WO2022228148A1 - 一种激光雷达 - Google Patents

一种激光雷达 Download PDF

Info

Publication number
WO2022228148A1
WO2022228148A1 PCT/CN2022/087022 CN2022087022W WO2022228148A1 WO 2022228148 A1 WO2022228148 A1 WO 2022228148A1 CN 2022087022 W CN2022087022 W CN 2022087022W WO 2022228148 A1 WO2022228148 A1 WO 2022228148A1
Authority
WO
WIPO (PCT)
Prior art keywords
lidar
information
laser
light
signal light
Prior art date
Application number
PCT/CN2022/087022
Other languages
English (en)
French (fr)
Inventor
张波
高红彪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228148A1 publication Critical patent/WO2022228148A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the embodiments of the present application relate to the field of intelligent driving, and in particular, to a laser radar.
  • Lidar Light Detection and Ranging, Lidar
  • Lidar is a radar system that sends a laser beam to detect the target's position, speed and other characteristic quantities. Its working principle is to send a detection signal (laser beam) to the target, and then send the received The signal reflected by the target (target echo) is compared with the transmitted signal, and after proper processing, the relevant information of the target can be obtained.
  • the lidar for intelligent driving is becoming a new round of research. hot spot. For example, in the field of unmanned driving, when two intelligent driving vehicles meet, although the distance information of the two intelligent driving vehicles can be obtained, one intelligent driving vehicle cannot judge whether the other intelligent driving vehicle will turn or merge.
  • the two intelligent driving workshops need to have certain communication capabilities to inform each other about the upcoming actions.
  • the unmanned vehicle fails, it is also necessary to send a communication information requesting rescue to the cooperative target (for example, the geographic location of the faulty unmanned vehicle, the surrounding environment, etc.). Therefore, it needs to be deployed in the radar system of intelligent driving, which has strong anti-interference ability (to avoid misjudgment), and can realize the functions of ranging, speed measurement and communication.
  • the current lidar mainly includes a detector and a receiver, and the receiver is an array detector, which can scan or realize multi-channel communication.
  • the radar signal and the communication signal are distinguished by data post-processing, and the distinction between the communication signal and the radar signal is realized by time division, frequency division, and polarization multiplexing.
  • the electrical signal processing can be distinguished by adding different thresholds to the communication signal and the radar signal.
  • the direct detection method will cause the lidar to have a relatively large noise, thereby reducing the accuracy of the results obtained by the lidar.
  • the present application provides a laser radar, which adopts a coherent detection method to reduce the noise of the laser radar, so that the accuracy of the results obtained by the laser radar can be improved.
  • a first aspect of the present application provides a lidar, the lidar is applied in the field of intelligent driving, the lidar includes a mixer, a detector, a power divider and an information processing module.
  • the mixer is used to perform frequency mixing processing on the signal light and the local oscillator light to obtain a mixed optical signal
  • the signal light is the signal light of the laser radar and/or the signal light of other laser radars
  • the detector is used to detect and convert the mixed optical signal into an electrical signal to be processed
  • the power divider is used to divide the electrical signal to be processed into multiple electrical signals
  • the information processing module is used to process the multiple electrical signals to obtain the measured electrical signal. distance results and/or communications.
  • the mixed optical signal is obtained by performing frequency mixing processing on the signal light and the local oscillator light, and multiple electrical signals are obtained based on the mixed optical signal and processed by the multiple electrical signals, At least one of the ranging results and the communication information is obtained. Since the coherent detection method is used to reduce the noise of the lidar, the accuracy of the ranging results and the communication information obtained by the lidar can be improved.
  • the lidar further includes a code generator, and the information processing module includes a first bandpass filter.
  • the plurality of electrical signals include the ranging information to be verified, and the ranging information to be verified is the laser radar. ranging information.
  • the code generator is used to generate the ranging information of the lidar, and send the ranging information of the lidar to the information processing module, and the first band-pass filter is used to perform ranging information on the first electrical signal among the plurality of electrical signals Demodulation is performed to obtain the ranging information to be verified, and the information processing module is specifically configured to perform related ranging based on the ranging information to be verified and the ranging information of the lidar to obtain a ranging result.
  • the ranging information to be verified and the ranging information of the lidar are related to ranging, and the ranging result is obtained, so that the lidar can complete ranging, and the feasibility of the solution is improved.
  • the ranging information of the lidar is a pseudo-random code, due to the correlation characteristics of the pseudo-random code, the anti-interference is very strong, so the signals received by other radars will be treated as noise, and no misjudgment will occur, thereby improving the obtained results. The accuracy of the ranging result.
  • the information processing module is further configured to process a plurality of electrical signals to obtain a speed measurement result.
  • the lidar can also perform speed measurement on the basis of realizing the functions of speed measurement and ranging, thereby improving the practicality of the lidar.
  • the information processing module includes a second bandpass filter. Based on this, when the signal light is the signal light of the lidar, or, when the signal light is the signal light of the lidar and the signal light of other lidars, the second bandpass filter is used based on the second electrical signal in the plurality of electrical signals Doppler velocimetry to get velocimetry results.
  • Doppler speed measurement is used to accurately identify actions, so the obtained speed measurement result is more accurate.
  • the information processing module includes a third bandpass filter. Based on this, the third bandpass filter is used to demodulate the third electrical signal in the plurality of electrical signals to obtain demodulated information, and the information processing module is specifically used to identify the demodulated information to obtain the communication information.
  • information is loaded on the pseudo-random code to communicate with the cooperative target, and continuous optical modulation is used to realize a large communication capacity on the basis of communication.
  • the demodulated information includes first information and second information
  • the information between the first information and the second information is communication information
  • the communication information includes identity information and communication content
  • the identity information indicates the source of the communication content
  • the encoding method of the first information, the encoding method of the second information and the encoding method of the communication information in different lidars are the same.
  • the communication information includes communication content and identity information
  • the lidar can determine which lidar the communication content comes from through the identity information, so as to complete a more accurate communication source determination.
  • the encoding method of the first information, the encoding method of the second information and the encoding method of the communication information are unified, as long as the signal light of other laser radars is received, the communication information can be obtained more efficiently.
  • the frequency ranges of the plurality of electrical signals after passing through the band-pass filter are different, and the frequency ranges of each electrical signal after passing through the band-pass filter do not overlap.
  • the lidar further includes a transmitting optical system and a receiving optical system. Based on this, the transmitting optical system is used to transmit the signal light of the lidar, and the receiving optical system is used to receive the signal light.
  • the transmission optical system and the receiving optical system are used to complete the transmission of the signal light of the laser radar and the reception of the signal light, thereby improving the practicality of the laser radar.
  • the lidar further includes a laser, an optical splitter, a frequency shifter, and a phase modulator.
  • the laser is used to send laser light to the beam splitter.
  • the optical splitter is used to divide the laser into a first laser and a second laser.
  • the polarization direction of the first laser is the same as the polarization direction of the second laser.
  • the optical splitter is also used to send the first laser to the frequency shifter and to the phase modulator. Send a second laser.
  • the frequency shifter is used to send the first laser to the mixer, and the first laser is local oscillator light
  • the encoder generator is also used to generate the ranging information of the laser radar, and send the ranging information of the laser radar to the phase modulator, the phase
  • the modulator is used to load the ranging information of the lidar onto the second laser, and send the second laser loaded with the ranging information of the lidar to the transmitting optical system, and then the transmitting optical system is specifically used to transmit the ranging information loaded with the lidar
  • the second laser of the information, the second laser loaded with the ranging information of the lidar is the signal light of the lidar
  • the receiving optical system is specifically used to receive the signal light and send the signal light to the mixer.
  • the frequency is directly mixed in the mixer, and then the coherent detection method is adopted to reduce the noise of the laser radar and improve the performance of the laser radar. Get distance measurement results, speed measurement results and the accuracy of communication information.
  • the lidar further includes a laser, an optical splitter, a frequency shifter, a phase modulator and a wave plate.
  • the laser is used to send laser light to the spectroscope, and the spectroscope is used to change the polarization direction of the laser light to obtain the first laser light and the second laser light.
  • the polarization direction of the first laser light is different from the polarization direction of the second laser light.
  • the frequency shifter is used for sending the first laser light to the frequency shifter and the second laser light to the phase modulator, the frequency shifter is used for sending the first laser light to the frequency mixer, and the first laser light is local oscillator light.
  • the code generator is also used to generate the ranging information of the lidar, and send the ranging information of the lidar to the phase modulator, and the phase modulator is used to load the ranging information of the lidar onto the second laser, and will load the lidar with the ranging information
  • the second laser of the ranging information is sent to the sending optical system, and the sending optical system is specifically used to send the second laser loaded with the ranging information of the lidar, and the second laser loaded with the ranging information of the lidar is the signal light of the lidar
  • the receiving optical system is specifically used to receive the signal light with the polarization direction different from the first laser, and send the signal light with the polarization direction different from the first laser to the wave plate, and the wave plate is used to change the polarization direction different from the first laser to obtain the signal light, and send the signal light to the mixer.
  • FIG. 1 is a schematic diagram of an electronic map data collection scene provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a lidar in an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a lidar in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an encoding of signal light in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of encoding of demodulated information in an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of a lidar in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a lidar performing speed measurement, distance measurement and communication according to an embodiment of the present application.
  • Lidar is a radar system that emits a laser beam to detect the position, speed and other characteristics of the target. Its working principle is to transmit a detection signal (laser beam) to the target, and then compare the received signal (target echo) reflected from the target with the transmitted signal, and after proper processing, the relevant information of the target can be obtained.
  • a detection signal laser beam
  • target echo received signal
  • the current lidar mainly includes a detector and a receiver, and the receiver is an array detector, which can scan or realize multi-channel communication.
  • the radar signal and the communication signal are distinguished by data post-processing, and the distinction between the communication signal and the radar signal is realized by time division, frequency division, and polarization multiplexing.
  • the electrical signal processing can be distinguished by adding different thresholds to the communication signal and the radar signal.
  • the direct detection method will cause the lidar to have a relatively large noise, thereby reducing the accuracy of the results obtained by the lidar.
  • FIG. 1 is a schematic diagram of an application scenario of a lidar provided by an embodiment of the present application.
  • the lidar 120 is arranged on the top of the mobile carrier.
  • the mobile carrier can be a collection vehicle 100, an unmanned aerial vehicle, a robot, etc.
  • the above-mentioned vehicle 100 can be a car, a truck, a motorcycle, a bus, a boat, Aircraft, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams and trains, etc., are not particularly limited in the embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of the laser radar in the embodiments of the present application, as shown in FIG. 2
  • the lidar 200 includes a laser 201, an optical splitter 202, a frequency shifter 203, a phase modulator 204, a frequency mixer 205, a code generator 206, an information processing module 207, a transmitting optical system 208, a receiving optical system 209, a detection 210 and power divider 211.
  • the lidar 200 includes a laser 201, an optical splitter 202, a frequency shifter 203, a phase modulator 204, a frequency mixer 205, a code generator 206, an information processing module 207, a transmitting optical system 208, a receiving optical system 209, a detection 210 and power divider 211.
  • the specific functions of each different device and module are described below.
  • the laser 201 is used to send laser light to the beam splitter.
  • the beam splitter 202 is used for dividing the laser light received from the laser 201 into a first laser light and a second laser light.
  • the optical splitter 202 is also used for sending the first laser light to the frequency shifter 203, and sending the second laser light to the phase modulator 204;
  • the frequency shifter 203 is used for sending the first laser light received from the optical splitter 202 to the mixer 205 .
  • the first laser light is used as the local oscillator light.
  • the code generator 206 is configured to generate ranging information of the laser radar 200 , send the ranging information of the laser radar 200 to the phase modulator 204 , and send the ranging information of the laser radar 200 to the information processing module 207 .
  • the phase modulator 204 is used to load the ranging information of the lidar 200 received from the code generator 206 onto the second laser light, and send the second laser light loaded with the ranging information of the lidar 200 to the transmitting optical system 208 .
  • the transmitting optical system 208 is used for transmitting the second laser light loaded with the ranging information of the lidar 200 .
  • the second laser light loaded with the ranging information of the lidar 200 is used as the signal light of the lidar 200 .
  • the receiving optical system 209 is used to receive the signal light and transmit the signal light to the mixer 205 .
  • the signal light may be the signal light of the lidar 200 , or the signal light of other lidars, or the signal light of the lidar 200 and the signal light of other lidars.
  • the mixer 205 is configured to perform frequency mixing processing on the signal light and the local oscillator light to obtain a frequency-mixed optical signal, and send the frequency-mixed optical signal to the detector 210 .
  • the detector 210 is used for detecting and converting the mixed optical signal into an electrical signal to be processed, and sending the electrical signal to be processed to the power distributor 211 .
  • the power divider 211 is used for dividing the electrical signal to be processed into a plurality of electrical signals, and sending the plurality of electrical signals to the information processing module 207 .
  • the information processing module 207 is configured to process a plurality of electrical signals to obtain ranging results, or, communication information, or, ranging results and communication information.
  • the information processing module 207 is further configured to process a plurality of electrical signals to obtain a speed measurement result.
  • the information processing module 211 processes a plurality of electrical signals, and can obtain a ranging result and a speed measuring result. Secondly, when the signal light is the signal light of other lidars, the information processing module 211 processes a plurality of electrical signals to obtain communication information. Thirdly, when the signal light is the signal light of the lidar 200 and the signal light of other lidars, the information processing module 211 processes a plurality of electrical signals to obtain ranging results, speed measurement results and communication information.
  • the polarization direction of the first laser and the polarization direction of the second laser may be the same or different.
  • the two lasers have the same polarization direction and different situations, and how the receiving information processing module processes multiple electrical signals to obtain at least one of ranging results, speed measurement results and communication information.
  • the polarization direction of the first laser is the same as the polarization direction of the second laser.
  • FIG. 3 is another schematic structural diagram of the lidar in the embodiment of the present application.
  • the lidar 300 includes a laser 301 , an optical splitter 302 , a frequency shifter 303 , a phase modulator 304 , and a frequency mixer generator 305, code generator 306, information processing module 307, transmitting optical system 308, receiving optical system 309, detector 310 and power divider 311, and the information processing module 307 specifically includes a first bandpass filter 3071, a second bandpass filter 307 For the pass filter 3072 and the third band pass filter 3073, the specific functions of each different device and module will be introduced below.
  • the laser 301 is used to send laser light to the beam splitter.
  • the beam splitter 302 is used for dividing the laser light received from the laser 301 into a first laser light and a second laser light, and at this time, the polarization direction of the first laser light is the same as that of the second laser light.
  • the optical splitter 302 is also used for sending the first laser light to the frequency shifter 303, and sending the second laser light to the phase modulator 304;
  • the frequency shifter 303 is used for sending the first laser light received from the optical splitter 302 to the mixer 305 .
  • the first laser light is used as the local oscillator light.
  • the code generator 306 is configured to generate ranging information of the laser radar 300 , send the ranging information of the laser radar 300 to the phase modulator 304 , and send the ranging information of the laser radar 300 to the information processing module 307 .
  • the phase modulator 304 is used for loading the ranging information of the lidar 300 received from the code generator 306 onto the second laser light, and sending the second laser light loaded with the ranging information of the lidar 300 to the transmitting optical system 308 .
  • the transmitting optical system 308 is used for transmitting the second laser light loaded with the ranging information of the lidar 300 .
  • the second laser light loaded with the ranging information of the lidar 300 is used as the signal light of the lidar 300 .
  • the receiving optical system 309 is used to receive the signal light and transmit the signal light to the mixer 305 .
  • the signal light may be the signal light of the lidar 300 , or the signal light of other lidars, or the signal light of the lidar 300 and the signal light of other lidars.
  • FIG. 4 4 is a coding schematic diagram of the signal light in the embodiment of the present application.
  • (A) in FIG. 4 shows the situation that the signal light is the signal light of the laser radar 300. It includes ranging information of the lidar 300 (specifically, a pseudo-random code of the ranging information).
  • (B) in FIG. 4 shows the case where the signal light is the signal light of other lidars.
  • the signal light includes the communication information sent by the other lidars to the lidar 300 (specifically, the fixed communication information). coding).
  • (C) in FIG. 4 shows the case where the signal light is the signal light of the laser radar 300 and the signal light of other laser radars.
  • the signal light includes ranging information including the laser radar 300 and other laser light.
  • the communication information sent by the radar to the lidar 300 specifically includes a pseudo-random code of ranging information and a fixed code of the communication information. It should be understood that the coding shown in FIG. 4 is only used to understand the present solution, and the specific coding of the signal light is not limited here.
  • the mixer 305 is configured to perform frequency mixing processing on the signal light and the local oscillator light to obtain a frequency-mixed optical signal, and send the frequency-mixed optical signal to the detector 310 .
  • the detector 310 is used for detecting and converting the mixed optical signal into an electrical signal to be processed, and sending the electrical signal to be processed to the power divider 311 .
  • the power divider 311 is used to divide the electrical signal to be processed into a plurality of electrical signals, and several pieces of the plurality of electrical signals include a first electrical signal, a second electrical signal and a third electrical signal. It should be understood that the first electrical signal, the second electrical signal and the third electrical signal may be distributed evenly or unevenly, and the specific distribution of the first electrical signal, the second electrical signal and the third electrical signal is not discussed in this embodiment. be limited. Based on this, the power divider 311 is specifically configured to send the first electrical signal to the first bandpass filter 3071, send the second electrical signal to the second bandpass filter 3072, and send the third electrical signal to the third bandpass filter 3072. Pass filter 3073.
  • the information processing module 307 wants to obtain the ranging result, based on the content introduced in the corresponding embodiment in FIG. 2 , it can be known that the signal light is the signal light of the laser radar, or the signal light is the signal light of the laser radar 300 and the signal light of other laser radars .
  • the plurality of electrical signals include the ranging information to be verified.
  • the signal light includes the signal light of the lidar 300 , and it can be seen from the introduction of the foregoing embodiment that the signal light of the lidar 300 is the measurement light loaded by the lidar 300 .
  • the distance information is the second laser, so the distance measurement information to be verified is the distance measurement information of the lidar 300 .
  • the code generator 306 sends the ranging information of the lidar 300 to the information processing module 307 , the first band-pass filter 3071 included in the information processing module 307 is used to solve the ranging information for the first electrical signal. to obtain the ranging information to be verified (that is, the ranging information of the lidar 300). Based on this, the information processing module 307 is specifically configured to perform related ranging based on the ranging information to be verified and the ranging information of the lidar 300 to obtain a ranging result.
  • each lidar has its own ranging information, which is the identity of each radar. Therefore, the radar can achieve the purpose of ranging by matching its own ranging information and the received ranging information. And the lidar will not be interfered by other radars during ranging, and the ranging information of the lidar has a fixed working frequency band.
  • the information processing module 307 wants to obtain the ranging result, based on the content introduced in the corresponding embodiment in FIG. 2 , it can be known that the signal light is the signal light of the laser radar, or the signal light is the signal light of the laser radar 300 and the signal light of other laser radars .
  • the second bandpass filter 3072 is used to perform Doppler velocity measurement based on the second electrical signal in the plurality of electrical signals to obtain a velocity measurement result.
  • the speed of the moving carrier to be measured set by the lidar 300 is: 0 meters per second to V meters per second
  • the resulting Doppler frequency shift is: 0 hertz (Hz) to 2v/ ⁇ Hz.
  • the frequency band for speed measurement is the low frequency band.
  • the information processing module 307 wants to obtain the communication information, based on the content introduced in the corresponding embodiment in FIG. 2 , it can be known that the signal light is the signal light of other laser radars, or the signal light is the signal light of the laser radar 300 and the signal light of other laser radars .
  • the third bandpass filter 3073 is used to demodulate the third electrical signal among the plurality of electrical signals to obtain demodulated information, where the demodulated information includes the first information and the second information, and The information between the first information and the second information is communication information.
  • the information processing module 307 is specifically configured to identify the demodulated information to obtain communication information.
  • the communication information includes identity information and communication content, and the identity information indicates the source of the communication content.
  • the encoding method of the first information, the encoding method of the second information and the encoding method of the communication information in different lidars are the same.
  • the first information is the frame header
  • the second information is the frame tail.
  • FIG. 5 is a schematic diagram of encoding the demodulated information in the embodiment of the application, as shown in FIG. 5 .
  • the demodulated information includes the first information 501, the communication information 502 and the second information 503.
  • the demodulated electrical signal can be obtained. Then the information processing module 307 identifies the demodulated information.
  • the first information 501 it can be determined that the acquisition of the communication information 502 can be started.
  • the second information 503 the identification can be ended and the first information 503 can be identified.
  • the information identified between the first information 501 and the second information 503 is determined as the communication information 502 .
  • the communication between lidars also has a fixed working frequency band, and the communication between lidars is specifically in the mid-frequency band.
  • the encoding method of the first information, the encoding method of the communication content, and the encoding method of the second information are only known by the LiDAR that communicates, even if the signal light is captured, it will not will be easily broken.
  • the encoding method of the first information, the encoding method of the communication content, and the encoding method of the second information are unified. As long as the signal light is received, it is easier to decipher the first information and the second information in the signal light.
  • the communication information is obtained, and the communication content is obtained, thereby improving the efficiency of obtaining the communication content.
  • the identity information "1001" indicates lidar A
  • the identity information "1010” indicates lidar B
  • the identity information "1011” indicates lidar C
  • the information processing module 307 can obtain communication information 1, communication information 2 and communication Information 3. Based on this, if the communication information 1 includes the identity information "1001" and the communication content 1, then the lidar 300 can determine that the communication content 1 comes from the lidar A, that is, the lidar A sends the communication content 1 to the lidar 300. . Similarly, if the communication information 2 includes the identity information "1010" and the communication content 2, then the lidar 300 can determine that the communication content 2 comes from the lidar B, that is to say, the lidar B sends the communication content to the lidar 300. 2. Secondly, if the communication information 3 includes the identity information "1011” and the communication content 3, the lidar 300 can determine that the communication content 3 originates from the lidar C, that is, the lidar C sends the communication content 3 to the lidar 300.
  • the polarization direction of the first laser is different from that of the second laser
  • FIG. 6 is another schematic structural diagram of the lidar in the embodiment of the present application.
  • the lidar 600 includes a laser 601 , an optical splitter 602 , a frequency shifter 603 , a phase modulator 604 , and a frequency mixer.
  • Laser 601 is used to send laser light to the beam splitter.
  • the beam splitter 602 is used to change the polarization direction of the laser light received from the laser 601 to obtain the first laser light and the second laser light. At this time, the polarization direction of the first laser light and the polarization direction of the second laser light are different.
  • the optical splitter 602 is also used for sending the first laser light to the frequency shifter 603, and sending the second laser light to the phase modulator 604;
  • the frequency shifter 603 is used for sending the first laser light received from the optical splitter 602 to the mixer 605 .
  • the first laser light is used as the local oscillator light.
  • the code generator 606 is configured to generate ranging information of the laser radar 600 , send the ranging information of the laser radar 600 to the phase modulator 604 , and send the ranging information of the laser radar 600 to the information processing module 607 .
  • the phase modulator 604 is configured to load the ranging information of the lidar 600 received from the code generator 606 onto the second laser, and send the second laser loaded with the ranging information of the lidar 600 to the transmitting optical system 608 .
  • the transmitting optical system 608 is used for transmitting the second laser light loaded with the ranging information of the lidar 600 .
  • the second laser light loaded with the ranging information of the lidar 600 is used as the signal light of the lidar 600 .
  • the receiving optical system 609 is used to receive signal light with a polarization direction different from that of the first laser light, and transmit signal light with a polarization direction different from that of the first laser light to the wave plate 610 .
  • the signal light whose polarization direction is different from that of the first laser light may be signal light whose polarization direction is different from that of the local oscillator light of the lidar 600, or, the signal light that is different from the polarization direction of the local oscillator light of other lidars, or , the signal light whose polarization direction is different from that of the local oscillation light of the lidar 600 , and the signal light whose polarization direction is different from that of the local oscillation light of other lidars.
  • the wave plate 610 is used to change the signal light whose polarization direction is different from that of the first laser light to obtain the signal light, and send the signal light to the mixer.
  • the signal light may be the signal light of the lidar 600 , or the signal light of other lidars, or the signal light of the lidar 600 and the signal light of other lidars.
  • FIG. 4 For a specific coding example of the signal light, please refer to FIG. 4 , which will not be repeated here.
  • the mixer 605 is configured to perform frequency mixing processing on the signal light and the local oscillator light to obtain a frequency-mixed optical signal, and send the frequency-mixed optical signal to the detector 611 .
  • the detector 611 is used to detect and convert the mixed optical signal into an electrical signal to be processed, and send the electrical signal to be processed to the power divider 612 .
  • the power divider 612 is used for dividing the electrical signal to be processed into a plurality of electrical signals, and several pieces of the plurality of electrical signals include a first electrical signal, a second electrical signal and a third electrical signal. It should be understood that the first electrical signal, the second electrical signal and the third electrical signal may be distributed evenly or unevenly, and the specific distribution of the first electrical signal, the second electrical signal and the third electrical signal is not discussed in this embodiment. be limited. Based on this, the power divider 612 is specifically configured to send the first electrical signal to the first bandpass filter 6071, the second electrical signal to the second bandpass filter 6072, and the third electrical signal to the third bandpass filter 6072. Pass filter 6076.
  • the information processing module 607 wants to obtain the ranging result, based on the content introduced in the corresponding embodiment in FIG. 3 , it can be known that the signal light of the lidar 600 is the second laser loaded with the ranging information of the lidar 600 , so the ranging information to be verified is: Ranging information of the lidar 600 . Based on this, since the code generator 606 sends the ranging information of the lidar 600 to the information processing module 607 , the first bandpass filter 6071 included in the information processing module 607 is used to solve the ranging information for the first electrical signal. to obtain the ranging information to be verified (that is, the ranging information of the lidar 600).
  • the information processing module 607 is specifically configured to perform related ranging based on the ranging information to be verified and the ranging information of the lidar 600 to obtain a ranging result.
  • the specific manner for obtaining the ranging result is similar to the manner described in the embodiment in FIG. 3 , and details are not described herein again.
  • the second band-pass filter 6072 is used to perform Doppler velocity measurement based on the second electrical signal among the plurality of electrical signals, so as to Get speed measurement results.
  • the specific manner of obtaining the speed measurement result is similar to the manner described in the embodiment in FIG. 3 , and will not be repeated here.
  • the third band-pass filter 6076 is used to demodulate the third electrical signal among the plurality of electrical signals, and obtain the demodulated signal.
  • the demodulated information includes the first information and the second information, and the information between the first information and the second information is communication information.
  • the information processing module 609 is specifically configured to identify the demodulated information to obtain communication information.
  • the communication information includes identity information and communication content, and the identity information indicates the source of the communication content. Specifically, the encoding method of the first information, the encoding method of the second information and the encoding method of the communication information in different lidars are the same.
  • the specific manner of obtaining the communication information is similar to the manner introduced in the embodiment in FIG. 3 , and details are not described herein again.
  • FIG. 7 is a schematic diagram of an embodiment of lidar performing speed measurement, ranging and communication in an embodiment of the application.
  • laser 701 sends linearly polarized laser light to optical splitter 702, and the optical splitter 702 specifically includes a 1/2 wave plate and a polarization beam splitter (PBS), so after the linearly polarized laser passes through the 1/2 wave plate included in the beam splitter 702, the polarization direction changes.
  • PBS polarization beam splitter
  • the specific splitting ratio is not limited in this embodiment.
  • the p light after passing through the PBS included in the optical splitter 702 is used as the signal light without the ranging information of the lidar 700, and the s light is used as the local oscillator light, that is, the s light is the first laser introduced in the foregoing embodiment, and the p light The light is the second laser introduced for the previous embodiment.
  • the optical splitter 702 therefore sends s light to the frequency shifter 703 and p light to the phase modulator 704 .
  • the frequency shifter 703 sends the s light to the mixer 705 after receiving the s light.
  • the ranging information of the lidar 700 generated by the code generator 706 (the pseudo-random code introduced in the previous embodiment) is loaded onto the p light, and the p light of the ranging information of the lidar 700 is loaded.
  • the light is sent to the emission optical system 707 .
  • the emission optical system 707 specifically includes a 1/4 wave plate and a lens. After the p light loaded with the ranging information of the lidar 700 passes through the 1/4 wave plate included in the emission optical system 707, it becomes a circularly polarized signal light (that is, the lidar 700). The signal light) is emitted to the target through the lens included in the emission optical system 707.
  • the signal light only includes the signal light of the lidar 700 as an example for introduction
  • the receiving optical system 707 specifically includes a quarter wave plate and a lens, and the lens included in the receiving optical system 707 receives the circularly polarized signal light returned from the target.
  • the signal light (p light) of the lidar 700 is obtained. Since the signal light (p light) of the laser radar 700 and the signal light of the local oscillator light (s light) of the laser radar 700 have different polarization directions, the wave plate 709 can obtain the signal light of the laser radar 700 with the same polarization direction as the s light.
  • the frequency is mixed on the frequency converter 705 to obtain the mixed optical signal.
  • the array of detectors 710 receives the mixed optical signals and converts the mixed optical signals into electrical signals to be processed.
  • the electrical signal to be processed is divided into three parts after passing through the power divider, that is, the first electrical signal, the second electrical signal and the third electrical signal are obtained.
  • the information processing module 712 After the first electrical signal passes through the first bandpass filter 7121, the information processing module 712 Perform ranging code demodulation, and then perform related ranging with the ranging information of the lidar 700 generated by the code generator 706 to obtain a ranging result. Secondly, after the second electrical signal passes through the second band-pass filter 7122, Doppler velocity measurement is performed to obtain a velocity measurement result. Thirdly, after the third electrical signal passes through the third bandpass filter 7123, the communication information is obtained. The specific manner of obtaining the distance measurement result, the speed measurement result and the communication information is similar to the manner introduced in the embodiment in FIG. 3 , and will not be repeated here.
  • connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website, computer, communication device, computing equipment or data center to another website site, computer, communication device, computing device, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) transmission.
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be stored by a computer, or a data storage device such as a communication device, a data center, or the like that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(200),包括混频器(205),探测器(210),功率分配器(311)以及信息处理模块(307),混频器(205)用于对信号光与本振光进行混频处理,以得到混频后的光信号,该信号光为激光雷达(200)的信号光,和/或,其他激光雷达(200)的信号光,探测器(210)用于对混频后的光信号进行探测转换为待处理电信号,功率分配器(311)用于将待处理电信号分为多个电信号,信息处理模块(307)用于对多个电信号进行处理,得到测距结果和/或通信信息。应用于智能驾驶领域,采用相干探测的方式,降低激光雷达(200)的噪声,从而提升激光雷达(200)所得到测距结果以及通信信息的准确度。

Description

一种激光雷达
本申请要求于2021年4月26日提交中国国家知识产权局、申请号为202110454340.1、发明名称为“一种激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及智能驾驶领域,尤其涉及一种激光雷达。
背景技术
激光雷达(Light Detection and Ranging,Lidar)是一种以发送激光束探测目标的位置、速度等特征量的雷达系统,其工作原理是向目标发送探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发送信号进行比较,作适当处理后,就可获得目标的有关信息,而在更广阔的民用领域,面向智能驾驶的激光雷达正成为新一轮的研究热点。例如,在无人驾驶领域中,两辆智能驾驶车交会时,虽然可以获得两辆智能驾驶车的距离信息,但一辆智能驾驶车却无法判断另一辆智能驾驶车是否会转弯或并道,这样是十分危险的,因此需要两辆智能驾驶车间有一定的通信能力,相互告知即将要做的动作。或者,在无人驾驶车出现故障时,还需要向合作目标发出请求救援的通信信息(例如,出现故障的无人驾驶车所处的地理位置,周围环境等)。因此需要部署于智能驾驶的雷达系统中,抗干扰能力较强(避免发生误判),且能够实现测距、测速以及通信的功能。
目前的激光雷达中,主要包括探测器和接收器,接收器为阵列探测器,可以扫描,或者实现多路的通信。雷达信号和通信信号通过数据后处理来区分,通信信号和雷达信号的区分具体通过时分、频分、偏振复用来实现。而电信号处理上可以通过对通信信号和雷达信号加不同的阈值来甄别。
然而,由于目前的激光雷达采用的是直接探测的方式,而直接探测的方式会导致激光雷达的噪声较大,由此降低激光雷达所得到结果的准确度。
发明内容
本申请提供了一种激光雷达,采用相干探测的方式,降低激光雷达的噪声,因此能够提升激光雷达所得到结果的准确度。
本申请的第一方面提供了一种激光雷达,该激光雷达应用于智能驾驶领域,该激光雷达包括混频器,探测器,功率分配器以及信息处理模块。基于此,混频器用于对信号光与本振光进行混频处理,以得到混频后的光信号,且信号光为激光雷达的信号光,和/或,其他激光雷达的信号光,而探测器用于对混频后的光信号进行探测转换为待处理电信号,功率分配器用于将待处理电信号分为多个电信号,信息处理模块用于对多个电信号进行处理,得到测距结果和/或通信信息。
在该实施方式中,由于混频后的光信号是通过信号光与本振光进行混频处理得到的,并且基于混频后的光信号得到多个电信号,通过多个电信号进行处理,得到测距结果以及通信 信息中至少一项,由于采用相干探测的方式,降低激光雷达的噪声,因此能够提升激光雷达所得到测距结果以及通信信息的准确度。
在本申请的一种可选实施方式中,激光雷达还包括编码产生器,信息处理模块包括第一带通滤波器。且当信号光为激光雷达的信号光,或,信号光为激光雷达的信号光与其他激光雷达的信号光时,多个电信号包括待验证测距信息,待验证测距信息为激光雷达的测距信息。基于此,编码产生器用于生成激光雷达的测距信息,并向信息处理模块发送激光雷达的测距信息,第一带通滤波器用于对多个电信号中的第一电信号进行测距信息解调,得到待验证测距信息,信息处理模块具体用于基于待验证测距信息与激光雷达的测距信息进行相关测距,以得到测距结果。
在该实施方式中,具体通过接收到的待验证测距信息与激光雷达的测距信息进行相关测距,得到测距结果,使得激光雷达能够完成测距,提升本方案的可行性。其次,由于激光雷达的测距信息为伪随机码,由于伪随机码的相关特性,抗干扰非常强,因此其他雷达接收到的信号会当成噪声处理,不会发生误判,从而提升所得到的测距结果的准确度。
在本申请的一种可选实施方式中,信息处理模块还用于对多个电信号进行处理,得到测速结果。
在该实施方式中,激光雷达在实现测速和测距的功能的基础上,还能进行测速,由此提升激光雷达的实用型。
在本申请的一种可选实施方式中,信息处理模块包括第二带通滤波器。基于此,当信号光为激光雷达的信号光,或,信号光为激光雷达的信号光与其他激光雷达的信号光时,第二带通滤波器用于基于多个电信号中的第二电信号进行多普勒测速,以得到测速结果。
在该实施方式中,利用多普勒测速,精确识别动作,因此所得到的测速结果更为准确。
在本申请的一种可选实施方式中,信息处理模块包括第三带通滤波器。基于此,第三带通滤波器用于对多个电信号中的第三电信号进行解调,得到解调后的信息,信息处理模块具体用于对解调后的信息进行识别,以得到通信信息。
在该实施方式中,通过伪随机码上加载信息,与合作目标进行通信,连续光调制,在实现通信的基础上,通信容量大。
在本申请的一种可选实施方式中,解调后的信息包括第一信息与第二信息,第一信息与第二信息之间的信息为通信信息,且通信信息包括身份信息以及通信内容,身份信息指示通信内容的来源,不同的激光雷达中第一信息的编码方式,第二信息的编码方式以及通信信息的编码方式相同。
在该实施方式中,通信信息中包括通信内容以及身份信息,激光雷达能够通过身份信息确定该通信内容来源于哪个激光雷达,完成更为准确的通信来源确定。其次,由于一信息的编码方式,第二信息的编码方式以及通信信息的编码方式是统一的,因此只要接收到其他激光雷达的信号光,能够更为高效的得到通信信息。
在本申请的一种可选实施方式中,经过带通滤波器之后的多个电信号的频率范围不同,且经过带通滤波器之后的每个电信号的频率范围没有重合。
在该实施方式中,由于带通滤波器之后的多个电信号的频率范围不同,即用于测速、通信和测距的电信号工作在不同的频段,能够实现频率的复用以及装置的复用,在保证准确度 的基础上还降低了成本。
在本申请的一种可选实施方式中,激光雷达还包括发送光学系统以及接收光学系统。基于此,发送光学系统用于发送激光雷达的信号光,接收光学系统用于接收信号光。
在该实施方式中,通过发送光学系统以及接收光学系统完成激光雷达的信号光的发送以及信号光的接收,提升激光雷达的实用型。
在本申请的一种可选实施方式中,激光雷达还包括激光器,分光器,移频器,相位调制器。基于此,激光器用于向分光器发送激光。分光器用于将激光分为第一激光与第二激光,该第一激光的偏振方向与第二激光的偏振方向相同,分光器还用于向移频器发送第一激光,且向相位调制器发送第二激光。移频器用于向混频器发送第一激光,且第一激光为本振光,编码产生器还用于生成激光雷达的测距信息,并向相位调制器发送激光雷达的测距信息,相位调制器用于将激光雷达的测距信息加载至第二激光上,且将加载激光雷达的测距信息的第二激光发送至发送光学系统,然后发送光学系统具体用于发送加载激光雷达的测距信息的第二激光,加载激光雷达的测距信息的第二激光为激光雷达的信号光,接收光学系统具体用于接收信号光,并向混频器发送信号光。
在该实施方式中,在激光雷达的本振光与激光雷达的信号光的偏振方向相同时,直接在混频器混频,后续采用相干探测的方式,降低激光雷达的噪声,提升激光雷达所得到测距结果,测速结果以及通信信息的准确度。
在本申请的一种可选实施方式中,激光雷达还包括激光器,分光器,移频器,相位调制器以及波片。基于此,激光器用于向分光器发送激光,分光器用于改变激光的偏振方向,以得到第一激光与第二激光,该第一激光的偏振方向与第二激光的偏振方向不同,分光器还用于向移频器发送第一激光,且向相位调制器发送第二激光,移频器用于向混频器发送第一激光,且第一激光为本振光。编码产生器还用于生成激光雷达的测距信息,并向相位调制器发送激光雷达的测距信息,相位调制器用于将激光雷达的测距信息加载至第二激光上,且将加载激光雷达的测距信息的第二激光发送至发送光学系统,发送光学系统具体用于发送加载激光雷达的测距信息的第二激光,加载激光雷达的测距信息的第二激光为激光雷达的信号光,接收光学系统具体用于接收与第一激光的偏振方向不同的信号光,并向波片发送与第一激光的偏振方向不同的信号光,波片用于改变与第一激光的偏振方向不同的信号光,以得到信号光,并向混频器发送信号光。
在该实施方式中,在激光雷达的本振光与激光雷达的信号光的偏振方向不相同时,需要向将接收到的信号光转换成与本振光的偏振方向相同,然后在混频器混频,后续采用相干探测的方式,降低激光雷达的噪声,提升激光雷达所得到测距结果,测速结果以及通信信息的准确度,且提升本方案的灵活性。
附图说明
图1是本申请实施例提供的电子地图数据采集场景示意图;
图2为本申请实施例中激光雷达的一个结构示意图;
图3为本申请实施例中激光雷达的另一结构示意图;
图4为本申请实施例中信号光的一个编码示意图;
图5为本申请实施例中解调后的信息的一个编码示意图;
图6为本申请实施例中激光雷达的另一结构示意图;
图7为本申请实施例中激光雷达进行测速测距以及通信的实施例示意图。
具体实施方式
为了使本申请的上述目的、技术方案和优点更易于理解,下文提供了详细的描述。所述详细的描述通过使用方框图、流程图和/或示例提出了设备和/或过程的各种实施例。由于这些方框图、流程图和/或示例包含一个或多个功能和/或操作,所以本领域内人员将理解可以通过许多硬件、软件、固件或它们的任意组合单独和/或共同实施这些方框图、流程图或示例内的每个功能和/或操作。本申请的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于理解,先对本申请实施例涉及到的一些术语或概念进行解释。
激光雷达:激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息。
在无人驾驶领域中,两辆智能驾驶车交会时,虽然可以获得两辆智能驾驶车的距离信息,但一辆智能驾驶车却无法判断另一辆智能驾驶车是否会转弯或并道,这样是十分危险的,因此需要两辆智能驾驶车间有一定的通信能力,相互告知即将要做的动作。或者,在无人驾驶车出现故障时,还需要向合作目标发出请求救援的通信信息(例如,出现故障的无人驾驶车所处的地理位置,周围环境等)。因此需要部署于智能驾驶的雷达系统中,抗干扰能力较强(避免发生误判),且能够实现测距、测速以及通信的功能。目前的激光雷达中,主要包括探测器和接收器,接收器为阵列探测器,可以扫描,或者实现多路的通信。雷达信号和通信信号通过数据后处理来区分,通信信号和雷达信号的区分具体通过时分、频分、偏振复用来实现。而电信号处理上可以通过对通信信号和雷达信号加不同的阈值来甄别。然而,由于目前的激光雷达采用的是直接探测的方式,而直接探测的方式会导致激光雷达的噪声较大,由此降低激光雷达所得到结果的准确度。
基于此,下面先对本发明实施例使用的场景进行描述。图1是本申请实施例提供的激光雷达得的应用场景示意图。请参阅图1,将激光雷达120设置在移动载体的顶部上,移动载体例如可以为采集车辆100,无人机,机器人等,上述车辆100可以为轿车,卡车,摩托车,公共汽车,船,飞机,直升飞机,割草机,娱乐车,游乐场车辆,施工设备,电车和火车等,本申请实施例不做特别的限定。
通过前述介绍可以了解本申请实施例的应用场景,下面对本申请实施例所提供的激光雷达进行详细介绍,请参阅图2,图2为本申请实施例中激光雷达的一个结构示意图,如图2 所示,激光雷达200包括激光器201,分光器202,移频器203,相位调制器204,混频器205,编码产生器206,信息处理模块207,发射光学系统208,接收光学系统209,探测器210以及功率分配器211。下面对每个不同的器件以及模块的具体功能进行介绍。
激光器201用于向分光器发送激光。
分光器202用于将从激光器201接收到的激光分为第一激光与第二激光。
分光器202还用于向移频器203发送第一激光,且向相位调制器204发送第二激光;
移频器203用于向混频器205发送从分光器202接收到的第一激光。本实施例中将第一激光作为本振光。
编码产生器206用于生成激光雷达200的测距信息,并向相位调制器204发送激光雷达200的测距信息,且向信息处理模块207发送激光雷达200的测距信息。
相位调制器204用于将从编码产生器206接收到的激光雷达200的测距信息加载至第二激光上,且将加载激光雷达200的测距信息的第二激光发送至发送光学系统208。
发送光学系统208用于发送加载激光雷达200的测距信息的第二激光。本实施例中,将加载激光雷达200的测距信息的第二激光作为激光雷达200的信号光。
接收光学系统209用于接收信号光,并向混频器205发送信号光。具体的,该信号光可以为激光雷达200的信号光,或,其他激光雷达的信号光,或,激光雷达200的信号光与其他激光雷达的信号光。
混频器205用于对信号光与本振光进行混频处理,以得到混频后的光信号,并且向探测器210发送混频后的光信号。
探测器210用于对混频后的光信号进行探测转换为待处理电信号,并且向功率分配器211发送待处理电信号。
功率分配器211用于将待处理电信号分为多个电信号,并且向信息处理模块207发送多个电信号。
信息处理模块207用于对多个电信号进行处理,得到测距结果,或,通信信息,或,测距结果与通信信息。
可选地,信息处理模块207还用于对多个电信号进行处理,得到测速结果。
具体地,当信号光为激光雷达200的信号光时,信息处理模块211对多个电信号进行处理,能够得到测距结果以及测速结果。其次,当信号光为其他激光雷达的信号光时,信息处理模块211对多个电信号进行处理,能够得到通信信息。再次,当信号光为激光雷达200的信号光以及其他激光雷达的信号光时,信息处理模块211对多个电信号进行处理,能够得到测距结果,测速结果以及通信信息。
可以理解的是,在分光器将激光分为第一激光与第二激光时,第一激光的偏振方向与第二激光的偏振方向可以相同或者不同,下面分别对第一激光的偏振方向与第二激光的偏振方向相同以及不同的情况进行介绍,且具体接收信息处理模块如何对多个电信号进行处理,得到测距结果,测速结果以及通信信息中至少一项。
一、第一激光的偏振方向与第二激光的偏振方向相同。
请参阅图3,图3为本申请实施例中激光雷达的另一结构示意图,如图3所示,激光雷 达300包括激光器301,分光器302,移频器303,相位调制器304,混频器305,编码产生器306,信息处理模块307,发射光学系统308,接收光学系统309,探测器310以及功率分配器311,且信息处理模块307具体包括第一带通滤波器3071,第二带通滤波器3072以及第三带通滤波器3073,下面对每个不同的器件以及模块的具体功能进行介绍。
激光器301用于向分光器发送激光。
分光器302用于将从激光器301接收到的激光分为第一激光与第二激光,此时第一激光的偏振方向与第二激光的偏振方向相同。
分光器302还用于向移频器303发送第一激光,且向相位调制器304发送第二激光;
移频器303用于向混频器305发送从分光器302接收到的第一激光。本实施例中将第一激光作为本振光。
编码产生器306用于生成激光雷达300的测距信息,并向相位调制器304发送激光雷达300的测距信息,且向信息处理模块307发送激光雷达300的测距信息。
相位调制器304用于将从编码产生器306接收到的激光雷达300的测距信息加载至第二激光上,且将加载激光雷达300的测距信息的第二激光发送至发送光学系统308。
发送光学系统308用于发送加载激光雷达300的测距信息的第二激光。本实施例中,将加载激光雷达300的测距信息的第二激光作为激光雷达300的信号光。
接收光学系统309用于接收信号光,并向混频器305发送信号光。具体的,该信号光可以为激光雷达300的信号光,或,其他激光雷达的信号光,或,激光雷达300的信号光与其他激光雷达的信号光。
具体地,由于信号光可以为激光雷达300的信号光,和/或,其他激光雷达的信号光,因此接收光学系统309所得到的信号光的具体编码也不同,为了便于理解,请参阅图4,图4为本申请实施例中信号光的一个编码示意图,如图4所示,图4中(A)图示出的为信号光为激光雷达300的信号光的情况,此时信号光中包括激光雷达300的测距信息(具体为测距信息的伪随机码)。其次,图4中(B)图示出的为信号光为其他激光雷达的信号光的情况,此时信号光中包括其他激光雷达向激光雷达300所发送的通信信息(具体为通信信息的固定编码)。再次,图4中(C)图示出的为信号光为激光雷达300的信号光与其他激光雷达的信号光的情况,此时信号光中包括包括激光雷达300的测距信息,以及其他激光雷达向激光雷达300所发送的通信信息,也就是具体包括测距信息的伪随机码以及通信信息的固定编码。应理解,图4所示出的编码仅用于理解本方案,信号光的具体编码此处不做限定。
混频器305用于对信号光与本振光进行混频处理,以得到混频后的光信号,并且向探测器310发送混频后的光信号。
探测器310用于对混频后的光信号进行探测转换为待处理电信号,并且向功率分配器311发送待处理电信号。
功率分配器311用于将待处理电信号分为多个电信号,且多个电信号几条包括第一电信号,第二电信号以及第三电信号。应理解,第一电信号,第二电信号以及第三电信号可以为平均分布,也可以不平均分布,本实施例中不对第一电信号,第二电信号以及第三电信号的具体分布进行限定。基于此,功率分配器311具体用于将第一电信号发送至第一带通滤波器3071,将第二电信号发送至第二带通滤波器3072,以及第三电信号发送至第三带通滤波器 3073。
1、测距结果
若信息处理模块307要得到测距结果,基于图2对应实施例所介绍的内容可知,信号光为激光雷达的信号光,或,信号光为激光雷达300的信号光与其他激光雷达的信号光。此时多个电信号包括待验证测距信息,由于在此场景下信号光包括激光雷达300的信号光,且通过前述实施例的介绍可知,激光雷达300的信号光为加载激光雷达300的测距信息的第二激光,因此待验证测距信息为激光雷达300的测距信息。
基于此,由于编码产生器306向信息处理模块307发送了激光雷达300的测距信息,因此信息处理模块307所包括的第一带通滤波器3071用于对第一电信号进行测距信息解调,得到待验证测距信息(即激光雷达300的测距信息)。基于此,信息处理模块307具体用于基于待验证测距信息与激光雷达300的测距信息进行相关测距,以得到测距结果。
具体地,每个激光雷达都有自己的测距信息,测距信息是每个雷达的身份标识,因此雷达通过匹配自身的测距信息以及接收到的测距信息,能够达到测距的目的。并且激光雷达在测距时,不会受到其他雷达的干扰,且激光雷达的测距信息有固定的工作频段。
2、测速结果
若信息处理模块307要得到测距结果,基于图2对应实施例所介绍的内容可知,信号光为激光雷达的信号光,或,信号光为激光雷达300的信号光与其他激光雷达的信号光。
基于此,第二带通滤波器3072用于基于多个电信号中的第二电信号进行多普勒测速,以得到测速结果。示例性地,若激光雷达300所设置的待测移动载体的速度为:0米每秒至V米每秒,那么引起的多普勒频移为:0赫兹(Hz)至2v/λHz。此时进行测速的频段为低频段。
3、通信信息
若信息处理模块307要得到通信信息,基于图2对应实施例所介绍的内容可知,信号光为其他激光雷达的信号光,或,信号光为激光雷达300的信号光与其他激光雷达的信号光。
基于此,第三带通滤波器3073用于对多个电信号中的第三电信号进行解调,得到解调后的信息,该解调后的信息包括第一信息与第二信息,且第一信息与第二信息之间的信息为通信信息。
信息处理模块307具体用于对解调后的信息进行识别,以得到通信信息。该通信信息包括身份信息以及通信内容,且身份信息指示通信内容的来源。具体地,不同的激光雷达中第一信息的编码方式,第二信息的编码方式以及通信信息的编码方式均相同。本实施例中第一信息为帧头,第二信息为帧尾,为了便于理解,请参阅图5,图5为本申请实施例中解调后的信息的一个编码示意图,如图5所示,解调后的信息包括第一信息501,通信信息502以及第二信息503,当第三带通滤波器3073对多个电信号中的第三电信号进行解调后能够得到解调后的信息,然后信息处理模块307对解调后的信息进行识别,当识别到第一信息501时,能够确定可以开始获取通信信息502,当识别到第二信息503后,可以结束识别,并且将第一信息501与第二信息503之间所识别到的信息确定为通信信息502。
应理解,激光雷达之间进行通信也有固定的工作频段,激光雷达之间进行通信具体在中频段。当前的自由空间激光通信中,如卫星之间进行通信,第一信息的编码方式、通信内容的编码方式以及第二信息的编码方式只有进行通信的激光雷达知道,即使信号光被捕获,也 不会轻易破解。而本方案中,第一信息的编码方式、通信内容的编码方式以及第二信息的编码方式是统一的,只要接收到信号光,能够更容易破解信号光中的第一信息以及第二信息得到通信信息,进而得到通信内容,从而提升获取通信内容的效率。
示例性地,身份信息“1001”指示激光雷达A,身份信息“1010”指示激光雷达B以及身份信息“1011”指示激光雷达C,且信息处理模块307能够得到通信信息1,通信信息2以及通信信息3。基于此,若通信信息1中包括身份信息“1001”以及通信内容1,此时激光雷达300能够确定通信内容1来源于激光雷达A,也就是说激光雷达A向激光雷达300发送了通信内容1。同理可知,若通信信息2中包括身份信息“1010”以及通信内容2,此时激光雷达300能够确定通信内容2来源于激光雷达B,也就是说激光雷达B向激光雷达300发送了通信内容2。其次,若通信信息3中包括身份信息“1011”以及通信内容3,此时激光雷达300能够确定通信内容3来源于激光雷达C,也就是说激光雷达C向激光雷达300发送了通信内容3。
二、第一激光的偏振方向与第二激光的偏振方向不同
请参阅图6,图6为本申请实施例中激光雷达的另一结构示意图,如图6所示,激光雷达600包括激光器601,分光器602,移频器603,相位调制器604,混频器605,编码产生器606,信息处理模块607,发射光学系统608,接收光学系统609,波片610,探测器611以及功率分配器612,且信息处理模块607具体包括第一带通滤波器6071,第二带通滤波器6072以及第三带通滤波器6076,下面对每个不同的器件以及模块的具体功能进行介绍。
激光器601用于向分光器发送激光。
分光器602用于改变从激光器601接收到的激光的偏振方向,以得到第一激光与第二激光,此时第一激光的偏振方向与第二激光的偏振方向不相同。
分光器602还用于向移频器603发送第一激光,且向相位调制器604发送第二激光;
移频器603用于向混频器605发送从分光器602接收到的第一激光。本实施例中将第一激光作为本振光。
编码产生器606用于生成激光雷达600的测距信息,并向相位调制器604发送激光雷达600的测距信息,且向信息处理模块607发送激光雷达600的测距信息。
相位调制器604用于将从编码产生器606接收到的激光雷达600的测距信息加载至第二激光上,且将加载激光雷达600的测距信息的第二激光发送至发送光学系统608。
发送光学系统608用于发送加载激光雷达600的测距信息的第二激光。本实施例中,将加载激光雷达600的测距信息的第二激光作为激光雷达600的信号光。
接收光学系统609用于接收与第一激光的偏振方向不同的信号光,并向波片610发送与第一激光的偏振方向不同的信号光。具体地,与第一激光的偏振方向不同的信号光可以为与激光雷达600的本振光的偏振方向不同的信号光,或,与其他激光雷达的本振光的偏振方向的信号光,或,与激光雷达600的本振光的偏振方向不同的信号光以及与其他激光雷达的本振光的偏振方向的信号光。
波片610用于改变与第一激光的偏振方向不同的信号光,以得到信号光,并向混频器发送信号光。具体的,该信号光可以为激光雷达600的信号光,或,其他激光雷达的信号光,或,激光雷达600的信号光与其他激光雷达的信号光。信号光的具体编码示例请参阅图4, 在此不再赘述。
混频器605用于对信号光与本振光进行混频处理,以得到混频后的光信号,并且向探测器611发送混频后的光信号。
探测器611用于对混频后的光信号进行探测转换为待处理电信号,并且向功率分配器612发送待处理电信号。
功率分配器612用于将待处理电信号分为多个电信号,且多个电信号几条包括第一电信号,第二电信号以及第三电信号。应理解,第一电信号,第二电信号以及第三电信号可以为平均分布,也可以不平均分布,本实施例中不对第一电信号,第二电信号以及第三电信号的具体分布进行限定。基于此,功率分配器612具体用于将第一电信号发送至第一带通滤波器6071,将第二电信号发送至第二带通滤波器6072,以及第三电信号发送至第三带通滤波器6076。
若信息处理模块607要得到测距结果,基于图3对应实施例所介绍的内容可知,激光雷达600的信号光为加载激光雷达600的测距信息的第二激光,因此待验证测距信息为激光雷达600的测距信息。基于此,由于编码产生器606向信息处理模块607发送了激光雷达600的测距信息,因此信息处理模块607所包括的第一带通滤波器6071用于对第一电信号进行测距信息解调,得到待验证测距信息(即激光雷达600的测距信息)。基于此,信息处理模块607具体用于基于待验证测距信息与激光雷达600的测距信息进行相关测距,以得到测距结果。具体得到测距结果的具体方式与图3中实施例所介绍的方式类似,此处不再赘述。
若信息处理模块607要得到测距结果,基于图3对应实施例所介绍的内容可知,第二带通滤波器6072用于基于多个电信号中的第二电信号进行多普勒测速,以得到测速结果。得到测速结果的具体方式与图3中实施例所介绍的方式类似,此处不再赘述。
若信息处理模块607要得到通信信息,基于图3对应实施例所介绍的内容可知,第三带通滤波器6076用于对多个电信号中的第三电信号进行解调,得到解调后的信息,该解调后的信息包括第一信息与第二信息,且第一信息与第二信息之间的信息为通信信息。且信息处理模块609具体用于对解调后的信息进行识别,以得到通信信息。该通信信息包括身份信息以及通信内容,且身份信息指示通信内容的来源。具体地,不同的激光雷达中第一信息的编码方式,第二信息的编码方式以及通信信息的编码方式均相同。具体得到通信信息的具体方式与图3中实施例所介绍的方式类似,此处不再赘述。
上面对不同情况下的激光雷达的具体结构与每个器件以及模块的功能进行了介绍,下面将基于图6所示出的结构详细介绍基于频分复用的激光雷达的实现方式,请参阅图7,图7为本申请实施例中激光雷达进行测速测距以及通信的实施例示意图,如图7所示,在激光雷达700中,激光器701向分光器702发送线偏振的激光,分光器702中具体包括1/2波片以及偏振光学分束器(polarization beam splitter,PBS),因此线偏振的激光通过分光器702包括的1/2波片后,偏振方向发生变化,通过调整1/2的主轴方向,来控制分光器702包括的PBS分光后,s光和p光的分光比,本实施例中不对具体分光比进行限定。基于此,经过分光器702包括的PBS后的p光作为未加载激光雷达700的测距信息的信号光,s光作为本振光,即s光为前述实施例介绍的第一激光,而p光为为前述实施例介绍的第二激光。因此分光器702向移频器703发送s光,并且向相位调制器704发送p光。移频器703接收 到s光后向混频器705发送s光。
进一步地,通过相位调制器704将编码产生器706产生的激光雷达700的测距信息(前述实施例介绍的伪随机码)加载到p光上,并且将加载激光雷达700的测距信息的p光向发射光学系统707发送。发射光学系统707具体包括1/4波片和透镜,加载激光雷达700的测距信息的p光通过发射光学系统707包括的1/4波片后,变成圆偏振信号光(即激光雷达700的信号光),并通过发射光学系统707包括的透镜发射到目标上。
再进一步地,以信号光仅包括激光雷达700的信号光作为示例进行介绍,接收光学系统707具体包括1/4波片和透镜,接收光学系统707包括的透镜接收从目标回来的圆偏振信号光,该圆偏振信号光经过接收光学系统707包括的1/4波片后,得到激光雷达700的信号光(p光)。由于激光雷达700的信号光(p光)与激光雷达700的本振光(s光)的偏振方向不同的信号光,因此通过波片709能够得到与s光的偏振方向相同的激光雷达700的信号光(p光),并且并向混频器705发送与s光的偏振方向相同的激光雷达700的信号光,然后s光以及与s光的偏振方向相同的激光雷达700的信号光在混频器705上进行混频,得到混频后的光信号。探测器710的阵列对混频后的光信号进行接收,并将混频后的光信号转换为待处理电信号。待处理电信号经过功率分配器后的被分成三部分,即得到第一电信号,第二电信号以及第三电信号,第一电信号过第一带通滤波器7121后,信息处理模块712进行测距码解调,然后与编码产生器706产生的激光雷达700的测距信息进行相关测距,从而得到测距结果。其次,第二电信号经过第二带通滤波器7122后,进行多普勒测速,从而得到测速结果。再次,第三电信号经过第三带通滤波器7123后,获取通信信息。得到测距结果,测速结果以及通信信息的具体方式与图3中实施例所介绍的方式类似,此处不再赘述。
另外需说明的是,以上所描述的实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程 序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、通信装置、计算设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、通信装置、计算设备或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的通信装置、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种激光雷达,其特征在于,所述激光雷达包括混频器,探测器,功率分配器以及信息处理模块;
    所述混频器用于对信号光与本振光进行混频处理,以得到混频后的光信号,其中,所述信号光为所述激光雷达的信号光,和/或,其他激光雷达的信号光;
    所述探测器用于对所述混频后的光信号进行探测转换为待处理电信号;
    所述功率分配器用于将所述待处理电信号分为多个电信号;
    所述信息处理模块用于对所述多个电信号进行处理,得到测距结果和/或通信信息。
  2. 根据权利要求1所述激光雷达,其特征在于,所述激光雷达还包括编码产生器,所述信息处理模块包括第一带通滤波器;
    当所述信号光为所述激光雷达的信号光,或,所述信号光为所述激光雷达的信号光与所述其他激光雷达的信号光时,所述多个电信号包括待验证测距信息,所述待验证测距信息为所述激光雷达的测距信息;
    所述编码产生器用于生成所述激光雷达的测距信息,并向所述信息处理模块发送所述激光雷达的测距信息;
    所述第一带通滤波器用于对所述多个电信号中的第一电信号进行测距信息解调,得到所述待验证测距信息;
    所述信息处理模块具体用于基于所述待验证测距信息与所述激光雷达的测距信息进行相关测距,以得到所述测距结果。
  3. 根据权利要求1所述激光雷达,其特征在于,所述信息处理模块还用于对所述多个电信号进行处理,得到测速结果。
  4. 根据权利要求3所述激光雷达,其特征在于,所述信息处理模块包括第二带通滤波器;
    当所述信号光为所述激光雷达的信号光,或,所述信号光为所述激光雷达的信号光与所述其他激光雷达的信号光时;
    所述第二带通滤波器用于基于所述多个电信号中的第二电信号进行多普勒测速,以得到所述测速结果。
  5. 根据权利要求1所述激光雷达,其特征在于,所述信息处理模块包括第三带通滤波器;
    所述第三带通滤波器用于对所述多个电信号中的第三电信号进行解调,得到解调后的信息;
    所述信息处理模块具体用于对所述解调后的信息进行识别,以得到通信信息。
  6. 根据权利要求5所述激光雷达,其特征在于,所述解调后的信息包括第一信息与第二信息,所述第一信息与所述第二信息之间的信息为所述通信信息;
    所述通信信息包括身份信息以及通信内容,所述身份信息指示所述通信内容的来源;
    不同的激光雷达中所述第一信息的编码方式,所述第二信息的编码方式以及所述通信信息的编码方式相同。
  7. 根据权利要求2至6中任一项所述激光雷达,其特征在于,经过带通滤波器之后的多个电信号的频率范围不同,且经过带通滤波器之后的每个电信号的频率范围没有重合。
  8. 根据权利要求2至6中任一项所述激光雷达,其特征在于,所述激光雷达还包括发送 光学系统以及接收光学系统;
    所述发送光学系统用于发送所述激光雷达的信号光;
    所述接收光学系统用于接收所述信号光。
  9. 根据权利要求8所述激光雷达,其特征在于,所述激光雷达还包括激光器,分光器,移频器,相位调制器;
    所述激光器用于向所述分光器发送激光;
    所述分光器用于将所述激光分为第一激光与第二激光,其中,所述第一激光的偏振方向与第二激光的偏振方向相同;
    所述分光器还用于向所述移频器发送所述第一激光,且向所述相位调制器发送所述第二激光;
    所述移频器用于向所述混频器发送所述第一激光,其中,所述第一激光为所述本振光;
    所述编码产生器还用于生成所述激光雷达的测距信息,并向所述相位调制器发送所述激光雷达的测距信息;
    所述相位调制器用于将所述激光雷达的测距信息加载至所述第二激光上,且将加载所述激光雷达的测距信息的第二激光发送至所述发送光学系统;
    所述发送光学系统具体用于发送所述加载所述激光雷达的测距信息的第二激光,其中,所述加载所述激光雷达的测距信息的第二激光为所述激光雷达的信号光;
    所述接收光学系统具体用于接收所述信号光,并向所述混频器发送所述信号光。
  10. 根据权利要求8所述激光雷达,其特征在于,所述激光雷达还包括激光器,分光器,移频器,相位调制器以及波片;
    所述激光器用于向所述分光器发送激光;
    所述分光器用于改变所述激光的偏振方向,以得到第一激光与第二激光,其中,所述第一激光的偏振方向与第二激光的偏振方向不同;
    所述分光器还用于向所述移频器发送所述第一激光,且向所述相位调制器发送所述第二激光;
    所述移频器用于向所述混频器发送所述第一激光,其中,所述第一激光为所述本振光;
    所述编码产生器还用于生成所述激光雷达的测距信息,并向所述相位调制器发送所述激光雷达的测距信息;
    所述相位调制器用于将所述激光雷达的测距信息加载至所述第二激光上,且将加载所述激光雷达的测距信息的第二激光发送至所述发送光学系统;
    所述发送光学系统具体用于发送所述加载所述激光雷达的测距信息的第二激光,其中,所述加载所述激光雷达的测距信息的第二激光为所述激光雷达的信号光;
    所述接收光学系统具体用于接收与第一激光的偏振方向不同的信号光,并向所述波片发送所述与第一激光的偏振方向不同的信号光;
    所述波片用于改变所述与第一激光的偏振方向不同的信号光,以得到所述信号光,并向所述混频器发送所述信号光。
PCT/CN2022/087022 2021-04-26 2022-04-15 一种激光雷达 WO2022228148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110454340.1 2021-04-26
CN202110454340.1A CN115248437A (zh) 2021-04-26 2021-04-26 一种激光雷达

Publications (1)

Publication Number Publication Date
WO2022228148A1 true WO2022228148A1 (zh) 2022-11-03

Family

ID=83697187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087022 WO2022228148A1 (zh) 2021-04-26 2022-04-15 一种激光雷达

Country Status (2)

Country Link
CN (1) CN115248437A (zh)
WO (1) WO2022228148A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057046A2 (en) * 1998-02-20 2000-12-06 Amerigon Inc. High performance vehicle radar system
CN104639235A (zh) * 2015-01-20 2015-05-20 长春理工大学 同时激光测距与偏振成像及激光通信一体化系统
CN105738913A (zh) * 2016-03-30 2016-07-06 中国科学院上海光学精密机械研究所 测距通信一体化激光雷达
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统
CN112639529A (zh) * 2020-07-30 2021-04-09 华为技术有限公司 一种激光雷达和智能车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057046A2 (en) * 1998-02-20 2000-12-06 Amerigon Inc. High performance vehicle radar system
CN104639235A (zh) * 2015-01-20 2015-05-20 长春理工大学 同时激光测距与偏振成像及激光通信一体化系统
CN105738913A (zh) * 2016-03-30 2016-07-06 中国科学院上海光学精密机械研究所 测距通信一体化激光雷达
CN112639529A (zh) * 2020-07-30 2021-04-09 华为技术有限公司 一种激光雷达和智能车辆
CN111880190A (zh) * 2020-08-24 2020-11-03 国科光芯(海宁)科技股份有限公司 一种相干激光测距芯片及其系统

Also Published As

Publication number Publication date
CN115248437A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US10511667B2 (en) CAR2X communication system, apparatus and method
US8949069B2 (en) Position determination based on propagation delay differences of multiple signals received at multiple sensors
US9013347B2 (en) Radar apparatus
US10371809B2 (en) On-board radar apparatus and notification system
JP2006337223A (ja) レーダ装置
WO2020108270A1 (zh) 一种雷达以及目标探测方法
CN102830395A (zh) 一种高精度相位式微波测距装置及方法
CA3180930A1 (en) Radar signal transmitting method, radar signal receiving method, and apparatus
KR101167906B1 (ko) 차량용 레이더시스템 및 차량용 레이더 시스템의 표적탐지 방법
CN112433214A (zh) 一种雷达信号发送方法及装置
JP2022093367A (ja) 情報測定方法および情報測定装置
Krysik et al. The use of a GSM-based passive radar for sea target detection
CN115639568A (zh) 信号处理电路模组、调频连续波雷达及雷达系统控制方法
WO2022228148A1 (zh) 一种激光雷达
CN112394326A (zh) 一种信号发射方法及装置
CN112305543A (zh) 一种检测方法、信号发送方法及装置
CN107923966A (zh) 近距离滤波车辆雷达
Slavov et al. Multiple FM-based passive bistatic pairs for robust target detection with improved position accuracy
CN112014800B (zh) 一种雷达信号发送方法及设备
WO2022199431A1 (zh) 干扰检测方法及装置
JP2020186943A (ja) 信号処理装置、レーダ装置、および、信号処理方法
KR101591063B1 (ko) 레이더 장치
WO2014104299A1 (ja) 車載レーダ装置
CN115917355A (zh) 信号处理方法及装置、雷达装置、存储介质
Friedman et al. Angle-of-arrival-assisted relative interferometric localization using software defined radios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794619

Country of ref document: EP

Kind code of ref document: A1