WO2022229378A1 - Production biotechnologique de terpènes - Google Patents
Production biotechnologique de terpènes Download PDFInfo
- Publication number
- WO2022229378A1 WO2022229378A1 PCT/EP2022/061458 EP2022061458W WO2022229378A1 WO 2022229378 A1 WO2022229378 A1 WO 2022229378A1 EP 2022061458 W EP2022061458 W EP 2022061458W WO 2022229378 A1 WO2022229378 A1 WO 2022229378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synthase
- microorganism
- nucleic acid
- cytochrome
- seq
- Prior art date
Links
- 150000003505 terpenes Chemical class 0.000 title description 20
- 235000007586 terpenes Nutrition 0.000 title description 18
- 238000013452 biotechnological production Methods 0.000 title description 3
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 129
- 244000005700 microbiome Species 0.000 claims abstract description 107
- 108700019146 Transgenes Proteins 0.000 claims abstract description 67
- 150000003648 triterpenes Chemical class 0.000 claims abstract description 56
- 102000004190 Enzymes Human genes 0.000 claims abstract description 53
- 108090000790 Enzymes Proteins 0.000 claims abstract description 53
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 44
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 27
- 241001491666 Labyrinthulomycetes Species 0.000 claims abstract description 26
- 108050003820 2,3-oxidosqualene cyclases Proteins 0.000 claims abstract description 23
- 108010045510 NADPH-Ferrihemoprotein Reductase Proteins 0.000 claims description 112
- 239000013598 vector Substances 0.000 claims description 107
- 108090000623 proteins and genes Proteins 0.000 claims description 99
- 241000233671 Schizochytrium Species 0.000 claims description 43
- 102100037997 Squalene synthase Human genes 0.000 claims description 37
- 108010022535 Farnesyl-Diphosphate Farnesyltransferase Proteins 0.000 claims description 36
- 108020001507 fusion proteins Proteins 0.000 claims description 35
- 102000037865 fusion proteins Human genes 0.000 claims description 35
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 34
- 108010074122 Ferredoxins Proteins 0.000 claims description 32
- 102000004316 Oxidoreductases Human genes 0.000 claims description 31
- 241001467333 Thraustochytriaceae Species 0.000 claims description 29
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 claims description 25
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 claims description 25
- 230000008685 targeting Effects 0.000 claims description 25
- 230000037361 pathway Effects 0.000 claims description 23
- 101150059802 KU80 gene Proteins 0.000 claims description 22
- 108700040132 Mevalonate kinases Proteins 0.000 claims description 21
- 102000002678 mevalonate kinase Human genes 0.000 claims description 21
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 21
- 230000002018 overexpression Effects 0.000 claims description 20
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 claims description 19
- 102000005782 Squalene Monooxygenase Human genes 0.000 claims description 19
- 108020003891 Squalene monooxygenase Proteins 0.000 claims description 19
- 108010059597 Lanosterol synthase Proteins 0.000 claims description 18
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 claims description 17
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 claims description 17
- 229940096998 ursolic acid Drugs 0.000 claims description 17
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 claims description 16
- 101710125754 Farnesyl pyrophosphate synthase Proteins 0.000 claims description 16
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 claims description 16
- 108020004463 18S ribosomal RNA Proteins 0.000 claims description 15
- QGJZLNKBHJESQX-FZFNOLFKSA-N betulinic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C QGJZLNKBHJESQX-FZFNOLFKSA-N 0.000 claims description 15
- 230000006801 homologous recombination Effects 0.000 claims description 15
- 238000002744 homologous recombination Methods 0.000 claims description 15
- QGJZLNKBHJESQX-UHFFFAOYSA-N 3-Epi-Betulin-Saeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CCC3C21C QGJZLNKBHJESQX-UHFFFAOYSA-N 0.000 claims description 14
- CLOUCVRNYSHRCF-UHFFFAOYSA-N 3beta-Hydroxy-20(29)-Lupen-3,27-oic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C(O)=O)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C CLOUCVRNYSHRCF-UHFFFAOYSA-N 0.000 claims description 14
- DIZWSDNSTNAYHK-XGWVBXMLSA-N Betulinic acid Natural products CC(=C)[C@@H]1C[C@H]([C@H]2CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12)C(=O)O DIZWSDNSTNAYHK-XGWVBXMLSA-N 0.000 claims description 14
- 102100032011 Lanosterol synthase Human genes 0.000 claims description 14
- 101100074054 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) mus-52 gene Proteins 0.000 claims description 14
- 101100074057 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pku80 gene Proteins 0.000 claims description 14
- PZXJOHSZQAEJFE-UHFFFAOYSA-N dihydrobetulinic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(C)C)C5C4CCC3C21C PZXJOHSZQAEJFE-UHFFFAOYSA-N 0.000 claims description 14
- MQYXUWHLBZFQQO-QGTGJCAVSA-N lupeol Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C MQYXUWHLBZFQQO-QGTGJCAVSA-N 0.000 claims description 14
- PKGKOZOYXQMJNG-UHFFFAOYSA-N lupeol Natural products CC(=C)C1CC2C(C)(CCC3C4(C)CCC5C(C)(C)C(O)CCC5(C)C4CCC23C)C1 PKGKOZOYXQMJNG-UHFFFAOYSA-N 0.000 claims description 14
- MQYXUWHLBZFQQO-UHFFFAOYSA-N nepehinol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C MQYXUWHLBZFQQO-UHFFFAOYSA-N 0.000 claims description 14
- JKLISIRFYWXLQG-UHFFFAOYSA-N Epioleonolsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4CCC3C21C JKLISIRFYWXLQG-UHFFFAOYSA-N 0.000 claims description 13
- 108010067839 Lupeol synthase Proteins 0.000 claims description 13
- YBRJHZPWOMJYKQ-UHFFFAOYSA-N Oleanolic acid Natural products CC1(C)CC2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C1)C(=O)O YBRJHZPWOMJYKQ-UHFFFAOYSA-N 0.000 claims description 13
- MIJYXULNPSFWEK-UHFFFAOYSA-N Oleanolinsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4=CCC3C21C MIJYXULNPSFWEK-UHFFFAOYSA-N 0.000 claims description 13
- 102100024279 Phosphomevalonate kinase Human genes 0.000 claims description 13
- 229940100243 oleanolic acid Drugs 0.000 claims description 13
- 108091000116 phosphomevalonate kinase Proteins 0.000 claims description 13
- HZLWUYJLOIAQFC-UHFFFAOYSA-N prosapogenin PS-A Natural products C12CC(C)(C)CCC2(C(O)=O)CCC(C2(CCC3C4(C)C)C)(C)C1=CCC2C3(C)CCC4OC1OCC(O)C(O)C1O HZLWUYJLOIAQFC-UHFFFAOYSA-N 0.000 claims description 13
- 108010037870 Anthranilate Synthase Proteins 0.000 claims description 12
- 241001306132 Aurantiochytrium Species 0.000 claims description 12
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 claims description 11
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 claims description 11
- 101000722816 Panax ginseng Dammarenediol II synthase Proteins 0.000 claims description 11
- 108030005251 Cucurbitadienol synthases Proteins 0.000 claims description 10
- 108010065958 Isopentenyl-diphosphate Delta-isomerase Proteins 0.000 claims description 9
- 230000014759 maintenance of location Effects 0.000 claims description 9
- 230000002438 mitochondrial effect Effects 0.000 claims description 9
- 210000003660 reticulum Anatomy 0.000 claims description 9
- 108010064634 2,3-oxidosqualene-beta-amyrin-cyclase Proteins 0.000 claims description 8
- MIJYXULNPSFWEK-GTOFXWBISA-N 3beta-hydroxyolean-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C MIJYXULNPSFWEK-GTOFXWBISA-N 0.000 claims description 8
- 241000233675 Thraustochytrium Species 0.000 claims description 8
- FRWNAQDBODEVAL-VMPITWQZSA-N (5e)-5-[(4-nitrophenyl)methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one Chemical compound C1=CC([N+](=O)[O-])=CC=C1\C=C\1C(=O)NC(=S)S/1 FRWNAQDBODEVAL-VMPITWQZSA-N 0.000 claims description 7
- QNMKGMUGYVWVFQ-UHFFFAOYSA-N 2alpha-Hydroxyursolic acid Natural products CC12CC(O)C(O)C(C)(C)C1CCC1(C)C2CC=C2C3C(C)C(C)(C)CCC3(C(O)=O)CCC21C QNMKGMUGYVWVFQ-UHFFFAOYSA-N 0.000 claims description 7
- 108030005288 Alpha-amyrin synthases Proteins 0.000 claims description 7
- MDZKJHQSJHYOHJ-UHFFFAOYSA-N crataegolic acid Natural products C1C(O)C(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4=CCC3C21C MDZKJHQSJHYOHJ-UHFFFAOYSA-N 0.000 claims description 7
- MDZKJHQSJHYOHJ-LLICELPBSA-N maslinic acid Chemical compound C1[C@@H](O)[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C MDZKJHQSJHYOHJ-LLICELPBSA-N 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 108020004705 Codon Proteins 0.000 claims description 6
- NLHQJXWYMZLQJY-UHFFFAOYSA-N Dammarendiol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC(C(C)(O)CCC=C(C)C)C4CCC3C21C NLHQJXWYMZLQJY-UHFFFAOYSA-N 0.000 claims description 5
- NLHQJXWYMZLQJY-TXNIMPHESA-N dammarenediol-II Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@H]([C@@](C)(O)CCC=C(C)C)[C@H]4CC[C@@H]3[C@]21C NLHQJXWYMZLQJY-TXNIMPHESA-N 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 3
- 102000005345 Acetyl-CoA C-acetyltransferase Human genes 0.000 claims 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 claims 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 84
- 239000013612 plasmid Substances 0.000 description 80
- 229940088598 enzyme Drugs 0.000 description 52
- 230000014509 gene expression Effects 0.000 description 47
- 150000001413 amino acids Chemical group 0.000 description 46
- 230000010354 integration Effects 0.000 description 45
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 36
- 210000004027 cell Anatomy 0.000 description 35
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 34
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 34
- 229940031439 squalene Drugs 0.000 description 34
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 34
- 241000196324 Embryophyta Species 0.000 description 33
- 241000003595 Aurantiochytrium limacinum Species 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 32
- 230000015572 biosynthetic process Effects 0.000 description 28
- 230000009466 transformation Effects 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 230000004927 fusion Effects 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 21
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 19
- 238000004520 electroporation Methods 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000002243 precursor Substances 0.000 description 18
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 17
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 17
- 239000000872 buffer Substances 0.000 description 15
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 108091033409 CRISPR Proteins 0.000 description 13
- 230000001851 biosynthetic effect Effects 0.000 description 13
- 238000005119 centrifugation Methods 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 12
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 238000012217 deletion Methods 0.000 description 12
- 230000037430 deletion Effects 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 230000003612 virological effect Effects 0.000 description 12
- 108090000854 Oxidoreductases Proteins 0.000 description 11
- JFSHUTJDVKUMTJ-QHPUVITPSA-N beta-amyrin Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C JFSHUTJDVKUMTJ-QHPUVITPSA-N 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 11
- 229920001817 Agar Polymers 0.000 description 10
- 108090000489 Carboxy-Lyases Proteins 0.000 description 10
- 102000004031 Carboxy-Lyases Human genes 0.000 description 10
- 101100225635 Drosophila melanogaster grh gene Proteins 0.000 description 10
- 241000598397 Schizochytrium sp. Species 0.000 description 10
- 239000008272 agar Substances 0.000 description 10
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 10
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 9
- 235000011430 Malus pumila Nutrition 0.000 description 9
- 108700008625 Reporter Genes Proteins 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 238000012163 sequencing technique Methods 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 8
- 241000219195 Arabidopsis thaliana Species 0.000 description 8
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 8
- 244000081841 Malus domestica Species 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 241000162592 Aurantiochytrium limacinum ATCC MYA-1381 Species 0.000 description 7
- 241001536303 Botryococcus braunii Species 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 7
- 210000002421 cell wall Anatomy 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 229940035893 uracil Drugs 0.000 description 7
- GXWUEMSASMVWKO-GNLHUFSQSA-N (4as,6ar,6as,6br,10s,12ar,14br)-10-[(2s,3r,4s,5s)-4,5-dihydroxy-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid Chemical compound O([C@@H]1[C@@H](O)[C@@H](O)CO[C@H]1O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CCC2C1(C)C)C)(C)CC[C@]1(CCC(C[C@@H]14)(C)C)C(O)=O)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GXWUEMSASMVWKO-GNLHUFSQSA-N 0.000 description 6
- QYIMSPSDBYKPPY-RSKUXYSASA-N (S)-2,3-epoxysqualene Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CC[C@@H]1OC1(C)C QYIMSPSDBYKPPY-RSKUXYSASA-N 0.000 description 6
- 241000701489 Cauliflower mosaic virus Species 0.000 description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- 101150031823 HSP70 gene Proteins 0.000 description 6
- 108010025815 Kanamycin Kinase Proteins 0.000 description 6
- QYIMSPSDBYKPPY-UHFFFAOYSA-N OS Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC1OC1(C)C QYIMSPSDBYKPPY-UHFFFAOYSA-N 0.000 description 6
- 101150053185 P450 gene Proteins 0.000 description 6
- 241000589776 Pseudomonas putida Species 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 229960003669 carbenicillin Drugs 0.000 description 6
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 5
- 241001130339 Aurantiochytrium sp. Species 0.000 description 5
- 108010080972 Catechol 2,3-dioxygenase Proteins 0.000 description 5
- 101800004637 Communis Proteins 0.000 description 5
- 102100029493 EKC/KEOPS complex subunit TP53RK Human genes 0.000 description 5
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 101001125560 Homo sapiens EKC/KEOPS complex subunit TP53RK Proteins 0.000 description 5
- 244000198896 Lagerstroemia speciosa Species 0.000 description 5
- 108010068086 Polyubiquitin Proteins 0.000 description 5
- 108020005115 Pyruvate Kinase Proteins 0.000 description 5
- 108091027544 Subgenomic mRNA Proteins 0.000 description 5
- 241001298230 Thraustochytrium sp. Species 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102100036973 X-ray repair cross-complementing protein 5 Human genes 0.000 description 5
- 102000006646 aminoglycoside phosphotransferase Human genes 0.000 description 5
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 108091008053 gene clusters Proteins 0.000 description 5
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000012269 metabolic engineering Methods 0.000 description 5
- 230000037353 metabolic pathway Effects 0.000 description 5
- 210000003470 mitochondria Anatomy 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- WSVDSBZMYJJMSB-UHFFFAOYSA-N octadecylbenzene Chemical compound CCCCCCCCCCCCCCCCCCC1=CC=CC=C1 WSVDSBZMYJJMSB-UHFFFAOYSA-N 0.000 description 5
- FKCRAVPPBFWEJD-UHFFFAOYSA-N orotidine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-UHFFFAOYSA-N 0.000 description 5
- FKCRAVPPBFWEJD-XVFCMESISA-N orotidine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-XVFCMESISA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000013600 plasmid vector Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 4
- 102100029968 Calreticulin Human genes 0.000 description 4
- 108090000549 Calreticulin Proteins 0.000 description 4
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 102100037116 Transcription elongation factor 1 homolog Human genes 0.000 description 4
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- -1 e.g. Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 230000006780 non-homologous end joining Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 101150044170 trpE gene Proteins 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 3
- 102000018832 Cytochromes Human genes 0.000 description 3
- 108010052832 Cytochromes Proteins 0.000 description 3
- 101100125027 Dictyostelium discoideum mhsp70 gene Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108020005004 Guide RNA Proteins 0.000 description 3
- 102100028889 Hydroxymethylglutaryl-CoA synthase, mitochondrial Human genes 0.000 description 3
- 241001647400 Mastigocladus laminosus Species 0.000 description 3
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 3
- 101100408135 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) phnA gene Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 102000004389 Ribonucleoproteins Human genes 0.000 description 3
- 108010081734 Ribonucleoproteins Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000187747 Streptomyces Species 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108010084455 Zeocin Proteins 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- FSLPMRQHCOLESF-UHFFFAOYSA-N alpha-amyrenol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CCC3C21C FSLPMRQHCOLESF-UHFFFAOYSA-N 0.000 description 3
- FSLPMRQHCOLESF-SFMCKYFRSA-N alpha-amyrin Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C FSLPMRQHCOLESF-SFMCKYFRSA-N 0.000 description 3
- SJMCNAVDHDBMLL-UHFFFAOYSA-N alpha-amyrin Natural products CC1CCC2(C)CCC3(C)C(=CCC4C5(C)CCC(O)CC5CCC34C)C2C1C SJMCNAVDHDBMLL-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229930101531 artemisinin Natural products 0.000 description 3
- 229960004191 artemisinin Drugs 0.000 description 3
- BLUAFEHZUWYNDE-NNWCWBAJSA-N artemisinin Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC(=O)[C@@H]4C BLUAFEHZUWYNDE-NNWCWBAJSA-N 0.000 description 3
- 210000004507 artificial chromosome Anatomy 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- QQFMRPIKDLHLKB-UHFFFAOYSA-N beta-amyrin Natural products CC1C2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C)CCC1(C)C QQFMRPIKDLHLKB-UHFFFAOYSA-N 0.000 description 3
- PDNLMONKODEGSE-UHFFFAOYSA-N beta-amyrin acetate Natural products CC(=O)OC1CCC2(C)C(CCC3(C)C4(C)CCC5(C)CCC(C)(C)CC5C4=CCC23C)C1(C)C PDNLMONKODEGSE-UHFFFAOYSA-N 0.000 description 3
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 3
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003831 deregulation Effects 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 101150052825 dnaK gene Proteins 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 238000010362 genome editing Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 238000009630 liquid culture Methods 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- BQPPJGMMIYJVBR-UHFFFAOYSA-N (10S)-3c-Acetoxy-4.4.10r.13c.14t-pentamethyl-17c-((R)-1.5-dimethyl-hexen-(4)-yl)-(5tH)-Delta8-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products CC12CCC(OC(C)=O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C BQPPJGMMIYJVBR-UHFFFAOYSA-N 0.000 description 2
- MDSIZRKJVDMQOQ-GORDUTHDSA-N (2E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate Chemical compound OCC(/C)=C/COP(O)(=O)OP(O)(O)=O MDSIZRKJVDMQOQ-GORDUTHDSA-N 0.000 description 2
- CHGIKSSZNBCNDW-UHFFFAOYSA-N (3beta,5alpha)-4,4-Dimethylcholesta-8,24-dien-3-ol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21 CHGIKSSZNBCNDW-UHFFFAOYSA-N 0.000 description 2
- JSNRRGGBADWTMC-UHFFFAOYSA-N (6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene Chemical compound CC(C)=CCCC(C)=CCCC(=C)C=C JSNRRGGBADWTMC-UHFFFAOYSA-N 0.000 description 2
- SIGQQUBJQXSAMW-ZCFIWIBFSA-N (R)-5-diphosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(=O)OP(O)(O)=O SIGQQUBJQXSAMW-ZCFIWIBFSA-N 0.000 description 2
- OKZYCXHTTZZYSK-ZCFIWIBFSA-N (R)-5-phosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(O)=O OKZYCXHTTZZYSK-ZCFIWIBFSA-N 0.000 description 2
- XYTLYKGXLMKYMV-UHFFFAOYSA-N 14alpha-methylzymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C XYTLYKGXLMKYMV-UHFFFAOYSA-N 0.000 description 2
- 101150072734 1a gene Proteins 0.000 description 2
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 2
- FPTJELQXIUUCEY-UHFFFAOYSA-N 3beta-Hydroxy-lanostan Natural products C1CC2C(C)(C)C(O)CCC2(C)C2C1C1(C)CCC(C(C)CCCC(C)C)C1(C)CC2 FPTJELQXIUUCEY-UHFFFAOYSA-N 0.000 description 2
- QXNWZXMBUKUYMD-ITUXNECMSA-N 4-keto-beta-carotene Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C QXNWZXMBUKUYMD-ITUXNECMSA-N 0.000 description 2
- 102220590902 60S ribosomal protein L4_P56Q_mutation Human genes 0.000 description 2
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- 241000944022 Amyris Species 0.000 description 2
- 101000981773 Arabidopsis thaliana Transcription factor MYB34 Proteins 0.000 description 2
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 2
- 235000002992 Betula pubescens Nutrition 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 101100197560 Brugia malayi rpl-44 gene Proteins 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 241001464430 Cyanobacterium Species 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 2
- BKLIAINBCQPSOV-UHFFFAOYSA-N Gluanol Natural products CC(C)CC=CC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(O)C(C)(C)C4CC3 BKLIAINBCQPSOV-UHFFFAOYSA-N 0.000 description 2
- 101000678026 Homo sapiens Alpha-1-antichymotrypsin Proteins 0.000 description 2
- 101000651887 Homo sapiens Neutral and basic amino acid transport protein rBAT Proteins 0.000 description 2
- 101001047090 Homo sapiens Potassium voltage-gated channel subfamily H member 2 Proteins 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- LOPKHWOTGJIQLC-UHFFFAOYSA-N Lanosterol Natural products CC(CCC=C(C)C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 LOPKHWOTGJIQLC-UHFFFAOYSA-N 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 2
- 101100445407 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) erg10B gene Proteins 0.000 description 2
- CAHGCLMLTWQZNJ-UHFFFAOYSA-N Nerifoliol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C CAHGCLMLTWQZNJ-UHFFFAOYSA-N 0.000 description 2
- 102100027341 Neutral and basic amino acid transport protein rBAT Human genes 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 240000004371 Panax ginseng Species 0.000 description 2
- 235000002789 Panax ginseng Nutrition 0.000 description 2
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 2
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 2
- 102100022807 Potassium voltage-gated channel subfamily H member 2 Human genes 0.000 description 2
- 102000002278 Ribosomal Proteins Human genes 0.000 description 2
- 108010000605 Ribosomal Proteins Proteins 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 241001313699 Thermosynechococcus elongatus Species 0.000 description 2
- 244000185386 Thladiantha grosvenorii Species 0.000 description 2
- 235000011171 Thladiantha grosvenorii Nutrition 0.000 description 2
- 101710124921 X-ray repair cross-complementing protein 5 Proteins 0.000 description 2
- 241000235015 Yarrowia lipolytica Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 238000001720 action spectrum Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000003472 antidiabetic agent Substances 0.000 description 2
- 239000003430 antimalarial agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229940114079 arachidonic acid Drugs 0.000 description 2
- 235000021342 arachidonic acid Nutrition 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 235000013793 astaxanthin Nutrition 0.000 description 2
- 239000001168 astaxanthin Substances 0.000 description 2
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 2
- 229940022405 astaxanthin Drugs 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000013734 beta-carotene Nutrition 0.000 description 2
- 239000011648 beta-carotene Substances 0.000 description 2
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 2
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 description 2
- 229960002747 betacarotene Drugs 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- FDSDTBUPSURDBL-LOFNIBRQSA-N canthaxanthin Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)CCC1(C)C FDSDTBUPSURDBL-LOFNIBRQSA-N 0.000 description 2
- 101150065050 carS gene Proteins 0.000 description 2
- 230000001925 catabolic effect Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000002038 chemiluminescence detection Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000013375 chromatographic separation Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- QBSJHOGDIUQWTH-UHFFFAOYSA-N dihydrolanosterol Natural products CC(C)CCCC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 QBSJHOGDIUQWTH-UHFFFAOYSA-N 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 2
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 2
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 2
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000009123 feedback regulation Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000012224 gene deletion Methods 0.000 description 2
- 238000012268 genome sequencing Methods 0.000 description 2
- 235000008434 ginseng Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229940058690 lanosterol Drugs 0.000 description 2
- CAHGCLMLTWQZNJ-RGEKOYMOSA-N lanosterol Chemical compound C([C@]12C)C[C@@H](O)C(C)(C)[C@H]1CCC1=C2CC[C@]2(C)[C@H]([C@H](CCC=C(C)C)C)CC[C@@]21C CAHGCLMLTWQZNJ-RGEKOYMOSA-N 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000009437 off-target effect Effects 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 238000002888 pairwise sequence alignment Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 108060006174 phosphomevalonate decarboxylase Proteins 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 150000003097 polyterpenes Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 102000037983 regulatory factors Human genes 0.000 description 2
- 108091008025 regulatory factors Proteins 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 102220102612 rs140618379 Human genes 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 150000003535 tetraterpenes Chemical class 0.000 description 2
- 235000009657 tetraterpenes Nutrition 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- WTOYNNBCKUYIKC-JMSVASOKSA-N (+)-nootkatone Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC(=O)C=C21 WTOYNNBCKUYIKC-JMSVASOKSA-N 0.000 description 1
- IMPKVMRTXBRHRB-MBMOQRBOSA-N (+)-quercitol Chemical compound O[C@@H]1C[C@@H](O)[C@H](O)C(O)[C@H]1O IMPKVMRTXBRHRB-MBMOQRBOSA-N 0.000 description 1
- PYXFVCFISTUSOO-HKUCOEKDSA-N (20S)-protopanaxadiol Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@H]([C@@](C)(O)CCC=C(C)C)[C@H]4[C@H](O)C[C@@H]3[C@]21C PYXFVCFISTUSOO-HKUCOEKDSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- KGLCZTRXNNGESL-REDYYMJGSA-N (2E,4Z)-2-hydroxy-6-oxohexa-2,4-dienoic acid Chemical compound OC(=O)C(\O)=C/C=C\C=O KGLCZTRXNNGESL-REDYYMJGSA-N 0.000 description 1
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 1
- CXENHBSYCFFKJS-UHFFFAOYSA-N (3E,6E)-3,7,11-Trimethyl-1,3,6,10-dodecatetraene Natural products CC(C)=CCCC(C)=CCC=C(C)C=C CXENHBSYCFFKJS-UHFFFAOYSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 1
- TXGZJQLMVSIZEI-YASXASFSSA-N (4as,6ar,6bs,12as,14ar,14br)-11-cyano-2,2,6a,6b,9,9,12a-heptamethyl-10,14-dioxo-1,3,4,5,6,7,8,8a,14a,14b-decahydropicene-4a-carboxylic acid Chemical compound C1=C(C#N)C(=O)C(C)(C)C2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@@H]5[C@H]4C(=O)C=C3[C@]21C TXGZJQLMVSIZEI-YASXASFSSA-N 0.000 description 1
- CXENHBSYCFFKJS-VDQVFBMKSA-N (E,E)-alpha-farnesene Chemical compound CC(C)=CCC\C(C)=C\C\C=C(/C)C=C CXENHBSYCFFKJS-VDQVFBMKSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- QYIMSPSDBYKPPY-BANQPHDMSA-N 2,3-epoxysqualene Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CCC1OC1(C)C QYIMSPSDBYKPPY-BANQPHDMSA-N 0.000 description 1
- SLQKYSPHBZMASJ-QKPORZECSA-N 24-methylene-cholest-8-en-3β-ol Chemical compound C([C@@]12C)C[C@H](O)C[C@@H]1CCC1=C2CC[C@]2(C)[C@@H]([C@H](C)CCC(=C)C(C)C)CC[C@H]21 SLQKYSPHBZMASJ-QKPORZECSA-N 0.000 description 1
- YFAUKWZNPVBCFF-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@](O)(CO)C)O[C@H]1N1C(=O)N=C(N)C=C1 YFAUKWZNPVBCFF-XHIBXCGHSA-N 0.000 description 1
- 101710095052 4-hydroxy-3-methylbut-2-enyl diphosphate reductase Proteins 0.000 description 1
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- 108010011376 AMP-Activated Protein Kinases Proteins 0.000 description 1
- 102000014156 AMP-Activated Protein Kinases Human genes 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 241001116389 Aloe Species 0.000 description 1
- 101710194400 Alternative squalene epoxidase Proteins 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000003610 Aplanochytrium Species 0.000 description 1
- 101000841399 Arabidopsis thaliana ERBB-3 BINDING PROTEIN 1 Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 244000274847 Betula papyrifera Species 0.000 description 1
- 235000009113 Betula papyrifera Nutrition 0.000 description 1
- 235000009109 Betula pendula Nutrition 0.000 description 1
- 235000010928 Betula populifolia Nutrition 0.000 description 1
- 241001520764 Betula pubescens Species 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- 241001138693 Botryochytrium Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 101150051438 CYP gene Proteins 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108090000201 Carboxypeptidase B2 Proteins 0.000 description 1
- 101150102779 Cars1 gene Proteins 0.000 description 1
- ZJMVJDFTNPZVMB-UHFFFAOYSA-N Casbene Chemical compound C1CC(C)=CCCC(C)=CCCC(C)=CC2C(C)(C)C12 ZJMVJDFTNPZVMB-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 102000012286 Chitinases Human genes 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 101100339482 Colletotrichum orbiculare (strain 104-T / ATCC 96160 / CBS 514.97 / LARS 414 / MAFF 240422) HOG1 gene Proteins 0.000 description 1
- 101710118490 Copalyl diphosphate synthase Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 238000007702 DNA assembly Methods 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Diphosphoinositol tetrakisphosphate Chemical compound OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000195633 Dunaliella salina Species 0.000 description 1
- 101150045041 ERG8 gene Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000214054 Equine rhinitis A virus Species 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- WSPRAEIJBDUDRX-UHFFFAOYSA-N Euferol Natural products CC12CCC3(C)C(C(CCC=C(C)C)C)CCC3(C)C1CC=C1C2CCC(O)C1(C)C WSPRAEIJBDUDRX-UHFFFAOYSA-N 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102100039291 Geranylgeranyl pyrophosphate synthase Human genes 0.000 description 1
- 108010066605 Geranylgeranyl-Diphosphate Geranylgeranyltransferase Proteins 0.000 description 1
- 108010033128 Glucan Endo-1,3-beta-D-Glucosidase Proteins 0.000 description 1
- 108010056771 Glucosidases Proteins 0.000 description 1
- 102000004366 Glucosidases Human genes 0.000 description 1
- 102000007390 Glycogen Phosphorylase Human genes 0.000 description 1
- 108010046163 Glycogen Phosphorylase Proteins 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 241000168517 Haematococcus lacustris Species 0.000 description 1
- 244000187653 Hemidesmus indicus Species 0.000 description 1
- 235000015376 Hemidesmus indicus Nutrition 0.000 description 1
- 101000958922 Homo sapiens Diphosphomevalonate decarboxylase Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 102000002284 Hydroxymethylglutaryl-CoA Synthase Human genes 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 241000003482 Japonochytrium Species 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241001491672 Labyrinthulaceae Species 0.000 description 1
- 241001467308 Labyrinthuloides Species 0.000 description 1
- 241000222724 Leishmania amazonensis Species 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- 208000018501 Lymphatic disease Diseases 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 244000141359 Malus pumila Species 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 241000205274 Methanosarcina mazei Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241001467460 Myxogastria Species 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- 102100023897 NADPH-cytochrome P450 reductase Human genes 0.000 description 1
- 101710118186 Neomycin resistance protein Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101100342585 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) mus-51 gene Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241001306135 Oblongichytrium Species 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- JYDNKGUBLIKNAM-UHFFFAOYSA-N Oxyallobutulin Natural products C1CC(=O)C(C)(C)C2CCC3(C)C4(C)CCC5(CO)CCC(C(=C)C)C5C4CCC3C21C JYDNKGUBLIKNAM-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 241001138695 Parietichytrium Species 0.000 description 1
- UOZODPSAJZTQNH-UHFFFAOYSA-N Paromomycin II Natural products NC1C(O)C(O)C(CN)OC1OC1C(O)C(OC2C(C(N)CC(N)C2O)OC2C(C(O)C(O)C(CO)O2)N)OC1CO UOZODPSAJZTQNH-UHFFFAOYSA-N 0.000 description 1
- 101710093888 Pentalenene synthase Proteins 0.000 description 1
- 229930191506 Pentalenolacton Natural products 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100039087 Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Human genes 0.000 description 1
- OOUTWVMJGMVRQF-DOYZGLONSA-N Phoenicoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)CCC2(C)C OOUTWVMJGMVRQF-DOYZGLONSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 101710173432 Phytoene synthase Proteins 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 102100037935 Polyubiquitin-C Human genes 0.000 description 1
- 241001672814 Porcine teschovirus 1 Species 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000556225 Pseudozyma sp. Species 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 101000928243 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Adrenodoxin homolog, mitochondrial Proteins 0.000 description 1
- 101100342589 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pku70 gene Proteins 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- 101710115850 Sesquiterpene synthase Proteins 0.000 description 1
- 241001138689 Sicyoidochytrium Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000004078 Snake Bites Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 108030001636 Squalene synthases Proteins 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241001466451 Stramenopiles Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- 241000192589 Synechococcus elongatus PCC 7942 Species 0.000 description 1
- 101000895629 Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6) Geranylgeranyl pyrophosphate synthase Proteins 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- HYXITZLLTYIPOF-UHFFFAOYSA-N Tanshinone II Natural products O=C1C(=O)C2=C3CCCC(C)(C)C3=CC=C2C2=C1C(C)=CO2 HYXITZLLTYIPOF-UHFFFAOYSA-N 0.000 description 1
- 241001504076 Thermosynechococcus elongatus BP-1 Species 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 229940123464 Thiazolidinedione Drugs 0.000 description 1
- 241001648840 Thosea asigna virus Species 0.000 description 1
- 108091028113 Trans-activating crRNA Proteins 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 101710174833 Tuberculosinyl adenosine transferase Proteins 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 241001491678 Ulkenia Species 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 102100036976 X-ray repair cross-complementing protein 6 Human genes 0.000 description 1
- 101710124907 X-ray repair cross-complementing protein 6 Proteins 0.000 description 1
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 1
- UJELMAYUQSGICC-UHFFFAOYSA-N Zymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(C)C=CCC(C)C)CCC21 UJELMAYUQSGICC-UHFFFAOYSA-N 0.000 description 1
- QWXOJIDBSHLIFI-UHFFFAOYSA-N [3-(1-chloro-3'-methoxyspiro[adamantane-4,4'-dioxetane]-3'-yl)phenyl] dihydrogen phosphate Chemical compound O1OC2(C3CC4CC2CC(Cl)(C4)C3)C1(OC)C1=CC=CC(OP(O)(O)=O)=C1 QWXOJIDBSHLIFI-UHFFFAOYSA-N 0.000 description 1
- 210000000579 abdominal fat Anatomy 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000010476 amaranth oil Substances 0.000 description 1
- HMTAHNDPLDKYJT-CBBWQLFWSA-N amorpha-4,11-diene Chemical compound C1=C(C)CC[C@H]2[C@H](C)CC[C@@H](C(C)=C)[C@H]21 HMTAHNDPLDKYJT-CBBWQLFWSA-N 0.000 description 1
- HMTAHNDPLDKYJT-UHFFFAOYSA-N amorphadiene Natural products C1=C(C)CCC2C(C)CCC(C(C)=C)C21 HMTAHNDPLDKYJT-UHFFFAOYSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 229940127003 anti-diabetic drug Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000010478 argan oil Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- SLQKYSPHBZMASJ-UHFFFAOYSA-N bastadin-1 Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(C)CCC(=C)C(C)C)CCC21 SLQKYSPHBZMASJ-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- PYXFVCFISTUSOO-UHFFFAOYSA-N betulafolienetriol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC(C(C)(O)CCC=C(C)C)C4C(O)CC3C21C PYXFVCFISTUSOO-UHFFFAOYSA-N 0.000 description 1
- FVWJYYTZTCVBKE-ROUWMTJPSA-N betulin Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(CO)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C FVWJYYTZTCVBKE-ROUWMTJPSA-N 0.000 description 1
- MVIRREHRVZLANQ-UHFFFAOYSA-N betulin Natural products CC(=O)OC1CCC2(C)C(CCC3(C)C2CC=C4C5C(CCC5(CO)CCC34C)C(=C)C)C1(C)C MVIRREHRVZLANQ-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 238000000339 bright-field microscopy Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 235000012682 canthaxanthin Nutrition 0.000 description 1
- 239000001659 canthaxanthin Substances 0.000 description 1
- 229940008033 canthaxanthin Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002680 cardiopulmonary resuscitation Methods 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical group 0.000 description 1
- 229930009323 casbene Natural products 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 101150081158 crtB gene Proteins 0.000 description 1
- 101150085103 crtY gene Proteins 0.000 description 1
- WSPRAEIJBDUDRX-FBJXRMALSA-N cucurbitadienol Chemical compound C([C@H]1[C@]2(C)CC[C@@H]([C@]2(CC[C@]11C)C)[C@@H](CCC=C(C)C)C)C=C2[C@H]1CC[C@H](O)C2(C)C WSPRAEIJBDUDRX-FBJXRMALSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- WTOYNNBCKUYIKC-UHFFFAOYSA-N dl-nootkatone Natural products C1CC(C(C)=C)CC2(C)C(C)CC(=O)C=C21 WTOYNNBCKUYIKC-UHFFFAOYSA-N 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000006932 echinenone Nutrition 0.000 description 1
- YXPMCBGFLULSGQ-YHEDCBSUSA-N echinenone Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(=O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CCCC2(C)C YXPMCBGFLULSGQ-YHEDCBSUSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000005175 epidermal keratinocyte Anatomy 0.000 description 1
- BTCAEOLDEYPGGE-JVAZTMFWSA-N episterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@H](C)CCC(=C)C(C)C)CC[C@H]33)C)C3=CC[C@H]21 BTCAEOLDEYPGGE-JVAZTMFWSA-N 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 229930009668 farnesene Natural products 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 125000002686 geranylgeranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930182494 ginsenoside Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 108010021083 hen egg lysozyme Proteins 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- WHWDWIHXSPCOKZ-UHFFFAOYSA-N hexahydrofarnesyl acetone Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)=O WHWDWIHXSPCOKZ-UHFFFAOYSA-N 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 101150081406 idi1 gene Proteins 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- BKWBIMSGEOYWCJ-UHFFFAOYSA-L iron;iron(2+);sulfanide Chemical compound [SH-].[SH-].[Fe].[Fe+2] BKWBIMSGEOYWCJ-UHFFFAOYSA-L 0.000 description 1
- 101150085005 ku70 gene Proteins 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 102000008554 lanosterol synthase activity proteins Human genes 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 239000007934 lip balm Substances 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 238000002865 local sequence alignment Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 108060004506 lycopene beta-cyclase Proteins 0.000 description 1
- 108060004507 lycopene cyclase Proteins 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 210000003936 merozoite Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000006241 metabolic reaction Methods 0.000 description 1
- BTCAEOLDEYPGGE-UHFFFAOYSA-N methylene-24 cholesten-7 ol-3 beta Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(=C)C(C)C)CCC33)C)C3=CCC21 BTCAEOLDEYPGGE-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000006151 minimal media Substances 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 208000030194 mouth disease Diseases 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 230000012223 nuclear import Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 238000012259 partial gene deletion Methods 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 1
- 230000008832 photodamage Effects 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000033783 photosynthetic electron transport chain Effects 0.000 description 1
- 108010001545 phytoene dehydrogenase Proteins 0.000 description 1
- 108010071062 pinene cyclase I Proteins 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000006555 post-translational control Effects 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108010009004 proteose-peptone Proteins 0.000 description 1
- SWQINCWATANGKN-UHFFFAOYSA-N protopanaxadiol Natural products CC(CCC=C(C)C)C1CCC2(C)C1C(O)CC1C3(C)CCC(O)C(C)(C)C3CCC21C SWQINCWATANGKN-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 231100000272 reduced body weight Toxicity 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000009712 regulation of translation Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- AZEZEAABTDXEHR-UHFFFAOYSA-M sodium;1,6,6-trimethyl-10,11-dioxo-8,9-dihydro-7h-naphtho[1,2-g][1]benzofuran-2-sulfonate Chemical compound [Na+].C12=CC=C(C(CCC3)(C)C)C3=C2C(=O)C(=O)C2=C1OC(S([O-])(=O)=O)=C2C AZEZEAABTDXEHR-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- AIGAZQPHXLWMOJ-UHFFFAOYSA-N tanshinone IIA Natural products C1=CC2=C(C)C=CC=C2C(C(=O)C2=O)=C1C1=C2C(C)=CO1 AIGAZQPHXLWMOJ-UHFFFAOYSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 150000001467 thiazolidinediones Chemical class 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
- 235000010930 zeaxanthin Nutrition 0.000 description 1
- 239000001775 zeaxanthin Substances 0.000 description 1
- 229940043269 zeaxanthin Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- CGSJXLIKVBJVRY-XTGBIJOFSA-N zymosterol Chemical compound C([C@@]12C)C[C@H](O)C[C@@H]1CCC1=C2CC[C@]2(C)[C@@H]([C@@H](CCC=C(C)C)C)CC[C@H]21 CGSJXLIKVBJVRY-XTGBIJOFSA-N 0.000 description 1
- PSQYTAPXSHCGMF-BQYQJAHWSA-N β-ionone Chemical compound CC(=O)\C=C\C1=C(C)CCCC1(C)C PSQYTAPXSHCGMF-BQYQJAHWSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P15/00—Preparation of compounds containing at least three condensed carbocyclic rings
Definitions
- the present invention relates to microorganisms, which are genetically modified to produce pant derived triterpenes.
- the present invention provides a microorganism of the class Labyrinthulomycota comprising at least one transgene encoding a heterologous 2,3-oxidosqualene cyclase.
- a nucleic acid construct encoding at least one 2,3-oxidosqualene cyclase and at least one further enzyme.
- the present invention also relates to a method for the production of a microorganism according to the invention and further provides a method for the production of one or more plant derived triterpenes and/or derivatives thereof comprising the step of cultivating a microorganism of the present invention under conditions, which facilitate the production of plant derived triterpenes.
- terpenes are the largest and most diverse class of secondary metabolites. Chemically terpenes are based on multiple units of the core C5-building block isoprene which is biosynthesized from the universal precursor molecules isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate via the mevalonate (MEV) - and/or methyl-D-erythrol-4-phosphate (MEP) pathways (Maschek & Baker 2008).
- MEV mevalonate
- MEP methyl-D-erythrol-4-phosphate
- Terpenes are assembled to linear or cyclic hydrocarbon skeletons and formally classified into hemi (C5)-, mono (C10)-, sesqui (C15)-, di (C20)-, tri (C30), tetra (C40)- and Polyterpenes, while the terpenoids additionally carry diverse functional groups and modifications.
- Terpenes have been used by centuries since ancient times as fragrance, flavors, as bioactive component of medication and cosmetics and are going to reach progressive impact in future platform chemicals- and biofuels markets.
- Prominent examples are besides the antimalaria drug Artemisinin, the antitumor therapeutic taxol, the anti-inflamatory, anti-apoptotic Tanshinone IIA, the antibiotic compounds fusidic acid, casbene and pentalenolacton, the polyterpene rubber as well as many flavours and fragrances like menthol, b-ionone, nootkatone, limonene, camphor, myrcene or pinene (Peralta-Yahya et al. 2011).
- the complexity of their chemical synthesis and the large requirement of raw material from natural resources challenged intense efforts to establish efficient biotechnological processes for their renewable and environmental friendly production (Ajikumar et al. 2008).
- Schizochytrium and Aurantiochytrium proved to be capable of accumulating up to 30 % squalene (dry weight) with remarkable productivities in the g/L*day range (Nakazawa et al. 2014, Ren et al. 2014).
- Table 1 Overview of bioprocess technology for the production of squalene in natural and genetically modified (3 bottom lines) microorganims.
- CDW maximum cellular dry weight
- CSQ squalene content
- YSQ squalene titer
- PSQ productivities
- Thraustochytrids are unicellular eukaryotic marine microorganisms with saprophytic or parasitic life style, which form biflagellate zoospores and characteristic ectoplasmic net structures - thus received the trivial name facednet slime molds". Taxonomically, the family Thraustochytridae belongs to the class Labyrinthulomycota, superphylum Stramelophila (Heterokonta). Historically, they were often denoted as heterotrophic microalgae, based on the evolutionary proximity to their photosynthetic relatives.
- Thraustochytrids At low incubation temperature and high C/N ratio (N-depreviation) Thraustochytrids accumulate lipid droplets with up to 50 % of lipids per dry weight and very high contents of polyunsaturated fatty acids (PUFAs), mainly docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA).
- PUFAs polyunsaturated fatty acids
- DHA docosahexaenoic acid
- EPA eicosapentaenoic acid
- AA arachidonic acid
- the global squalene market has reached a volume of 2.500 tonnes in 2013, equivalent to an annual turnover of 160 M USD (CAGR > 10 %).
- Around 40 % of the squalene on the market is derived from fish oil, in particular shark cod liver oil. Further 42 % is produced from amaranth or palm oil, but primarily from deodorizer distillates of olive oil refining.
- the biotechnological production of squalene is only carried out by the Californian company Amyris.
- Amyris employs an indirect procedure using recombinant strains of the yeast Saccharomyces cerevisiae for the biosynthesis of farnesene which is chemically transformed into squalene - NeossanceTM Squalane.
- bioprocesses e.g., the production in recombinant tobacco (SynShark LLC) or the direct biosynthesis in Saccharomyces cerevisiae or Yarrowia lipolytica, developed by Synshark, Organobalance GmbH (now Novozymes) and Mycogen Corp. (now Dow Chemicals), respectively, have been patented but did not reach commercially viable efficiencies.
- the Japanese company Kuraray utilizes a total chemical synthesis.
- this multistep process is costly and mainly used to provide intermediates for the synthesis of derivatives.
- squalene is extensively exploited in dermatology and cosmetic industry, since it demonstrates exceptional performance as emulsifier, emollient and hydratation.
- squalene Based on its anti-oxidative and lipid peroxidation inhibiting activity, squalene has also entered the nutritional supplements market. In the animal model, squalene feeding could significantly lower glucose, cholesterol-, and leptin levels in blood, while in contrast leading to an increase in testosterone accompanied by an increase in fertility of roosters. Furthermore, squalene-based emulsions are applied as adjuvants in vaccines or as carrier for the administration of pharmacological agents (Spanova & Daum 2011 , Huang et al. 2009). The triterpenes oleanolic and ursolic acid, as well as derivatives thereof, are widely used as bioactive additives in cosmetics formulations, in nutritional supplements and pharmaceutical preparations.
- ursolic acid is going to have a global market volume of approx. 5 tonnes / a (CAGR 4,01 %) corresponding to a turnover of 9 Mio USD and an average value of 350-1800 USD / kg, depending on product quality (purity).
- CAGR 4,01 % a global market volume of approx. 5 tonnes / a
- Oleanolic and ursolic acid are primarily used as emulsifier or pharmaceutical agent in nutritional supplements, cosmetics and pharmaceutical formulations. Based on its positive impact on structure and elasticity of collagen fibres in the skin, ursolic acid decreases the occurence of wrinkles and age spots and facilitates natural repair after UV light damage.
- Ursolic acid inhibits the enzymes elastase, cyclooxygenase and lipooxygenase and is therefore recognized as anti-aging and anti-inflammatory substance. In-vitro it also increases the ceramide content in epidermal keratinocytes and of collagen in fibroblasts of skin (Both et al. 2001 , Yarosh et al. 2002). Usually ursolic acid is applied in concentrations of 0,2-3% in cremes, lotions, lip balm, shampoo and gels. The application of triterpenes as pharmaceutical agent is subject to more than 25 clinical studies and approx. 10 products are already available on the market.
- oleanolic formulations are marketed to fight hyperlipidemia, liver and lymphatic diseases (Schmandke 2009).
- oleanolic acid and derivatives e.g., Bardoxolon [2-cyano-3,12-dioxooleana-1 ,9-dien-28-oic acid; CCDO], Bardoxolon-Methyl
- Bardoxolon-Methyl Bardoxolon [2-cyano-3,12-dioxooleana-1 ,9-dien-28-oic acid; CCDO], Bardoxolon-Methyl
- Both oleanolic as well as ursolic acid exhibit antioxidative, anti-inflammatory, anti-microbial, angiogenic and immunomodulatory activity.
- Betulinic acid and its pharmacological application have been subject to intense investigations in the past decades (Mertens-Talcott et al. 2013, Pal et al. 2015). Betulinic acid induces apoptosis in human blastoma and inhibits human melanoma, malignant brain tumors, ovarian carcinoma and human leukemia cells (Tan et al. 2003, Zuco et al. 2002, Selzer et al. 2002, Ehrhardt et al. 2004). Derivatives of betulinic acid, eg., the orally administered Berivimat, also known as PA-457 inhibit the replication of HIV virus by blocking p25 maturation.
- novel synthetic derivatives IC9564 or A43-D proved to be capable of significantly inhibiting HIV-1 subtypes A, B, C at concentration of 0,2-1 ,5 pM (Lai et al. 2008, Huang et al. 2018).
- betulinic acid may inhibit high fat diet induced obesity by activation of the AMP-activated protein kinase, which regulates cellular and whole-body energy balance (Hardie 2014).
- betulinic acid inhibits several enzymes of carbohydrate and lipid absorption metabolism such as a-amylase (Kumar et al., 2013), a-glucosidase (Zareen et al., 2008), glycogen phosphorylase, diacylglycerol acetyl-transferase, increases insulin and leptin secretion, it results in reduced body weight, abdominal fat accumulation, blood glucose, plasma triglyceride and cholesterol levels in rats (Melo et al., 2009, Xie at al. 2017). It is therefore suggested as potential antidiabetic agent in the treatment of diabetes type 2 and associated metabolic syndrome (Rios & Manez 2018).
- betulinic acid may amiliorate artheroscerosis at an early stage (Song et al. 2020, Yoon et al. 2017).
- betulinic acid did not show adverse side effects.
- Lupeol which is naturally found in Shea butter, elm plant, aloe leaves, the mango fruit or Tamarindus indica and Hemidesmus indicus, is of particular interest in wound healing (Harrish et al. 2008, Beserra et al.
- lupeol exerts antiviral activity eg., against Herpes simplex virus 1 (HSV1) and Influenza A virus (Hernandez-Perez et al. 1994). It is further known to inhibit the proliferation of Plasmodium falciparum, the causative agent of malaria disease, by blocking the invasion of the merozoite stages into erythrocytes. Lupeol as well as synthetic derivatives thereof were also able to inhibit the amastogote stages of Leishmania amazonensis and Trypanosoma cruzi (Fournet et al. 1992, Machado et al. 2018). Triterpenes naturally occur in a broad variety of plants.
- HSV1 Herpes simplex virus 1
- Influenza A virus Hernandez-Perez et al. 1994. It is further known to inhibit the proliferation of Plasmodium falciparum, the causative agent of malaria disease, by blocking the invasion of the merozoite stages into erythrocytes. Lup
- the natural cell is programmed to avoid wasting energy and nutrient resources by 4) regulation of transcription and translation, posttranslational control and 5) feedback inhibition of enzymatic activity. 6) Metabolic engineering approaches frequently result in metabolic imbalance and several pathway intermediates have been observed to be toxic to the cell.
- recombinant strain development generally combines a set of engineering strategies e.g., the deletion ordownregulation of competing pathway genes, the overepression of heterologous genes, the deregulation of feedback inhibited enzymes, the deregulation of transcriptional and translational control by promoter exchange or the alteration of regulators, the engineering of bi- or multifunctional fusion proteins or the attachment to scaffolds which enable intramolecular channeling of intermediate or redox energy, thereby improving substrate to product conversion efficiency at metabolic branching points (Zhao et al. 2016, Dueber et al. 2009) or the redirection of metabolic enzymes to different compartments of the cell (Arendt et al.
- Amorphadiene a precursor in the biosynthesis of the antimalarial drug Artemisinin yielded product titers of 27,4 g/L in E.coli (Tsuruta et al 2009) and 40 g/L in Saccharomyces cerevisiae (Westfall et al. 2012).
- triterpene engineering approaches have so far only generated comparatively low productivities (see table 2), likely because of the cytotoxic nature of the molecules.
- Table 2 Top scoring recombinant triterpene engineering investigations in microbes ln order to be able to produce heterologous triterpenes on an economically relevant scale in a host organism, it is necessary to identify a suitable host organism, which can be engineered to produce the heterologous triterpenes as well as to overcome any production limiting factors such as feedback inhibition, competing metabolic pathways and toxicity of the product. In a next step, a suitable strategy needs to be established for the host organism to address all relevant issues that might hamper the productivity. The development of production strains for a specific compound or class of compounds comprises a number of challenges, which cannot always be foreseen and for which individual solutions need to be developed.
- the present invention relates to a microorganism of the class Labyrinthulomycota comprising at least one transgene encoding a heterologous 2,3- oxidosqualene cyclase.
- the heterologous 2,3- oxidosqualene cyclase is selected from the group consisting of an alpha-amyrin synthase, a beta-amyrin synthase, a lupeol synthase, a dammarenediol synthase and a cucurbitadienol synthase.
- the microorganism described above is selected from the group consisting of Thraustochytrids, in particular Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea.
- the microorganism further comprises at least one transgene encoding a heterologous cytochrome P450 oxidase and, optionally, a heterologous cytochrome P450 reductase or a ferredoxin, preferably a hybrid cytochrome P450 oxidase/reductase or a hybrid cytochrome P450 oxidase/ferredoxin, and further preferably the at least one transgene encoding a cytochrome P450 oxidase and/or a cytochrome P450 reductase or a hybrid cytochrome P450 oxidase/reductase is fused to an endoplasmatic reticulum (ER) targeting sequence and/or an ER retention sequence or the ferredoxin or the hybrid cytochrome P450 oxidase/ferredoxin is fused to a mitochondrial targeting sequence.
- ER endoplasmatic reticulum
- the microorganism further comprises a transgene for the overexpression of a squalene synthase and/or a squalene epoxidase under the control of a strong constitutive promoter, preferably a transgene for the overexpression of a hybrid squalene synthase/farnesyl pyrophosphate synthase and/or a hybrid squalene synthase/squalene epoxidase.
- the microorganism carries at least one further transgene for the overexpression of enzymes of the mevalonate pathway under the control of a strong constitutive promoter, preferably selected from the group consisting of acetyl-CoA- acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl- CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophospho- mevalonate decarboxylase and isopentenyl pyrophosphate isomerase.
- a strong constitutive promoter preferably selected from the group consisting of acetyl-CoA- acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl- CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophospho- mevalon
- the microorganism carries a transgene encoding a truncated 3-hydroxy-3- methylglutaryl-CoA reductase, which is missing the regulatory sensor domain and/or a transgene encoding a heterologous mevalonate kinase derived from Methanosarzina mazeii.
- at least one endogenous gene selected from the group consisting of lanosterol synthase, b-carotene synthase, ku80 and anthranilate synthase is inactivated.
- At least one transgene are integrated into the genome of the microorganism, particularly preferably the transgene(s) is/are inserted into one or more of the lanosterol synthase, the b-carotene synthase, the ku80, the anthranilate synthase and the 18 S rDNA locus in the genome of the microorganism.
- the present invention relates to a nucleic acid construct or set of nucleic acid constructs encoding (i) at least one 2,3-oxidosqualene cyclase heterologous to
- Labyrinthulomycota preferably selected from the group consisting of an alpha-amyrin synthase, a beta-amyrin synthase, a lupeol synthase, a dammarenediol synthase and a cucurbitadienol synthase; and at least one of (ii) a cytochrome P450 oxidase heterologous to Labyrinthulomycota and, optionally, a cytochrome P450 heterologous to Labyrinthulomycota reductase or a ferredoxin, preferably a hybrid cytochrome P450 oxidase/reductase or a hybrid cytochrome P450 oxidase/ferredoxin, and further preferably wherein the at least one transgene encoding a cytochrome P450 oxidase and/or a cytochrome P450 reductase or a hybrid
- a squalene synthase and/or a squalene epoxidase preferably a hybrid squalene synthase/farnesyl pyrophosphate synthase and/or a hybrid squalene synthase/squalene epoxidase;
- At least one enzyme selected from the group consisting of acetyl-CoA- acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3- methylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophosphomevalonate decarboxylase and isopentenyl pyrophosphate isomerase, preferably a truncated 3-hydroxy-3- methylglutaryl-CoA reductase, which is missing the regulatory sensor domain and/or a heterologous mevalonate kinase derived from Methanosarzina mazeii ; wherein the sequence of the nucleic acid construct or set of constructs is codon optimized to be expressed in Labyrinthulomycota, and preferably wherein two or more of the genes recited in (i) to (iv) are fused to encode multienzymatic translational
- the present invention provides a vector or a set of vectors encoding a nucleic acid construct or set of nucleic acid constructs as described above.
- the present invention relates to a method for the production of a microorganism, preferably a microorganism according to any of any of the embodiments described above, comprising a) providing a microorganism of the class Labyrinthulomycota; and b) transforming the microorganism of step a) with a nucleic acid construct or set of nucleic acid constructs or a vector or set of vectors as described in any of the embodiments above.
- the nucleic acid construct orthe set of nucleic acid constructs is inserted into the genome of the microorganism by homologous recombination, preferably the nucleic acid construct or the nucleic acid constructs of the set of nucleic acid constructs is/are inserted at one or more of the lanosterol synthase, the b-carotene synthase, the ku80, the anthranilate synthase and the 18 S rDNA locus in the genome of the microorganism.
- the present invention provides a method for the production of one or more plant derived triterpene(s) and/or derivatives thereof comprising the steps: i) providing a microorganism according to any of the embodiments described above; and ii) cultivating the microorganism of step i) under conditions, which facilitate the production of plant derived triterpenes.
- the plant derived triterpene(s) is/are selected from the group consisting of lupeol, oleanolic acid, ursolic acid, betulinic acid, corosolic acid, maslinic acid and dammarenediol.
- a “transgene” in the context of the present invention is a gene, which has been introduced into an organism by genetic engineering such as transformation with a genetic construct and optionally integration into the genome of the organism, e.g. by homologous recombination.
- the transgene may be “heterologous” to the organism, i.e. it does not naturally occur in the organism, or it may be “homologous”, i.e. a copy of the gene may naturally exist in the microorganism. If the transgene is homologous to the organism, the organism may comprise two copies of the gene, one in its natural genetic context and a transgene at a different locus and optionally under the control of a different promoter and/or terminator.
- the transgene can be introduced together with a promoter and/or a terminator controlling the expression of the transgene as well as with other transgenes, e.g. as part of an expression cassette.
- a “2,3-oxidosqualene cyclase” or “OSC” is an enzyme, which catalyzes the cyclisation of 2,3-oxidosqualene to form triterpenes.
- an 2,3- oxidosqualene cyclase is preferably a plant derived 2,3-oxidosqualene cyclase, which does not naturally occur in the microorganisms of the present invention.
- a heterologous 2,3-oxidosqualene cyclase is not a lanosterol synthase, which naturally occurs in the microorganisms of the present invention.
- Cytochrome P450 oxidases or “CYPs” are a diverse class of HEME-dependent enzymes which catalyze specific monoxygenation reactions of non-reactive carbon-hydrogen bonds in intermediates of the biosynthesis of terpenes, steroids and fatty acids or in the detoxification of xenobiotics.
- Cytochrome P450 reductases or“CPRs”, also referred to as “NADPH-cytrochrom P450 oxidoreductases”, are FMN/FAD-containing redox proteins which mediate the transfer of electrons from the universal reducing equivalent NADPH to cytochrom P450, thereby constantly providing cytochrome P450 oxidases with reducing power.
- a “hybrid cytochrome P450 oxidase/reductase” is an enzyme, which provides oxidase and reductase activity and thus can directly transfer electrons intramolecularly from the reductase domain to the cytochrome P450 oxidase domain.
- ferredoxin is an iron-sulfur cluster protein, which mediates electron transfer in metabolic reactions such as the respiratory or photosynthetic electron transport chain and functions as a reductase in the context of the present invention.
- ferredoxin further serves as an electron donor for the membrane bound cytochrome P450 oxidases involved in steroid biosynthesis (Midzak & Papadoupulos 2016).
- an “endoplasmatic reticulum (ER) targeting sequence” in the context of the present invention refers to a peptide sequence or a nucleic acid sequence encoding a peptide sequence, which is a signal for the attached polypeptide to be transported to the ER.
- An “endoplasmatic reticulum (ER) retention sequence” refers to a peptide sequence or a nucleic acid sequence encoding a peptide sequence, which provides for the attached polypeptide to be retained in the ER.
- a “mitochondrial targeting sequence” in the context of the present invention refers to a peptide sequence or a nucleic acid sequence encoding a peptide sequence, which is a signal for the attached polypeptide to be transported to the mitochondria of the microorganism.
- Overexpression in the context of the present invention relates to the increased expression of a protein, in particular an enzyme, with respect to it expression in a natural context.
- certain regulatory factors may lead to limited expression of the protein at all times or under certain conditions.
- the gene encoding for a protein may be provided under the control of a strong promoter, which is active at all times and under any conditions.
- a “transgene for overexpression” is therefore provided together with a strong constitutive promoter. This setup is able to circumvent naturally occurring regulatory mechanisms.
- a “strong constitutive promoter” is a promoter, which provides high expression levels and is always active.
- a “farnesyl pyrophosphate synthase” or “FPPS” catalyzes sequential condensation reactions of dimethylallyl pyrophosphate (DMAPP) with 2 units of 3-isopentenyl pyrophosphate to form farnesyl pyrophosphate (FPP).
- DMAPP dimethylallyl pyrophosphate
- FPP farnesyl pyrophosphate
- Two molecules FPP are converted into squalene by a "squalene synthase”.
- “Squalene epoxidase” or “squalene monooxygenase” oxidizes squalene to 2,3-oxidosqualene or squalene epoxide.
- Hybrids i.e.
- enzymes with two activities can be provided namely a “hybrid squalene synthase/farnesyl pyrophosphate synthase” and a “hybrid squalene synthase/squalene epoxidase”, making the process more efficient.
- the “mevalonate pathway” is an essential metabolic pathway present in many organisms, which produces isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) from acetyl co-enzyme A (acetyl CoA).
- IPP isopentenyl pyrophosphate
- DMAPP dimethylallyl pyrophosphate
- Enzymes involved in the mevalonate pathway are acetyl-CoA-acetyltransferase (AATC), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), mevalonate kinase (MVK), phosphomevalonate kinase (PMK), dihydrophosphomevalonate decarboxylase (PMD) and isopentenyl pyrophosphate isomerase (Idi).
- AATC acetyl-CoA-acetyltransferase
- HMGS 3-hydroxy-3-methylglutaryl-CoA synthase
- HMGR 3-hydroxy-3-methylglutaryl-CoA reductase
- MVK mevalonate kinase
- PMK phosphomevalonate kinase
- PMD dihydrophosphomevalonate decarboxylase
- Idi isopen
- “Lanosterol synthase” is an enzyme, which converts 2,3-oxidosqualene to lanosterol, displaying the first committed step in the biosynthesis of sterols, e.g., Zymosterol, Fecosterol, Episterol and Ergosterol (Jiang et al. 2020).
- the “b-carotene synthase” plays a role in the synthesis of tetraterpenes, in particular b-Carotene and its secondary carotenoid astaxanthin. Similar to Aurantiochytrium KH105 (Iwasaka et al.
- the b-carotene synthase in Schizochytrium ATCC 20888 is a trifunctional enzyme catalyzing the activities of geranylgeranyl phytoene synthase, phytoene desaturase and lycopene cyclase, which are encoded by three separate genes (crtl, crtB, crtY) in most organisms (Gao et al. 2017).
- a gene is “inactivated” in the context of the present invention, when its expression is no longer possible due to a deletion of the gene or relevant parts thereof or due to the insertion of another gene disrupting the locus of the gene to be inactivated.
- genes can be fused, i.e. combined into one expression construct to encode “multienzymatic translational fusion proteins”.
- the encoded proteins are separated by “self-cleavable 2A peptides” and the construct may require only one promoter and one terminator to express all proteins of the fusion.
- the self-cleavable 2A peptides are used to cleave the polypeptide being translated from the construct into the separate functional gene products of the fused genes.
- ..Homologous recombination refers to a recombination mechanism, by which a sequence can be inserted by double cross-over integration e.g. into a genome. This is achieved by providing the sequence to be inserted, preferentially as linear DNA fragment, with flanking sequences, which are homologous to corresponding sequences in the genome.
- the heterodimer composed of “Ku80” and Ku70 proteins is considered as initiating key player in DNA double strand repair by a mechanisms known as non-homologous end joining (NHEJ).
- NHEJ non-homologous end joining
- a deletion of ku80 or ku70 genes has been reported to stimulate homologous recombination frequency by approximately 10 fold (Ding et al. 2019).
- the genomic “18S rDNA locus”, which encodes 18S ribosomal RNA, represents a popular site for integration of recombinant DNA for two reasons.
- 18SrDNA vectors derived from the 18S rDNA sequence of Schizochytrium sp. ATCC 20888 may be applied to transform several Schizochytrium and Aurantiochytrium strains as well.
- Plant derived triterpenes are triterpenes, which naturally only occur in plants. Derivatives of such triterpenes may carry certain functional or non-functional modifications. Examples of plant derived triterpenes include lupeol, oleanolic acid, ursolic acid, betulinic acid, corosolic acid, maslinic acid, cucurbitadienol and dammarenediol.
- nucleic acid or amino acid sequences Whenever the present disclosure relates to the percentage of identity of nucleic acid or amino acid sequences to each otherthese values define those values as obtained by using the EMBOSS Water Pairwise Sequence Alignments (nucleotide) programme (www.ebi.ac.uk/Tools/psa/ emboss_water/nucleotide.html) nucleic acids or the EMBOSS Water Pairwise Sequence Alignments (protein) programme (www.ebi.ac.uk/Tools/psa/emboss_water/) for amino acid sequences. Alignments or sequence comparisons as used herein refer to an alignment over the whole length of two sequences compared to each other.
- Figure 1 shows the natural terpene biosynthetic pathway in Schizochytrium sp. ATCC20888 wildtyp and recombinant, heterologous plant type triterpene biosynthesis branch (grey shaded box) which was heterologously expressed in Thraustochytrids.
- MEV- pathway (AACT: acetyl-CoA-acetyltransferase), HMG-CoA: 3-hydroxy-3-methylglutaryl- CoA (HMGS: HMG-CoA-synthase), MVA: mevalonate (HMGR: HMG-CoA-reductase), MVP: mevalonate-5-phosphate (MVK: mevalonate kinase), MVPP: mevalonate-5- diphosphate (PMK: phosphomevalonate kinase), IPP: Isopentenyl pyrophosphate und DMAPP: dimethylallyl pyrophosphate (PMD: phosphomevalonate decarboxylase), (IDI: isopentenyl diphosphate-isomerase.
- AACT acetyl-CoA-acetyltransferase
- HMG-CoA 3-hydroxy-3-methylglutaryl- CoA
- HMGR HMG-CoA-reductase
- GPP geranyl pyrophosphate
- FPP farnesyl pyrophosphate
- FPPS farnesyl pyrophosphate synthase
- GGPP geranylgeranyl pyrophosphate
- SQS squalene synthase
- aSQE alternative squalene epoxidase
- LanS lanosterol synthase.
- MdAS amyrin synthase (oxidosqualene cyclase OSC1) from Malus domestica
- CYP716A52 C28 cytochrome P450 oxidase
- CYP716C55 C2 cytochrome P450 oxidase from Lagerstroemia speciosa
- CarS trifunctional beta-carotene synthase. Non verified branching pathways are depicted in grey color. Not present in Schizochytrium 20888 are the MST: monoterpene synthase, STS: sesquiterpene synthase DTS: diterpene synthase frequently found in other organisms.
- Figure 2 shows a schematic drawing of the integration vector series for transformation of Thraustochytrids.
- the flanking regions A and B are homologous to a specific locus within the acceptor genome and enable double cross-over integration of expression cassettes by homologous recombination. All constructions of expression cassettes (see Fig. 3, 4 and 5) were conducted in at least two integration vectors to obtain a variation of expression levels and compensate for detrimental positional effects.
- oriV ColdE1
- bla ampicillin/ca rbenicillin resistance marker
- 2-Micron replicon for maintenance in S. cerevisiae
- Ura3 orotidine decarboxylase selection marker for application in uracil auxotrophic background strains of S. cerevisiae.
- PrPK pyruvate kinase gene promoter from A.limacinum MYA-1381
- PraTub gene promoter from Schizochytrium ATCC 20888
- PrPolyU polyubiquitin gene promoter from Schizochytrium ATCC 20888
- PrG3P glycerol-3-phosphate dehydrogenase gene promoter from A. limacinum MYA-1381
- Figure 3a and 3b show a schematic drawing of DNA cassettes for heterologous expression of triterpene biosynthetic features.
- the sequence numbers on the left indicate the respective plasmids in table 5.
- MdAS 2,3oxidosqualene cyclase / amyrin synthase from Malus domestica
- CrAO C28 cytochrome P450 oxidase from Cantharanthus roseus
- AtCPR cytochrom P450 reductase from Arabidopsis thaliana.
- the enzyme encoding genes were codonoptimized for expression in the acceptor strains and expressed as monocistronic or polycistronic transcripts encoding translational fusion proteins, which split into the respective single enzymes cotranslationally based on viral 2A linker peptides.
- PrPK pyruvate kinase gene promoter from A.limacinum MYA-1381
- PrG3P glycerol-3- phosphate dehydrogenase gene promoter from A.limacinum MYA-1381
- PrS35 Cauliflower mosaic virus (CaMV) S35 promoter
- PrPolyU polyubiquitin gene promoter from Schizochytrium ATCC 20888
- Prhsp70/Prelf1 hybrid dual promoter consisting of hsp70 gene promoter and elongation factor 1 a gene promoter from A.limacinum MYA-1381
- NeoR and KanMX aminoglycoside phosphotransferase genes conferring resistance to Geneticin (G418), erg1 : squalene epoxidase from S.cerevisiae, SQSMYA: squalene synthase from A.
- ERsig-CrAO-AtCPR-ERret synthetic fusion of C28 cytochrome P450 oxidase from Cantharanthus roseus with cytochrom P450 reductase from Arabidopsis thaliana equipped with N-terminal ER targeting and C-terminal ER retention signal sequence from calreticulin (MYA-1381).
- Mitosig-CrAO-fdx synthetic fusion of C28 cytochrome P450 oxidase from Cantharanthus roseus with mitochondrial ferredoxin from A. limacinum MYA-1381 equipped with a mitochondrial targeting signal sequence from ferredoxin (MYA-1381).
- ERsig-LsCYP-BbCPR synthetic fusion of C2 cytochrome P450 oxidase from Lagerstoemia speciosa with cytochrom P450 reductase from Botryococcus braunii equipped with N-terminal ER targeting signal sequence from hsp70 (MYA-1381).
- MdAS amyrin synthase from Malus domestica
- LupS lupeol synthase from Rhizinus communis
- rpl44* ribosomal protein 44 mutant P56Q from Aurantiochytrium
- ShBle Bleomycin resistance gene from Streptomyces hindustanicus
- gfp green fluorescence protein Mgfp5
- XylE catechol-2, 3-dioxigenase from Pseudomonas putida. Spotted bars indicate viral 2A- linker peptides, which enable self-cleavage of the translational fusion proteins.
- CYC-T cytochrome C terminator from Saccharomyces cerevisiae
- NosT nopalin gene terminator from Agrobacterium tumefaciens Ti plasmid
- EF1-T elongation factor 1 terminator from Schizochytrium ATCC 20888. Mottled grey sections between arrows represent the 2A linkers.
- Figure 4a and 4b show a schematic drawing of DNA cassettes for overexpression of structural features of terpene precursor biosynthesis.
- the sequence numbers on the left indicate the respective plasmids in table 5.
- NosT Nos terminator
- PrPK Pyruvate kinase gene promoter
- PrG3P glycerol-3-, phosphate gene promoter from Aurantiochytrium limacinum MYA-1381
- PrTEF yeast translation elongation factor 1 gene promoter
- tHMGR truncated HMG-CoA reductase (Sequ 3 and 9: tHMG-1 from S.cerevisiae, Sequ 38: tHMGR from Schizochytrium ATCC20888), erg10: acetyl-CoA acetyltransferase from S.cerevisiae, erg 13: HMG-CoA synthase from S.
- erg20 farnesyl pyrophosphate synthase from S.cerevisiae
- erg1 squalene epoxidase from S.cerevisiae
- SQSMYA squalene synthase from A. limacinum MYA-1381
- IdiMYA isopentenyl pyrophosphate isomerase from A.
- rpl44* ribosomal protein 44 mutant P56Q from A. limacinum MYA-1381 , ShBle: Bleomycin resistance gene from Streptomyces hindustanicus, gfp: green fluorescence protein mgfp5.
- CYC-T cytochrome C terminator from S. cerevisiae
- NosT nopalin gene terminator from Agrobacterium tumefaciens Ti plasmid
- EF1-T elongation factor 1 terminator from Schizochytrium ATCC 20888.
- Spotted bars indicate viral 2A-linker peptides, which enable self-cleavage of the translational fusion proteins. Mottled grey sections between arrows represent the 2A linkers.
- Figure 5 shows the intracellular targeting of heterologously expressed enzymes to the endoplasmic reticulum in accordance to previous work published by Zhao et al. (2016) and Okino et al. (2016) or into the mitochondria.
- the N-terminal targeting signal of the oxidase CrAO was exchanged for the ER-targeting sequence of calreticulin from Aurantiochytrium limacinum MYA-1381.
- ER retention signal was engineered at the C-terminus of the fusion protein.
- the same synthetic enzyme fusion strategy was applied to the C2 cytochrome P450 oxidase from Lagerstoemia speciosa which was linked to the cytochrom P450 reductase from Botryococcus braunii and equipped with an N-terminal ER targeting signal sequence from hsp70 (MYA-1381).
- FIG. 6 shows that the terpene biosynthesis in plants and certain algae has evolved in two independent pathways for supply of C5 isoprene precursor molecules isopentenyl pyrophosphat (IPP) and dimethylallyl pyrophosphate (DMAPP): 1) the cytoplasmic mevalonate (MEV) pathway and 2) the methylerythrol phosphate pathway (MEP) While MEV enzymes are localized in the cytosol, the MEP pathway is found in the chloroplast.
- IPP isopentenyl pyrophosphat
- DMAPP dimethylallyl pyrophosphate
- MEP pathway DXP: 1desoxy-D-xylulose-5-phosphate (DXS: DX-synthase), MEP: 2-C- methyl-D-erythrol-4-phosphate (DXR: DXP-reductoisomerase), CDP-ME: 4- diphosphocytidyl-2C-methyl-D-erythrol (MCT: methylerythrol-cytidyl-transferase), CDP- MEP: 4-diphosphocytidyl-2C-methyl-D-erythritol-2-P (CMK: Cytidylmethyl-Kinase), MME- cPP: 2C-Methyl-D-erythritol-2,4-cyclodiphosphat (MDS: Methylerythritol-cyclo- diphosphate-synthase), HMBPP: (E)-4-hydroxy-3-methylbut-2-enyl di
- HMGS HMG-CoA-synthase
- MVA mevalonate
- MVP mevalonate-5phosphate
- MVPP mevalonate-5-diphosphate
- IPP Isopentenyl pyrophosphate und
- DMAPP dimethylallyl pyrophosphate
- PMD phosphomevalonate decarboxylase
- IDI isopentenyl diphosphate-isomerase.
- Figure 7 shows the plasmid map for the integration vector pdtrpE-BASIC.
- the vector enables stable genomic integration in Schizochytrium ATCC 20888.
- pdtrpE-BASIC may be used as a control vector expressing a 2A-linker peptide fusion of neoR (aminglycosid phsophotransferase gene) with the reporter gene xylE (catechol-2, 3-dioxygenase), both codonoptimized for the acceptor strain.
- the unique restriction sites Kpnl and Xbal further enable the exchange of the reporter gene neoR-2A-xylE for novel genes or gene clusters of interest.
- the vector is designed for application of in vivo gap-repair cloning in S.cerevisiae. dtrpE(A) & dtrpE(B): 2000 bp of upstream and downstream sequences flanking the anthranilate synthase (trpE) gene in Schizochytrium ATCC20888.
- dtrpE(A) & dtrpE(B) 2000 bp of upstream and downstream sequences flanking the anthranilate synthase (trpE) gene in Schizochytrium ATCC20888.
- the latter enable genomic integration of expression cassettes via homologous recombination. Genomic integration of the vector via double cross-over recombination leads to a deletion of the trpE gene.
- NeoR aminoglycoside phosphotransferase (G418 resistance determinant)
- XylE catechol-2, 3-dioxigenase from Pseudomonas putida
- Prom(Tub) a- tubulin gene promoter from Schizochytrium ATCC20888
- PrPolyU polyubiquitin gene promoter from Schizochytrium ATCC 20888
- NOS-Terminator nopalin gene terminator from Agrobacterium tumefaciens Ti plasmid
- ShBle Bleomycin resistance gene from Streptomyces hindustanicus
- gfp green fluorescence protein mgfp5
- oriV ColdE1: origin of replication for maintenance in in E.coli
- bla ampicillin/carbenicillin resistance marker
- 2- Micron replicon for maintenance in S.
- Ura3 orotidine decarboxylase selection marker for application in uracil auxotrophic backround strains of S. cerevisiae.
- 2A viral 2A- linker peptides, which enable self-cleavage of the translational fusion proteins. Spel restriction sites flanking dtrpE(A) upstream and dtrpE(B) downstream sequences enable the release of the expression cassette for subsequent transformation as linear DNA fragment.
- Figure 8 shows the Plasmid map for the integration vector pdKU80(20888).
- the vector enables stable genomic integration in Schizochytrium ATCC 20888.
- pdKU80(20888) may be used as a control vector expressing a 2A-linker peptide fusion of neoR (aminglycosid phsophotransferase gene) with the reporter gene xylE (catechol-2, 3-dioxygenase), both codonoptimized for the acceptor strain.
- the unique restriction sites Hind III, Kpnl and Xbal further enable the exchange of the reporter gene expression cassette for novel genes or gene clusters of interest or additional 2A-based fusion genes.
- the vector is designed for appication of in vivo gap-repair cloning in S. cerevisiae. dKU80(20888A) & dKU80(20888B): 1800 bp of upstream and downstream sequences flanking the ku80 gene in Schizochytrium ATCC20888.
- the latter enable genomic integration of expression cassettes via homologous recombination.
- Genomic integration of the vector via double cross-over recombination leads to a deletion of the ku80 gene.
- NeoR aminoglycoside phosphotransferase (G418 resistance determinant)
- XylE catechol-2, 3-dioxigenase from Pseudomonas putida
- Prom(Tub) a-tubulin gene promoter from Schizochytrium ATCC20888
- EF1-T elongation factor 1 terminator from A. limacinum ATCC MYA-1381
- bla ampicillin/carbenicillin resistance marker
- 2-Micron replicon for maintenance in S.
- Ura3 orotidine decarboxylase selection marker for application in uracil auxotrophic backround strains of S. cerevisiae.
- 2A viral 2A-linker peptides, which enable self-cleavage of the translational fusion proteins. Spel restriction sites flanking KU80(20888A) upstream and KU80(20888B) downstream sequences enable the release of the expression cassette for subsequent transformation as linear DNA fragment.
- Figure 9 shows the plasmid map for the integration vector pdKU80mya.
- the vector enables stable genomic integration in Aurantiochytrium limacinum ATCC MYA-1381.
- pdKU80mya may be used as a control vector expressing a fusion of neoR (aminglycosid phsophotransferase gene) with the reporter gene xylE (catechol-2, 3-dioxygenase).
- the unique restriction sites Xho I and Mlul further enable the exchange of the reporter gene xylE for novel genes or gene clusters of interest or additional 2A-based fusion genes.
- the vector is designed for appication of in vivo gap-repair cloning in S.
- dKU(A) & dKU(B) 1800 bp of upstream and downstream sequences flanking the KU80 gene in Aurantiochytrium limacinum ATCC MYA-1381.
- the latter enable genomic integration of expression cassettes via homologous recombination.
- Genomic integration of the vector via double cross-over recombination leads to a deletion of the ku80 gene.
- NeoR aminoglycoside phosphotransferase (G418 resistance determinant)
- XylE catechol-2, 3- dioxigenase from Pseudomonas putida
- Prom(Tub): Prhsp70/Prelfl hybrid dual promoter consisting of hsp70 gene promoter and elongation factor 1a gene promoter from Aurantiochytrium limacinum MYA-1381
- NOS-Terminator nopalin gene terminator from Agrobacterium tumefaciens Ti plasmid
- oriV ColdE1: origin of replication for maintenance in in E.coli
- bla ampicillin/carbenicillin resistance marker
- 2-Micron replicon for maintenance in S.
- FIG. 10 shows the Plasmid map for the integration vector pdCarS-BASIC.
- the vector enables stable genomic integration in Schizochytrium ATCC 20888.
- pdCarS-BASIC may be used as a control vector expressing a 2A-linker peptide fusion of neoR (aminglycosid phsophotransferase gene) with the reporter gene xylE (catechol-2, 3-dioxygenase), both codonoptimized forthe acceptor strain.
- the unique restriction sites Hind III and Xbal further enable the exchange of the reporter gene (neoR-2A-xylE) expression cassette for novel genes or gene clusters of interest or additional 2A-based fusion genes.
- the vector is designed for application of in vivo gap-repair cloning in S. cerevisiae.
- dCarS(A) &dCarS(B) 2000 bp of upstream and downstream sequences flanking the b-carotene synthase (carS) gene in Schizochytrium ATCC20888.
- the latter enable genomic integration of expression cassettes via homologous recombination.
- Genomic integration of the vector via double cross-over recombination leads to partial deletion of the carS gene.
- NeoR aminoglycoside phosphotransferase (G418 resistance determinant)
- XylE catechol-2, 3-dioxigenase from Pseudomonas putida
- Prom(Tub) a-tubulin gene promoter from Schizochytrium ATCC20888
- CYC1 -Terminator cytochrome C terminator from S. cerevisiae
- oriV (ColE1) origin of replication for maintenance in E.coli
- bla ampicillin/carbenicillin resistance marker
- 2-Micron replicon for maintenance in S. cerevisiae
- Ura3 orotidine decarboxylase selection marker for application in uracil auxotrophic backround strains of S.
- 2A viral 2A-linker peptides, which enable self-cleavage of the translational fusion proteins. Spel restriction sites flanking dCarS(A) upstream and dCarS(B) downstream sequences enable the release of the expression cassette for subsequent transformation as linear DNA fragment. List of Sequences
- SEQ ID NO: 5 amino acid sequence of cytochrome P450 monooxygenase from Lagerstroemia speciosa (LsCYP716) (CYP5)
- SEQ ID NO: 17 nucleic acid sequence of plasmid p18S-P1 with vector backbone p18S and insert IPPmya, tHMGR (D3 nt-AS) LupS-rpl44-ShBle-gfp
- SEQ ID NO: 18 nucleic acid sequence of plasmid p18S-P2 with vector backbone p18S and insert IPPmya, Sc-tHMGR, LupS-rpl44-ShBle-gfp SEQ ID NO: 19 nucleic acid sequence of plasmid p18S-P3 with vector backbone p18S and insert Sc-tHMGR, LupS-rpl44-ShBle-gfp
- SEQ ID NO: 20 nucleic acid sequence of plasmid p18S-P4 with vector backbone p18S and insert Sc-tHMGR (K12->M)), erg10-(2A)-erg13 (R1042->H), LupS- rpl44-ShBle-gfp
- SEQ ID NO: 21 nucleic acid sequence of plasmid p18S-P5 with vector backbone p18S and insert tHMGR (A2AS OK, erg10-(2A)-erg13 (A1AS), LupS-rpl44- ShBle-gfp
- SEQ ID NO: 22 nucleic acid sequence of plasmid p18S-P6 with vector backbone p18S and insert SQSmya-Erg1 (D4 AS), MITOSig(fdx)CrAO-fdx, LupS-rpl44- ShBle-gfp
- SEQ ID NO: 23 nucleic acid sequence of plasmid p18S-P7 with vector backbone p18S and insert SQSmya-Erg1 present (D4 AS), (ERCalRet)CrAO- ATR(CalRetERret) LupS-rpl44-ShBle-gfp
- SEQ ID NO: 24 nucleic acid sequence of plasmid p18S-P8 with vector backbone p18S and insert SQSmya-erg1 (A4AS), (ERCalRet)CrAO-ATR(CalRetERret) (AZAS), LupS-rpl44-ShBle-gfp
- SEQ ID NO: 25 nucleic acid sequence of plasmid p18S-P9 with vector backbone p18S and insert Sc-tHMGR, LupS-rpl44-ShBle-gfp
- SEQ ID NO: 26 nucleic acid sequence of plasmid p18S-P13 with vector backbone p18S and insert PrPK-LupS-rpl44*-ShBle-gfp
- SEQ ID NO: 27 nucleic acid sequence of plasmid p18S-P15 with vector backbone p18S and insert SQSmya-erg20-(2A)-tHMGR (CO)
- SEQ ID NO: 28 nucleic acid sequence of plasmid p18S-P18 with vector backbone p18S and insert SQSmya-erg1 (W806®R), LupS-rpl44-ShBle-gfp
- SEQ ID NO: 29 nucleic acid sequence of plasmid p18S-3g with vector backbone p18S and insert TeSQS-2A-SctHMGR, LupS-rpl44-ShBle-gfp
- SEQ ID NO: 30 nucleic acid sequence of plasmid p18S-2A(ll) with vector backbone p18S and insert PrTub-Erg10-erg13-tHMGR
- SEQ ID NO: 31 nucleic acid sequence of plasmid p18SS-3(4) with vector backbone p18S and insert PrTub-tHMGR-erg9/erg20
- SEQ ID NO: 32 nucleic acid sequence of plasmid pALanS-PP18 with vector backbone pALanS and insert PrPK-gfp-KanMX fusion (N185®S)
- SEQ ID NO: 33 nucleic acid sequence of plasmid pALanS-PP20 with vector backbone pALanS
- SEQ ID NO: 34 nucleic acid sequence of plasmid pALanS-PP15 with vector backbone pALanS and insert PrPK-LupS-rpl44*-ShBle-gfp
- SEQ ID NO: 35 nucleic acid sequence of plasmid pALanS-PP17 with vector backbone pALanS and insert PrG3P-TriT-rpl44*-ShBle-gfp
- SEQ ID NO: 36 nucleic acid sequence of plasmid pALanS-PP13 with vector backbone pALanS and insert PrPK-SQSmya-erg1 , LupS-rpl44*-ShBle-gfp
- SEQ ID NO: 37 nucleic acid sequence of plasmid pAKU80mya-M1 with vector backbone pAKU80mya and insert Prhsp70/elfl-NeoR-MdAS-
- SEQ ID NO: 38 nucleic acid sequence of plasmid pAKU80mya-M2 with vector backbone pAKU80mya and insert Prhsp70/elfl-NeoR-xylE -NosTerm
- SEQ ID NO: 39 nucleic acid sequence of plasmid pAKU80mya-M3 with vector backbone pAKU80mya and insert Prhsp70/elfl-NeoR-2A-rad52-
- SEQ ID NO: 40 nucleic acid sequence of plasmid pAKU80mya-M4 with vector backbone pAKU80mya and insert Prhsp70/elf1-NeoR-MdAS- Term(elf1)/PrS35-CrCYP-fdx(mya)-NosTerm
- SEQ ID NO: 41 nucleic acid sequence of plasmid pAKU20888-S1 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-Term(elf1)
- SEQ ID NO: 42 nucleic acid sequence of plasmid pAKU20888-S2 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-2A-MdAS-
- SEQ ID NO: 43 nucleic acid sequence of plasmid pAKU20888-S3 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-2A-LupS-
- SEQ ID NO: 44 nucleic acid sequence of plasmid pAKU20888-S4 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-2A-MdAS-
- SEQ ID NO: 45 nucleic acid sequence of plasmid pAKU20888-S5 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-2A-LupS-
- SEQ ID NO: 46 nucleic acid sequence of plasmid pAKU20888-S6 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-2A-MdAS-
- SEQ ID NO: 47 nucleic acid sequence of plasmid pAtrp-BASIC with vector backbone pAtrp and insert PrTub-NeoR-XylE-Pr(PolyU)-ShBle-gfp
- SEQ ID NO: 48 nucleic acid sequence of plasmid pAtrp-2A(ll) with vector backbone pAtrp and insert PrTub-Erg10-erg13-tHMGR
- SEQ ID NO: 49 nucleic acid sequence of plasmid pAtrp-3(4) with vector backbone pAtrp and insert PrTub-tHMGR-erg9/erg20
- SEQ ID NO: 50 nucleic acid sequence of plasmid pAtrp-Mev6(2) with vector backbone pAtrp and insert PrTub-HMG1 (20888)-erg9/erg20, MsmzMevK-erg8- 2A-erg19-2A-ldi1 -2A-erg10-2A-erg13-Pr(PolyU)-ShBle-gfp
- SEQ ID NO: 51 nucleic acid sequence of plasmid pACarS-BASIC with vector backbone pACarS and insert PrTub-NeoR-XylE
- SEQ ID NO: 52 nucleic acid sequence of plasmid pACarS-15b(A3) with vector backbone pACarS and insert PrTub-Erg1-MdAS
- SEQ ID NO: 53 nucleic acid sequence of plasmid pACarS-14(1) with vector backbone pACarS and insert PrTub-Erg1-MdAS-CrCYP-AtCPR
- SEQ ID NO: 54 nucleic acid sequence of plasmid p18S-P38 SEQ ID NO: 55 nucleic acid sequence of plasmid p18-P39 SEQ ID NO: 56 amino acid sequence of viral 2A linker peptide F2A from Foot & Mouth Disease Virus
- SEQ ID NO: 79 nucleic acid sequence of plasmid pAKU20888-S1 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-Term(elf1)
- SEQ ID NO: 80 nucleic acid sequence of plasmid pAKU80mya-M2 with vector backbone pAKU80mya and insert Prhsp70/elf1-NeoR-xylE -NosTerm
- SEQ ID NO: 81 nucleic acid sequence of plasmid pAKU20888-S1 with vector backbone pAKU20888 and insert PrTub-NeoR-2A-XylE-Term(elf1)
- SEQ ID NO: 82 nucleic acid sequence of plasmid pAtrp-BASIC with vector backbone pAtrp and insert PrTub-NeoR-XylE-Pr(PolyU)-ShBle-gfp
- SEQ ID NO: 83 nucleic acid sequence of plasmid pACarS-BASIC with vector backbone pACarS and insert PrTub-NeoR-XylE
- SEQ ID NO: 84 nucleic acid sequence of plasmid pAKU80mya-AmS with vector backbone pAKU80mya and insert AmS
- SEQ ID NO: 85 nucleic acid sequence of plasmid pAKU80mya-DamDS with vector backbone pAKU80mya and insert DamDS
- SEQ ID NO: 86 nucleic acid sequence of plasmid pAKU80mya-CucDS with vector backbone pAKU80mya and insert CucDS
- SEQ ID NO: 87 nucleic acid sequence of plasmid pAKU80mya-AmS/CYPC2/ATR-V1 with vector backbone pAKU80mya and insert AmS/CYPC2/ATR-V1
- SEQ ID NO: 88 nucleic acid sequence of plasmid pAKU80mya-AmS/CYPC2/ATR-V2 with vector backbone pAKU80mya and insert AmS/CYPC2/ATR-V2
- SEQ ID NO: 89 nucleic acid sequence of plasmid pAKU80mya-AmS/CYPC2/fdx with vector backbone pAKU80mya and insert AmS/CYPC2/fdx
- SEQ ID NO: 90 nucleic acid sequence of plasmid pAKU20888-AmS/CYPC2/ATR with vector backbone pAKU80(20888) and insert AmS/CYPC2/ATR
- SEQ ID NO: 91 nucleic acid sequence of plasmid pAKU20888-AmS/CYPC2/fdx with vector backbone pAKU80(20888) and insert AmS/CYPC2/fdx
- SEQ ID NO: 92 nucleic acid sequence of plasmid pAKU20888-LupS/CYPC2/ATR with vector backbone pAKU80(20888) and insert LupS/CYPC2/ATR
- SEQ ID NO: 93 nucleic acid sequence of plasmid pAKU20888-LupS/CYPC2/fdx with vector backbone pAKU80(20888) and insert LupS/CYPC2/fdx
- SEQ ID NO: 94 nucleic acid sequence of plasmid pCAMBIA-Yae-trpE-BASIC with vector backbone pCAMBIA-Yae and insert lacZ/AmS
- SEQ ID NO: 95 nucleic acid sequence of plasmid pCAMBIA-Yae-KU80mya-neoR-lacZ- AmS with vector backbone pCAMBIA-Yae and insert KU80mya-neoR- lacZ-AmS
- SEQ ID NO: 96 protein sequence of neomycin resistance protein
- SEQ ID NO: 98 nucleic acid sequence of crRNA sequence of first oligonucleotide 1 in table 6
- SEQ ID NO: 99 nucleic acid sequence of crRNA sequence of second oligonucleotide 1 in table 6
- SEQ ID NO: 102 nucleic acid sequence of first oligonucleotide 1 in table 6
- SEQ ID NO: 103 nucleic acid sequence of second oligonucleotide 1 in table 6
- SEQ ID NO: 104 nucleic acid sequence of third oligonucleotide 1 in table 6
- SEQ ID NO: 105 nucleic acid sequence of fourth oligonucleotide 1 in table 6
- SEQ ID NO: 108 nucleic acid sequence of PrTeF1-ShBle-CYCTerm-CEN6ArsH4 artificial chromosome sequence
- SEQ ID NO: 109 nucleic acid sequence of panARS-oriT artificial chromosome sequence
- the present invention relates to genetically modified strains and corresponding bioprocess for the production of heterologous terpenes, exemplified by but not limited to triterpenes such as lupeol, oleanolic acid, ursolic acid, betulinic acid, corosolic acid and maslinic acid as well as to metabolic modifications to improve the supply of biosynthetic precursor molecules.
- triterpenes such as lupeol, oleanolic acid, ursolic acid, betulinic acid, corosolic acid and maslinic acid
- the invention further provides a novel genetic platform technology for metabolic engineering in Labyrinthulomycota, in particular Thraustochytrids based on the application of biosynthetic biobricks for combinatorial biosynthesis of various terpene molecules as well as vectors compatible with one step, multifragment, in vivo gap-repair cloning in Saccharomyces cerevisiae.
- Labyrinthulomycota are able to produce significant quantities of squalene, it has not been attempted to employ these organisms to synthesize plant derived triterpenes. While the microorganisms have the natural ability to produce squalene as a precursor for the desired triterpenes, genetic engineering is required to provide them with the ability to convert squalene into different triterpenes. To this end, suitable enzymes need to be identified, which can be heterologously expressed in the host. Moreover, in order to reach a reasonable productivity, modification of native metabolic pathways is necessary in order to address production limiting factors such as feedback regulation mechanisms and competing metabolic pathways. It was not known, whether Labyrinthulomycota would be capable of providing the desired activities and could be engineered to synthesize the triterpenes with high productivity avoiding detrimental toxicity effects of the products.
- the present invention provides a microorganism of the class Labyrinthulomycota comprising at least one transgene encoding a heterologous 2,3- oxidosqualene cyclase.
- Labyrinthulomycota or Labyrinthulomycetes are a class of mostly marine protists, which produce an ectoplasmatic network of filaments.
- the two main groups of Labyrinthulomycota are labyrinthulids and thraustochytrids.
- Microorganisms of the class Labyrinthulomycota were found in the context of the present invention to be able to express a heterologous 2,3-oxidosqualene cyclase and form triterpenes, which naturally only occur in plants.
- the heterologous 2,3-oxidosqualene cyclase is selected from the group consisting of an alpha-amyrin synthase, a beta-amyrin synthase, a lupeol synthase, a dammarenediol synthase and a cucurbitadienol synthase.
- alpha-amyrin synthase and a beta-amyrin synthase facilitates the formation of alpha-amyrin and beta-amyrin, respectively, from 2,3-oxidosqualene, which is naturally formed in the organism from squalene.
- Lupeol is formed from 2,3-oxidosqualene by lupeol synthase.
- Lupeol, alpha-amyrin and beta-amyrin can be converted to oleanolic acid, ursolic acid, betulinic acid, corosolic acid and maslinic acid.
- Dammarenediol which is formed by a dammarenediol synthase, can be converted to protopanaxadiol by a cytochrome P450 oxidase and then - by glycosylation with glycosyl transferases - ginsenosides are formed, which represent a group of compounds with various biological effects.
- a suitable heterologous beta-amyrin synthase to be introduced as a transgene is the amyrin synthase from Malus domestica (MdOSCI Oder MdAS, ACM89977.1) with the sequence represented by SEQ ID NO: 1.
- a suitable heterologous lupeol synthase to be introduced as a transgene is the lupeol synthase from Rhizinus communis (LupS, NP001310684.1) with the sequence represented by SEQ ID NO: 2.
- a suitable heterologous dammarenediol synthase to be introduced as a transgene is the dammarenediol synthase from Panax ginseng (AE027862.1) with the sequence represented by SEQ ID NO: 74.
- a suitable heterologous cucurbitadienol synthase to be introduced as a transgene is the cucurbitadienol synthase from Siraitia grosvenorii (AEM42982.1) with the sequence represented by SEQ ID NO: 75.
- amyrin synthase cucurbitadienol synthase, dammarenediol synthase and lupeol synthase are described in Andre et al. 2016, Dai et al. 2015, Hu et al. 2013 and Guhling et al. 2006.
- the 2,3-oxidosqualene cyclase has an amino acid sequence selected from the sequences of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 74 and SEQ ID NO: 75 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 74 or SEQ ID NO: 75.
- the microorganism described above is selected from the group consisting of Thraustochytrids, in particular Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea.
- the order Thraustochytridiales comprises the genera Schizochytrium, Aurantiochytrium, Thraustochytrium, Botryochytrium, Parietichytrium, Aplanochytrium, Labyrinthuloides, Oblongichytrium, Sicyoidochytrium, Japonochytrium, Ulkenia and the novel genus Hondea as suggested by Dellero et al. (2018).
- Hondea has been suggested as a new genus and it is possible that Schizochytrium sp. S31 (ATCC 20888) is renamed as a Hondea strain. Therefore, Hondea is covered by the genera.
- Thraustochytrids represent an order of Labyrinthulomycetes, which includes the genera Schizochytrium, Aurantiochytrium and Thraustochytrium. Suitable strains of Thraustochytrids are Schizochytrium sp. S31 (ATCC 20888), Aurantiochytrium sp. T66 (ATCC-PRA-276), Thraustochytrium sp. S-3 (ATCC-26185) and Aurantiochytrium limacinum SR 21 (ATCC-MYA-1381). These strains are publicly available from the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110 USA.
- ATCC American Type Culture Collection
- the microorganism in any of the embodiments described is selected from Schizochytrium sp. S31 (ATCC 20888), Aurantiochytrium sp. T66 (ATCC-PRA-276), Thraustochytrium sp. S-3 (ATCC-26185) and Aurantiochytrium limacinum SR 21 (ATCC- MYA-1381).
- transgenes are provided as transgenes, in particular to efficiently convert alpha-amyrin, beta-amyrin und lupeol to oleanolic acid, ursolic acid, betulinic acid, corosolic acid and maslinic acid.
- the microorganism described above further comprises at least one transgene encoding a cytochrome P450 oxidase and, optionally, a cytochrome P450 reductase or a ferredoxin, preferably a hybrid cytochrome P450 oxidase/reductase or a hybrid cytochrome P450 oxidase/ferredoxin.
- the at least one transgene encoding a cytochrome P450 oxidase and/or a cytochrome P450 reductase or a hybrid cytochrome P450 oxidase/reductase is fused to an endoplasmatic reticulum (ER) targeting sequence and/or an ER retention sequence or the ferredoxin or the hybrid cytochrome P450 oxidase/ferredoxin is fused to a mitochondrial targeting sequence.
- ER endoplasmatic reticulum
- cytochrome P450 oxidase or hybrid cytochrome P450 oxidase/reductase increases the efficiency of the biosynthetic reaction (kinetics) by the concept of separation of consecutive enzymatic reactions into two compartments.
- ER membrane attachment facilitates folding and further stabilizes proteins (Chen et al. 2016) (Arendt et al. 2017, Kim et al. 2019).
- a suitable cytochrome P450 oxidase may be derived from Cantharantus roseus (CrAO, CYP716AL1) and is represented by the sequence of SEQ ID NO: 3 or from Lagerstroemia speciosa (LsCYP716, CYP5) represented by the sequence SEQ ID NO: 5.
- a suitable cytochrome P450 reductase may be derived from Arabidopsis thaliana (ATR1) and is represented by the sequence of SEQ ID NO: 4 or from Botryococcus braunii (BbCPR) represented by the sequence of SEQ ID NO: 6.
- the cytochrome P450 oxidase from Cantharantus roseus is described in Huang et al. 2012.
- the cytochrome P450 reductase from Botryococcus braunii is described in Tsou et al. 2017.
- a cytochrome P450 oxidase from banba tree is described in Sandeep et al. 2017.
- the cytochrome P450 reductase from Arabidopsis thaliana is described in Urban et al. 1997.
- the cytochrome P450 oxidase has an amino acid sequence selected from the sequences of SEQ ID NO: 3 and SEQ ID NO: 5 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 3 or SEQ ID NO: 5.
- the cytochrome P450 oxidase can be provided as a hybrid or fusion protein with a cytochrome P450 reductase or a ferredoxin, which is able to regenerate the cofactor and thus enhance the redox efficiency of the hybrid enzyme.
- the cytochrome P450 reductase has an amino acid sequence selected from the sequences of SEQ ID NO: 4 and SEQ ID NO: 6 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 4 or SEQ ID NO: 6.
- the amino acid sequence of a fusion protein cytochrome P450 monooxygenase LsCYP716 from Lagerstroemia speciosa with cytochrome P450 reductase BbCPR from Botyrococcus braunii with an ER-targeting signal is represented by the sequence of SEQ ID NO: 8.
- the amino acid sequence of a fusion protein cytochrome P450 oxidase CrAO from Cantharanthus roseus with cytochrome P450 reductase from Arabidopsis thaliana (ATR) with an ER-targeting and an ER-retention sequence is represented by the sequence of SEQ ID NO: 9.
- the hybrid cytochrome P450 oxidase/reductase has an amino acid sequence of SEQ ID NO: 8 or SEQ ID NO: 9 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 8 or SEQ ID NO: 9.
- amino acid sequence of a fusion protein cytochrome P450 oxidase CrAO from Cantharanthus roseus with a ferredoxin is represented by the sequence of SEQ ID NO: 12.
- the hybrid cytochrome P450 oxidase/ferredoxin has an amino acid sequence of SEQ ID NO: 12 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 12.
- the transgene encoding the 2,3-oxidosqualene cyclase may also be provided to express a fusion protein combining the 2,3-oxidosqualene cyclase with the cytochrome P450 oxidase or hybrid cytochrome P450 oxidase/reductase.
- the amino acid sequence of a synthetic fusion protein comprising amyrin synthase from Malus domestica with a hybrid cytochrome P450 oxidase/reductase is represented by the amino acid sequences of SEQ ID NO: 10 and SEQ ID NO: 11.
- the microorganism described above therefore encodes a fusion protein having an amino acid sequence of SEQ ID NO: 10 or SEQ ID NO: 11 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 10 or SEQ ID NO: 11.
- the microorganisms of the present invention naturally have the ability to produce squalene, which represents a precursor for the production of the desired triterpenes (figure 1).
- squalene represents a precursor for the production of the desired triterpenes (figure 1).
- FPPS farnesyl pyrophosphate synthase
- GFP farnesyl pyrophosphate synthase
- FPP farnesyl pyrophosphate
- SQL squalene synthase
- two enzymes catalyzing subsequent reactions may be provided as a hybrid or fusion protein providing both activities which may potentially lead to intramolecular transfer of intermediates or redox equivalents and thus more efficiently channel the metabolic flow at a biosynthetic branching point towards the desired product, as reviewed by Aalbers & Fraajie 2019.
- the microorganism further comprises a transgene for the overexpression of a squalene synthase and/or a squalene epoxidase under the control of a strong constitutive promoter, preferably a transgene for the overexpression of a hybrid squalene syn- thase/farnesyl pyrophosphate synthase and/or a hybrid squalene synthase/squalene epoxidase.
- the squalene synthase, squalene epoxidase and farnesyl pyrophosphate synthase provided as transgene may be the same as the respective endogenous enzyme of the host microorganism. Alternatively, the enzymes can be derived from a different organism. Overexpression is achieved by providing the transgene(s) together with and under the control of a strong, constitutive promoter. Suitable promoters are PrPK: pyruvate kinase gene promoter from A.
- limacinum MYA-1381 a-tubulin gene promoter from Schizochytrium ATCC 20888
- PrPolyUbi polyubiquitin promoter from Schizochytrium ATCC 20888
- PrG3P glycerol-3-phosphate dehydrogenase gene promoter from A. limacinum MYA- 1381
- PrS35 Cauliflower mosaic virus (CaMV) S35 promoter.
- a suitable squalene synthase may be derived from Aurantiochytrium limacinum ATCC MYA1381 , from Thermosynechococcus elongatus or from Saccharomyces cerevisiae ATCC 204508 as represented by the sequences of SEQ ID NO: 76, SEQ ID NO: 77 and SEQ ID NO: 78.
- the transgene encoding a squalene synthase encodes an amino acid sequence selected from any of SEQ ID NO: 76, SEQ ID NO: 77 and SEQ ID NO: 78 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 78.
- a further strategy to increase the availability of triterpene precursors is the overexpression of enzymes of the mevalonate pathway depicted on the left side of figure 1 .
- the microorganism carries at least one further transgene for the overexpression of enzymes of the mevalonate pathway under the control of a strong constitutive promoter, preferably selected from the group consisting of acetyl-CoA-acetyltransferase, 3-hydroxy- 3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophosphomevalonate decarboxylase and isopentenyl pyrophosphate isomerase.
- a strong constitutive promoter preferably selected from the group consisting of acetyl-CoA-acetyltransferase, 3-hydroxy- 3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophosphomevalonate decarbox
- the transgenes provided may be the same as the respective endogenous enzymes of the host microorganism. Again, overexpression of the respective transgene(s) is achieved by providing the transgene(s) together with and under the control of a strong, constitutive promoter.
- the amino acid sequence of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase of Schizochytrium ATCC 20888 is represented by the sequence of SEQ ID NO: 7.
- a truncated HMG CoA reductase as transgene, which does not comprise the sensor domain, feedback inhibition of the enzyme can be circumvented and thus the productivity of the enzyme can be increased.
- a heterologous enzyme may be used, which does not naturally possess a significant feedback control such as the mevalonate kinase derived from Methanosarzina mazeii (Primak et al. 2011).
- the microorganism carries a transgene encoding a truncated 3-hydroxy-3- methylglutaryl-CoA reductase, which is missing the regulatory sensor domain and/or a transgene encoding a heterologous mevalonate kinase derived from Methanosarzina mazeii.
- At least one endogenous gene selected from the group consisting of lanosterol synthase, b-carotene synthase, ku80 and anthranilate synthase is inactivated.
- Inactivation of a gene may be achieved by deletion of the gene or a relevant part of the gene or, more preferably, by insertion of at least one of the transgenes into the endogenous genomic locus of the gene to be inactivated.
- the insertion of (several) genes disrupts the locus in such a way, that the expression of the endogenous gene is no longer possible.
- the microorganism according to the invention is able to stably pass the ability to produce plant derived triterpenes to its progeny. Therefore, it is desirable to integrate the transgene(s) into the genome.
- At least one transgene are integrated into the genome of the microorganism.
- the transgene(s) is/are inserted into one or more of the lanosterol synthase, the b-carotene synthase, the ku80, the anthranilate synthase and the 18 S rDNA locus in the genome of the microorganism.
- the expression construct(s) encoding the transgene(s) is/are provided with flanking sequences, which are homologous to corresponding sequences in the genome of the host microorganism.
- the transgene(s) is/are inserted by double cross-over integration.
- the flanking sequences of the expression construct(s) are homologous to the flanking sequences of the endogenous lanosterol synthase, b-carotene synthase, ku80, anthranilate synthase and/or the 18 S rDNA genes resulting in inactivation of at least one of these genes.
- the present invention relates to a nucleic acid construct or set of nucleic acid constructs encoding
- At least one 2,3-oxidosqualene cyclase preferably selected from the group consisting of an alpha-amyrin synthase, a beta-amyrin synthase, a lupeol synthase, a dammarenediol synthase and a cucurbitadienol synthase; and at least one of (ii) a cytochrome P450 oxidase and, optionally, a cytochrome P450 reductase or a ferredoxin, preferably a hybrid cytochrome P450 oxidase/reductase or a hybrid cytochrome P450 oxidase/ferredoxin, and further preferably the at least one transgene encoding a cytochrome P450 oxidase and/or a cytochrome P450 reductase or a hybrid cytochrome P450 oxidase/reductase is fused
- a squalene synthase and/or a squalene epoxidase preferably a hybrid squa- lene synthase/farnesyl pyrophosphate synthase and/or a hybrid squalene syn- thase/squalene epoxidase;
- At least one enzyme selected from the group consisting of acetyl-CoA- acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3- methylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, dihydrophosphomevalonate decarboxylase and isopentenyl pyrophos-phate isomerase, preferably a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, which is missing the regulatory sensor domain and/or a heterologous mevalonate kinase derived from Methanosarzina mazeii.
- two or more of the genes recited in (i) to (iv) are fused to encode multienzymatic translational fusion proteins separated by self-cleavable 2A peptides.
- the construct or set of constructs is codon optimized to be expressed in Labyrinthulomycota, in particular in Thraustochytrids, preferably Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea.
- the enzymes encoded in (i) to (iv) are under the control of a strong constitutive promoter.
- the at least one 2,3-oxidosqualene cyclase and the at least one cytochrome P450 oxidase are encoded by the same construct and one or more of the enzymes listed under (iii) and/or (iv) are encoded on a separate construct.
- the amino acid sequence of a fusion protein comprising the amyrin synthase from Malus domestica and a hybrid cytochrome P450 oxidase/reductase is represented by the amino acid sequence of SEQ ID NO: 10 and SEQ ID NO: 11.
- the nucleic acid construct described above encodes a fusion protein having an amino acid sequence of SEQ ID NO: 10 orSEQ ID NO: 10 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NO: 10 or SEQ ID NO: 11 .
- the genes encoded by one construct as described above can be fused, i.e.
- FIG. 3 shows a schematic drawing of DNA cassettes for heterologous expression of triterpene biosynthetic features.
- Figure 4 shows a schematic drawing of DNA cassettes for overexpression of structural features of terpene precursor biosynthesis.
- the present invention relates to a vector or a set of vectors encoding a nucleic acid construct or set of nucleic acid constructs as described in any of the embodiments above.
- a vector according to the invention has a sequence represented by a sequence selected from the sequences of SEQ ID NOs: 22 to 24, 35, 37, 40, 42, 44 to 46, 52 and 53, or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NOs: 22 to 24, 35, 37, 40, 42, 44 to 46, 52 and 53.
- a vector according to the invention has a sequence represented by a sequence selected from the sequences of SEQ ID NOs: 17 to 21 , 25 to 29, 33, 34, 36, 54 and 55 or a sequence having a sequence identity of at least 80%, at least 85%, at least 90%, at least 95% to the sequences of SEQ ID NOs: 17 to 21 , 25 to 29, 33, 34 , 36 , 54 and 55.
- the present invention provides a method for the production of a microorganism, preferably a microorganism according to any of the embodiment described above, comprising a) providing a microorganism of the class Labyrinthulomycota; and b) transforming the microorganism of step a) with a nucleic acid construct or set of nucleic acid constructs according to any of the embodiments described above or a vector or set of vectors according to any of the embodiments described above.
- the microorganism provided in step a) is selected from the group consisting of Thraustochytrids, in particular Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea.
- the microorganism provided in step a) is selected from Schizochytrium sp. S31 (ATCC 20888), Aurantiochytrium sp. T66 (ATCC-PRA-276), Thraustochytrium sp. S-3 (ATCC-26185) and Aurantiochytrium limacinum SR 21 (ATCC-MYA-1381).
- Transformation of the microorganism can be achieved by various methods known to the person skilled in the art such as electroporation or biolistic transformation.
- the nucleic acid construct or the set of nucleic acid constructs is inserted into the genome of the microorganism by homologous recombination.
- the nucleic acid construct or the nucleic acid constructs of the set of nucleic acid constructs is/are inserted at one or more of the lanosterol synthase, the b-carotene synthase, the ku80, the anthranilate synthase and the 18 S rDNA locus in the genome of the microorganism.
- the present invention relates to a method for the production of one or more plant derived triterpene(s) and/or derivatives thereof comprising the steps: i) providing a microorganism according to any of the embodiments described above; and ii) cultivating the microorganism of step i) under conditions, which facilitate the production of plant derived triterpenes.
- the plant derived triterpene(s) is/are selected from the group consisting of lupeol, oleanolic acid, ursolic acid, betulinic acid, corosolic acid, maslinic acid and dammarenediol.
- the enzymes of the methyl erythrol phosphate pathway (MEP) found in chloroplasts in the host microorganism, preferably in the mitochondria (see figure 6).
- the methyl erythrol phosphate pathway from the thermophilic cyanobacterium Mastigocladus laminosus can be expressed in a host selected from the group consisting of Thraustochytrids, in particular Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea, in particular is selected from Schizochytrium sp. S31 (ATCC 20888), Aurantiochytrium sp. T66 (ATCC-PRA-276), Thraustochytrium sp. S-3 (ATCC-26185) and Aurantiochytrium limacinum SR 21 (ATCC-MYA-1381).
- Thraustochytrids in particular Schizochytrium, Aurantiochytrium, Thraustochytrium and Hondea
- Schizochytrium sp. S31 ATCC 20888
- Aurantiochytrium sp. T66 ATCC-PRA-276
- Schizochytrium sp. S31 ATCC 20888
- Aurantiochytrium sp. T66 ATCC-PRA-276
- Thraustochytrium sp. S-3 ATCC-26185
- Aurantiochytrium limacinum SR 21 ATCC- MYA-1381
- the trace element solution contained: H3B03 (2.86 g/L), MnCI2 * 4 H20 (1.81 g/L), ZnS04 * 7 H20 (0.222 g/L), Na2Mo04 * 2 H20 (0.39 g/L), CuS04 * 5 H20 (0.079 g/L), CoCI2 * 6
- H20 (0,035 g/L). Solid media were supplemented with 2% bacto agar. To prevent bacterial contaminations, carbenicillin at a concentration of 100 pg/mL was used in all M50-V agar plates.
- Example 2 Next generation genome sequencing and assembly Schizochytrium sp. S31 (ATCC 20888) was sequenced to gain bioinformatics insight into the isoprene/terpene metabolism, to understand codon usage and intron/exon structures, to define promoter regions and to identify integrations sites or gene deletions.
- Schizochytrium sp. S31 was obtained from the American Type Culture Collection (ATCC). Cells were cultured in M50-20 medium (Byne et al. 2013) at 28°C under agitation (170 rpm). Identity and axenity of the strain was verified by amplicon sequencing of the 18S rDNA using degenerate primers (Burja et al. 2006).
- Genomic DNA was extracted from 2 ml_ of an early log phase liquid culture using a CTAB DNA isolation protocol according to Ausuebel et al. (1999). gDNA was sheared on Covaris M220 with Covaris MicroCaps 50 pi (50 W Peak Incident Power, Duty Factor 20%, 200 Cycles/Burst, Treatment Time 30 sec, 20°C) to approx. 550 bp. Library preparation was performed with 700 ng sheared gDNA using the sparQ DNA Library Prep Kit (QuantaBio) according to the manufacturer's instructions.
- lllumina adapter sequences and reads with a quality threshold below 15 were removed (clipped) using Trimmomatic vO.36.5 (Bolger et al. 2014). The following settings were chosen for adapter clipping: 1. SLIDINGWINDOW (number of bases to average across: 4; average quality required: 15) 2. MINLEN (Minimum length of reads to be kept: 50) 3. LEADING (Minimum quality required to keep a base: 3) 4. TRAILING (Minimum quality required to keep a base: 3). Successful application of Trimmomatic was subsequently verified again via FastQC. De novo sequence assembly was performed using various assembly pipelines, among these, Velvet Optimizer (Zerbino et al.
- Strain development in this work essentially employed heterologous biosynthetic enzymes which originate from the plants Cantharantus roseus, Lagerstroemia speciosa, Malus domestica, Rhicinus communis, Arabidopsis thaliana, the green alga Botryococcus braunii, the yeast Saccharomyces cerevisiae or the cyanobacteria Synechococcus PCC7942 and Mastigocladus laminosus.
- Example 4 DNA-assembly via in vivo gap repair cloning in Saccharomyces cerevisiae
- DNA-cloning was exclusively accomplished via one step, multifragment assembly of up to 20 pieces using in vivo gap repair cloning in Saccharomyces cerevisiae.
- S. cerevisiae in vivo gap-repair has proven as an efficient tool for denovo assembly of plasmids (Ma et al. 1987, Raymond et al. 1999, Raymond et al. 2002, van Leuwen et al. 2015, Shanks et al. 2009), the cloning of very large gene clusters or chromosomes directly from genomic DNA (Kouprina & Larionov 2016) as well as for the implantation of entire bacterial genomes or the design and assembly of synthetic genomes (Karas et al.
- complex substrates were removed from the cell suspension by harvesting the yeast cells via centrifugation at 4000 g for 5 min, followed by three consecutive wash steps with 1 mL H20.
- the cell pellet was resuspended in 400 pi H20 and plated in 200 pi aliquots onto SC w/o Uracil plates. Colonies appeared after 2 days of growth at 30°C but were routinously grown for 4-5 days to develop thick colonies.
- Example 5 Colony plasmid rescue, vector amplification and sequence verification
- Plasmid extraction was essentially accomplished using the QIAprep spin plasmid miniprep kit (Qiagen) with minor modifications.
- the precooled reaction tubes were subjected to a mechanical breakup at 2800 rpm for 10 min using a Disruptor Genie Digital device (Scientific Industries Inc.). All successive steps of the plasmid purification follow the instructions provided by the manufacturer.
- Protocol A Electroporation without enzymatic pretreatment: Cells from 50 mL culture were harvested by centrifugation at 4000 g for 10 min (4°C), washed once in 20 mL buffer SEP (1 M Sorbitol, 1 mM HEPES, pH 6,5) and resuspended in 10 mL of the same buffer.
- the cells were subjected to a pretreatment with 25 mM Dithiothreitol for 20 min under continues agitation at 100 rpm (room temperature) followed by 20 sec of milling with 1 ⁇ 4 Vol glass beads (0,5 mm) using a vortex at maximum speed. After settling of the glass beads by gravitational force the supernatant containing the cells was transferred to a fresh reaction tube and washed twice with 10 mL of buffer SEP. The final pellet was resuspended in 2 mL buffer SEP, split into 10Opl aliquots and combined with 1- 5 pg of linearized DNA in precooled 0,2 cm electroporation cuvettes.
- Electroporation was carried out by applying two consecutive high voltage pulses at 500-1000 V (2500-7500 V/cm), 200 W and 25 pF using the Biorad Gene Pulser device. To enable cell recovery and transgene expression the transformation mix was subsequently diluted in 1 mL M50V-S and incubated overnight at 28°C and 180 rpm prior to plating on M50 selective agar plates.
- Protocol B Electroporation with enzymatic pretreatment: Cells from 50 mL culture were harvested by centrifugation at 4000 g for 10 min (4°C), washed once in 20 mL buffer SEP (1 M Sorbitol, 1 mM HEPES, pH 6,5) and resuspended in 10 mL buffer EPT (1 M Sorbitol, 10 mM CaCI2, 1 mM HEPES, pH 6,5). To initiate cell wall digestion the cell suspension was supplemented with 1/5 Vol of an enzyme cocktail consisting of protease XV (10 mg/mL), Snailase (10 mg/mL), Viscozym L and hen egg lysozyme (5 mg/mL) in buffer SEP.
- protease XV 10 mg/mL
- Snailase 10 mg/mL
- Viscozym L hen egg lysozyme
- Protocol C Biolistic transformation: Biolistic transformation also referred to as gene gun (micro-) particle bombardment or particle gun transformation was used to introduce recombinant DNA into Thraustochytrids, which were only poorly accessible by the electroporation procedures above.
- the DNA-coated particles were washed twice in 70% ethanol, followed by one washing in 100% ethanol and resuspension in a final volume of 50 pi of 100% ethanol.
- 10 pi of the microcarrier were then loaded onto macrocarrier discs and dried under air.
- the bombardments were carried out at a microcarrier to target distance of 6 cm using a 1350 psi rupture disc and a chamber vacuum of 25" Hg.
- the plates were incubated at 30°C for approximately 24 h post bombardment. Then the cells were washed from the plates using 2 ml_ M50 medium, harvested by centrifugation at 4000 g for 2 min, resuspended in 300 mI M50 medium and plated onto selective M50 agar plates.
- reporter genes were implemented into most of the recombinant constructions.
- the coexpression of Aqueoria victoria (jellyfish) green fluorescence protein GFP or the catechol-2, 3-dioxygenase XylE from Pseudomonas putida enables selection of positive clones via fluorescence imaging or colorimetric staining of the reporters.
- Green fluorescence was measured at an excitation wavelength of 395/473 nm and an emission filter of 507 nm using a fluorescence imaging device.
- For XylE detection agar plates containing mutant colonies were sprayed with 0,5M pyrocatechol (Sigma-Aldrich).
- the respective gene cassettes were tested in Saccharomyces cerevisiae using vectors based on the galactose inducible bidirectional gall -gall 0 promoter. Since the GOIs were expressed as translational 2A peptide fusions with the respective antibiotic selection markers, Zeocin and G418 resistance could be employed as an indirect measure of efficient translation. Therefore S.
- cerevisiae strains containing the respective vectors were grown on SC w/o Uracil + 2% galactose and selected on increasing concentrations of Zeocin (200- 400 pg/ml) and G418 (200-300 pg/ml), respectively.
- S. cerevisae strain BY4741 was used as a negative control.
- Proteins samples extracted from S. cerevisiae or thraustochytridial mutant strains were separated on 4-12 % SDS-polyacrylamide gradient gels at 100 V constant voltage. Gels were stained using 0,5% Ponceau S (in 1% acetic acid) according to Goldman et al. (2016).
- Proteins were then transferred to nitrocellulose membrane (Amersham ProtranTM 0,2 pm) by semi dry blotting using a Biometra Fastblot apparatus at 50 Volts (30 min transfer time). Immunological detection on western blots was carried out using the BM Chemiluminescence Western Blotting Kit (Roche) according to the instructions provided by the manufacturer. Chemiluminescence detection was carried out using a LI-COR cDiGit blot scanning device. For increased sensitivity the SuperSignal® West Femto substrate was used instead of the luminol solution.
- Example 9 Plasmid vectors Table 5 gives a complete list of the plasmid vectors used to investigate improvements in triterpene biosynthesis as well as isoprene precursor provision. Combinatorial overexpression of isoprene precursor biosynthetic genes, gene fusions as well as sequential overexpression and selective intracellular targeting of triterpene biosynthetic core genes was investigated.
- the consecutive sequence numbers 1 to 39 in the table correspond to the schematic drawings of the respective gene expression cassettes in figures 3a-4b.
- Figures 7 to 10 show maps for the integration vectors.
- Plasmids of SEQ ID NOs: 37 to 53 can also be adapted to encode NeoR having the amino acid sequence of SEQ ID NO: 96 as exemplified with SEQ ID NOs: 80 to 83, which express NeoR having the sequence of SEQ ID NO: 96 as part of a fusion protein having amino acid sequence of SEQ ID NO: 79.
- Example 10A Agrobacterium-based transformation
- Agrobacterium transformants were selected on YM-agar plates (1 % Mannitol, 0.04 % yeast extract, 0.01 % NaCI, 0.02 % MgS04*7H20, 0.05 % K2HP04*3 H20, 1.5 % bacto agar; pH 7.0) supplemented with 100 pg/ml Streptomycin and 50 pg/ml Kanamycin. Cell culture, pre-preparation of cells and two-species mating were carried out according to Cheng et al. (2011) with modifications.
- Agrobacterium culture was harvested after 24 h precultivation in YM supplemented with 100 pg/ml Streptomycin and 50 pg/ml Kanamycin by centrifugation for 15 min at 4.500 g (RT) and resuspended in induction medium IM (TM, supplemented with 250 pM acetosyringone and 50 pg/ml Kanamycin) to a final OD600 of 0.4. Cultures were further incubated at 20 to 22°C for 4 h to establish distinctive transfer competence.
- IM induction medium
- the acceptor cells require pretreatment.
- To partially digest the cell wall of thraustochytrids cells were harvested by centrifugation for 5 min at 4.000 g (RT) and resuspended in enzyme medium (1 M Mannitol, 10 mM CaCI2, adjusted to pH 5.5, 0.25 mg/ml_ Protease XIV, 0.1 mg/ml_ Snailase) to an OD600 of 2. The reactions were subsequently incubated at 28 °C for 4 h at 180 rpm.
- Example 10B CRISPR/Cas9-gene editing
- Gene editing was primarily applied to support site-specific genomic integration of target expression cassettes into lanS, cars, ku80, trpE orsqe gene loci.
- Specific PAM sequences and corresponding single guide-RNAs (sgRNAs) for targets in Schizochytrium ATCC20888 were selected using CRISPRdirect software (Naito et al. 2014).
- CRISPRdirect software Naito et al. 2014.
- a selection of the crRNA sequences were checked against the Schizochytrium genome for potential multiple occurrence or presence of highly homologous sequences using Blastn in Gallaxy.eu (https://usegalaxy.eu/).
- sgRNAs against targets in Aurantiochytrium limacinum were completely designed via the gene editing software ChopChop v3 (Montague et al. 2014) which has integrated access to the ATCC MYA-1381 genome to check for off-target effects.
- EnGen Spy Cas9 New England Biolabs
- a derivative of Streptococcus pyogenes Cas9 with C- and N-terminal nucleartargeting signals was used throughout all gene editing experiments to facilitate nuclear import of the CRISPR/Cas9 ribonucleoprotein complex upon transformation.
- the DNA-templates for production of guide-RNA (gRNA) via in vitro transcription were generated by hybridization of two overlapping oligonucleotides, which were elongated by a polymerase chain reaction.
- Oligonucleotide 1 (cf. table 6) comprises/encodes a bacteriophage T7-promoter, the target specific 20 bp crRNA and an overlap region to oligocucleotide 2, whereas the latter primarily encodes the Tracr-RNA sequence required for binding to the Cas9 endonuclease.
- Template-DNA synthesis and in vitro transcription were carried out using the EnGen sgRNA synthesis Kit (New England Biolabs).
- RNAs were purified using the MEGAclearTM Kit (Invitrogen) or the Monarch RNA Cleanup Kit (New England Biolabs), and analysed 8M-urea- polyacrylamide gel electrophoresis as described by Summer et al. (2009). Quantification of RNA was performed by at a wavelength of 260 nm using a NanoVue spectrophotometer (GE Healthcare). sgRNA was stored at -80 until further investigation.
- sgRNA, Cas9 endonuclease and linearized expression cassettes eg., Spel-fragments of Ku80 vectors
- flanking homology regions to the genomic cutting site generated by the CRSIPR/Cas9 ribonucleoprotein complex were cotransformed into thraustochytrids via electroporation.
- Example 10C RNA-preparation and trancriptome analysis Preparation of total RNA was essentially carried out using the RNeasy Plant Mini Kit (Qiagen) according to the instructions provided by the manufacturer. The optional extraction buffer RLT supplemented with 40 mM DTT (final cone.) was used for initial resuspension of cells. Qualitative analysis of RNA integrity was accomplished by denaturing agarose gel electrophoresis in 1 xTBE buffer supplemented with 1 ml/100ml of a 1M GITC (Guanidiniumisothiocyanate) solution.
- RNA samples derived from cells in different growth stages or subject to abiotic stress factors such as heat shock, heavy metal stress or supplemented by multiple carbon sources were analysed to generate RNA-based evidence supporting the genome annotation process.
- Libraries for sequencing were generated from 100-1 .000 ng total RNA with NEBNext® UltraTM II RNA Library Prep Kit for lllumina together with NEBNext® Poly(A) mRNA Magnetic Isolation Module according to the manufacturer's instructions. Libraries were quality controlled with High Sensitivity DNA Kit on Bioanalyzer (Agilent) and quantified using a Qubit 2.0 Fluorometer (ThermoFisher Scientific) with ds HS Assay Kit. Sequencing was performed in the Genomics Service Unit (LMU Biocenter, Kunststoff) on lllumina MiSeq with v3 chemistry (2x 300 bp paired-end sequencing).
- Example 10D Southern Blotting & Hybridization To verify successful genomic integration of the respective expression plasmids, genomic DNA was extracted from 1 mL of mid log liquid cultures using a CTAB protocol (Ausuebel 1999). Approximately 10 pg aliquots of the genomic DNA were subjected to restriction digestion using enzymes that generate a target fragment size of 500 - 3500 bp. Digested DNA samples from wildtyp and mutant cell lines were applied to denaturing agarose gel electrophoresis using 1 ,2% gels in 1 x TBE (120 V constant voltage). Ethidium bromide was used for DNA visualization under UV.
- Hybridization was carried out at 50°C overnight in an hybridization oven OV2 (Biometra).
- Chemiluminescence detection based on an alcaline phosphatase-conjugated Anti-DIG antibody reaction with the substrate CSPD [Disodium 3-(4-methoxyspiro ⁇ l,2-dioxetane- 3,2'-(5'-chloro)tricyclo[3.3.1 13,7]decan ⁇ -4-yl) phenyl phosphate] was carried out using the cDiGit Blot Scanner (LI-COR).
- Example 10E Squalene extraction Extraction of squalene was performed following the protocol of Matsuura et al. (2012) with some modifications. Briefly, approximately 50 mg of lyophilized cells were mixed with 500 pg of internal standard phenyloctadecane (Sigma-Aldrich, St. Louis, MO, USA) dissolved in 250 pi methanol/chloroform (2:1 , v:v), 1 ml of glass beads (0,25 - 0,5 mm, Carl Roth, Düsseldorf, Germany) and 1 ml of methanol/chloroform (2:1 , v:v) in a 14 ml screw cap glass tubes.
- internal standard phenyloctadecane Sigma-Aldrich, St. Louis, MO, USA
- the lipid fraction Upon evaporation of the solvent in a speedvac (Savant, USA), the lipid fraction was subjected to saponification by resuspension of the residue in 3 ml 0.5 M KOH (in ethanol) and subsequent incubation at 90 °C for 1 hour. After cooling to room temperature, 2 ml n-hexane (Carl Roth, Düsseldorf, Germany) and 1 ml ddH20 were added and the samples were briefly vortexed. In order to achieve most distinct phase separation, centrifugation at 3000 g for 10 min at room temperature was applied. The upper phase (n-hexane) was collected in a fresh glass tube.
- the hydrophilic phase was extracted again with 2 ml n-hexane, centrifuged and the solvent phases of both extractions were combined. Prior to the measurements the samples were dried in a speedvac and resuspended in a suitable volume of acetonitrile (Carl Roth, Düsseldorf, Germany) for subsequent HPLC analysis.
- HPLC-standards were prepared by dissolving 10 mg/ml of squalene in ethanol (> 98 %, Sigma Aldrich, St. Louis, MO, USA) together with internal standard phenyloctadecane (> 99,5 %, Sigma Aldrich, St. Louis, MO, USA).
- the stock solution was diluted (1 :10) with mobile phase to achieve a concentration range of 5 to 100 pg/ml for squalene and 25 to 125 pg/ml for phenyloctadecane, respectively.
- the lipid fraction Upon evaporation of the solvent in a speedvac (Savant, USA), the lipid fraction was subjected to saponification by resuspension of the residue in 3 ml 0.5 M KOH (in ethanol) and subsequent incubation at 90 °C for 1 hour. After cooling to room temperature, 2 ml n-hexane (Carl Roth, Düsseldorf, Germany) and 1 ml ddH20 were added and the samples were briefly vortexed. In order to achieve most distinct phase separation, centrifugation at 3000 g for 10 min at room temperature was applied. The upper phase (n-hexane) was collected in a fresh glass tube.
- the hydrophilic phase was extracted again with 2 ml n-hexane, centrifuged and the solvent phases of both extractions were combined. Prior to the measurements the samples were dried in a speedvac and resuspended in a suitable volume of acetonitrile (Carl Roth, Düsseldorf, Germany) for subsequent HPLC analysis.
- HPLC-standards were prepared by dissolving 10 mg/ml of squalene in ethanol (> 98 %, Sigma Aldrich, St. Louis, MO, USA) together with internal standard phenyloctadecane (> 99,5 %, Sigma Aldrich, St. Louis, MO, USA).
- the stock solution was diluted (1 :10) with mobile phase to achieve a concentration range of 5 to 100 pg/ml for squalene and 25 to 125 pg/ml for phenyloctadecane, respectively.
- Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100, 4309-4321.
- Brendolise C., Yauk, Y.-K., Eberhard, E.D., Wang, M., Chagne, D., Andre, C., Greenwood, D.R., and Beuning, L.L. (2011).
- Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27, 753-759.
- AMPK regulating energy balance at the cellular and whole body levels.
- Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutr Metab Cardiovasc Dis 29, 409- 420.
- Betulinic acid derivatives that target gp120 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1. Antimicrob Agents Chemother 52, 128-136.
- virus 2A and 2A-like sequences provide a solution. Future Virology 8, 983-996.
- Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10. Mol Carcinog 52, 591-602.
- Botryococcus braunii a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66, 486-496.
- CRISPRdirect Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7), 1120-1123. https://doi.org/10.1093/bioinformatics/btu743 Nakazawa, A., Matsuura, H., Kose, R., Kato, S., Hyundai, D., Inouye, I., Kaya, K., and Watanabe, M.M. (2012). Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technology 109, 287-291.
- Betulinic, oleanolic and ursolic acids inhibit the enzymatic and biological effects induced by a P-l snake venom metalloproteinase. Chem Biol Interact 279, 219-226.
- Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. New Phytol 222, 408-424. Schmandke, H. (2009). Triterpenoide in Oliven. Ernahrungs Umschau 56, 92-95.
- Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin Cancer Res 9, 2866-2875. Taoka, Y., Nagano, N., Kai, H., and Hayashi, M. (2017). Degradation of Distillery Lees (Srochu kasu) by Cellulase-Producing Thraustochytrids. J Oleo Sci 66, 31-40.
- Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny Thraustochytriaceae, Labyrinthulomycetes: emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48, 199-211.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
La présente invention concerne des micro-organismes génétiquement modifiés pour produire des triterpènes dérivés de plantes. En particulier, la présente invention fournit un micro-organisme de la classe Labyrinthulomycota comprenant au moins un transgène codant pour une 2,3-oxydosqualène cyclase hétérologue. L'invention concerne en outre une construction d'acide nucléique codant pour au moins une 2,3-oxydosqualène cyclase et au moins une autre enzyme. La présente invention concerne également un procédé de production d'un micro-organisme selon l'invention et fournit en outre un procédé de production d'un ou plusieurs triterpènes dérivés de plantes et/ou de leurs dérivés comprenant une étape de culture d'un micro-organisme selon la présente invention dans des conditions favorisant la production de triterpènes dérivés de plantes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP2021/061342 | 2021-04-29 | ||
PCT/EP2021/061342 WO2022228687A1 (fr) | 2021-04-29 | 2021-04-29 | Production biotechnologique de terpènes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022229378A1 true WO2022229378A1 (fr) | 2022-11-03 |
Family
ID=75728859
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/061342 WO2022228687A1 (fr) | 2021-04-29 | 2021-04-29 | Production biotechnologique de terpènes |
PCT/EP2022/061458 WO2022229378A1 (fr) | 2021-04-29 | 2022-04-29 | Production biotechnologique de terpènes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/061342 WO2022228687A1 (fr) | 2021-04-29 | 2021-04-29 | Production biotechnologique de terpènes |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2022228687A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116891871A (zh) * | 2023-09-08 | 2023-10-17 | 云南农业大学 | 一种采用葫芦二烯醇合酶合成葫芦二烯醇的方法及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607900B2 (en) | 2000-01-28 | 2003-08-19 | Martek Biosciences Boulder Corporation | Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors |
WO2008130372A2 (fr) * | 2006-09-28 | 2008-10-30 | Microbia, Inc. | Production de stérols dans des levures et des champignons oléagineux |
US20120107893A1 (en) * | 2009-11-10 | 2012-05-03 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
JP2017131202A (ja) * | 2016-01-29 | 2017-08-03 | 国立大学法人大阪大学 | 22α位水酸化五環系トリテルペンの生産およびその利用 |
-
2021
- 2021-04-29 WO PCT/EP2021/061342 patent/WO2022228687A1/fr active Application Filing
-
2022
- 2022-04-29 WO PCT/EP2022/061458 patent/WO2022229378A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607900B2 (en) | 2000-01-28 | 2003-08-19 | Martek Biosciences Boulder Corporation | Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors |
WO2008130372A2 (fr) * | 2006-09-28 | 2008-10-30 | Microbia, Inc. | Production de stérols dans des levures et des champignons oléagineux |
US20120107893A1 (en) * | 2009-11-10 | 2012-05-03 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
JP2017131202A (ja) * | 2016-01-29 | 2017-08-03 | 国立大学法人大阪大学 | 22α位水酸化五環系トリテルペンの生産およびその利用 |
Non-Patent Citations (159)
Title |
---|
AALBERS, F.S.FRAAIJE, M.W.: "Enzyme Fusions in Biocatalysis: Coupling Reactions by Pairing Enzymes", CHEMBIOCHEM, vol. 20, 2019, pages 20 - 28 |
AASEN, I.M.ERTESVAG, H.HEGGESET, T.M.B.LIU, B.BRAUTASET, T.VADSTEIN, O.ELLINGSEN, T.E.: "Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids", APPL MICROBIOL BIOTECHNOL, vol. 100, 2016, pages 4309 - 4321, XP035870418, DOI: 10.1007/s00253-016-7498-4 |
AGRA, L.C.FERRO, J.N.S.BARBOSA, F.T.BARRETO, E.: "Triterpenes with healing activity: A systematic review", J DERMATOLOG TREAT, vol. 26, 2015, pages 465 - 470 |
AJAIYEOBA, E.O.ONOCHA, P.A.NWOZO, S.O.SAMA, W.: "Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem bark", FITOTERAPIA, vol. 74, 2003, pages 706 - 709, XP008048104, DOI: 10.1016/S0367-326X(03)00142-4 |
AJIKUMAR, P.K., TYO, K., CARLSEN, S., MUCHA, O., PHON, T.H.,STEPHANOPOULOS, G.: "Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms", MOL. PHARMACEUTICS, vol. 5, 2008, pages 167 - 190, XP002617175, DOI: 10.1021/MP700151B |
ANDRE, C.M.LEGAY, S.DELERUELLE, A.NIEUWENHUIZEN, N.PUNTER, M.BRENDOLISE, C.COONEY, J.M.LATEUR, M.HAUSMAN, J.-F.LARONDELLE, Y. ET A: "Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids", NEW PHYTOL, vol. 211, 2016, pages 1279 - 1294 |
ARAFILES, K.H.V.IWASAKA, H.ERAMOTO, Y.OKAMURA, Y.TAJIMA, T.MATSUMURA, Y.NAKASHIMADA, Y.AKI, T.: "Value-added lipid production from brown seaweed biomass by two-stage fermentation using acetic acid bacterium and thraustochytrid", APPL MICROBIOL BIOTECHNOL, vol. 98, 2014, pages 9207 - 9216, XP055473579, DOI: 10.1007/s00253-014-5980-4 |
ARENDT, P.MIETTINEN, K.POLLIER, J.DE RYCKE, R.CALLEWAERT, N.GOOSSENS, A.: "An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids", METABOLIC ENGINEERING, vol. 40, 2017, pages 165 - 175, XP029945566, DOI: 10.1016/j.ymben.2017.02.007 |
ATTA-UR-RAHMANZAREEN, S.CHOUDHARY, M.I.AKHTAR, M.N.KHAN, S.N.: "α-Glucosidase Inhibitory Activity of Triterpenoids from Cichorium intybus", J. NAT. PROD., vol. 71, 2008, pages 910 - 913 |
AYELESO, T.B.MATUMBA, M.G.MUKWEVHO, E.: "Molecules", 2017, article "Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases", pages: 22 |
BANKEVICH, A.NURK, S.ANTIPOV, D.GUREVICH, A.A.DVORKIN, M.KULIKOV, A.S.LESIN, V.M.NIKOLENKO, S.I.PHAM, S.PRJIBELSKI, A.D. ET AL.: "SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing", J COMPUT BIOL, vol. 19, 2012, pages 455 - 477, XP002764171, DOI: 10.1089/cmb.2012.0021 |
BAYNE, A.-C.V., BOLTZ, D., OWEN, C., BETZ, Y., MAIA, G., AZADI, P., ARCHER-HARTMANN, S.,ZIRKLE, R., LIPPMEIER, J.C.: "Vaccination against Influenza with Recombinant Hemagglutinin Expressed by Schizochytrium sp. Confers Protective Immunity", PLOS ONE, vol. 8, 2013, pages e61790, XP055062273, DOI: 10.1371/journal.pone.0061790 |
BESERRA, F.P.VIEIRA, A.J.GUSHIKEN, L.F.S.DE SOUZA, E.O.HUSSNI, M.F.HUSSNI, C.A.NOBREGA, R.H.MARTINEZ, E.R.M.JACKSON, C.J.DE AZEVED: "Lupeol, a Dietary Triterpene, Enhances Wound Healing in Streptozotocin-Induced Hyperglycemic Rats with Modulatory Effects on Inflammation, Oxidative Stress, and Angiogenesis", OXID MED CELL LONGEV, vol. 2019, 2019, pages 3182627 |
BOLGER, A.M.LOHSE, M.USADEL, B.: "Trimmomatic: a flexible trimmer for Illumina sequence data", BIOINFORMATICS, vol. 30, 2014, pages 2114 - 2120, XP055862121, DOI: 10.1093/bioinformatics/btu170 |
BOTH, D.M.GOODTZOVA, K.YAROSH, D.B.BROWN, D.A.: "Liposome-encapsulated ursolic acid increases ceramides and collagen in human skin cells", ARCH DERMATOL RES, vol. 293, 2002, pages 569 - 575, XP002265521 |
BRENDOLISE, C.YAUK, Y.-K.EBERHARD, E.D.WANG, M.CHAGNE, D.ANDRE, C.GREENWOOD, D.R.BEUNING, L.L.: "An unusual plant triterpene synthase with predominant a-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus x domestica: Oxidosqualene cyclases from apple", FEBS JOURNAL, vol. 278, 2011, pages 2485 - 2499 |
BROKER, J.N.MULLER, B.VAN DEENEN, N.PRUFER, D.SCHULZE GRONOVER, C.: "Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes", APPL MICROBIOL BIOTECHNOL, vol. 102, 2018, pages 6923 - 6934 |
BURJA, A.M.RADIANINGTYAS, H.WINDUST, A.BARROW, C.J.: "Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production", APPL MICROBIOL BIOTECHNOL, vol. 72, 2006, pages 1161 - 1169 |
CHANG, M.-H.KIM, H.-J.JAHNG, K.-Y.HONG, S.-C.: "The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene", APPL MICROBIOL BIOTECHNOL, vol. 78, 2008, pages 963 - 972, XP019586370 |
CHEN, A.H.SILVER, P.A.: "Designing biological compartmentalization", TRENDS IN CELL BIOLOGY, vol. 22, 2012, pages 662 - 670 |
CHEN, J.J.GENEREUX, J.C.WISEMAN, R.L.: "Endoplasmic reticulum quality control and systemic amyloid disease: Impacting protein stability from the inside out", IUBMB LIFE, vol. 67, 2015, pages 404 - 413 |
CHENG, R.MA, R.LI, K.RONG, H.LIN, X.WANG, Z.YANG, S.MA, Y.: "Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium", MICROBIOLOGICAL RESEARCH, vol. 167, no. 3, 2012, pages 179 - 186, XP055617890, Retrieved from the Internet <URL:https://doi.Org/10.1016/j.micres.2011.05.003> DOI: 10.1016/j.micres.2011.05.003 |
CHI, Z.HU, B.LIU, Y.FREAR, C.WEN, Z.CHEN, S.: "Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process", APPL BIOCHEM BIOTECHNOL, vol. 137-140, 2007, pages 805 - 815, XP055457326, DOI: 10.1007/s12010-007-9099-2 |
CHU, L.L.MONTECILLO, J.A.V.BAE, H.: "Recent Advances in the Metabolic Engineering of Yeasts for Ginsenoside Biosynthesis", FRONT. BIOENG. BIOTECHNOL., vol. 8, 2020, pages 139 |
D'ADAMO, S.SCHIANO DI VISCONTE, G.LOWE, G.SZAUB-NEWTON, J.BEACHAM, T.LANDELS, A.ALLEN, M.J.SPICER, A.MATTHIJS, M.: "Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production", PLANT BIOTECHNOL J, vol. 17, 2019, pages 75 - 87, XP055822420, DOI: 10.1111/pbi.12948 |
DAHLIN, P.SRIVASTAVA, V.BULONE, V.MCKEE, L.S.: "The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product", FRONT. MICROBIOL., vol. 7, 2016 |
DAI, L.LIU, C.ZHU, Y.ZHANG, J.MEN, Y.ZENG, YSUN, Y.: "Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii", PLANT CELL PHYSIOL, vol. 56, 2015, pages 1172 - 1182 |
DAI, Z., WANG, B., LIU, Y., SHI, M., WANG, D., ZHANG, X., LIU, T., HUANG, L., ZHANG, X.: "Producing aglycons of ginsenosides in bakers' yeast", SCI REP, vol. 4, 2015, pages 3698, XP055471751, DOI: 10.1038/srep03698 |
DAI, Z.LIU, Y.ZHANG, X.SHI, M.WANG, B.WANG, D.HUANG, L.ZHANG, X.: "Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides", METABOLIC ENGINEERING, vol. 20, 2013, pages 146 - 156, XP055471754, DOI: 10.1016/j.ymben.2013.10.004 |
DING, Y.WANG, K.-F.WANG, W.-J.MA, Y.-R.SHI, T.-Q.HUANG, H.JI, X.-J.: "Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering", APPL MICROBIOL BIOTECHNOL, vol. 103, 2019, pages 4313 - 4324, XP036776481, DOI: 10.1007/s00253-019-09802-2 |
DONG, L.POLLIER, J.BASSARD, J.-E.NTALLAS, G.ALMEIDA, A.LAZARIDI, E.KHAKIMOV, B.ARENDT, P.DE OLIVEIRA, L.S.LOTA, F. ET AL.: "Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast", METABOLIC ENGINEERING, vol. 49, 2018, pages 1 - 12, XP085507108, DOI: 10.1016/j.ymben.2018.07.002 |
DUEBER, J.E.WU, G.C.MALMIRCHEGINI, G.R.MOON, T.S.PETZOLD, C.J.ULLAL, A.V.PRATHER, K.L.J.KEASLING, J.D.: "Synthetic protein scaffolds provide modular control over metabolic flux", NAT BIOTECHNOL, vol. 27, 2009, pages 753 - 759, XP008144815 |
EHRHARDT, H.FULDA, S.FUHRER, M.DEBATIN, K.M.JEREMIAS, I.: "Betulinic acid-induced apoptosis in leukemia cells", LEUKEMIA, vol. 18, 2004, pages 1406 - 1412, XP037782004, DOI: 10.1038/sj.leu.2403406 |
ETHIER, S.WOISARD, K.VAUGHAN, D.WEN, Z.: "Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid", BIORESOURCE TECHNOLOGY, vol. 102, 2011, pages 88 - 93, XP055315438, DOI: 10.1016/j.biortech.2010.05.021 |
FOURNET, A.ANGELO, A.MUNOZ, V.ROBLOT, F.HOCQUEMILLER, R.CAVE, A.: "Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis", J ETHNOPHARMACOL, vol. 37, 1992, pages 159 - 164, XP023857034, DOI: 10.1016/0378-8741(92)90074-2 |
GAO, S.TONG, Y.ZHU, L.GE, M.JIANG, Y.CHEN, D.YANG, S.: "Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica", BIOTECHNOL LETT, vol. 39, 2017, pages 921 - 927, XP036239645, DOI: 10.1007/s10529-017-2318-1 |
GIBSON, D.G.BENDERS, G.A.ANDREWS-PFANNKOCH, C.DENISOVA, E.A.BADEN-TILLSON, H.ZAVERI, J.STOCKWELL, T.B.BROWNLEY, A.THOMAS, D.W.ALGI: "Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome", SCIENCE, vol. 319, 2008, pages 1215 - 1220, XP009101716, DOI: 10.1126/science.1151721 |
GOLDMAN, A.HARPER, S.SPEICHER, D.W.: "Detection of Proteins on Blot Membranes", CURR PROTOC PROTEIN SCI, vol. 86, 2016 |
GRAHAME HARDIE, D.: "AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease", J INTERN MED, vol. 276, 2014, pages 543 - 559 |
GUHLING, O.HOBL, B.YEATS, T.JETTER, R.: "Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticularwax crystals on stem and hypocotyl surfaces of Ricinus communis", ARCH BIOCHEM BIOPHYS, vol. 448, 2006, pages 60 - 72, XP055560806, DOI: 10.1016/j.abb.2005.12.013 |
GUPTA, A.ABRAHAM, R.E.BARROW, C.J.PURI, M.: "Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain", BIORESOURCE TECHNOLOGY, vol. 184, 2015, pages 373 - 378, XP029205302, DOI: 10.1016/j.biortech.2014.11.031 |
GUREVICH, A.SAVELIEV, V.VYAHHI, N.TESLER, G.: "QUAST: quality assessment tool for genome assemblies", BIOINFORMATICS, vol. 29, 2013, pages 1072 - 1075 |
HAMMER, S.K.AVALOS, J.L.: "Harnessing yeast organelles for metabolic engineering", NAT CHEM BIOL, vol. 13, 2017, pages 823 - 832, XP055712903, DOI: 10.1038/nchembio.2429 |
HARDIE, D.G.ASHFORD, M.L.J.: "AMPK: regulating energy balance at the cellular and whole body levels", PHYSIOLOGY (BETHESDA, vol. 29, 2014, pages 99 - 107 |
HARISH, B.G.KRISHNA, V.SANTOSH KUMAR, H.S.KHADEER AHAMED, B.M.SHARATH, R.KUMARA SWAMY, H.M.: "Wound healing activity and docking of glycogen-synthase-kinase-3-beta-protein with isolated triterpenoid lupeol in rats", PHYTOMEDICINE, vol. 15, 2008, pages 763 - 767 |
HATA, K.HORI, K.MURATA, J.TAKAHASHI, S.: "Remodeling of actin cytoskeleton in lupeol-induced B16 2F2 cell differentiation", J BIOCHEM, vol. 138, 2005, pages 467 - 472 |
HATA, K.HORI, K.TAKAHASHI, S.: "Role of p38 MAPK in lupeol-induced B16 2F2 mouse melanoma cell differentiation", J BIOCHEM, vol. 134, 2003, pages 441 - 445 |
HATA, K.ISHIKAWA, K.HORI, K.KONISHI, T.: "Differentiation-inducing activity of lupeol, a lupane-type triterpene from Chinese dandelion root (Hokouei-kon), on a mouse melanoma cell line", BIOL PHARM BULL, vol. 23, 2000, pages 962 - 967, XP002980461 |
HERNANDEZ-PEREZ, M.LOPEZ-GARCIA, R.E.RABANAL, R.M.DARIAS, V.ARIAS, A.: "Antimicrobial activity of Visnea mocanera leaf extracts", J ETHNOPHARMACOL, vol. 41, 1994, pages 115 - 119, XP025544319, DOI: 10.1016/0378-8741(94)90065-5 |
HOANG, M.H., HA, N.C., THORN, L.T., TAM, L.T., ANH, H.T.L., THU, N.T.H., HONG, D.D.: "Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 118, 2014, pages 632 - 639, XP055903175, DOI: 10.1016/j.jbiosc.2014.05.015 |
HONG, W.-K.RAIRAKHWADA, D.SEO, P.-S.PARK, S.-Y.HUR, B.-K.KIM, C.H.SEO, J.-W.: "Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101", APPL BIOCHEM BIOTECHNOL, vol. 164, 2011, pages 1468 - 1480, XP019922295, DOI: 10.1007/s12010-011-9227-x |
HU, W.LIU, N.TIAN, Y.ZHANG, L.: "Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng", BIOMED RES INT, vol. 2013, 2013, pages 285740 |
HUANG, J.ZHA, W.AN, T.DONG, H.HUANG, Y.WANG, D.YU, R.DUAN, L.ZHANG, X.PETERS, R.J. ET AL.: "Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid", APPL MICROBIOL BIOTECHNOL, vol. 103, 2019, pages 7029 - 7039, XP036859179, DOI: 10.1007/s00253-019-10004-z |
HUANG, L.LI, J.YE, H.LI, C.WANG, H.LIU, B.ZHANG, Y.: "Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus", PLANTA, vol. 236, 2012, pages 1571 - 1581 |
HUANG, Q.-X.CHEN, H.-F.LUO, X.-R.ZHANG, Y.-X.YAO, X.ZHENG, X.: "Structure and Anti-HIV Activity of Betulinic Acid Analogues", CURR MED SCI, vol. 38, 2018, pages 387 - 397, XP036617316, DOI: 10.1007/s11596-018-1891-4 |
HUANG, Z.-R.LIN, Y.-K.FANG, J.-Y.: "Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology", MOLECULES, vol. 14, 2009, pages 540 - 554, XP055147095, DOI: 10.3390/molecules14010540 |
HUMHAL, T.KASTANEK, P.JEZKOVA, Z.CADKOVA, A.KOHOUTKOVA, J.BRANYIK, T.: "Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4", BIOPROCESS BIOSYST ENG, vol. 40, 2017, pages 395 - 402 |
HUTTANUS, H.M.FENG, X.: "Compartmentalized metabolic engineering for biochemical and biofuel production", BIOTECHNOL J, vol. 12, 2017 |
IWASAKA, H.AKI, T.ADACHI, H.WATANABE, K.KAWAMOTO, S.ONO, K.: "Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by Aurantiochytrium", J OLEO SCI, vol. 62, 2013, pages 729 - 736, XP055247270, DOI: 10.5650/jos.62.729 |
IWASAKA, H.KOYANAGI, R.SATOH, R.NAGANO, A.WATANABE, K.HISATA, K.SATOH, N.AKI, T.: "A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105", GENES, vol. 9, 2018, pages 200 |
J. CHEM. TECHNOL. BIOTECHNOL., vol. 47, pages 181 - 182 |
JAGER, S.TROJAN, H.KOPP, T.LASZCZYK, M.N.SCHEFFLER, A.: "Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts", MOLECULES, vol. 14, 2009, pages 2016 - 2031 |
JAKOBSEN, A.N.AASEN, I.M.STROM, A.R.: "Endogenously synthesized (-)-proto-quercitol and glycine betaine are principal compatible solutes of Schizochytrium sp. strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids", APPL ENVIRON MICROBIOL, vol. 73, 2007, pages 5848 - 5856, XP008153839, DOI: 10.1128/AEM.00610-07 |
JIANG, Y.ZHU, Q.LIAO, Y.WANG, Q.LI, Y.DONG, X.PENG, J.YUAN, J.WANG, J.: "The Delta 5, 7-STEROLS and Astaxanthin in the Marine Microheterotroph Schizochytrium sp. S31", J AM OIL CHEM SOC, vol. 97, 2020, pages 839 - 850 |
KARAS, B.J.JABLANOVIC, J.SUN, L.MA, L.GOLDGOF, G.M.STAM, J.RAMON, A.MANARY, M.J.WINZELER, E.A.VENTER, J.C. ET AL.: "Direct transfer of whole genomes from bacteria to yeast", NAT METHODS, vol. 10, 2013, pages 410 - 412, XP055602448, DOI: 10.1038/nmeth.2433 |
KATABAMI, A.LI, L.IWASAKI, M.FURUBAYASHI, M.SAITO, K.UMENO, D.: "Production of squalene by squalene synthases and their truncated mutants in Escherichia coli", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 119, 2015, pages 165 - 171 |
KAYA, K.NAKAZAWA, A.MATSUURA, H.HONDA, D.INOUYE, I.WATANABE, M.M.: "Thraustochytrid Aurantiochytrium sp. 18W-13a Accummulates High Amounts of Squalene", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 75, 2011, pages 2246 - 2248, XP055531938, DOI: 10.1271/bbb.110430 |
KHAN, N.E.NYBO, S.E.CHAPPELL, J.CURTIS, W.R.: "Triterpene hydrocarbon production engineered into a metabolically versatile host--Rhodobacter capsulatus", BIOTECHNOL BIOENG, vol. 112, 2015, pages 1523 - 1532, XP071101916, DOI: 10.1002/bit.25573 |
KIM, J.-E.JANG, I.-S.SON, S.-H.KO, Y.-J.CHO, B.-K.KIM, S.C.LEE, J.Y.: "Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway", METAB ENG, vol. 56, 2019, pages 50 - 59, XP085876189, DOI: 10.1016/j.ymben.2019.08.013 |
KIM, K.-D.JUNG, H.-Y.RYU, H.G.KIM, B.JEON, J.YOO, H.Y.PARK, C.H.CHOI, B.-H.HYUN, C.-K.KIM, K.-T. ET AL.: "Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK", NUTR METAB CARDIOVASC DIS, vol. 29, 2019, pages 409 - 420 |
KLABUNDE, J.KUNZE, G.GELLISSEN, G.HOLLENBERG, C.P.: "Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element", FEMS YEAST RES, vol. 4, 2003, pages 185 - 193, XP008136433, DOI: 10.1016/S1567-1356(03)00148-X |
KOUPRINA, N.LARIONOV, V.: "Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology", CHROMOSOMA, vol. 125, 2016, pages 621 - 632, XP036055097, DOI: 10.1007/s00412-016-0588-3 |
KUMAR, S.KUMAR, V.PRAKASH, O.: "Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica", BIOMED RES INT, vol. 2013, 2013, pages 382063 |
KUNKEL, S.D.ELMORE, C.J.BONGERS, K.S.EBERT, S.M.FOX, D.K.DYLE, M.C.BULLARD, S.A.ADAMS, C.M.: "Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease", PLOS ONE, vol. 7, 2012, pages e39332 |
LAI, W.HUANG, L.HO, P.LI, Z.MONTEFIORI, D.CHEN, C.-H.: "Betulinic acid derivatives that target gp120 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1", ANTIMICROB AGENTS CHEMOTHER, vol. 52, 2008, pages 128 - 136 |
LASZCZYK, M.: "Pentacyclic Triterpenes of the Lupane, Oleanane and Ursane Group as Tools in Cancer Therapy", PLANTA MED, vol. 75, 2009, pages 1549 - 1560 |
LEE, S.POULTER, C.D.: "Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1", J BACTERIOL, vol. 190, 2008, pages 3808 - 3816 |
LEIPOLD, D.WUNSCH, G.SCHMIDT, M.BART, H.-J.BLEY, T.EKKEHARD NEUHAUS, H.BERGMANN, H.RICHLING, E.MUFFLER, K.ULBER, R.: "Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strains—Proposal of new biosynthetic pathways", PROCESS BIOCHEMISTRY, vol. 45, 2010, pages 1043 - 1051 |
LIU, X.-B.LIU, M.TAO, X.-Y.ZHANG, Z.-X.WANG, F.-Q.WEI, D.-Z.: "Metabolic engineering of Pichia pastoris for the production of dammarenediol-II", JOURNAL OF BIOTECHNOLOGY, vol. 216, 2015, pages 47 - 55 |
LIU, Y.JIANG, X.CUI, Z.WANG, Z.QI, Q.HOU, J.: "Engineering the oleaginous yeast Yarrowia lipolytica for production of a-farnesene", BIOTECHNOL BIOFUELS, vol. 12, 2019, pages 296 |
LOESCHCKE, A.DIENST, D.WEWER, V.HAGE-HULSMANN, J.DIETSCH, M.KRANZ-FINGER, S.HUREN, V.METZGER, S.URLACHER, V.B.GIGOLASHVILI, T. ET : "The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis", PLOS ONE, vol. 12, 2017, pages e0189816 |
LOPEZ-HORTAS, L.PEREZ-LARRAN, P.GONZALEZ-MUNOZ, M.J.FALQUE, E.DOMINGUEZ, H.: "Recent developments on the extraction and application of ursolic acid. A review", FOOD RES INT, vol. 103, 2018, pages 130 - 149 |
LU, C.ZHANG, C.ZHAO, F.LI, D.LU, W.: "Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae", ALCHE J, vol. 64, 2018, pages 3794 - 3802, XP071013728, DOI: 10.1002/aic.16370 |
LUKE, G.A.RYAN, M.D.: "The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution", FUTURE VIROLOGY, vol. 8, 2013, pages 983 - 996 |
MA, H.KUNES, S.SCHATZ, P.J.BOTSTEIN, D.: "Plasmid construction by homologous recombination in yeast", GENE, vol. 58, 1987, pages 201 - 216, XP025705444, DOI: 10.1016/0378-1119(87)90376-3 |
MACHADO, V.R.SANDJO, L.P.PINHEIRO, G.L.MORAES, M.H.STEINDEL, M.PIZZOLATTI, M.G.BIAVATTI, M.W.: "Synthesis of lupeol derivatives and their antileishmanial and antitrypanosomal activities", NAT PROD RES, vol. 32, 2018, pages 275 - 281, XP018530852 |
MANTZOURIDOU, F.TSIMIDOU, M.Z.: "Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6: Observations on squalene accumulation capacity in yeast", FEMS YEAST RESEARCH, vol. 10, 2010, pages 699 - 707 |
MARX, H.MECKLENBRAUKER, A.GASSER, B.SAUER, M.MATTANOVICH, D.: "Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus", FEMS YEAST RES, vol. 9, 2009, pages 1260 - 1270, XP055867263, DOI: 10.1111/j.1567-1364.2009.00561.x |
MASCHEK, J.A.BAKER, B.J.: "Algal Chemical Ecology", 2008, SPRINGER BERLIN HEIDELBERG, article "The Chemistry of Algal Secondary Metabolism", pages: 1 - 24 |
MATSUURA, H.WATANABE, M. M.KAYA, K.: "Squalene Quantification Using Octadecylbenzene as the Internal Standard", PROCEDIA ENVIRONMENTAL SCIENCES, vol. 15, 2012, pages 43 - 46, XP028498345, DOI: 10.1016/j.proenv.2012.05.008 |
MEADOWS, A.L.HAWKINS, K.M.TSEGAYE, Y.ANTIPOV, E.KIM, Y.RAETZ, L.DAHL, R.H.TAI, A.MAHATDEJKUL-MEADOWS, T.XU, L. ET AL.: "Rewriting yeast central carbon metabolism for industrial isoprenoid production", NATURE, vol. 537, 2016, pages 694 - 697, XP055577914, DOI: 10.1038/nature19769 |
MERTENS-TALCOTT, S.U.NORATTO, G.D.LI, X.ANGEL-MORALES, G.BERTOLDI, M.C.SAFE, S.: "Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10", MOL CARCINOG, vol. 52, 2013, pages 591 - 602 |
METZGER, P.LARGEAU, C.: "Botryococcus braunii: a rich source for hydrocarbons and related ether lipids", APPL MICROBIOL BIOTECHNOL, vol. 66, 2005, pages 486 - 496, XP019331745, DOI: 10.1007/s00253-004-1779-z |
MIDZAK APAPADOPOULOS V.: "Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies", FRONT ENDOCRINOL (LAUSANNE, vol. 7, 2016, pages 106 |
MONTAGUE, T. G.CRUZ, J. M.GAGNON, J. A.CHURCH, G. M.VALEN, E.: "CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing", NUCLEIC ACIDS RESEARCH, vol. 42, no. W1, 2014, pages W401 - W407, XP055201392, Retrieved from the Internet <URL:https://doi.org/10.1093/nar/gku410> DOI: 10.1093/nar/gku410 |
MORRONE, D.LOWRY, L.DETERMAN, M.K.HERSHEY, D.M.XU, M.PETERS, R.J.: "Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering", APPL MICROBIOL BIOTECHNOL, vol. 85, 2010, pages 1893 - 1906, XP019778553 |
MOSER, S.STROHMEIER, G.A.LEITNER, E.PLOCEK, T.J.VANHESSCHE, K.PICHLER, H.: "Whole-cell (p)-ambrein production in the yeast Pichia pastoris", METABOLIC ENGINEERING COMMUNICATIONS, vol. 7, 2018, pages e00077 |
NAGANO, N.MATSUI, S.KURAMURA, T.TAOKA, Y.HONDA, D.HAYASHI, M.: "The distribution of extracellular cellulase activity in marine Eukaryotes, thraustochytrids", MAR BIOTECHNOL (NY, vol. 13, 2011, pages 133 - 136, XP019896327, DOI: 10.1007/s10126-010-9297-8 |
NAITO, Y.HINO, K.BONO, H.UI-TEI, K.: "CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites", BIOINFORMATICS, vol. 31, no. 7, 2015, pages 1120 - 1123, XP055186272, Retrieved from the Internet <URL:https://doi.org/10.1093/bioinformatics/btu743> DOI: 10.1093/bioinformatics/btu743 |
NAKAZAWA, A.KOKUBUN, Y.MATSUURA, H.YONEZAWA, N.KOSE, R.YOSHIDA, M.TANABE, Y.KUSUDA, E.VAN THANG, D.UEDA, M. ET AL.: "TLC screening of thraustochytrid strains for squalene production", J APPL PHYCOL, vol. 26, 2014, pages 29 - 41, XP055374842, DOI: 10.1007/s10811-013-0080-x |
NAKAZAWA, A.MATSUURA, H.KOSE, R.KATO, S.HONDA, D.INOUYE, I.KAYA, K.WATANABE, M.M.: "Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production", BIORESOURCE TECHNOLOGY, vol. 109, 2012, pages 287 - 291, XP002678627, DOI: 10.1016/j.biortech.2011.09.127 |
OKINO, N.WAKISAKA, H.ISHIBASHI, Y.ITO, M.: "Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals", MAR BIOTECHNOL, vol. 20, 2018, pages 182 - 192 |
PADDON, C.J.WESTFALL, P.J.PITERA, D.J.BENJAMIN, K.FISHER, K.MCPHEE, D.LEAVELL, M.D.TAI, A.MAIN, A.ENG, D. ET AL.: "High-level semi-synthetic production of the potent antimalarial artemisinin", NATURE, vol. 496, 2013, pages 528 - 532, XP055112673, DOI: 10.1038/nature12051 |
PAL, A.GANGULY, A.CHOWDHURI, S.YOUSUF, M.GHOSH, A.BARUI, A.K.KOTCHERLAKOTA, R.ADHIKARI, S.BANERJEE, R.: "Bis-arylidene oxindole-betulinic Acid conjugate: a fluorescent cancer cell detectorwith potent anticancer activity", ACS MED CHEM LETT, vol. 6, 2015, pages 612 - 616 |
PERALTA-YAHYA, P.P.OUELLET, M.CHAN, R.MUKHOPADHYAY, A.KEASLING, J.D.LEE, T.S.: "Identification and microbial production of a terpene-based advanced biofuel", NAT COMMUN, vol. 2, 2011, pages 483 |
POLAKOWSKI, T.STAHL, U.LANG, C.: "Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 49, 1998, pages 66 - 71, XP001167014, DOI: 10.1007/s002530051138 |
POLLIER, J.VANCAESTER, E.KUZHIUMPARAMBIL, U.VICKERS, C.E.VANDEPOELE, K.GOOSSENS, A.FABRIS, M.: "A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis", NAT MICROBIOL, vol. 4, 2019, pages 226 - 233, XP036679931, DOI: 10.1038/s41564-018-0305-5 |
PRECIADO, L.M.REY-SUAREZ, P.HENAO, I.C.PEREANEZ, J.A.: "Betulinic, oleanolic and ursolic acids inhibit the enzymatic and biological effects induced by a P-I snake venom metalloproteinase", CHEM BIOL INTERACT, vol. 279, 2018, pages 219 - 226, XP085312399, DOI: 10.1016/j.cbi.2017.12.001 |
PRIMAK, Y.A.DU, M.MILLER, M.C.WELLS, D.H.NIELSEN, A.T.WEYLER, W.BECK, Z.Q.: "Characterization of a feedback-resistant mevalonate kinase from the archaeon Methanosarcina mazei", APPL ENVIRON MICROBIOL, vol. 77, 2011, pages 7772 - 7778, XP055109562, DOI: 10.1128/AEM.05761-11 |
PROSCHEL, M.DETSCH, R.BOCCACCINI, A.R.SONNEWALD, U: "Engineering of Metabolic Pathways by Artificial Enzyme Channels", FRONT BIOENG BIOTECHNOL, vol. 3, 2015, pages 168 |
PYLE, D.J.GARCIA, R.A.WEN, Z.: "Producing Docosahexaenoic Acid (DHA)-Rich Algae from Biodiesel-Derived Crude Glycerol: Effects of Impurities on DHA Production and Algal Biomass Composition", J. AGRIC. FOOD CHEM., vol. 56, 2008, pages 3933 - 3939, XP002634289, DOI: 10.1021/JF800602S |
QIAO, W.ZHOU, Z.LIANG, Q.MOSONGO, I.LI, C.ZHANG, Y.: "Improving lupeol production in yeast by recruiting pathway genes from different organisms", SCI REP, vol. 9, 2019, pages 2992 |
RAHMAT ENDANG ET AL: "Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 104, no. 11, 8 April 2020 (2020-04-08), pages 4659 - 4674, XP037126188, ISSN: 0175-7598, [retrieved on 20200408], DOI: 10.1007/S00253-020-10587-Y * |
RAYMOND, C.K.POWNDER, T.A.SEXSON, S.L.: "General method for plasmid construction using homologous recombination", BIOTECHNIQUES, vol. 26, 1999, pages 134 - 138,140-141 |
RAYMOND, C.K.SIMS, E.H.OLSON, M.V.: "Linker-mediated recombinational subcloning of large DNA fragments using yeast", GENOME RES, vol. 12, 2002, pages 190 - 197, XP055532111, DOI: 10.1101/gr.205201 |
REMANS, T.SCHENK, P.M.MANNERS, J.M.GROF, C.P.L.ELLIOTT, A.R.: "A Protocol for the Fluorometric Quantification of mGFP5-ER and sGFP(S65T) in Transgenic Plants", PLANT MOLECULAR BIOLOGY REPORTER, vol. 17, 1999, pages 385 - 395 |
REN, L.-J.SUN, G.JI, X.-J.HU, X.HUANG, H.: "Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp", BIORESOURCE TECHNOLOGY, vol. 157, 2014, pages 107 - 113, XP055937114, DOI: 10.1016/j.biortech.2014.01.078 |
RIOS, J.L.MANEZ, S.: "New Pharmacological Opportunities for Betulinic Acid", PLANTA MED, vol. 84, 2018, pages 8 - 19, XP018531033 |
SALA-TREPAT, J.M.EVANS, W.C.: "The meta Cleavage of Catechol by Azotobacter Species. 4-Oxalocrotonate Pathway", EUR J BIOCHEM, vol. 20, 1971, pages 400 - 413 |
SANDEEP, NULLMISRA, R.C.CHANOTIYA, C.S.MUKHOPADHYAY, P.GHOSH, S.: "Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba", NEW PHYTOL, vol. 222, 2019, pages 408 - 424 |
SCHMANDKE, H: "Triterpenoide in Oliven", ERNAHRUNGS UMSCHAU, vol. 56, 2009, pages 92 - 95 |
SCULLIN, C.STAVILA, V.SKARSTAD, A.KEASLING, J.D.SIMMONS, B.A.SINGH, S.: "Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima", BIORESOUR TECHNOL, vol. 184, 2015, pages 415 - 420 |
SEEMANN, T, SHOVILL: FASTER SPADES ASSEMBLY OF ILLUMINA READS, Retrieved from the Internet <URL:Https://Github.Com/Tseemann/Shovill> |
SELZER, E.PIMENTEL, E.WACHECK, V.SCHLEGEL, W.PEHAMBERGER, H.JANSEN, B.KODYM, R.: "Effects of betulinic acid alone and in combination with irradiation in human melanoma cells", J INVEST DERMATOL, vol. 114, 2000, pages 935 - 940, XP008072456, DOI: 10.1046/j.1523-1747.2000.00972.x |
SHANKS, R.M.Q.KADOURI, D.E.MACEACHRAN, D.P.O'TOOLE, G.A.: "New yeast recombineering tools for bacteria", PLASMID, vol. 62, 2009, pages 88 - 97, XP026351365 |
SIMAO, F.A., WATERHOUSE, R.M., LOANNIDIS, P., KRIVENTSEVA, E.V., ZDOBNOV, E.M.: "BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs", BIOINFORMATICS, vol. 31, 2015, pages 3210 - 3212 |
SMITH, T.F.WATERMAN, M.S.: "Identification of common molecular subsequences", JOURNAL OF MOLECULAR BIOLOGY, vol. 147, no. 1, 1981, pages 195 - 197, XP024015032, DOI: 10.1016/0022-2836(81)90087-5 |
SONG, T.-J.PARK, C.-H.IN, K.-R.KIM, J.-B.KIM, J.H.KIM, M.CHANG, H.J.: "Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway", PLOS ONE, vol. 16, 2021, pages e0249109 |
SONG, X.WANG, X.TAN, Y.FENG, Y.LI, W.CUI, Q.: "High Production of Squalene Using a Newly Isolated Yeast-like Strain Pseudozyma sp. SD301", J. AGRIC. FOOD CHEM., vol. 63, 2015, pages 8445 - 8451 |
SOUZA-MOREIRA, T.M.NAVARRETE, C.CHEN, X.ZANELLI, C.F.VALENTINI, S.R.FURLAN, M.NIELSEN, J.KRIVORUCHKO, A.: "Screening of 2A peptides for polycistronic gene expression in yeast", FEMS YEAST RES, 2018, pages 18 |
SPANOVA, M.DAUM, G.: "Squalene - biochemistry, molecular biology, process biotechnology, and applications", EUR. J. LIPID SCI. TECHNOL., vol. 113, 2011, pages 1299 - 1320, XP002722160, DOI: 10.1002/ejlt.201100203 |
SUMMER, H.GRAMER, R.DROGE, P.: "Denaturing Urea Polyacrylamide Gel Electrophoresis (Urea PAGE", JOURNAL OF VISUALIZED EXPERIMENTS, vol. 32, 2009, pages 1485, Retrieved from the Internet <URL:https://doi.org/10.3791/1485> |
TAN, Y.YU, R.PEZZUTO, J.M.: "Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation", CLIN CANCER RES, vol. 9, 2003, pages 2866 - 2875 |
TAOKA, Y.NAGANO, N.KAI, H.HAYASHI, M.: "Degradation of Distillery Lees (Shochu kasu) by Cellulase-Producing Thraustochytrids", J OLEO SCI, vol. 66, 2017, pages 31 - 40 |
TSOU, C.-Y.MATSUNAGA, S.OKADA, S.: "Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race", J BIOSCI BIOENG, vol. 125, 2018, pages 30 - 37 |
TSURUTA, H.PADDON, C.J.ENG, D.LENIHAN, J.R.HORNING, T.ANTHONY, L.C.REGENTIN, R.KEASLING, J.D.RENNINGER, N.S.NEWMAN, J.D.: "High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli", PLOS ONE, vol. 4, 2009, pages e4489, XP002516249, DOI: 10.1371/journal.pone.0004489 |
URBAN, P.MIGNOTTE, C.KAZMAIER, M.DELORME, F.POMPON, D.: "Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5", J BIOL CHEM, vol. 272, 1997, pages 19176 - 19186 |
VAN LEEUWEN, J.ANDREWS, B.BOONE, C.TAN, G.: "Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast", COLD SPRING HARB PROTOC, vol. 2015, 2015 |
WANG, P.WEI, W.YE, W.LI, X.ZHAO, W.YANG, C.LI, C.YAN, X.ZHOU, Z.: "Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency", CELL DISCOV, vol. 5, 2019, pages 5, XP055700596, DOI: 10.1038/s41421-018-0075-5 |
WATANABE, K., PEREZ, C. M. T., KITAHORI, T., HATA, K., AOI, M., TAKAHASHI, H., SAKUMA, T.,OKAMURA, Y., NAKASHIMADA, Y., YAMAMOTO, : "Improvement of fatty acid productivity of thraustochytrid, Aurantiochytrium sp. By genome editing", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 131, no. 4, 2021, pages 373 - 380, XP086525908, Retrieved from the Internet <URL:https://doi.Org/10.1016/j.jbiosc.2020.11.013> DOI: 10.1016/j.jbiosc.2020.11.013 |
WESTFALL, P.J.PITERA, D.J.LENIHAN, J.R.ENG, D.WOOLARD, F.X.REGENTIN, R.HORNING, T.TSURUTA, H.MELIS, D.J.OWENS, A. ET AL.: "Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin", PROC NATL ACAD SCI U S A, vol. 109, 2012, pages E111 - 118, XP055038329, DOI: 10.1073/pnas.1110740109 |
WOZNIAK, L.SKAPSKA, S.MARSZAFEK, K.: "Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities", MOLECULES, vol. 20, 2015, pages 20614 - 20641 |
WU, Y.XU, S.GAO, X.LI, M.LI, D.LU, W.: "Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica", MICROB CELL FACT, vol. 18, 2019, pages 83 |
XIE, R.ZHANG, H.WANG, X.YANG, X.WU, S.WANG, H.SHEN, P.MA, T.: "The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats", FOOD FUNCT, vol. 8, 2017, pages 299 - 306 |
XU, W.CHAI, C.SHAO, L.YAO, J.WANG, Y.: "Metabolic engineering of Rhodopseudomonas palustri s for squalene production", JOURNAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY, vol. 43, 2016, pages 719 - 725 |
YAROSH, D.B.BOTH, D.BROWN, D.: "Liposomal Ursolic Acid (Merotaine) Increases Ceramides and Collagen in Human Skin", HORM RES PAEDIATR, vol. 54, 2000, pages 318 - 321, XP009023309, DOI: 10.1159/000053280 |
YOKOYAMA, R.HONDA, D.: "Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov.", MYCOSCIENCE, vol. 1988, 2007, pages 199 - 211, XP019521654, DOI: 10.1007/s10267-006-0362-0 |
YOON, J.J.LEE, Y.J.HAN, B.H.CHOI, E.S.KHO, M.C.PARK, J.H.AHN, Y.M.KIM, H.Y.KANG, D.G.LEE, H.S.: "Protective effect of betulinic acid on early atherosclerosis in diabetic apolipoprotein-E gene knockout mice", EUROPEAN JOURNAL OF PHARMACOLOGY, vol. 796, 2017, pages 224 - 232, XP029894763, DOI: 10.1016/j.ejphar.2016.11.044 |
YU, X.-J.YU, Z.-Q.LIU, Y.-L.SUN, J.ZHENG, J.-Y.WANG, Z.: "Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70", APPL BIOCHEM BIOTECHNOL, vol. 177, 2015, pages 1229 - 1240 |
ZERBINO, D.R.BIRNEY, E.: "Velvet: algorithms for de novo short read assembly using de Bruijn graphs", GENOME RES, vol. 18, 2008, pages 821 - 829, XP008096312, DOI: 10.1101/gr.074492.107 |
ZHANG, D.JENNINGS, S.M.ROBINSON, G.W.POULTER, C.D.: "Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme", ARCH BIOCHEM BIOPHYS, vol. 304, 1993, pages 133 - 143, XP024753200, DOI: 10.1006/abbi.1993.1331 |
ZHANG, J.-L.BAI, Q.-Y.PENG, Y.-Z.FAN, J.JIN, C.-C.CAO, Y.-X.YUAN, Y.-J.: "High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components", BIOTECHNOL BIOFUELS, vol. 13, 2020, pages 133 |
ZHANG, Y.-N.ZHANG, W.HONG, D.SHI, L.SHEN, Q.LI, J.-Y.LI, J.HU, L.-H.: "Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1 B with cellular activities", BIOORG MED CHEM, vol. 16, 2008, pages 8697 - 8705, XP025427665, DOI: 10.1016/j.bmc.2008.07.080 |
ZHAO, F.BAI, P.LIU, T.LI, D.ZHANG, X.LU, W.YUAN, Y.: "Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae: Optimization of a Cytochrome P450 Oxidation System", BIOTECHNOL. BIOENG., vol. 113, 2016, pages 1787 - 1795, XP055505407, DOI: 10.1002/bit.25934 |
ZHAO, Y.FAN, J.WANG, C.FENG, X.LI, C.: "Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae", BIORESOURCE TECHNOLOGY, vol. 257, 2018, pages 339 - 343, XP055679880, DOI: 10.1016/j.biortech.2018.02.096 |
ZHOU, C.LI, J.LI, C.ZHANG, Y.: "Improvement of betulinic acid biosynthesis in yeast employing multiple strategies", BMC BIOTECHNOL, vol. 16, 2016, pages 59 |
ZHU, L.ZHANG, X.CHANG, L.WANG, A.FENG, P.HAN, L.: "Molecular cloning, prokaryotic expression and promoter analysis of squalene synthase gene from Schizochytrium Limacinum", APPL BIOCHEM MICROBIOL, vol. 50, 2014, pages 411 - 419 |
ZHUANG, X.CHAPPELL, J.: "Building terpene production platforms in yeast: Building Terpene Production Platforms in Yeast", BIOTECHNOL. BIOENG., vol. 112, 2015, pages 1854 - 1864, XP071153291, DOI: 10.1002/bit.25588 |
ZUCO, V.SUPINO, R.RIGHETTI, S.C.CLERIS, L.MARCHESI, E.GAMBACORTI-PASSERINI, C.FORMELLI, F.: "Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells", CANCER LETT, vol. 175, 2002, pages 17 - 25 |
Also Published As
Publication number | Publication date |
---|---|
WO2022228687A1 (fr) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Production of triterpene ginsenoside compound K in the non-conventional yeast Yarrowia lipolytica | |
D'Adamo et al. | Engineering the unicellular alga Phaeodactylum tricornutum for high‐value plant triterpenoid production | |
Li et al. | Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene | |
Kim et al. | Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway | |
Yu et al. | Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool | |
Ma et al. | Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids | |
Zhu et al. | Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction | |
Li et al. | Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica | |
Ma et al. | Engineering Yarrowia lipolytica for sustainable production of the chamomile sesquiterpene (−)-α-bisabolol | |
Tang et al. | Metabolic engineering of Yarrowia lipolytica for improving squalene production | |
Zhang et al. | Refactoring β‐amyrin synthesis in S accharomyces cerevisiae | |
Wang et al. | Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy | |
Guo et al. | Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-humulene overproduction | |
Du et al. | Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1 | |
Shang et al. | Engineering Yarrowia lipolytica for enhanced production of arbutin | |
Zuo et al. | Establishing Komagataella phaffii as a cell factory for efficient production of sesquiterpenoid α-Santalene | |
Li et al. | Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways | |
Wang et al. | Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae | |
Du et al. | Engineering Saccharomyces cerevisiae for hyperproduction of β-amyrin by mitigating the inhibition effect of squalene on β-amyrin synthase | |
Ahmed et al. | Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae | |
Yin et al. | Engineering fungal terpene biosynthesis | |
ul Hassan et al. | Engineered Saccharomyces cerevisiae for the de novo synthesis of the aroma compound longifolene | |
Zhu et al. | Mitochondrial engineering of Yarrowia lipolytica for sustainable production of α-Bisabolene from waste cooking oil | |
WO2022229378A1 (fr) | Production biotechnologique de terpènes | |
Zhao et al. | Tuning geraniol biosynthesis via a novel decane-responsive promoter in Candida glycerinogenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22726443 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22726443 Country of ref document: EP Kind code of ref document: A1 |