WO2022228102A1 - 通信资源调度方法和电子设备 - Google Patents
通信资源调度方法和电子设备 Download PDFInfo
- Publication number
- WO2022228102A1 WO2022228102A1 PCT/CN2022/086169 CN2022086169W WO2022228102A1 WO 2022228102 A1 WO2022228102 A1 WO 2022228102A1 CN 2022086169 W CN2022086169 W CN 2022086169W WO 2022228102 A1 WO2022228102 A1 WO 2022228102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- electronic device
- service
- rate
- communication
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 463
- 238000000034 method Methods 0.000 title claims abstract description 97
- 230000015654 memory Effects 0.000 claims description 41
- 238000004590 computer program Methods 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 14
- 230000003993 interaction Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 abstract description 69
- 238000011156 evaluation Methods 0.000 abstract description 23
- 230000000750 progressive effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 44
- 238000010586 diagram Methods 0.000 description 33
- 238000007726 management method Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 238000010295 mobile communication Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000005236 sound signal Effects 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920001621 AMOLED Polymers 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/0085—Hand-off measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
- H04W36/302—Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
Definitions
- the present application relates to the field of electronic technologies, and in particular, to a communication resource scheduling method and an electronic device.
- AIoT artificial intelligence & internet of things
- Electronic devices such as smart wearable devices, smart home devices, and mobile terminals can already be interconnected through wireless networks.
- the electronic device needs to compete with other electronic devices for limited communication resources.
- the competition fails, the data waiting to be sent needs to be stored locally, and the data is sent after the next competition succeeds.
- Electronic devices fail to compete for communication resources, which directly leads to service freezes on the devices and affects user experience.
- a feasible way is: when the electronic device uses the communication resources of channel 1 for data interaction, and the current communication performance of channel 1 cannot meet the needs of the electronic device , the electronic device actively switches channel 2. When the electronic device switches channels, it needs to sacrifice a part of the communication resources to send a probe frame to determine whether the communication performance of channel 2 can meet the requirements of the service on the electronic device. The electronic device determines whether to switch to another channel according to the detection result of the detection frame.
- the result of one detection cannot accurately characterize the communication performance of the channel to be switched. If so, it is decided to switch to channel 2 based on the detection result, but the communication performance of channel 2 is worse than that of channel 1, which increases the delay of service data transmission and deteriorates the user experience.
- An embodiment of the present application provides a communication resource scheduling method.
- the method includes: before an electronic device switches channels, a service on the electronic device adjusts the rate at which the service generates data according to the overhead of switching channels; when the electronic device switches channels, multiple times A temporary channel change operation is performed, and the communication rate of the channel is evaluated in each temporary channel change operation, so as to more accurately predict the communication performance of the channel to be switched.
- the method enables the electronic device to reduce the stalling of services on the electronic device when switching channels, thereby improving the user experience.
- the present application provides a communication resource scheduling method, the method comprising: switching the first electronic device from the first channel to the second channel for the Kth time, where K is a positive integer; staying on the channel for the Kth time, and the first electronic device determines that the communication performance of the second channel is the Kth performance; after the first electronic device stays on the second channel for the Kth time, the first electronic device switches back to The first channel; the first electronic device switches from the first channel to the second channel for the K+1th time; after the first electronic device resides on the second channel for the K+1th time, the first electronic device Determine that the communication performance of the second channel is the K+1th performance; the first electronic device determines, based on the communication performance of the second channel obtained at least twice in the previous K+1 times, that the communication performance of the second channel is better than the th After the communication performance of one channel, the first electronic device stays on the second channel, or the first electronic device switches back to the first channel and then switches to the second channel.
- the electronic device implements progressive channel switching through multiple temporary channel changes, evaluates the communication performance of the channel each time the temporary channel changes, and determines to switch to the second channel based on the results of multiple evaluations.
- the method helps to more accurately evaluate the communication performance of the second channel.
- the temporary channel is changed, data is still transmitted, which reduces the delay caused by channel switching and improves the user experience.
- the K+1th duration when the Kth performance is greater than the communication performance of the first channel, the K+1th duration is greater than or equal to the Kth duration; the Kth performance is smaller than the first When the communication performance of the channel is used, the K+1th duration is less than or equal to the Kth duration.
- the electronic device determines the dwell time on the second channel for the next temporary channel change according to the evaluation result of the second channel during the current temporary channel change operation.
- increasing the dwell time can improve the rate at which data is generated by the business/application program on the electronic device; if the communication performance of the second channel is worse than that of the first channel It can improve the communication performance and reduce the residence time, which can reduce the freezing of services/applications on electronic devices.
- the communication performance of the first channel is determined before the first electronic device switches from the first channel to the second channel for the Kth time; or, the first channel The communication performance is determined before the first electronic device switches from the first channel to the second channel for the K+1th time.
- the timing of determining the communication performance of the first channel may be determined before switching to the second channel, or may be determined before switching from the second channel to the first channel , which helps to more accurately determine the communication performance of the first channel and improves the robustness of switching channels.
- the method before an electronic device switches from the first channel to the second channel for the Kth time, the method further includes: a first application running on the first electronic device, the first The application is configured with one or more communication performance parameter thresholds; the first electronic device determines that the communication performance of the first channel is below any of the one or more communication performance parameter thresholds.
- the application running on the electronic device configures one or more communication performance parameter thresholds, or the application running on the electronic device configures one or more communication performance parameter thresholds for the service, or the electronic device is the application /The service configures one or more communication performance parameter thresholds, and when the communication performance of the first channel is lower than the one or more communication performance parameter thresholds, the electronic device may start to switch channels.
- the method before the first electronic device determines that the communication performance of the first channel is lower than any one of the one or more communication performance parameter thresholds, further The method includes: the first electronic device adjusts the rate at which the first application program generates data based on the communication performance of the first channel and the communication performance parameter threshold.
- the electronic device can adjust the rate at which the application program/service generates data based on the communication performance of the first channel, so as to reduce the freeze of the application program/service, thereby improving the user experience.
- the method before the first electronic device switches from the first channel to the second channel for the Kth time, the method further includes: a first application running on the first electronic device; The first electronic device adjusts the rate at which the first application generates data based on the Kth duration and the overhead of switching channel operations.
- the electronic device when the electronic device changes the temporary channel, it adjusts the data generation rate of the first application in combination with the dwell time and the overhead of switching the channel operation, which helps to reduce the freeze when the temporary channel is changed, and improves the application program. /Robustness of business transmission data.
- the first electronic device adjusts the rate at which data is generated by the first application based on the Kth duration and the overhead of switching channel operations, specifically including: the first electronic device determining the Kth predicted value, the Kth predicted value is the communication rate of the first application on the second channel; the first electronic device adjusts the Kth predicted value based on the Kth predicted value, the Kth duration and the overhead of switching channel operations The rate at which the first application generates data.
- the electronic device when the electronic device changes the temporary channel, it adjusts the data generation rate of the first application in combination with the dwell time and the overhead of switching the channel operation, which helps to reduce the freeze when the temporary channel is changed, and improves the application program. /Robustness of business transmission data.
- determining the Kth predicted value by the first electronic device specifically includes: before the first electronic device switches from the first channel to the second channel, the first The electronic device determines the K-th predicted value through a short-range communication service including one or more of Bluetooth, Apple Wireless Direct Connection AWDL, ZigBee, and HiLink.
- the electronic device may query other electronic devices on the second channel through the short-range communication service to determine the communication performance of the second channel, or monitor the broadcast channel specified in the short-range communication service to determine the communication performance of the second channel. communication performance, and predicting the data transmission rate of the application program/service on the second channel based on the communication performance, thereby improving the robustness of the application program/service transmission data.
- determining the Kth predicted value by the first electronic device specifically includes: if K is greater than 1, the first electronic device determines the Kth predicted value based on the K-1th performance .
- the electronic device can predict the data transmission rate of the application program/service on the second channel when the temporary channel is changed this time based on the evaluation result of the communication performance of the second channel when the temporary channel is changed last time, thereby improving the application Robustness of program/business transfer data.
- determining the Kth predicted value by the first electronic device specifically includes: the first electronic device determining that the Kth predicted value is equal to 0.
- the worst-case scenario can be made, that is, it is assumed that the data transmission rate of the application program/service on the second channel is 0 when the temporary channel change is predicted, which ensures that the In any case, the rate at which the application/service generates data based on the 0 rate determined by the application will not cause the application/service to freeze.
- the first electronic device determines that the communication performance of the second channel is better than that of the second channel based on the communication performance of the second channel obtained at least twice in the first K+1 times. After the communication performance of the first channel, the first electronic device stays in the second channel, or the first electronic device switches back to the first channel and then switches to the second channel, which specifically includes: when the K+1th performance is greater than In the case of the communication performance of the first channel, the first electronic device determines the K+2th duration, and the K+2th duration is greater than the K+1th duration; the first electronic device determines that the K+2th duration is greater than the K+2th duration After the dwell time upper bound, the first electronic device stays on the second channel, or the first electronic device switches back to the first channel and then switches to the second channel.
- the electronic device determines that the communication performance of the second channel is better than the communication performance of the first channel, the judgment method is relatively simple, and the realization is reduced. complexity.
- the present application provides another method for scheduling communication resources.
- the method includes: a first application program running on a first electronic device, the first electronic device performs data interaction on a first channel; the first electronic device The device sends the data of the first application at a first rate; before the first electronic device switches from the first channel to the second channel, the first electronic device determines the second rate; the first electronic device is in the first On the channel and on the second channel, the data of the first application is sent at the second rate, and the first rate is different from the second rate; the first electronic device switches back to the first channel.
- the data rate of sending applications/services on the first channel is different from that of sending applications/services on the second channel.
- the upper-layer application/service knows that the bottom layer needs to switch to the channel, and actively adjusts the rate of data generation, which helps reduce application/service freezes.
- the method before the first electronic device sends the data of the first application at the first rate, the method further includes: at the first moment, the electronic device is based on the The communication performance of the first channel in one or more time slices determines the communication performance of the first channel from a first moment to a second moment, and the second moment is after the first moment; the first electronic device is based on the The communication performance of the first channel from the first moment to the second moment determines a third rate; from the first moment to the second moment, the electronic device sends the data of the first application at the third rate, The third rate is different from the first rate.
- the electronic device can predict the communication performance of the first channel for a period of time in the future, and adjust the rate at which the application program generates data based on the predicted value, which helps to reduce the time-varying communication performance of the channel and cause the application/service card pause.
- the first electronic device determines the second rate, which specifically includes: the first electronic device Before switching from the first channel to the second channel, the first electronic device determines the second rate based on the communication performance of the first channel and the dwell time of the first electronic device on the second channel.
- the electronic device may determine the rate at which the application/service on the electronic device sends data on the second channel based on the dwell time and the communication performance of the first channel, and adjust the application/service to generate data based on the rate speed, which helps reduce application/service freezes when switching channels.
- the first electronic device determines the second rate, which specifically includes: the first electronic device Before switching from the first channel to the second channel, the first electronic device determines the communication performance of the second channel through a short-range communication service, the short-range communication service includes Bluetooth, Apple Wireless Direct Connection AWDL, Zifeng ZigBee, HiLink One or more of; the first electronic device determines the second rate based on the communication performance of the first channel, the communication performance of the second channel, and the dwell time on the second channel.
- the short-range communication service includes Bluetooth, Apple Wireless Direct Connection AWDL, Zifeng ZigBee, HiLink One or more of; the first electronic device determines the second rate based on the communication performance of the first channel, the communication performance of the second channel, and the dwell time on the second channel.
- the electronic device inquires the electronic device located on the second channel through the proximity service, and then determines the communication performance of the second channel; or the electronic device monitors the broadcast channel specified by the proximity service, and then determines the communication of the second channel. performance. After determining the communication performance of the second channel, the electronic device can more accurately predict the communication rate of the application/service on the second channel, and then determine a more accurate rate at which the application/service generates data, reducing the time of switching channels. Application/business lag.
- an embodiment of the present application provides an electronic device, the electronic device includes: one or more processors and a memory; the memory is coupled to the one or more processors, and the memory is used to store computer program codes,
- the computer program code includes computer instructions invoked by the one or more processors to cause the electronic device to perform: a Kth switch from a first channel to a second channel, where K is a positive integer; on the second channel Stay on the K-th length of time, and determine that the communication performance of the second channel is the K-th performance; after staying on the second channel for the K-th length of time, switch back to the first channel; switch from the first channel to the first channel for the K+1th time The second channel; after staying on the second channel for the K+1th time, determine that the communication performance of the second channel is the K+1th performance; The communication performance determines that the communication performance of the second channel is better than the communication performance of the first channel, and then stays in the second channel, or switches back to the first channel and then switches to the second channel.
- the K+1th duration when the Kth performance is greater than the communication performance of the first channel, the K+1th duration is greater than or equal to the Kth duration; the Kth performance is smaller than the first When the communication performance of the channel is used, the K+1th duration is less than or equal to the Kth duration.
- the communication performance of the first channel is determined before switching from the first channel to the second channel for the Kth time; or, the communication performance of the first channel is the Kth Determined before switching from the first channel to the second channel K+1 times.
- the one or more processors are further configured to invoke the computer instructions to cause the electronic device to execute: run a first application, the first application is One or more communication performance parameter thresholds are configured; it is determined that the communication performance of the first channel is lower than any one of the one or more communication performance parameter thresholds.
- the one or more processors are further configured to invoke the computer instructions to cause the electronic device to execute: based on the communication performance of the first channel and the communication performance parameter The threshold adjusts the rate at which the first application generates data.
- the one or more processors are further configured to invoke the computer instructions to cause the electronic device to execute: a first application running on it; based on the Kth duration and the overhead of switching channel operations adjust the rate at which data is generated by the first application.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: determine the Kth predicted value, where the Kth predicted value is the The communication rate of the first application on the second channel; the rate at which the first application generates data is adjusted based on the Kth predicted value, the Kth duration, and the overhead of switching the channel operation.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: before switching from the first channel to the second channel,
- the K-th predicted value is determined through a short-range communication service, the short-range communication service including one or more of Bluetooth, Apple Wireless Direct Connection AWDL, Zifeng ZigBee, and HiLink.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: if K is greater than 1, determine the th K predicted value.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to perform: determine that the Kth predicted value is equal to 0.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: when the K+1th performance is greater than that of the first channel In the case of communication performance, determine the K+2th duration, and the K+2th duration is greater than the K+1th duration; after determining that the K+2th duration is greater than the upper limit of the dwell time, stay on the second channel, or, Switch back to the first channel and then switch to the second channel.
- an embodiment of the present application provides an electronic device, the electronic device includes: one or more processors and a memory; the memory is coupled to the one or more processors, and the memory is used to store computer program codes,
- the computer program code includes computer instructions, which are invoked by the one or more processors to cause the electronic device to execute: a first application program runs on the first electronic device, and data interaction is performed on the first channel; Send the data of the first application program at the rate; determine the second rate before switching from the first channel to the second channel; send the first application program on the first channel and the second channel at the second rate data, the first rate is different from the second rate; switch back to the first channel.
- the one or more processors are further configured to invoke the computer instructions to cause the electronic device to execute: at the first moment, the electronic device The communication performance of the first channel in one or more time slices of The communication performance of the first channel in the second time determines a third rate; from the first time to the second time, the electronic device sends the data of the first application at the third rate, the third rate different from this first rate.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: before switching from the first channel to the second channel,
- the second rate is determined based on the communication performance of the first channel and the dwell time on the second channel.
- the one or more processors are specifically configured to invoke the computer instructions to cause the electronic device to execute: before switching from the first channel to the second channel,
- the communication performance of the second channel is determined through a short-range communication service, the short-range communication service includes one or more of Bluetooth, Apple Wireless Direct Connection AWDL, ZigBee, and HiLink; based on the communication performance of the first channel, the The communication performance of the second channel and the dwell time on the second channel determine the second rate.
- an embodiment of the present application provides a chip, the chip is applied to an electronic device, the chip includes one or more processors, and the processor is used for invoking computer instructions to cause the electronic device to execute the first aspect, the first The method described in the second aspect and any possible implementation manner of the first aspect and the second aspect.
- an embodiment of the present application provides a computer program product containing instructions, when the computer program product is run on an electronic device, the electronic device is made to execute the first aspect, the second aspect, and the first aspect and the second aspect.
- an embodiment of the present application provides a computer-readable storage medium, including instructions, when the above-mentioned instructions are executed on an electronic device, the above-mentioned electronic device is made to execute the first aspect, the second aspect, and the first aspect and the second aspect.
- the electronic devices provided in the third aspect and the fourth aspect, the chip provided in the fifth aspect, the computer program product provided in the sixth aspect, and the computer storage medium provided in the seventh aspect are all used to execute the embodiments of the present application. provided method. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding method, which will not be repeated here.
- Fig. 1 is an exemplary schematic diagram of the business involved in this application
- FIG. 2 is an exemplary schematic diagram of a scenario in which a service adjusts a communication rate in an embodiment of the present application
- FIG. 3 is an exemplary schematic diagram of an electronic device predicting a communication rate of a physical layer in an embodiment of the present application
- FIG. 4 is an exemplary schematic diagram of an electronic device performing a temporary channel change operation in an embodiment of the present application
- FIG. 5 is an exemplary schematic diagram of predicting a physical layer communication rate when a service is temporarily changed in an embodiment of the present application
- FIG. 6 is an exemplary schematic diagram of the channel switching method involved in the present application.
- FIG. 7 is an exemplary schematic diagram of a usage scenario of the communication resource scheduling method provided by the present application.
- FIG. 8 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
- FIG. 9 is another schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
- FIG. 10 is a schematic block diagram of a software structure of the electronic device 100 in the embodiment of the application.
- 11 is a schematic block diagram of another software structure of the electronic device 100 in the embodiment of the application.
- FIG. 12 is an exemplary schematic diagram of the communication resource scheduling method provided by the present application.
- FIG. 13 is an exemplary schematic diagram of predicting a physical layer communication rate before an electronic device performs a temporary channel change operation according to an embodiment of the present application
- FIG. 14 is an exemplary schematic diagram of the relationship between communication rates on different channels for service judgment provided by an embodiment of the present application.
- FIG. 15 is an exemplary schematic diagram of an electronic device staying in a B channel according to an embodiment of the present application.
- FIG. 16 is an exemplary schematic diagram of a channel switching scenario of an electronic device according to an embodiment of the present application.
- first and second are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
- a wireless channel refers to a channel that uses a wireless signal as a transmission carrier to transmit data.
- the frequency point and the bandwidth can be used to describe the wireless channel, and the frequency point and the bandwidth jointly determine the frequency range of the signal transmitted on the channel.
- the available frequency bands of the wireless channel include: Industrial Scientific and Medical (ISM) frequency band and unlicensed frequency band.
- ISM Industrial Scientific and Medical
- the communication performance of the wireless channel may include channel delay, communication rate, and the like.
- the channel delay is the time it takes for the wireless channel to transmit data from one end to the other;
- the communication rate is the number of information bits correctly transmitted by the wireless channel in a unit time.
- the wireless channel is located at the physical layer.
- the communication performance of the wireless channel is time-varying, that is, the communication performance of the wireless channel in a certain period of time in the future cannot be accurately determined.
- the communication rate may be the ratio of the amount of data transmitted by the service to the transmission time.
- the communication rate can also be referred to as the throughput rate of the service, wherein the throughput rate is the ratio of the data volume of the service transmitted by the physical layer to the transmission time.
- the data volume of the service may be the real data volume of the service; or, the data volume of the service may also be the sum of the real data volume of the service and the overhead.
- the service may be an application program/service session running on the electronic device.
- the communication rate requirement is one or more thresholds configured by the service for the communication rate parameter according to the service requirement. Among them, the communication rate requirement can be pre-configured for the service.
- the service can adjust the rate at which the service generates data according to the communication rate and communication rate requirements.
- the service adjusts the rate at which the service generates data, so that the rate at which the service generates data is less than or equal to the communication rate, and reduces the backlog of service data locally, thereby reducing service freezes.
- the service adjusts the rate at which the service generates data, so that the rate at which the service generates data is less than or equal to the communication rate, and reduces the backlog of service data locally, thereby reducing service freezes.
- the communication rate does not represent the negotiated rate of the physical layer.
- the communication rate requirements are exemplarily introduced below with reference to the content shown in FIG. 1 .
- FIG. 1 is an exemplary schematic diagram of the services involved in this application.
- the user projects the online video content being played on the mobile phone to the projector through the router.
- the projection service may be a video application for playing video, or the projection service may be a projection service session created by a video application.
- the format of the video played on the mobile phone is: 1080P, 60 frames.
- the electronic device may configure at least one communication rate requirement for the projection service, as shown in Table 1 below.
- Table 1 is an exemplary schematic diagram of the communication rate requirements involved in this application.
- the communication rate requirement is the lowest physical layer communication rate required when the projection service on the mobile phone transmits videos of different bit rates and frame rates.
- the transmission rate of the physical layer in the scenario shown in FIG. 1 is the rate of transmitting video data of the projection service on the channel set up by the router.
- the communication rate of the wireless channel carrying the data interaction of the projection service should be greater than 180kbps.
- the communication rate requirement can be configured to be 200kbps.
- the communication rate of the wireless channel is less than 200kbps, the data of the projection service cannot be sent to the projector in time, and the user will feel stuck; on the contrary, if the communication rate of the wireless channel is greater than or equal to 200kbps, the data of the projection service can be sent in time On the projector, the user will not experience lag.
- a software developer when developing an application/service session, may configure at least one communication rate requirement for the application/service session.
- FIG. 2 is an exemplary schematic diagram of a scenario in which a service adjusts a communication rate in an embodiment of the present application.
- the projection service on the mobile phone periodically predicts the communication rate of the wireless channel, and the video transmission format of the projection service on the mobile phone is 1080P and 60FPS.
- the mobile phone predicted that the communication rate of the wireless channel would be 700kbps within 1.3 seconds to 1.4 seconds; at the first 1.3 seconds, the mobile phone adjusted the format of the video transmitted by the projection service to 720P and 60FPS.
- the mobile phone predicts that the communication rate of the wireless channel is 2048kbps in 2.1 seconds to 2.3 seconds.
- the mobile phone adjusts the format of the video transmitted by the projection service to 1080P and 60FPS.
- the service can adjust the communication rate of the service according to the predicted communication rate of the physical layer, so as to improve the user experience.
- the concepts of terms such as the physical layer communication rate reference may be made to the text description in (3) Predicting the physical layer communication rate in the term explanation, which will not be repeated here.
- the communication rate of the physical layer is the data throughput rate of the service sent by the electronic device.
- the physical layer communication rate is the data volume/time for the electronic device to send the service through the router's WiFi.
- the physical layer communication rate is the total amount of data/time for the electronic device to send the service on multiple paths.
- the data volume of the service may include control data, or may not include control data.
- the electronic device may determine the service throughput in the next time slice based on information such as the effective throughput (good put) of the service in one or more past time slices, the load of the channel where the service is located, and the data frame delay. Physical layer communication rate.
- the time lengths of one or more past time slices used for estimating the communication rate of the physical layer in the next time slice may be the same or different.
- the service is specifically introduced to predict the physical layer communication rate of the service in the next time slice based on the effective throughput in the past three time slices.
- 2.4G channel refers to a channel in the 2.4G frequency band provided by the router
- 5G channel refers to a channel in the 5G frequency band provided by the router
- 5G high-frequency channel refers to the 5.2Ghz low frequency band provided by the router
- 5G low-frequency channel refers to the 5.8Ghz high-frequency channel provided by the router, for example, the channel number in the WiFi protocol is 149, 153 , 157, 161, 165, etc.
- FIG. 3 is an exemplary schematic diagram of an electronic device predicting a communication rate of a physical layer in an embodiment of the present application.
- the services on the electronic device perform data exchange on a certain channel in the 2.4G frequency band provided by the router.
- the traffic on the electronic device needs to predict the physical layer communication rate.
- the service can use the three time slices before the 1.9th second to predict the physical layer communication rate after the 1.9th second, that is, to predict the communication rate of the service on the 2.4G channel.
- the length of the time slice can be selected to be 500 milliseconds, that is, time slice 1: 0.4 seconds to 0.9 seconds, time slice 2: 0.9 seconds to 1.4 seconds, and time slice 3: 1.4 seconds to 1.9 seconds.
- the service can count the effective throughput in three time slices, namely: time slice 1 transmits 800KB, time slice 2 transmits 840KB, and time slice 3 transmits 850KB.
- the physical layer communication rates in time slice 1, time slice 2, and time slice 3 are determined to be 1600kbps, 1680kbps, and 1700kbps, respectively.
- the service can predict that the physical layer communication rate is 1660kbps from 1.9 seconds to 2.4 seconds through methods such as function fitting, neural network or deep learning.
- the electronic device performing a temporary channel change operation refers to a process in which the electronic device switches from the A channel to the B channel, stays on the B channel for a period of time, and then returns to the A channel.
- the electronic device on the A channel determines whether to stay on the A channel or switch to the B channel after performing multiple temporary channel change operations.
- the electronic device performs a channel evaluation operation.
- the channel evaluation is an operation performed when the electronic device resides on the switched channel, and is used to determine the rate at which the service transmits data on the switched channel. And within the dwell time T, the electronic device will perform data exchange and channel evaluation at the same time. After the electronic device performs the temporary channel change, it will determine the communication rate of the service on the switched channel.
- the dwell time is 400 milliseconds
- the data frame transmitted in 300 milliseconds is 600kb
- the communication rate of the service on the B channel is greater than ⁇ times the communication rate of the A channel, the next time it resides on the B channel, it will reside on the B channel for a longer time T2, where T2 ⁇ T1; if the service resides on the B channel If the communication rate on the channel is less than ⁇ times the communication rate on the A channel before the handover, the next time it resides on the B channel, it will stay on the B channel for a shorter time T2, where T2 ⁇ T1.
- ⁇ is a positive number greater than or equal to 1, for example, ⁇ may be equal to 1. That is, each time the electronic device performs the temporary channel change process, the time spent on the B channel may be different.
- the service can notify the electronic device to stay on the B channel and end switching channels; when the service determines that the updated dwell time is less than or equal to the lower limit of the dwell time, The service can notify the electronic device to stay on the A channel and end switching the channel.
- the service can notify the electronic device to stay on the A channel and end switching the channel.
- it may be determined whether to stay in the B channel or the A channel by combining multiple channel evaluation results.
- the communication rate of the service on the switched channel may be determined.
- the following takes the content shown in FIG. 4 as an example to specifically introduce the process of the electronic device performing the temporary channel change operation.
- FIG. 4 is an exemplary schematic diagram of an electronic device performing a temporary channel change operation in an embodiment of the present application.
- the electronic device performs data exchange on a certain channel in the 2.4G frequency band provided by the router.
- the electronic device starts to perform the first temporary channel change operation.
- the electronic device performs data exchange and channel evaluation simultaneously on a certain channel in the 5G frequency band provided by the router.
- the electronic device resides on the 5G channel for the first time, and the communication rate of the service on the 5G channel of 700kbps is greater than the communication rate of 400kbps on the 2.4G channel.
- the electronic device returns to the 2.4G channel.
- the first temporary channel change operation ends.
- the electronic device starts to perform the second temporary channel change operation.
- the electronic device performs data exchange and channel assessment simultaneously on the 5G channel.
- the communication rate of the business on the 5G channel of 650kbps is greater than the communication rate of 550kbps on the 2.4G channel.
- the electronic device's second dwell on the 5G channel ends. That is, at 2.5 seconds, the second temporary channel change operation ends.
- the electronic device can completely switch to the 5G channel for data interaction.
- the first dwell time of the electronic device on the 5G channel is 0.3 seconds, and the second dwell time is 0.6 seconds.
- the electronic device may not be able to know in advance the communication rate of the service on the channel after the switch. In order to avoid the low communication rate of the channel after the service is switched, the service is stuck and the user experience is affected. Therefore, before performing the temporary channel change operation, the electronic device can adjust the rate of generating data of the service in combination with the communication rate requirement of the service and the predicted communication rate of the physical layer.
- the service can adjust the rate at which the service generates data according to the predicted communication rate of the physical layer.
- the service can predict the communication rate of the service on the channel after the handover according to the results of the channel evaluation in the first to the L-1th temporary channel change operation.
- L is an integer greater than 1.
- the communication rate of the physical layer can be more accurately predicted according to the communication rate of the service on the channel after the handover and the communication rate of the service on the channel before the handover.
- the communication rate of the channel where the electronic device is located is TP1
- the communication rate of the channel where the electronic device is predicted to reside is TP2
- the channel switching delay is cost
- the dwell time is T1
- the content of how the service adjusts the rate of the data generated by the service according to the predicted and determined physical layer communication rate can refer to the text description in (2) Communication rate requirements in the term explanation, and will not be repeated here.
- the following takes the content shown in FIG. 5 as an example to specifically introduce the method for predicting the communication rate of the physical layer by the service before the electronic device performs the temporary channel change operation.
- FIG. 5 is an exemplary schematic diagram of predicting a communication rate of a physical layer when a service is temporarily changed in a channel according to an embodiment of the present application.
- the electronic device determines to perform the first temporary channel change operation in the future at 0.4 seconds, and the service and/or physical layer on the electronic device determines to start the first temporary channel change at 0.9 seconds at 0.4 seconds operation, and the dwell time on the 5G channel is 0.3 seconds, and the single channel switching delay is 0.1 seconds.
- the format of the video transmitted by the projection service is: 480P, 60FPS.
- the electronic device can reduce the format of the video transmitted by the projection service, so as to reduce the communication rate of the projection service. That is, the electronic device reduces the projection service video format to: 480P, 30FPS.
- the communication rate of the service on the 5G channel is greater than or equal to 400kbps, the service can operate normally, and the user experience is not affected; if the communication rate of the service on the 5G channel is lower than 400kbps but greater than or equal to 200kbps , the service can run normally, and the user experience is not affected; if the communication rate of the service on the 5G channel is lower than 200kbps, the user experience is slightly affected because the service has already reduced the rate of data generation in advance.
- the electronic device when the electronic device performs the temporary channel change operation for the last time, it may not return to the A channel, but choose to stay in the A channel or switch to the B channel according to the results of channel evaluation in multiple temporary channel change operations.
- the method detects the communication performance of the to-be-switched channel by using the non-data frame, thereby reducing the dwell time on the to-be-switched channel.
- the electronic device determines whether to switch the channel according to the single detection result of the non-data frame.
- FIG. 6 is an exemplary schematic diagram of the channel switching method involved in the present application.
- the electronic device starts to switch channels at 0.9 seconds, switches to the 5G channel at the first second, and starts to send probe frames such as Null Data Packet (NDP) frames to determine the communication rate of the 5G channel .
- probe frames such as Null Data Packet (NDP) frames to determine the communication rate of the 5G channel .
- the return to the 2.4G channel starts at 1.3 seconds, and returns to the 2.4G channel at 1.4 seconds.
- the electronic device does not know the communication performance of the channel to be switched, in the worst case, the detection frame that does not carry data should be selected as much as possible, and the duration of sending the detection frame on the channel to be switched is reduced. the benefits of.
- the electronic device switches from the 2.4G channel to the 5G channel After that, it may be that the communication rate of the service on the 5G channel is lower than the communication rate on the 2.4G channel, which affects the normal operation of the service and thus affects the user experience.
- the present application provides a communication resource scheduling method and electronic device.
- FIG. 7 is an exemplary schematic diagram of a usage scenario of the communication resource scheduling method provided by the present application.
- the electronic device negotiates between the service and the physical layer to determine whether to perform a temporary channel change operation.
- the electronic device predicts the physical layer transmission rate from 0.9 seconds to 1.4 seconds, and dynamically adjusts the data generated by the service on the electronic device according to the physical layer transmission rate. rate.
- the electronic device switches to the 5G channel, and performs channel evaluation on the 5G channel while transmitting the data generated by the service on the 5G channel. By calculating the effective throughput and residence time of the service on the 5G channel, the communication rate of the service on the 5G channel can be determined.
- the electronic device returns to the 2.4G channel. That is, at the 1.4th second, the first temporary channel change operation of the electronic device ends.
- the electronic device Since the communication rate (500kbps) of the service on the 5G channel is greater than the communication rate (400kbps) of the service on the 2.4G channel, when the electronic device performs the next temporary channel change operation, it will increase the next time it resides on the 5G channel. time. After repeating the above operations several times, the electronic device finally decides to switch from the 2.4G channel to the 5G channel.
- the communication resource scheduling method provided by the present application simultaneously performs data interaction and channel evaluation on the 5G channel after switching, which improves the utilization rate of communication resources and helps to improve user experience.
- the service on the electronic device will negotiate with the physical layer to determine whether to switch the channel or to determine whether to switch the channel and when to switch the channel, so that the service can adjust the rate of data generation and avoid switching due to switching.
- the communication rate of the latter 5G channel is too low, resulting in service lag, which improves the user experience.
- the communication rate of the service on the 5G channel can be more accurately evaluated, which helps to improve the stability of the service and thus the user experience.
- the electronic device in this embodiment of the present application may be a mobile electronic device or a PC, which is not limited here.
- FIG. 8 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
- the electronic device 100 may have more or fewer components than those shown in the figures, may combine two or more components, or may have different component configurations.
- the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
- the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
- Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194 and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
- SIM Subscriber identification module
- the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
- the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
- the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
- the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
- the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
- application processor application processor, AP
- modem processor graphics processor
- graphics processor graphics processor
- image signal processor image signal processor
- ISP image signal processor
- DSP digital signal processor
- NPU neural-network processing unit
- the controller may be the nerve center and command center of the electronic device 100 .
- the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
- a memory may also be provided in the processor 110 for storing instructions and data.
- the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
- the processor 110 may include one or more interfaces.
- the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
- I2C integrated circuit
- I2S integrated circuit built-in audio
- PCM pulse code modulation
- PCM pulse code modulation
- UART universal asynchronous transceiver
- MIPI mobile industry processor interface
- GPIO general-purpose input/output
- SIM subscriber identity module
- USB universal serial bus
- the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
- the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transfer data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
- the interface can also be used to connect other electronic devices, such as AR devices.
- the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
- the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
- the charging management module 140 is used to receive charging input from the charger.
- the charger may be a wireless charger or a wired charger.
- the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
- the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
- the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
- Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
- Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
- the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
- the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
- the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
- the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
- the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
- at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
- at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
- the modem processor may include a modulator and a demodulator.
- the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
- the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
- the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
- the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
- the modem processor may be a stand-alone device.
- the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
- the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
- WLAN wireless local area networks
- BT Bluetooth
- GNSS global navigation satellite system
- FM frequency modulation
- NFC near field communication
- IR infrared technology
- the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
- the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
- the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
- the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
- the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
- the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
- global positioning system global positioning system, GPS
- global navigation satellite system global navigation satellite system, GLONASS
- Beidou navigation satellite system beidou navigation satellite system, BDS
- quasi-zenith satellite system quadsi -zenith satellite system, QZSS
- SBAS satellite based augmentation systems
- the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
- the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
- the GPU is used to perform mathematical and geometric calculations for graphics rendering.
- Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
- Display screen 194 is used to display images, videos, and the like.
- Display screen 194 includes a display panel.
- the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
- LED diode AMOLED
- flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
- the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
- the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
- the ISP is used to process the data fed back by the camera 193 .
- the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
- ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
- ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
- the ISP may be provided in the camera 193 .
- Camera 193 is used to capture still images or video.
- the object is projected through the lens to generate an optical image onto the photosensitive element.
- the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
- CMOS complementary metal-oxide-semiconductor
- the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
- the ISP outputs the digital image signal to the DSP for processing.
- DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
- the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
- a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
- Video codecs are used to compress or decompress digital video.
- the electronic device 100 may support one or more video codecs.
- the electronic device 100 can play or record videos of various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
- MPEG Moving Picture Experts Group
- MPEG2 moving picture experts group
- MPEG3 MPEG4
- MPEG4 Moving Picture Experts Group
- the NPU is a neural-network (NN) computing processor.
- NN neural-network
- Applications such as intelligent cognition of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
- the internal memory 121 may include one or more random access memories (RAM) and one or more non-volatile memories (NVM).
- RAM random access memories
- NVM non-volatile memories
- Random access memory can include static random-access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronization Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, such as fifth-generation DDR SDRAM is generally called DDR5 SDRAM), etc.;
- SRAM static random-access memory
- DRAM dynamic random access memory
- SDRAM synchronous dynamic random access memory
- DDR SDRAM double data rate synchronous dynamic random access memory
- DDR SDRAM double data rate synchronous dynamic random access memory
- DDR SDRAM double data rate synchronous dynamic random access memory
- fifth-generation DDR SDRAM is generally called DDR5 SDRAM
- Non-volatile memory may include magnetic disk storage devices, flash memory.
- Flash memory can be divided into NOR FLASH, NAND FLASH, 3D NAND FLASH, etc. according to the operating principle, and can include single-level memory cell (SLC), multi-level memory cell (multi-level memory cell, SLC) according to the level of storage cell potential.
- cell, MLC multi-level memory cell
- TLC triple-level cell
- QLC quad-level cell
- UFS universal flash storage
- eMMC embedded multimedia memory card
- the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (eg, machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
- executable programs eg, machine instructions
- the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (eg, machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
- the non-volatile memory can also store executable programs and store data of user and application programs, etc., and can be loaded into the random access memory in advance for the processor 110 to directly read and write.
- the external memory interface 120 can be used to connect an external non-volatile memory, so as to expand the storage capacity of the electronic device 100 .
- the external non-volatile memory communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video, etc. files in external non-volatile memory.
- the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
- the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
- Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
- the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
- the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
- the voice can be answered by placing the receiver 170B close to the human ear.
- the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
- the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
- the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
- the earphone jack 170D is used to connect wired earphones.
- the earphone interface 170D may be the USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
- OMTP open mobile terminal platform
- CTIA cellular telecommunications industry association of the USA
- the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
- the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
- Motor 191 can generate vibrating cues.
- the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
- touch operations acting on different applications can correspond to different vibration feedback effects.
- the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
- Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
- the touch vibration feedback effect can also support customization.
- the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
- the SIM card interface 195 is used to connect a SIM card.
- the SIM card can be contacted and separated from the electronic device 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
- the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
- the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
- the SIM card interface 195 can also be compatible with different types of SIM cards.
- the SIM card interface 195 is also compatible with external memory cards.
- the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
- the processor 110 may call the computer instruction stored in the internal memory 121 to cause the electronic device 100 to execute the communication resource scheduling method in the embodiment of the present application.
- FIG. 9 is another schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
- the electronic device 100 includes:
- An input device 201, an output device 202, a processor 203, and a memory 204 (wherein the number of processors 203 in the electronic device 100 may be one or more, and one processor 203 is taken as an example in FIG. 9).
- the input device 201 , the output device 202 , the processor 203 , and the memory 204 may be connected by a bus or in other ways, wherein the connection by a bus is taken as an example in FIG. 9 .
- the processor 203 causes the electronic device 100 to execute the communication resource scheduling method in the embodiment of the present application by invoking the operation instruction stored in the memory 204 .
- FIG. 10 is a schematic block diagram of a software structure of the electronic device 100 in this embodiment of the present application.
- the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate with each other through software interfaces.
- the system is divided into four layers, which are, from top to bottom, an application layer, an application framework layer, a system library, and a kernel layer.
- the application layer can include a series of application packages.
- the application package may include applications (also referred to as applications) such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and short message.
- applications also referred to as applications
- any application program may be a service in this embodiment of the present application.
- either application can be configured with communication rate requirements.
- the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
- the application framework layer includes some predefined functions.
- the application framework layer may include a window manager, a content provider, a view system, a phone manager, a resource manager, a notification manager, a Local Profile Assistant (LPA), and the like.
- a window manager a content provider
- a view system a phone manager
- a resource manager a notification manager
- LPA Local Profile Assistant
- a window manager is used to manage window programs.
- the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, take screenshots, etc.
- Content providers are used to store and retrieve data and make these data accessible to applications.
- the data may include video, images, audio, calls made and received, browsing history and bookmarks, phone book, etc.
- the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on. View systems can be used to build applications.
- a display interface can consist of one or more views.
- the display interface including the short message notification icon may include a view for displaying text and a view for displaying pictures.
- the phone manager is used to provide the communication function of the electronic device 100 .
- the management of call status including connecting, hanging up, etc.).
- the resource manager provides various resources for the application, such as localization strings, icons, pictures, layout files, video files and so on.
- the notification manager enables applications to display notification information in the status bar, which can be used to convey notification-type messages, and can disappear automatically after a brief pause without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc.
- the notification manager can also display notifications in the status bar at the top of the system in the form of graphs or scroll bar text, such as notifications from applications running in the background, and can also display notifications on the screen in the form of a dialog interface. For example, text information is prompted in the status bar, a prompt sound is issued, the electronic device vibrates, and the indicator light flashes.
- the application framework layer may further include a wireless transmission service for providing configurable and differentiated wireless communication capabilities for applications of different application layers or business sessions initiated by the application.
- the runtime includes core libraries and virtual machines.
- the runtime is responsible for the scheduling and management of the operating system.
- the core library consists of two parts: one is the functional functions that the java language needs to call, and the other is the core library.
- the application layer and the application framework layer run in virtual machines.
- the virtual machine executes the java files of the application layer and the application framework layer as binary files.
- the virtual machine is used to perform functions such as object lifecycle management, stack management, thread management, safety and exception management, and garbage collection.
- a system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
- surface manager surface manager
- media library Media Libraries
- 3D graphics processing library eg: OpenGL ES
- 2D graphics engine eg: SGL
- the system library further includes a wireless transmission service library, and the wireless transmission service library is configured with the implementation method of the communication resource scheduling method provided by the present application.
- the wireless transmission service can provide a method to configure one or more communication rate requirements of a service; the wireless transmission service provides a method to predict the physical layer communication rate; the wireless transmission service can provide a method to estimate the physical layer communication rate after channel switching. etc., which are not limited here.
- the Surface Manager is used to manage the display subsystem and provides a fusion of two-dimensional (2-Dimensional, 2D) and three-dimensional (3-Dimensional, 3D) layers for multiple applications.
- the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
- the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
- the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
- 2D graphics engine is a drawing engine for 2D drawing.
- the kernel layer is the layer between hardware and software.
- the kernel layer contains at least display drivers, camera drivers, audio drivers, sensor drivers, and virtual card drivers.
- the kernel layer may also include a network card driver for carrying data interaction, including: performing channel switching operations, sending/receiving service data, evaluating/predicting the communication rate of the physical layer, and the like.
- the developer configures the method in the wireless transmission service library when developing the application, so that the application can directly interact with the network card driver of the kernel layer when using the wireless transmission service, and implement the communication resource scheduling provided by this application. method.
- an application can interact with the NIC driver at the kernel layer to obtain the communication rate of the application on the current channel.
- the application program determines that the communication rate is lower than the maximum communication rate requirement, it can negotiate with the network card driver to determine the timing of switching channels and the dwell time on the channel after switching.
- the application program sends a request to switch the channel to the network card driver, and the network card driver determines the timing of switching the channel and the dwell time on the channel after the switch, and informs the application of the timing of switching the channel and the dwell time on the channel after the switch. .
- the application program can adjust the rate of data production by the application program in time.
- FIG. 11 is a schematic block diagram of another software structure of the electronic device 100 in this embodiment of the present application.
- the system is divided into four layers, which are an application layer, a framework layer, a system service layer, and a kernel layer from top to bottom.
- the application layer includes system applications and third-party non-system applications.
- the framework layer provides multi-language user program frameworks and capability frameworks such as JAVA/C/C++/JS for applications in the application layer, as well as multi-language framework APIs open to the outside world for various software and hardware services.
- the system service layer includes: system basic capability subsystem set, basic software service subsystem set, enhanced software service subsystem set, and hardware service subsystem set.
- the system basic capability subsystem set supports the operation, scheduling, and migration of the operating system on multiple devices.
- the system basic capability subsystem set may include: distributed soft bus, distributed data management, distributed task scheduling, common basic subsystem, etc.
- the system service layer and the framework layer jointly realize the multi-mode input subsystem, the graphics subsystem and so on.
- the communication resource cooperation method provided by the present application may be located in a distributed soft bus.
- the set of basic software service subsystems provides common and general software services for the operating system, and may include: an event notification subsystem, a multimedia subsystem, and the like.
- the enhanced software service subsystem set provides differentiated software services for different devices, and may include: IOT proprietary service subsystem.
- the hardware service subsystem set provides hardware services for the operating system, and may include: IOT proprietary hardware service subsystem.
- the kernel layer includes the kernel abstraction layer and the driver subsystem.
- the kernel abstraction layer includes a variety of kernels, and by shielding the differences between multiple kernels, it provides basic kernel capabilities for the upper layer, such as thread/process management, memory management, file system, network management, etc.
- the driver subsystem provides software developers with a unified peripheral access capability and a driver development and management framework.
- the application in the application layer can implement the communication resource scheduling method provided by the present application.
- the configuration of the relevant parameters may include: negotiating with the application to configure the communication rate requirement, configuring the dwell time T, and an update method of the dwell time T, and the like.
- the software structure of the electronic device can be divided in other ways according to the operating system.
- FIG. 12 is an exemplary schematic diagram of the communication resource scheduling method provided by the present application.
- the electronic device located on the A channel wants to switch to the B channel, it performs multiple temporary channel change operations, and then performs multiple channel evaluations on the B channel to more accurately determine the communication performance of the B channel. Moreover, based on the result of channel evaluation in the Mth temporary channel change operation, the dwell time length of the M+1th electronic device on the B channel can be dynamically adjusted, which is beneficial to reduce service jams when switching channels.
- the communication resource scheduling method provided by this application includes:
- S1201 In response to the establishment of the service, the electronic device starts to transmit data of the service on the A channel.
- the service is configured with at least one communication rate requirement.
- the electronic device may configure a communication rate requirement for a service for which no communication rate requirement is configured. For example, for different types of services, different types of communication rate requirements can be configured.
- Step S1202 is executed.
- S1202 The service predicts the communication rate of the physical layer.
- the service on the electronic device can periodically predict the physical layer communication rate, that is, predict the communication rate of the service on the A channel.
- the physical layer communication rate can be predicted asynchronously.
- the service can judge whether the freeze occurs according to the amount of locally cached data, or the service can judge whether the freeze occurs according to the frequency of receiving confirmation messages.
- Step S1203 is executed.
- S1203 The electronic device determines whether the predicted physical layer communication rate is less than the minimum communication rate requirement.
- the service can determine the magnitude relationship between the predicted physical layer communication rate and the highest communication rate requirement.
- step S1204 is executed; when the predicted physical layer communication rate is less than the highest communication rate requirement of the service, step S1205 is executed.
- the service on the electronic device is configured with only one communication rate requirement, the service can determine the magnitude relationship between the predicted physical layer communication rate and the communication rate requirement.
- step S1204 is performed; when the predicted physical layer communication rate is less than the communication rate requirement, step S1205 is performed.
- step S1213 when the service of the electronic device is configured with at least two communication rate requirements, when the predicted physical layer communication rate is less than the minimum communication rate requirement of the service, step S1213 is performed, that is, the electronic device The device switches directly to the B channel.
- the electronic device may adjust the rate at which the service generates data according to the predicted and determined physical layer communication rate.
- the method for adjusting the rate at which the service generates data according to the predicted physical layer communication rate may refer to the text description in Terminology Interpretation (2) Communication Rate Requirements, which will not be repeated here.
- step S1201 if the service is not configured with a communication rate requirement, the electronic device may determine whether to switch channels according to the communication protocol complied with during communication, without performing steps S1202 and S1203. .
- step S1205 is executed.
- the service data can be sent from the electronic device in time, the user experience is good, and there is no need to switch channels.
- S1205 The service predicts the communication rate of the physical layer, and adjusts the rate at which the service generates data according to the communication rate of the physical layer.
- the service when the service determines that the predicted physical layer communication rate is less than the maximum communication rate requirement, the service can notify the electronic device to start switching to channel B.
- the service When preparing to switch to the B channel for the first time, the service will determine the dwell time T on the B channel and the channel switching delay. According to the above parameters, the service can predict the physical layer communication rate of the physical layer within the time from the start of the current channel dwell to the end of the current channel switching.
- the service before performing the temporary channel change operation, may determine the moment at which the temporary channel change operation starts.
- the rate at which the service generates data can be adjusted according to the communication rate requirement of the service.
- the following takes the content shown in FIG. 13 as an example to exemplarily introduce the process of the electronic device predicting the communication rate of the physical layer before the electronic device performs a temporary channel change.
- FIG. 13 is an exemplary schematic diagram of predicting a physical layer communication rate before an electronic device performs a temporary channel change operation according to an embodiment of the present application.
- the service and/or physical layer determines that the first temporary channel change operation starts at 2.1 seconds, and the first temporary channel change operation ends at 2.2 seconds operate.
- the electronic device can count the physical layer communication rates in time slice 1, time slice 2, and time slice 3 to predict the communication rate of the electronic device on the A channel in time slice 4.
- the electronic device After the electronic device predicts that the communication rate of the service on the A channel is 420Kbps in the first 1.9 seconds to 2.4 seconds, it can be further predicted: the physical layer communication rate perceived by the service when the electronic device is on the B channel.
- the transmission rate of the service on the B channel is Xkbps in the second to 2.2 seconds.
- the service predicts the communication rate of the physical layer and adjusts the rate at which the service generates data according to the predicted communication rate of the physical layer, so as to avoid a large amount of data generated by the service because the communication rate X of the service on the B channel is too low.
- the backlog is stored in the local cache and cannot be transmitted in time, which improves the user experience.
- the service when the electronic device performs a temporary channel change operation, the service may not predict the physical layer communication rate; or, after the electronic device predicts the physical layer communication rate, it may not adjust the service generation data. The data is still generated at the original rate.
- S1206 Switch to the B channel for the first time, stay on the B channel for T time, and determine the communication rate of the service on the B channel.
- the electronic device switches to the B channel for the first time, it stays on the B channel for a time T according to the dwell time T determined in step S1205.
- the data generated by the service will be transmitted on the B channel.
- the service performs channel evaluation on the B channel while transmitting data to determine the communication rate of the service on the B channel. That is, the electronic device performs the temporary channel change operation for the first time.
- the electronic device determines the magnitude relationship between I and N.
- N is the upper threshold of the number of times of switching channels, and is a positive integer greater than or equal to 2 pre-configured by the service.
- S1207 and S1215 are optional steps, and after performing S1206, the electronic device may perform S1208. This is because, in some cases, there is a certain gap between the communication rate of the service on the A channel and the communication rate of the service on the B channel on the electronic device, and N may not be configured, and it is determined whether to switch the channel through step S1211 or step S1212.
- S1208 Determine that the communication rate of the service on the B channel is greater than or equal to the communication rate on the A channel.
- step S1209 is executed;
- step S1210 is performed.
- the communication rate of the service on the B channel and the communication rate of the service on the A channel may be determined at the end of this temporary channel change operation, or after this temporary channel change operation, or in the following Before the next temporary channel change operation.
- the timing of the service execution step S1208 is specifically introduced.
- FIG. 14 is an exemplary schematic diagram of the relationship between the communication rates of service judgment on different channels according to an embodiment of the present application.
- the service can determine the size of the communication rate of the service on the B channel and the communication rate of the service on the A channel at any of the two timings.
- the communication rate on the B channel of 410kbps is greater than the communication rate of the business on the A channel of 400kbps.
- the service determines at different times that the communication rate of the service on the B channel is the same as that of the service on the A channel.
- the communication rate on the channel may lead to the opposite result.
- the service can choose an appropriate time to judge the size of the communication rate of the service on the B channel and the communication rate of the service on the A channel.
- step S1208 is performed for the service, that is, after it is determined that the communication rate of the service on the B channel is greater than the communication rate of the service on the A channel, the dwell time T for the next handover to the B channel can be increased.
- T I ⁇ T I-1 , where ⁇ is a real number greater than 1, and T I is the dwell time of the electronic device switching to the B channel for the first time.
- ⁇ can be a pre-configured constant for the service, or ⁇ can be a variable related to the communication rate of the service on the B channel and the A channel, for example, ⁇ can be the communication rate of the service on the B channel and the service on the A channel. ratio.
- step S1208 is performed for the service, that is, after it is determined that the communication rate of the service on the B channel is lower than the communication rate of the service on the A channel, the dwell time T of the next handover to the B channel can be reduced.
- step S1209 there are many ways to reduce the dwell time T, which are not limited here.
- the method of reducing the dwell time T reference may be made to the textual description in step S1209, which will not be repeated here.
- S1211 The service determines whether T is greater than or equal to the upper bound of the residence time.
- step S1213 is executed.
- step S1205 is executed.
- S1212 The service determines that T is less than or equal to the lower bound of the residence time.
- step S1214 is executed.
- step S1205 is executed.
- the service since the dwell time T is greater than or equal to the upper bound of the dwell time, the service considers that the transmission rate of the service on the B channel is higher than that of the service on the A channel, so the electronic device can stay on the B channel.
- FIG. 15 is an exemplary schematic diagram of an electronic device staying in a B channel according to an embodiment of the present application.
- the electronic device determines that the transmission rate of the traffic on the B channel is higher than that of the traffic on the A channel in the 2.7th to 3.1st seconds, and increases the dwell time T. Since the increased dwell time T is greater than the upper limit of the dwell time, at 3.2 seconds, after the electronic device switches from the A channel to the B channel, the electronic device stays in the B channel.
- the time and dwell time T of switching to the B channel next time are known. That is, if the electronic device determines to switch from the B channel to the A channel at the 2.6th second, it can be determined that the service transmission rate on the B channel is higher than the service transmission rate on the A channel at the 2.6th second. And at the 2.6th second, the service increases the dwell time T, and it is determined that the dwell time T is greater than the upper limit of the dwell time, so at the 2.6th second, the electronic device stays on the B channel.
- the service since the dwell time T is less than the lower bound of dwell time, the service considers that the transmission rate of the service on the A channel is higher than the transmission rate of the service on the B channel, so the electronic device can stay on the A channel.
- steps S1211, S1212, S1213, and S1214 are not performed, steps S1209 and S1210 are optional steps, and the electronic device at least needs to perform steps 1207 and S1215 to determine whether to stay in the A channel or in the B channel.
- S1215 The electronic device determines to stay in the B channel or stay in the A channel according to the communication rates of the service on the B channel and the A channel.
- the dwell time T is between the upper bound of the dwell time and the lower bound of the dwell time, that is, the service cannot directly determine that the service is more suitable for data transmission on the A channel or the B channel , the service can determine whether the electronic device stays in the B channel or stays in the A channel according to the performance of the service on the A channel and the B channel during the N times of temporary channel change operations.
- the service can count three temporary channel change operations, determine that the communication rate of the service on the B channel is greater than the communication rate on the A channel twice, and determine that the electronic device stays on the B channel; or the service can calculate During the three temporary channel change operations, if the average communication rate of the service on the B channel is greater than the average communication rate on the A channel, it is determined that the electronic device remains on the B channel; or during the three temporary channel change operations of the service calculation, when the service is on the B channel.
- the average communication rate of the service is not much different from the average communication rate of the service on the A channel, you can choose to stay in the channel with the smaller communication rate variance according to the variance of the communication rate of the service on the A channel and the B channel, that is, the electronic device Channels with less fluctuation in communication performance.
- the following takes the content shown in Table 2 as an example to specifically introduce the process in which the electronic device determines to stay in the B channel or the A channel according to the communication rate of the service on the B channel and the A channel.
- Table 2 is a schematic table of the communication rates of the services provided in the embodiments of the present application on the A channel and the B channel.
- the average communication rate of the service on the A channel is lower than the average communication rate of the service on the B channel; but the standard deviation of the communication rate of the service on the A channel is lower than that of the service on the B channel. . Therefore, the service can choose to stay in the A channel with a higher average communication rate, or choose to stay in the B channel with smaller communication rate fluctuations, according to the needs of the service itself or a preconfigured selection mode.
- the average and standard deviation of the channel communication rate can be obtained by weighting according to the time.
- N is configured as 1 by the service in step S1207, that is, the service only performs a temporary channel change operation
- the service may only execute steps S1201, S1206, S1207, and S1215 to implement the communication resource scheduling method provided by this application.
- the service on the electronic device may not configure the communication rate requirement, and by executing steps S1205, S1206, S1208, S1209, S1210, S1211, S1212, and S1213 .
- Step S1214 implements the communication resource scheduling method provided by the embodiment of the present application.
- the electronic device may adjust the rate at which the service generates data, or may not adjust the rate at which the service generates data.
- the electronic device may not configure the upper bound of the dwell time and the lower bound of the dwell time for the service, that is, step S1209, step S1210, step S1211, step S1213, step S1212, and step S1214 are not performed. , but through steps S1207 and S1215 to determine whether to stay on the A channel or on the B channel.
- the following describes the communication resource scheduling method provided by the present application by taking the content shown in FIG. 16 as an example.
- FIG. 16 is an exemplary schematic diagram of a channel switching scenario of an electronic device according to an embodiment of the present application.
- the electronic device is projecting the video screen played in real time to the projector through the router. Before the first 1.3 seconds, the electronic device is connected to the 5G low-frequency channel of the router, and the projection service of the video application is turned on to send video data to the projector through the 5G low-frequency channel.
- the communication rate of the business on the 5G low-frequency channel is 1200kbps
- the format of the transmitted video is: 1080P, 60FPS.
- the service before the first 1.3 seconds, the service periodically predicts the communication rate of the physical layer, and determines that the communication rate of the physical layer is 1200 kbps. Because the predicted communication rate of the physical layer is higher than the highest communication rate requirement of the business, the electronic device stays in the 5G low-frequency channel until the first 1.3 seconds.
- the communication rate of the business on the 5G low-frequency channel is reduced to 400kbps.
- step S1205 since the communication rate of the service on the 5G low-frequency channel is reduced, the service cannot send the 1080P, 60FPS video data in time, and a large amount of data is backlogged in the local cache of the electronic device.
- the service finds that a large amount of data is backlogged in the local cache of the electronic device, it can perform operations asynchronously: predict the communication rate of the physical layer, and adjust the rate of data generated by the service according to the communication rate of the physical layer. Specifically, the service can select the two time slices from 0.7 seconds to 1.0 seconds and from 1.0 seconds to 1.3 seconds to predict the communication rate of the service on the 5G low frequency channel after 1.3 seconds.
- the communication rate of the service in the 5G low-frequency channel is 400kbps.
- the business determines that the format of the video data transmitted by the business is adjusted to: 480P, 60FPS.
- the communication rate of the physical layer determined by the service prediction is lower than the highest communication rate requirement of 1080 kbps.
- the service informs the electronic device that it decides to start trying to switch to other channels for better data transmission performance.
- the electronic device can determine the available other channels by means of radio sensing or listening on out-of-band channels or control channels for messages indicating other available channels.
- the electronic device determines that the alternative channels include the 5G high-frequency channel set up by the router.
- the electronic device determines to start trying to switch to the 5G high-frequency channel, and determines to start a temporary channel change operation at 1.9 seconds, that is, switch to the 5G high-frequency channel and stay on the 5G high-frequency channel for 0.3 seconds.
- the service can predict the physical layer communication rate within 1.7 seconds to 2.7 seconds, and adjust the rate at which the service generates data based on the predicted physical layer communication rate.
- step S1206 from the second second to the 2.4th second, when the electronic device is on the 5G high-frequency channel, the service performs channel evaluation on the 5G high-frequency channel while transmitting data, and determines that the communication rate of the service on the 5G high-frequency channel is: 600kbps.
- the service determines that the communication rate of the service in the 5G high-frequency channel is greater than the communication rate of the service in the 5G low-frequency channel, and increases the residence time on the channel in the next temporary channel change operation.
- T 0.6 seconds
- the dwell time of 0.6 seconds is less than the upper limit of dwell time of 1.5 seconds.
- the electronics started switching back to the 5G low-frequency channel.
- the electronics switched back to the 5G low-frequency channel.
- the service determines to start the second temporary channel change operation at the 2.9th second, that is, switch to the 5G high-frequency channel.
- the communication rate of the business on the 5G high-frequency channel is less than or equal to 500kbps.
- the service predicts the communication rate of the physical layer within 2.7 seconds to 3.7 seconds, there can be various prediction methods.
- the service determines that the format of the video data transmitted by the service is adjusted to: 480P, 30FPS or 720P, 30FPS or 480P, 60FPS.
- step S1206 from the 3rd second to the 3rd second, when the electronic device is on the 5G high-frequency channel, the service performs channel evaluation on the 5G high-frequency channel while transmitting data, and determines that the communication rate of the service on the 5G high-frequency channel is: 600kbps.
- the service is determined to switch to the 5G high-frequency channel for the third time starting from the 4.2th second within the 3.7th second to the 4.1st second. Different from switching to the 5G high-frequency channel for the second time, the service can predict the physical layer communication rate within 3.7 seconds to 4.7 seconds according to the original time slice length, or the service can adjust the length of the time slice to predict the 3.7 seconds to 4.7 seconds. Physical layer communication rate in 5.5 seconds.
- the service determines that the format of the video data transmitted by the service is adjusted to: 480P, 30FPS or 720P, 30FPS or 480P, 60FPS.
- step S1206 when the electronic device is on the 5G high-frequency channel, the service performs channel evaluation on the 5G high-frequency channel while transmitting data, and determines that the communication rate of the service on the 5G high-frequency channel is: 610kbps.
- step S1213 at the 5.5th second, since the service determines that the dwell time of the next channel switching is greater than the upper limit of the dwell time, the service instructs the electronic device to stay on the 5G high-frequency channel.
- the service determines the communication rate of the physical layer, that is, it is determined that the transmission rate of the service on the 5G high-frequency channel is 610 kbps. According to the correspondence between the communication rate requirement and the transmission data format shown in Table 1, the service determines that the format of the video data transmitted by the service is adjusted to: 720P, 60FPS.
- time slice K if 1.7 seconds to 2.7 seconds are considered as time slice K, 2.7 seconds to 3.7 seconds are considered as time slice K+1, and 3.7 seconds to 5.5 seconds are considered as time slice K+2, because the service knows in advance the timing of switching channels. Depending on the time and load, the business can adjust the rate at which data is generated in a timely manner, so as to prevent the business from piling up the produced data locally, reducing business lag and improving user experience. Secondly, because the service performs channel switching while transmitting data, and by dynamically adjusting the dwell time of the channel after the switching, the user experience is avoided due to the low communication rate of the channel after the switching, and the adaptive ability is strong.
- the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting" depending on the context.
- the phrases “in determining" or “if detecting (the stated condition or event)” can be interpreted to mean “if determining" or “in response to determining" or “on detecting (the stated condition or event)” or “in response to the detection of (the stated condition or event)”.
- the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
- the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, digital subscriber line) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
- the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state drives), and the like.
- the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
- the program When the program is executed , which may include the processes of the foregoing method embodiments.
- the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信资源调度方法和电子设备。本申请提供的通信资源调度方法包括:首先,当位于第一信道上的电子设备想要切换到第二信道时,通过多次执行临时信道变更操作,实现渐进式的信道切换;其次,在每次执行临时信道变更操作时,对第二信道的通信性能进行评估;最后,基于最少两次对第二信道的通信性能的评估确定切换到第二信道。由于本申请提供的通信资源调度方法实现了渐进式的信道切换,避免了由于对第二信道的通信性能估计不准而切换到通信性能较差的信道上,提高了信道切换的稳健性。
Description
本申请要求于2021年04月28日提交中国专利局、申请号为202110465794.9、申请名称为“通信资源调度方法和电子设备”的中国专利申请的优先权,本申请要求于2021年07月30日提交中国专利局、申请号为202110869494.7、申请名称为“通信资源调度方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电子技术领域,尤其涉及通信资源调度方法和电子设备。
随着通信技术的发展以及智能设备的普及,万物互联的人工智能物联网(artificial intelligence &internet of things,AIoT)时代正在到来。受益于操作系统的分布式互联能力的提高,智能穿戴设备、智能家居设备、移动终端等设备的互联互通已经初步实现。
智能穿戴设备、智能家居设备、移动终端等电子设备已经可以通过无线网络实现互联互通。但是,电子设备需要与其他电子设备竞争有限的通信资源,当竞争失败时,需要将等待被发送的数据存储在本地,等待下一次竞争成功后,将数据发送出去。电子设备竞争通信资源失败,这直接导致设备上业务的卡顿,影响用户的体验。
为了降低电子设备上业务的卡顿而影响用户的体验,一种可行的方式为:当电子设备使用信道1的通信资源进行数据交互,并且当前信道1的通信性能不能满足该电子设备的需求时,电子设备主动地切换信道2。电子设备在切换信道时,需要牺牲一部分通信资源去发送探测帧用于确定信道2的通信性能能否满足该电子设备上业务的需求。电子设备根据该探测帧的探测结果,确定是否切换到其他信道。
但是,考虑到信道的时变性,一次探测的结果并不能准确表征待切换信道的通信性能。若是,基于该次探测的结果决定切换到信道2,但是信道2的通信性能差于信道1的通信性能,增加了业务数据传输的延时,恶化了用户的体验。
发明内容
本申请实施例提供了一种通信资源调度方法,该方法包括:当电子设备切换信道前,电子设备上的业务根据切换信道的开销调整业务产生数据的速率;当电子设备切换信道时,多次执行临时更换信道操作,并在每次临时更换信道操作中评估信道的通信速率,进而更准确的预测待切换信道的通信性能。该方法使得电子设备在切换信道时,降低了电子设备上业务的卡顿,提升了用户的体验。
第一方面,本申请提供了一种通信资源调度方法,该方法包括:第一电子设备第K次从第一信道切换到第二信道,该K为正整数;该第一电子设备在第二信道上驻留第K时长,并且该第一电子设备确定第二信道的通信性能为第K性能;该第一电子设备在第二信道上驻留第K时长后,该第一电子设备切换回第一信道;该第一电子设备第K+1次从该第一信道切换到该第二信道;该第一电子设备在第二信道上驻留第K+1时长后,该第一电子设备确定第二 信道的通信性能为第K+1性能;该第一电子设备基于前K+1次中的至少两次得到的该第二信道的通信性能确定该第二信道的通信性能优于第一信道的通信性能后,该第一电子设备留在第二信道,或者,该第一电子设备切换回第一信道后再切换到第二信道。
在上述实施例中,电子设备通过多次临时信道变更实现渐进式切换信道,并在每次临时信道变更时,评估信道的通信性能,并基于多次评估的结果,确定切换到第二信道。考虑到信道的通信性能的时变性,该方法有助于更准确的评估第二信道的通信性能。并且,在临时信道变更时,仍然传输数据,降低了信道切换使得时延,提升了用户的体验。
结合第一方面的一些实施例,在一些实施例中,该第K性能大于该第一信道的通信性能时,该第K+1时长大于等于该第K时长;该第K性能小于该第一信道的通信性能时,该第K+1时长小于等于该第K时长。
在上述实施例中,电子设备根据本次临时信道变更操作时,第二信道的评估结果,确定下一次临时信道变更时在第二信道上的驻留时间。很显然的,若第二信道的通信性能优于第一信道的通信性能,增加驻留时间可以提高电子设备上业务/应用程序发生数据的速率;若第二信道的通信性能差于第一信道的通信性能,降低驻留时间,可以降低电子设备上业务/应用程序的卡顿。
结合第一方面的一些实施例,在一些实施例中,该第一信道的通信性能为该第一电子设备第K次从第一信道切换到第二信道前确定的;或者,该第一信道的通信性能为该第一电子设备第K+1次从该第一信道切换到该第二信道前确定的。
在上述实施例中,考虑到信道通信性能的时变性,确定第一信道的通信性能的时机可以是切换到第二信道前确定的,或者可以是从第二信道切换到第一信道前确定的,有助于更准确的确定第一信道的通信性能,提高切换信道的稳健性。
结合第一方面的一些实施例,在一些实施例中一电子设备第K次从第一信道切换到第二信道前,还包括:该第一电子设备上运行有第一应用程序,该第一应用程序被配置有一个或多个通信性能参数阈值;该第一电子设备确定该第一信道的通信性能低于该一个或多个通信性能参数阈值中的任一个通信性能参数阈值。
在上述实施例中,电子设备上运行的应用程序配置一个或多个通信性能参数阈值,或者电子设备上运行的应用程序为业务配置一个或多个通信性能参数阈值,或者,电子设备为应用程序/业务配置一个或多个通信性能参数阈值,当第一信道的通信性能低于一个或多个通信性能参数阈值时,电子设备可以开始切换信道。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备确定该第一信道的通信性能低于该一个或多个通信性能参数阈值中的任一个通信性能参数阈值前,还包括:该第一电子设备基于该第一信道的通信性能与该通信性能参数阈值调整该第一应用程序产生数据的速率。
在上述实施例中,电子设备可以基于第一信道的通信性能调整应用程序/业务产生数据的速率,降低应用程序/业务的卡顿,进而提升用户的体验。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备第K次从第一信道切换到第二信道前,还包括:该第一电子设备上运行有第一应用程序;该第一电子设备基于该第K时长和切换信道操作的开销调整该第一应用程序产生数据的速率。
在上述实施例中,电子设备在临时信道变更时,结合驻留时间和切换信道操作的开销调整第一应用程序产生数据的速率,有助于降低在临时信道变更时降低卡顿,提高应用程序/业务传输数据的稳健性。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备基于该第K时长和切换信道操作的开销调整该第一应用程序产生数据的速率,具体包括:该第一电子设备确定第K预测值,该第K预测值为该第一应用程序在第二信道上的通信速率;该第一电子设备基于该第K预测值、该第K时长和切换信道操作的开销调整该第一应用程序产生数据的速率。
在上述实施例中,电子设备在临时信道变更时,结合驻留时间和切换信道操作的开销调整第一应用程序产生数据的速率,有助于降低在临时信道变更时降低卡顿,提高应用程序/业务传输数据的稳健性。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备确定第K预测值,具体包括:该第一电子设备从该第一信道切换到该第二信道前,该第一电子设备通过近距离通信服务确定第K预测值,该近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种。
在上述实施例中,电子设备可以通过近距离通信服务询问其他在第二信道上的电子设备以确定第二信道的通信性能,或者监听近距离通信服务中规定的广播信道已确定第二信道的通信性能,并基于该通信性能预测应用程序/业务在第二信道上传输数据的速率,进而提高应用程序/业务传输数据的稳健性。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备确定第K预测值,具体包括:若K大于1,该第一电子设备基于第K-1性能确定第K预测值。
在上述实施例中,电子设备可以基于上次临时信道变更时对第二信道的通信性能的评估结果预测本次临时信道变更时应用程序/业务在第二信道上传输数据的速率,进而提高应用程序/业务传输数据的稳健性。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备确定第K预测值,具体包括:该第一电子设备确定第K预测值等于0。
在上述实施例中,考虑到信道通信性能的时变性,可以做最坏的打算,即认为预测本次临时信道变更时应用程序/业务在第二信道上传输数据的速率为0,保证了在任何情况下,应用程序基于0速率确定的应用程序/业务产生数据的速率不会导致应用程序/业务发生卡顿。
结合第一方面的一些实施例,在一些实施例中,该第一电子设备基于前K+1次中的至少两次得到的该第二信道的通信性能确定该第二信道的通信性能优于第一信道的通信性能后,该第一电子设备留在第二信道,或者,该第一电子设备切换回第一信道后再切换到第二信道,具体包括:在该第K+1性能大于该第一信道的通信性能的情况下,该第一电子设备确定第K+2时长,该第K+2时长大于该第K+1时长;该第一电子设备确定该第K+2时长大于驻留时间上界后,该第一电子设备留在第二信道,或者,该第一电子设备切换回第一信道后再切换到第二信道。
在上述实施例中,当计算下次临时信道变更时的驻留时间大于驻留时间上界,电子设备确定第二信道的通信性能优于第一信道的通信性能,判断方式较为简单,降低实现的复杂性。
第二方面,本申请提供了另一种通信资源调度方法,该方法包括:第一电子设备上运行有第一应用程序,该第一电子设备在第一信道上进行数据交互;该第一电子设备以第一速率发送该第一应用程序的数据;该第一电子设备从该第一信道切换到第二信道前,该第一电子设备确定第二速率;该第一电子设备在该第一信道上、该第二信道上以该第二速率发送该第一应用程序的数据,该第一速率与该第二速率不同;该第一电子设备切换回该第一信道。
在上述实施例中,电子设备在单次临时信道变更中,在第一信道上发送应用程序/业务的 数据速率不同和第二信道上发送应用程序/业务的数据速率不同。在单次临时信道变更中,电子设备切换信道前,上层应用程序/业务知道底层要切换到信道,主动配合调整数据产生的速率,有助于降低应用程序/业务的卡顿。
结合第二方面的一些实施例,在一些实施例中,该第一电子设备以第一速率发送第一应用程序的数据前,还包括:在第一时刻,该电子设备基于第一时刻前的一个或多个时间切片内的该第一信道的通信性能确定第一时刻至第二时刻内该第一信道的通信性能,该第二时刻在该第一时刻后;该第一电子设备基于该第一时刻至该第二时刻内该第一信道的通信性能确定第三速率;在该第一时刻至该第二时刻内,该电子设备以该第三速率发送该第一应用程序的数据,该第三速率与该第一速率不同。
在上述实施例中,电子设备可以预测未来一段时间内的第一信道的通信性能,并基于预测值调整应用程序产生数据的速率,有助于降低信道通信性能时变性导致应用程序/业务的卡顿。
结合第二方面的一些实施例,在一些实施例中,该第一电子设备从该第一信道切换到第二信道前,该第一电子设备确定第二速率,具体包括:该第一电子设备从该第一信道切换到该第二信道前,该第一电子设备基于该第一信道的通信性能以及该第一电子设备在该第二信道上的驻留时长确定该第二速率。
在上述实施例中,电子设备可以基于驻留时间和第一信道的通信性能确定电子设备上应用程序/业务在第二信道上的发送数据的速率,并基于该速率调整应用程序/业务产生数据的速率,有助于降低切换信道时的应用程序/业务的卡顿。
结合第二方面的一些实施例,在一些实施例中,该第一电子设备从该第一信道切换到第二信道前,该第一电子设备确定第二速率,具体包括:该第一电子设备从该第一信道切换到该第二信道前,该第一电子设备通过近距离通信服务确定第二信道的通信性能,该近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种;该第一电子设备基于该第一信道的通信性能、该第二信道的通信性能以及在该第二信道上的驻留时长确定该第二速率。
在上述实施例中,电子设备通过近距离服务询问位于第二信道上的电子设备,进而确定第二信道的通信性能;或者电子设备监听近距离服务规定的广播信道,进而确定第二信道的通信性能。在确定第二信道的通信性能后,电子设备可以更准确的预测应用程序/业务在第二信道上的通信速率,进而确定一个更准确的应用程序/业务产生数据的速率,降低切换信道时的应用程序/业务的卡顿。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括:一个或多个处理器和存储器;该存储器与该一个或多个处理器耦合,该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令,该一个或多个处理器调用该计算机指令以使得该电子设备执行:第K次从第一信道切换到第二信道,该K为正整数;在第二信道上驻留第K时长,并且确定第二信道的通信性能为第K性能;在第二信道上驻留第K时长后,切换回第一信道;第K+1次从该第一信道切换到该第二信道;在第二信道上驻留第K+1时长后,确定第二信道的通信性能为第K+1性能;基于前K+1次中的至少两次得到的该第二信道的通信性能确定该第二信道的通信性能优于第一信道的通信性能后,留在第二信道,或者,切换回第一信道后再切换到第二信道。
结合第三方面的一些实施例,在一些实施例中,该第K性能大于该第一信道的通信性能 时,该第K+1时长大于等于该第K时长;该第K性能小于该第一信道的通信性能时,该第K+1时长小于等于该第K时长。
结合第三方面的一些实施例,在一些实施例中,该第一信道的通信性能为第K次从第一信道切换到第二信道前确定的;或者,该第一信道的通信性能为第K+1次从该第一信道切换到该第二信道前确定的。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,还用于调用该计算机指令以使得该电子设备执行:运行有第一应用程序,该第一应用程序被配置有一个或多个通信性能参数阈值;确定该第一信道的通信性能低于该一个或多个通信性能参数阈值中的任一个通信性能参数阈值。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,还用于调用该计算机指令以使得该电子设备执行:基于该第一信道的通信性能与该通信性能参数阈值调整该第一应用程序产生数据的速率。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,还用于调用该计算机指令以使得该电子设备执行:上运行有第一应用程序;基于该第K时长和切换信道操作的开销调整该第一应用程序产生数据的速率。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:确定第K预测值,该第K预测值为该第一应用程序在第二信道上的通信速率;基于该第K预测值、该第K时长和切换信道操作的开销调整该第一应用程序产生数据的速率。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:从该第一信道切换到该第二信道前,通过近距离通信服务确定第K预测值,该近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:若K大于1,基于第K-1性能确定第K预测值。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:确定第K预测值等于0。
结合第三方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:在该第K+1性能大于该第一信道的通信性能的情况下,确定第K+2时长,该第K+2时长大于该第K+1时长;确定该第K+2时长大于驻留时间上界后,留在第二信道,或者,切换回第一信道后再切换到第二信道。
第四方面,本申请实施例提供了一种电子设备,该电子设备包括:一个或多个处理器和存储器;该存储器与该一个或多个处理器耦合,该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令,该一个或多个处理器调用该计算机指令以使得该电子设备执行:第一电子设备上运行有第一应用程序,在第一信道上进行数据交互;以第一速率发送该第一应用程序的数据;从该第一信道切换到第二信道前,确定第二速率;在该第一信道上、该第二信道上以该第二速率发送该第一应用程序的数据,该第一速率与该第二速率不同;切换回该第一信道。
结合第四方面的一些实施例,在一些实施例中,该一个或多个处理器,还用于调用该计算机指令以使得该电子设备执行:在第一时刻,该电子设备基于第一时刻前的一个或多个时 间切片内的该第一信道的通信性能确定第一时刻至第二时刻内该第一信道的通信性能,该第二时刻在该第一时刻后;基于该第一时刻至该第二时刻内该第一信道的通信性能确定第三速率;在该第一时刻至该第二时刻内,该电子设备以该第三速率发送该第一应用程序的数据,该第三速率与该第一速率不同。
结合第四方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:从该第一信道切换到该第二信道前,基于该第一信道的通信性能以及在该第二信道上的驻留时长确定该第二速率。
结合第四方面的一些实施例,在一些实施例中,该一个或多个处理器,具体用于调用该计算机指令以使得该电子设备执行:从该第一信道切换到该第二信道前,通过近距离通信服务确定第二信道的通信性能,该近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种;基于该第一信道的通信性能、该第二信道的通信性能以及在该第二信道上的驻留时长确定该第二速率。
第五方面,本申请实施例提供了一种芯片,该芯片应用于电子设备,该芯片包括一个或多个处理器,该处理器用于调用计算机指令以使得该电子设备执行如第一方面、第二方面以及第一方面、第二方面中任一可能的实现方式描述的方法。
第六方面,本申请实施例提供一种包含指令的计算机程序产品,当上述计算机程序产品在电子设备上运行时,使得上述电子设备执行如第一方面、第二方面以及第一方面、第二方面中任一可能的实现方式描述的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当上述指令在电子设备上运行时,使得上述电子设备执行如第一方面、第二方面以及第一方面、第二方面中任一可能的实现方式描述的方法。
可以理解地,上述第三方面和第四方面提供的电子设备、第五方面提供的芯片、第六方面提供的计算机程序产品和第七方面提供的计算机存储介质均用于执行本申请实施例所提供的方法。因此,其所能达到的有益效果可参考对应方法中的有益效果,此处不再赘述。
图1为本申请涉及的业务的一个示例性示意图;
图2为本申请实施例中业务调整通信速率场景的一个示例性示意图;
图3为本申请实施例中电子设备预测物理层通信速率的一个示例性示意图;
图4为本申请实施例中电子设备执行临时信道变更操作的一个示例性示意图;
图5为本申请实施例中业务在临时信道变更时预测物理层通信速率的一个示例性示意图;
图6为本申请涉及的信道切换方法的一个示例性示意图;
图7为本申提供的通信资源调度方法使用场景的一个示例性示意图;
图8为本申请实施例提供的电子设备100的一个结构示意图;
图9为本申请实施例提供的电子设备100的另一个结构示意图;
图10为本申请实施例中电子设备100的一个软件结构示意框图;
图11为本申请实施例中电子设备100的另一个软件结构示意框图;
图12为本申请提供的通信资源调度方法的一个示例性示意图;
图13为本申请实施例提供的电子设备在执行临时信道变更操作前预测物理层通信速率的一个示例性示意图;
图14为本申请实施例提供的业务判断在不同信道上通信速率大小关系的一个示例性示意图;
图15为本申请实施例提供的电子设备留在B信道的一个示例性示意图;
图16为本申请实施例提供的电子设备切换信道场景的一个示例性示意图。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“该”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
为了便于理解,下面首先对本申请实施例涉及的相关术语及相关概念进行介绍。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
(1)无线信道
无线信道是指以无线信号作为传输载体,用于传输数据的通道。其中,频点和频宽可以用于描述无线信道,频点和频宽共同决定该信道上传输信号的频率范围。在P2P场景中,无线信道的可以用的频段包括:工业、科学和医用(Industrial Scientific and Medical,ISM)频段、unlicensed频段。
无线信道的通信性能可以包括信道时延、通信速率等。其中,信道时延是该无线信道将数据从一端传到一端所需要耗费的时间;通信速率是该无线信道在单位时间内正确传输的信息比特数。
在开放系统互联(Open System Interconnection,OSI)模型中,无线信道位于物理层。
值得说明的是,无线信道的通信性能具有时变性,即无法准确的确定未来某一段时间内无线信道的通信性能。
(2)通信速率需求
通信速率可以为业务传输的数据量与传输时间的比值。通信速率也可以称为业务的吞吐率,其中吞吐率为物理层传输该业务的数据量与传输时间的比值。其中,业务的数据量可以是业务的真实数据量;或者,业务的数据量也可以是业务的真实数据量与开销(overhead)的和。其中,业务可以为电子设备上运行的应用程序/业务会话。
通信速率需求为业务根据业务需求为通信速率参数配置的一个或多个阈值。其中,通信 速率需求可以为业务预配置的。业务可以根据通信速率与通信速率需求调整业务产生数据的速率。
可以理解的是,业务根据通信速率与通信速率需求的大小关系,调整业务产生数据的速率,使得业务产生数据的速率小于等于通信速率,减少业务的数据积压在本地,进而降低业务的卡顿,提升用户的体验。
值得说明的是,通信速率不表示物理层协商速率。
下面结合图1所示的内容,示例性的介绍通信速率需求。
图1为本申请涉及的业务的一个示例性示意图。
如图1所示,用户将手机上正在播放的在线视频内容通过路由器投影到投影仪上。其中,投影业务可以是播放视频的视频应用,或者投影业务可以是视频应用创建的投影业务会话。
在图1所示的内容中,手机上播放的视频的格式为:1080P、60帧。电子设备可以为该投影业务配置至少一个通信速率需求,如下表1所示。
表1 为本申请涉及的通信速率需求的一个示例性示意表。
如表1所示,在图1所示的场景中,通信速率需求为手机上投影业务传输不同码率、帧率的视频时所要求的最低的物理层通信速率。其中,物理层传输速率在图1所示的场景中为投影业务在路由器架设的信道的传输视频数据的速率。
例如,当手机上投影业务传输视频的格式为:30FPS、480P时,业务的通信速率为180kbps,则承载该投影业务数据交互的无线信道的通信速率应该大于180kbps。例如,当被传输的视频的格式为:30FPS、480P时,可以配置通信速率需求为200kbps。
若该无线信道的通信速率小于200kbps,投影业务的数据不能及时发送到投影仪上,用户会感受到卡顿;相反的,若该无线信道的通信速率大于等于200kbps,投影业务的数据能够及时发送到投影仪上,用户不会感受到卡顿。
在本申请实施例中,软件开发人员在开发应用程序/业务会话时,可以为该应用程序/业务会话配置至少一个通信速率需求。
图2为本申请实施例中业务调整通信速率场景的一个示例性示意图。
如图2所示,手机上的投影业务周期性的预测无线信道的通信速率,且手机上的投影业务传输视频的格式为1080P、60FPS。在第1.3秒前,手机预测到无线信道在1.3秒至1.4秒时间内的通信速率为700kbps;在第1.3秒时,手机调整投影业务传输视频的格式为720P、60FPS。在第1.4秒后且在第2.1秒前,手机预测到无线信道在2.1秒至2.3秒时间内的通信速率为2048kbps。在第2.1秒时,手机调整投影业务传输视频的格式为1080P、60FPS。
可以理解的是,通过预测物理层的通信速率,结合业务的通信速率需求,业务可以根据预测得到的物理层的通信速率去调整业务的通信速率,以提升用户的体验。其中,物理层通信速率等术语的概念可以参考术语解释中(3)预测物理层通信速率中的文字描述,此处不再赘述。
(3)预测物理层通信速率
物理层通信速率为电子设备发送业务的数据吞吐率。例如,当电子设备通过路由器的WiFi接入互联网时,对于电子设备上运行的某个业务来说,物理层通信速率为电子设备通过路由器的WiFi发送该业务的数据量/时间。或者,当电子设备支持多网聚合或者WiFi+4G同时驻留等功能时,物理层通信速率为电子设备在多条路径上发送该业务的数据总量/时间。其中,该业务的数据量可以包括控制数据,也可以不包括控制数据。
在本申请实施例中,电子设备可以基于过去一个或多个时间切片内业务的有效吞吐量(good put)、业务所在信道的负载、数据帧时延等信息确定下一个时间切片内该业务的物理层通信速率。其中,用于估计下一个时间切片内物理层通信速率的过去的一个或多个时间切片的时间长度可以相同,可以不同。
下面以图3所示的内容为例,具体的介绍业务基于过去三个时间切片内的有效吞吐量预测下一个时间切片内该业务的物理层通信速率。
为了方便阐述,下文中以2.4G信道指代路由器提供的2.4G频段中某个信道;5G信道指代路由器提供的5G频段中某个信道;5G高频信道指代路由器提供的5.2Ghz低频段的信道,例如WiFi协议中信道编号为36、40、44、52、60、64的信道等;5G低频信道指代路由器提供的5.8Ghz高频段的信道,例如WiFi协议中信道编号为149、153、157、161、165等。
图3为本申请实施例中电子设备预测物理层通信速率的一个示例性示意图。
如图3所示,电子设备上的业务在路由器提供的2.4G频段中某个信道上进行数据交互。在第1.9秒时,电子设备上的业务需要预测物理层通信速率。该业务可以使用第1.9秒前的三个时间切片来预测第1.9秒后的物理层通信速率,即预测该业务在2.4G信道上的通信速率。其中,可以选取时间切片的长度为500毫秒,即选取时间切片1:第0.4秒至第0.9秒,时间切片2:第0.9秒至1.4秒,时间切片3:第1.4秒至1.9秒。
业务可以统计三个时间切片内的有效吞吐,分别为:时间切片1传输了800KB、时间切片2传输了840KB、时间切片3传输了850KB。业务根据时间切片的时长和时间切片内业务的有效吞吐,确定时间切片1、时间切片2、时间切片3内的物理层通信速率分别为1600kbps、1680kbps、1700kbps。业务基于过去三个时间切片内的物理层通信速率,通过函数拟合、神经网络或深度学习等方法,可以预测第1.9秒至第2.4秒内物理层通信速率为1660kbps。
(4)临时信道变更
在本申请实施例中,电子设备执行临时信道变更操作是指电子设备从A信道切换到B信道,并在B信道上驻留一段时间后,返回A信道的过程。
在本申请实施例中,在A信道上的电子设备执行多次临时信道变更操作后确定留在A信道还是切换到B信道。
电子设备在B信道上驻留的时间内,电子设备会执行信道评估操作。其中,信道评估为电子设备在切换后的信道上驻留时执行的操作,用于确定业务在切换后信道上传输数据的速率。并且在驻留时间T内,电子设备会同时进行数据交互和信道评估。电子设备在执行临时信道变更后,会确定业务在切换后的信道上的通信速率。
例如,电子设备从第A信道切换到B信道,驻留的时间为400毫秒,且在300毫秒传输的数据帧为600kb,则电子设备对B信道的信道评估结果为600kb/0.3秒=2000kbps。
若业务在B信道上的通信速率大于α倍A信道的通信速率,则下一次在B信道上驻留时,会在B信道驻留更长的时间T2,其中T2≥T1;若业务在B信道上通信速率小于α倍切换前A 信道上的通信速率,则下一次在B信道上驻留时,会在B信道驻留更短的时间T2,其中T2<T1。其中,α为大于等于1的正数,例如,α可以等于1。即,电子设备每次执行临时信道变更过程中,在B信道上驻留的时间可以不一样。
当业务确定更新后的驻留时间大于等于驻留时间上界后,业务可以通知电子设备留在B信道,并结束切换信道;当业务确定更新后的驻留时间小于等于驻留时间下界后,业务可以通知电子设备留在A信道,并结束切换信道。或者,当电子设备切换信道的次数超过次数阈值后,可以综合多次信道评估结果确定是留在B信道还是留在A信道。
在本申请一些实施例中,当电子设备执行临时信道变更操作时,可以确定业务在切换后的信道上的通信速率。
下面以图4所示的内容为例,具体的介绍电子设备执行临时信道变更操作的过程。
图4为本申请实施例中电子设备执行临时信道变更操作的一个示例性示意图。
如图4所示,在第0.4秒至第0.9秒时,电子设备在路由器提供的2.4G频段中的某个信道上进行数据交互。在第0.9秒时,电子设备开始执行第一次临时信道变更操作。在第1秒时,电子设备在路由器提供的5G频段中的某个信道上同时进行数据交互和信道评估。在第1.3秒时,电子设备在5G信道上第一次驻留结束,且业务在5G信道上的通信速率700kbps大于2.4G信道上的通信速率400kbps。在第1.4秒时,电子设备返回2.4G信道。在第1.4秒时,第一次临时信道变更操作结束。
在第1.8秒时,电子设备开始执行第二次临时信道变更操作。在第2秒时,电子设备在5G信道上同时进行数据交互和信道评估。业务在5G信道上的通信速率650kbps大于2.4G信道上的通信速率550kbps。在第2.5秒时,电子设备在5G信道上第二次驻留结束。即在第2.5秒时,第二次临时信道变更操作结束。
由于两次信道探测的结果均为5G信道的通信速率大于2.4G信道的通信速率,电子设备可以完全切换到5G信道上进行数据交互。
在图4所示的内容中,电子设备在5G信道的第一次驻留时间为0.3秒,第二次驻留时间为0.6秒。电子设备在执行临时信道变更操作前,可能不能预先得知业务在切换后信道上的通信速率。为了避免业务在切换后的信道通信速率较低,造成业务卡顿而影响用户的体验。所以,电子设备在执行临时信道变更操作前,可以结合业务的通信速率需求以及预测的物理层通信速率,调整业务的产生数据的速率。
例如,当切换前信道的通信速率为TP1、切换信道时延为cost、驻留时间为T1、当电子设备在时间TS内完成一次临时信道变更操作,则预测的物理层通信速率TP3=k*TP1,其中k为正数。例如,k=(TS-T1-cost*2)/TS。业务可以根据预测得到的物理层通信速率调整业务产生数据的速率。
更进一步的,当电子设备在第L次执行临时信道变更操作时,业务可以根据第一次至第L-1次临时信道变更操作中信道评估的结果去预测业务在切换后信道上的通信速率。其中,L为大于1的整数。根据业务预测在切换后信道上的通信速率,以及业务在切换前信道上的通信速率,可以更准确的预测物理层的通信速率。
例如,当电子设备所在信道的通信速率为TP1、预测电子设备驻留的信道的通信速率为TP2,切换信道时延为cost、驻留时间为T1、当电子设备在时间TS内完成一次信道驻留操作,则预测的物理层通信速率TP3=k1*TP1+k2*TP2,其中k1、k2均为正数。例如,k1=(TS-T1-cost*2)/TS,k2=T1/TS。
其中,业务如何根据预测确定的物理层通信速率调整业务产生数据的速率的内容可以参 考术语解释中(2)通信速率需求中的文字描述,此处不再赘述。
下面以图5所示的内容为例,具体的介绍电子设备在执行临时信道变更操作前,业务预测物理层的通信速率的方法。
图5为本申请实施例中业务在临时信道变更时预测物理层通信速率的一个示例性示意图。
如图5所示,电子设备在0.4秒时确定未来要执行第一次临时信道变更操作,且在0.4秒时电子设备上的业务和/或物理层确定在0.9秒开始第一次临时信道变更操作,且在5G信道的驻留时间为0.3秒,单次切换信道时延为0.1秒。
结合表1所示的内容,在第0秒至第0.4秒时,投影业务传输视频的格式为:480P、60FPS。在第0.4秒时,电子设备预测0.4秒至1.4秒的物理层通信速率为400kbps*(1-(0.1*2+0.3))*1=200kbps。结合预期的物理层通信速率和投影业务的通信速率需求,电子设备可以降低投影业务传输视频的格式,以降低投影业务的通信速率。即,电子设备将投影业务视频格式降低为:480P、30FPS。
在图5所示的内容中,若业务在5G信道上的通信速率大于等于400kbps,业务可以正常运行,并且用户体验不受影响;若业务在5G信道上的通信速率低于400kbps但是大于等于200kbps,业务可以正常运行,并且用户体验不受影响;若业务在5G信道上的通信速率低于200kbps,由于业务已经预先降低了产生数据的速率,用户体验受到轻微影响。
可以理解的是,对于业务来说,考虑到信道切换操作会不可避免的带来物理层通信速率的波动,通过预先降低业务产生数据的速率,降低对物理层通信速率的需求,使得在物理层通信速率波动的情况下,仍然能够保证用户对该业务的体验。
值得说明的是,电子设备最后一次执行临时信道变更操作时,可以不返回A信道,而是根据多次临时信道变更操作中信道评估的结果,选择留在A信道或者切换到B信道。
其次,下面简单介绍与本申请有关的一种信道切换方法。该方法通过使用非数据帧探测待切换信道的通信性能,进而减少在待切换信道上的驻留时间。电子设备根据非数据帧的单次探测结果确定是否切换信道。
图6为本申请涉及的信道切换方法的一个示例性示意图。
如图6所示,电子设备在第0.9秒时开始切换信道,在第1秒时切换到5G信道,并开始发送探测帧如零数据(Null Data Packet,NDP)帧,确定5G信道的通信速率。在第1.3秒开始返回2.4G信道,并在第1.4秒时返回到2.4G信道。
可以理解的是,考虑到电子设备未知待切换的信道的通信性能,处于最坏的考虑,尽可能选择不承载数据的探测帧,并且降低在待切换信道上的发送探测帧的时长,具有一定的好处。
但是,根据图6所示的内容,可以得知,对于业务来说,在第0.9秒至第1.4秒内,业务无法进行数据交互,出现严重的卡顿,影响了用户的体验。其次,由于物理层执行信道切换操作并未告知上层业务,上层业务在断网情况下,业务不可避免的发生卡顿,可能向用户提示业务崩溃、异常报错等,影响了用户的体验。再次,考虑到物理层通信速率的时变性,仅仅探测一次5G信道的通信速率,这一次的探测结果并不能完全表征业务在5G信道上的通信速率,当电子设备从2.4G信道切换到5G信道后,可能由于业务在5G信道的通信速率低于在2.4G上通信速率,影响业务的正常运行,进而影响用户的体验。
针对上述存在的问题,本申请提供了一种通信资源调度方法及电子设备。
图7为本申请提供的通信资源调度方法使用场景的一个示例性示意图。
如图7所示,电子设备在第0.6秒时,由业务和物理层协商确定是否进行临时信道变更操作。当电子设备确定在第0.9秒时开始执行临时信道变更操作,电子设备预测第0.9秒至第1.4秒内的物理层传输速率,并根据物理层传输速率动态的调整电子设备上业务的数据产生的速率。在第1秒时,电子设备切换到5G信道,并在5G信道上传输业务产生的数据的同时对5G信道进行信道评估。通过计算业务在5G信道上有效吞吐量和驻留时间,可以确定业务在5G信道上的通信速率。在第1.4秒时,电子设备返回到2.4G信道。即在第1.4秒时,电子设备第一次临时信道变更操作结束。
由于业务在5G信道上的通信速率(500kbps)大于业务在2.4G信道上的通信速率(400kbps),故电子设备在执行下一次临时信道变更操作时,会增加下一次在5G信道上的驻留时间。重复若干次上述操作,电子设备最终确定从2.4G信道切换到5G信道。
首先,本申请提供的通信资源调度方法在切换后的5G信道上同时进行数据交互和信道评估,提升了通信资源的利用率,有助于提升用户的体验。其次,在每次执行临时信道变更操作前,电子设备上的业务都会和物理层协商确定是否切换信道或者协商确定是否切换信道和切换信道的时刻,使得业务可以调整产生数据的速率,避免由于切换后的5G信道的通信速率过低而造成业务卡顿,提升了用户的体验。再次,通过多次执行临时信道变更操作可以更准确的评估业务在5G信道上的通信速率,有助于提升业务的稳定性,进而提升用户的体验。
再次,下面介绍本申请提供的电子设备:
本申请实施例中电子设备可以为移动电子设备,也可以为PC,此处不作限定。
示例性的,图8为本申请实施例提供的电子设备100的一个结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间数据传输。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递 给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电 信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5SDRAM)等;
非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作系统或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
外部存储器接口120可以用于连接外部的非易失性存储器,实现扩展电子设备100的存储能力。外部的非易失性存储器通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部的非易失性存储器中。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听 电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。
本申请实施例中,该处理器110可以通过调用该内部存储器121中存储的计算机指令,以使得该电子设备100执行本申请实施例中的通信资源调度方法。
示例性的,图9为本申请实施例提供的电子设备100的另一个结构示意图。
如图9所示,该电子设备100包括:
输入装置201、输出装置202、处理器203和存储器204(其中电子设备100中的处理器203的数量可以一个或多个,图9中以一个处理器203为例)。在本申请的一些实施例中,输入装置201、输出装置202、处理器203和存储器204可通过总线或其它方式连接,其中,图9中以通过总线连接为例。
其中,处理器203通过调用存储器204存储的操作指令以使得电子设备100执行本申请实施例中的通信资源调度方法。
示例性的,图10为本申请实施例中电子设备100的一个软件结构示意框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将系统分为四层,从上至下分别为应用程序层,应用程序框架层, 系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图10所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序(也可以称为应用)。其中,任一应用程序都可以是本申请实施例中的业务。并且,任一应用程序都可以配置有通信速率需求。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图10所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器,本地Profile管理助手(Local Profile Assistant,LPA)等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话界面形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
应用程序框架层还可以包括无线传输服务,用于为不同的应用程序层的应用程序或应用程序发起的业务会话提供可配置的、差异化的无线通信能力。
运行时包括核心库和虚拟机。运行时负责操作系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),二维图形引擎(例如:SGL)等。
对应于无线传输服务,系统库还包括无线传输服务库,无线传输服务库中配置有本申请提供的通信资源调度方法的实现方法。具体的,无线传输服务可以提供方法去配置业务的一个或多个通信速率需求;无线传输服务提供方法去预测物理层通信速率;无线传输服务可以提供方法去评估信道切换信道后的物理层通信速率等,在此不做限定。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了二维(2-Dimensional,2D)和三维(3-Dimensional,3D)图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现3D图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动,虚拟卡驱动。
内核层还可以包括网卡驱动,用于承载数据交互,包括:执行信道切换操作、发送/接收业务的数据、评估/预测物理层通信速率等。
值得说明的是,开发者在开发应用时通过配置无线传输服务库中的方法,使得应用程序在使用无线传输服务时,可以直接与内核层的网卡驱动进行交互,实施本申请提供的通信资源调度方法。
例如,应用程序可以与内核层的网卡驱动进行交互,以获取应用程序在当前信道上的通信速率。当应用程序确定该通信速率低于最高通信速率需求时,可以与网卡驱动协商确定切换信道的时机以及在切换后信道上的驻留时间。或者,应用程序向网卡驱动发送切换信道的请求,网卡驱动确定切换信道的时机以及在切换后信道上的驻留时间后,将切换信道的时机和在切换后信道上的驻留时间告知应用程序。应用程序在确定切换信道的时机和在切换后信道上的驻留时间后,可以及时的调整应用程序生产数据的速率。
示例性的,图11为本申请实施例中电子设备100的另一个软件结构示意框图。
在一些实施例中,将系统分为四层,从上至下分别为应用层,框架层,系统服务层,以及内核层。
应用层包括系统应用和第三方非系统应用。
框架层为应用层的应用程序提供JAVA/C/C++/JS等多语言的用户程序框架和能力框架,以及各种软硬件服务对外开放的多语言框架API。
系统服务层包括:系统基本能力子系统集、基础软件服务子系统集、增强软件服务子系统集、硬件服务子系统集。
其中,系统基本能力子系统集支持操作系统在多设备上运行、调度、迁移等操作。系统基本能力子系统集可以包括:分布式软总线、分布式数据管理、分布式任务调度、公共基础子系统等。系统服务层和框架层联合实现了多模输入子系统、图形子系统等。本申请提供的通信资源协作方法可以位于分布式软总线中。
其中,基础软件服务子系统集为操作系统提供公共的、通用的软件服务,可以包括:事件通知子系统、多媒体子系统等。
其中,增强软件服务子系统集为不同设备提供差异化的软件服务,可以包括:IOT专有业务子系统。
其中,硬件服务子系统集为操作系统提供硬件服务,可以包括:IOT专有硬件服务子系统。
值得说明的是,根据不同设备形态的部署环境,上述系统基本能力子系统集、基础软件服务子系统集、增强软件服务子系统集、硬件服务子系统集可以按照其他功能粒度进行重新划分。
内核层包括内核抽象层和驱动子系统。其中,内核抽象层包括多种内核,并且通过屏蔽多内核差异,对上层提供基础的内核能力,例如,线程/进程管理、内存管理、文件系统、网络管理等。其中,驱动子系统为软件开发者提供统一外设访问能力和驱动开发、管理框架。
在配置本申请提供的通信资源调度方法时,软件开发人员可以在分布式软总线、驱动子 系统、IOT专有业务子系统或IOT专有硬件服务子系统中进行相关参数的配置。进而,应用层中的应用可以实施本申请提供的通信资源调度方法。其中,相关参数的配置可以包括:与应用程序协商配置通信速率需求,配置驻留时间T,以及驻留时间T的更新方式等。
值得说明的是,根据操作系统的不同以及未来可能的升级换代,电子设备的软件结构可以根据操作系统进行其他方式的划分。
最后,下面介绍本申请提供的通信资源调度方法:
图12为本申请提供的通信资源调度方法的一个示例性示意图。
可以理解的是,图12中的一个或多个步骤是可选的,可以选择其中的一个或多个步骤构成新的实施例,也在本申请的保护范围内。
位于A信道上的电子设备在想要切换到B信道时,通过多次执行临时信道变更操作,进而多次对B信道进行信道评估,更准确的确定B信道的通信性能。并且,基于第M次的临时信道变更操作中信道评估的结果,可以动态调整第M+1次电子设备在B信道上驻留时间长度,有利于降低切换信道时业务的卡顿。
如图12所示,本申请提供的通信资源调度方法包括:
S1201:响应于业务的建立,电子设备在A信道上开始传输业务的数据。
在本申请实施例中,业务被配置有至少一个通信速率需求。
在本申请的一些实施例中,电子设备可以为没有配置通信速率需求的业务配置一个通信速率需求。例如,对于不同类型的业务,可以配置不同类型的通信速率需求。
业务、信道等术语的概念可以参考术语解释中(1)无线信道、(2)通信速率需求中的文字描述,此处不再赘述。
执行步骤S1202。
S1202:业务预测物理层通信速率。
具体的,当电子设备在A信道上开始传输业务的数据后,电子设备上的业务可以周期性的去预测物理层通信速率,即预测该业务在A信道上的通信速率。或者,该业务发生卡顿时,可以异步的开始预测物理层通信速率。
业务判断是否发生卡顿的方式有很多种,在此不作限定。例如,业务可以根据本地缓存数据的多少判断是否发生卡顿,或者业务可以根据收到确认报文的频率判断是否发生卡顿。
电子设备预测物理层通信速率的内容可以参考术语解释中(3)预测物理层通信速率中的文字描述,此处不再赘述。
执行步骤S1203。
S1203:电子设备确定预测的物理层通信速率是否小于最低的通信速率需求。
具体的,当电子设备上的业务被配置有至少两个通信速率需求时,业务可以确定预测的物理层通信速率与最高通信速率需求之间的大小关系。当预测的物理层通信速率大于等于业务的最高通信速率需求时,执行步骤S1204;当预测的物理层通信速率小于业务的最高通信速率需求时,执行步骤S1205。
当电子设备上的业务只被配置有一个通信速率需求时,业务可以确定预测的物理层通信速率与该通信速率需求之间的大小关系。当预测的物理层通信速率大于等于该通信速率需求时,执行步骤S1204;当预测的物理层通信速率小于该通信速率需求时,执行步骤S1205。
可选的,在本申请一些实施例中,当电子设备的业务被配置有至少两个通信速率需求时,当预测的物理层通信速率小于业务的最低通信速率需求时,执行步骤S1213,即电子设备直接切换到B信道上。
可选的,在本申请一些实施例中,电子设备在执行步骤S1202后,执行步骤S1203前,可以根据预测确定的物理层通信速率调整业务产生数据的速率。其中,业务根据预测物理层通信速率调整业务产生数据的速率的方法可以参考术语解释(2)通信速率需求中的文字描述,此处不再赘述。
可选的,在本申请一些实施例中,在步骤S1201中,若业务没有被配置通信速率需求,则电子设备可以根据通信时遵守的通信协议确定是否切换信道,而不用执行步骤S1202、步骤S1203。当电子设备决定切换信道时,执行步骤S1205。
S1204:电子设备留在A信道。
可以理解的是,由于电子设备上的业务在A信道上的通信速率大于等于业务的最高通信速率需求时,业务的数据能及时从电子设备上发送出去,用户体验良好,没有必要切换信道。
S1205:业务预测物理层通信速率,并根据物理层通信速率调整业务产生数据的速率。
具体的,业务确定预测物理层通信速率小于最高通信速率需求时,业务可以通知电子设备准备开始切换到信道B。当第I次准备切换到B信道时,业务会确定在B信道上的驻留时间T、以及切换信道时延。业务根据上述参数可以预测物理层在开始本次信道驻留至结束本次信道切换时间内的物理层通信速率。
可选的,在本申请的一些实施例中,业务可以在执行临时信道变更操作前,确定临时信道变更操作开始的时刻。
当业务预测物理层通信速率后,可以根据业务的通信速率需求去调整业务产生数据的速率。
下面以图13所示的内容为例,示例性的介绍电子设备在执行临时信道变更前,电子设备预测物理层通信速率的过程。
图13为本申请实施例提供的电子设备在执行临时信道变更操作前预测物理层通信速率的一个示例性示意图。
如图13中的(A)所示,在第1.9秒时,业务和/或物理层确定在第2.1秒时开始执行第一次临时信道变更操作,在2.2秒时结束第一次临时信道变更操作。电子设备可以统计时间切片1、时间切片2、时间切片3内的物理层通信速率,以预测时间切片4内电子设备在A信道上的通信速率。
当电子设备预测业务在A信道上第1.9秒至2.4秒内的通信速率为420Kbps后,可以进一步预测:电子设备在B信道上时业务感知的物理层通信速率。
如图13中的(B)所示,在第1.9秒至2.0秒内和低2.2秒至2.3秒内,业务不能发送数据;在第2.0秒至第2.2秒内和低2.3秒至2.4秒内,业务可以发送数据。
业务可以认为在第2.0秒至第2.2秒内,业务在B信道上的传输速率为Xkbps。当业务认为X=0时,即预测第1.9秒至2.4秒内物理层的通信速率为420/0.5*(0.5-0.1*2-0.2)=84kbps;或者业务可以认为在2.0秒至第2.2秒内X=420kbps,业务在B信道上的传输速率与在A信道上的传输速率相同,即预测第1.9秒至2.4秒内物理层通信速率为420/0.5*(0.5-0.1*2)=252kbps;或者电子设备可以通过近距离通信服务询问B信道上的电子设备以预测业务在B 信道上的传输速率,如预测业务在B信道上的传输速率为X=700kbps,即预测第1.9秒至2.4秒内物理层通信速率为(420*0.5*0.1+700*0.2)/0.5=322kbps。其中,近距离通信服务可以包括蓝牙、苹果无线直接链接(applewirelessdirectlink,AWDL)、ZigBee、HiLink等。
可以理解的是,业务通过预测物理层通信速率,并根据预测确定的物理层通信速率调整该业务产生数据的速率,避免由于业务在B信道上的通信速率X过低,导致业务产生的数据大量积压在本地缓存,不能及时传输出去,提高了用户的体验。
可选的,在本申请一些实施例中,电子设备在执行临时信道变更操作时,业务可以不预测物理层通信速率;或者,电子设备在预测物理层通信速率后,可以不去调整业务产生数据的速率,仍然按照原来的速率产生数据。
S1206:第I次切换到B信道,在B信道上驻留T时间,并确定业务在B信道上的通信速率。
具体的,电子设备第I次切换到B信道后,根据步骤S1205确定的驻留时间T,在B信道上驻留T时间。业务在驻留时间T内,会在B信道上传输该业务产生的数据。业务在传输数据的同时对B信道进行信道评估以确定业务在B信道上的通信速率。即,电子设备第I次执行临时信道变更操作。
其中,信道评估、临时信道变更的概念可以参考术语解释中(4)临时信道变更中的文字描述,此处不再赘述。
S1207:判断I是否小于N。
具体的,电子设备确定I与N的大小关系。其中,N为切换信道次数上限阈值,并且为业务预配置的大于等于2的正整数。当I小于N时,执行步骤S1208;当I大于等于N时,执行步骤S1215。
可以理解的是,S1207和S1215是可选的步骤,在执行完S1206后,电子设备可以执行S1208。这是因为,在部分情况中,电子设备上业务在A信道上的通信速率与业务在B信道上的通信速率存在一定差距,可以不配置N,而通过步骤S1211或者步骤S1212确定是否切换信道。
S1208:判断业务在B信道上的通信速率大于等于在A信道上的通信速率。
具体的,在步骤S1206中,业务已经确定本身在B信道上的通信速率后,业务判断在B信道上的通信速率大于等于在A信道上的通信速率时,执行步骤S1209;业务判断在B信道上的通信速率小于在A信道上的通信速率时,执行步骤S1210。
在本申请实施例中,业务判断业务在B信道上的通信速率与业务在A信道上的通信速率可以在本次临时信道变更操作结束时,或者在本次临时信道变更操作结束后,或者在下次临时信道变更操作前。
具体的,以图14所示的内容为例,具体的介绍业务执行步骤S1208的时机。
图14为本申请实施例提供的业务判断在不同信道上通信速率大小关系的一个示例性示意图。
如图14所示,业务可以在两个时机中的任一个时机上去判断业务在B信道上的通信速率与业务在A信道上的通信速率的大小。电子设备在从B信道切换回A信道前,即在1.7秒至1.8内,可以判断B信道上的通信速率410kbps大于业务在A信道上的通信速率400kbps 电子设备;或者,考虑到信道通信性能的时变性,业务可以在电子设备切换回A信道后,即在第1.8秒至第2.3秒内,判断B信道上的通信速率410kbps小于业务在A信道上的通信速率420kbps。
可以理解的是,考虑到信道通信性能的时变性,当业务在A信道与B信道上的通信速率差距不大的情况下,业务在不同时刻判断业务在B信道上的通信速率与业务在A信道上的通信速率可能会导致相反的结果。业务可以选择的合适的时机去判断业务在B信道上的通信速率与业务在A信道上的通信速率的大小。
S1209:增加驻留时间T。
具体的,当业务执行步骤S1208后,即确定业务在B信道上的通信速率大于业务在A信道上的通信速率后,可以增加下一次切换到B信道上的驻留时间T。
其中,增加驻留时间T的方式可以有很多种,在此不做限定。
例如,T
I=βT
I-1,其中β为大于1的实数,T
I为电子设备第I次切换到B信道的驻留时间。β可以为业务预配置的常数,或者β可以为与业务在B信道上和A信道上通信速率有关的变量,例如β可以为业务在B信道上的通信速率与业务在A信道上通信速率的比值。
可以理解的是,对于该业务来说,由于业务在B信道上的通信速率大于业务在A信道上的通信速率,增加下一次临时信道变更操作中电子设备在B信道上的驻留时间T,既有利于更有效、准确的评估业务在B信道上的通信速率,也有利于业务更好、更快的传输数据。
S1210:减少驻留时间T。
具体的,当业务执行步骤S1208后,即确定业务在B信道上的通信速率小于业务在A信道上的通信速率后,可以减少下一次切换到B信道上的驻留时间T。
与步骤S1209类似的,减少驻留时间T的方式可以有很多种,在此不做限定。减少驻留时间T的方式可以参考步骤S1209中的文字描述,此处不再赘述。
可以理解的是,对于该业务来说,由于业务在B信道上的通信速率小于业务在A信道上的通信速率,减少临时信道变更操作中电子设备在B信道上的驻留时间T,可以减少业务在通信性能更差的信道上传输数据传输的时间。
S1211:业务判断T是否大于等于驻留时间上界。
具体的,业务在增加驻留时间T后,会判断增加后的驻留时间T是否大于等于驻留时间上界。其中,驻留时间上界为业务预先配置的参数。当增加后的驻留时间T大于等于驻留时间上界时,执行步骤S1213。当增加后的驻留时间T小于驻留时间上界时,执行步骤S1205。
S1212:业务判断T小于等于驻留时间下界。
具体的,业务在减少驻留时间T后,会判断减少后的驻留时间T是否小于等于驻留时间下界。其中,驻留时间下界为业务预先配置的参数。当增加后的驻留时间T大于等于驻留时间下界时,执行步骤S1214。当增加后的驻留时间T大于驻留时间上界时,执行步骤S1205。
S1213:电子设备留在B信道。
具体的,由于驻留时间T大于等于驻留时间上界,业务认为业务在B信道上的传输速率高于业务在A信道上的传输速率,故电子设备可以留在B信道。
下面结合图15所示的内容,具体的介绍两种电子设备留在B信道的方式。
图15为本申请实施例提供的电子设备留在B信道的一个示例性示意图。
如图15中的(A)所示,电子设备在第2.7秒至第3.1秒内确定业务在B信道上的传输速率高于业务在A信道上的传输速率,并且增加驻留时间T。由于增加后的驻留时间T大于驻留时间上界,故在第3.2秒时,电子设备从A信道切换到B信道后,电子设备留在B信道。
如图15中的(B)所示,由于电子设备在第1.3秒至第1.9秒内,已知下一次切换到B信道的时刻和驻留时间T。即,电子设备确定在第2.6秒时从B信道切换到A信道,则可以在第2.6秒时确定业务在B信道上的传输速率高于业务在A信道上的传输速率。并且在第2.6秒时,业务增加驻留时间T,且确定驻留时间T大于驻留时间上界,故在第2.6秒时,电子设备留在B信道。
对比图15中的(A)和(B)所示的内容,可以得知,由于执行步骤S1208、步骤S1209、步骤S1210、步骤S1211、步骤S1212的时机不同,电子设备留在B信道的方式也不同。
S1214:电子设备留在A信道。
具体的,由于驻留时间T小于驻留时间下界,业务认为业务在A信道上的传输速率高于业务在B信道上的传输速率,故电子设备可以留在A信道。
值得说明的是,在本申请一些实施例中,若电子设备在实施本申请实施例提供的通信资源调度方法时,当电子设备未配置驻留时间上界和/或驻留时间下界时,即不执行步骤S1211、步骤S1212、步骤S1213、步骤S1214时,步骤S1209、步骤S1210为可选的步骤,电子设备至少需要通过执行步骤1207、步骤S1215确定留在A信道还是留在B信道。
S1215:电子设备根据业务在B信道和A信道上的通信速率确定留在B信道或者留在A信道。
具体的,由于在进行N次临时信道变更操作后,驻留时间T介于驻留时间上界和驻留时间下界之间,即业务无法直接确定业务更适合在A信道或B信道上传输数据时,业务可以根据N次临时信道变更操作过程中业务在A信道和B信道上的表现,确定电子设备留在B信道或者留在A信道。
例如,当N=3时,业务可以统计三次临时信道变更操作中,确定业务有两次在B信道上的通信速率大于A信道上的通信速率,确定电子设备留在B信道;或者业务可以计算三次临时信道变更操作过程中,业务在B信道上的平均通信速率大于A信道上的平均通信速率,确定电子设备留在B信道;或者业务计算三次临时信道变更操作过程中,当业务在B信道上的平均通信速率与业务在A信道上的平均通信速率相差不大的情况下,可以根据业务在A信道和B信道上通信速率的方差选择留在通信速率方差较小的信道,即电子设备信道通信性能波动较小的信道。
下面以表2所示的内容为例,具体的介绍电子设备根据业务在B信道和A信道上的通信速率确定留在B信道或者留在A信道的过程。
表2 为本申请实施例提供的业务在A信道和B信道上的通信速率的一个示意表。
如表2所示,业务在A信道上的平均通信速率低于业务在B信道上的平均通信速率;但是业务在A信道上的通信速率标准差低于业务在B信道上的通信速率标准差。故业务可以按照业务本身的需求或者预配置的选择模式,选择留在平均通信速率更高的A信道,或者选择留在通信速率波动更小的B信道。
值得说明的是,由于电子设备在每次执行临时信道变更操作时,留在A信道和B信道上的时间不同,可以根据时间进行加权进而求得信道通信速率的平均值和标准差。
可选的,在本申请一些实施例中,当步骤S1207中N被业务配置为1时,即业务仅进行一次临时信道变更操作,就确定承载该业务的电子设备是留在A信道上还是切换到B信道上进行数据交互。在该情况下,业务可以仅执行步骤S1201、步骤S1206、步骤S1207、步骤S1215,实现本申请提供的通信资源调度方法。
可选的,在本申请一些实施例中,电子设备上的业务可以不配置通信速率需求,并通过执行步骤S1205、步骤S1206、步骤S1208、步骤S1209、步骤S1210、步骤S1211、步骤S1212、步骤S1213、步骤S1214实施本申请实施例提供的通信资源调度方法。其中,在执行步骤S1205中,电子设备可以调整业务产生数据的速率,也可以不调整业务产生数据的速率。
可选的,在本申请一些实施例中,电子设备可以不为业务配置驻留时间上界和驻留时间下界,即不执行步骤S1209、步骤S1210、步骤S1211、步骤S1213、步骤S1212、步骤S1214,而是通过步骤S1207以及步骤S1215确定留在A信道还是留在B信道。
下面结合图16所示的内容为例,示例性的介绍本申请提供的通信资源调度方法。
图16为本申请实施例提供的电子设备切换信道场景的一个示例性示意图。
结合表1以及图1中的内容,电子设备正在将实时播放的视频画面通过路由器投影到投影仪上。在第1.3秒前,电子设备接入路由器的5G低频信道,并开启视频应用程序的投影业务将视频数据通过该5G低频信道发送到投影仪上。并且,业务在5G低频信道上的通信速率为1200kbps,传输的视频的格式为:1080P、60FPS。
对应于步骤S1203、步骤S1204,在第1.3秒前,业务周期性的预测物理层的通信速率,确定物理层的通信速率为1200kbps。由于预测的物理层的通信速率高于业务最高的通信速率需求,故电子设备在第1.3秒前,一直留在5G低频信道。
在第1.3秒后,业务在5G低频信道上的通信速率降为400kbps。
对应于步骤S1205,由于业务在5G低频信道上的通信速率降低,导致业务不能将1080P、60FPS的视频数据及时发送出去,大量数据积压在电子设备本地缓存中。当业务发现有大量数据积压在电子设备本地缓存中,可以异步的执行操作:预测物理层通信速率,并根据物理层通信速率调整业务产生数据的速率。具体的,业务可以选取第0.7秒至第1.0秒和第1.0秒至第1.3秒两个时间切片内业在5G低频信道上的通信速率预测第1.3秒后业务在5G低频信道上的通信速率。当业务预测在第1.3秒后,业务在5G低频信道的通信速率为400kbps。业务根据表1所示的通信速率需求与传输数据格式之间的对应关系,确定调整业务传输视频数据的格式变为:480P、60FPS。
对应于步骤S1203、S1205,由于业务预测确定的物理层通信速率低于最高的通信速率需求1080kbps。在第1.7秒时,业务通知电子设备决定开始尝试切换到其他信道,以获得更好的数据传输性能。在业务决定开始尝试切换到其他信道后,电子设备可以采用无线电感知或在带外信道、控制信道侦听表示其他可用信道的消息等方式确定可用的其他信道。电子设备确定备选的信道包括路由器架设的5G高频信道。电子设备确定开始尝试切换到该5G高频信 道,并且确定在第1.9秒时开始临时信道变更操作,即切换到5G高频信道并在5G高频信道驻留0.3秒。并且,业务确定执行信道切换操作次数N=4,驻留时间上界为1.5秒,驻留时间下界为0.1秒。
为了减少临时信道变更操作导致的业务卡顿、报错,业务可以预测第1.7秒至2.7秒内的物理层通信速率,并基于该预测的物理层通信速率调整业务产生数据的速率。业务预测物理层的通信速率为400*(1-0.1*2-0.3)=200kbps。业务根据表1示的通信速率需求与传输数据格式之间的对应关系,确定调整业务传输视频数据的格式变为:480P、30FPS。
对应于步骤S1206,在第2秒至第2.4秒时,电子设备在5G高频信道时,业务在传输数据的同时对5G高频信道进行信道评估,确定业务在5G高频信道的通信速率为600kbps。
对应于步骤S1207、步骤S1208、步骤S1209、步骤S1211,业务确定业务在5G高频信道的通信速率大于业务在5G低频信道的通信速率,增加下一次临时信道变更操作中在信道上的驻留时间T=0.6秒,且驻留时间0.6秒小于驻留时间上界1.5秒。
在第2.3秒时,电子设备开始切换回5G低频信道。在第2.4秒时,电子设备切换回5G低频信道。
对应于步骤S1205,业务在第2.7秒至2.9秒内,确定在第2.9秒开始第二次临时信道变更操作,即切换到5G高频信道。与第一次切换到5G高频信道不同的是,由于以及对5G高频信道做过一次信道评估,故可以预测在第3.0秒至第3.6秒内,业务在5G高频信道通信速率小于等于500kbps。进一步的,业务在预测2.7秒至3.7秒内的物理层通信速率时,可以有多种预测方式。例如,可以预测物理层通信速率为400*(1-0.1*2-0.6)+600*0.6=440kbps,或者可以为400*(1-0.1*2-0.3)=200kbps。业务根据表1示的通信速率需求与传输数据格式之间的对应关系,确定调整业务传输视频数据的格式变为:480P、30FPS或720P、30FPS或480P、60FPS。
对应于步骤S1206,在第3秒至第3.6秒时,电子设备在5G高频信道时,业务在传输数据的同时对5G高频信道进行信道评估,确定业务在5G高频信道的通信速率为600kbps。
对应于步骤S1207、步骤S1208、步骤S1209、步骤S1211,业务确定业务在5G高频信道的通信速率大于业务在5G低频信道的通信速率,增加下一次切换信道时的驻留时间T=1.2秒,且驻留时间1.2秒小于驻留时间上界1.5秒。
在第3.6秒时,电子设备开始切换回5G低频信道。在第3.7秒时,电子设备切换回5G低频信道。
对应于步骤S1205,业务在第3.7秒至4.1秒内,确定在第4.2秒开始第三次切换到5G高频信道。与第二次切换到5G高频信道不同的,业务可以按照原先的时间切片长度去预测第3.7秒至4.7秒内的物理层通信速率,或者业务可以调整时间切片的长度去预测第3.7秒至5.5秒内的物理层通信速率。
业务预测第3.7秒至4.7秒内的物理层通信速率可以由多种方式,例如,可以为410*(1-0.1-0.4)=205kbps,或者可以为410*(1-0.1-0.4)+610*0.4=449kbps;或者,业务预测第3.7秒至第5.6秒(第5.6秒时电子设备切换回5G低频信道)的物理层通信速率为410*(1.9-0.1*2-1.2)/1.9+600*1.2/1.9=486kbps。业务根据表1示的通信速率需求与传输数据格式之间的对应关系,确定调整业务传输视频数据的格式变为:480P、30FPS或720P、30FPS或480P、60FPS。
对应于步骤S1206,在第4.3秒至第5.5秒时,电子设备在5G高频信道时,业务在传输数据的同时对5G高频信道进行信道评估,确定业务在5G高频信道的通信速率为610kbps。
对应于步骤S1207、步骤S1208、步骤S1209、步骤S1211,业务确定业务在5G高频信道的通信速率大于业务在5G低频信道的通信速率,增加下一次切换信道时的驻留时间T=2.4秒,且驻留时间2.4秒大于驻留时间上界1.5秒。
对应于步骤S1213,在第5.5秒时,由于业务确定下一次切换信道的驻留时间大于驻留时间上界,故业务指示电子设备留在5G高频信道。
对应于步骤1402,在第5.5秒后,业务确定物理层通信速率,即确定业务在5G高频信道上的传输速率为610kbps。业务根据表1示的通信速率需求与传输数据格式之间的对应关系,确定调整业务传输视频数据的格式变为:720P、60FPS。
可以理解的是,若认为1.7秒至2.7秒为时间切片K、认为2.7秒至3.7秒为时间切片K+1、认为3.7秒至5.5秒为时间切片K+2,由于业务预先知道切换信道的时间以及负载,业务可以及时的调整生成数据的速率,避免业务将生产出数据积压在本地,减轻了业务的卡顿,提升了用户的体验。其次,由于业务边传输数据边进行信道切换,并且通过动态调整在切换后信道的驻留时间,避免了由于切换后信道通信速率较低而影响到用户的体验,自适应能力较强。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
Claims (18)
- 一种通信资源调度方法,其特征在于,包括:第一电子设备第K次从第一信道切换到第二信道,所述K为正整数;所述第一电子设备在第二信道上驻留第K时长,并且所述第一电子设备确定第二信道的通信性能为第K性能;所述第一电子设备在第二信道上驻留第K时长后,所述第一电子设备切换回第一信道;所述第一电子设备第K+1次从所述第一信道切换到所述第二信道;所述第一电子设备在第二信道上驻留第K+1时长后,所述第一电子设备确定第二信道的通信性能为第K+1性能;所述第一电子设备基于前K+1次中的至少两次得到的所述第二信道的通信性能确定所述第二信道的通信性能优于第一信道的通信性能后,所述第一电子设备留在第二信道,或者,所述第一电子设备切换回第一信道后再切换到第二信道。
- 根据权利要求1所述的方法,其特征在于,所述第K性能大于所述第一信道的通信性能时,所述第K+1时长大于等于所述第K时长;所述第K性能小于所述第一信道的通信性能时,所述第K+1时长小于等于所述第K时长。
- 根据权利要求2所述的方法,其特征在于,所述第一信道的通信性能为所述第一电子设备第K次从第一信道切换到第二信道前确定的;或者,所述第一信道的通信性能为所述第一电子设备第K+1次从所述第一信道切换到所述第二信道前确定的。
- 根据权利要求1至3任一项所述的方法,其特征在于,第一电子设备第K次从第一信道切换到第二信道前,还包括:所述第一电子设备上运行有第一应用程序,所述第一应用程序被配置有一个或多个通信性能参数阈值;所述第一电子设备确定所述第一信道的通信性能低于所述一个或多个通信性能参数阈值中的任一个通信性能参数阈值。
- 根据权利要求4所述的方法,其特征在于,所述第一电子设备确定所述第一信道的通信性能低于所述一个或多个通信性能参数阈值中的任一个通信性能参数阈值前,还包括:所述第一电子设备基于所述第一信道的通信性能与所述通信性能参数阈值调整所述第一应用程序产生数据的速率。
- 根据权利要求1至3任一项所述的方法,其特征在于,所述第一电子设备第K次从第一信道切换到第二信道前,还包括:所述第一电子设备上运行有第一应用程序;所述第一电子设备基于所述第K时长和切换信道操作的开销调整所述第一应用程序产生数据的速率。
- 根据权利要求6所述的方法,其特征在于,所述第一电子设备基于所述第K时长和切 换信道操作的开销调整所述第一应用程序产生数据的速率,具体包括:所述第一电子设备确定第K预测值,所述第K预测值为所述第一应用程序在第二信道上的通信速率;所述第一电子设备基于所述第K预测值、所述第K时长和切换信道操作的开销调整所述第一应用程序产生数据的速率。
- 根据权利要求7所述的方法,其特征在于,所述第一电子设备确定第K预测值,具体包括:所述第一电子设备从所述第一信道切换到所述第二信道前,所述第一电子设备通过近距离通信服务确定第K预测值,所述近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种。
- 根据权利要求7所述的方法,所述第一电子设备确定第K预测值,具体包括:若K大于1,所述第一电子设备基于第K-1性能确定第K预测值。
- 根据权利要求7所述的方法,所述第一电子设备确定第K预测值,具体包括:所述第一电子设备确定第K预测值等于0。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一电子设备基于前K+1次中的至少两次得到的所述第二信道的通信性能确定所述第二信道的通信性能优于第一信道的通信性能后,所述第一电子设备留在第二信道,或者,所述第一电子设备切换回第一信道后再切换到第二信道,具体包括:在所述第K+1性能大于所述第一信道的通信性能的情况下,所述第一电子设备确定第K+2时长,所述第K+2时长大于所述第K+1时长;所述第一电子设备确定所述第K+2时长大于驻留时间上界后,所述第一电子设备留在第二信道,或者,所述第一电子设备切换回第一信道后再切换到第二信道。
- 一种通信资源调度方法,其特征在于,包括:第一电子设备上运行有第一应用程序,所述第一电子设备在第一信道上进行数据交互;所述第一电子设备以第一速率发送所述第一应用程序的数据;所述第一电子设备从所述第一信道切换到第二信道前,所述第一电子设备确定第二速率;所述第一电子设备在所述第一信道上、所述第二信道上以所述第二速率发送所述第一应用程序的数据,所述第一速率与所述第二速率不同;所述第一电子设备切换回所述第一信道。
- 根据权利要求12所述的方法,其特征在于,所述第一电子设备以第一速率发送第一应用程序的数据前,还包括:在第一时刻,所述电子设备基于第一时刻前的一个或多个时间切片内的所述第一信道的通信性能确定第一时刻至第二时刻内所述第一信道的通信性能,所述第二时刻在所述第一时刻后;所述第一电子设备基于所述第一时刻至所述第二时刻内所述第一信道的通信性能确定第 三速率;在所述第一时刻至所述第二时刻内,所述电子设备以所述第三速率发送所述第一应用程序的数据,所述第三速率与所述第一速率不同。
- 根据权利要求12或13所述的方法,其特征在于,所述第一电子设备从所述第一信道切换到第二信道前,所述第一电子设备确定第二速率,具体包括:所述第一电子设备从所述第一信道切换到所述第二信道前,所述第一电子设备基于所述第一信道的通信性能以及所述第一电子设备在所述第二信道上的驻留时长确定所述第二速率。
- 根据权利要求12或13所述的方法,其特征在于,所述第一电子设备从所述第一信道切换到第二信道前,所述第一电子设备确定第二速率,具体包括:所述第一电子设备从所述第一信道切换到所述第二信道前,所述第一电子设备通过近距离通信服务确定第二信道的通信性能,所述近距离通信服务包括蓝牙、苹果无线直连连接AWDL、紫峰ZigBee、HiLink中的一种或多种;所述第一电子设备基于所述第一信道的通信性能、所述第二信道的通信性能以及在所述第二信道上的驻留时长确定所述第二速率。
- 一种电子设备,其特征在于,所述电子设备包括:一个或多个处理器和存储器;所述存储器与所述一个或多个处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述一个或多个处理器调用所述计算机指令以使得所述电子设备执行如权利要求1至15中任一项所述的方法。
- 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行如权利要求1至15中任一项所述的方法。
- 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1至15中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110465794.9 | 2021-04-28 | ||
CN202110465794 | 2021-04-28 | ||
CN202110869494.7A CN115250492A (zh) | 2021-04-28 | 2021-07-30 | 通信资源调度方法和电子设备 |
CN202110869494.7 | 2021-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022228102A1 true WO2022228102A1 (zh) | 2022-11-03 |
Family
ID=83696937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/086169 WO2022228102A1 (zh) | 2021-04-28 | 2022-04-11 | 通信资源调度方法和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115250492A (zh) |
WO (1) | WO2022228102A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101364908A (zh) * | 2008-09-16 | 2009-02-11 | 杭州华三通信技术有限公司 | 一种评估无线信道质量的方法和装置 |
US20160066326A1 (en) * | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Communication channel management method and electronic device supporting the same |
CN109716819A (zh) * | 2016-12-19 | 2019-05-03 | 华为技术有限公司 | 一种信道控制方法,及设备 |
CN111935268A (zh) * | 2020-08-03 | 2020-11-13 | 卢卫征 | 一种基于区块链和物联网的数据传输信号检测系统及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080096560A1 (en) * | 2006-10-24 | 2008-04-24 | Nortel Networks Limited | System and method for ensuring handoffs across heterogeneous networks |
CN107820282B (zh) * | 2016-09-12 | 2020-11-13 | 中国移动通信有限公司研究院 | 小区切换方法、基站及用户设备 |
CN108449764A (zh) * | 2018-06-01 | 2018-08-24 | 南昌黑鲨科技有限公司 | 网络连接控制方法、计算机可读存储介质及智能终端 |
CN109618378A (zh) * | 2019-01-29 | 2019-04-12 | 维沃移动通信有限公司 | 一种网络模式控制方法、终端及存储介质 |
CN110536367A (zh) * | 2019-08-29 | 2019-12-03 | 宇龙计算机通信科技(深圳)有限公司 | 一种网络切换方法、装置、存储介质及终端 |
-
2021
- 2021-07-30 CN CN202110869494.7A patent/CN115250492A/zh active Pending
-
2022
- 2022-04-11 WO PCT/CN2022/086169 patent/WO2022228102A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101364908A (zh) * | 2008-09-16 | 2009-02-11 | 杭州华三通信技术有限公司 | 一种评估无线信道质量的方法和装置 |
US20160066326A1 (en) * | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Communication channel management method and electronic device supporting the same |
CN109716819A (zh) * | 2016-12-19 | 2019-05-03 | 华为技术有限公司 | 一种信道控制方法,及设备 |
CN111935268A (zh) * | 2020-08-03 | 2020-11-13 | 卢卫征 | 一种基于区块链和物联网的数据传输信号检测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115250492A (zh) | 2022-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11573829B2 (en) | Task processing method and apparatus, terminal, and computer readable storage medium | |
EP4084486B1 (en) | Cross-device content projection method, and electronic device | |
WO2021185244A1 (zh) | 一种设备交互的方法和电子设备 | |
WO2022017205A1 (zh) | 一种显示多个窗口的方法及电子设备 | |
WO2021052415A1 (zh) | 资源调度方法及电子设备 | |
WO2022199509A1 (zh) | 应用执行绘制操作的方法及电子设备 | |
WO2022127632A1 (zh) | 一种资源管控方法及设备 | |
WO2022042637A1 (zh) | 一种蓝牙数据传输方法及相关装置 | |
CN110636554B (zh) | 数据传输方法及装置 | |
WO2022222713A1 (zh) | 一种编解码器协商与切换方法 | |
WO2020019533A1 (zh) | 一种数据传输方法及电子设备 | |
WO2022222924A1 (zh) | 一种投屏显示参数调节方法 | |
WO2023005900A1 (zh) | 一种投屏方法、电子设备及系统 | |
WO2023179123A1 (zh) | 蓝牙音频播放方法、电子设备及存储介质 | |
JP7193647B2 (ja) | 接続確立方法および端末デバイス | |
CN115333941B (zh) | 获取应用运行情况的方法及相关设备 | |
WO2022143258A1 (zh) | 一种语音交互处理方法及相关装置 | |
WO2022121988A1 (zh) | 显示同步的方法、电子设备以及可读存储介质 | |
CN114827696B (zh) | 一种跨设备的音视频数据同步播放的方法和电子设备 | |
CN118233402A (zh) | 一种数据传输方法及电子设备 | |
WO2022228102A1 (zh) | 通信资源调度方法和电子设备 | |
EP4054132A1 (en) | Multipath http channel multiplexing method and terminal | |
WO2022206603A1 (zh) | 通信资源协作方法及电子设备 | |
WO2023001208A1 (zh) | 多文件同步方法及电子设备 | |
CN113271577B (zh) | 媒体数据播放系统、方法及相关装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22794573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22794573 Country of ref document: EP Kind code of ref document: A1 |