WO2022228044A1 - 一种超声乳化仪 - Google Patents

一种超声乳化仪 Download PDF

Info

Publication number
WO2022228044A1
WO2022228044A1 PCT/CN2022/085071 CN2022085071W WO2022228044A1 WO 2022228044 A1 WO2022228044 A1 WO 2022228044A1 CN 2022085071 W CN2022085071 W CN 2022085071W WO 2022228044 A1 WO2022228044 A1 WO 2022228044A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
perfusion
suction
eye
handle
Prior art date
Application number
PCT/CN2022/085071
Other languages
English (en)
French (fr)
Inventor
邓玮鑫
常兆华
胡瑞申
温一秋
陈齐欧
张劼
罗七一
Original Assignee
微创视神医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创视神医疗科技(上海)有限公司 filed Critical 微创视神医疗科技(上海)有限公司
Publication of WO2022228044A1 publication Critical patent/WO2022228044A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery

Definitions

  • the invention relates to the technical field of medical equipment, in particular to a phacoemulsification instrument.
  • FIG. 1 it is a schematic diagram of the human eye structure, wherein the eye structure 100 is composed of the lens 101 , the vitreous body 102 , the anterior chamber 103 , the sclera 104 , the iris 105 , the cornea 106 , the optic nerve 107 and the retina 108 .
  • the lens 101 is normally transparent, and light passes through the lens 101 and some refractive interstitials to reach the retina 108, so that external objects can be clearly seen.
  • cataract means that the lens 101 has problems such as turbidity, reduced transparency, and color change due to certain etiologies, which in turn obstructs the process of light entering the eye and affects vision.
  • cataracts are generally divided into age-related cataracts, congenital cataracts, traumatic cataracts, metabolic cataracts (such as diabetic cataracts) and complicated cataracts (complicated with glaucoma, etc.), of which the most common is age-related cataract, And congenital cataract is also parents need to pay attention to check, because the disease prevalence rate of about 0.5% of newborns, is the second leading cause of childhood blindness.
  • Phacoemulsification surgery allows doctors to use very small corneal incisions to perform cataract surgery by using high-frequency ultrasound energy (usually 20kHz to 60kHz) to crush or emulsify the diseased lens nucleus. Aspirate and re-implant an intraocular lens (IOL).
  • IOL intraocular lens
  • Fig. 2 is a kind of cataract treatment equipment in the prior art
  • this phacoemulsification instrument can be applied to cataract lens extraction and IOL implantation operation, using this equipment can emulsify and suck the lens in the eyeball, and use balanced salt solution Replace the aspirated fluid and lens.
  • the existing phacoemulsification device emulsifies the lens by using high-frequency ultrasonic energy to crush the lesioned lens nucleus, and then sucks the crushed or emulsified core material, and then implants the intraocular lens.
  • this high-frequency ultrasonic energy will cause damage to the fragile eye structure, especially for cataract cores with higher hardness levels, which require higher ultrasonic energy, which is more likely to cause damage to other structures in the eye, resulting in various complications the occurrence of disease.
  • phacoemulsification has continued to evolve, resulting in better and more efficient energy delivery schemes and different types of ultrasound power modulation schemes, such as when less ultrasound energy is used. It is accompanied by fewer complications and better surgical outcomes.
  • ultrasonic vibration technology there are also modal changes in the ultrasonic vibration technology during the operation.
  • the torsional mode and the elliptical mode are relatively innovative technologies, which can realize the lateral motion and elliptical motion of the tip of the phacoemulsification needle. Prevents damage to ocular structures when the needle tip is moved excessively longitudinally.
  • the existing phacoemulsification surgery still uses a needle or probe to extend into the ocular structure and release high-frequency ultrasonic energy to smash the cataract nucleus, especially When it is necessary to use higher frequency ultrasonic energy to smash the cataract nucleus with higher hardness, the high frequency ultrasonic energy may still cause damage to the surrounding fragile eye structure while smashing the cataract nucleus, so although the existing phacoemulsification Surgical methods can effectively separate and emulsify the lens, but this method has obvious safety flaws. According to incomplete statistics, about 1% to 4% of patients will experience vision-threatening complications during phacoemulsification.
  • phacoemulsification is a relatively simple procedure in the field of ophthalmology
  • even skilled physicians may use too much energy during phacoemulsification, resulting in loss of corneal endothelial cells, followed by sequelae such as edema, which may lead to It takes longer to heal and eventually leads to irreversible corneal clouding, requiring corneal surgery. Therefore, in the United States, cataract surgery training usually requires a three-year ophthalmology residency qualification, while in China, the training time will be longer due to equipment conditions and other limitations.
  • a phacoemulsification machine In addition to safety concerns, a phacoemulsification machine also requires significant equipment expenditures, including capital expenditures and ongoing costs for disposable consumables. Therefore, it is necessary to find a phacoemulsification solution that can replace the traditional use of high-energy phacoemulsification for cataract extraction, while reducing cost and improving safety.
  • the purpose of the present invention is to provide a phacoemulsification instrument to solve the problem that the phacoemulsification equipment in the prior art is easy to damage other structures of the eye and cause complications during cataract surgery.
  • the present invention provides a phacoemulsification instrument, including an emulsification instrument body, and the emulsification instrument body is provided with: a perfusion module for perfusing liquid into the eye, and the liquid includes a phacoemulsification device for acting on the eye.
  • a perfusion module for perfusing liquid into the eye
  • the liquid includes a phacoemulsification device for acting on the eye.
  • Targeted microbubbles for the ocular lens for the ocular lens
  • Ultrasound module for generating ultrasound waves acting on the eye and causing the targeted microbubbles to act on the ocular lens
  • Suction module for aspirating from the eye perfused fluid and/or Broken lens.
  • the perfusion module includes a gravity perfusion module, the gravity perfusion module includes a support rod and a perfusion container, the support rod is arranged on the emulsification apparatus body and extends outward from the emulsification apparatus body, and the perfusion The container is arranged on the top of the support rod away from the body of the emulsifier.
  • the length of the support rod is adjustable.
  • the infusion module further includes an infusion handle for infusing a liquid into the eye, the liquid including targeted microbubbles for acting on the ocular lens.
  • the perfusion module further includes a perfusion handle, the perfusion handle is communicated with the gravity perfusion module, the gravity perfusion module is used to provide a balanced salt solution to the perfusion handle, and the perfusion handle is also used to absorb all the The targeted microbubbles are injected into the eye.
  • the suction module includes a suction handle for suctioning the perfused liquid and/or the broken lens from the eye.
  • the perfusion handle and the suction handle are the same operation handle, the operation handle includes a perfusion channel and a suction channel, and the gravity perfusion module is used to provide a balanced salt solution to the perfusion channel of the operation handle,
  • the perfusion channel of the operating handle is also used for suctioning targeted microbubbles for targeted binding with the ocular lens, and injecting the targeted microbubbles into the eye;
  • the suction channel is used for suctioning the perfusion from the eye fluid and/or broken lenses.
  • a fluid management module is also included, the fluid management module is respectively connected with the perfusion module and the suction module, and is used for controlling the working flow of the perfusion module and the suction module.
  • the fluid management module includes a fluid control module, a control pump, a perfusion valve, a sensor module and a liquid accumulation box, the perfusion module communicates with the liquid accumulation box through the perfusion valve; the suction module passes through the The control pump is communicated with the fluid accumulation box; the sensor module is used to collect the pressure signals of the fluid accumulation box, the perfusion module and the suction module, and transmit them to the fluid control module; the fluid The control module is configured to acquire the perfusion pressure of the perfusion module and/or the suction pressure of the suction module according to the pressure signal of the sensor module, and adjust the control pump according to the perfusion pressure and/or the suction pressure and the working state of the perfusion valve, the control pump is used to generate negative pressure to adjust the suction flow and pressure of the suction module, and the perfusion valve is used to adjust the perfusion flow and pressure of the perfusion module.
  • the perfusion module includes a gravity perfusion module and a perfusion handle, and the gravity perfusion module is communicated with the perfusion handle through the perfusion valve and the fluid accumulation box;
  • the suction module includes a suction handle, so The suction handle is communicated with the fluid accumulation box after passing through the control pump through a pipeline;
  • the gravity perfusion module is used to provide balanced salt solution to the injection handle through the injection valve and the fluid accumulation box,
  • the perfusion handle is also used for suctioning targeted microbubbles for acting on the ocular lens and injecting the targeted microbubbles into the eye;
  • the suction handle is used for aspirating the perfused liquid and/or Broken lens.
  • the perfusion handle and the suction handle are the same operation handle, the operation handle includes a perfusion channel and a suction channel, and the gravity perfusion module is connected to the The perfusion channel of the operating handle is communicated with; the suction channel of the operating handle is communicated with the fluid accumulation box after passing through the control pump through a pipeline.
  • the ultrasound module includes a focused ultrasound transducer, and the focused ultrasound transducer is used to provide focused ultrasound energy to act on the eye.
  • the focused ultrasonic transducer includes a plurality of piezoelectric elements, a carrier and an excitation assembly, the excitation assembly is used to excite the piezoelectric elements to generate ultrasonic waves, and the plurality of piezoelectric elements are arranged in an arc shape on the on the carrier for converging the ultrasonic waves generated by the plurality of piezoelectric elements to obtain the converging ultrasonic energy.
  • the focused ultrasonic transducer further includes a shell with an opening, the carrier is an arc-shaped carrier, the arc-shaped carrier is installed in the opening of the shell, and the opening of the arc-shaped carrier is connected to the outer shell.
  • the opening directions of the casing are consistent, the piezoelectric elements are arranged at intervals on the inner surface and/or the outer surface of the arc-shaped carrier, and one end of the piezoelectric element is electrically connected to the arc-shaped carrier. , the other ends of the plurality of piezoelectric elements are electrically connected to each other.
  • the negative electrode of the piezoelectric element is used for grounding, and the positive electrode is used for electrical connection with the excitation component.
  • the excitation assembly includes a trigger module and a high-voltage pulse generator, the anode of the piezoelectric element is electrically connected to the high-voltage pulse generator, and the trigger module is connected to the high-voltage pulse generator.
  • the phacoemulsification instrument further includes a mechanical arm, the mechanical arm is connected to the casing of the ultrasonic module, and the mechanical arm is used to drive the ultrasonic module to move toward or away from the eye.
  • the phacoemulsification instrument provided by the present invention has the following advantages:
  • the invention combines the targeted microbubbles with ultrasonic cavitation, first injects the targeted microbubbles into the eyes of the patient, then applies ultrasonic energy to activate the targeted microbubbles to generate cavitation effects, and then crush the lesions through the energy generated by the cavitation effect
  • the cavitation effect can make the lesioned cataract lens nucleus fragment without damaging other tissues, such as the lens capsular bag.
  • the present invention can use less ultrasonic energy compared to traditional methods of directly sonicating the cataractous lens, namely The purpose of crushing the lens can be achieved, energy consumption is reduced, and the problem that excessive ultrasonic energy will cause damage to other structures of the eye can be avoided, thereby reducing the occurrence of complications in cataract surgery.
  • the ultrasonic module of the present invention adopts a focused ultrasonic transducer, which can generate a converging pulsed ultrasonic wave.
  • the pulsed ultrasonic wave has the characteristics of strong directionality and less divergence, and abandons the ultrasonic handle often used in the prior art.
  • the ultrasonic module of the present invention can adopt a non-contact solution, the ultrasonic module does not need to be inserted into the eye, and the converged ultrasonic waves generated by it can accurately act on the eye structure, so as to realize the precise direction of the ultrasonic wave to the eye structure.
  • the targeted microbubbles around the lens can further avoid damage to other tissues within the ocular structure.
  • the converged pulsed ultrasonic waves have more stable directionality than the traditional phacoemulsification method, and after combining with the targeted microbubbles, lower energy can be used, and a non-contact ultrasonic method is used, so that the Surgical methods that can be applied to smaller incisions are safer than traditional methods during the operation.
  • Fig. 1 is the schematic diagram of human eye structure
  • Fig. 2 is a kind of schematic diagram of cataract treatment equipment
  • 3-5 are schematic structural diagrams of different viewing angles of a phacoemulsification instrument in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of the phacoemulsification instrument in an embodiment of the present invention during operation
  • FIG. 7 is a schematic diagram of a step of injecting targeted microbubbles when the phacoemulsification apparatus in an embodiment of the present invention is working;
  • FIG. 8 is a schematic diagram of the ultrasonic emulsification instrument when the ultrasonic emulsifier is working in an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a suction operation when the phacoemulsification apparatus in an embodiment of the present invention is in operation;
  • FIG. 10 is a schematic diagram of the working principle of the fluid management module in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an ultrasonic module of a phacoemulsification apparatus according to an embodiment of the present invention.
  • 12-13 are schematic structural diagrams of the coordinated movement of the ultrasonic module of the phacoemulsification apparatus and the mechanical arm in an embodiment of the present invention.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also includes no explicit Other elements listed, or those inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
  • the proximal end and the proximal side refer to the end close to the operator and away from the patient; the distal end and the distal end refer to the end away from the operator and close to the patient.
  • the main purpose of the present invention is to provide a phacoemulsification instrument, which can solve the problem that the phacoemulsification equipment in the prior art is easy to damage other structures of the eye and cause complications during cataract surgery.
  • the present invention provides a phacoemulsification apparatus, including an emulsification apparatus body 201, and the emulsification apparatus body 201 is provided with a perfusion module 202 for perfusing liquid into the eye, the The liquid includes targeted microbubbles for acting on the ocular lens; an ultrasound module 203 for generating ultrasonic waves acting on the eye and causing the targeted microbubbles to act on the ocular lens; a suction module (not marked in the figure) out), used to aspirate infused fluid and/or a broken lens from the eye.
  • the perfusion module 202 can perfuse targeted microbubbles into the eye.
  • the targeted microbubbles 401 will preferentially bind to the diseased lens 101 after entering the eye due to the targeting effect.
  • the module 203 generates ultrasonic waves 2031 to act on the eyes, as shown in FIG. 8 , the ultrasonic waves 2031 are used to activate the targeted microbubbles 401 to induce a cavitation effect and then generate cavitation bubbles.
  • the targeted microbubbles 401 are affected by ultrasonic waves
  • the excitation of 2031 causes cavities/cavities to be formed inside the targeted microbubbles 401, and these cavities/cavities continue to oscillate under the action of ultrasonic waves 2031.
  • the energy reaches a certain intensity the cavities/cavities are compressed until completely Collapse, that is to say burst, the energy generated at the same time is enough to crush the diseased cataract lens 101, so as to achieve the purpose of crushing the diseased cataract lens.
  • the targeted microbubbles 401 are activated to make The energy required for cavitation is less, therefore, compared with the traditional method of directly ultrasonically crushing the cataract lens, the present invention can use less ultrasonic energy, which can achieve the purpose of crushing the lens, reduce energy consumption, and also avoid Excessive ultrasound energy can cause damage to other structures in the eye, reducing the incidence of cataract surgery complications.
  • the cataract core is very rigid, by repeating the injection process and/or cavitation process of the targeted microbubbles 401 many times, the diseased lens 101 can be completely shattered without excessively increasing the ultrasonic energy.
  • the targeting microbubble 401 is not particularly limited, as long as it can be targeted and combined with the cataract lens, for example, targeting the carboxyl group (electrostatic or chelation) or targeting the lens cell (single cloned antibody, HILE6). Since the targeted microbubble 401 itself does not belong to the protection focus of the present invention, it will not be described too much. After the targeting microbubble 401 enters the eye structure 100, due to the targeting effect, it will be adsorbed around the lens 101, thereby maximizing the cavitation energy of the lens and reducing the damage to the surrounding tissue.
  • the perfusion module 202 includes a gravity perfusion module 2021, the gravity perfusion module 2021 includes a support rod 20211 and a perfusion container (not shown in the figure), and the support rod 20211 is provided on the emulsifier body 201 and extends outward from the body of the emulsifier.
  • the perfusion container is disposed at the top of the support rod 20211 away from the body of the emulsifier.
  • the perfusion container can be an infusion bag containing the liquid to be perfused. At the top of the support rod 20211, under the action of gravity, the liquid in the infusion bag is poured and dripped downward.
  • the length of the support rod 20211 is adjustable, so as to adjust the flow rate of the liquid output from the perfusion container, thereby adjusting the flow rate of the perfusion liquid.
  • the structure of the perfusion module 202 is not limited to the above-mentioned gravity perfusion module 2021, but can also be other perfusion structures, as long as it can realize the perfusion of liquid into the eye structure, all belong to the protection of the present invention category.
  • it can also be an automatic perfusion module 2022.
  • the automatic perfusion module 2022 adjusts the flow rate of the perfused liquid through pressure changes.
  • the perfusion module 202 not only perfuses targeted microbubbles into the ocular structure, but also needs to be used in cataract surgery.
  • a balanced salt solution such as normal saline
  • the gravity perfusion module 2021 of this embodiment can adjust the output perfusion to the eye by adjusting the length of the support rod.
  • the automatic perfusion module 2022 can automatically adjust the flow rate of the balanced salt solution it outputs to perfuse the eye through the pressure change in the eye, so as to achieve the purpose of maintaining normal intraocular pressure in the eye.
  • the gravity perfusion module 2021 and the automatic perfusion module 2022 can be set on the emulsification apparatus body at the same time, and the doctor can flexibly select them according to actual needs.
  • the perfusion module 202 of the present invention further includes a perfusion handle 2023, and the perfusion handle 2023 is used to perfuse liquid into the eye, and the liquid includes a targeting microarray for targeted binding with the ocular lens. Bubble.
  • This embodiment also provides another structural form of the perfusion module 202, that is, the perfusion handle 2023.
  • the perfusion handle 2023 can be used alone to inject targeted microbubbles and/or balanced salt solution into the eye by suction injection.
  • the irrigation handle 2023 of the present invention can also be used in conjunction with the gravity irrigation module 2021 to better realize the infusion of liquid into the ocular structure.
  • the perfusion handle 2023 communicates with the gravity perfusion module 2021, the gravity perfusion module 2021 is used to provide a balanced salt solution to the perfusion handle 2023, and the perfusion handle 2023 is also used for suction for contact with the eye and inject the targeted microbubbles into the eye, for example in this example, the targeted microbubbles 401 are stored in a vial and passed through the infusion handle 2023
  • the bolus needle 20231 at the distal end sucks the targeted microbubbles 401 into the chamber inside the handle body, and then injects the targeted microbubbles 401 into the eye through the bolus injection needle 20231 at the distal end of the perfusion handle 2023, as shown in Figure 7
  • this method of operation does not require a large incision in the cornea as in conventional phacoemulsification surgery, and
  • the suction module includes a suction handle, and the suction handle is used for suctioning the perfused liquid and/or the broken lens from the eye, as shown in FIG. 9 .
  • the perfusion handle and the suction handle can be set as the same operation handle, and the operation handle can include two independent liquid channels that do not interfere with each other, namely the perfusion channel and the suction channel.
  • the gravity perfusion module 202 is used to provide the perfusion channel of the operating handle with a balanced salt solution, and the perfusion channel of the operating handle is also used to absorb the targeted microbubbles for targeted binding with the ocular lens, and The targeted microbubbles are injected into the eye; the aspiration channel is used to aspirate the perfused fluid and broken lens from the eye.
  • the operating handle can simultaneously realize perfusion and suction, which is very convenient to use.
  • the phacoemulsification instrument further includes a fluid management module 204, the fluid management module 204 is respectively connected with the perfusion module 202 and the suction module, and is used to control the flow of the perfusion module and the suction module. Workflow.
  • the fluid management module 204 may include a fluid control module 2041 , a control pump 2042 , a perfusion valve 2043 , a sensor module (not shown in the figure) and a fluid accumulation box 2044 , the perfusion module 202 communicates with the fluid accumulation box 2044 through the perfusion valve 2043; the suction module communicates with the fluid accumulation box 2044 through the control pump 2042; the sensor module is used to collect the fluid accumulation box 2044,
  • the pressure signals of the perfusion module 202 and the suction module are transmitted to the fluid control module 2041 , and the sensor module may include a plurality of sensors, which are arranged at various connecting pipes, such as distributed in the perfusion module 202 , the suction module and the pipelines of the fluid accumulation box 2044 and other modules, collect each pressure signal and transmit it to the fluid control module 2041, and the fluid control module 2041 is used to obtain the pressure signal according to the sensor module.
  • the perfusion pressure of the perfusion module 202 and/or the suction pressure of the suction module, and the working states of the control pump 2042 and the perfusion valve 2043 are adjusted according to the perfusion pressure and/or the suction pressure, and the control
  • the pump 2042 is used to generate negative pressure to adjust the suction flow and pressure of the suction module
  • the perfusion valve 2043 is used to adjust the perfusion flow and pressure of the perfusion module 202 , for example, through the opening of the filling valve 2043
  • the flow of liquid that the priming module 202 primes is adjusted.
  • control pump 2042 may include a peristaltic pump
  • the peristaltic pump is composed of a plurality of rollers symmetrically arranged on a circular aluminum shell, and its working state can be controlled by a step-by-step motor.
  • the connecting pipe between the fluid accumulation boxes 2044 can be stuck in the roller of the peristaltic pump, so that the peristaltic pump can adjust the flow rate of the liquid in the connecting pipe, and can generate negative pressure by adjusting the working state of the peristaltic pump, so that the connecting pipe can be adjusted.
  • a suction force is generated on the suction module, so that the suction module can aspirate the liquid and the broken lens from the eye, and transport the suctioned liquid to the effusion box through the connecting tube.
  • the residual cortex contained in the broken lens is divided into two types, one is a looser cortical mass free from the anterior chamber, and the other is normal cortex still attached to the posterior capsule.
  • the cortex can be peeled off layer by layer like an onion, but some cortexes are hard and require high negative pressure to complete, so when the peristaltic pump module cannot reach a higher negative pressure (that is, when the negative pressure exceeds the peristaltic pump can achieve negative pressure) ), an additional vacuum pump can be set for the doctor to choose from the peristaltic pump, for example, the vacuum pump can be connected in parallel with the peristaltic pump, and a switchable pinch valve module can be set, and the suction module can be selected through the pinch valve module Connect to one of the peristaltic pump and vacuum pump.
  • the perfusion module 202 includes a gravity perfusion module 2021 and a perfusion handle 2023, and the gravity perfusion module 2021 communicates with the perfusion handle 2023 through the perfusion valve 2043 and the fluid accumulation box 2044;
  • the suction The module includes a suction handle, and the suction handle communicates with the fluid accumulation box 2044 after passing through the control pump 2042 through a pipeline;
  • the gravity perfusion module 2021 is used to pass through the injection valve 2043 and the fluid accumulation box After 2044, a balanced salt solution is provided to the perfusion handle 2023, and the perfusion handle 2023 is also used to absorb the targeted microbubbles for targeted binding with the ocular lens, and inject the targeted microbubbles into the eye;
  • the suction handle is used to aspirate the perfused fluid and broken lens from the eye.
  • the perfusion handle 2023 and the suction handle are the same operation handle, the operation handle includes a perfusion channel and a suction channel, and the gravity perfusion module 2021 passes through the perfusion valve 2043 and the fluid accumulation box 2044 It is then communicated with the perfusion channel of the operating handle.
  • the operation handle includes a perfusion channel and a suction channel
  • the gravity perfusion module 2021 passes through the perfusion valve 2043 and the fluid accumulation box 2044 It is then communicated with the perfusion channel of the operating handle.
  • the height of the perfusion container is used to adjust the perfusion flow; the suction channel of the operating handle is communicated with the fluid accumulation box through a pipeline through the control pump.
  • the ultrasound module 203 includes a focused ultrasound transducer, and the focused ultrasound transducer is used to provide focused ultrasound energy to act on the eye.
  • the focused ultrasound transducer of the present invention may specifically include a plurality of piezoelectric elements 2032, a carrier 2035 and an excitation component 2030, and the excitation component 2030 is used to excite the piezoelectric element 2032 to generate ultrasonic waves,
  • the plurality of piezoelectric elements 2032 are arranged on the carrier 2035 in an arc shape, so as to converge the ultrasonic waves generated by the plurality of piezoelectric elements 2032 to obtain the concentrated ultrasonic energy.
  • the focused ultrasound transducer further includes a casing 2036 with an opening
  • the carrier 2035 is an arc-shaped carrier
  • the arc-shaped carrier is installed in the opening of the casing 2036
  • the arc-shaped carrier is The opening of the outer casing 2036 is in the same direction as the opening of the housing 2036
  • the piezoelectric elements 2032 are arranged at intervals on the inner surface and/or the outer surface of the arc-shaped carrier, and one end of the piezoelectric elements 2032 is electrically connected and arranged
  • the other ends of the piezoelectric elements 2032 are electrically connected to each other
  • the negative electrodes of the piezoelectric elements 2032 are used for grounding
  • the positive electrodes are used for electrical connection with the excitation component 2030 .
  • the excitation component 2030 may include a trigger module 2033 and a high-voltage pulse generator 2034, the anode of the piezoelectric element 2032 is electrically connected to the high-voltage pulse generator 2034, and the trigger module 2033 is connected to the high-voltage pulse generator 2034. 2034 connection.
  • the triggering module 2033 can trigger the high-voltage pulse generator 2034 to generate a high-frequency pulse signal. According to the inverse piezoelectric effect, the piezoelectric element 2032 will emit corresponding pulsed ultrasonic waves when excited by the pulse signal.
  • the pulsed ultrasonic waves emitted by the plurality of piezoelectric elements 2032 will converge at a focal point and form higher-intensity pulses Ultrasound, the pulsed ultrasound has the characteristics of strong directionality and less divergence. It can act on the ocular structure accurately, and realize the precise orientation of the ultrasound to the targeted microbubbles around the lens of the ocular structure, which can further avoid eye damage. damage to other tissues within the structure.
  • the converged pulsed ultrasound will have a more stable directionality than the traditional phacoemulsification method, and combined with the targeted microbubbles, lower energy can be used, so it can be applied to smaller incision surgical methods. , during the operation will be safer than traditional methods.
  • the arc-shaped carrier may be a dome-shaped structure made of aluminum material, and the arc-shaped carrier may be integrally formed with the housing 2036 .
  • the piezoelectric elements 2032 may preferably be cylindrical, and the piezoelectric elements 2032 may be distributed in a large number on the inner surface and outer surface of the arc-shaped carrier, and randomly arranged among each other according to the principle of the highest packing density In the lateral distance between the piezoelectric elements 2032, one end face of the piezoelectric element 2032 is respectively fixed on the inner side surface or the outer side face of the arc-shaped carrier, and is connected to the arc-shaped carrier through wires.
  • the piezoelectric element 2032 is preferably fixed on the arc-shaped carrier using an epoxy adhesive containing conductive silver, and silver plating is performed between the other end faces of the piezoelectric elements 2032 Copper wire contacts make electrical connections.
  • the carrier 2035 of the present invention may be other than an arc-shaped carrier, such as an irregular shape, a hemisphere, etc., which can realize the arc-shaped carrier 2032 of the plurality of piezoelectric elements 2032.
  • the ultrasonic waves generated by the plurality of piezoelectric elements 2032 can be converged.
  • the high-voltage pulse generator 2034 can be formed by two high-voltage pulse generators in parallel, and one of them is a high-voltage pulse generator with a time function element, and the other is a common high-voltage pulse generator After the two high-voltage pulse generators are connected in parallel, one end of the two high-voltage pulse generators is connected to the trigger module 2033, and the other ends of the two high-voltage pulse generators are respectively electrically connected to one of the piezoelectric elements 2032, that is, a plurality of the piezoelectric elements 2032.
  • the positive poles of two are connected to the common high-voltage pulse generator and the high-voltage pulse generator containing time function elements, and, in order to ensure safety, the negative poles of the two piezoelectric elements 2032 are grounded and always at zero potential. state.
  • the two high-voltage pulse generators can be triggered by the triggering module 2033 at the same time or independently of each other, and this triggering method allows the high-voltage pulses of the piezoelectric element 2032 to be synchronized Delivery or delivery with an adjustable time delay between each other.
  • a high-voltage resistant insulating material filler 2037 may also be filled in the voids in the casing 2036 to prevent the occurrence of electric leakage.
  • the focused ultrasonic transducer Since the implementation of the focused ultrasonic transducer is relatively common, it belongs to the conventional technology and does not belong to the protection object of the present invention, so its structure will not be described too much.
  • the phacoemulsification instrument of the present invention may further include a robotic arm 205, which is connected to the housing of the ultrasound module 203, and is used to drive the robotic arm 205.
  • the ultrasound module 203 is moved toward or away from the eye.
  • the robotic arm 205 is a multi-degree-of-freedom robotic arm, which can be precisely positioned to an appropriate position of the patient's eye through the system software so that the surgical procedure can be started.
  • the ultrasonic module 203 connected to one end of the robotic arm 205 is used to generate ultrasonic convergent energy after positioning, and then precisely act on the lesion.
  • the perfusion module perfuses targeted microbubbles into the eye of the patient, and the targeted microbubbles are injected into the eye of the patient.
  • the microbubbles will be targeted and bound to the diseased lens.
  • the ultrasonic module When the ultrasonic module is activated, it will emit a converged pulsed ultrasonic wave, which will activate the targeted microbubbles to induce a cavitation effect and then generate cavitation bubbles.
  • the energy reaches a certain intensity, the cavity/cavity is compressed until it collapses completely, that is, bursts.
  • the bursting produces enough energy to shatter the diseased cataract lens.
  • Complications of capsular bag rupture are easy to occur in cataract surgery, most of which are caused by the sharp tip of the original phacoemulsification needle, which may pierce the capsular bag accidentally. Therefore, preventing capsular bag rupture is also one of the main components of surgical training requirements.
  • the present invention uses an external activation method, that is, a method of emulsification by ultrasonic focusing and cavitation effect, which does not require relatively sharp tools. Therefore, the risk of capsular bag rupture and/or damage to other structures in the eye, such as the cornea or iris, will be much lower with this new cataract solution than with conventional phacoemulsification.
  • targeted microbubbles preferentially attach to the diseased lens surface due to their targeting effect, which in turn preferentially damages rigid cataracts while sparing the remaining flexible tissues, such as the capsular bag.
  • the phacoemulsification instrument body can also be integrated with a port for connecting with the vitrectomy module 206 .
  • the vitrectomy module 206 can be a module composed of a pneumatic handle, an air chamber, an air pump and a drive, and is only used in the case of rupture of the capsular bag during the operation, such as vitreous overflow, and is not involved in normal cataract surgery.
  • the phacoemulsification apparatus may further include a first display screen 2071 , a second display screen 2072 , a foot pedal 2073 and a surgical tray 2074 .
  • the first display screen 2071 is preferably a touch screen, which enables the doctor to select and operate system functions.
  • the second display screen 2072 is preferably a touch screen, which is mainly used for the positioning instruction function of the robotic arm 205 by the nurse.
  • the surgical tray 2074 is used to place disposable consumables necessary for surgery.
  • the foot pedal 2073 can select different surgical parameters according to the doctor's personal preference or surgical procedure.
  • the phacoemulsification instrument provided by the present invention has the following advantages:
  • the invention combines the targeted microbubbles with ultrasonic cavitation, first injects the targeted microbubbles into the eyes of the patient, then applies ultrasonic energy to activate the targeted microbubbles to generate cavitation effects, and then crush the lesions through the energy generated by the cavitation effect
  • the cavitation effect can make the lesioned cataract lens nucleus fragment without damaging other tissues, such as the lens capsular bag.
  • the present invention can use less ultrasonic energy compared to traditional methods of directly sonicating the cataractous lens, namely The purpose of crushing the lens can be achieved, energy consumption is reduced, and the problem that excessive ultrasonic energy will cause damage to other structures of the eye can be avoided, thereby reducing the occurrence of complications in cataract surgery.
  • the ultrasonic module of the present invention adopts a focused ultrasonic transducer, which can generate a converging pulsed ultrasonic wave.
  • the pulsed ultrasonic wave has the characteristics of strong directionality and less divergence, and abandons the ultrasonic handle often used in the prior art.
  • the ultrasonic module of the present invention can adopt a non-contact solution, the ultrasonic module does not need to be inserted into the eye, and the converged ultrasonic waves generated by it can accurately act on the eye structure, so as to realize the precise direction of the ultrasonic wave to the eye structure.
  • the targeted microbubbles around the lens can further avoid damage to other tissues within the ocular structure.
  • the converged pulsed ultrasonic waves have more stable directionality than the traditional phacoemulsification method, and after combining with the targeted microbubbles, lower energy can be used, and a non-contact ultrasonic method is used, so that the Surgical methods that can be applied to smaller incisions are safer than traditional methods during the operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种超声乳化仪,包括乳化仪本体(201),乳化仪本体(201)上设置有:灌注模块(202),用于向眼部内灌注液体,液体包括用于作用于眼部晶状体的靶向微泡(401);超声模块(203),用于产生作用于眼部的超声波并促使靶向微泡(401)作用于眼部晶状体(101);抽吸模块,用于从眼部吸出灌注的液体和/或破碎的晶状体(101)。该超声乳化仪可以解决超声乳化设备在白内障手术中容易对眼部其他结构产生损伤从而造成并发症的问题。

Description

一种超声乳化仪 技术领域
本发明涉及医疗设备技术领域,特别涉及一种超声乳化仪。
背景技术
人类眼睛通过角膜的澄清部分传送光线,由晶状体将图像聚焦于视网膜上来产生视觉。视觉的质量依赖许多因素,包括眼睛的大小以及角膜和晶状体的透明度。当由于年龄和疾病的原因导致晶状体透明度降低,患者就会因为外部传入眼睛视网膜上的光线变少而变得实现模糊不清,甚至失明,这种疾病便是白内障。如图1所示,为人体眼部结构的示意图,其中眼睛结构100,由晶状体101,玻璃体102,前房103,巩膜104,虹膜105,角膜106,视神经107以及视网膜108组成。晶状体101正常情况下是透明的,光线通过所述晶状体101及一些屈光间质到达视网膜108,才能清晰地看到外界物体。而白内障简单来说,就是由于某些病因导致晶状体101出现浑浊、透明度降低、颜色改变等问题,进而导致光线进入眼睛的过程出现阻碍,影响视力。临床上一般将白内障分为年龄相关性白内障、先天性白内障、外伤性白内障、代谢性白内障(如糖尿病性白内障)和并发性白内障(与青光眼并发等),其中最常见的是年龄相关性白内障,而先天性白内障也是家长需要注意检查的,因为该病患病率约占新生儿的0.5%,是儿童失明的第二大原因。
针对白内障,截至目前并没有药物在临床中展示出确切的疗效,因而现阶段能够治疗这种疾病的公认做法是通过手术摘除病变的晶状体,并用人工晶状体代替,即超声乳化手术。
超声乳化手术允许医生使用非常小的角膜切口来进行白内障手术,手术时通过使用高频超声能量(频率通常为20kHz~60kHz)来粉碎或乳化病变的晶状体核,然后将这些粉碎或乳化的核物质吸走,再植入人工晶状体(IOL)。
图2为现有技术中的一种白内障治疗设备,该超声乳化仪可适用于白内障晶状体摘除术及IOL植入手术,使用该设备可以对眼球内的晶状体进行乳化和抽吸,并用平衡盐溶液对抽吸的液体及晶状体进行置换。现有的这种超 声乳化设备乳化晶体的方式是通过使用高频超声能量来粉碎病变的晶状体核,然后将这些粉碎或乳化的核物质吸走,再植入人工晶状体。但这种高频超声能量会对脆弱的眼部结构造成伤害,尤其是对于硬度等级更高的白内障核,需要更高的超声能量,这样更容易导致眼部其他结构受到伤害,导致各种并发症的产生。
自从Charles D.Kelman在1967年引入超声乳化手术治疗白内障以来,超声乳化手术不断的发展,产生了更好更有效的能量传输方案以及不同类型的超声功率调节方案,例如当使用更少的超声能量时,也就伴随着更少的并发症,手术的结果也就更好。同时对于术中的超声振动技术也有着模式上的改变,例如相对于传统的纵向模式,扭转模式以及椭圆模式即是相对创新的技术,它们可以实现超声乳化针头尖端的侧向运动以及椭圆运动,防止针头尖端纵向运动过度时损伤眼部结构。
尽管上述这些技术的进步使得超声能量能被有效地传递到白内障核,但本质上现有的超声乳化手术仍然采用针头或探头伸入眼部结构内,释放高频超声能量粉碎白内障核,尤其是对于需要使用更高频率的超声能量粉碎硬度等级更高的白内障核时,高频的超声能量在粉碎白内障核的同时仍然可能会对周围脆弱的眼部结构造成伤害,所以尽管现有的超声乳化手术方法能有效地分离和乳化晶状体,但这种方法存在明显的安全缺陷,据不完全统计,大约1%到4%的患者在超声乳化手术中会出现危害到视力的并发症。此外,虽然超声乳化术是相对简单的眼科领域手术,但即便是熟练的医生也可能因为在超声乳化过程使用过多的能量而导致角膜内皮细胞的损失,继而产生水肿等后遗症,这可能会导致需要更长的愈合时间,并最终导致不可逆的角膜云翳,需要进行角膜手术。因此在美国通常白内障手术培训是需要三年的眼科住院医师资格的,而在国内这一培训时间由于设备条件等限制会更久。
除了安全方面的问题外,一台超声乳化仪还需要大量的设备支出,包括固定资产性支出和一次性耗材的持续成本。因此,找到一种能够替代传统使用高能量进行超声乳化白内障摘除术,同时又能降低成本并提高安全性的超声乳化方案是有必要的。
发明内容
本发明的目的在于提供一种超声乳化仪,以解决现有技术中超声乳化设备在白内障手术中容易对眼部其他结构产生损伤易造成并发症的问题。
为解决上述技术问题,本发明提供一种超声乳化仪,包括乳化仪本体,所述乳化仪本体上设置有:灌注模块,用于向眼部内灌注液体,所述液体包括用于作用于眼部晶状体的靶向微泡;超声模块,用于产生作用于眼部的超声波并促使所述靶向微泡作用于眼部晶状体;抽吸模块,用于从眼部吸出灌注的液体和/或破碎的晶状体。
进一步的,所述灌注模块包括重力灌注模块,所述重力灌注模块包括支撑杆和灌注容器,所述支撑杆设置在所述乳化仪本体上并自所述乳化仪本体向外延伸,所述灌注容器设置于所述支撑杆远离所述乳化仪本体的顶端。
进一步的,所述支撑杆的长度可调节。
进一步的,所述灌注模块还包括灌注手柄,所述灌注手柄用于向所述眼部内灌注液体,所述液体包括用于作用于眼部晶状体的靶向微泡。
进一步的,所述灌注模块还包括灌注手柄,所述灌注手柄与所述重力灌注模块连通,所述重力灌注模块用于提供平衡盐溶液给所述灌注手柄,所述灌注手柄还用于吸取所述靶向微泡,并将所述靶向微泡注入眼内。
进一步的,所述抽吸模块包括抽吸手柄,所述抽吸手柄用于从眼部吸出灌注的液体和/或破碎的晶状体。
进一步的,所述灌注手柄和所述抽吸手柄为同一操作手柄,所述操作手柄包括灌注通道和抽吸通道,所述重力灌注模块用于提供平衡盐溶液给所述操作手柄的灌注通道,所述操作手柄的灌注通道还用于吸取用于与眼部晶状体靶向结合的靶向微泡,并将所述靶向微泡注入眼内;所述抽吸通道用于从眼部吸出灌注的液体和/或破碎的晶状体。
进一步的,还包括流体管理模块,所述流体管理模块分别与所述灌注模块和所述抽吸模块连接,并用于控制所述灌注模块和所述抽吸模块的工作流量。
进一步的,所述流体管理模块包括流体控制模块、控制泵、灌注阀、传感器模块和积液盒,所述灌注模块通过所述灌注阀与所述积液盒连通;所述 抽吸模块通过所述控制泵与所述积液盒连通;所述传感器模块用于采集所述积液盒、所述灌注模块以及所述抽吸模块的压力信号,并传递给所述流体控制模块;所述流体控制模块用于根据所述传感器模块的压力信号获取所述灌注模块的灌注压力和/或所述抽吸模块的抽吸压力,并根据所述灌注压力和/或抽吸压力调节所述控制泵和所述灌注阀的工作状态,所述控制泵用于产生负压,以调节所述抽吸模块的抽吸流量与压力,所述灌注阀用于调节所述灌注模块的灌注流量与压力。
进一步的,所述灌注模块包括重力灌注模块和灌注手柄,所述重力灌注模块经所述灌注阀以及所述积液盒后与所述灌注手柄连通;所述抽吸模块包括抽吸手柄,所述抽吸手柄通过一管道经所述控制泵后与所述积液盒连通;所述重力灌注模块用于经所述灌注阀以及所述积液盒后提供平衡盐溶液给所述灌注手柄,所述灌注手柄还用于吸取用于作用于眼部晶状体的靶向微泡,并将所述靶向微泡注入眼内;所述抽吸手柄用于从眼部吸出灌注的液体和/或破碎的晶状体。
进一步的,所述灌注手柄和所述抽吸手柄为同一操作手柄,所述操作手柄包括灌注通道和抽吸通道,所述重力灌注模块经所述灌注阀以及所述积液盒后与所述操作手柄的灌注通道连通;所述操作手柄的抽吸通道通过一管道经所述控制泵后与所述积液盒连通。
进一步的,所述超声模块包括聚焦超声换能器,所述聚焦超声换能器用于提供汇聚的超声能量作用于眼部。
进一步的,所述聚焦超声换能器包括多个压电元件、载体和激发组件,所述激发组件用于激发所述压电元件产生超声波,所述多个压电元件呈弧形排列设置在所述载体上,以用于将多个所述压电元件产生的超声波汇聚得到所述汇聚的超声能量。
进一步的,所述聚焦超声换能器还包括一具有开口的外壳,所述载体为弧形载体,所述弧形载体安装于所述外壳的开口内,并且所述弧形载体的开口与所述外壳的开口方向一致,所述多个压电元件间隔排列设置在所述弧形载体的内表面和/或外表面上,所述压电元件的一端电连接设置在所述弧形载体上,多个所述压电元件的另一端之间相互电连接。
进一步的,所述压电元件的负极用于接地,正极用于与所述激发组件电连接。
进一步的,所述激发组件包括触发模块和高压脉冲发生器,所述压电元件的正极与所述高压脉冲发生器电连接,所述触发模块与所述高压脉冲发生器连接。
进一步的,所述超声乳化仪还包括机械臂,所述机械臂与所述超声模块的外壳连接,所述机械臂用于带动所述超声模块朝靠近或远离眼部的方向运动。
综上所述,与现有技术相比,本发明提供的超声乳化仪具有以下优点:
本发明将靶向微泡与超声空化相结合,先将靶向微泡注入患者眼内,再施加超声能量以激活靶向微泡产生空化效应,继而通过空化效应产生的能量粉碎病变的白内障晶状体核,空化效应可以使病变的白内障晶状体核破碎而不损伤其他组织,如晶状体囊袋等。相比于直接使白内障晶状体破碎,激活靶向微泡使其空化所需的能量更少,因此,与传统直接超声破碎白内障晶状体的方法相比,本发明可以使用更少的超声能量,即可达到粉碎晶状体的目的,降低了能耗,并且还避免了过高的超声能量会对眼部其他结构造成伤害的问题,减少了白内障手术并发症的产生。
此外,本发明的超声模块采用聚焦超声换能器,可以产生汇聚的脉冲超声波,该脉冲超声波具有方向性强、发散较少的特点,摒弃了现有技术中多采用的超声手柄伸入眼内超声作用的方式,本发明的超声模块可以采用非接触式的方案,超声模块不需要伸入眼内,其产生的汇聚超声波可以精准的作用于眼部结构内,实现超声波精准定向到眼部结构的晶状体周围的靶向微泡上,这样可以进一步避免对眼部结构内的其他组织产生损伤。并且,由于汇聚后的所述脉冲超声波会比传统超声乳化法拥有更稳定的方向性,而且与靶向微泡结合后,可以使用更低的能量,且采用非接触式的超声方式,这样就可以适用于较小切口的手术方式,在手术过程中会比传统方法更加安全。
附图说明
图1为人体眼部结构的示意图;
图2为一种白内障治疗设备的示意图;
图3-图5为本发明一实施方式中的超声乳化仪不同视角的结构示意图;
图6为本发明一实施方式中的超声乳化仪工作时的结构示意图;
图7为本发明一实施方式中的超声乳化仪工作时注入靶向微泡步骤的示意图;
图8为本发明一实施方式中的超声乳化仪工作时超声波作用时的示意图;
图9为本发明一实施方式中的超声乳化仪工作时抽吸工作的示意图;
图10为本发明一实施方式中的流体管理模块的工作原理示意图;
图11为本发明一实施方式中的超声乳化仪的超声模块的结构示意图;
图12-图13为本发明一实施方式中的超声乳化仪的超声模块与机械臂配合运动的结构示意图。
其中,附图标记如下:
100-眼睛结构;101-晶状体;102-玻璃体;103-前房;104-巩膜;105-虹膜;106-角膜;107-视神经;108-视网膜;201-乳化仪本体;202-灌注模块;203-超声模块;204-流体管理模块;2021-重力灌注模块;20211-支撑杆;2022-自动灌注模块;2023-灌注手柄;20231-推注针;2030-激发组件;2031-超声波;2032-压电元件;2033-触发模块;2034-高压脉冲发生器;2035-载体;2036-外壳;2037-填充物;2041-流体控制模块;2042-控制泵;2043-灌注阀;2044-积液盒;401-靶向微泡;205-机械臂;206-玻璃体切割模块;2071-第一显示屏;2072-第二显示屏;2073-脚踏板;2074-手术托盘。
具体实施方式
以下结合附图和具体实施方式对本发明提出的一种超声乳化仪作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。
需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施方式的目的。为了使本发明的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明实施的限定条件,故不具技术上 的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本发明中,近端、近侧是指靠近操作者,远离病人的一端;远端、远侧则是指远离操作者,靠近病人的一端。
本发明的主要目的在于提供一种超声乳化仪,可以解决现有技术中超声乳化设备在白内障手术中容易对眼部其他结构产生损伤易造成并发症的问题。
如图3至图6所示,本发明提供了一种超声乳化仪,包括乳化仪本体201,所述乳化仪本体201上设置有:灌注模块202,用于向眼部内灌注液体,所述液体包括用于作用于眼部晶状体的靶向微泡;超声模块203,用于产生作用于眼部的超声波并促使所述靶向微泡作用于眼部晶状体;抽吸模块(图中未标出),用于从眼部吸出灌注的液体和/或破碎的晶状体。
在本发明的方案中,灌注模块202可以向眼部灌注靶向微泡,如图7所示,靶向微泡401由于靶向作用进入眼部后会优先与病变的晶状体101结合,当超声模块203产生超声波2031作用于眼部时,如图8所示,超声波2031被用来激活靶向微泡401,诱导其发生空化效应继而产生空化气泡,由于空化效应的影响(空化效应或超声波空化,是指液体中的微气核空化泡在声波的 作用下振动,当声压达到一定值时发生的生长和崩溃的动力学过程),靶向微泡401由于受到超声波2031的激励,使得靶向微泡401内部形成空腔/空穴,而这些空腔/空穴在超声波2031的作用下持续振荡,当能量达到一定强度后,空腔/空穴被压缩直至完全崩溃,也即炸裂,炸裂的同时所产生的能量足以粉碎掉病变的白内障晶状体101,从而达到粉碎病变的白内障晶状体的目的,相比于直接使白内障晶状体101破碎,激活靶向微泡401使其空化所需的能量更少,因此,与传统直接超声破碎白内障晶状体的方法相比,本发明可以使用更少的超声能量,即可达到粉碎晶状体的目的,降低了能耗,并且还避免了过高的超声能量会对眼部其他结构造成伤害的问题,减少了白内障手术并发症的产生。此外,即使白内障核硬度很高,也可以通过重复多次靶向微泡401的注入过程和/或空化过程,无需过高的提升超声能量便可彻底粉碎掉病变的晶状体101。
本发明的方案中,对靶向微泡401并不做特别的限定,只要能与白内障晶状体靶向结合即可,例如可通过靶向羧基(静电或螯合作用)或者靶向晶状体细胞(单克隆抗体,HILE6)实现。由于所述靶向微泡401本身并不属于本发明的保护重点,因此不对其做过多描述。靶向微泡401进入到眼睛结构100后,由于靶向作用,会吸附在所述晶状体101的周围,因而能够最大化晶状体的空化能量,减少对周围组织的损伤。
可选的,所述灌注模块202包括重力灌注模块2021,所述重力灌注模块2021包括支撑杆20211和灌注容器(图中未标出),所述支撑杆20211设置在所述乳化仪本体201上并自所述乳化仪本体向外延伸,所述灌注容器设置于所述支撑杆20211远离所述乳化仪本体的顶端,所述灌注容器可以是装有待灌注液体的输液袋,输液袋悬挂在所述支撑杆20211的顶端,在重力的作用下,输液袋内的液体往下灌注滴落。优选的,所述支撑杆20211的长度可调节,以便调节所述灌注容器输出的液体的流速,从而调节灌注液体的流量。本发明的方案中,对于灌注模块202的结构不局限于上述提到的重力灌注模块2021,还可以是其他的灌注结构,只要其能实现将液体灌注至眼部结构,均属于本发明的保护范畴。例如,还可以是自动灌注模块2022,自动灌注模块2022通过压力变化调节灌注的液体的流量,例如本发明中,灌注模块202 除向眼部结构内灌注靶向微泡外,还需要在白内障手术的过程中,持续向眼部内灌注平衡盐溶液,例如生理盐水,以维持眼部内正常的眼压,本实施例的重力灌注模块2021可以通过调节支撑杆的长度可以调节器输出灌注至眼部内的液体的流量,而自动灌注模块2022则可通过眼部内的压力变化自动调节其输出灌注至眼部内的平衡盐溶液的流量,以达到维持眼部内正常眼压的目的。在实际操作过程中,可同时将重力灌注模块2021和自动灌注模块2022设置在乳化仪本体上,医生可根据实际需要灵活选用。
优选的,本发明的所述灌注模块202还包括灌注手柄2023,所述灌注手柄2023用于向所述眼部内灌注液体,所述液体包括用于与眼部晶状体靶向结合的靶向微泡。本实施例还提供了灌注模块202的另一种结构形式,即灌注手柄2023,灌注手柄2023可以单独使用,通过吸取注入的方式,将靶向微泡和/或平衡盐溶液注入眼部内。
本发明的灌注手柄2023除可以单独使用外,还可以与重力灌注模块2021配合使用,以更好的实现将液体灌注至眼部结构内。具体来说,所述灌注手柄2023与所述重力灌注模块2021连通,所述重力灌注模块2021用于提供平衡盐溶液给所述灌注手柄2023,所述灌注手柄2023还用于吸取用于与眼部晶状体靶向结合的靶向微泡,并将所述靶向微泡注入眼内,例如在本实施例中,所述靶向微泡401被储存在瓶中,并通过所述灌注手柄2023远端的推注针20231将靶向微泡401吸入手柄本体内部的腔室中,再通过所述灌注手柄2023远端的推注针20231向眼部内注入靶向微泡401,如图7所示,这种操作方式并不需要像常规超声乳化手术中那样在角膜上做一个大的切口,可以以更小的切口就能完成手术,无论是在安全性、伤口愈合的时间还是稳定性都有显著提升。
作为本发明的一种实现方式,所述抽吸模块包括抽吸手柄,所述抽吸手柄用于从眼部内吸出灌注的液体和/或破碎的晶状体,如图9所示。
一般来说,为了操作方便,可以将所述灌注手柄和所述抽吸手柄设置为同一操作手柄,所述操作手柄可以包括两个独立的互不干扰的液体通道,分别为灌注通道和抽吸通道,所述重力灌注模块202用于提供平衡盐溶液给所述操作手柄的灌注通道,所述操作手柄的灌注通道还用于吸取用于与眼部晶 状体靶向结合的靶向微泡,并将所述靶向微泡注入眼内;所述抽吸通道用于从眼部内吸出灌注的液体和破碎的晶状体。在本实施例中,操作手柄可以同时实现灌注与抽吸,使用十分方便。
进一步的,所述超声乳化仪还包括流体管理模块204,所述流体管理模块204分别与所述灌注模块202和所述抽吸模块连接,并用于控制所述灌注模块和所述抽吸模块的工作流量。
具体来说,如图10所示,所述流体管理模块204可以包括流体控制模块2041、控制泵2042、灌注阀2043、传感器模块(图中未标出)和积液盒2044,所述灌注模块202通过所述灌注阀2043与所述积液盒2044连通;所述抽吸模块通过所述控制泵2042与所述积液盒2044连通;所述传感器模块用于采集所述积液盒2044、所述灌注模块202以及所述抽吸模块的压力信号,并传递给所述流体控制模块2041,所述传感器模块可以包括多个传感器,这些传感器设置在各个连接管道处,例如分布在灌注模块202、抽吸模块以及所述积液盒2044等模块的管道上,采集各压力信号,传输给所述流体控制模块2041,所述流体控制模块2041用于根据所述传感器模块的压力信号获取所述灌注模块202的灌注压力和/或所述抽吸模块的抽吸压力,并根据所述灌注压力和/或抽吸压力调节所述控制泵2042和所述灌注阀2043的工作状态,所述控制泵2042用于产生负压,以调节所述抽吸模块的抽吸流量与压力,所述灌注阀2043用于调节所述灌注模块202的灌注流量与压力,例如可以通过灌注阀2043的开度调节灌注模块202灌注的液体流量。
其中,所述控制泵2042可以包括蠕动泵,所述蠕动泵由多个对称排列在圆形铝制外壳上的辊子组成,并可通过一步进电机控制其工作状态,抽吸模块与所述积液盒2044之间的连接管可以卡在所述蠕动泵的辊子中,这样蠕动泵就可以调节连接管中液体的流量,并可以通过调节蠕动泵的工作状态产生负压,使连接管能够对抽吸模块产生抽吸力,从而让抽吸模块从眼部内吸出液体以及破碎后的晶状体并通过连接管将抽吸的液体输送至积液盒中。一般情况下,破碎的晶状体中包含的残余的皮质分为两种,一种是游离于前房较为蓬松的皮质团块,而另一种则是仍旧附着于后囊膜的正常皮质。通常皮质可像洋葱般层层剥下,但也有部分皮质较硬,需要高负压完成,因而当所述 蠕动泵模块无法达到更高的负压时(即超过蠕动泵所能达到负压时),还可以在蠕动泵之外,额外设置一个真空泵供医生选用,例如可以将真空泵与蠕动泵并联连接,并设置一个可选择切换的夹管阀模块,通过夹管阀模块来选择抽吸模块与蠕动泵和真空泵中的一个连接。
进一步的,所述灌注模块202包括重力灌注模块2021和灌注手柄2023,所述重力灌注模块2021经所述灌注阀2043以及所述积液盒2044后与所述灌注手柄2023连通;所述抽吸模块包括抽吸手柄,所述抽吸手柄通过一管道经所述控制泵2042后与所述积液盒2044连通;所述重力灌注模块2021用于经所述灌注阀2043以及所述积液盒2044后提供平衡盐溶液给所述灌注手柄2023,所述灌注手柄2023还用于吸取用于与眼部晶状体靶向结合的靶向微泡,并将所述靶向微泡注入眼内;所述抽吸手柄用于从眼部内吸出灌注的液体和破碎的晶状体。优选的,所述灌注手柄2023和所述抽吸手柄为同一操作手柄,所述操作手柄包括灌注通道和抽吸通道,所述重力灌注模块2021经所述灌注阀2043以及所述积液盒2044后与所述操作手柄的灌注通道连通,除可以通过调节灌注阀2043的开度调节灌注流量外,还可以根据所述流体控制模块2041接收到的灌注压力信号,通过手动调节重力灌注模块2021的灌注容器的高度来调节灌注流量;所述操作手柄的抽吸通道通过一管道经所述控制泵后与所述积液盒连通。
作为本发明的一种实现方式,所述超声模块203包括聚焦超声换能器,所述聚焦超声换能器用于提供汇聚的超声能量作用于眼部。如图11所示,本发明的所述聚焦超声换能器具体可以包括多个压电元件2032、载体2035和激发组件2030,所述激发组件2030用于激发所述压电元件2032产生超声波,所述多个压电元件2032呈弧形排列设置在所述载体2035上,以用于将多个所述压电元件2032产生的超声波汇聚得到所述汇聚的超声能量。
可选的,所述聚焦超声换能器还包括一具有开口的外壳2036,所述载体2035为弧形载体,所述弧形载体安装于所述外壳2036的开口内,并且所述弧形载体的开口与所述外壳2036的开口方向一致,所述多个压电元件2032间隔排列设置在所述弧形载体的内表面和/或外表面上,所述压电元件2032的一端电连接设置在所述弧形载体上,多个所述压电元件2032的另一端之间相互 电连接,所述压电元件2032的负极用于接地,正极用于与所述激发组件2030电连接。其中,所述激发组件2030可以包括触发模块2033和高压脉冲发生器2034,所述压电元件2032的正极与所述高压脉冲发生器2034电连接,所述触发模块2033与所述高压脉冲发生器2034连接。所述触发模块2033可以触发所述高压脉冲发生器2034产生高频的脉冲信号,根据逆压电效应,所述压电元件2032在受到脉冲信号激励时,会发射出相应的脉冲超声波,由于排布在所述弧形载体2035上的多个所述压电元件2032独特的排布方式,这多个所述压电元件2032发出的脉冲超声波会在一个焦点处汇聚并形成更高强度的脉冲超声波,该脉冲超声波具有方向性强、发散较少的特点,可以精准的作用于眼部结构内,实现超声波精准定向到眼部结构的晶状体周围的靶向微泡上,这样可以进一步避免对眼部结构内的其他组织产生损伤。并且,由于汇聚后的所述脉冲超声波会比传统超声乳化法拥有更稳定的方向性,而且与靶向微泡结合后,可以使用更低的能量,这样就可以适用于较小切口的手术方式,在手术过程中会比传统方法更加安全。
其中,所述弧形载体可以是由铝制材料制成的圆顶形式的结构,所述弧形载体可以与外壳2036一体成型设计。并且,所述压电元件2032可以优选为圆柱形,所述压电元件2032可以大量分布在所述弧形载体的内表面和外表面上,并按照最高填充密度的原理随机地排列在彼此之间的横向距离上,所述压电元件2032分别用其一个端面固定在所述弧形载体的内侧面或外侧面上,并通过电线连接到所述弧形载体上。作为一种实现方式,所述压电元件2032优选地使用含导电银的环氧粘合剂固定在所述弧形载体上,多个所述压电元件2032的另一端面之间通过镀银铜线接触实现电连接。本领域技术人员应当理解,本发明的载体2035除可以是弧形载体外,还可以是其他形状,例如可以是不规则形状、半球形等,能实现将多个所述压电元件2032呈弧形排列,让多个所述压电元件2032产生的超声波汇聚即可。
在本实施例的方案中,所述高压脉冲发生器2034可以为两个高压脉冲发生器并联而成,并且,其中一个为含时间函数元件的高压脉冲发生器,另一个为普通的高压脉冲发生器,这两个高压脉冲发生器并联后,其一端与触发模块2033连接,两个高压脉冲发生器的另一端分别与一个所述压电元件2032 电连接,即多个所述压电元件2032中,有两个的正极分别与普通的高压脉冲发生器和含时间函数元件的高压脉冲发生器连接,并且,为了保证安全,有两个所述压电元件2032的负极会接地始终处于零电位状态。通过对含时间函数元件的高压脉冲发生器的设置,两个高压脉冲发生器可以同时或者相互独立地由所述触发模块2033触发,这种触发的方式允许所述压电元件2032的高压脉冲同步传递或在彼此之间具有可调的时间上延迟的传递。
此外,在所述外壳2036内的空隙处还可以填充有耐高压绝缘材料填充物2037,以防止漏电现象发生。
由于聚焦超声换能器的实现方式较为普遍,属常规技术且并不属于本发明的保护对象,故不再对其结构做过多描述。
优选的,如图12至图13所示,本发明的超声乳化仪还可以包括机械臂205,所述机械臂205与所述超声模块203的外壳连接,所述机械臂205用于带动所述超声模块203朝靠近或远离眼部的方向运动。所述机械臂205为多自由度的机械臂,可通过系统软件精确定位至病人眼部适宜位置以便手术步骤开始。而所述机械臂205一端连接着的超声模块203,则用以在定位后,产生超声汇聚能量,继而精准作用于病变部位。
本发明的超声乳化仪的具体工作原理可以阐述如下:当医生完成晶状体的撕囊和水分离/水分层的步骤后,所述灌注模块向患者眼部内灌注靶向微泡,靶向微泡会靶向结合在病变的晶状体上,当所述超声模块启动后,会发出汇聚后的脉冲超声波,该超声波会激活所述靶向微泡,诱导其发生空化效应继而产生空化气泡,当能量达到一定强度后,空腔/空穴被压缩直至完全崩溃,也即炸裂。而炸裂的同时所产生的能量足以粉碎掉病变的白内障晶状体。在白内障手术中囊袋破裂的并发症很容易发生,大部分发生原因在于原本的超声乳化针头尖端过于尖锐,稍有不慎便可能刺穿囊袋。因此,防止囊袋破裂也是手术操作训练要求的主要组成部分之一。相比之下,本发明运用外部激活方式,即利用超声聚焦及空化效应乳化的方式则不需要相对尖锐的工具。因此,使用这种全新的白内障解决方案对于发生囊袋破裂和/或损害眼内其他结构(如角膜或虹膜)的风险将会远低于传统的超声乳化吸出术。此外,靶向微泡由于靶向作用因而会优先吸附于病变的晶状体表面,继而优先损害坚硬白 内障从而保留其余柔韧的组织,如囊袋。
此外,在本发明的所述超声乳化仪上还可以集成其他一些手术模块,如图3至图5所示,例如所述超声乳化仪本体上还可以集成用于与玻璃体切割模块206连接的端口。所述玻璃体切割模块206可以为一个由气动手柄,气室,气泵以及驱动组成的模块,仅在术中囊袋破裂玻璃体溢出等情况使用,正常白内障手术情况下并不涉及。
此外,如图3至图5所示,所述超声乳化仪还可以包括第一显示屏2071,第二显示屏2072、脚踏板2073和手术托盘2074。所述第一显示屏2071优选地为触摸屏,可以使医生对系统功能进行选择与操作。所述第二显示屏2072优选地为触摸屏,主要用于护士对所述机械臂205的定位指令功能。所述手术托盘2074用于放置手术中所必备的一次性耗材。所述脚踏板2073可根据医生的个人偏好或是手术步骤选择不同的手术参数。
综上所述,与现有技术相比,本发明提供的超声乳化仪具有以下优点:
本发明将靶向微泡与超声空化相结合,先将靶向微泡注入患者眼内,再施加超声能量以激活靶向微泡产生空化效应,继而通过空化效应产生的能量粉碎病变的白内障晶状体核,空化效应可以使病变的白内障晶状体核破碎而不损伤其他组织,如晶状体囊袋等。相比于直接使白内障晶状体破碎,激活靶向微泡使其空化所需的能量更少,因此,与传统直接超声破碎白内障晶状体的方法相比,本发明可以使用更少的超声能量,即可达到粉碎晶状体的目的,降低了能耗,并且还避免了过高的超声能量会对眼部其他结构造成伤害的问题,减少了白内障手术并发症的产生。
此外,本发明的超声模块采用聚焦超声换能器,可以产生汇聚的脉冲超声波,该脉冲超声波具有方向性强、发散较少的特点,摒弃了现有技术中多采用的超声手柄伸入眼内超声作用的方式,本发明的超声模块可以采用非接触式的方案,超声模块不需要伸入眼内,其产生的汇聚超声波可以精准的作用于眼部结构内,实现超声波精准定向到眼部结构的晶状体周围的靶向微泡上,这样可以进一步避免对眼部结构内的其他组织产生损伤。并且,由于汇聚后的所述脉冲超声波会比传统超声乳化法拥有更稳定的方向性,而且与靶向微泡结合后,可以使用更低的能量,且采用非接触式的超声方式,这样就 可以适用于较小切口的手术方式,在手术过程中会比传统方法更加安全。
上述描述仅是对本发明较佳实施方式的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (14)

  1. 一种超声乳化仪,其特征在于,包括乳化仪本体,所述乳化仪本体上设置有:
    灌注模块,用于向眼部内灌注液体,所述液体包括用于作用于眼部晶状体的靶向微泡;
    超声模块,用于产生作用于眼部的超声波并促使所述靶向微泡作用于眼部晶状体;
    抽吸模块,用于从眼部吸出灌注的液体和/或破碎的晶状体。
  2. 根据权利要求1所述的超声乳化仪,其特征在于,所述灌注模块包括重力灌注模块,所述重力灌注模块包括支撑杆和灌注容器,所述支撑杆设置在所述乳化仪本体上并自所述乳化仪本体向外延伸,所述灌注容器设置于所述支撑杆远离所述乳化仪本体的顶端。
  3. 根据权利要求2所述的超声乳化仪,其特征在于,所述灌注模块还包括灌注手柄,所述灌注手柄与所述重力灌注模块连通,所述重力灌注模块用于提供平衡盐溶液给所述灌注手柄,所述灌注手柄还用于吸取所述靶向微泡,并将所述靶向微泡注入眼内。
  4. 根据权利要求3所述的超声乳化仪,其特征在于,所述抽吸模块包括抽吸手柄,所述抽吸手柄用于从眼部内吸出灌注的液体和/或破碎的晶状体。
  5. 根据权利要求4所述的超声乳化仪,其特征在于,所述灌注手柄和所述抽吸手柄为同一操作手柄,所述操作手柄包括灌注通道和抽吸通道,所述重力灌注模块用于提供平衡盐溶液给所述操作手柄的灌注通道,所述操作手柄的灌注通道还用于吸取用于与眼部晶状体靶向结合的靶向微泡,并将所述靶向微泡注入眼内;
    所述抽吸通道用于从眼部内吸出灌注的液体和/或破碎的晶状体。
  6. 根据权利要求1所述的超声乳化仪,其特征在于,还包括流体管理模块,所述流体管理模块分别与所述灌注模块和所述抽吸模块连接,并用于控制所述灌注模块和所述抽吸模块的工作流量。
  7. 根据权利要求6所述的超声乳化仪,其特征在于,所述流体管理模块 包括流体控制模块、控制泵、灌注阀、传感器模块和积液盒,
    所述灌注模块通过所述灌注阀与所述积液盒连通;
    所述抽吸模块通过所述控制泵与所述积液盒连通;
    所述传感器模块用于采集所述积液盒、所述灌注模块以及所述抽吸模块的压力信号,并传递给所述流体控制模块;
    所述流体控制模块用于根据所述传感器模块的压力信号获取所述灌注模块的灌注压力和/或所述抽吸模块的抽吸压力,并根据所述灌注压力和/或抽吸压力调节所述控制泵和所述灌注阀的工作状态,所述控制泵用于产生负压,以调节所述抽吸模块的抽吸流量与压力,所述灌注阀用于调节所述灌注模块的灌注流量与压力。
  8. 根据权利要求1所述的超声乳化仪,其特征在于,所述超声模块包括聚焦超声换能器,所述聚焦超声换能器用于提供汇聚的超声能量作用于眼部。
  9. 根据权利要求8所述的超声乳化仪,其特征在于,所述聚焦超声换能器包括多个压电元件、载体和激发组件,所述激发组件用于激发所述压电元件产生超声波,所述多个压电元件呈弧形排列设置在所述载体上,以用于将多个所述压电元件产生的超声波汇聚得到所述汇聚的超声能量。
  10. 根据权利要求9所述的超声乳化仪,其特征在于,所述聚焦超声换能器还包括一具有开口的外壳,所述载体为弧形载体,所述弧形载体安装于所述外壳的开口内,并且所述弧形载体的开口与所述外壳的开口方向一致,所述多个压电元件间隔排列设置在所述弧形载体的内表面和/或外表面上,所述压电元件的一端电连接设置在所述弧形载体上,多个所述压电元件的另一端之间相互电连接。
  11. 根据权利要求10所述的超声乳化仪,其特征在于,所述压电元件的负极用于接地,正极用于与所述激发组件电连接。
  12. 根据权利要求10所述的超声乳化仪,其特征在于,所述激发组件包括触发模块和高压脉冲发生器,所述压电元件的正极与所述高压脉冲发生器电连接,所述触发模块与所述高压脉冲发生器连接。
  13. 根据权利要求10所述的超声乳化仪,其特征在于,还包括机械臂,所述机械臂与所述超声模块的外壳连接,所述机械臂用于带动所述超声模块朝靠近或远离眼部的方向运动。
  14. 根据权利要求2所述的超声乳化仪,其特征在于,所述支撑杆的长度可调节。
PCT/CN2022/085071 2021-04-30 2022-04-02 一种超声乳化仪 WO2022228044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110485651.4A CN115252277A (zh) 2021-04-30 2021-04-30 一种超声乳化仪
CN202110485651.4 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022228044A1 true WO2022228044A1 (zh) 2022-11-03

Family

ID=83744693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085071 WO2022228044A1 (zh) 2021-04-30 2022-04-02 一种超声乳化仪

Country Status (2)

Country Link
CN (1) CN115252277A (zh)
WO (1) WO2022228044A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090149840A1 (en) * 2007-09-06 2009-06-11 Kurtz Ronald M Photodisruptive Treatment of Crystalline Lens
CN101632610A (zh) * 2009-08-06 2010-01-27 张毓笠 智能眼科超声乳化仪
CN103917637A (zh) * 2011-08-24 2014-07-09 加州理工学院 靶向微泡
CN108593783A (zh) * 2017-11-16 2018-09-28 浙江大学 一种双频共焦超声换能器
CN208464423U (zh) * 2017-08-31 2019-02-05 福州东南眼科医院(金山新院)有限公司 一种超声波乳化机
US20200214890A1 (en) * 2019-01-04 2020-07-09 California Institute Of Technology Method for Eye Lens Removal Using Cavitating Microbubbles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090149840A1 (en) * 2007-09-06 2009-06-11 Kurtz Ronald M Photodisruptive Treatment of Crystalline Lens
CN101632610A (zh) * 2009-08-06 2010-01-27 张毓笠 智能眼科超声乳化仪
CN103917637A (zh) * 2011-08-24 2014-07-09 加州理工学院 靶向微泡
CN208464423U (zh) * 2017-08-31 2019-02-05 福州东南眼科医院(金山新院)有限公司 一种超声波乳化机
CN108593783A (zh) * 2017-11-16 2018-09-28 浙江大学 一种双频共焦超声换能器
US20200214890A1 (en) * 2019-01-04 2020-07-09 California Institute Of Technology Method for Eye Lens Removal Using Cavitating Microbubbles

Also Published As

Publication number Publication date
CN115252277A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US10022489B2 (en) Probe tip and infusion sleeve for use in ophthalmological surgery
JP3936100B2 (ja) 液化ハンドピース
JPS6364982B2 (zh)
US8784357B2 (en) Phacoemulsification hand piece with two independent transducers
AU2010328436A1 (en) Phacoemulsification hand piece with integrated aspiration pump
AU2010332116A1 (en) Phacoemulsification hand piece with integrated aspiration pump and cartridge
US7704244B2 (en) Surgical method
WO2005112848A1 (en) Surgical method and apparatus
JP5922844B2 (ja) 水晶体後嚢混濁を防止するための円形先端デバイス
JP2006305356A (ja) 低抵抗灌流機構とその装置
AU2012283008B2 (en) Vacuum level control of power for phacoemulsification hand piece
EP1647248A1 (en) Low resistance irrigation system
US11844724B2 (en) Method for eye lens removal using cavitating microbubbles
WO2022228044A1 (zh) 一种超声乳化仪
RU2679305C1 (ru) Способ аспирации кортикальных масс и устройство для его осуществления
KR20130051226A (ko) 안구 약물 전달 시스템 및 이에 사용되는 미소 기포의 제조 방법
US20180256810A1 (en) Probe tip and infusion sleeve for use in ophthalmological surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794516

Country of ref document: EP

Kind code of ref document: A1