WO2022230120A1 - Hydrogen supply system - Google Patents

Hydrogen supply system Download PDF

Info

Publication number
WO2022230120A1
WO2022230120A1 PCT/JP2021/017023 JP2021017023W WO2022230120A1 WO 2022230120 A1 WO2022230120 A1 WO 2022230120A1 JP 2021017023 W JP2021017023 W JP 2021017023W WO 2022230120 A1 WO2022230120 A1 WO 2022230120A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
grid
hydrogen
unit
flow rate
Prior art date
Application number
PCT/JP2021/017023
Other languages
French (fr)
Japanese (ja)
Inventor
良平 稲垣
秀宏 飯塚
祐子 可児
崇 佐々木
貴彰 水上
直行 石田
晋士 藤田
亜由美 渡部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/017023 priority Critical patent/WO2022230120A1/en
Priority to JP2023516962A priority patent/JPWO2022230120A1/ja
Priority to EP21939281.8A priority patent/EP4332201A1/en
Publication of WO2022230120A1 publication Critical patent/WO2022230120A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas

Definitions

  • the present invention relates to a hydrogen supply system that enables hydrogen to be supplied at a hydrogen concentration below a specified level for a gas grid when supplying hydrogen to a gas grid that allows hydrogen to be mixed.
  • patent document 1 proposes a method of mixing hydrogen with fossil fuel gas such as LP gas and natural gas and supplying it to the gas grid so as to meet the city gas standard in order to supply hydrogen to the gas grid. It is
  • an object of the present invention is to supply hydrogen produced as clean energy to a gas grid while suppressing an increase in cost and not exceeding a specified hydrogen concentration value set in the gas grid.
  • the hydrogen supply system of the present invention includes a hydrogen production unit that produces hydrogen, a hydrogen booster that pressurizes the hydrogen produced by the hydrogen production unit to a pressure that can be supplied to a gas grid, a gas A grid gas intake unit that draws in grid gas from the grid, a hydrogen concentration adjustment unit that adjusts the mixed gas to an allowable hydrogen concentration or less specified in the gas grid, and a mixed gas return unit that supplies the mixed gas to the gas grid.
  • a hydrogen production unit that produces hydrogen
  • a hydrogen booster that pressurizes the hydrogen produced by the hydrogen production unit to a pressure that can be supplied to a gas grid
  • a gas A grid gas intake unit that draws in grid gas from the grid
  • a hydrogen concentration adjustment unit that adjusts the mixed gas to an allowable hydrogen concentration or less specified in the gas grid
  • a mixed gas return unit that supplies the mixed gas to the gas grid.
  • the present invention when supplying hydrogen produced as clean energy to the gas grid, it is possible to supply it so as not to exceed the hydrogen concentration specified value provided for the gas grid while suppressing an increase in cost.
  • FIG. 1 is an explanatory diagram illustrating a hydrogen supply system 100 according to the first embodiment.
  • a hydrogen supply system 100 described in the first embodiment includes a hydrogen production section 101 , a hydrogen pressurization section 102 , a grid gas intake section 103 , a hydrogen concentration adjustment section 104 and a mixed gas return section 105 .
  • the hydrogen supply system 100 is connected to a gas grid 901 and supplies hydrogen to this gas grid 901 .
  • This gas grid 901 is through which at least a blend of natural gas and hydrogen flows.
  • a blend gas may be described as mixed gas.
  • the hydrogen production unit 101 produces hydrogen.
  • the hydrogen pressurization unit 102 pressurizes the hydrogen produced by the hydrogen production unit 101 to a pressure that can be supplied to the gas grid 901 , and supplies the hydrogen concentration adjustment unit 104 .
  • the grid gas lead-in unit 103 draws in grid gas from the gas grid 901 and supplies it to the hydrogen concentration adjustment unit 104 .
  • the hydrogen concentration adjustment unit 104 adjusts the mixed gas to the allowable hydrogen concentration specified by the gas grid 901 or less.
  • the mixed gas return unit 105 supplies the mixed gas adjusted by the hydrogen concentration adjustment unit 104 to the gas grid 901 .
  • the grid gas lead-in section 103 and the mixed gas return section 105 are connected to the gas grid 901 .
  • the gas grid 901 contains a mixed gas (grid gas) of natural gas and hydrogen, such as city gas.
  • the gas grid 901 is provided with an upper limit of hydrogen concentration in order to prevent gas grid hydrogen embrittlement and to use existing natural gas utilization facilities.
  • the hydrogen production unit 101 produces hydrogen 2 to be supplied to the gas grid 901 .
  • the hydrogen 2 to be produced may be determined by predicting the amount of hydrogen demand and determining the production flow rate, or by producing the amount of hydrogen instructed by the gas grid manager.
  • the method by which the hydrogen production unit 101 produces hydrogen includes, for example, a method of producing hydrogen by electrolysis of water using power generated by renewable energy such as solar power generation and wind power generation, and a method of producing hydrogen by electrolysis of water when coal is gasified. Examples include a method of producing carbon monoxide by subjecting the produced carbon monoxide to a shift reaction and then separating carbon dioxide, and a method of producing by steam reforming natural gas, but are not limited to any of these. In order to realize a carbon-free product, when carbon dioxide is generated in the manufacturing process, it is preferable to recover the carbon dioxide and convert it into a valuable resource or store it.
  • the hydrogen 2 produced by the hydrogen producing unit 101 is pressurized by the hydrogen pressurizing unit 102 to a pressure that can be supplied to the gas grid 901 .
  • the pressure that can be supplied to the gas grid 901 varies depending on the location of the gas grid 901 to which hydrogen is to be supplied. is 1.0 MPaG or more, and is changed depending on the supply of hydrogen.
  • the hydrogen 2 is supplied to the hydrogen concentration adjustment unit 104 after being pressurized. Also, the grid gas lead-in section 103 connected to the gas grid 901 supplies the grid gas 1 present in the gas grid 901 to the hydrogen concentration adjustment section 104 .
  • the hydrogen concentration adjustment unit 104 mixes these two gases into a mixed gas 3 .
  • the hydrogen concentration adjustment unit 104 adjusts the hydrogen concentration of the mixed gas by changing the grid gas flow rate so as not to exceed the upper limit of the hydrogen concentration specified by the gas grid 901 .
  • the upper limit value of the hydrogen concentration specified by the gas grid 901 is also referred to as the allowable hydrogen concentration.
  • the reason why the grid gas flow rate is changed is that the hydrogen production unit 101 needs to supply an amount that takes into consideration the demand for hydrogen.
  • the mixed gas 3 adjusted by the hydrogen concentration adjusting section 104 is supplied to the gas grid 901 through the mixed gas returning section 105 .
  • the hydrogen supply system 100 of the present embodiment it is possible to supply the produced hydrogen at a hydrogen concentration below the specified value provided in the gas grid 901 .
  • FIG. 2 shows a block diagram of the hydrogen supply system 100 showing the details of the constituent elements of the grid gas lead-in section 103. As shown in FIG.
  • the grid gas lead-in unit 103 includes a grid gas hydrogen concentration measurement unit 1031, a grid gas hydrogen concentration communication unit 1032, a grid gas flow rate reception unit 1033, a grid gas flow rate adjustment unit 1034, and a grid gas supply unit 1035. It is connected to the hydrogen concentration adjustment unit 104 in the hydrogen supply system 100 and the gas grid 901 .
  • the grid gas hydrogen concentration measurement unit 1031 measures the hydrogen concentration in the grid gas.
  • the grid gas hydrogen concentration communication unit 1032 transmits data on the hydrogen concentration in the grid gas to the hydrogen concentration adjustment unit 104 .
  • the grid gas flow rate receiver 1033 receives the grid gas flow rate calculated by the hydrogen concentration adjuster 104 .
  • the grid gas flow rate adjusting unit 1034 adjusts and draws in the grid gas.
  • the grid gas supply unit 1035 supplies grid gas to the hydrogen concentration adjustment unit 104 .
  • the grid gas hydrogen concentration measurement unit 1031 measures the hydrogen concentration in the grid gas.
  • the grid gas hydrogen concentration communication unit 1032 transmits the measured grid gas hydrogen concentration data 201 to the hydrogen concentration adjustment unit 104 .
  • the grid gas hydrogen concentration data 201 is used to determine the grid gas flow rate.
  • the measurement interval in the grid gas hydrogen concentration measurement unit 1031 and the communication interval in the grid gas hydrogen concentration communication unit 1032 are not limited, they are set to 5 minutes or less in consideration of the fluctuation of the hydrogen concentration in the grid gas. preferably.
  • the hydrogen concentration adjustment unit 104 determines the grid gas flow rate for the specified hydrogen concentration in the gas grid 901 from the grid gas hydrogen concentration data 201 and the amount of hydrogen produced.
  • the grid gas flow rate command data 202 determined by the hydrogen concentration adjustment section 104 is transmitted to the grid gas flow rate reception section 1033 by the grid gas flow rate command section 1044 .
  • the grid gas flow rate adjusting unit 1034 adjusts the grid gas flow rate based on the grid gas flow rate command data 202 received by the grid gas flow rate receiving unit 1033 .
  • the interval at which data is received by the grid gas flow rate receiving unit 1033 is preferably set to 5 minutes or less like the communication interval of the grid gas hydrogen concentration communication unit 1032 .
  • the grid gas flow rate adjusting unit 1034 adjusts the grid gas flow rate drawn from the gas grid 901 to the value of the grid gas flow rate command data 202 received by the grid gas flow rate receiving unit 1033 .
  • the grid gas supply unit 1035 then supplies the grid gas 1 to the hydrogen concentration adjustment unit 104 .
  • the hydrogen concentration adjustment unit 104 mixes the grid gas 1 and the hydrogen 2 produced by the hydrogen production unit 101 .
  • the mixed gas 3 adjusted by the hydrogen concentration adjusting section 104 is supplied to the gas grid 901 through the mixed gas returning section 105 .
  • the hydrogen concentration in the mixed gas adjusted by the hydrogen concentration adjustment unit 104 can be adjusted to the gas. It is possible to set the grid 901 to a specified value or less.
  • FIG. 3 shows a block diagram of the hydrogen supply system 100 showing in detail the constituent elements of the hydrogen concentration adjusting section 104 shown in FIG.
  • the hydrogen concentration adjusting unit 104 includes a grid gas hydrogen concentration receiving unit 1041, a manufactured hydrogen flow rate measuring unit 1042, a grid gas flow rate calculating unit 1043, a grid gas flow rate commanding unit 1044, a gas mixing unit 1045, a mixed gas It is configured including a supply unit 1046 .
  • the hydrogen concentration adjusting section 104 is connected to the hydrogen boosting section 102 and the grid gas lead-in section 103 in the hydrogen supply system 100 .
  • the grid gas hydrogen concentration receiving section 1041 receives the hydrogen concentration in the grid gas from the grid gas lead-in section 103 .
  • the produced hydrogen flow rate measurement unit 1042 measures the flow rate of the hydrogen produced by the hydrogen production unit 101 .
  • the grid gas flow rate calculation unit 1043 calculates the grid gas flow rate from the flow rate of the hydrogen produced by the hydrogen production unit 101 so that the mixed gas is equal to or less than the allowable hydrogen concentration specified in the gas grid 901 .
  • the grid gas flow rate command section 1044 commands the grid gas lead-in section 103 to use the grid gas flow rate calculated by the grid gas flow rate calculation section 1043 .
  • the gas mixing section 1045 mixes the designated amount of grid gas supplied from the grid gas lead-in section 103 and the hydrogen produced by the hydrogen production section 101 .
  • the mixed gas supply unit 1046 supplies the mixed gas mixed by the gas mixing unit 1045 to the mixed gas returning unit 105 .
  • the hydrogen concentration adjustment unit 104 adjusts the grid gas flow rate for making the hydrogen concentration in the mixed gas 3 supplied to the gas grid 901 equal to or less than a specified value, using the grid gas hydrogen concentration data 201, which is the hydrogen concentration in the grid gas, and the manufacturing It is calculated using the hydrogen flow rate data 203 .
  • the grid gas hydrogen concentration data 201 is measured by the grid gas hydrogen concentration measurement unit 1031 described in the second embodiment and received by the grid gas hydrogen concentration reception unit 1041 through the grid gas hydrogen concentration communication unit 1032 .
  • the manufactured hydrogen flow rate data 203 is data measured by the manufactured hydrogen flow rate measuring unit 1042 . These two types of data are sent to the grid gas flow rate calculator 1043 .
  • the flow rate of the grid gas 1 drawn by the grid gas drawing section 103 needs to flexibly cope with temporal fluctuations in the flow rate of hydrogen produced by the hydrogen production section 101 . If the transmission interval of the grid gas hydrogen concentration data 201 is slow and the determination of the grid gas flow rate is delayed, especially when the production hydrogen flow rate increases, the hydrogen concentration in the mixed gas 3 supplied to the gas grid 901 exceeds the specified value. cannot supply. Therefore, the reception interval of the grid gas hydrogen concentration data 201 in the grid gas hydrogen concentration receiving unit 1041 and the measurement interval of the production hydrogen flow rate data 203 in the production hydrogen flow measurement unit 1042 used to determine the grid gas flow rate are set to 5 minutes or less. preferably.
  • the grid gas flow rate calculator 1043 calculates the grid gas flow rate using the following equation (1).
  • F G in the formula (1) is the grid gas flow rate [Nm 3 /h]
  • F H2. SUP is the production hydrogen flow rate [Nm 3 /h]
  • SET is the target hydrogen concentration [vol%] in the mixed gas
  • G is the grid gas hydrogen concentration [vol%].
  • the target hydrogen concentration x H2. SET is set to be equal to or less than the specified value of the hydrogen concentration provided in the gas grid. Note that the calculation method of the grid gas flow rate is not limited to the formula (1).
  • the grid gas flow rate command data 202 calculated by the grid gas flow rate calculation unit 1043 as described above is transmitted from the grid gas flow rate command unit 1044 to the grid gas flow rate reception unit 1033, and the grid gas flow rate adjustment unit 1034 draws in the grid gas flow rate data. Flow rate is adjusted.
  • the interval of data transmitted to the grid gas flow rate receiving unit 1033 is set to 5 minutes or less, like the data receiving interval of the grid gas hydrogen concentration receiving unit 1041 and the flow rate measurement interval of the production hydrogen flow rate measuring unit 1042. preferably.
  • the specified amount of the grid gas 1 adjusted in this manner and the hydrogen 2 produced in the hydrogen producing section 101 are mixed in the gas mixing section 1045 .
  • the mixed gas is supplied to the gas grid 901, it is better that there is no hydrogen distribution in the mixed gas. It is preferable to mix the hydrogen 2 and the grid gas, but the mixing method is not limited.
  • the mixed gas 3 is supplied from the mixed gas return section 105 to the gas grid 901 through the mixed gas supply section 1046 .
  • the hydrogen concentration in the mixed gas adjusted by the hydrogen concentration adjustment unit 104 can be adjusted to the gas grid. 901 specified value or less.
  • FIG. 4 shows a configuration diagram of the hydrogen supply system 100 showing in detail the constituent elements of the mixed gas return section 105 in FIG.
  • the mixed gas return unit 105 includes a mixed gas flow measurement unit 1051, a grid gas flow balance management unit 1052, a mixed gas gas grid supply unit 1053, and a return gas calorie measurement unit 1054.
  • the mixed gas return section 105 is connected to the hydrogen concentration adjustment section 104 and the gas grid 901 in the hydrogen supply system 100 .
  • the mixed gas flow rate measurement unit 1051 measures the flow rate of the mixed gas.
  • the grid gas flow rate balance management unit 1052 calculates the grid gas flow rate in the mixed gas obtained by subtracting the production hydrogen flow rate measured by the production hydrogen flow measurement unit 1042 from the mixed gas flow rate measured by the mixed gas flow measurement unit 1051, and the grid gas flow rate.
  • the command unit 1044 compares the grid gas flow rate commanded to the grid gas flow control unit 1034 to manage the balance of the grid gas.
  • the mixed gas gas grid supply unit 1053 supplies mixed gas to the gas grid 901 .
  • the hydrogen 2 produced by the hydrogen producing section 101 has its hydrogen concentration adjusted by the grid gas drawing section 103 and the hydrogen concentration adjusting section 104 .
  • the hydrogen supplier and the gas grid operator need to manage the material balance of the grid gas 1 .
  • the gas grid operator can set a different rate form from the existing grid gas users.
  • the mixed gas 3 supplied from the hydrogen concentration adjustment unit 104 has its flow rate measured by the mixed gas flow measurement unit 1051, and the mixed gas flow rate data 204 is obtained from the grid gas flow balance management unit 1052. sent to.
  • the grid gas flow balance management unit 1052 using the mixed gas flow data 204, the manufactured hydrogen flow data 203 measured by the manufactured hydrogen flow measurement unit 1042, and the grid gas flow command data 202 determined by the grid gas flow calculation unit 1043, The mass balance of the grid gas is calculated, and it is managed that the grid gas 1 drawn from the gas grid 901 is normally returned to the gas grid 901 in the same amount.
  • the mixed gas gas grid supply unit 1053 supplies the mixed gas to the gas grid 901 using, for example, a blower. It is desirable that the connection port with the gas grid 901 has a structure such that the return gas diffuses within the gas grid 901 as much as possible.
  • the hydrogen supply device supplies the mixed gas 3 to the gas grid 901 by the method described in the first to third embodiments and the present embodiment, but charges according to the amount of hydrogen in the mixed gas 3 supplied It is necessary to earn income by As a billing method, for example, there is a method of calculating the billing amount on a calorie basis.
  • a return gas calorific value measurement unit 1054 is provided in the mixed gas return unit 105 in FIG.
  • the return gas calorific value measurement unit 1054 measures the calorific value [MJ/m 3 ] corresponding to the hydrogen content of the mixed gas 3, the flow rate [m 3 /h], and the calorific value of hydrogen in the supplied mixed gas from the supply time [h]. is a means for calculating Based on the amount of heat calculated by the return gas calorific value measurement unit 1054, the billing amount can be determined and paid to the supplier.
  • a used gas calorie measuring unit is provided on the side of the hydrogen utilization device (not shown).
  • the used gas calorific value measuring unit is means for calculating the calorific value of the used gas based on the calorific value [MJ/m 3 ], flow rate [m 3 /h] and supply time [h] of the used gas. By measuring the calorific value of the gas used by the used gas calorific value measuring unit, it is possible to determine the usage fee and request payment from the user.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Some or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware such as integrated circuits.
  • Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be placed on recording devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as flash memory cards and DVDs (Digital Versatile Disks). can.
  • control lines and information lines indicate those considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In fact, it may be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A hydrogen supply system (100) comprises: a hydrogen production unit (101) that produces hydrogen; a hydrogen boosting unit (102) that boosts the hydrogen produced by the hydrogen production unit (101) up to a pressure that enables the hydrogen to be supplied to a gas grid; a grid gas draw-in unit (103) that draws in grid gas from a gas grid (901); a hydrogen concentration adjustment unit (104) that prepares a mixed gas such that the hydrogen concentration will not exceed an allowable hydrogen concentration specified by the gas grid (901); and a mixed gas returning unit (105) that supplies the mixed gas to the gas grid.

Description

水素供給システムHydrogen supply system
 本発明は、水素の混入が許容されたガスグリッドに水素を供給する際、ガスグリッドに規定された水素濃度以下で供給することを可能とする水素供給システムに関するものである。 The present invention relates to a hydrogen supply system that enables hydrogen to be supplied at a hydrogen concentration below a specified level for a gas grid when supplying hydrogen to a gas grid that allows hydrogen to be mixed.
 化石燃料に対して水素は、燃焼時に二酸化炭素を排出しないクリーンなエネルギーである。そのため、地球温暖化対策のためのクリーンエネルギーの一つとして注目され、水素の製造・輸送・利用に関する技術開発が進められている。
 このような経緯の中で、再生可能エネルギーなどを利用した水の電気分解や、天然ガスの改質などにより製造された水素を、水素混入が許容されたガスパイプラインへ供給することが提案されている。この場合、水素供給点近傍でガスグリッドに規定された水素濃度以上となってしまい、供給したい水素量を供給できないことが想定される。
Compared to fossil fuels, hydrogen is a clean energy that does not emit carbon dioxide when burned. Therefore, hydrogen is attracting attention as one of the clean energies for global warming countermeasures, and technological development related to the production, transportation, and utilization of hydrogen is underway.
Under these circumstances, proposals have been made to supply hydrogen produced by electrolysis of water using renewable energy or by reforming natural gas to gas pipelines where hydrogen is permitted. there is In this case, it is assumed that the hydrogen concentration in the vicinity of the hydrogen supply point exceeds the specified value for the gas grid, and the desired amount of hydrogen cannot be supplied.
 また、以下の特許文献1は、水素をガスグリッドに供給するために、都市ガス規格を満たすよう、水素にLPガスや天然ガス等の化石燃料ガスを混合させてガスグリッドに供給する方法が提案されている。 In addition, the following patent document 1 proposes a method of mixing hydrogen with fossil fuel gas such as LP gas and natural gas and supplying it to the gas grid so as to meet the city gas standard in order to supply hydrogen to the gas grid. It is
特開2006-169357号公報JP-A-2006-169357
 特許文献1に記載の発明では、水素を供給するために新規に化石燃料ガスを混入させている。そのため、特許文献1に記載の発明では、供給コストを大幅に増大させてしまうことになる。
 そこで、本発明は、クリーンエネルギーとして製造された水素をガスグリッドに供給するにあたり、コストの増加を抑制しつつ、ガスグリッドに設けられた水素濃度規定値を超えないことを課題とする。
In the invention described in Patent Document 1, fossil fuel gas is newly mixed in order to supply hydrogen. Therefore, in the invention described in Patent Document 1, the supply cost is greatly increased.
Accordingly, an object of the present invention is to supply hydrogen produced as clean energy to a gas grid while suppressing an increase in cost and not exceeding a specified hydrogen concentration value set in the gas grid.
 前記した課題を解決するため、本発明の水素供給システムは、水素を製造する水素製造部と、前記水素製造部が製造した水素をガスグリッドに供給可能な圧力まで昇圧する水素昇圧部と、ガスグリッドからグリッドガスを引き込むグリッドガス引込部と、前記ガスグリッドで規定された許容水素濃度以下に混合ガスを調整する水素濃度調整部と、前記ガスグリッドに前記混合ガスを供給する混合ガス戻し部と、を備えることを特徴とする。
 その他の手段については、発明を実施するための形態のなかで説明する。
In order to solve the above-described problems, the hydrogen supply system of the present invention includes a hydrogen production unit that produces hydrogen, a hydrogen booster that pressurizes the hydrogen produced by the hydrogen production unit to a pressure that can be supplied to a gas grid, a gas A grid gas intake unit that draws in grid gas from the grid, a hydrogen concentration adjustment unit that adjusts the mixed gas to an allowable hydrogen concentration or less specified in the gas grid, and a mixed gas return unit that supplies the mixed gas to the gas grid. , is provided.
Other means are described in the detailed description.
 本発明によれば、クリーンエネルギーとして製造された水素をガスグリッドに供給するにあたり、コストの増加を抑制しつつ、ガスグリッドに設けられた水素濃度規定値を超えないように供給可能となる。 According to the present invention, when supplying hydrogen produced as clean energy to the gas grid, it is possible to supply it so as not to exceed the hydrogen concentration specified value provided for the gas grid while suppressing an increase in cost.
第1の実施形態を説明する水素供給システム説明図Hydrogen supply system explanatory drawing explaining 1st Embodiment 第2の実施形態を説明する水素供給システム説明図Hydrogen supply system explanatory drawing explaining 2nd Embodiment 第3の実施形態を説明する水素供給システム説明図Hydrogen supply system explanatory drawing explaining 3rd Embodiment 第4の実施形態を説明する水素供給システム説明図Hydrogen supply system explanatory drawing explaining 4th Embodiment
 以降、本発明を実施するための形態を、各図を参照して詳細に説明する。なお、同一の構成には、同一の符号を付し、説明が重複する場合は、その説明を省略する場合がある。また、本発明は、以下の実施例に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to each drawing. In addition, the same code|symbol is attached|subjected to the same structure, and when description overlaps, the description may be abbreviate|omitted. Moreover, the present invention is not limited to the following examples.
《第1の実施形態》
 図1は、第1の実施形態における水素供給システム100を説明する説明図である。
 第1の実施形態で説明する水素供給システム100は、水素製造部101、水素昇圧部102、グリッドガス引込部103、水素濃度調整部104、混合ガス戻し部105を含んで構成される。水素供給システム100は、ガスグリッド901に接続されて、このガスグリッド901に水素を供給するものである。このガスグリッド901は、少なくとも天然ガスと水素のブレンドガスが流れるものである。なお、ブレンドガスのことを、混合ガスと記載する場合がある。
<<1st Embodiment>>
FIG. 1 is an explanatory diagram illustrating a hydrogen supply system 100 according to the first embodiment.
A hydrogen supply system 100 described in the first embodiment includes a hydrogen production section 101 , a hydrogen pressurization section 102 , a grid gas intake section 103 , a hydrogen concentration adjustment section 104 and a mixed gas return section 105 . The hydrogen supply system 100 is connected to a gas grid 901 and supplies hydrogen to this gas grid 901 . This gas grid 901 is through which at least a blend of natural gas and hydrogen flows. In addition, a blend gas may be described as mixed gas.
 水素製造部101は、水素を製造する。水素昇圧部102は、水素製造部101が製造した水素をガスグリッド901に供給可能な圧力まで昇圧して、水素濃度調整部104に供給する。グリッドガス引込部103は、ガスグリッド901からグリッドガスを引き込み、水素濃度調整部104に供給する。水素濃度調整部104は、ガスグリッド901で規定された許容水素濃度以下に混合ガスを調整する。混合ガス戻し部105は、ガスグリッド901に、水素濃度調整部104が調整した混合ガスを供給する。 The hydrogen production unit 101 produces hydrogen. The hydrogen pressurization unit 102 pressurizes the hydrogen produced by the hydrogen production unit 101 to a pressure that can be supplied to the gas grid 901 , and supplies the hydrogen concentration adjustment unit 104 . The grid gas lead-in unit 103 draws in grid gas from the gas grid 901 and supplies it to the hydrogen concentration adjustment unit 104 . The hydrogen concentration adjustment unit 104 adjusts the mixed gas to the allowable hydrogen concentration specified by the gas grid 901 or less. The mixed gas return unit 105 supplies the mixed gas adjusted by the hydrogen concentration adjustment unit 104 to the gas grid 901 .
 ここで、グリッドガス引込部103、および混合ガス戻し部105はガスグリッド901に接続されている。なお、ガスグリッド901には、例えば都市ガスのような天然ガスと水素の混合ガス(グリッドガス)が存在する。ガスグリッド901には、ガスグリッド水素脆化防止の観点や既存の天然ガス利用設備を使用するため、水素濃度の上限値が設けられている。 Here, the grid gas lead-in section 103 and the mixed gas return section 105 are connected to the gas grid 901 . Note that the gas grid 901 contains a mixed gas (grid gas) of natural gas and hydrogen, such as city gas. The gas grid 901 is provided with an upper limit of hydrogen concentration in order to prevent gas grid hydrogen embrittlement and to use existing natural gas utilization facilities.
 水素製造部101は、ガスグリッド901に供給する水素2を製造する。ここで、製造する水素2は、水素需要量から予測して製造流量を決定しても、ガスグリッド管理者から指示された水素量を製造しても良く、どちらも水素需要を考慮して決定されることが好ましい。ここで、水素製造部101が水素を製造する方法は、例えば太陽光発電や風力発電などの再生可能エネルギーで発電した電力を用いて水の電気分解で製造する方法、石炭をガス化した際に生じる一酸化炭素をシフト反応させ、その後二酸化炭素を分離することで製造する方法、天然ガスを水蒸気改質させて製造する方法などが挙げられるが、これらのうち何れかに限定するものではない。なお、カーボンフリーを実現するためには、製造過程で二酸化炭素が生じる場合は、二酸化炭素を回収し、有価物に変換、または貯留することが好ましい。 The hydrogen production unit 101 produces hydrogen 2 to be supplied to the gas grid 901 . Here, the hydrogen 2 to be produced may be determined by predicting the amount of hydrogen demand and determining the production flow rate, or by producing the amount of hydrogen instructed by the gas grid manager. preferably. Here, the method by which the hydrogen production unit 101 produces hydrogen includes, for example, a method of producing hydrogen by electrolysis of water using power generated by renewable energy such as solar power generation and wind power generation, and a method of producing hydrogen by electrolysis of water when coal is gasified. Examples include a method of producing carbon monoxide by subjecting the produced carbon monoxide to a shift reaction and then separating carbon dioxide, and a method of producing by steam reforming natural gas, but are not limited to any of these. In order to realize a carbon-free product, when carbon dioxide is generated in the manufacturing process, it is preferable to recover the carbon dioxide and convert it into a valuable resource or store it.
 水素製造部101で製造される水素2は、水素昇圧部102にて、ガスグリッド901に供給可能な圧力まで昇圧される。ガスグリッド901に供給可能な圧力は、水素を供給しようとするガスグリッド901の箇所によって異なり、低圧ガスグリッドで0~0.1MPaG、中圧ガスグリッドで0.1~1.0MPaG、高圧ガスグリッドで1.0MPaG以上などであり、水素を供給する点によって変更される。 The hydrogen 2 produced by the hydrogen producing unit 101 is pressurized by the hydrogen pressurizing unit 102 to a pressure that can be supplied to the gas grid 901 . The pressure that can be supplied to the gas grid 901 varies depending on the location of the gas grid 901 to which hydrogen is to be supplied. is 1.0 MPaG or more, and is changed depending on the supply of hydrogen.
 水素2は昇圧されたのち、水素濃度調整部104に供給される。また、ガスグリッド901に接続されているグリッドガス引込部103は、ガスグリッド901に存在するグリッドガス1を水素濃度調整部104に供給する。 The hydrogen 2 is supplied to the hydrogen concentration adjustment unit 104 after being pressurized. Also, the grid gas lead-in section 103 connected to the gas grid 901 supplies the grid gas 1 present in the gas grid 901 to the hydrogen concentration adjustment section 104 .
 次に、水素濃度調整部104は、グリッドガス1と水素2が供給されると、これら2つのガスを混合して混合ガス3とする。ここで、水素濃度調整部104では、ガスグリッド901で規定された水素濃度の上限値を超えないように、グリッドガス流量を変化させて、混合ガスの水素濃度を調整する。ここでガスグリッド901で規定された水素濃度の上限値とは、許容水素濃度ともいう。グリッドガス流量を変化させるのは、水素製造部101では水素の需要を加味した量を供給する必要があるためである。 Next, when the grid gas 1 and hydrogen 2 are supplied, the hydrogen concentration adjustment unit 104 mixes these two gases into a mixed gas 3 . Here, the hydrogen concentration adjustment unit 104 adjusts the hydrogen concentration of the mixed gas by changing the grid gas flow rate so as not to exceed the upper limit of the hydrogen concentration specified by the gas grid 901 . Here, the upper limit value of the hydrogen concentration specified by the gas grid 901 is also referred to as the allowable hydrogen concentration. The reason why the grid gas flow rate is changed is that the hydrogen production unit 101 needs to supply an amount that takes into consideration the demand for hydrogen.
 水素濃度調整部104で調整された混合ガス3は、混合ガス戻し部105を通してガスグリッド901へ供給される。 The mixed gas 3 adjusted by the hydrogen concentration adjusting section 104 is supplied to the gas grid 901 through the mixed gas returning section 105 .
 本実施形態の水素供給システム100とすることで、製造した水素をガスグリッド901に設けられた水素濃度の規定値以下で供給することが可能となる。 By using the hydrogen supply system 100 of the present embodiment, it is possible to supply the produced hydrogen at a hydrogen concentration below the specified value provided in the gas grid 901 .
《第2の実施形態》
 第2の実施形態では、本発明の水素供給システム100の構成要素の一つであるグリッドガス引込部103の運用方法の一例について記載する。図2にグリッドガス引込部103の構成要素を詳細に図示した水素供給システム100の構成図を示す。
<<Second embodiment>>
In the second embodiment, an example of a method of operating the grid gas lead-in section 103, which is one of the components of the hydrogen supply system 100 of the present invention, will be described. FIG. 2 shows a block diagram of the hydrogen supply system 100 showing the details of the constituent elements of the grid gas lead-in section 103. As shown in FIG.
 図2に示すように、グリッドガス引込部103は、グリッドガス水素濃度測定部1031、グリッドガス水素濃度通信部1032、グリッドガス流量受信部1033、グリッドガス流量調整部1034、グリッドガス供給部1035を含んで構成され、水素供給システム100内の水素濃度調整部104と、ガスグリッド901に接続されている。 As shown in FIG. 2, the grid gas lead-in unit 103 includes a grid gas hydrogen concentration measurement unit 1031, a grid gas hydrogen concentration communication unit 1032, a grid gas flow rate reception unit 1033, a grid gas flow rate adjustment unit 1034, and a grid gas supply unit 1035. It is connected to the hydrogen concentration adjustment unit 104 in the hydrogen supply system 100 and the gas grid 901 .
 グリッドガス水素濃度測定部1031は、グリッドガス中の水素濃度を測定する。グリッドガス水素濃度通信部1032は、グリッドガス中の水素濃度のデータを水素濃度調整部104に送信する。グリッドガス流量受信部1033は、水素濃度調整部104で算出されたグリッドガス流量を受信する。グリッドガス流量調整部1034は、グリッドガスを調整して引き込む。グリッドガス供給部1035は、水素濃度調整部104にグリッドガスを供給する。 The grid gas hydrogen concentration measurement unit 1031 measures the hydrogen concentration in the grid gas. The grid gas hydrogen concentration communication unit 1032 transmits data on the hydrogen concentration in the grid gas to the hydrogen concentration adjustment unit 104 . The grid gas flow rate receiver 1033 receives the grid gas flow rate calculated by the hydrogen concentration adjuster 104 . The grid gas flow rate adjusting unit 1034 adjusts and draws in the grid gas. The grid gas supply unit 1035 supplies grid gas to the hydrogen concentration adjustment unit 104 .
 最初にグリッドガス水素濃度測定部1031は、グリッドガス中の水素濃度を測定する。グリッドガス水素濃度通信部1032は、測定したグリッドガス水素濃度データ201を水素濃度調整部104に送信する。ここで、グリッドガス水素濃度データ201はグリッドガス流量を決定するのに使用される。グリッドガス水素濃度測定部1031での測定間隔やグリッドガス水素濃度通信部1032での通信間隔は限定はしないが、グリッドガス中の水素濃度の変動に対応することを考慮し、5分以下に設定されることが好ましい。 First, the grid gas hydrogen concentration measurement unit 1031 measures the hydrogen concentration in the grid gas. The grid gas hydrogen concentration communication unit 1032 transmits the measured grid gas hydrogen concentration data 201 to the hydrogen concentration adjustment unit 104 . Here, the grid gas hydrogen concentration data 201 is used to determine the grid gas flow rate. Although the measurement interval in the grid gas hydrogen concentration measurement unit 1031 and the communication interval in the grid gas hydrogen concentration communication unit 1032 are not limited, they are set to 5 minutes or less in consideration of the fluctuation of the hydrogen concentration in the grid gas. preferably.
 次に水素濃度調整部104は、グリッドガス水素濃度データ201と製造水素量から、ガスグリッド901に規定された水素濃度とするグリッドガス流量を決定する。水素濃度調整部104が決定したグリッドガス流量指令データ202は、グリッドガス流量指令部1044によってグリッドガス流量受信部1033に送信される。グリッドガス流量調整部1034は、グリッドガス流量受信部1033が受信したグリッドガス流量指令データ202に基づき、グリッドガスの流量を調整する。 Next, the hydrogen concentration adjustment unit 104 determines the grid gas flow rate for the specified hydrogen concentration in the gas grid 901 from the grid gas hydrogen concentration data 201 and the amount of hydrogen produced. The grid gas flow rate command data 202 determined by the hydrogen concentration adjustment section 104 is transmitted to the grid gas flow rate reception section 1033 by the grid gas flow rate command section 1044 . The grid gas flow rate adjusting unit 1034 adjusts the grid gas flow rate based on the grid gas flow rate command data 202 received by the grid gas flow rate receiving unit 1033 .
 ここで、水素濃度調整部104でグリッドガス流量を算出する方法については、第3の実施形態に記載する。また、グリッドガス流量受信部1033でデータを受信する間隔も、グリッドガス水素濃度通信部1032の通信間隔と同様、5分以下に設定されることが好ましい。 Here, a method for calculating the grid gas flow rate by the hydrogen concentration adjustment unit 104 will be described in the third embodiment. Also, the interval at which data is received by the grid gas flow rate receiving unit 1033 is preferably set to 5 minutes or less like the communication interval of the grid gas hydrogen concentration communication unit 1032 .
 グリッドガス流量調整部1034で、ガスグリッド901から引き込むグリッドガス流量を、グリッドガス流量受信部1033が受信したグリッドガス流量指令データ202の値に調整する。そしてグリッドガス供給部1035は、水素濃度調整部104にグリッドガス1を供給する。その後、第1の実施形態に記述したように、水素濃度調整部104が、グリッドガス1と水素製造部101が製造した水素2とを混合する。水素濃度調整部104が調整した混合ガス3は、混合ガス戻し部105を通してガスグリッド901へ供給される。 The grid gas flow rate adjusting unit 1034 adjusts the grid gas flow rate drawn from the gas grid 901 to the value of the grid gas flow rate command data 202 received by the grid gas flow rate receiving unit 1033 . The grid gas supply unit 1035 then supplies the grid gas 1 to the hydrogen concentration adjustment unit 104 . After that, as described in the first embodiment, the hydrogen concentration adjustment unit 104 mixes the grid gas 1 and the hydrogen 2 produced by the hydrogen production unit 101 . The mixed gas 3 adjusted by the hydrogen concentration adjusting section 104 is supplied to the gas grid 901 through the mixed gas returning section 105 .
 本実施形態のグリッドガス引込部103を備えた水素供給システム100とすることで、グリッドガス中の水素濃度が変動する場合においても、水素濃度調整部104で調整した混合ガス中の水素濃度をガスグリッド901の規定値以下とすることが可能となる。 With the hydrogen supply system 100 including the grid gas lead-in unit 103 of the present embodiment, even when the hydrogen concentration in the grid gas fluctuates, the hydrogen concentration in the mixed gas adjusted by the hydrogen concentration adjustment unit 104 can be adjusted to the gas. It is possible to set the grid 901 to a specified value or less.
《第3の実施形態》
 第3の実施形態では、本発明の水素供給システム100の構成要素の一つである水素濃度調整部104の運用方法の一例について記載する。図3に、図2中の水素濃度調整部104の構成要素を詳細に図示した水素供給システム100の構成図を示す。
<<Third Embodiment>>
In the third embodiment, an example of a method of operating the hydrogen concentration adjustment unit 104, which is one of the constituent elements of the hydrogen supply system 100 of the present invention, will be described. FIG. 3 shows a block diagram of the hydrogen supply system 100 showing in detail the constituent elements of the hydrogen concentration adjusting section 104 shown in FIG.
 図3に示すように、水素濃度調整部104は、グリッドガス水素濃度受信部1041、製造水素流量測定部1042、グリッドガス流量計算部1043、グリッドガス流量指令部1044、ガス混合部1045、混合ガス供給部1046を含んで構成される。水素濃度調整部104は、水素供給システム100内の水素昇圧部102とグリッドガス引込部103に接続されている。 As shown in FIG. 3, the hydrogen concentration adjusting unit 104 includes a grid gas hydrogen concentration receiving unit 1041, a manufactured hydrogen flow rate measuring unit 1042, a grid gas flow rate calculating unit 1043, a grid gas flow rate commanding unit 1044, a gas mixing unit 1045, a mixed gas It is configured including a supply unit 1046 . The hydrogen concentration adjusting section 104 is connected to the hydrogen boosting section 102 and the grid gas lead-in section 103 in the hydrogen supply system 100 .
 グリッドガス水素濃度受信部1041は、グリッドガス引込部103からグリッドガス中の水素濃度を受信する。製造水素流量測定部1042は、水素製造部101が製造した水素の流量を測定する。グリッドガス流量計算部1043は、水素製造部101が製造した水素の流量から、混合ガスがガスグリッド901で規定された許容水素濃度以下となるようなグリッドガス流量を計算する。グリッドガス流量指令部1044は、グリッドガス流量計算部1043が計算したグリッドガス流量をグリッドガス引込部103に指令する。ガス混合部1045は、グリッドガス引込部103から供給された指定量のグリッドガスと水素製造部101が製造した水素とを混合する。混合ガス供給部1046は、ガス混合部1045が混合した混合ガスを混合ガス戻し部105に供給する。 The grid gas hydrogen concentration receiving section 1041 receives the hydrogen concentration in the grid gas from the grid gas lead-in section 103 . The produced hydrogen flow rate measurement unit 1042 measures the flow rate of the hydrogen produced by the hydrogen production unit 101 . The grid gas flow rate calculation unit 1043 calculates the grid gas flow rate from the flow rate of the hydrogen produced by the hydrogen production unit 101 so that the mixed gas is equal to or less than the allowable hydrogen concentration specified in the gas grid 901 . The grid gas flow rate command section 1044 commands the grid gas lead-in section 103 to use the grid gas flow rate calculated by the grid gas flow rate calculation section 1043 . The gas mixing section 1045 mixes the designated amount of grid gas supplied from the grid gas lead-in section 103 and the hydrogen produced by the hydrogen production section 101 . The mixed gas supply unit 1046 supplies the mixed gas mixed by the gas mixing unit 1045 to the mixed gas returning unit 105 .
 水素濃度調整部104は、ガスグリッド901に供給する混合ガス3中の水素濃度を規定値以下とするためのグリッドガス流量を、グリッドガス中の水素濃度であるグリッドガス水素濃度データ201と、製造水素流量データ203を用いて算出する。グリッドガス水素濃度データ201は、第2の実施形態で記載したグリッドガス水素濃度測定部1031で測定したものを、グリッドガス水素濃度通信部1032を通して、グリッドガス水素濃度受信部1041で受信する。また製造水素流量データ203は、製造水素流量測定部1042で測定されたデータである。そして、これら2種のデータはグリッドガス流量計算部1043に送られる。ここで、グリッドガス引込部103が引き込むグリッドガス1の流量は、水素製造部101で製造する水素流量の継時変動に柔軟に対応する必要がある。グリッドガス水素濃度データ201の送信間隔が遅く、グリッドガス流量の決定が遅れると、特に製造水素流量が増大する際には、ガスグリッド901に供給する混合ガス3中の水素濃度が規定値を上回り供給することができない。そのため、グリッドガス流量決定に使用するグリッドガス水素濃度受信部1041のグリッドガス水素濃度データ201の受信間隔、製造水素流量測定部1042での製造水素流量データ203の測定間隔は5分以下に設定されることが好ましい。 The hydrogen concentration adjustment unit 104 adjusts the grid gas flow rate for making the hydrogen concentration in the mixed gas 3 supplied to the gas grid 901 equal to or less than a specified value, using the grid gas hydrogen concentration data 201, which is the hydrogen concentration in the grid gas, and the manufacturing It is calculated using the hydrogen flow rate data 203 . The grid gas hydrogen concentration data 201 is measured by the grid gas hydrogen concentration measurement unit 1031 described in the second embodiment and received by the grid gas hydrogen concentration reception unit 1041 through the grid gas hydrogen concentration communication unit 1032 . The manufactured hydrogen flow rate data 203 is data measured by the manufactured hydrogen flow rate measuring unit 1042 . These two types of data are sent to the grid gas flow rate calculator 1043 . Here, the flow rate of the grid gas 1 drawn by the grid gas drawing section 103 needs to flexibly cope with temporal fluctuations in the flow rate of hydrogen produced by the hydrogen production section 101 . If the transmission interval of the grid gas hydrogen concentration data 201 is slow and the determination of the grid gas flow rate is delayed, especially when the production hydrogen flow rate increases, the hydrogen concentration in the mixed gas 3 supplied to the gas grid 901 exceeds the specified value. cannot supply. Therefore, the reception interval of the grid gas hydrogen concentration data 201 in the grid gas hydrogen concentration receiving unit 1041 and the measurement interval of the production hydrogen flow rate data 203 in the production hydrogen flow measurement unit 1042 used to determine the grid gas flow rate are set to 5 minutes or less. preferably.
 グリッドガス流量計算部1043では、グリッドガス流量を以下の式(1)にて計算する。式(1)中のFはグリッドガス流量[Nm3/h]、FH2.SUPは製造水素流量[Nm3/h]、xH2.SETは混合ガス中の目標水素濃度[vol%]、xH2.Gはグリッドガス水素濃度[vol%]である。ここで、混合ガス中の目標水素濃度xH2.SETはガスグリッドに設けられた水素濃度の規定値以下が設定される。なお、グリッドガス流量の計算方法は式(1)に限定しない。
 
The grid gas flow rate calculator 1043 calculates the grid gas flow rate using the following equation (1). F G in the formula (1) is the grid gas flow rate [Nm 3 /h], F H2. SUP is the production hydrogen flow rate [Nm 3 /h], x H2. SET is the target hydrogen concentration [vol%] in the mixed gas, x H2. G is the grid gas hydrogen concentration [vol%]. Here, the target hydrogen concentration x H2. SET is set to be equal to or less than the specified value of the hydrogen concentration provided in the gas grid. Note that the calculation method of the grid gas flow rate is not limited to the formula (1).
 F=(100-xH2.SET)/(xH2.SET-xH2.G)×FH2.SUP・・・(1)
 
 ここに、式(1)を用いた計算例を示す。まず、ガスグリッド901に20vol%の水素濃度規定値が設けられていると仮定し、製造水素流量が100Nm3/h、グリッドガス水素濃度が10vol%、混合ガス中の目標水素濃度が20vol%と仮定する。混合ガス中の目標水素濃度は、水素利用者にとってはガスグリッド901中の水素濃度を可能な限り増加させることが好ましいため、本実施形態ではガスグリッド901に設けられた水素濃度の規定値としたが、限定するものではない。上記の値を式(1)に代入すると、グリッドガス引込部103で引き込むグリッドガスの流量は800Nm3/hと算出される。
F G =(100−x H2.SET )/(x H2.SET −x H2.G )×F H2. SUP (1)

An example of calculation using formula (1) is shown here. First, assuming that the gas grid 901 has a specified hydrogen concentration of 20 vol%, the production hydrogen flow rate is 100 Nm 3 /h, the grid gas hydrogen concentration is 10 vol%, and the target hydrogen concentration in the mixed gas is 20 vol%. Assume. Since it is preferable for hydrogen users to increase the hydrogen concentration in the gas grid 901 as much as possible, the target hydrogen concentration in the mixed gas is set to the specified value of the hydrogen concentration provided in the gas grid 901 in this embodiment. but is not limited. Substituting the above values into equation (1), the flow rate of the grid gas drawn in by the grid gas drawing part 103 is calculated to be 800 Nm 3 /h.
 上記で示したようにグリッドガス流量計算部1043で算出されたグリッドガス流量指令データ202はグリッドガス流量指令部1044からグリッドガス流量受信部1033に送信され、グリッドガス流量調整部1034で引き込むグリッドガス流量が調整される。ここで、グリッドガス流量受信部1033に送信されるデータ間隔は、グリッドガス水素濃度受信部1041のデータ受信間隔、製造水素流量測定部1042での流量測定間隔と同様に、5分以下に設定されることが好ましい。このようにして調整された指定量のグリッドガス1と、水素製造部101で製造された水素2は、ガス混合部1045にて混合される。ガスグリッド901に混合ガスを供給する際、混合ガス中に水素の分布が存在しないほうが良いため、ガス混合部1045は、圧力比混合法、重量法、流量混合法、半重量法などの方法で水素2とグリッドガスを混合することが好ましいが、混合方法は限定はしない。その後、混合ガス3は、混合ガス供給部1046を通して混合ガス戻し部105からガスグリッド901に供給される。 The grid gas flow rate command data 202 calculated by the grid gas flow rate calculation unit 1043 as described above is transmitted from the grid gas flow rate command unit 1044 to the grid gas flow rate reception unit 1033, and the grid gas flow rate adjustment unit 1034 draws in the grid gas flow rate data. Flow rate is adjusted. Here, the interval of data transmitted to the grid gas flow rate receiving unit 1033 is set to 5 minutes or less, like the data receiving interval of the grid gas hydrogen concentration receiving unit 1041 and the flow rate measurement interval of the production hydrogen flow rate measuring unit 1042. preferably. The specified amount of the grid gas 1 adjusted in this manner and the hydrogen 2 produced in the hydrogen producing section 101 are mixed in the gas mixing section 1045 . When the mixed gas is supplied to the gas grid 901, it is better that there is no hydrogen distribution in the mixed gas. It is preferable to mix the hydrogen 2 and the grid gas, but the mixing method is not limited. After that, the mixed gas 3 is supplied from the mixed gas return section 105 to the gas grid 901 through the mixed gas supply section 1046 .
 第3の実施形態の水素濃度調整部104を備えた水素供給システム100とすることで、製造水素流量が変動する場合においても、水素濃度調整部104で調整した混合ガス中の水素濃度をガスグリッド901の規定値以下とすることが可能となる。 By configuring the hydrogen supply system 100 including the hydrogen concentration adjustment unit 104 of the third embodiment, even when the production hydrogen flow rate fluctuates, the hydrogen concentration in the mixed gas adjusted by the hydrogen concentration adjustment unit 104 can be adjusted to the gas grid. 901 specified value or less.
《第4の実施形態》
 第4の実施形態では、本発明の水素供給システム100の構成要素の一つである混合ガス戻し部105の運用方法の一例について記載する。図4に、図3中の混合ガス戻し部105の構成要素を詳細に図示した水素供給システム100構成図を示す。
<<Fourth embodiment>>
In the fourth embodiment, an example of a method of operating the mixed gas return section 105, which is one of the components of the hydrogen supply system 100 of the present invention, will be described. FIG. 4 shows a configuration diagram of the hydrogen supply system 100 showing in detail the constituent elements of the mixed gas return section 105 in FIG.
 図3に示すように、混合ガス戻し部105は、混合ガス流量測定部1051、グリッドガス流量収支管理部1052、混合ガスガスグリッド供給部1053、戻しガス熱量測定部1054を含んで構成されている。混合ガス戻し部105は、水素供給システム100内の水素濃度調整部104とガスグリッド901に接続されている。 As shown in FIG. 3, the mixed gas return unit 105 includes a mixed gas flow measurement unit 1051, a grid gas flow balance management unit 1052, a mixed gas gas grid supply unit 1053, and a return gas calorie measurement unit 1054. The mixed gas return section 105 is connected to the hydrogen concentration adjustment section 104 and the gas grid 901 in the hydrogen supply system 100 .
 混合ガス流量測定部1051は、混合ガスの流量を測定する。グリッドガス流量収支管理部1052は、混合ガス流量測定部1051で測定した混合ガス流量から、製造水素流量測定部1042で測定した製造水素流量を差し引いた混合ガス中のグリッドガス流量と、グリッドガス流量指令部1044がグリッドガス流量調整部1034に指令したグリッドガス流量とを比較して、グリッドガスの収支を管理する。混合ガスガスグリッド供給部1053は、混合ガスをガスグリッド901に供給する。 The mixed gas flow rate measurement unit 1051 measures the flow rate of the mixed gas. The grid gas flow rate balance management unit 1052 calculates the grid gas flow rate in the mixed gas obtained by subtracting the production hydrogen flow rate measured by the production hydrogen flow measurement unit 1042 from the mixed gas flow rate measured by the mixed gas flow measurement unit 1051, and the grid gas flow rate. The command unit 1044 compares the grid gas flow rate commanded to the grid gas flow control unit 1034 to manage the balance of the grid gas. The mixed gas gas grid supply unit 1053 supplies mixed gas to the gas grid 901 .
 第1から第3の実施形態で示したように、水素製造部101で製造した水素2は、グリッドガス引込部103、水素濃度調整部104により水素濃度を調整される。ここで、ガスグリッド901からグリッドガス1を引き込み、再度ガスグリッド901に供給するため、水素供給者およびガスグリッド運営者はグリッドガス1の物質収支を管理する必要がある。このグリッドガス流量の収支管理をすることで、水素供給者がグリッドガスを引き込む際、ガスグリッド運営者は既存のグリッドガス使用者と異なる料金形態を設定することが可能となる。 As shown in the first to third embodiments, the hydrogen 2 produced by the hydrogen producing section 101 has its hydrogen concentration adjusted by the grid gas drawing section 103 and the hydrogen concentration adjusting section 104 . Here, in order to draw the grid gas 1 from the gas grid 901 and supply it to the gas grid 901 again, the hydrogen supplier and the gas grid operator need to manage the material balance of the grid gas 1 . By managing the balance of this grid gas flow rate, when the hydrogen supplier draws in the grid gas, the gas grid operator can set a different rate form from the existing grid gas users.
 第4の実施形態で図示したように、水素濃度調整部104から供給された混合ガス3は、混合ガス流量測定部1051で流量を測定され、混合ガス流量データ204としてグリッドガス流量収支管理部1052に送信される。グリッドガス流量収支管理部1052では、混合ガス流量データ204と、製造水素流量測定部1042で計測した製造水素流量データ203、グリッドガス流量計算部1043で決定したグリッドガス流量指令データ202を用いて、グリッドガスの物質収支を計算し、ガスグリッド901から引き込んだグリッドガス1が、正常に同量がガスグリッド901に戻されていることを管理する。ここで、各工程の操作時間、ガス配管の長さにより、各測定データに時間差が存在し、同一時刻のデータでは正確に物質の収支が合わない場合も想定されるため、ある程度の時間幅を持った流量の収支を管理することが好ましい。このグリッドガス物質収支管理の状況はガスグリッド運営者106にも送信され、両者で常時把握する。 As illustrated in the fourth embodiment, the mixed gas 3 supplied from the hydrogen concentration adjustment unit 104 has its flow rate measured by the mixed gas flow measurement unit 1051, and the mixed gas flow rate data 204 is obtained from the grid gas flow balance management unit 1052. sent to. In the grid gas flow balance management unit 1052, using the mixed gas flow data 204, the manufactured hydrogen flow data 203 measured by the manufactured hydrogen flow measurement unit 1042, and the grid gas flow command data 202 determined by the grid gas flow calculation unit 1043, The mass balance of the grid gas is calculated, and it is managed that the grid gas 1 drawn from the gas grid 901 is normally returned to the gas grid 901 in the same amount. Here, due to the operation time of each process and the length of the gas pipe, there is a time difference in each measurement data, and it is assumed that the data at the same time may not accurately match the balance of substances, so a certain amount of time width is assumed. It is preferable to manage the balance of the flow rate. The state of this grid gas material balance management is also transmitted to the gas grid operator 106, and both of them always grasp it.
 最後に混合ガスガスグリッド供給部1053では、例えばブロア等を用いてガスグリッド901に供給する。ガスグリッド901との接続口は、戻しガスがなるべくガスグリッド901内で拡散するような構造であることが望ましい。 Finally, the mixed gas gas grid supply unit 1053 supplies the mixed gas to the gas grid 901 using, for example, a blower. It is desirable that the connection port with the gas grid 901 has a structure such that the return gas diffuses within the gas grid 901 as much as possible.
 本実施形態の混合ガス戻し部105を備えた水素供給システム100とし、引き込んだグリッドガスとガスグリッド901に戻されたグリッドガスの物質収支を管理することで、既存のグリッドガス使用者と異なる料金形態を設定することが可能となる。 By using the hydrogen supply system 100 equipped with the mixed gas return unit 105 of this embodiment and managing the material balance of the drawn grid gas and the grid gas returned to the gas grid 901, a charge different from that of the existing grid gas user It is possible to set the form.
 また、水素供給装置は、第1から第3の実施形態と本実施形態に記載した方法で混合ガス3をガスグリッド901に供給するが、混合ガス3中の水素を供給した量に応じた課金により収入を得ることが必要である。この課金の方法として、例えば課金額をカロリーベースで算出する方法がある。 In addition, the hydrogen supply device supplies the mixed gas 3 to the gas grid 901 by the method described in the first to third embodiments and the present embodiment, but charges according to the amount of hydrogen in the mixed gas 3 supplied It is necessary to earn income by As a billing method, for example, there is a method of calculating the billing amount on a calorie basis.
 具体的には、図4の混合ガス戻し部105内に戻しガス熱量測定部1054を設ける。戻しガス熱量測定部1054は、混合ガス3のうち水素含有率に応じた熱量[MJ/m]、流量[m/h]、供給時間[h]から供給した混合ガス中の水素の熱量を算出する手段である。戻しガス熱量測定部1054が算出した熱量に基づき、課金額を決定して、供給者に支払うことができる。 Specifically, a return gas calorific value measurement unit 1054 is provided in the mixed gas return unit 105 in FIG. The return gas calorific value measurement unit 1054 measures the calorific value [MJ/m 3 ] corresponding to the hydrogen content of the mixed gas 3, the flow rate [m 3 /h], and the calorific value of hydrogen in the supplied mixed gas from the supply time [h]. is a means for calculating Based on the amount of heat calculated by the return gas calorific value measurement unit 1054, the billing amount can be determined and paid to the supplier.
 そして、不図示の水素利用装置側に、使用ガス熱量測定部を設ける。使用ガス熱量測定部は、使用したガスの発熱量[MJ/m]、流量[m/h]と供給時間[h]に基づき、使用したガスの熱量を算出する手段である。使用ガス熱量測定部により、使用したガスの熱量を測定することで、使用料金を決定して、利用者に納金を請求することができる。 A used gas calorie measuring unit is provided on the side of the hydrogen utilization device (not shown). The used gas calorific value measuring unit is means for calculating the calorific value of the used gas based on the calorific value [MJ/m 3 ], flow rate [m 3 /h] and supply time [h] of the used gas. By measuring the calorific value of the gas used by the used gas calorific value measuring unit, it is possible to determine the usage fee and request payment from the user.
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
(Modification)
The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。 Some or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware such as integrated circuits. Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be placed on recording devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as flash memory cards and DVDs (Digital Versatile Disks). can.
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。 In each embodiment, the control lines and information lines indicate those considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In fact, it may be considered that almost all configurations are interconnected.
1 グリッドガス
2 水素
3 混合ガス (ブレンドガス)
100 水素供給システム
101 水素製造部
102 水素昇圧部
103 グリッドガス引込部
1031 グリッドガス水素濃度測定部
1032 グリッドガス水素濃度通信部
1033 グリッドガス流量受信部
1034 グリッドガス流量調整部
1035 グリッドガス供給部
104 水素濃度調整部
1041 グリッドガス水素濃度受信部
1042 製造水素流量測定部
1043 グリッドガス流量計算部
1044 グリッドガス流量指令部
1045 ガス混合部
1046 混合ガス供給部
105 混合ガス戻し部
1051 混合ガス流量測定部
1052 グリッドガス流量収支管理部
1053 混合ガスガスグリッド供給部
106 ガスグリッド運営者
201 グリッドガス水素濃度データ
202 グリッドガス流量指令データ
203 製造水素流量データ
204 混合ガス流量データ
901 ガスグリッド
1 grid gas 2 hydrogen 3 mixed gas (blend gas)
100 Hydrogen Supply System 101 Hydrogen Production Unit 102 Hydrogen Boosting Unit 103 Grid Gas Drawing Unit 1031 Grid Gas Hydrogen Concentration Measuring Unit 1032 Grid Gas Hydrogen Concentration Communication Unit 1033 Grid Gas Flow Receiving Unit 1034 Grid Gas Flow Adjusting Unit 1035 Grid Gas Supply Unit 104 Hydrogen Concentration adjustment unit 1041 Grid gas hydrogen concentration reception unit 1042 Production hydrogen flow rate measurement unit 1043 Grid gas flow rate calculation unit 1044 Grid gas flow rate command unit 1045 Gas mixing unit 1046 Mixed gas supply unit 105 Mixed gas return unit 1051 Mixed gas flow rate measurement unit 1052 Grid Gas flow balance management unit 1053 Mixed gas gas grid supply unit 106 Gas grid operator 201 Grid gas hydrogen concentration data 202 Grid gas flow command data 203 Produced hydrogen flow data 204 Mixed gas flow data 901 Gas grid

Claims (7)

  1.  水素を製造する水素製造部と、
     前記水素製造部が製造した水素をガスグリッドに供給可能な圧力まで昇圧する水素昇圧部と、
     ガスグリッドからグリッドガスを引き込むグリッドガス引込部と、
     前記ガスグリッドで規定された許容水素濃度以下に混合ガスを調整する水素濃度調整部と、
     前記ガスグリッドに前記混合ガスを供給する混合ガス戻し部と、
     を備えることを特徴とする水素供給システム。
    A hydrogen production department that produces hydrogen,
    a hydrogen pressurization unit that pressurizes the hydrogen produced by the hydrogen production unit to a pressure that can be supplied to the gas grid;
    a grid gas lead-in section for drawing grid gas from the gas grid;
    a hydrogen concentration adjustment unit that adjusts the mixed gas to an allowable hydrogen concentration or less specified by the gas grid;
    a mixed gas return unit that supplies the mixed gas to the gas grid;
    A hydrogen supply system comprising:
  2.  請求項1に記載の水素供給システムであって、
     前記ガスグリッドは、少なくとも天然ガスと水素のブレンドガスが流れる、
     ことを特徴とする水素供給システム
    The hydrogen supply system according to claim 1,
    wherein said gas grid is flowed by a blend of at least natural gas and hydrogen;
    A hydrogen supply system characterized by
  3.  請求項1または2に記載の水素供給システムであって、
     前記水素製造部は、再生可能エネルギーで発電した電力で水を電気分解する方法、天然ガスを改質する方法、石炭をガス化してシフト反応させることにより生成する方法のうち何れかで水素を製造する、
     ことを特徴とする水素供給システム
    The hydrogen supply system according to claim 1 or 2,
    The hydrogen production unit produces hydrogen by one of a method of electrolyzing water using electricity generated by renewable energy, a method of reforming natural gas, and a method of gasifying coal and generating it by a shift reaction. do,
    A hydrogen supply system characterized by
  4.  請求項1または2に記載の水素供給システムであって、
     前記グリッドガス引込部は、
     グリッドガス中の水素濃度を測定するグリッドガス水素濃度測定部と、
     前記グリッドガス中の水素濃度のデータを前記水素濃度調整部に送信するグリッドガス水素濃度通信部と、
     前記水素濃度調整部で算出されたグリッドガス流量を受信するグリッドガス流量受信部と、
     グリッドガスを調整して引き込むグリッドガス流量調整部と、
     前記水素濃度調整部にグリッドガスを供給するグリッドガス供給部と、
     を備えることを特徴とした水素供給システム。
    The hydrogen supply system according to claim 1 or 2,
    The grid gas lead-in part is
    a grid gas hydrogen concentration measuring unit for measuring the hydrogen concentration in the grid gas;
    a grid gas hydrogen concentration communication unit that transmits data on the hydrogen concentration in the grid gas to the hydrogen concentration adjustment unit;
    a grid gas flow rate receiving unit that receives the grid gas flow rate calculated by the hydrogen concentration adjusting unit;
    a grid gas flow rate adjustment unit that adjusts and draws in the grid gas;
    a grid gas supply unit that supplies grid gas to the hydrogen concentration adjustment unit;
    A hydrogen supply system comprising:
  5.  請求項1から4のうち何れか1項に記載の水素供給システムであって、
     前記水素濃度調整部は、
     前記グリッドガス引込部からグリッドガス中の水素濃度を受信するグリッドガス水素濃度受信部と、
     前記水素製造部が製造した水素の流量を測定する製造水素流量測定部と、
     前記水素製造部が製造した水素の流量から前記混合ガスが前記ガスグリッドで規定された許容水素濃度以下となるようなグリッドガス流量を計算するグリッドガス流量計算部と、
     前記グリッドガス流量計算部が計算したグリッドガス流量を指令するグリッドガス流量指令部と、
     前記グリッドガス引込部から供給された指定量のグリッドガスと前記水素製造部が製造した水素とを混合するガス混合部と、
     前記ガス混合部が混合した混合ガスを前記混合ガス戻し部に供給する混合ガス供給部と、
     を備えることを特徴とした水素供給システム。
    The hydrogen supply system according to any one of claims 1 to 4,
    The hydrogen concentration adjustment unit
    a grid gas hydrogen concentration receiving unit for receiving the hydrogen concentration in the grid gas from the grid gas lead-in unit;
    a production hydrogen flow rate measurement unit that measures the flow rate of hydrogen produced by the hydrogen production unit;
    A grid gas flow rate calculation unit that calculates a grid gas flow rate such that the mixed gas has an allowable hydrogen concentration or less specified in the gas grid from the flow rate of hydrogen produced by the hydrogen production unit;
    a grid gas flow rate command unit that commands the grid gas flow rate calculated by the grid gas flow rate calculation unit;
    a gas mixing unit for mixing a specified amount of grid gas supplied from the grid gas lead-in unit and hydrogen produced by the hydrogen production unit;
    a mixed gas supply unit that supplies the mixed gas mixed by the gas mixing unit to the mixed gas return unit;
    A hydrogen supply system comprising:
  6.  請求項5に記載の水素供給システムであって、
     前記混合ガス戻し部は、
     前記混合ガスの流量を測定する混合ガス流量測定部と、
     前記混合ガス流量測定部で測定した混合ガス流量から前記製造水素流量測定部で測定した製造水素流量を差し引いた混合ガス中のグリッドガス流量と前記グリッドガス流量指令部が指令したグリッドガス流量とを比較して、グリッドガスの収支を管理するグリッドガス流量収支管理部と、
     を備えることを特徴とした水素供給システム。
    The hydrogen supply system according to claim 5,
    The mixed gas return section is
    a mixed gas flow rate measuring unit that measures the flow rate of the mixed gas;
    The grid gas flow rate in the mixed gas obtained by subtracting the manufactured hydrogen flow rate measured by the manufactured hydrogen flow rate measuring section from the mixed gas flow rate measured by the mixed gas flow rate measuring section and the grid gas flow rate commanded by the grid gas flow rate command section In comparison, a grid gas flow balance management unit that manages the grid gas balance,
    A hydrogen supply system comprising:
  7.  請求項6に記載の水素供給システムであって、
     前記混合ガス戻し部は、
     戻しガス中の水素の熱量を測定する戻しガス熱量測定部を更に備える、
     ことを特徴とした水素供給システム。
    The hydrogen supply system according to claim 6,
    The mixed gas return section is
    Further comprising a return gas calorimeter measuring the calorie of hydrogen in the return gas,
    A hydrogen supply system characterized by:
PCT/JP2021/017023 2021-04-28 2021-04-28 Hydrogen supply system WO2022230120A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/017023 WO2022230120A1 (en) 2021-04-28 2021-04-28 Hydrogen supply system
JP2023516962A JPWO2022230120A1 (en) 2021-04-28 2021-04-28
EP21939281.8A EP4332201A1 (en) 2021-04-28 2021-04-28 Hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017023 WO2022230120A1 (en) 2021-04-28 2021-04-28 Hydrogen supply system

Publications (1)

Publication Number Publication Date
WO2022230120A1 true WO2022230120A1 (en) 2022-11-03

Family

ID=83847998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017023 WO2022230120A1 (en) 2021-04-28 2021-04-28 Hydrogen supply system

Country Status (3)

Country Link
EP (1) EP4332201A1 (en)
JP (1) JPWO2022230120A1 (en)
WO (1) WO2022230120A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112427A1 (en) * 2002-12-16 2004-06-17 Ballard Generation Systems Hydrogen distribution systems and methods
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2010500272A (en) * 2006-08-09 2010-01-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Hydrogen purification method
JP2015006127A (en) * 2008-06-25 2015-01-08 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Energy storage system and method for storing and supplying energy
JP2015524786A (en) * 2012-07-24 2015-08-27 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Distributed hydrogen extraction system
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
JP2020514714A (en) * 2016-12-28 2020-05-21 エンジーEngie Method for estimating combustion characteristics of gases that may contain hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040112427A1 (en) * 2002-12-16 2004-06-17 Ballard Generation Systems Hydrogen distribution systems and methods
JP2006050887A (en) * 2004-07-02 2006-02-16 Jfe Holdings Inc Method and system of supplying energy
JP2010500272A (en) * 2006-08-09 2010-01-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Hydrogen purification method
JP2015006127A (en) * 2008-06-25 2015-01-08 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Energy storage system and method for storing and supplying energy
JP2015528851A (en) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション Electrolysis device and energy system
JP2015524786A (en) * 2012-07-24 2015-08-27 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Distributed hydrogen extraction system
JP2020514714A (en) * 2016-12-28 2020-05-21 エンジーEngie Method for estimating combustion characteristics of gases that may contain hydrogen

Also Published As

Publication number Publication date
EP4332201A1 (en) 2024-03-06
JPWO2022230120A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
Garcia et al. Dynamic performance analysis of two regional nuclear hybrid energy systems
Fambri et al. Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration
Brouwer et al. Operational flexibility and economics of power plants in future low-carbon power systems
Difs et al. Biomass gasification opportunities in a district heating system
Belderbos et al. Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling
Logan et al. Natural gas scenarios in the US power sector
Klatzer et al. State-of-the-art expansion planning of integrated power, natural gas, and hydrogen systems
Schwarze et al. Operational results of an 150/30 kW RSOC system in an industrial environment
US11970667B2 (en) Fuel production system
Mazza et al. Impact of Power-to-Gas on distribution systems with large renewable energy penetration
Hoseinpoori et al. A whole-system approach for quantifying the value of smart electrification for decarbonising heating in buildings
Ikäheimo et al. Role of power to liquids and biomass to liquids in a nearly renewable energy system
Şahin Forecasting of Turkey's electricity generation and CO2 emissions in estimating capacity factor
US11566192B2 (en) Fuel production system
Rinawati et al. Life-cycle assessment of hydrogen utilization in power generation: A systematic review of technological and methodological choices
Felling et al. Multi-horizon planning of multi-energy systems
Al-Mohannadi et al. Optimal utilization of natural gas in processing clusters with reduced CO2 emissions through material and energy integration
WO2022230120A1 (en) Hydrogen supply system
Xu et al. Quantifying flexibility of industrial steam systems for ancillary services: a case study of an integrated pulp and paper mill
Maaß et al. Combined decarbonization of electrical energy generation and production of synthetic fuels by renewable energies and fossil fuels
Korpas Regional effects of hydrogen production in congested transmission grids with wind and hydro power
Rivarolo et al. Optimization of large scale bio-methane generation integrating “spilled” hydraulic energy and pressurized oxygen blown biomass gasification
Kühn et al. Geological storage capacity for green excess energy readily available in Germany
Shen et al. Day-ahead scheduling of combined natural gas and electricity system with mid-and long-term electricity contract decomposition
Turk et al. Stochastic model predictive control for integrated energy system to manage real-time power imbalances: case of Denmark

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516962

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021939281

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021939281

Country of ref document: EP

Effective date: 20231128