are denoted by Q1, Q2, . . . , Q6 in order from the top.
  • each qubit on the qubit substrate 14 is expressed as Q(G1, Q1) using lattice numbers G1, G2, G3 and qubit numbers Q1, Q2, . . . , Q6 in each lattice. , Q (G1, Q2), ..., Q (G1, Q6), Q (G2, Q1), ..., Q (G2, Q6), Q (G3, Q1), ..., Q (G3, Q6) .
  • the control signal line 201 includes ten control signal lines 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 20110.
  • Instruction A and instruction B are indicated by upward and downward triangles, respectively.
  • Commands A and B command simultaneous and independent control of 10 qubits to be controlled, respectively.
  • Instruction A is Q(G1, Q1), Q(G1, Q2), Q(G2, Q1), Q(G2, Q3), Q(G2, Q4), Q(G2, Q6), Q(G3, Q3), Q (G3, Q4), Q (G3, Q5), and Q (G3, Q6) are controlled.
  • Instruction B is Q(G1, Q2), Q(G1, Q3), Q(G1, Q4), Q(G2, Q1), Q(G2, Q2), Q(G2, Q5), Q(G2, Q6), Q (G3, Q4), Q (G3, Q5), and Q (G3, Q6) are to be controlled.
  • Control signal line 2011 carries control signals for the syndrome extraction operation, and instruction A and instruction B for Q(G2, Q1).
  • Control signal lines 2012 carry control signals for the syndrome extraction operation, and instruction A and instruction B for Q(G1, Q2).
  • Control signal lines 2013 carry control signals for the syndrome extraction operation and instruction A for Q(G3, Q3) and instruction B for Q(G1, Q3).
  • Control signal lines 2014 carry control signals for the syndrome extraction operation, and instruction A and instruction B for Q(G3, Q4).
  • Control signal line 2015 carries control signals for the syndrome extraction operation, and instruction A and instruction B for Q(G3, Q5).
  • Control signal line 2016 carries control signals for the syndrome extraction operation and for instruction A and instruction B for Q(G2, Q6).
  • Control signal line 2017 carries control signals for instruction A for Q(G2, Q3) and instruction B for Q(G2, Q2).
  • Control signal line 2018 carries control signals for instruction A and instruction B to Q(G3, Q6).
  • Control signal line 2019 carries control signals for instruction A for Q(G1, Q1) and instruction B for Q(G1, Q4).
  • Control signal line 20110 carries control signals for instruction A for Q(G2, Q4) and instruction B for Q(G2, Q5).
  • SW(1,6), SW(2,5), SW(3,4), SW(4,3), SW(5,2), SW(6,1) , SW(7,6), SW(8,5), SW(9,4), SW(10,3), SW(11,2), SW(12,1), SW(13,6), SW (14, 5), SW (15, 4), SW (16, 3), SW (17, 2) and SW (18, 1) are turned on.
  • the switching operations when executing the logic quantum gate operations of instruction A are as follows. When executing the logic quantum gate operation of instruction A on Q(G1, Q1), SW(6, 9) is turned on. When executing the logic quantum gate operation of instruction A on Q(G1, Q2), SW(5,2) is turned on. When executing the logic quantum gate operation of instruction A on Q(G2, Q1), SW(12, 1) is turned on. When executing the logical quantum gate operation of instruction A on Q(G2, Q3), SW(10, 3) is turned on. When executing the logic quantum gate operation of instruction A on Q(G2, Q4), SW(9, 4) is turned on. When executing the logic quantum gate operation of instruction A on Q(G2, Q6), SW(7,6) is turned on.
  • SW(16, 3) When executing the logic quantum gate operation of instruction A on Q(G3, Q3), SW(16, 3) is turned on. When executing the logic quantum gate operation of instruction A on Q(G3, Q4), SW(15, 4) is turned on. When executing the logical quantum gate operation of instruction A on Q(G3, Q5), SW(14, 5) is turned on. When executing the logic quantum gate operation of instruction A on Q(G3, Q6), SW(13, 8) is turned on.
  • the switching operations when executing the logical quantum gate operations of instruction B are as follows.
  • SW(5, 2) is turned on.
  • SW(4, 3) is turned on.
  • SW(3, 9) is turned on.
  • SW(12, 1) is turned on.
  • SW(11,7) is turned on.
  • SW(8, 10) is turned on.
  • SW(7,6) When executing the logical quantum gate operation of instruction B on Q(G2, Q6), SW(7,6) is turned on. When executing the logical quantum gate operation of instruction B on Q(G3, Q4), SW(15, 4) is turned on. When executing the logic quantum gate operation of instruction B on Q(G3, Q5), SW(14, 5) is turned on. When executing the logical quantum gate operation of instruction B on Q(G3, Q6), SW(13, 8) is turned on.
  • control signal line 2011 and the control signal line 2019 correspond to the control of Q (G1, Q1).
  • Control signal line 2016 is used for syndrome extraction operations via SW(6,1).
  • Control signal line 2019 is used for logic quantum gate operation via SW(6,9).
  • Q(G1, Q1) a plurality of control lines correspond to one quantum bit. The same applies to Q(1,4), Q(2,2), Q(2,3), Q(2,4), Q(2,5) and Q(3,6).
  • one control line corresponds to one quantum bit.
  • control circuit unit 15 sends control signals to all the qubits on the qubit substrate unit 14 in the first operation based on the command signal, and in the second operation, The transmission of the control signal is controlled so that the control signal is transmitted only to a specific control target quantum bit on the quantum bit substrate section 14 .
  • control circuit unit 15 transmits a common control signal to each group of the qubit substrate unit 14 in the first operation based on the command signal generated by the control signal generation unit 11, and in the second operation may individually transmit a control signal to each qubit on the qubit substrate unit 14 .
  • This allows a spatially uniform first operation to be performed commonly to all groups, while a spatially non-uniform second operation performed less frequently than the first operation is performed on a specific quantum. Can only be executed on bits.
  • the quantum bit module 13 including the control circuit section 15, the observation circuit section 16, and the signal processing circuit section 17 described above is preferably implemented using hardware. As described above, in this embodiment, the quantum bit module 13 can be placed in the refrigerator by offloading the quantum computation processing conventionally performed by software to hardware.
  • the number of control lines 20 can be increased to k'+s. can.
  • the number of control lines which conventionally required the order of the total number N of quantum bits, can be reduced to (k'+s)/N (fold).
  • the number of 20 can be k'+s. Furthermore, when the frequencies of the control signals are different, it is possible to save lines by performing frequency multiplexing in the control signal generator 11 . Also, when the control signal is a digital signal, it is possible to save lines by time-division multiplexing. In such a case, the number of control lines 20 can be set to k'+s or less.
  • the signal processing circuit unit 17 may perform quantum error correction decoding processing. Quantum error correction requires a large number of fast reads. For example, error information of 1 logical qubit consisting of 2000 physical qubits generates information of about 1 Gbps. This output signal is used only for estimating errors in the qubit.
  • the signal bandwidth between the refrigerator and the room temperature environment can be reduced by executing the quantum error correction decoding process (estimation process of the error location) under the low temperature environment inside the refrigerator. For example, by using a signal processing circuit using a superconducting digital logic circuit, the circuit can be operated online. That is, there is no need to hold the acquired signal in the circuit, and the information used for estimating the error location can be discarded.
  • the signal bandwidth between the refrigerator and the room temperature environment is reduced, and wiring for connecting the refrigerator and the room temperature environment can be reduced.
  • the observation lines which conventionally required the order of the total number N of qubits, to only the observation lines of the data qubits after error correction. Note that the number of observation lines can be further reduced by multiplexing processing or the like.
  • the outline of the quantum error correction decoding process is as follows. Performing the above first operation once on a qubit yields information about the qubit error. The error location is estimated for this error information, and the inversion information of the quantum bit value is stored in the signal processing circuit section 17 . On the other hand, some of the second operations mentioned above obtain information about the qubits (eg, parity values, logical qubit values, etc.). The values obtained after executing the instructions for such operations are modified by the stored inversion information of the qubit values.
  • the quantum bit module 13 is placed in a cryogenic environment of about 0.01 K inside the refrigerator 18, and the control signal generator 11 and the observation unit 12 are placed in a normal temperature environment.
  • the qubit module 13 may be placed in a cryogenic environment inside a refrigerator.
  • the control signal generation unit 11 and the observation unit 12 may be distributed in a room temperature environment to a low temperature environment.
  • not all components within the qubit module 13 within the refrigerator 18 need be placed under cryogenic temperatures of the order of 0.01K.
  • only the qubit substrate section 14 of the qubit module 13 is placed under an extremely low temperature of about 0.01 K, and the control circuit section 15, the observation circuit section 16, the signal processing circuit section 17, etc. It may be placed in a high temperature environment of several K or several 100 mK.
  • This embodiment is effective when applied to a superconducting quantum computer.
  • the qubits mounted on the qubit substrate are superconducting qubits.
  • the qubit module is placed in a low temperature environment.
  • the qubits may be, for example, solid-state qubits.
  • the qubit module may be in a room temperature environment. Both the above-described first and second operations can be performed on such a qubit module as well, using hardware consisting of an instruction decoder and a control switch.
  • FIG. 10 shows details of the quantum bit substrate section 14 and the control circuit section 15 of the quantum computation control device 2 according to the second embodiment.
  • FIG. 10 corresponds to FIG.
  • the quantum computation control device 2 further includes a waveform memory 153 in contrast to the quantum computation control device 1 of FIG.
  • Other configurations of the quantum computation control device 2 are common to the quantum computation control device 1 .
  • the waveform memory 153 stores the waveform of the control signal generated by the control signal generator 11 for executing the first operation.
  • the waveform memory 153 may store, for example, k kinds of signal waveforms for one cycle.
  • the waveform memory 153 reads the stored signal waveform and inputs it to the control switch 152 when the first operation is performed.
  • the waveform of the control signal once generated may be stored in the waveform memory 153 and read out periodically for use. Then, when the control signal generator 11 generates a new signal waveform, the stored signal waveform may be rewritten with the new signal waveform.
  • control signal input from the control signal generator 11 to the control circuit unit 15 during operation is only the control signal for executing the second operation. bandwidth can be reduced.
  • a third embodiment is a quantum computer.
  • This quantum computer is characterized by comprising the quantum computation control device of the above embodiment.
  • Existing technology may be used for the basic configuration of the quantum computer.
  • FIG. 11 shows a flowchart of a quantum computation control method according to the fourth embodiment.
  • step S1 the method comprises performing one or more types of spatially uniform first operations and one or more types of less frequent operations on qubits on a qubit substrate portion. and command signals for causing control circuitry to perform control of the first and second operations.
  • step S2 the method uses the control circuitry to branch control signals to groups of qubits and to control delivery of the control signals to each qubit on the qubit substrate in response to command signals.
  • step S3 the method observes the state of each qubit subjected to the first operation or the second operation using the observation circuitry.
  • the method uses the signal processing circuitry to perform a quantum error correction decoding process.
  • step S5 the method determines whether the computation using the qubit is finished. If the determination result is negative, the process returns to step S1. If the judgment result is affirmative, the process ends.
  • the qubits on the qubit substrate unit are grouped and arranged in a plurality of groups each composed of a plurality of qubits having the same positional relationship among the qubits.
  • FIG. 12 shows a functional block diagram of a quantum computation control device 1a according to a modification.
  • the quantum computation control device 1a includes a control signal generator 11a, an observer 12a, and a quantum bit module 13a.
  • the qubit module 13a includes a qubit substrate section 14a on which a plurality of qubits are mounted, a control circuit section 15a, an observation circuit section 16a, and a signal processing circuit section 17a.
  • the control signal generation section 11a and the control circuit section 15a are connected by a control line 20a.
  • the observation section 12a and the signal processing circuit section 17a are connected by an observation line 21a.
  • the quantum bit substrate section 14a and the control circuit section 15a are connected by a first internal wiring 22a.
  • the qubit substrate section 14a and the observation circuit section 16a are connected by a second internal wiring 23a.
  • the observation circuit section 16a and the signal processing circuit section 17a are connected by a third observation line 24a.
  • the control signal generation unit 11 through the control circuit unit 15 through the qubit substrate unit 14 and the observation unit 12 through the signal processing circuit unit 17 through the observation circuit unit 16 through the qubit substrate unit 14 configured in parallel.
  • This is a “reflection type” configuration in which when a control signal and a command signal are input from the control signal generator 11 into the refrigerator 18 , the observation signal is reflected back from the refrigerator 18 .
  • the control signal generation section 11a the control circuit section 15a, the qubit substrate section 14a, the observation circuit section 16a, the signal processing circuit section 17a, and the observation section 12a are configured in series.
  • This is a "transmission type” configuration in which when a control signal and a command signal are input from the control signal generator 11a into the refrigerator 18, the signal passes through the refrigerator 18 and then an observation signal is output. .
  • the present invention can be used for quantum computation control devices, quantum computers, and quantum computation control methods.
  • S1 Step of generating control signals and command signals.
  • S2 Step of controlling transmission of the control signal to each qubit on the qubit substrate section.
  • S3 A step of observing the qubits on the qubit substrate.
  • S4 a step of executing a quantum error correction decoding process.
  • S5 A step of determining whether the calculation is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Error Detection And Correction (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

量子計算制御装置は、制御信号生成部と、量子ビットモジュールと、を備える。量子ビットモジュールは、観測部と、量子ビット基板部と、制御回路部と、観測回路部と、信号処理回路部と、を備える。複数の量子ビットが、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して量子ビット基板部上に配置される。制御信号生成部は、量子ビット基板部上の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、第1の操作及び第2の操作の制御を制御回路部に実行させるための命令信号と、を生成する。制御回路部は、制御信号をグループに分岐し、命令信号に応じて量子ビット基板部上の各量子ビットへの制御信号の送出を制御する。観測回路部は、第1の操作又は第2の操作を受けた各量子ビットの状態を観測する。信号処理回路部は、各量子ビットの観測信号を観測部に送信する。

Description

量子計算制御装置、量子コンピュータ及び量子計算制御方法
 本発明は、量子計算制御装置、量子コンピュータ及び量子計算制御方法に関する。
 本出願は、米国仮特許出願第63180500号及び特願2021-091832号を基礎とする優先権を主張する。当該仮出願の明細書は、全体として参照により本明細書に組み込まれる。
 量子ビットに対して基板下面又は上面から信号線が出入りする三次元構造の超伝導復号量子計算回路が提案されている(例えば、特許文献1)。
特開2020-061447
 超伝導量子ビットを用いた量子コンピュータでは、希釈冷凍機(クライオスタット)などの冷凍機内に置かれた量子ビット基板と、常温環境下に置かれた制御装置・観測装置とをケーブルで接続する必要がある。すべての量子ビットを独立に制御することが望ましいことから、従来、1量子ビットあたり1本以上の配線を必要としていた。こうした配線に使われるケーブルはラジオ波同軸線又はマイクロ波同軸線であり、ミリメートルオーダの寸法を有している。これは現在の集積回路で使われる配線より大きいため、集積化上の課題となっている。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、量子ビットを用いた装置における配線数を削減することにある。また、配線数を削減しても、回路パラメータのばらつきに対してロバストな制御を実現することにある。
 上記課題を解決するために、本発明のある態様の量子計算制御装置は、制御信号生成部と、各量子ビットの状態を示す観測信号を受信する観測部と、量子ビットモジュールと、を備える。量子ビットモジュールは、複数の量子ビットを搭載する量子ビット基板部と、制御回路部と、観測回路部と、信号処理回路部と、を備える。複数の量子ビットは、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して量子ビット基板部上に配置される。制御信号生成部は、量子ビット基板部上の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、第1の操作及び第2の操作の制御を制御回路部に実行させるための命令信号と、を生成する。制御回路部は、制御信号をグループに分岐し、命令信号に応じて量子ビット基板部上の各量子ビットへの制御信号の送出を制御する。観測回路部は、第1の操作又は第2の操作を受けた各量子ビットの状態を観測する。信号処理回路部は、各量子ビットの観測信号を観測部に送信する。
 この態様によると、量子ビットを用いた装置における配線数を削減することができる。
 ある実施の形態の量子計算制御装置では、制御回路部は、命令信号に基づいて、第1の操作においては、量子ビット基板部上のすべての量子ビットに制御信号を送出し、第2の操作においては、量子ビット基板部上の特定の制御対象の量子ビットにのみ制御信号を送出するように、制御信号の送出を制御してもよい。
 ある実施の形態の量子計算制御装置では、第1の操作はシンドローム抽出操作であり、第2の操作は論理量子ゲート操作であってもよい。
 ある実施の形態の量子計算制御装置では、信号処理回路部は、量子誤り訂正復号処理を行ってもよい。
 ある実施の形態の量子計算制御装置では、制御回路部は、命令信号に基づいて、第1の操作においては、量子ビット基板部の各グループに共通の制御信号を送信し、第2の操作においては、量子ビット基板部上の各量子ビットに個別に制御信号を送信してもよい。
 ある実施の形態の量子計算制御装置では、制御信号を伝達する信号線の数をk’、命令信号を伝達する信号線の数をsとしたとき、制御信号生成部と量子ビットモジュールとを結ぶ配線の数はk’+s以下であってもよい。
 ある実施の形態の量子計算制御装置では、信号処理回路部は、誤り訂正処理を適用した論理量子ビットの量子状態のみを観測部に送信することで、観測部と量子ビットモジュールとを結ぶ配線の数を削減してもよい。
 ある実施の形態の量子計算制御装置では、量子ビットが形成する論理量子ビットの符号長をdとしたとき、第1の操作の頻度と第2の操作の頻度との比はd以上であってもよい。
 ある実施の形態の量子計算制御装置では、量子ビットは、固体量子ビットであってもよい。
 ある実施の形態の量子計算制御装置では、少なくとも量子ビットモジュールは、冷凍機内に置かれてもよい。
 ある実施の形態の量子計算制御装置では、量子ビットは、超伝導量子ビットを含む極低温下で動作する量子ビットであってもよい。
 ある実施の形態の量子計算制御装置では、制御回路部は、制御信号の波形を記憶するメモリを備えてもよい。
 本発明のさらに別の態様は、量子コンピュータである。この量子コンピュータは、前述のいずれかの実施の形態の量子計算制御装置を備える。
 この態様によると、配線数が削減された量子コンピュータを実現することができる。
 本発明のさらに別の態様は、量子ビット基板部と、制御回路部と、観測回路部と、信号処理回路部と、を用いた量子計算制御方法である。この方法は、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して前記量子ビット基板部上に配置された複数の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、第1の操作及び第2の操作の制御を制御回路部に実行させるための命令信号と、を生成するステップと、制御回路部を用いて、制御信号をグループに分岐し、命令信号に応じて量子ビット基板部上の各量子ビットへの制御信号の送出を制御するステップと、観測回路部を用いて、第1の操作又は第2の操作を受けた各量子ビットの状態を観測するステップと、信号処理回路部を用いて、量子誤り訂正復号処理を実行するステップと、量子ビットを用いた計算が終了したかを判断するステップと、を備える。
 この態様によると、量子ビットを用いた装置における配線数を削減することができる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、量子ビットを用いた装置における配線数を削減することができる。また、配線数を削減しても、回路パラメータのばらつきに対してロバストな制御を実現することができる。
従来の量子コンピュータの構成を示す模式図である。 第1の実施の形態に係る量子計算制御装置の機能ブロック図である。 量子ビット基板部上に配置された量子ビットの単位胞を示す模式図である。 量子ビット基板部上にグループ化されて配置された量子ビットを示す模式図である。 シンドローム抽出操作と論理量子ゲート操作とが実行される様子を示す模式図である。 図2の量子計算制御装置の制御信号生成部、量子ビット基板部、制御回路部の詳細図である。 図2の量子計算制御装置の制御スイッチの詳細図である。 シンドローム抽出操作に関係する制御スイッチを示す図である。 シンドローム抽出操作及びその後の論理量子ゲート操作に関係する制御スイッチを示す図である。 第2の実施の形態に係る量子計算制御装置の量子ビット基板部、制御回路部の詳細図である。 第4の実施の形態に係る量子計算制御方法のフローチャートである。 変形例に係る量子計算制御装置の機能ブロック図である。 正方格子に配置した量子ビットを示す模式図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示である。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書又は請求項の中で「第1」、「第2」等の用語が用いられる場合、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するだけのためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 具体的な実施の形態を説明する前に、先ず基本となる知見を説明する。超伝導量子ビットを用いた量子コンピュータ(以下、「超伝導量子コンピュータ」という)では、量子ビット及びこれに関連する電子回路が、冷凍機の内部に置かれる。冷凍機内は、数K(ケルビン)~数10mK(ミリケルビン)の低温に保たれる。特に超伝導量子ビットは10mK程度の極低温下に置かれる。超伝導量子コンピュータを用いて計算を実行するためには、量子ビットに対して、量子誤り訂正処理のためのシンドローム抽出操作や論理量子ゲート操作を行う必要がある。これらの操作は、冷凍機の外部に置かれた制御装置やPCから行われる。このような冷凍機の外部は、通常は常温環境にある。また量子ビットから出力される観測信号は、やはり冷凍機外部の常温環境下に置かれた測定装置によって観測される。従来、こうした操作や観測は、主にソフトウェアを用いて実行されてきた。このため、冷凍機内の電子回路と常温環境下にある装置とを多数のケーブルで接続する必要がある。例えば量子ビットの総数をNとすると、各量子ビットを個別に制御及び観測するためには、典型的には2×N本のケーブルが必要となる。こうした配線に使われるケーブルはラジオ波同軸線又はマイクロ波同軸線であり、数ミリメートルの寸法を有している。これは現在の集積回路で使われる配線より大きいため、集積化上の大きな課題となっている。従って、超伝導量子コンピュータの集積化のためには、冷凍機と常温環境とを接続する配線数をいかにして削減するかが重要となる。
 図1に、従来の量子コンピュータ100の構成を模式的に示す。量子コンピュータ100は、制御装置101と、観測装置102と、量子ビットが搭載された量子ビット基板103と、第1電子回路104と、第2電子回路105と、を備える。制御装置101及び観測装置102は、常温環境下に置かれる。量子ビット基板103及び第1電子回路104は、冷凍機106内の0.01K程度の極低温環境に置かれる。第2電子回路105は、冷凍機106内の4K程度の低温環境下に置かれる。制御装置101と冷凍機106とは、制御線107で接続される。観測装置102と冷凍機106とは、観測線108で接続される。量子ビット基板103に搭載される量子ビットの数をNとする。Nは実用的には10程度必要であると言われている。従って量子ビット基板103上の量子ビットをすべて独立に制御及び観測するためにそれぞれN本の制御線107及び観測線108が必要となり、これらの総数は2×10本にも及ぶ。前述のように、こうした多数の配線が必要となる現行方式では、冷凍機内部のスペースや冷却能力の制限により、装置の集積化が困難となる。
 一般に多くの量子コンピュータでは、情報をノイズから保護するための手法として、表面符号(以下、単に「符号」とも呼ぶ)を用いた量子誤り訂正が使われる。この手法では、論理的な1量子ビットが、複数の物理的な量子ビット(以下、「物理的な量子ビット」のことを単に「量子ビット」と略称する)を用いて冗長に符号化される。これらの物理的な量子ビットは、2次元平面上で格子状に配置される。格子のサイズを大きくする(すなわち物理的な量子ビットの数を増やす)ことにより、符号の冗長性を増し、誤り耐性を大きくすることができる。
 本明細書で取り扱う量子コンピュータにおける量子ビットの操作は、「シンドローム抽出操作」と「論理量子ゲート操作」とに大別される。
 後述するように、シンドローム抽出操作(量子誤り訂正のために、シンドロームビットを高速に読み出す操作)は、2次元空間上で並進対称性を持つ操作(すなわち、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループに同じ制御操作を行うこと)である。この性質を利用すると、シンドローム抽出操作のための制御信号は、制御信号生成部が生成したものを制御回路部で分岐し各量子ビットグループに送信することができる。言い換えれば、シンドローム抽出操作は、空間的に一様な操作である。さらにシンドローム抽出操作は、時間的に周期的に実行される。
 これに対し量子ビットへの論理量子ゲート操作は、空間的な並進対称性を持たない。すなわち、論理量子ゲート操作のための制御信号は、特定の制御対象の量子ビットに対してのみ送信される。言い換えれば、論理量子ゲート操作は、空間的に非一様な操作である。論理量子ゲート操作は、周期的に繰り返して実行されるシンドローム抽出操作の間に実行される。
 量子コンピュータの動作中、論理量子ゲート操作が行われる頻度は、シンドローム抽出操作が行われる頻度に比べて低い。典型的には、物理量子ビットが形成する論理量子ビットの符号長をdとしたとき、シンドローム抽出操作の頻度と論理量子ゲート操作の頻度との比をd以上とすれば誤り訂正後の論理量子ビットで論理量子ゲート操作が可能となる。
[第1の実施の形態]
 図2に、第1の実施の形態に係る量子計算制御装置1の機能ブロック図を示す。量子計算制御装置1は、制御信号生成部11と、観測部12と、量子ビットモジュール13と、を備える。量子ビットモジュール13は、複数の量子ビットを搭載する量子ビット基板部14と、制御回路部15と、観測回路部16と、信号処理回路部17と、を備える。制御信号生成部11と制御回路部15とは、制御線20で接続される。観測部12と信号処理回路部17とは、観測線21で接続される。量子ビット基板部14と制御回路部15とは、第1の内部配線22で接続される。量子ビット基板部14と観測回路部16とは、第2の内部配線23で接続される。観測回路部16と信号処理回路部17とは、第3の観測線24で接続される。
 制御信号生成部11は、量子ビット基板部14上の量子ビットに対する操作を実行するための制御信号と、こうした操作の制御を制御回路部15に実行させるための命令信号と、を生成する。これらの制御信号と命令信号については、後で詳しく述べる。
 観測部12は、各量子ビットの状態を示す観測信号を受信する。
 量子ビット基板部14には、複数の量子ビットが搭載される。これらの量子ビットは、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して量子ビット基板部14上に配置される。このグループ化については、後で詳しく述べる。
 制御回路部15は、制御信号を上記のグループに分岐し、制御信号生成部11が生成した命令信号に応じて、量子ビット基板部14上の各量子ビットへの制御信号の送出を制御する。
 観測回路部16は、前述の操作を受けた各量子ビットの状態を観測する。
 信号処理回路部17は、各量子ビットの観測信号を観測部12に送信する。
 図3に、本実施の形態において、量子ビット基板部14上に配置された量子ビットを模式的に示す。各量子ビットは、2次元空間上で規則的に配置されている。具体的には、この配置は、各頂点と辺及び内部に1個ずつ(頂点の量子ビットを1/4個、辺上の量子ビットを1/2個とすると合計4個の)量子ビットを備えた矩形の構成(以下、「単位胞」という)が2次元方向に繰り返される構造を持つ。すなわち量子ビットは、量子ビット基板部14上で並進対称性を持つように配置されている。量子ビット基板部14上に配置された量子ビットのうち、単位胞の辺上に位置する量子ビットは、符号を構成するために使われ、データ量子ビットと呼ばれる。一方、頂点及び単位胞内に位置する量子ビットは、交差共鳴ゲート操作によってデータ量子ビットの量子状態を観測するための補助的な量子ビットとして使われ、シンドローム量子ビットと呼ばれる。これらの量子ビットは固定周波数トランズモン型量子ビットでもよく、それぞれ固有の共鳴周波数を有してもよい。
 ここで量子ビットがトランズモン型量子ビットであり、交差共鳴ゲートを2量子ビットゲートとして採用する場合を考える。また、量子ビットの周波数関係を、図4のA-Eのシンドローム量子ビット及びa-eのデータ量子ビットのように10種類割り当てた場合を考える。このとき、図9に示されるような正方形の格子G1を定義する。格子G1は複数の単位胞にまたがるが、符号によって決まる役割りと、抽出操作における操作の方法とにより、20量子ビットを単位とする並進対称性を持つ。
 図4の並進対称性を持つ格子G1を用いて、量子ビット基板部14上に配置された量子ビットでグループ化する。図4では、こうした格子の代表として、格子G1、G2、G3及びG4を明示している。格子G1、G2、G3及びG4は、言うまでもなく、同一の量子ビット配置を持つ。以下、量子ビット基板部14上の量子ビット全体が、G1、G2、G3、G4、…、GPの全部でP個の格子でグループ化されているものとする。さらに、以下、各格子に含まれる量子ビットの数をkで表す。格子G1に示されるように、この例ではk=20である。いうまでもなく、格子G1、G2、G3、G4、…、GPは、すべて幾何学的に同じ量子ビット配置を持つ。すなわち、量子ビット基板部14上の量子ビットは、各量子ビット同士の位置関係が同一である複数の量子ビットから構成されるグループにグループ化して配置されている。言い換えれば、これらの量子ビットは、量子ビット基板部14上で2次元空間方向にタイル状(この例では、格子G1、G2、G3、G4、…)に繰り返して配置される。以下、上記の格子のことを「グループ」ということもある。
 表面符号を用いた量子誤り訂正では、符号は並進対称性を持つ。従って、量子誤り訂正のためのシンドローム抽出操作は、すべての格子で共通に実行することができる。例えば格子G1内の量子ビットを独立にシンドローム抽出操作するためには、格子G1を構成するk個(本例では20個)の量子ビットのそれぞれに制御線をつなぎ、シンドローム抽出操作のための制御信号を送信する。このとき、格子G2、G3、G4、…、GPに対しても、格子G1のものと同じ制御信号を用いて、シンドローム抽出操作を実行することができる。なお、制御回路部15から量子ビット基板部14へ送信される制御信号は、制御対象の格子(グループ)を単位として周期的に繰り返して送出される。すなわち、シンドローム抽出操作は、時間的にも周期的に実行される。
 量子ビットを構成する回路が十分均一で、制御波形のロバスト性によりその回路パラメータのばらつきが吸収されている限り、シンドローム抽出操作はすべての格子で共通に実行することができる。
 この場合、制御信号生成部11と制御回路部15とを接続する制御線20を各格子(グループ)間で共通化した後、これを制御回路部15で各格子(グループ)に分岐することにより、配線数を削減することができる。例えば量子ビット基板部14上の量子ビットの総数をNとすると、格子(グループ)の数はN/kである。上で説明したように、シンドローム抽出操作はすべての格子で共通に実行することができるので、制御線20は格子(グループ)内の量子ビットの数だけあればよい。従って、従来量子ビットの総数Nのオーダを必要としていた制御線の数は、k/N(倍)の本数に削減することができる。例えば本例の場合、k=20であるので、制御線20の数は20/N(倍)の本数にまで削減される。このようにシンドローム抽出操作に関しては、符号の対称性と量子ビットのグループ化を利用することにより、シンドローム抽出操作のための制御線を共通化することができる。以下、シンドローム抽出操作のような空間的な並進対称性を持つ操作(より一般的には、空間的に一様な操作)のことを「第1の操作」という。
 一方、論理量子ゲート操作は、周期的に繰り返して実行されるシンドローム抽出操作の間に、特定の操作対象の量子ビットを操作することにより実行される。すなわち、論理量子ゲート操作は、空間的な並進対称性と時間的な周期性を持たない。従って論理量子ゲート操作は、シンドローム抽出操作と異なり、前述の格子(グループ)に共通して実行することができない。すなわち論理量子ゲート操作のための制御信号は、特定の制御対象の量子ビットに対してのみ送信する必要がある。このため、制御線20を共通化して、これを各格子(グループ)に分岐しただけでは、論理量子ゲート操作を実行することはできない。以下、論理量子ゲート操作のような並進対称性を持たない操作(より一般的には、空間的に非一様な操作)のことを「第2の操作」という。
 1回の論理量子ゲート操作に必要なシンドローム抽出操作(量子誤り訂正)の回数は、量子ビットの符号長d(d>1)で決まる。典型的には、必要なシンドローム抽出操作回数はd以上である。従ってこの場合、シンドローム抽出操作の頻度と論理量子ゲート操作の頻度との比(従って、シンドローム抽出操作の実行時間と論理量子ゲート操作の実行時間との比)はd以上である。図5に、シンドローム抽出操作と論理量子ゲート操作とが実行される様子を模式的に示す。ここでは格子G1、G2、G3を代表的に示し、各格子は6個の量子ビットを含むものとする。なお、図5のシンドローム抽出操作と書かれたボックスは同じ処理を意味しており、図5はこれが時間的に周期的に行われることを示している。
 上で説明した格子への量子ビットの配置は例示であり、これに限られない。
 図13に、図4とは別の格子GI、GII、GIII、GIVに配置した量子ビットを模式的に示す。ここでは、A-Dの4種類のシンドローム量子ビット及びx-wの4種類のデータ量子ビット、すなわち全部で8種類の量子ビットが割り当てられている。格子GIに示されるように、この例ではk=8である。前述のように、従来量子ビットの総数Nのオーダを必要としていた制御線の数は、k/N(倍)の本数に削減することができる。従って本例(k=8)の場合、制御線の数は8/N(倍)の本数にまで削減される。なおk=8の場合も、前述の第2の操作が同様に実行可能であることはいうまでもない。
 並進対称性を有する誤り訂正符号の1つである表面符号は、近接相互作用のみを要求する。すなわち、遠隔の量子ビット間の相互作用は不要である。例えば、2次元格子にぎっしりと並ぶ量子ビットにおいて、隣接する量子ビットの隣同士でだけ2量子ビットゲートが実行できれば十分である。
 上で説明したように、量子誤り訂正符号では、量子ビットは、それぞれ役割りの異なる2種類の量子ビットに分類される。1つはデータ量子ビットと呼ばれる、量子状態を保持するための量子ビットである。もう1つはシンドローム量子ビットと呼ばれる、データ量子ビットのパリティ値を検出するための量子ビットである。データ量子ビット及びシンドローム量子ビットは、正方格子上に互い違いに配置される。つまりデータ量子ビットから見て上下左右の隣接量子ビットはシンドローム量子ビットであり、逆も然りである。
 量子誤り訂正符号は、古典的な誤り訂正符号と異なり、データ量子ビットの値を直接観測することは許されないが、パリティ値を得ることは許される。データ量子ビットの状態を観測して、その状態を壊すことなくパリティの値を得るためには、データ量子ビットとシンドローム量子ビットとの間の2量子ビットゲートを実行する必要がある。正方格子の場合、一つのデータ量子ビットに対して4回の2量子ビットゲートを実行することで、パリティ値がシンドローム量子ビットに集約される。この過程で量子もつれが用いられる。シンドローム量子ビットのみを測定することにより、データ量子ビットのパリティ値を得ることができる。
 図13に示される配置例では、A、B、C、Dの4種類のシンドローム量子ビット及びw、x、y、zの4種類のデータ量子ビット、すなわち全部で8種類の周波数の量子ビットが割り当てられている。図13に示されるように、2次元平面は、1つのデータ量子ビットを頂点として、2種類の濃淡のグレーでハッチングされた正方形で埋め尽くされている。正方形の中心にはシンドローム量子ビットが配置されている。この正方形はシンドローム量子ビットが得るパリティ値の担当領域を示している。これは、A-Dのシンドローム量子ビットが、w-zのデータ量子ビットのパリティ値を得ることを意味する。この場合のパリティは、w-zのデータ量子ビットで、同じビット値(0または1)が偶数個(wxyz=0000,0011,0101,0110,1001,…)あるか、奇数個あるか(wxyz=0001,0010,0100,0111,…)に関するものである。このパリティ値は、ビット値の和(偶数の場合にはmod 2で0、奇数の場合にはmod 2で1)を2量子ビットゲートを用いて計算し、シンドローム量子ビットを観測することで得られる。
 ここで図13の正方形は、2種類の濃淡のグレーで色分けされている点に注意する。量子力学的な状態を維持するには、ビット反転の他、位相反転に関するパリティ値を取得する必要がある。位相反転に関するパリティ値とは、量子ビット値をブロッホ球のX軸に射影したとき、同じ値が偶数個(wxyz=++++,++--,+-+-,…)あるか、奇数個あるかについてのパリティ値のことをいう。量子誤り訂正は、ビット反転用のシンドローム量子ビットによって得られるパリティから、パリティ検査行列を構成し、復号処理を通じてビット反転エラーを修正する。量子誤り訂正はまた、位相反転用のシンドローム量子ビットによって得られるパリティ値から、パリティ検査行列を構成し、復号処理を通じて位相反転エラーを修正する。この2つの役割の異なるパリティ値を得るために、正方格子は、2種類の濃淡のグレーの正方形(シンドローム抽出に関する担当領域)で埋め尽くされている。
 以上説明したように、量子ビットは、
(1)データ量子ビット
(2)シンドローム量子ビット
に分類されており、正方格子に互い違いに配置されている。このうちシンドローム量子ビットは、
(2-A)ビット反転に関するパリティ値を取得するもの
(2-B)位相反転に関するパリティを取得するもの
に分類される。
 本発明者らは、量子ビット基板部14上の量子ビットに対する制御信号の送出を制御することにより、前述の制御線20を共通化した構成を用いて、第1の操作と第2の操作の両方を実行することができることを見出した。例えば、第1の操作においては、量子ビット基板部14上のすべての量子ビットに制御信号を送出し、第2の操作においては、量子ビット基板部14上の特定の制御対象の量子ビットにのみ制御信号を送出するように、制御信号の送出を制御することにより、第1の操作と第2の操作の両方を実行することができる。
 図6に、量子計算制御装置1の制御信号生成部11、量子ビット基板部14、制御回路部15の詳細を示す。制御回路部15は、命令デコーダ151と、最大N×k’個(Nは、量子ビット基板部14上の量子ビットの総数、k’は下記の制御信号線の数)の制御スイッチ152と、を備える。制御信号生成部11と制御回路部15とを接続する制御線20は、k’(k<k’<<N)本の制御信号線201と、s本の命令信号線202と、を備える。制御回路部15と、格子G1、G2、G3、G4、…、GPとは、それぞれk本の量子ビット制御線221、222、223で接続される。
 図7に、量子計算制御装置1の制御回路部15の制御スイッチ152の詳細を示す。ここでは、格子の数を3(格子をG1、G2、G3で表す)、各格子に含まれる量子ビットの数k=6、各量子ビット制御線221、222、223の数を6(すなわちkに等しい)、量子ビット基板部14上の量子ビットの総数N=18(=k×格子の数)、制御信号線の数k’=10、制御スイッチ152の数を180(=N×k’)とする。制御スイッチ152はマトリックス状に配置される。このマトリックスの各行(横方向の並び)は量子ビット制御線221、222、223に対応し、各列(縦方向の並び)は制御信号線201に対応する。ここではこのマトリックスの行を、下から順に、第1行、第2行、…、第18行とする。またこのマトリックスの列を、左から順に、第1列、第2列、…、第10列とする。各制御スイッチ152を、このマトリックスの成分を用いてSW(1、1)、SW(1、2)、…、SW(1、10)、SW(2、1)、…、SW(18、1)、…、SW(18、10)と表す。図6では制御信号線201が横方向に描かれているが、図7では縦方向に描かれている点に注意する。横一列で示される同一量子ビットにつながる制御スイッチの出力は合波器などによって1本に共通化されて量子ビットに接続される。なお煩雑を防ぐため、命令信号線202及び命令デコーダ151は図示を省略する。
 各制御スイッチ152は、入力1本、出力1本、スイッチ制御線(図示を省略)1本により構成される。制御スイッチ152は、スイッチ制御線に入力されるイネーブル信号に応じて、入力線に入力した制御信号を出力線に出力する又は出力しないような動作をする(すなわち、オン/オフ動作する)。
 制御信号生成部11が生成した制御信号は、k’本の制御信号線201を通って、制御回路部15に入力する。制御回路部15に入力した各制御信号は、格子G1、G2、G3、・・・、GP用にP分岐されて、それぞれ制御スイッチ152に入力する。
 一方、制御信号生成部11が生成した命令信号は、命令信号線202を通って、命令デコーダ151に入力する。命令デコーダ151は入力された命令信号をデコードし、各制御スイッチ152にスイッチ制御線を介して制御スイッチの出力のオン、オフタイミングを順次指示する。なお、スイッチ制御線の総数はN×k’となる。また、信号線の数がs本であるので、デコードにより最大2種類の命令を設けることができる。
 第1の操作(すなわち、シンドローム抽出操作)においては、制御信号生成部11が作成した第1の操作を実行するための制御信号が、量子ビット基板部14上のすべての格子(G1、G2、G3、・・・、GP)間で対応する各量子ビットに同じタイミングで送出されるよう制御スイッチ152が制御される。
 図8に、シンドローム抽出操作に関係する制御スイッチを示す。図示される通り、シンドローム抽出操作に使われる制御スイッチは、SW(1、6)、SW(2、5)、SW(3、4)、SW(4、3)、SW(5、2)、SW(6、1)、SW(7、6)、SW(8、5)、SW(9、4)、SW(10、3)、SW(11、2)、SW(12、1)、SW(13、6)、SW(14、5)、SW(15、4)、SW(16、3)、SW(17、2)、SW(18、1)の合計18個である。これは、各格子に対応するサブマトリックスの対角成分に相当する。シンドローム抽出操作では、これら18個の制御スイッチのオン、オフが周期的に行われる。なおこの場合、k’(=10)本ある制御信号線201のうち、6本だけが使われる。
 一方、第2の操作(すなわち、論理量子ゲート操作)においては、命令信号は、N×k’個の制御スイッチ152のうち、特定の制御対象の量子ビットに関するスイッチのみをオンにする。これにより、制御信号生成部11が作成した第2の操作を実行するための制御信号が、量子ビット基板部14上の特定の制御対象の量子ビットのみに送出される。
 図9に、第1の操作及びその後の第2の操作に関係する必要な制御スイッチのみを抽出して示す。各格子G1、G2、G3に含まれる量子ビットを上から順にQ1、Q2、…、Q6で示す。以下、量子ビット基板部14上の各量子ビットを、格子の番号G1、G2、G3と、各格子内の量子ビットの番号Q1、Q2、…、Q6とを用いて、Q(G1、Q1)、Q(G1、Q2)、…、Q(G1、Q6)、Q(G2、Q1)、…、Q(G2、Q6)、Q(G3、Q1)、…、Q(G3、Q6)と表す。制御信号線201は、10本の制御信号線2011、2012、2013、2014、2015、2016、2017、2018、2019、20110を含む。ここでは論理量子ゲート操作に関する命令として、2種類の命令A及び命令Bがあるものとする。命令A及び命令Bをそれぞれ上向き及び下向きの三角形で示す。命令A及び命令Bは、それぞれ特定の制御対象の10個の量子ビットに対し、同時かつ独立制御を行うことを命令する。
 命令Aは、Q(G1、Q1)、Q(G1、Q2)、Q(G2、Q1)、Q(G2、Q3)、Q(G2、Q4)、Q(G2、Q6)、Q(G3、Q3)、Q(G3、Q4)、Q(G3、Q5)、Q(G3、Q6)、を制御対象とする。命令Bは、Q(G1、Q2)、Q(G1、Q3)、Q(G1、Q4)、Q(G2、Q1)、Q(G2、Q2)、Q(G2、Q5)、Q(G2、Q6)、Q(G3、Q4)、Q(G3、Q5)、Q(G3、Q6)、を制御対象とする。
 以下、制御信号線201を構成する10本の制御信号線2011~20110の各々が伝える制御信号の内容について説明する。
制御信号線2011は、シンドローム抽出操作、並びにQ(G2、Q1)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2012は、シンドローム抽出操作、並びにQ(G1、Q2)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2013は、シンドローム抽出操作、並びにQ(G3、Q3)に対する命令A及びQ(G1、Q3)に対する命令Bのための制御信号を伝える。
制御信号線2014は、シンドローム抽出操作、並びにQ(G3、Q4)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2015は、シンドローム抽出操作、並びにQ(G3、Q5)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2016は、シンドローム抽出操作、並びにQ(G2、Q6)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2017は、Q(G2、Q3)に対する命令A及びQ(G2、Q2)に対する命令Bのための制御信号を伝える。
制御信号線2018は、Q(G3、Q6)に対する命令A及び命令Bのための制御信号を伝える。
制御信号線2019は、Q(G1、Q1)に対する命令A及びQ(G1、Q4)に対する命令Bのための制御信号を伝える。
制御信号線20110は、Q(G2、Q4)に対する命令A及びQ(G2、Q5)に対する命令Bのための制御信号を伝える。
 以下、SW(1、1)~SW(18、10)のスイッチング動作について説明する。
 シンドローム抽出操作を実行するときは、SW(1、6)、SW(2、5)、SW(3、4)、SW(4、3)、SW(5、2)、SW(6、1)、SW(7、6)、SW(8、5)、SW(9、4)、SW(10、3)、SW(11、2)、SW(12、1)、SW(13、6)、SW(14、5)、SW(15、4)、SW(16、3)、SW(17、2)、SW(18、1)をオンにする。
 命令Aの論理量子ゲート操作を実行するときのスイッチング動作は、以下の通りである。
Q(G1、Q1)に命令Aの論理量子ゲート操作を実行するときは、SW(6、9)をオンにする。
Q(G1、Q2)に命令Aの論理量子ゲート操作を実行するときは、SW(5、2)をオンにする。
Q(G2、Q1)に命令Aの論理量子ゲート操作を実行するときは、SW(12、1)をオンにする。
Q(G2、Q3)に命令Aの論理量子ゲート操作を実行するときは、SW(10、3)をオンにする。
Q(G2、Q4)に命令Aの論理量子ゲート操作を実行するときは、SW(9、4)をオンにする。
Q(G2、Q6)に命令Aの論理量子ゲート操作を実行するときは、SW(7、6)をオンにする。
Q(G3、Q3)に命令Aの論理量子ゲート操作を実行するときは、SW(16、3)をオンにする。
Q(G3、Q4)に命令Aの論理量子ゲート操作を実行するときは、SW(15、4)をオンにする。
Q(G3、Q5)に命令Aの論理量子ゲート操作を実行するときは、SW(14、5)をオンにする。
Q(G3、Q6)に命令Aの論理量子ゲート操作を実行するときは、SW(13、8)をオンにする。
 命令Bの論理量子ゲート操作を実行するときのスイッチング動作は、以下の通りである。
Q(G1、Q2)に命令Bの論理量子ゲート操作を実行するときは、SW(5、2)をオンにする。
Q(G1、Q3)に命令Bの論理量子ゲート操作を実行するときは、SW(4、3)をオンにする。
Q(G1、Q4)に命令Bの論理量子ゲート操作を実行するときは、SW(3、9)をオンにする。
Q(G2、Q1)に命令Bの論理量子ゲート操作を実行するときは、SW(12、1)をオンにする。
Q(G2、Q2)に命令Bの論理量子ゲート操作を実行するときは、SW(11、7)をオンにする。
Q(G2、Q5)に命令Bの論理量子ゲート操作を実行するときは、SW(8、10)をオンにする。
Q(G2、Q6)に命令Bの論理量子ゲート操作を実行するときは、SW(7、6)をオンにする。
Q(G3、Q4)に命令Bの論理量子ゲート操作を実行するときは、SW(15、4)をオンにする。
Q(G3、Q5)に命令Bの論理量子ゲート操作を実行するときは、SW(14、5)をオンにする。
Q(G3、Q6)に命令Bの論理量子ゲート操作を実行するときは、SW(13、8)をオンにする。
 ここで、例えばQ(G1、Q1)の制御のためには、制御信号線2011及び制御信号線2019が対応する。制御信号線2016は、SW(6、1)を介してシンドローム抽出操作のためにつかわれる。制御信号線2019は、SW(6、9)を介して論理量子ゲート操作のために使われる。このようにQ(G1、Q1)については、1つの量子ビットに対して複数の制御線が対応する。Q(1、4)、Q(2、2)、Q(2、3)、Q(2、4)、Q(2、5)、Q(3、6)についても同様である。
 これに対し、Q(G1、Q2)、Q(G1、Q3)、Q(G1、Q5)、Q(G1、Q6)、Q(G2、Q1)、Q(G2、Q6)、Q(G3、Q1)、Q(G3、Q2)、Q(G3、Q3)、Q(G3、Q4)、Q(G3、Q5)については、1つの量子ビットに対して1本の制御線が対応する。
 以上説明した配線と制御スイッチの配置は例示であり、これに限られない。
 以上説明したように、制御回路部15は、命令信号に基づいて、第1の操作においては、量子ビット基板部14上のすべての量子ビットに制御信号を送出し、第2の操作においては、量子ビット基板部14上の特定の制御対象の量子ビットにのみ制御信号を送出するように、制御信号の送出を制御する。
 また制御回路部15は、制御信号生成部11が生成した命令信号に基づいて、第1の操作においては、量子ビット基板部14の各グループに共通の制御信号を送信し、第2の操作においては、量子ビット基板部14上の各量子ビットに個別に制御信号を送信してもよい。これにより、空間的に一様な第1の操作をすべてのグループに共通に実行する一方で、第1の操作より低い頻度で行われる空間的に非一様な第2の操作を特定の量子ビットのみを対象に実行することができる。
 上記の制御回路部15、観測回路部16、信号処理回路部17を備えた量子ビットモジュール13は、好ましくはハードウェアを用いて実現される。このように、本実施の形態では、従来ソフトウェアで行われていた量子計算処理をハードウェアにオフロードすることにより、量子ビットモジュール13を冷凍機内に置くことができる。
 以上説明したように、制御線20にk’本の制御信号線201と、s本の命令信号線202とを適用することにより、制御線20の数をk’+s(本)にすることができる。これにより、従来量子ビットの総数Nのオーダを必要としていた制御線の数を、(k’+s)/N(倍)の本数に削減することができる。
 本実施の形態により、各グループ内の量子ビットの数をk、命令信号を伝達する信号線の数をsとしたとき、制御信号生成部11と量子ビットモジュール13とを結ぶ配線、すなわち制御線20の数をk’+sとすることができる。さらに制御信号の周波数が異なる場合には、制御信号生成部11で周波数多重化を行うことにより省線化が可能である。また制御信号がデジタル信号の場合には、時分割多重によって省線化することもできる。こうした場合は、制御線20の数をk’+s以下とすることができる。
 信号処理回路部17は、量子誤り訂正復号処理を行ってもよい。量子誤り訂正は、非常に多くの回数の高速な読み出しを必要とする。例えば、2000個の物理量子ビットからなる1論理量子ビットのエラー情報は、1Gbps程度の情報を生成する。この出力信号は、量子ビットに起きた誤りの推定処理にのみ使われる。量子誤り訂正の復号処理(エラー箇所の推定処理)を冷凍機内の低温環境下で実行することにより、冷凍機と常温環境との信号帯域幅を低減することができる。例えば、超伝導デジタル論理回路を用いた信号処理回路を用いることにより、当該回路をオンラインで動作させることができる。すなわち、取得した信号を回路に保持しておく必要がなく、エラー箇所の推定に用いた情報を廃棄してしまうことができる。従って、冷凍機と常温環境との信号帯域幅が低減され、冷凍機と常温環境とを接続する配線を削減することができる。これにより、従来量子ビットの総数Nのオーダを必要としていた観測線を、誤り訂正後のデータ量子ビットの観測線のみに削減することができる。なお多重化処理等により、この観測線数をさらに削減することもできる。
 量子誤り訂正復号処理の概要は以下の通りである。量子ビットに対して前述の第1の操作を1回実行すると、量子ビットの誤りに関する情報が得られる。この誤り情報に対して誤り箇所を推定し、量子ビット値の反転情報を信号処理回路部17に記憶しておく。一方、前述の第2の操作の一部には、量子ビットに関する情報(例えば、パリティ値や論理量子ビット値など)を取得するものがある。そうした操作に関する命令を実行後に得られた値に、記憶しておいた量子ビット値の反転情報による修正を加える。
 図2の例では、量子ビットモジュール13は、冷凍機18内で0.01K程度の極低温環境下に置かれ、制御信号生成部11と観測部12とは、常温環境下に置かれた。しかし様々な実施の形態ではこれに限られず、少なくとも量子ビットモジュール13が冷凍機内の極低温環境下に置かれればよい。例えば、制御信号生成部11や観測部12は、常温環境下~低温環境下に分散的に配置されてもよい。また、冷凍機18内の量子ビットモジュール13内のすべての構成が0.01K程度の極低温下に置かれなくてもよい。例えば量子ビットモジュール13の量子ビット基板部14だけが0.01K程度の極低温下に置かれ、制御回路部15、観測回路部16、信号処理回路部17などは、冷凍機18内における比較的高温の数Kあるいは数100mK程度の環境下に置かれてもよい。
 本実施の形態は、超伝導量子コンピュータに応用すると効果的である。この場合、量子ビット基板上に搭載される量子ビットは、超伝導量子ビットである。
 以上の実施の形態は、量子ビットモジュールが低温環境下に置かれるものであった。これに限られず、量子ビットは例えば固体量子ビットであってもよい。この場合、量子ビットモジュールは常温環境下にあってもよい。こうした量子ビットモジュールに対しても、命令デコーダと制御スイッチで構成されるハードウェアを用いて、前述の第1の操作と第2の操作の両方を実行することができる。
[第2の実施の形態]
 図10に、第2の実施の形態に係る量子計算制御装置2の量子ビット基板部14、制御回路部15の詳細を示す。図10は図6に対応する。量子計算制御装置2は、図6の量子計算制御装置1に対して、波形メモリ153をさらに備える。量子計算制御装置2のその他の構成は、量子計算制御装置1と共通である。
 波形メモリ153は、制御信号生成部11が生成した第1の操作を実行するための制御信号の波形を記憶する。波形メモリ153は、例えばk種類の信号波形を1周期分だけ記憶してもよい。波形メモリ153は、第1の操作が実行されるときに、記憶した信号波形を読み出して、制御スイッチ152に入力する。
 第1の操作を実行するための制御信号は、同じ信号が周期的に繰り返されるので、常に制御信号生成部11がリアルタイムに生成する必要はない。従って、本実施の形態のように、一旦生成された制御信号の波形が波形メモリ153され、これが周期的に読み出されて使われてもよい。そして、制御信号生成部11が新たな信号波形を生成したときは、記憶されていた信号波形が当該新たな信号波形で書き換えられてもよい。
 本実施の形態によれば、動作中、制御信号生成部11から制御回路部15に入力される制御信号は第2の操作を実行するための制御信号だけとなるので、制御線20を流れる信号の帯域を削減することができる。
[第3の実施の形態]
 第3の実施の形態は、量子コンピュータである。この量子コンピュータは、前述の実施の形態の量子計算制御装置を備えることを特徴とする。量子コンピュータの基本的な構成については、既存の技術を用いてよい。
 本実施の形態によれば、配線数が削減された量子コンピュータを実現することができる。
[第4の実施の形態]
 図11に、第4の実施の形態に係る量子計算制御方法のフローチャートを示す。
 ステップS1で本方法は、量子ビット基板部上の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、第1の操作及び第2の操作の制御を制御回路部に実行させるための命令信号と、を生成する。ステップS2で本方法は、制御回路部を用いて、制御信号を量子ビットのグループに分岐し、命令信号に応じて量子ビット基板部上の各量子ビットへの制御信号の送出を制御する。ステップS3で本方法は、観測回路部を用いて、第1の操作又は第2の操作を受けた各量子ビットの状態を観測する。ステップS4で本方法は、信号処理回路部を用いて、量子誤り訂正復号処理を実行する。ステップS5で本方法は、当該量子ビットを用いた計算が終了したかを判断する。判断結果が否定的だった場合は、処理はステップS1に戻る。判断結果が肯定的だった場合は、終了する。量子ビット基板部上の量子ビットは、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して配置されている。
 本実施の形態によれば、量子ビットを用いた装置における配線数を削減することができる。
 以上、本発明を実施の形態にもとづいて説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図12に、変形例に係る量子計算制御装置1aの機能ブロック図を示す。量子計算制御装置1aは、制御信号生成部11aと、観測部12aと、量子ビットモジュール13aと、を備える。量子ビットモジュール13aは、複数の量子ビットを搭載する量子ビット基板部14aと、制御回路部15aと、観測回路部16aと、信号処理回路部17aと、を備える。制御信号生成部11aと制御回路部15aとは、制御線20aで接続される。観測部12aと信号処理回路部17aとは、観測線21aで接続される。量子ビット基板部14aと制御回路部15aとは、第1の内部配線22aで接続される。量子ビット基板部14aと観測回路部16aとは、第2の内部配線23aで接続される。観測回路部16aと信号処理回路部17aとは、第3の観測線24aで接続される。
 図2の量子計算制御装置1では、制御信号生成部11~制御回路部15~量子ビット基板部14と、観測部12~信号処理回路部17~観測回路部16~量子ビット基板部14とが並列的に構成されている。これは、制御信号及び命令信号が制御信号生成部11から冷凍機18内に入力されると、観測信号が冷凍機18から反射されて戻ってくる形の「反射型」の構成である。
 これに対し量子計算制御装置1aでは、制御信号生成部11a~制御回路部15a~量子ビット基板部14a~観測回路部16a~信号処理回路部17a~観測部12aが直列的に構成されている。これは、制御信号及び命令信号が制御信号生成部11aから冷凍機18内に入力されると、これが冷凍機18を透過した後、観測信号が出力される形の「透過型」の構成である。
 上述した各実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる各実施の形態及び変形例それぞれの効果をあわせもつ。
 本発明は、量子計算制御装置、量子コンピュータ及び量子計算制御方法に利用可能である。
 本出願は、米国仮特許出願第63180500号を基礎とする優先権を主張する。当該仮出願の明細書は、全体として参照により本明細書に組み込まれる。
1・・量子計算制御装置。
2・・量子計算制御装置。
1a・・量子計算制御装置。
11・・制御信号生成部。
11a・・制御信号生成部。
12・・観測部。
12a・・観測部。
13・・量子ビットモジュール。
13a・・量子ビットモジュール。
14・・量子ビット基板部。
14a・・量子ビット基板部。
15・・制御回路部。
15a・・制御回路部。
16・・観測回路部。
16a・・観測回路部。
17・・信号処理回路部。
17a・・信号処理回路部。
18・・冷凍機。
18a・・冷凍機。
20・・制御線。
20a・・制御線。
21・・観測線。
21a・・観測線。
22・・第1の内部配線。
22a・・第1の内部配線。
23・・第2の内部配線。
23a・・第2の内部配線。
24・・第3の内部配線。
24a・・第3の内部配線。
100・・量子コンピュータ。
101・・制御装置。
102・・観測装置。
103・・量子ビット基板。
104・・第1電子回路。
105・・第2電子回路。
106・・冷凍機。
107・・制御線。
108・・観測線。
151・・命令デコーダ。
152・・制御スイッチ。
153・・波形メモリ。
201・・制御信号線。
202・・命令信号線。
221・・量子ビット制御線。
222・・量子ビット制御線。
223・・量子ビット制御線。
G1・・格子。
G2・・格子。
G3・・格子。
SW(1、1)~SW(18、10)・・制御スイッチ。
S1・・制御信号と、命令信号とを生成するステップ。
S2・・量子ビット基板部上の各量子ビットへの前記制御信号の送出を制御するステップ。
S3・・量子ビット基板部上の量子ビットを観測するステップ。
S4・・量子誤り訂正復号処理を実行するステップ。
S5・・計算が終了したかを判断するステップ。

Claims (14)

  1.  制御信号生成部と、
     各量子ビットの状態を示す観測信号を受信する観測部と、
     複数の量子ビットを搭載する量子ビット基板部と、制御回路部と、観測回路部と、信号処理回路部と、を備えた量子ビットモジュールと、を備え、
     前記複数の量子ビットは、各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して前記量子ビット基板部上に配置され、
     前記制御信号生成部は、前記量子ビット基板部上の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の前記第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、前記第1の操作及び前記第2の操作の制御を前記制御回路部に実行させるための命令信号と、を生成し、
     前記制御回路部は、前記制御信号を前記グループに分岐し、前記命令信号に応じて前記量子ビット基板部上の各量子ビットへの前記制御信号の送出を制御し、
     前記観測回路部は、前記第1の操作又は前記第2の操作を受けた前記各量子ビットの状態を観測し、
     前記信号処理回路部は、前記各量子ビットの観測信号を前記観測部に送信することを特徴とする量子計算制御装置。
  2.  前記制御回路部は、前記命令信号に基づいて、
     前記第1の操作においては、前記量子ビット基板部上のすべての量子ビットに前記制御信号を送出し、
     前記第2の操作においては、前記量子ビット基板部上の特定の制御対象の量子ビットにのみ前記制御信号を送出するように、前記制御信号の送出を制御することを特徴とする請求項1に記載の量子計算制御装置。
  3.  前記第1の操作はシンドローム抽出操作であり、前記第2の操作は論理量子ゲート操作であることを特徴とする請求項1又は2に記載の量子計算制御装置。
  4.  前記信号処理回路部は、量子誤り訂正復号処理を行うことを特徴とする請求項3に記載の量子計算制御装置。
  5.  前記制御回路部は、前記命令信号に基づいて、
     前記第1の操作においては、前記量子ビット基板部の各グループに共通の制御信号を送信し、
     前記第2の操作においては、前記量子ビット基板部上の各量子ビットに個別に制御信号を送信することを特徴とする請求項1から4のいずれかに記載の量子計算制御装置。
  6.  前記制御信号を伝達する信号線の数をk’、前記命令信号を伝達する信号線の数をsとしたとき、前記制御信号生成部と前記量子ビットモジュールとを結ぶ配線の数はk’+s以下であることを特徴とする請求項1から5のいずれかに記載の量子計算制御装置。
  7.  前記信号処理回路部は、誤り訂正処理を適用した論理量子ビットの量子状態のみを前記観測部に送信することで、前記観測部と前記量子ビットモジュールとを結ぶ配線の数を削減することを特徴とする請求項6に記載の量子計算制御装置。
  8.  前記量子ビットが形成する論理量子ビットの符号長をdとしたとき、前記第1の操作の頻度と前記第2の操作の頻度との比はd以上であることを特徴とする請求項1から7のいずれかに記載の量子計算制御装置。
  9.  前記量子ビットは、固体量子ビットであることを特徴とする請求項1から8のいずれかに記載の量子計算制御装置。
  10.  少なくとも前記量子ビットモジュールは、冷凍機内に置かれることを特徴とする請求項1から8のいずれかに記載の量子計算制御装置。
  11.  前記量子ビットは、超伝導量子ビットを含む極低温下で動作する量子ビットであることを特徴とする請求項10に記載の量子計算制御装置。
  12.  前記制御回路部は、前記制御信号の波形を記憶するメモリを備えることを特徴とする請求項1から11のいずれかに記載の量子計算制御装置。
  13.  請求項1から12のいずれかに記載の量子計算制御装置を備えることを特徴とする量子コンピュータ。
  14.  量子ビット基板部と、制御回路部と、観測回路部と、信号処理回路部と、を用いた量子計算制御方法であって、
     各量子ビット同士の位置関係が同一である複数の量子ビットから構成される複数のグループにグループ化して前記量子ビット基板部上に配置された複数の量子ビットに対する操作であって1つ以上の種類の空間的に一様な第1の操作及び1つ以上の種類の前記第1の操作より低い頻度で行われる空間的に非一様な第2の操作を実行するための制御信号と、前記第1の操作及び前記第2の操作の制御を前記制御回路部に実行させるための命令信号と、を生成するステップと、
     前記制御回路部を用いて、前記制御信号を前記グループに分岐し、前記命令信号に応じて前記量子ビット基板部上の各量子ビットへの前記制御信号の送出を制御するステップと、
     前記観測回路部を用いて、前記量子ビット基板部上の量子ビットを観測するステップと、
     前記信号処理回路部を用いて、量子誤り訂正復号処理を実行するステップと、
     前記量子ビットを用いた計算が終了したかを判断するステップと、を備えることを特徴とする量子計算制御方法。
PCT/JP2022/006684 2021-04-27 2022-02-18 量子計算制御装置、量子コンピュータ及び量子計算制御方法 WO2022230318A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023517082A JP7530125B2 (ja) 2021-04-27 2022-02-18 量子計算制御装置、量子コンピュータ及び量子計算制御方法
CN202280030966.2A CN117203648A (zh) 2021-04-27 2022-02-18 量子计算控制装置、量子计算机及量子计算控制方法
EP22795241.3A EP4332842A1 (en) 2021-04-27 2022-02-18 Quantum calculation control device, quantum computer, and quantum calculation control method
CA3216798A CA3216798A1 (en) 2021-04-27 2022-02-18 Quantum computation controller, quantum computer and quantum computation control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163180500P 2021-04-27 2021-04-27
US63/180,500 2021-04-27
JP2021091832 2021-05-31
JP2021-091832 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022230318A1 true WO2022230318A1 (ja) 2022-11-03

Family

ID=83846938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006684 WO2022230318A1 (ja) 2021-04-27 2022-02-18 量子計算制御装置、量子コンピュータ及び量子計算制御方法

Country Status (4)

Country Link
EP (1) EP4332842A1 (ja)
JP (1) JP7530125B2 (ja)
CA (1) CA3216798A1 (ja)
WO (1) WO2022230318A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300004A1 (en) * 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method for executing a quantum error correction cycle in a quantum computer
JP2020061447A (ja) 2018-10-09 2020-04-16 国立研究開発法人科学技術振興機構 超伝導複合量子計算回路
CN111967603A (zh) * 2020-09-01 2020-11-20 腾讯科技(深圳)有限公司 量子芯片、量子处理器及量子计算机
JP2021091832A (ja) 2019-12-12 2021-06-17 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形体および成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300004A1 (en) * 2016-09-27 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method for executing a quantum error correction cycle in a quantum computer
JP2020061447A (ja) 2018-10-09 2020-04-16 国立研究開発法人科学技術振興機構 超伝導複合量子計算回路
JP2021091832A (ja) 2019-12-12 2021-06-17 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形体および成形体の製造方法
CN111967603A (zh) * 2020-09-01 2020-11-20 腾讯科技(深圳)有限公司 量子芯片、量子处理器及量子计算机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAY M. GAMBETTA, JERRY M. CHOW, MATTHIAS STEFFEN: "Building logical qubits in a superconducting quantum computing system", NPJ QUANTUM INFORMATION, vol. 3, no. 1, 1 December 2017 (2017-12-01), XP055456124, DOI: 10.1038/s41534-016-0004-0 *

Also Published As

Publication number Publication date
JPWO2022230318A1 (ja) 2022-11-03
EP4332842A1 (en) 2024-03-06
JP7530125B2 (ja) 2024-08-07
CA3216798A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP7571119B2 (ja) 量子計算装置のためのシンドローム・データ圧縮
US20180052806A1 (en) Quantum computing methods and devices for majorana tetron qubits
KR102104970B1 (ko) 베이컨-쇼어 양자 에러 정정에서 오류 허용 신드롬 추출 및 디코딩
Flensberg Non-Abelian operations on Majorana fermions via single-charge control
US20210279627A1 (en) Measurement-only majorana-based surface code architecture
US11487845B2 (en) Convolutional operation device with dimensional conversion
US11740962B2 (en) Quantum error correction
US20220198311A1 (en) Short-depth syndrome extraction circuits in 2d quantum architectures for hypergraph product codes
US10896241B2 (en) Information processing device and control method therefor
US11960974B2 (en) Physical layout of the Floquet code with Majorana-based qubits
AU2018307081A1 (en) Encoding two-qubit interactions
Ueno et al. Qulatis: A quantum error correction methodology toward lattice surgery
WO2022230318A1 (ja) 量子計算制御装置、量子コンピュータ及び量子計算制御方法
JP2023544543A (ja) ハイブリッドリソース状態を有するスケーラブルな光量子コンピューティング
KR101031680B1 (ko) 고속 pe 간 데이터 재배치 기능을 갖는 프로세서 어레이 시스템
Devitt et al. Programming a topological quantum computer
TW202324221A (zh) 用於在分散式量子系統中經由融合及分解閘的誤差降低之設備及方法
CN117203648A (zh) 量子计算控制装置、量子计算机及量子计算控制方法
JP2024505908A (ja) フォールトトレラント量子コンピュータのためのインタリーブモジュール
WO2022139881A1 (en) Short-depth syndrome extraction circuits in 2d quantum architectures for hypergraph product codes
WO2023281625A1 (ja) 制御装置、方法及びプログラム
WO2023281582A1 (ja) 制御装置、方法及びプログラム
US12013809B2 (en) Computing array and processor having the same
WO2022001454A1 (zh) 集成计算装置、集成电路芯片、板卡和计算方法
CN114666008B (zh) 数据传输方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517082

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280030966.2

Country of ref document: CN

Ref document number: 3216798

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18557838

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022795241

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795241

Country of ref document: EP

Effective date: 20231127