WO2022227488A1 - 双层套管抗外压挤毁能力的获取方法 - Google Patents

双层套管抗外压挤毁能力的获取方法 Download PDF

Info

Publication number
WO2022227488A1
WO2022227488A1 PCT/CN2021/129968 CN2021129968W WO2022227488A1 WO 2022227488 A1 WO2022227488 A1 WO 2022227488A1 CN 2021129968 W CN2021129968 W CN 2021129968W WO 2022227488 A1 WO2022227488 A1 WO 2022227488A1
Authority
WO
WIPO (PCT)
Prior art keywords
external pressure
casing
double
layer casing
layer
Prior art date
Application number
PCT/CN2021/129968
Other languages
English (en)
French (fr)
Inventor
黄永智
张哲平
丛国元
张传友
李轩
吕春莉
张旭
吴永超
杨腾飞
乔石
赵延延
Original Assignee
天津钢管制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津钢管制造有限公司 filed Critical 天津钢管制造有限公司
Priority to CA3218062A priority Critical patent/CA3218062A1/en
Publication of WO2022227488A1 publication Critical patent/WO2022227488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Definitions

  • the invention belongs to the technical field of casing performance acquisition, and in particular relates to a method for acquiring the anti-external pressure collapse ability of a double-layer casing.
  • the casing's resistance to external pressure and collapse is an important indicator to characterize the casing's ability to resist deformation, and it is also an important parameter for the drilling design and R&D department to select casing materials.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, provide a double-layer casing that can obtain the anti-external pressure collapse ability of the double-layer casing, and provide the design and development personnel of the oil field with the anti-external pressure collapse data of the double-layer casing. How to get the crush ability.
  • a method for obtaining the collapse resistance of a double-layer casing wherein the double-layer casing comprises an outer casing, an inner casing and an intermediate cementing cement;
  • the obtaining method includes the following steps:
  • the finite element calculation method and the calculation results are revised by the finite element calculation method combined with the physical test, and the calculation of other specifications of double-layer casing is carried out by using the revised finite element calculation method;
  • PD is the anti-external pressure collapse value of the double-layer casing
  • P 1 is the external pressure collapse resistance data of the outer layer casing
  • P 2 is the external pressure collapse resistance data of the inner layer casing
  • T 1 is the outer layer casing. Nominal wall thickness
  • T 2 is the nominal wall thickness of the inner casing
  • L is the minimum distance between the inner and outer casing
  • ⁇ 1 is the yield strength of the outer casing
  • ⁇ 3 is the compressive strength of annulus cementing cement.
  • the external pressure collapse criterion of the anti-external pressure collapse ability of the double-layer casing is: casing damage and deformation of the inner layer casing.
  • the external pressure collapse resistance data of the outer casing is obtained by API 5C3, or obtained through the external pressure collapse test.
  • the external pressure collapse data of the inner layer casing is obtained by API 5C3, or obtained through the external pressure collapse test.
  • the invention first obtains the actual collapse resistance capability of some specifications of double-layer casing through a certain amount of physical tests; then, the finite element calculation method and the calculation results are corrected by the finite element calculation method combined with the physical test, and the correction is used to complete the The last finite element calculation method is used to calculate the double-layer casing of other specifications; finally, through the data analysis and fitting of the finite element calculation results, a simple calculation method for the collapse resistance of the double-layer casing is obtained.
  • the purpose of the present invention is to obtain the actual external pressure collapse resistance of the double-layer casing without conducting a large number of full-scale physical tests; it is generally considered that the actual external pressure collapse resistance of the double-layer casing is double The sum of the individual external pressure collapse resistance of the double-layer casing, but after a certain amount of full-scale physical test verification, the actual external pressure collapse resistance of the double-layer casing is usually far beyond the sum of the two separate external pressure resistance capabilities.
  • the anti-external pressure collapse ability of the double-layer casing is based on the sum of the two individual external pressure resistance capabilities, namely P 1 +P 2 , adding a new variable, namely 25.4 ⁇ P 1 ⁇ (L+T 1 +T 2 ) ⁇ 3 / ⁇ 1 /T 1 .
  • the actual collapse resistance of the double-layer casing can be calculated without the external pressure collapse test of the double-layer casing, and the calculation error can be controlled within ⁇ 10%, which provides a simple solution for practical engineering problems. effective solution.
  • the method of the invention can obtain the numerical value of the double-layer casing against external pressure and collapse, provides data support for the use of the double-layer casing, avoids the physical test of the double-layer casing against external pressure and collapse, saves labor, and improves research and development. efficiency.
  • FIG. 1 is a schematic structural diagram of a double-layer casing provided in an embodiment of the present invention.
  • D1 the nominal outer diameter of the outer casing
  • T1 the nominal wall thickness of the outer casing
  • D2 the nominal outer diameter of the inner casing
  • T2 the nominal wall thickness of the inner casing
  • L1 The maximum distance between the outer wall of the inner casing and the inner wall of the outer casing
  • L 2 the minimum distance between the outer wall of the inner casing and the inner wall of the outer casing.
  • a method for obtaining the anti-external pressure collapse capability of a double-layer casing wherein the double-layer casing comprises an outer casing 1, an inner casing 2 and an intermediate cementing cement 3;
  • the obtaining method includes the following steps:
  • the anti-external pressure collapse ability of the double-layer casing is obtained, as follows:
  • PD is the anti-external pressure collapse value of the double-layer casing
  • P 1 is the external pressure collapse resistance data of the outer layer casing
  • P 2 is the external pressure collapse resistance data of the inner layer casing
  • T 1 is the outer layer casing.
  • Nominal wall thickness is the nominal wall thickness of the inner casing
  • L is the minimum distance between the inner and outer casing
  • ⁇ 1 is the yield strength of the outer casing (which can be obtained by the tensile test of the sample or specified by API 5CT for this steel
  • ⁇ 3 is the compressive strength of annular cementing cement (it can be obtained through the compressive test of cement stone or the minimum nominal compressive strength of the grade of cement specified by the factory);
  • the external pressure collapse criterion for the anti-external pressure collapse ability of the double-layer casing is that the inner casing is damaged and deformed.
  • the outer layer casing anti-external pressure collapse data is obtained by API 5C3, or obtained by external pressure collapse test;
  • the inner layer casing anti-external pressure collapse data is obtained by API 5C3, or by external pressure extrusion
  • the yield strength of the inner and outer casings can be obtained by the tensile test of the material or by using the minimum nominal yield strength of the steel grade specified by API 5CT.
  • the wall thickness T 1 10.36 mm
  • the steel grade is P110
  • the wall thickness T 2 7.37mm
  • minimum distance between inner and outer casings L 2 0 mm
  • outer casing yield strength ⁇ 1 758MPa
  • annulus cementing cement compression resistance Strength ⁇ 3 24.5MPa;
  • the wall thickness T 1 8.05 mm
  • the steel grade is J55
  • the wall thickness T 2 6.35mm
  • the minimum distance between the inner and outer casings L 2 2mm
  • the yield strength of the outer casing ⁇ 1 379MPa
  • the double-layer casing in Example 2 and Example 3 was subjected to a physical test of the resistance to external pressure collapse by using a full-size external pressure pressure chamber of the oil casing.
  • the detection results of the physical test were: The actual collapse resistance value of the casing is 231.5MPa, and the error of the calculated value in Example 2 is 5.7%; the actual collapse resistance value of the double-layer casing in Example 3 is 138MPa, and the error of the calculated value in Example 3 is 138MPa is 4.5%; therefore, the error between the calculated value and the actual test value is within the range of ⁇ 10%, which meets the requirements of actual production use.
  • the purpose of the invention is to obtain the actual external pressure collapse resistance of the double-layer casing without conducting a large number of full-scale physical tests; it is generally considered that the actual external pressure collapse resistance of the double-layer casing is the double-layer casing. However, after a certain amount of full-scale physical tests, the actual external pressure collapse resistance of the double-layer casing is usually far beyond the sum of the two separate external pressure resistance capabilities.
  • the external pressure collapse resistance of the layer casing is based on the sum of the two individual external pressure resistance capabilities, namely P 1 +P 2 , and a new variable is added, namely 25.4 ⁇ P 1 ⁇ (L+T 1 +T 2 ) ⁇ ⁇ 3 / ⁇ 1 /T 1 .
  • the actual collapse resistance of the double-layer casing can be calculated without the external pressure collapse test of the double-layer casing, and the calculation error can be controlled within ⁇ 10%, which provides a simple solution for practical engineering problems. effective solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明涉及双层套管抗外压挤毁能力的获取方法,包括如下步骤:通过实物试验,获取部分规格双层套管实际抗挤毁能力;通过有限元计算的方法,并结合实物试验对有限元计算方法和计算结果进行修正,并利用修正完成后的有限元计算方法进行其他规格双层套管的计算;通过对有限元计算结果进行数据分析与拟合,得到双层套管抗外压挤毁能力:PD=25.4×P 1×(L+T 1+T 2)×σ 3/σ 1/T 1+P 1+P 2;其中,P 1、P 2为外、内层套管抗外压挤毁数据;T 1为外层套管公称壁厚;T 2为内层套管公称壁厚;L为内外层套管的最小距离;σ 1为外层套管屈服强度;σ 3为环空固井水泥抗压强度;本发明节省了劳动力,提高研发效率。

Description

双层套管抗外压挤毁能力的获取方法 技术领域
本发明属于套管性能获取技术领域,尤其涉及双层套管抗外压挤毁能力的获取方法。
背景技术
随着石油行业钻井深度的逐渐增加,特别是国内页岩气井开采深度的逐渐增加,常规生产井段均采用单层设计,单层套管在页岩气井压裂施工改造过程中,套管损坏比例逐年上升,严重限制了页岩气井的产能建设。因此提出了双层套管设计,双层套管可以极大的提高管体抵御变形能力。
套管的抗外压挤毁能力是表征套管抵御变形能力的重要指标,同时也是钻井设计研发部门进行套管选材设计的重要参数,但是当前API 5C3最新版标准里面可以查询到关于单层套管抗外压挤毁能力的计算公式,但是没有针对双层套管抗外压挤毁能力的计算公式,或者指导性文件。
因此,基于这些问题,提供一种能得出双层套管的抗外压挤毁能力,为油田的设计研发人员提供抗外压挤毁数据的双层套管抗外压挤毁能力的获取方法,具有重要的现实意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种能得出双层套管的抗外压挤毁能力,为油田的设计研发人员提供抗外压挤毁数据的双层套管抗外压挤毁能力的获取方法。
本发明解决其技术问题是采取以下技术方案实现的:
双层套管抗外压挤毁能力的获取方法,所述双层套管包括外层套管、内层套管和中间固井水泥;
所述获取方法包括如下步骤:
通过实物试验,获取部分规格双层套管实际抗挤毁能力;
通过有限元计算的方法,并结合实物试验对有限元计算方法和计算结果进行修正,并利用修正完成后的有限元计算方法进行其他规格双层套管的计算;
通过对有限元计算结果进行数据分析与拟合,得到双层套管抗外压挤毁能力:
PD=25.4×P 1×(L+T 1+T 2)×σ 31/T 1+P 1+P 2
其中,PD为双层套管抗外压挤毁值;P 1为外层套管抗外压挤毁数据;P 2为内层套管抗外压挤毁数据;T 1为外层套管公称壁厚;T 2为内层套管公称壁厚;L为内外层套管的最小距离;σ 1为外层套管屈服强度;σ 3为环空固井水泥抗压强度。
进一步的,所述双层套管抗外压挤毁能力的外压挤毁判据是:内层套管发生套损变形。
进一步的,所述外层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得。
进一步的,所述内层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得。
本发明首先通过一定量的实物试验,获取部分规格双层套管实际抗挤毁能力;之后通过有限元计算的方法,并结合实物试验对有限元计算方法和计算结果进行修正,并利用修正完成后的有限元计算方法进行其他规格双层套管的计算;最后通过对有限元计算结果进行数据分析与拟合,得到双层套管抗外压挤毁能力的简便计算方法。
具体的:本发明的目的为了能够在不进行大量全尺寸实物试验的前提下可以获得双层套管实际外压抗挤毁能力;通常认为双层套管的实际抗外压挤毁能力是双层套管的单独抗外压挤毁能力的总和,但是经过一定量的全尺寸实物试验验 证,双层套管的实际抗外压挤毁能力通常远远超出两者单独抗外压能力的总和,因此双层套管抗外压挤毁能力是在两者单独抗外压能力的总和即P 1+P 2的基础上添加一个新的变量即25.4×P 1×(L+T 1+T 2)×σ 31/T 1
通过一定量的试验研究发现外层套管的实际抗外压能力即P 1对双层管抗外压能力具有一定的决定作用,同样外层套管的壁厚和屈服强度同样会引起试验结果的不同,因此引入P 11/T 1部分公式;同时水泥石的强度σ 3同样对双层管抗外压能力具有一定的决定作用,因此引入σ 3部分公式;内外层管体的壁厚同样会影响双层管抗外压能力,但是通过试验发现内外层套管的居中度不同会引起双层套管的抗外压挤毁能力不同,因此引入了(L+T 1+T 2)部分公式;通过一定量的实物试验结果对比和有限元计算结果对比分析,因此引入25.4这个系数。
因此通过以上公式可以在不进行双层套管外压挤毁试验的情况下,计算出双层套管的实际抗挤毁能力,计算误差可以控制在±10%以内,为实际工程问题提供简单有效的解决办法。
本发明的优点和积极效果是:
本发明的方法可以得到双层套管抗外压挤毁的数值,为双层套管的使用提供数据支撑,避免了双层套管抗外压挤毁的实物试验,节省了劳动力,提高研发效率。
附图说明
以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述,但是应当知道,这些附图仅是为解释目的而设计的,因此不作为本发明范围的限定。此外,除非特别指出,这些附图仅意在概念性地说明此处描述的结构构造,而不必要依比例进行绘制。
图1为本发明实施例中提供的双层套管的结构示意图;
图中,D 1:外层套管公称外径;T 1:外层套管公称壁厚;D 2:内层套管公称外径;T 2:内层套管公称壁厚;L 1:内层套管外壁与外层套管内壁间最大距离;L 2:内层套管外壁与外层套管内壁间最小距离。
具体实施方式
首先,需要说明的是,以下将以示例方式来具体说明本发明的具体结构、特点和优点等,然而所有的描述仅是用来进行说明的,而不应将其理解为对本发明形成任何限制。此外,在本文所提及各实施例中予以描述或隐含的任意单个技术特征,或者被显示或隐含在各附图中的任意单个技术特征,仍然可在这些技术特征(或其等同物)之间继续进行任意组合或删减,从而获得可能未在本文中直接提及的本发明的更多其他实施例。另外,为了简化图面起见,相同或相类似的技术特征在同一附图中可能仅在一处进行标示。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面就结合图1来具体说明本发明。
实施例1
双层套管抗外压挤毁能力的获取方法,所述双层套管包括外层套管1内层套管2和中间固井水泥3;
所述获取方法包括如下步骤:
获取外层套管抗外压挤毁数据、内层套管抗外压挤毁数据;
根据获取的数据获取双层套管抗外压挤毁能力,如下式:
PD=25.4×P 1×(L+T 1+T 2)×σ 31/T 1+P 1+P 2
其中,PD为双层套管抗外压挤毁值;P 1为外层套管抗外压挤毁数据;P 2为内层套管抗外压挤毁数据;T 1为外层套管公称壁厚;T 2为内层套管公称壁厚;L为内外层套管的最小距离;σ 1为外层套管屈服强度(可以通过试样拉伸实验获得或者采用API 5CT规定该钢级的最低名义屈服强度);σ 3为环空固井水泥抗压强度(可以通过水泥石的抗压实验获得或者采用水泥出厂规定该牌号水泥的最低名义抗压强度);
需要说明的是,所述双层套管抗外压挤毁能力的外压挤毁判据是:内层套管发生套损变形。
其中,所述外层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得;所述内层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得,内外层套管的屈服强度可以通过材料的拉伸试验获得或采用采用API 5CT规定该钢级的最低名义屈服强度。
实施例2
作为举例,在本实施例中,外层套管外径D 1=177.8mm,壁厚T 1=10.36mm,钢级P110,内层套管外径D 2=114.3mm,壁厚T 2=7.37mm,钢级P110,内外层套管的最大距离L 1=42.78mm,内外层套管的最小距离L 2=0mm,外层套管屈服强度σ 1=758MPa,环空固井水泥抗压强度σ 3=24.5MPa;
通过API 5C3得到外层套管抗外压挤毁值P 1=58.8MPa,内层套管抗外压挤毁值P 2=73.8MPa,将以上参数带入本发明的计算公式得到如下计算结果:
PD=25.4×P 1×(L+T 1+T 2)×σ 31/T 1+P 1+P 2
PD=25.4×58.8×(0+10.36+7.37)×24.5/758/10.36+58.8+73.8
PD=218.2MPa
实施例3
作为举例,在本实施例中,外层套管外径D 1=177.8mm,壁厚T 1=8.05mm,钢级J55,内层套管外径D 2=114.3mm,壁厚T 2=6.35mm,钢级J55,内外层套管的最大距离L 1=45.4mm,内外层套管的最小距离L 2=2mm,外层套管屈服强度σ 1=379MPa;环空固井水泥抗压强度σ 3=24.5MPa;
通过API 5C3得到外层套管抗外压挤毁值P 1=22.5MPa,内层套管抗外压挤毁值P 2=34.2MPa,将以上参数带入本发明的计算公式得到如下计算结果:
PD=25.4×P 1×(L+T 1+T 2)×σ 31/T 1+P 1+P 2
PD=25.4×22.5×(2+8.05+6.35)×24.5/379/8.05+22.5+34.2
PD=132.0MPa
实施例4
利用油套管全尺寸外压压力仓对实施例2、实施例3中的双层套管进行了抗外压挤毁能力的实物试验,实物试验的检测结果为:实施例2中的双层套管的实际抗挤毁数值231.5MPa,实施例2中的计算值的误差为5.7%;实施例3中的双层套管的实际抗挤毁数值138MPa,实施例3中的计算值的误差为4.5%;因此,计算值与实际测试值之间的误差在±10%的范围内,符合实际生产使用的要求。
本发明的目的为了能够在不进行大量全尺寸实物试验的前提下可以获得双层套管实际外压抗挤毁能力;通常认为双层套管的实际抗外压挤毁能力是双层套管的单独抗外压挤毁能力的总和,但是经过一定量的全尺寸实物试验验证,双层套管的实际抗外压挤毁能力通常远远超出两者单独抗外压能力的总和,因此双层套管抗外压挤毁能力是在两者单独抗外压能力的总和即P 1+P 2的基础上添加一个新的变量即25.4×P 1×(L+T 1+T 2)×σ 31/T 1
通过一定量的试验研究发现外层套管的实际抗外压能力即P 1对双层管抗外压能力具有一定的决定作用,同样外层套管的壁厚和屈服强度同样会引起试验结 果的不同,因此引入P 11/T 1部分公式;同时水泥石的强度σ 3同样对双层管抗外压能力具有一定的决定作用,因此引入σ 3部分公式;内外层管体的壁厚同样会影响双层管抗外压能力,但是通过试验发现内外层套管的居中度不同会引起双层套管的抗外压挤毁能力不同,因此引入了(L+T 1+T 2)部分公式;通过一定量的实物试验结果对比和有限元计算结果对比分析,因此引入25.4这个系数。
因此通过以上公式可以在不进行双层套管外压挤毁试验的情况下,计算出双层套管的实际抗挤毁能力,计算误差可以控制在±10%以内,为实际工程问题提供简单有效的解决办法。
以上实施例对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (4)

  1. 双层套管抗外压挤毁能力的获取方法,其特征在于:所述双层套管包括外层套管、内层套管和中间固井水泥;
    所述获取方法包括如下步骤:
    通过实物试验,获取部分规格双层套管实际抗挤毁能力;
    通过有限元计算的方法,并结合实物试验对有限元计算方法和计算结果进行修正,并利用修正完成后的有限元计算方法进行其他规格双层套管的计算;
    通过对有限元计算结果进行数据分析与拟合,得到双层套管抗外压挤毁能力:
    PD=25.4×P 1×(L+T 1+T 2)×σ 31/T 1+P 1+P 2
    其中,PD为双层套管抗外压挤毁值;P 1为外层套管抗外压挤毁数据;P 2为内层套管抗外压挤毁数据;T 1为外层套管公称壁厚;T 2为内层套管公称壁厚;L为内外层套管的最小距离;σ 1为外层套管屈服强度;σ 3为环空固井水泥抗压强度。
  2. 根据权利要求1所述的双层套管抗外压挤毁能力的获取方法,其特征在于:所述双层套管抗外压挤毁能力的外压挤毁判据是:内层套管发生套损变形。
  3. 根据权利要求1所述的双层套管抗外压挤毁能力的获取方法,其特征在于:所述外层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得。
  4. 根据权利要求1所述的双层套管抗外压挤毁能力的获取方法,其特征在于:所述内层套管抗外压挤毁数据通过API 5C3得到,或者通过外压挤毁试验获得。
PCT/CN2021/129968 2021-04-28 2021-11-11 双层套管抗外压挤毁能力的获取方法 WO2022227488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3218062A CA3218062A1 (en) 2021-04-28 2021-11-11 Method for obtaining collapse resistance of double-layer casings under external pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110467869.7 2021-04-28
CN202110467869.7A CN113449447B (zh) 2021-04-28 2021-04-28 双层套管抗外压挤毁能力的获取方法

Publications (1)

Publication Number Publication Date
WO2022227488A1 true WO2022227488A1 (zh) 2022-11-03

Family

ID=77809653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129968 WO2022227488A1 (zh) 2021-04-28 2021-11-11 双层套管抗外压挤毁能力的获取方法

Country Status (3)

Country Link
CN (1) CN113449447B (zh)
CA (1) CA3218062A1 (zh)
WO (1) WO2022227488A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449447B (zh) * 2021-04-28 2022-09-23 天津钢管制造有限公司 双层套管抗外压挤毁能力的获取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529092A (zh) * 2016-12-14 2017-03-22 天津钢管集团股份有限公司 钻井套管的剪切变形力有限元计算方法
CN108414351A (zh) * 2018-01-02 2018-08-17 中国石油天然气集团公司 一种套管非均匀外挤能力评价方法
CN109538185A (zh) * 2018-10-30 2019-03-29 中国海洋石油集团有限公司 一种耦合温度场条件下的多层套管井井筒完整性分析模型
US20200034403A1 (en) * 2016-10-18 2020-01-30 Nippon Steel & Sumitomo Metal Corporation Collapse strength prediction method
CN113449447A (zh) * 2021-04-28 2021-09-28 天津钢管制造有限公司 双层套管抗外压挤毁能力的获取方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317480C (zh) * 2001-06-07 2007-05-23 天津钢管有限责任公司 抗挤毁石油套管及其生产方法
CN2490308Y (zh) * 2001-07-13 2002-05-08 西南石油学院 一种局部双层组合套管接头
CN106599595B (zh) * 2016-12-23 2018-11-27 东北石油大学 弯曲井段套管设计抗挤强度计算方法
CN106951667B (zh) * 2017-05-08 2023-05-26 西安石油大学 一种智能弹性套管保护套及其设计方法
US10488615B2 (en) * 2017-09-06 2019-11-26 Teldor Cables & Systems Ltd. Fiberoptic loose tube manufacture and post extrusion shrinkage
CN112020593B (zh) * 2018-01-12 2022-11-08 特种油管有限责任公司 用于井下操作的带端口套管接箍以及用于进入地层的方法
CN109459302B (zh) * 2018-10-26 2020-08-04 中国石油大学(北京) 一种腐蚀和高温联合作用下套管强度校核与优化设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200034403A1 (en) * 2016-10-18 2020-01-30 Nippon Steel & Sumitomo Metal Corporation Collapse strength prediction method
CN106529092A (zh) * 2016-12-14 2017-03-22 天津钢管集团股份有限公司 钻井套管的剪切变形力有限元计算方法
CN108414351A (zh) * 2018-01-02 2018-08-17 中国石油天然气集团公司 一种套管非均匀外挤能力评价方法
CN109538185A (zh) * 2018-10-30 2019-03-29 中国海洋石油集团有限公司 一种耦合温度场条件下的多层套管井井筒完整性分析模型
CN113449447A (zh) * 2021-04-28 2021-09-28 天津钢管制造有限公司 双层套管抗外压挤毁能力的获取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN ZHAO-XI,LI DONG-FENG,YANG PENG,HAN JUN,ZHANG LEI: "Statistic analysis and calculation of casing collapse strength", JOURNAL OF XI’AN SHIYOU UNIVERSITY (NATURAL SCIENCE EDITION), vol. 22, no. 6, 25 November 2007 (2007-11-25), pages 89 - 92+129, XP055981470, ISSN: 1673-064X *

Also Published As

Publication number Publication date
CA3218062A1 (en) 2022-11-03
CN113449447A (zh) 2021-09-28
CN113449447B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Pattillo et al. Effect of non-uniform loading on conventional casing collapse resistance
WO2018195909A1 (zh) 一种低渗透油气藏直井体积压裂储层改造体积预测方法
WO2022227488A1 (zh) 双层套管抗外压挤毁能力的获取方法
Liu et al. Effect of local loads on shale gas well integrity during hydraulic fracturing process
US10928282B2 (en) Method and device for determining elasticity of cement stone utilized in well cementing of oil-gas well
Huang et al. Collapse strength analysis of casing design using finite element method
CN100526855C (zh) 螺旋缝埋弧焊管的残余应力计算方法
CN108414351B (zh) 一种套管非均匀外挤能力评价方法
Liu et al. Equations to calculate collapse strength of defective casing for steam injection wells
CN104153767A (zh) 基于常规测井资料的页岩储层杨氏模量与泊松比获取方法
CN107290799B (zh) 一种岩石可压性的确定方法
Zhu et al. Research on collapse failure characteristics and theoretical prediction formulas of solid expandable tubular
Wang et al. Investigation of the ultimate residual strengthen of a worn casing by using the arc-length algorithm
Lin et al. Theoretical and experimental analyses of casing collapsing strength under non-uniform loading
CN113958315A (zh) 一种基于自吸-本构模型的页岩地层坍塌压力预测方法
Kuanhai et al. Study on the minimum transverse impact toughness required to resist cracking of non-API high grade steel casing
CN114544081B (zh) 螺纹管的安全载荷的确定方法和装置
Kyogoku et al. Experimental study on the effect of axial tension load on the collapse strength of oilwell casing
CN111324985B (zh) 一种含槽形刮痕缺陷连续管疲劳寿命的评价方法
Madhavan et al. On the collapse of long, thick-walled tubes under external pressure and axial tension
CN107063993A (zh) 基于应变的高速气流摩阻系数计算方法
CN113464059B (zh) 一种双层套管设计方法
Hirshberg et al. Surface-casing strain capacity for North Slope operations
Chen et al. Collapse strength study for the solid expandable tubular
Haning et al. 3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3218062

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938949

Country of ref document: EP

Kind code of ref document: A1