WO2022227403A1 - 微电网群中央控制器、微电网群控制方法及系统 - Google Patents
微电网群中央控制器、微电网群控制方法及系统 Download PDFInfo
- Publication number
- WO2022227403A1 WO2022227403A1 PCT/CN2021/121518 CN2021121518W WO2022227403A1 WO 2022227403 A1 WO2022227403 A1 WO 2022227403A1 CN 2021121518 W CN2021121518 W CN 2021121518W WO 2022227403 A1 WO2022227403 A1 WO 2022227403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microgrid
- grid
- microgrids
- converter system
- load
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000012544 monitoring process Methods 0.000 claims abstract description 52
- 238000012545 processing Methods 0.000 claims abstract description 35
- 230000005611 electricity Effects 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 9
- 230000006735 deficit Effects 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 description 32
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 102100024841 Protein BRICK1 Human genes 0.000 description 1
- 101710084314 Protein BRICK1 Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00001—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00036—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/18—Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
Definitions
- the invention relates to the field of distributed renewable resource utilization, and more particularly, to a microgrid group central controller, a microgrid group control method and system.
- microgrid group consisting of multiple microgrids appears. Since the operation conditions of different microgrids are generally different, especially the frequencies and phases are generally different, how to effectively solve the coordination control problem, parallel asynchronous problem, power Balancing issues, power quality issues, and troubleshooting issues become extremely difficult.
- microgrid clusters At present, the exploration of microgrid clusters is still in its infancy, and it mainly focuses on two aspects. On the one hand, it is devoted to the research of back-to-back converter system to solve the problem of rapid grid connection of microgrids, such as CN206332461U. On the other hand, such as CN110601272A That is also based on the research of the back-to-back converter system to control the bidirectional flow of power in the microgrid to solve the power balance problem between the microgrids.
- the present invention is proposed in view of the above problems, and its purpose is to provide a microgrid group central controller, a microgrid group control method and a system that can effectively realize the coordinated control between microgrids in the microgrid group, so that the microgrid group
- the heavy-load or light-load state within the system cooperates with the back-to-back converter operation mode to solve the problem of maintaining the system stability of the microgrid group.
- a central controller of a microgrid group including: a microgrid monitoring unit, which monitors the operation state of each of the microgrids in the microgrid group; a back-to-back converter system monitoring unit, which monitoring the operating state of at least one back-to-back converter system in the microgrid group; a circuit breaker monitoring unit monitoring the status of each circuit breaker in the microgrid group; and a central processing unit
- the microgrid monitoring unit collects microgrid operating status data, collects back-to-back converter system operating status data from the back-to-back converter system monitoring unit, and collects and analyzes circuit breaker status data from the circuit breaker monitoring unit to coordinately control each The operating state of the microgrid and the operating state of the at least one back-to-back converter system.
- a microgrid group control system comprising: at least one back-to-back converter system capable of connecting two microgrids in each microgrid in the microgrid group to each other; and the above-mentioned microgrids
- the power grid group central controller is connected to each of the microgrids and the at least one back-to-back converter system, and controls each of the microgrids and the at least one back-to-back converter system in a coordinated manner.
- a method for controlling a microgrid group including: monitoring the operation state of each microgrid in the microgrid group to collect microgrid operation state data; Monitoring the operating state of a back-to-back converter system to collect back-to-back converter system operating state data; monitoring the state of each circuit breaker in the microgrid group to collect circuit breaker state data; and monitoring the microgrid operating state Data, the back-to-back converter system operating state data and the circuit breaker state data are analyzed, and the operating state of each of the microgrids and the operating state of the at least one back-to-back converter system are controlled in a coordinated manner.
- the system characteristic root determination method is adopted for the stability of the microgrid and the microgrid group.
- the back-to-back converter and the microgrid at the other end can be equivalent to an additional
- the matching principle of the power supply or load, the operation mode of the heavy load end and the light load end is more beneficial to the stable operation of the system. No matter which mode it operates in, first of all, the stability of the back-to-back converter must be ensured. Second, the system eigenvalue analysis must be carried out after it is connected to the microgrids at both ends. The characteristic root of the half plane.
- the coordinated control ability of the microgrid group can be improved, and the timely Solve the parallel frequency asynchronous problem, power balance problem and fault protection problem between multiple microgrids, thereby greatly improving the utilization efficiency of distributed renewable resources in the microgrid group.
- FIG. 1 is a schematic diagram illustrating a microgrid cluster topology according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram of a central controller in the microgrid cluster control system in FIG. 1 .
- FIG. 3 is a flowchart illustrating a microgrid cluster control method according to an embodiment of the present invention.
- FIG. 4 is a detailed flow chart of the analyzing data and coordinating control steps in FIG. 3 .
- FIG. 1 is a schematic diagram illustrating a topology of a microgrid cluster according to an embodiment of the present invention.
- the microgrid group topology structure of this embodiment includes a microgrid group control system 1 and exemplary microgrids M1 and M2 .
- the microgrid group control system 1 is the control execution mechanism of the entire microgrid group.
- Each microgrid M1 and M2 is a component subset of the microgrid group, and is the control object of the microgrid group control system.
- Each of the microgrids M1 and M2 is respectively connected to an external grid.
- the energy storage in the microgrid M1 is connected to the low voltage side of the circuit breaker QF3 through a step-up transformer, and the high voltage side of the circuit breaker QF3 is connected to the 10kV microgrid bus.
- the photovoltaics in the microgrid M1 are connected to the low voltage side of the circuit breaker QF4 through a step-up transformer, and the high voltage side of the circuit breaker QF4 is connected to the 10kV microgrid bus.
- the fan in the microgrid M1 is connected to the low voltage side of the circuit breaker QF5 through a step-up transformer, and the high voltage side of the circuit breaker QF5 is connected to the 10kV microgrid bus.
- the load in the microgrid M1 is connected to the low voltage side of the circuit breaker QF6 through the step-up transformer, and the high voltage side of the circuit breaker QF6 is connected to the 10kV microgrid bus.
- the microgrid M1 is connected to the 10kV external grid through the circuit breaker QF1.
- the energy storage in the microgrid M2 is connected to the low voltage side of the circuit breaker QF7 through the step-up transformer, and the high voltage side of the circuit breaker QF7 is connected to the 10kV microgrid bus.
- the photovoltaics in the microgrid M2 are connected to the low voltage side of the circuit breaker QF8 through a step-up transformer, and the high voltage side of the circuit breaker QF8 is connected to the 10kV microgrid bus.
- the fan in the microgrid M2 is connected to the low voltage side of the circuit breaker QF9 through a step-up transformer, and the high voltage side of the circuit breaker QF9 is connected to the 10kV microgrid bus.
- the load in the microgrid M2 is connected to the low voltage side of the circuit breaker QF10 through a step-up transformer, and the high voltage side of the circuit breaker QF10 is connected to the 10kV microgrid bus.
- the microgrid M2 is connected to the 10kV external grid through the circuit breaker QF2.
- the configurations of the microgrids M1 and M2 here are only examples, and the actual configurations of the microgrids are not limited thereto.
- the types of distributed power sources and loads in the actual microgrid composition may be more complex, including micro-gas turbines, diesel engines and other power generation equipment, and may also include 10kV direct-mounted loads.
- the voltage level although the present embodiment takes a 10kV microgrid cluster as an example to describe, it is not limited to this, and the present invention is also applicable to other voltage levels.
- a microgrid group control system 1 includes a microgrid group central controller 2 and at least one back-to-back converter system 3 .
- the central controller 2 of the microgrid group is connected to each of the microgrids M1 and M2, and collectively performs coordinated control on each of the microgrids M1 and M2.
- At least one back-to-back converter system 3 respectively connects the two microgrids in the microgrid cluster to each other.
- FIG. 1 since only two microgrids M1 , M2 are schematically shown, correspondingly only one back-to-back converter system 3 connecting the microgrids M1 and M2 to each other is also shown.
- the microgrid group may include more, for example, more than 3 microgrids. In this case, there should be more than two back-to-back converter systems 3 correspondingly, so as to connect multiple microgrids two by two.
- the back-to-back converter system 3 includes a converter VSC1, a converter VSC2, a DC bus connected between the two, and a DC energy storage.
- the DC energy storage is connected to the DC bus through the DC/DC converter to stabilize the DC bus voltage.
- FIG. 2 is a functional block diagram of a microgrid central controller in the microgrid cluster control system in FIG. 1 .
- the microgrid central controller 2 includes a central processing unit 21 , a microgrid monitoring unit 22 , a back-to-back converter system monitoring unit 23 and a circuit breaker monitoring unit 24 .
- the microgrid monitoring unit 22 monitors the operating states of the microgrids M1 and M2 in the microgrid group.
- the back-to-back converter system monitoring unit 23 monitors the operation state of at least one back-to-back converter system 3 in the microgrid group.
- the circuit breaker monitoring unit 24 monitors the status of each circuit breaker in the microgrid group.
- the circuit breakers described here may be circuit breakers QF3-QF6, QF7-QF10 in each microgrid M1, M2, grid-connected circuit breakers QF1, QF2 in each microgrid M1, M2, and each back-to-back circuit breaker At least one of the circuit breakers of the converter system 3 .
- the microgrid central controller 2 may further include a back-to-back DC side energy storage monitoring unit 25 .
- the back-to-back DC side energy storage monitoring unit 25 monitors the operation state of the DC side energy storage of each back-to-back converter system 3 .
- the microgrid central controller 2 may further include a communication unit 26 .
- the central processing unit 21 can realize the sending and receiving of data and instructions with the microgrid monitoring unit 22 , the back-to-back converter system monitoring unit 23 , the circuit breaker monitoring unit 24 and the back-to-back DC side energy storage monitoring unit 25 . .
- the central processing unit 21 collects the microgrid operating status data D1 from the microgrid monitoring unit 22 , the back-to-back converter system operating status data D2 from the back-to-back converter system monitoring unit 23 and the circuit breaker status data from the circuit breaker status monitoring unit 24 D3, and analyze.
- the above-mentioned microgrid operating state D1 may include the load power in the microgrids M1 and M2, the power generation power of each power source, the maximum power that can be generated by renewable energy, the operating state of each device, and the power of the microgrids M1 and M2. At least one of operating voltage, frequency and phase information.
- the above-mentioned back-to-back converter system operating state data D2 may include the current operating mode of the back-to-back converter system 3 . In the present embodiment, it is set that the back-to-back converter system 3 can be switched between the V/F operation mode, the PQ operation mode and the VSG operation mode.
- the central processing unit 21 coordinately controls the operation state of each microgrid M1 and M2 and the operation state of the back-to-back converter system 3 based on the analysis of the above-mentioned data D1 - D3 .
- the central processing unit 21 can coordinately determine, based on the analysis of the above-mentioned data D1-D3, the grid-connected, off-grid and parallel connection and separation between the microgrids M1, M2 and the microgrids M1, M2, and the microgrids M1, M2. Switching of power supply and load equipment in M2, etc.
- the central processing unit 21 can coordinately determine the switching of the operating mode of each back-to-back converter system 3 based on the analysis of the above-mentioned data D1-D3.
- the central processing unit 21 also collects the back-to-back DC side energy storage state data D4 from the back-to-back DC side energy storage monitoring unit 25, and is the same as the above-mentioned
- the microgrid operating state data D1, the back-to-back converter system operating state data D2 and the circuit breaker state data D3 are combined for analysis to coordinately control the operating states of the microgrids M1 and M2, the operating states of the back-to-back converter systems 3 and The charging and discharging state of the DC side energy storage of each back-to-back converter system 3 .
- heavy load refers to the situation where the load power in the microgrid is greater than the power that can be generated by renewable energy
- light load refers to the situation in which the load power in the microgrid is less than the renewable energy generation power.
- Heavy load and light load are not only for the size of the load, but the relative concept of the power that can be generated by renewable energy and the size of the load power.
- the operating state of each of the microgrids of the central processing unit 21 is such that the characteristic roots of the microgrid cluster system are all located in the left half of the s-plane.
- the heavy-load side converters of the back-to-back converter system are set to the PQ operation mode, and the light-load side converters are set to the V/F operation mode; wherein,
- the characteristic root of the heavy-load side microgrid is located in the right half of the s-plane, and the characteristic root of the light-load side microgrid is located in the left half of the s-plane.
- the central processing unit 21 analyzes each back-to-back converter system 3 according to the data D1-D3 and finds that the microgrids M1 and M2 at both ends of the back-to-back converter system 3 are in an islanded operation state, and the grid-connected circuit breakers QF1 and QF2 at both ends are both in an islanded state.
- the microgrids M1 and M2 at the two ends are connected in parallel through the back-to-back converter system 3, and the The converter at the heavy load side of the back-to-back converter system 3, such as the converter VSC1 at the end of the microgrid M1, is set to the PQ operation mode, and the converter at the light load side, such as the converter VSC2 at the end of the microgrid M2, is set to V /F run mode.
- the power margin of renewable energy that can be generated by the light-loaded microgrid M1 is set as P allowance
- the load power deficit of the heavy-loaded microgrid M2 is set as P vacancy .
- the central processing unit 21 analyzes for each back-to-back converter system 3 according to the data D1-D3 and finds that the microgrids M1 and M2 at both ends of the back-to-back converter system 3 are in an islanded operation state and the grid-connected circuit breakers QF1 and QF2 at both ends When there is no fault, the back-to-back converter system 3 disconnects the microgrids M1 and M2 at both ends when both ends of the microgrids M1 and M2 are in a light-load operation state or both are in a heavy-load operation state.
- the central processing unit 21 analyzes for each back-to-back converter system 3 according to the data D1-D3 and finds that the microgrids M1 and M2 at both ends of the back-to-back converter system 3 are in the island operation state and the grid-connected circuit breaker QF1 or QF2 at one end When there is a fault, the microgrids M1 and M2 at the two ends are connected in parallel through the back-to-back converter system 3 .
- the central processing unit 21 analyzes the back-to-back converter system 3 according to the data D1-D3 and analyzes that the microgrids M1 and M2 at both ends of the back-to-back converter system 3 are in the island operation state and pass the back-to-back converter system 3.
- the back-to-back converter system 3 is made to disconnect the microgrids M1 and M2 at both ends, so as to limit the fault to a smaller within the range.
- the central processing unit 21 analyzes the power fluctuation of a back-to-back converter system 3 in the micro-grid group according to the data D1-D4, the central processing unit 21 makes the back-to-back converter system 3 according to the SOC interval of the DC side energy storage. Can be charged or discharged.
- the central processing unit 21 notifies the microgrid monitoring unit 22 of the determined operating state of each microgrid M1 and M2 through the communication unit, and notifies the determined operating state of the back-to-back converter system 3 to the back-to-back converter system monitoring unit 23. Notify the circuit breaker state monitoring unit 24 of the determined states of the circuit breakers QF1 to QF10 and the circuit breakers of the back-to-back converter systems 3 .
- the central processing unit 21 notifies the back-to-back DC side energy storage monitoring unit 25 of the determined charging and discharging status of the DC side energy storage of each back-to-back converter system 3 .
- the microgrid monitoring unit 22 sets the operating state of each microgrid M1, M2 to the determined operating state
- the back-to-back converter system monitoring unit 23 sets the operating state of the back-to-back converter system 3 to the determined operating state.
- the circuit breaker state monitoring unit 24 sets the states of the circuit breakers QF1-QF10 and the circuit breakers of each back-to-back converter system 3 to the determined state respectively, and the back-to-back DC side energy storage monitoring unit 25
- the DC side energy storage of each back-to-back converter system 3 is charged and discharged.
- the specific work of the central processing unit 21 may include any one or more of the following work items 6-9 in addition to the above-mentioned work 1-5.
- adjustable flexible loads and other equipment in the microgrids M1 and M2 dispatch the energy storage and adjustable loads in the microgrids M1 and M2 according to the monitoring data or grid scheduling instructions.
- the grid provides support.
- the voltage and current signals of the microgrid M1 and M2 can be obtained by FPGA (Field Programmable Gate Array, Field Programmable Gate Array) through direct sampling, and the central processing unit 21. Perform FFT (Fast Fourier Transform, Fast Fourier Transform) processing on the collected signal to obtain its main harmonic information. Through the comparison of each harmonic, the calculation results of the three harmonics with larger amplitudes are passed through IEC61850. The protocol is sent to the control device APF (Active Power Filter, active power filter) or energy storage, the APF generates reverse-phase harmonics for suppression, and the energy storage control strategy injects damped harmonics for suppression.
- APF Active Power Filter, active power filter
- microgrid central controller 2 The above is the detailed structure of the microgrid central controller 2 .
- the back-to-back converter system 3 includes LCL filters at both ends, voltage-type converters VSC1 and VSC2, DC side support capacitor C, DC side DC/DC converter, DC side energy storage system, and both ends of the circuit breaker devices BRK1 and BRK2.
- Both the voltage-type converters VSC1 and VSC2 can adopt the SVPWM pulse width modulation method.
- the voltage-type converters VSC1 and VSC2 can operate in one of the three modes of PQ, V/F and VSG by receiving the command signal from the microgrid central controller 2. switch between.
- microgrid group control system 1 The specific structure of the microgrid group control system 1 according to the embodiment of the present invention has been described in detail above.
- the central controller 3 at the upper layer of the back-to-back converter system 3 centrally monitors the microgrid group and cooperates with each back-to-back converter system 3 to realize the coordinated control between the microgrids, It can improve the coordination and control ability of the microgrid group, and can solve the parallel frequency asynchronous problem, power balance problem and fault protection problem among multiple microgrids in time, thereby greatly improving the utilization efficiency of the distributed renewable resources of the microgrid group.
- the characteristic root stability determination method is adopted in the microgrid group, that is, the system is stable when all the characteristic roots of the system are located in the left half of the s-plane, and the closer the characteristic roots are to the right half of the s-plane, the weaker the stability is, and the characteristic roots are virtual.
- the larger the part the higher the oscillation frequency of the dominant oscillation mode.
- the back-to-back converter and the microgrid at the other end can be equivalent to an additional power source or load.
- the matching principle of the operation mode of the heavy-load end and the light-load end is to stabilize the system. more advantageous to run.
- the microgrid at the heavy-load side its own operation stability may be weaker than that of the microgrid at the light-load side under the same conditions (from the perspective of the characteristic root, the microgrid at the heavy-load side may have a characteristic root that is closer to the right half-plane).
- the back-to-back converter operating in VF mode may face the possible circulation and oscillation problems when multiple VF sources are operated in parallel. Compared with operating in PQ mode, it is more likely to introduce a pair of right half-plane/imaginary parts closer to the s-plane. large eigenvalues. Therefore, in this embodiment, the PQ operation mode is recommended for the heavy load terminal.
- the eigenvalue analysis of the system should also be carried out after connecting the microgrids at both ends.
- the design principle is not to introduce the eigenvalues of the right half plane of the s-plane into the system due to the back-to-back converter.
- FIG. 3 is a flowchart illustrating a microgrid cluster control method according to an embodiment of the present invention.
- step 310 the operation state of each microgrid M in the microgrid group is monitored to collect microgrid operation state data D1 .
- step 320 the operation state of each back-to-back converter system 3 in the microgrid group is monitored, and the back-to-back converter system operation state data D2 is collected.
- step 330 the status of each circuit breaker in the microgrid group is monitored to collect circuit breaker status data D3.
- step 340 the operation state of the DC side energy storage of each back-to-back converter system 3 in the microgrid group is monitored, and the DC side energy storage state data D4 is collected.
- step 350 the collected data D1-D4 are analyzed to coordinately control the operation state of each microgrid M, the operation state of each back-to-back converter system 3, and the charging of the DC side energy storage of each back-to-back converter system 3. discharge state.
- the microgrid group control method of the present invention may not include the above-mentioned step 340, that is, the DC side energy storage state data D4 of each back-to-back converter system 3 is not collected, in this case, in step 350 only
- the collected data D1-D3 are analyzed to coordinately control the operation state of each microgrid M1 and M2 and the operation state of each back-to-back converter system 3 .
- the type of data to be collected may also be determined as required.
- FIG. 4 is a flowchart showing the detailed process of analyzing data and coordinating control step 350 in FIG. 3 .
- step 410 based on the microgrid operating state data D1, the back-to-back converter system operating state data D2, the circuit breaker state data D3 and the DC side energy storage state data D4, determine whether power fluctuations occur for each back-to-back converter system. If yes, proceed to step 420 , otherwise proceed to step 430 .
- step 420 the DC side energy storage is charged or discharged according to the SOC range of the DC side energy storage of the back-to-back converter system 3 with power fluctuations.
- power fluctuations of the back-to-back converter system 3 are absorbed or compensated.
- step 430 it is determined for each back-to-back converter system 3 that the microgrids M1 and M2 at both ends thereof are in an islanding operation state. If so, proceed to step 440, otherwise the process ends.
- step 440 it is determined for each back-to-back converter system 3 whether a fault that cannot be quickly eliminated occurs in one of the microgrids M1 and M2 at both ends thereof. If so, proceed to step 450 , otherwise proceed to step 460 .
- step 460 it is determined whether the grid-connected circuit breakers QF1 or QF2 at both ends of each back-to-back converter system 3 are faulty. If yes, proceed to step 470 to connect the microgrids M1 and M2 at the two ends in parallel through the back-to-back converter system 3 . If not, proceed to step 420.
- step 480 it is determined whether the microgrids M1 and M2 at the two ends are both in a heavy-load operation state. If yes, proceed to step 490, set the microgrid with no fault on the grid-connected circuit breaker, such as the microgrid M1, to the grid-connected operation state, and set the faulty end of the grid-connected circuit breaker of the back-to-back converter system 3, That is, the converter VSC2 at the end of the microgrid M2 is set to the PQ operation mode, and the fault-free end of the grid-connected circuit breaker, that is, the converter VSC1 at the end of the microgrid M1 is set to the V/F operation mode, and the power of the PQ operation mode is set.
- the reference value is set according to the load power shortage P vacancy of the microgrids M1 and M2.
- step 480 when step 480 is NO, it progresses to step 500.
- step 500 it is determined whether the microgrids M1 and M2 at the two ends are in a light-load operation state. If yes, then proceed to step 510, set the microgrid with no fault on the grid-connected circuit breaker, such as the microgrid M1, to the grid-connected operation state, and set the faulty end of the grid-connected circuit breaker of the back-to-back converter system 3, That is, the converter VSC2 at the end of the microgrid M2 is set to the PQ operation mode, and the fault-free end of the grid-connected circuit breaker, that is, the converter VSC1 at the end of the microgrid M1, is set to the V/F operation mode, and the power of the PQ operation mode is set.
- the reference value is set according to the generated power allowance P allowance of the microgrids M1 and M2, and the microgrids M1 and M2 at the two ends can generate electricity with the maximum power of renewable energy and the surplus power is connected to the grid.
- step 500 is NO, this process is complete
- step 520 for each back-to-back converter system 3 , it is determined whether the microgrids M1 and M2 at both ends thereof are in a light-load operation state and the microgrid at the other end is in a heavy-load operation state. If so, proceed to step 530 , otherwise proceed to step 590 .
- step 530 the microgrids M1 and M2 at both ends are connected in parallel through the back-to-back converter system 3, and the heavy-load end of the back-to-back converter system 3, such as the converter VSC1 at the end of the microgrid M1, is set to the PQ operation mode, and the The light-load side, that is, the converter VSC2 at the M2 side of the microgrid is set to the V/F operation mode.
- step 540 it is determined whether the renewable energy power generation allowance P allowance of the light-loaded microgrid M1 is greater than the load power deficit P vacancy of the heavy-loaded microgrid M2, that is, whether P allowance >P vacancy . If so, proceed to step 550 , otherwise proceed to step 560 .
- step 550 the heavy-loaded microgrid M2 is set to the off-grid operating state, the light-loaded microgrid M1 is set to the grid-connected operating state, and all parts of the light-loaded microgrid M1 except for supplying the heavy-loaded microgrid M2 The surplus power that can be generated other than the load power is connected to the grid. Then, the process ends.
- step 560 it is determined whether P allowance ⁇ P vacancy . If yes, proceed to 570, otherwise proceed to step 580.
- step 570 the off-grid operating states of the heavily loaded microgrid M2 and the lightly loaded microgrid M1 are maintained, and the power reference value in the PQ mode is set according to the P allowance . Then, the process ends.
- step 580 since P allowance ⁇ P vacancy , the heavily loaded microgrid M2 is set to the grid-connected operation state and the load power deficit of the microgrid M2 other than the power supplied by the lightly loaded microgrid M1 is taken from the grid. power, and the power reference value in PQ mode is set according to the P allowance . Then, the process ends.
- step 590 since the microgrids M1 and M2 at both ends of the back-to-back converter system 3 are in the islanding operation state and the grid-connected circuit breakers QF1 and QF2 at both ends are not faulty, and the microgrids M1 and M2 are in the light-load operation state or Both are in a heavy-load operation state, so the back-to-back converter system 3 is made to disconnect the microgrids M1 and M2 at both ends.
- step 600 for each back-to-back converter system 3 , it is determined whether the microgrids M1 and M2 at both ends thereof are in a light-load operation state. If so, proceed to step 610 , otherwise proceed to step 620 .
- step 610 since the microgrids M1 and M2 are both in the light-load operation state, the microgrids M1 and M2 are set to the grid-connected operation state, and make them generate electricity with the maximum power of the renewable energy, and the surplus of the power that can be generated is connected to the grid .
- step 620 since the microgrids M1 and M2 are both in the heavy-load operation state, the microgrids M1 and M2 are set to the grid-connected operation state and the grids are used to obtain electricity.
- microgrid group control method according to the embodiment of the present invention is described in detail above.
- micro-grid group control method of the present invention is described above with reference to the micro-grid group including only two micro-grids M1 and M2 in FIG.
- the invented microgrid group control method is also applicable.
- the coordinated control between the microgrids is realized by centrally monitoring the microgrid group at the upper layer of the back-to-back converter system and cooperating with the back-to-back converter system, so that the coordinated control of the microgrid group can be improved. It can solve the parallel frequency asynchronous problem, power balance problem and fault protection problem between multiple microgrids in time, thereby greatly improving the utilization efficiency of distributed renewable resources in the microgrid group.
- microgrid group control method of the present invention may further include steps for implementing the work items 6-9 of the central processing unit 21 described above.
- the computer device includes a processor and a memory, and the memory stores a computer program that can be executed on the processor, and when the computer program is executed by the processor, implements the steps of the microgrid group control method according to the present invention.
- each unit in the apparatus and system according to the exemplary embodiments of the present invention may be implemented as hardware components and/or software components.
- Those skilled in the art can implement each unit by using, for example, a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC) according to the defined processing performed by each unit.
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- the method according to the exemplary embodiment of the present invention can be implemented as a computer program in a computer-readable recording medium.
- a person skilled in the art can implement the computer program according to the description of the above method.
- the above-described method of the present invention is implemented when the computer program is executed in a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Human Computer Interaction (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种微电网群中央控制器、微电网群控制方法及系统。微电网群中央控制器(2)包括:微电网监控单元(22),对各微电网的运行状态进行监控;背靠背变流系统监控单元(23),对至少一个背靠背变流系统的运行状态进行监控;断路器监控单元(24),对各断路器的状态进行监控;中心处理单元(21),收集微电网运行状态数据、收集背靠背变流系统运行状态数据和断路器状态数据并进行分析,协调地控制各微电网的运行状态和至少一个背靠背变流系统的运行状态。
Description
本发明涉及分布式可再生资源利用领域,更具体地,涉及微电网群中央控制器、微电网群控制方法及系统。
随着微电网的大量涌现,出现由多个微网组成的微网群。由于不同的微电网之间运行情况一般都不同,尤其是频率和相位一般不同,所以如何在微电网群形成后有效地在微电网群中解决微电网间的协调控制问题、并联异步问题、功率平衡问题、电能质量问题和故障诊断排除问题就变得异常困难。
目前关于微电网群的探索还处于起步阶段,且主要是集中在两方面,一方面是如CN206332461U那样致力于基于背靠背变流系统的研究来解决微电网的快速并网问题上,一方面如CN110601272A那样同样是基于背靠背变流系统的研究来控制微电网中的功率双向流动从而解决微电网间的功率平衡问题。
但是,目前对微电网群的研究很少涉及微网内的重载或轻载运行状态与背靠背变流器运行模式的关联关系,且很少涉及微网内的重载或轻载运行状态与微电网群系统稳定性的关系。
发明内容
本发明是鉴于以上问题而提出的,其目的在于提供一种能够在微电网群中有效地实现微电网间的协调控制的微电网群中央控制器、微电网群控制方法及系统,使得微网内的重载或轻载状态与背靠背变流器运行模式协同,解决保持微电网群的系统稳定性问题。
根据本发明的一方面,提供一种微电网群中央控制器,包括:微电网监控单元,其对微电网群中的各所述微电网的运行状态进行监控;背靠背变流系统监控单元,其对所述微电网群中的至少一个背靠背变流系统的运行状态进行监控;断路器监控单元,其对所述微电网群中的各断路器的状态进行监 控;以及中心处理单元,其从所述微电网监控单元收集微电网运行状态数据、从所述背靠背变流系统监控单元收集背靠背变流系统运行状态数据且从所述断路器监控单元收集断路器状态数据并进行分析,协调地控制各所述微电网的运行状态和所述至少一个背靠背变流系统的运行状态。
根据本发明的另一方面,提供一种微电网群控制系统,包括:至少一个背靠背变流系统,其能够将微电网群中的各微电网中的两个微电网彼此连接;以及上述的微电网群中央控制器,其与各所述微电网和所述至少一个背靠背变流系统连接,对各所述微电网和所述至少一个背靠背变流系统协调地进行控制。
根据本发明的又一方面,提供一种微电网群控制方法,包括:对微电网群中的各微电网的运行状态进行监控而收集微电网运行状态数据;对所述微电网群中的至少一个背靠背变流系统的运行状态进行监控而收集背靠背变流系统运行状态数据;对所述微电网群中的各断路器的状态进行监控而收集断路器状态数据;以及对所述微电网运行状态数据、所述背靠背变流系统运行状态数据和所述断路器状态数据进行分析,且协调地控制各所述微电网的运行状态和所述至少一个背靠背变流系统的运行状态。
根据本发明,针对微电网及微电网群的稳定性采用系统特征根判定方法,对于背靠背变流器两端的微电网而言,可以将背靠背变流器及另一端的微电网等效为额外的电源或负载,重载端和轻载端运行模式的匹配原则是对系统的稳定运行更有利。不管运行于哪种模式,首先要保证背靠背变流器自身的稳定性,其次,其连接两端微电网以后也要进行系统特征值分析,设计原则不因背靠背变流器为系统引入s平面右半平面的特征根。
在微电网群中,通过在背靠背变流系统的上层集中地监控微电网群并与背靠背变流系统相协作来实现微电网间的协调控制,能够提高微电网群的协调控制能力,能够及时地解决多个微电网间的并联频率异步问题、功率平衡问题及故障保护问题,从而极大地提高微电网群的分布式可再生资源的利用效率。
图1是示出根据本发明的实施方式的微电网群拓扑结构的示意图。
图2是图1中的微电网群控制系统中的中央控制器的功能框图。
图3是示出根据本发明的实施方式的微电网群控制方法的流程图。
图4是图3中的分析数据且协调控制步骤的详细流程图。
以下,参照附图详细地说明本发明的实施方式。
图1是示出根据本发明的实施方式的微电网群的拓扑结构的示意图。
如图1所示,本实施方式的微电网群拓扑结构中包含微电网群控制系统1和示例性的微电网M1、M2。
微电网群控制系统1是整个微电网群的控制执行机构。每个微电网M1、M2都是微电网群的一个组成子集,是微电网群控制系统的控制对象。
每个微电网M1、M2分别连接于外部电网。具体举例而言,如图1所示,微电网M1中的储能通过升压变压器与断路器QF3的低压侧相连,断路器QF3的高压侧与10kV微电网母线相连。微电网M1中的光伏通过升压变压器与断路器QF4的低压侧相连,断路器QF4的高压侧与10kV微电网母线相连。微电网M1中的风机通过升压变压器与断路器QF5的低压侧相连,断路器QF5的高压侧与10kV微电网母线相连。微电网M1中的负荷通过升压变压器与断路器QF6的低压侧相连,断路器QF6的高压侧与10kV微电网母线相连。另外,微电网M1通过断路器QF1与10kV外部电网相连。
另外,微电网M2中的储能通过升压变压器与断路器QF7的低压侧相连,断路器QF7的高压侧与10kV微电网母线相连。微电网M2中的光伏通过升压变压器与断路器QF8的低压侧相连,断路器QF8的高压侧与10kV微电网母线相连。微电网M2中的风机通过升压变压器与断路器QF9的低压侧相连,断路器QF9的高压侧与10kV微电网母线相连。微电网M2中的负荷通过升压变压器与断路器QF10的低压侧相连,断路器QF10的高压侧与10kV微电网母线相连。另外,微电网M2通过断路器QF2与10kV外部电网相连。
需要说明的是,这里的微电网M1、M2的构成仅是举例说明,实际的微电网的构成并不局限于此。例如,实际的微电网的构成中的分布式电源和负荷的类型可以更为复杂,可以包含微燃机、柴油机等发电设备,也可以含有10kV直挂负荷。同样地,关于电压等级,虽然本实施方式以10kV微电网群为例进行说明,但是并不仅限于此,在其它电压等级下,本发明也是适用的。
下面详细说明图1中的微电网群控制系统1的具体构成。如图1所示, 微电网群控制系统1包括微电网群中央控制器2和至少一个背靠背变流系统3。
微电网群中央控制器2与各微电网M1、M2连接,对各微电网M1、M2统括地进行协调控制。
至少一个背靠背变流系统3分别将微电网群中的两个微电网彼此连接。在图1中,由于仅示意性地示出2个微电网M1、M2,所以相应地也仅示出将微电网M1与M2彼此连接的一个背靠背变流系统3。但是,可以理解,这仅是示例性的,实际上,微电网群可以包括更多的、例如3个以上的微电网。在此情况下,相应地也应该具备2个以上的背靠背变流系统3,以便将多个微电网两两相连。其中,背靠背变流系统3包括变流器VSC1、变流器VSC2、连接在二者之间的直流母线,以及直流储能。其中,直流储能通过DC/DC变换器连接至直流母线,用于稳定直流母线电压。
进一步详细说明微电网中央控制器2的具体构成。图2是图1中的微电网群控制系统中的微电网中央控制器的功能框图。如图2所示,微电网中央控制器2包括中心处理单元21、微电网监控单元22、背靠背变流系统监控单元23和断路器监控单元24。
微电网监控单元22对微电网群中的各微电网M1、M2的运行状态进行监控。
背靠背变流系统监控单元23对微电网群中的至少一个背靠背变流系统3的运行状态进行监控。
断路器监控单元24对微电网群中的各断路器的状态进行监控。在本实施方式中,此处所述的断路器可以是各微电网M1、M2中的断路器QF3-QF6、QF7-QF10、各微电网M1、M2的并网断路器QF1、QF2以及各背靠背变流系统3的断路器中的至少一种。
此外,如图1所示,在各背靠背变流系统3中包含储能的情况下,微电网中央控制器2还可以包含背靠背直流侧储能监控单元25。该背靠背直流侧储能监控单元25对各背靠背变流系统3的直流侧储能的运行状态进行监控。
此外,如图1所示,微电网中央控制器2还可以包含通信单元26。通过该通信单元26,中心处理单元21可以实现与微电网监控单元22、背靠背变流系统监控单元23、断路器监控单元24及背靠背直流侧储能监控单元25之间的数据和指令的发送接收。
另外,中心处理单元21从微电网监控单元22收集微电网运行状态数据D1、从背靠背变流系统监控单元23收集背靠背变流系统运行状态数据D2且从断路器状态监控单元24收集断路器状态数据D3,并进行分析。
在本实施方式中,上述的微电网运行状态D1可以包含微电网M1、M2内的负荷功率、各电源发电功率、可再生能源最大可发电功率、各设备的运行状态以及微电网M1、M2的运行电压、频率和相位信息中的至少一种。上述的背靠背变流系统运行状态数据D2可以包含背靠背变流系统3的当前运行模式。在本实施方式中,设定背靠背变流系统3可以在V/F运行模式、PQ运行模式和VSG运行模式之间切换。
中心处理单元21基于对上述数据D1-D3的分析,协调地控制各微电网M1、M2的运行状态和背靠背变流系统3的运行状态。具体而言,中心处理单元21可以基于对上述数据D1-D3的分析协调地确定各微电网M1、M2的并网、离网和微电网M1、M2间的并联、分离以及各微电网M1、M2内的电源及负荷设备的投切等。此外,中心处理单元21可以基于对上述数据D1-D3的分析协调地确定各背靠背变流系统3的运行模式的切换。
另外,在微电网中央控制器2包含背靠背直流侧储能监控单元25的情况下,中心处理单元21还从背靠背直流侧储能监控单元25收集背靠背直流侧储能状态数据D4,且与上述的微电网运行状态数据D1、背靠背变流系统运行状态数据D2和断路器状态数据D3相结合地进行分析,协调地控制各微电网M1、M2的运行状态、各背靠背变流系统3的运行状态和各背靠背变流系统3的直流侧储能的充放电状态。
在更具体说明中心处理单元21的工作之前,首先给出微电网的运行状态重载和轻载的定义:重载是指微电网内负荷功率大于可再生能源可发电功率的情况,轻载是指微电网内负荷功率小于可再生能源可发电功率的情况。重载和轻载并非只针对负荷的大小,而是可再生能源可发电功率和负荷功率大小的相对性概念。
中心处理单元21各所述微电网的运行状态以使得所述微电网群系统特征根全部位于s平面左半部分。
在一个示例中,所述背靠背变流系统的重载端变流器设定为PQ运行模式,且轻载端变流器设定为V/F运行模式;其中,
重载端微电网的特征根位于s平面右半部分,且,轻载端微电网的特征 根位于s平面左半部分。
接着更详细地说明中心处理单元21的具体工作。
1、中心处理单元21在根据数据D1-D3针对各背靠背变流系统3分析出该背靠背变流系统3两端的微电网M1、M2均处于孤岛运行状态且两端的并网断路器QF1、QF2均无故障时,在一端的微电网处于重载运行状态且另一端的微电网处于轻载运行状态的情况下,使该两端的微电网M1、M2通过该背靠背变流系统3并联,并将该背靠背变流系统3的重载端的变流器、例如微电网M1端的变流器VSC1设定为PQ运行模式,将轻载端的变流器、例如微电网M2端的变流器VSC2设定为V/F运行模式。
在此情况下,设定轻载的微电网M1的可再生能源可发电功率余量为P
allowance,重载的微电网M2的负荷功率缺量为P
vacancy。并且进一步地,
(1)若P
allowance>P
vacancy,则将重载的微电网M2设定为离网运行状态,将轻载的微电网M1设定为并网运行状态并使微电网M1的除供给重载的微电网M2的负荷功率以外的可发电功率余量上网,且PQ模式下功率参考值根据P
allowance设定,使得轻载端微电网M1内的可再生能源得到充分利用,同时减小重载端微电网M2向电网的取电量;
(2)若P
allowance≈P
vacancy,则保持重载的微电网M2和轻载的微电网M1的离网运行状态,且PQ模式下的功率参考值根据P
allowance设定,使得轻载的微电网M1内的可再生能源得到充分利用,重载的微电网M2不必再经过上网取电;
(3)若P
allowance<P
vacancy,则将重载的微电网M2设定为并网运行状态并使微电网M2除通过轻载的微电网M1供给的功率以外的负荷功率缺量上网取电,且PQ模式下功率参考值根据P
allowance设定,使得轻载的微电网M1内的可再生能源得到充分利用,同时减小重载的微电网M2向电网的取电量。
2、中心处理单元21在根据数据D1-D3针对各背靠背变流系统3分析出该背靠背变流系统3的两端的微电网M1、M2均处于孤岛运行状态且两端的并网断路器QF1、QF2均无故障时,在该两端的微电网M1、M2均处于轻载运行状态或均处于重载运行状态的情况下,使该背靠背变流系统3将两端的微电网M1、M2断开。
并且在此情况下,进一步地,
(1)在两端的微电网M1、M2均处于重载运行状态的情况下,将微电 网M1、M2设定为并网运行状态并上网取电;
(2)在两端的微电网M1、M2均处于轻载运行状态的情况下,将微电网M1、M2设定为并网运行状态,并使其以可再生能源最大功率发电,可发电功率的余量上网。
3、中心处理单元21在根据数据D1-D3针对各背靠背变流系统3分析出该背靠背变流系统3的两端的微电网M1、M2均处于孤岛运行状态且一端的并网断路器QF1或QF2有故障时,使该两端的微电网M1、M2通过该背靠背变流系统3并联。
并且在此情况下,进一步地,
(1)在两端的微电网M1、M2均处于重载运行状态的情况下,将并网断路器无故障的微电网、例如微电网M1设定为并网运行状态,并将该背靠背变流系统3的并网断路器有故障的一端、例如微电网M2端的变流器VSC2设定为PQ运行模式、将所述并网断路器无故障的一端、例如微电网M1端的变流器VSC1设定为V/F运行模式,且PQ运行模式的功率参考值根据微电网M1、M2的负荷功率缺量P
vacancy设定;
(2)在两端的微电网M1、M2均处于轻载运行状态的情况下,将并网断路器无故障的微电网、例如微电网M1设定为并网运行状态,并将该背靠背变流系统3的并网断路器有故障的一端、例如微电网M2端的变流器VSC2设定为PQ运行模式、将并网断路器无故障的一端、例如微电网M1端的变流器VSC1设定为V/F运行模式,且PQ运行模式的功率参考值根据微电网M1、M2的可发电功率余量P
allowance设定,并使该两端的微电网M1、M2以可再生能源最大功率发电。
4、中心处理单元21在根据数据D1-D3分析出针对各背靠背变流系统3分析出该背靠背变流系统3的两端的微电网M1、M2均处于孤岛运行状态且通过该背靠背变流系统3并联时,在该两端的微电网中M1、M2的一个出现无法快速排除的故障的情况下,使该背靠背变流系统3将两端的微电网M1、M2断开,以便将故障限制在较小范围内。
5、中心处理单元21在根据数据D1-D4分析出微电网群中的某背靠背变流系统3出现功率波动的情况下,根据该背靠背变流系统3的直流侧储能的SOC区间使该储能充电或放电。
然后,中心处理单元21通过通信单元将所确定的各微电网M1、M2的 运行状态通知给微电网监控单元22,将所确定的背靠背变流系统3的运行状态通知给背靠背变流系统监控单元23,将所确定的各断路器QF1-QF10及各背靠背变流系统3的断路器的状态通知给断路器状态监控单元24。在包含背靠背直流侧储能监控单元25的情况下,中心处理单元21将所确定的各背靠背变流系统3的直流侧储能的充放电状态通知给背靠背直流侧储能监控单元25。
根据来自中心处理单元21的指示,微电网监控单元22将各微电网M1、M2的运行状态设定为所确定的运行状态,背靠背变流系统监控单元23将背靠背变流系统3的运行状态设定为所确定的运行状态,断路器状态监控单元24将各断路器QF1-QF10及各背靠背变流系统3的断路器的状态分别设定为所确定的状态,背靠背直流侧储能监控单元25使各背靠背变流系统3的直流侧储能充放电。
另外,在另外的实施方式中,中心处理单元21的具体工作除了上述的工作1-5以外,还可以包含下述的工作项6-9中的任一项以上的工作。
6、计算微电网M1、M2的频率、相位等信息,且在微电网M1或M2的频率扰动频繁将影响该微电网的电能质量的情况下,将该微电网端的背靠背变流系统3切换至VSG模式,为该微电网提供惯性和阻尼,消除或减小频率的波动。
7、在微电网M1、M2内存在储能、可调柔性负荷等设备的情况下,根据监控数据或电网调度指令对微电网M1、M2内的储能及可调负荷进行调度,必要时为电网提供支撑。
8、获取各微电网M1、M2的电压及电流信号,分析微电网M1、M2的零序电流,对故障点进行定位。
9、对各微电网M1、M2的电能质量进行监测,当微电网M1、M2的THD(Total Harmonic Distortion,总谐波失真)超过设定值时,选择该微电网内的电能质量治理设备并进行控制,抑制该微电网的谐波来改善系统电能质量,若该微电网内没有电能质量治理设备,则选择储能设备向该微电网内注入阻尼谐波,直至该微电网的THD控制在允许范围内。
在上述第8、9项工作的具体实现中,微电网M1、M2的电压及电流信号可以由FPGA(Field Programmable Gate Array,现场可编程门阵列)通过直采的方式来获取,且中心处理单元21对采集信号进行FFT(Fast Fourier Transform,快速傅里叶变换)处理,获取其主要谐波信息,通过对各次谐波的比较,将幅值较大的3种谐波的计算结果通过IEC61850协议发送至控制设备APF(Active Power Filter,有源电力滤波器)或储能,APF产生反相谐波来进行抑制,储能控制策略注入阻尼谐波来进行抑制。
以上是微电网中央控制器2的详细构成。
下面详细说明背靠背变流系统3的具体构成。
如图1所示,背靠背变流系统3包括两端LCL滤波器、电压型变流器VSC1和VSC2、直流侧支撑电容器C、直流侧DC/DC变换器、直流侧储能系统及两端断路器BRK1和BRK2。
电压型变流器VSC1和VSC2均可以采用SVPWM的脉宽调制方式,电压型变流器VSC1和VSC2通过接收微电网中央控制器2的指令信号而在PQ、V/F和VSG三种模式之间切换。
以上详细说明了本发明实施方式的微电网群控制系统1的具体构成。
根据本实施方式,在微电网群中,通过由背靠背变流系统3的上层的中央控制器3集中地监控微电网群且与各背靠背变流系统3相协作来实现微电网间的协调控制,能够提高微电网群的协调控制能力,能够及时解决多个微电网间的并联频率异步问题、功率平衡问题及故障保护问题,从而极大地提高微电网群的分布式可再生资源的利用效率。
根据本实施方式,在微电网群中采用特征根稳定性判定方法,即系统特征根全部位于s平面左半部分时系统稳定,特征根越靠近s平面右半平面稳定性越弱,特征根虚部越大其主导的振荡模态振荡频率越高。
对于背靠背变流器两端的微电网而言,可以将背靠背变流器及另一端的微电网等效为额外的电源或负载,重载端和轻载端运行模式的匹配原则是对系统的稳定运行更有利。
对于重载端微电网,在相同条件下其本身的运行稳定性可能弱于轻载端微电网(从特征根角度分析重载端微电网可能存在特征根更靠近右半平面),若重载端背靠背变流器运行于VF模式有可能面临多VF源并机运行时可能存在的环流和振荡问题,相对于运行在PQ模式更有可能引入一对更靠近s平面右半平面/虚部更大的特征根。因此本实施例中重载端推荐PQ运行模式。
其连接两端微电网以后也要进行系统特征值分析,设计原则为不因背靠背变流器为系统引入s平面右半平面的特征根。
下面结合图1中的微电网群拓扑结构,详细说明本发明的微电网群控制方法。图3是示出根据本发明的实施方式的微电网群控制方法的流程图。
如图3所示,首先在步骤310,对微电网群中的各微电网M的运行状态进行监控而收集微电网运行状态数据D1。
在步骤320,对微电网群中的各背靠背变流系统3的运行状态进行监控而收集背靠背变流系统运行状态数据D2。
在步骤330,对微电网群中的各断路器的状态进行监控而收集断路器状态数据D3。
在步骤340,对微电网群中的各背靠背变流系统3的直流侧储能的运行状态进行监控而收集直流侧储能状态数据D4。
在步骤350,对所收集的上述数据D1-D4进行分析而协调地控制各微电网M的运行状态、各背靠背变流系统3的运行状态和各背靠背变流系统3的直流侧储能的充放电状态。
在一个实施方式中,本发明的微电网群控制方法也可以不包含上述的步骤340,即不收集各背靠背变流系统3的直流侧储能状态数据D4,在此情况下在步骤350中仅对所收集的上述数据D1-D3进行分析而协调地控制各微电网M1、M2的运行状态和各背靠背变流系统3的运行状态。在其他实施方式中,在步骤310-330也可以根据需要来确定所需收集的数据种类。
图4是示出图3中的分析数据且协调控制步骤350的详细过程的流程图。
在步骤410,基于微电网运行状态数据D1、背靠背变流系统运行状态数据D2、断路器状态数据D3和直流侧储能状态数据D4,针对各背靠背变流系统判断是否出现功率波动。如果是,则前进至步骤420,否则前进至步骤430。
在步骤420,根据出现功率波动的背靠背变流系统3的直流侧储能的SOC区间,使直流侧储能充电或放电。从而使该背靠背变流系统3的功率波动被吸收或补偿。接着,该处理结束。
接着,在步骤430,针对各背靠背变流系统3判断其两端的微电网M1、M2均处于孤岛运行状态。如果是,则前进至步骤440,否则该处理结束。
在步骤440,针对各背靠背变流系统3判断是否其两端的微电网M1、M2中的一个出现无法快速排除的故障。如果是,则前进至步骤450,否则前进至步骤460。
在步骤450,使该背靠背变流系统3将两端的微电网M1、M2断开,以 便将故障限制在较小范围内。然后,该处理结束。
接着,在步骤460,针对各背靠背变流系统3判断是否其两端的并网断路器QF1或QF2有故障。如果是,则前进至步骤470使该两端的微电网M1、M2通过该背靠背变流系统3并联。如果否,则前进至步骤420。
接着步骤470之后,在步骤480,判断该两端的微电网M1、M2是否均处于重载运行状态。如果是,则前进至步骤490,将并网断路器无故障的微电网、例如微电网M1设定为并网运行状态,并将该背靠背变流系统3的并网断路器有故障的一端、即微电网M2端的变流器VSC2设定为PQ运行模式,将并网断路器无故障的一端、即微电网M1端的变流器VSC1设定为V/F运行模式,且PQ运行模式的功率参考值根据微电网M1、M2的负荷功率缺量P
vacancy设定。
另外,在步骤480为否的情况下,前进至步骤500。
在步骤500,判断该两端的微电网M1、M2是否均处于轻载运行状态。如果是,则前进至步骤510,将并网断路器无故障的微电网、例如微电网M1设定为并网运行状态,并将该背靠背变流系统3的并网断路器有故障的一端、即微电网M2端的变流器VSC2设定为PQ运行模式,将并网断路器无故障的一端、即微电网M1端的变流器VSC1设定为V/F运行模式,且PQ运行模式的功率参考值根据微电网M1、M2的可发电功率余量P
allowance设定,并使该两端的微电网M1、M2以可再生能源最大功率发电且余电上网。
另外,在步骤500为否的情况下,该处理结束。
在步骤520,针对各背靠背变流系统3判断其两端的微电网M1、M2是否一端微电网处于轻载运行状态、另一端微电网处于重载运行状态。如果是,则前进至步骤530,否则前进至步骤590。
在步骤530,使两端的微电网M1、M2通过背靠背变流系统3并联,并将该背靠背变流系统3的重载端、例如微电网M1端的变流器VSC1设定为PQ运行模式,将轻载端、即微电网M2端的变流器VSC2设定为V/F运行模式。
接着在步骤540,判断轻载的微电网M1的可再生能源可发电功率余量P
allowance是否大于重载的微电网M2的负荷功率缺量P
vacancy,即是否P
allowance>P
vacancy。如果是,则前进至步骤550,否则前进至步骤560。
在步骤550,将重载的微电网M2设定为离网运行状态,将轻载的微电 网M1设定为并网运行状态并使轻载的微电网M1的除供给重载的微电网M2的负荷功率以外的可发电功率余量上网。然后,该处理结束。
在步骤560,判断是否P
allowance≈P
vacancy。如果是,则前进至570,否则前进至步骤580。
在步骤570,保持重载的微电网M2和轻载的微电网M1的离网运行状态,且PQ模式下的功率参考值根据P
allowance设定。然后,该处理结束。
在步骤580,由于P
allowance<P
vacancy,所以将重载的微电网M2设定为并网运行状态并使微电网M2除通过轻载的微电网M1供给的功率以外的负荷功率缺量上网取电,且PQ模式下功率参考值根据P
allowance设定。然后,该处理结束。
在步骤590,由于背靠背变流系统3的两端的微电网M1、M2均处于孤岛运行状态且两端的并网断路器QF1、QF2均无故障,且微电网M1、M2均处于轻载运行状态或均处于重载运行状态,所以使该背靠背变流系统3将两端的微电网M1、M2断开。
接着,在步骤600,针对各背靠背变流系统3判断其两端的微电网M1、M2是否均处于轻载运行状态。如果是则前进至步骤610,否则前进至步骤620。
在步骤610,由于微电网M1、M2均处于轻载运行状态,所以将微电网M1、M2设定为并网运行状态,并使其以可再生能源最大功率发电,可发电功率的余量上网。
在步骤620,由于微电网M1、M2均处于重载运行状态,所以将微电网M1、M2设定为并网运行状态并上网取电。
然后,该处理结束。
以上详细说明了本发明实施方式的微电网群控制方法的具体过程。虽然以上是结合图1中的仅包含2个微电网M1、M2的微电网群来说明本发明的微电网群控制方法的,但是可以理解,在包含更多的微电网M的情形下,本发明的微电网群控制方法同样是适用的。
需要说明的是,上面描述的各步骤的顺序并不限定于图3、图4所示出的顺序,而可以根据具体实现来适宜改变。
根据本实施方式,在微电网群中,通过在背靠背变流系统的上层集中地监控微电网群且与背靠背变流系统相协作来实现微电网间的协调控制,能够提高微电网群的协调控制能力,能够及时解决多个微电网间的并联频率异步 问题、功率平衡问题及故障保护问题,从而极大地提高微电网群的分布式可再生资源的利用效率。
此外,在其他的实施方式中,本发明的微电网群控制方法还可以包含用于实现上面所述的中心处理单元21的工作项6-9的步骤。
根据本发明的一个实施方式,还提供一种计算机设备。所述计算机设备包括处理器和存储器,存储器存储有能够在处理器上执行的计算机程序,当所述计算机程序被处理器执行时,实现根据本发明的微电网群控制方法的步骤。
此外,应该理解,根据本发明示例性实施方式的装置和系统中的各个单元可被实现硬件组件和/或软件组件。本领域技术人员根据限定的各个单元所执行的处理,可以例如使用现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元。
此外,根据本发明示例性实施方式的方法可以被实现为计算机可读记录介质中的计算机程序。本领域技术人员可以根据对上述方法的描述来实现所述计算机程序。当所述计算机程序在计算机中被执行时实现本发明的上述方法。
尽管已经参照其示例性实施方式具体显示和描述了本发明,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本发明的精神和范围的情况下,可以对其进行形式和细节上的各种改变。
Claims (24)
- 一种微电网群中央控制器,其特征在于,包括:微电网监控单元,其对微电网群中的各所述微电网的运行状态进行监控;背靠背变流系统监控单元,其对所述微电网群中的至少一个背靠背变流系统的运行状态进行监控;断路器监控单元,其对所述微电网群中的各断路器的状态进行监控;以及中心处理单元,其从所述微电网监控单元收集微电网运行状态数据、从所述背靠背变流系统监控单元收集背靠背变流系统运行状态数据且从所述断路器监控单元收集断路器状态数据并进行分析,控制各所述微电网的运行状态和所述至少一个背靠背变流系统的运行状态。
- 根据权利要求1所述的微电网群中央控制器,其特征在于,所述中心处理单元控制各所述微电网的运行状态进一步包括协调地控制各所述微电网的并网、离网,各微电网间的并联、分离以及各所述微电网内的设备的投切,所述中心处理单元协调地控制所述至少一个背靠背变流系统的运行状态包括协调地控制该背靠背变流系统的运行模式的切换。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述中心处理单元控制各所述微电网的运行状态以使得所述微电网群系统特征根全部位于s平面左半部分。
- 根据权利要求3所述的微电网群中央控制器,其特征在于,所述背靠背变流系统的重载端变流器设定为PQ运行模式,且轻载端变流器设定为V/F运行模式;其中,重载端微电网的特征根位于s平面右半部分,且,轻载端微电网的特征根位于s平面左半部分。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述中心处理单元在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且两端的并网断路器均无故障时,在一端的微电网处于重载运行状态且另一端的微电网处于轻载运行状态的情况下,使该两端的所述微电网通过该背靠背变流系统并联,并将该背靠背变流系统的重载 端变流器设定为PQ运行模式、将轻载端变流器设定为V/F运行模式。
- 根据权利要求5所述的微电网群中央控制器,其特征在于,所述中心处理单元:在所述轻载的微电网的可再生能源可发电功率余量大于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网设定为离网运行状态,将所述轻载的微电网设定为并网运行状态并使其除供给所述重载的微电网的负荷功率以外的可发电功率余量上网;在所述轻载的微电网的可再生能源可发电功率余量基本等于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网和所述轻载的微电网设定为离网运行状态;在所述轻载的微电网的可再生能源可发电功率余量小于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网设定为并网运行状态并使其除通过所述轻载的微电网供给的功率以外的负荷功率缺量上网取电。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述中心处理单元在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且两端的并网断路器均无故障时,在该两端的微电网均处于轻载运行状态或均处于重载运行状态的情况下,使该背靠背变流系统将两端的所述微电网断开。
- 根据权利要求5所述的微电网群中央控制器,其特征在于,所述中心处理单元:在所述两端的微电网均处于重载运行状态的情况下,将所述两端的微电网设定为并网运行状态并上网取电;在所述两端的微电网均处于轻载运行状态的情况下,将所述两端的微电网设定为并网运行状态并使其可发电功率的余量上网。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述中心处理单元在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且一端的并网断路器有故障时,使该两端的所述微电网通过该背靠背变流系统并联。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述微电网运行状态数据包含微电网内的负荷功率、各电源发电功率、可再生能源最大可发电功率、各设备的运行状态以及微电网的运行电压、频 率和相位信息中的至少一种,所述背靠背变流系统运行状态数据包含背靠背变流系统的当前运行模式。
- 根据权利要求1或2所述的微电网群中央控制器,其特征在于,所述断路器包含各所述微电网中的断路器、各所述微电网的并网断路器以及所述至少一个背靠背变流系统的断路器。
- 一种微电网群控制系统,其特征在于,包括:至少一个背靠背变流系统,其能够将微电网群中的各微电网中的两个微电网彼此连接;以及权利要求1~11中的任一项所述的微电网群中央控制器,其与各所述微电网和所述至少一个背靠背变流系统连接,对各所述微电网和所述至少一个背靠背变流系统协调地进行控制。
- 根据权利要求12所述的微电网群控制系统,其特征在于,所述至少一个背靠背变流系统的变流器能够在PQ、V/F和VSG三种模式之间切换。
- 一种微电网群控制方法,其特征在于,包括:对微电网群中的各微电网的运行状态进行监控而收集微电网运行状态数据;对所述微电网群中的至少一个背靠背变流系统的运行状态进行监控而收集背靠背变流系统运行状态数据;对所述微电网群中的各断路器的状态进行监控而收集断路器状态数据;以及对所述微电网运行状态数据、所述背靠背变流系统运行状态数据和所述断路器状态数据进行分析,且协调地控制各所述微电网的运行状态和所述至少一个背靠背变流系统的运行状态。
- 根据权利要求14所述的微电网群控制方法,其特征在于,所述分析且协调地控制步骤进一步包括:协调地控制各所述微电网的并网、离网和微电网间的并联、分离以及各所述微电网内的设备的投切;以及协调地控制所述至少一个背靠背变流系统的运行模式的切换。
- 根据权利要求14或15所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,各所述微电网的运行状态以使得所述微电网群系统特征根全部位于s平面左半部分。
- 根据权利要求16所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,所述背靠背变流系统的重载端变流器设定为PQ运行模式,且轻载端变流器设定为V/F运行模式;其中,重载端微电网的特征根位于s平面右半部分,且,轻载端微电网的特征根位于s平面左半部分。
- 根据权利要求14或15所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且两端的并网断路器均无故障时,在一端的微电网处于重载运行状态且另一端的微电网处于轻载运行状态的情况下,使该两端的所述微电网通过该背靠背变流系统并联,并将该背靠背变流系统的重载端变流器设定为PQ运行模式、将轻载端变流器设定为V/F运行模式。
- 根据权利要求18所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,在所述轻载的微电网的可再生能源可发电功率余量大于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网设定为离网运行状态,将所述轻载的微电网设定为并网运行状态并使其除供给所述重载的微电网的负荷功率以外的可发电功率余量上网;在所述轻载的微电网的可再生能源可发电功率余量基本等于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网和所述轻载的微电网设定为离网运行状态;在所述轻载的微电网的可再生能源可发电功率余量小于所述重载的微电网的负荷功率缺量的情况下,将所述重载的微电网设定为并网运行状态并使其除通过所述轻载的微电网供给的功率以外的负荷功率缺量上网取电。
- 根据权利要求14或15所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且两端的并网断路器均无故障时,在该两端的微电网均处于轻载运行状态或均处于重载运行状态的情况下,使 该背靠背变流系统将两端的所述微电网断开。
- 根据权利要求20所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,在所述两端的微电网均处于重载运行状态的情况下,将所述两端的微电网设定为并网运行状态并上网取电;在所述两端的微电网均处于轻载运行状态的情况下,将所述两端的微电网设定为并网运行状态并使其可发电功率的余量上网。
- 根据权利要求14或15所述的微电网群控制方法,其特征在于,在所述分析且协调地控制步骤中,在分析出所述至少一个背靠背变流系统的两端的所述微电网均处于孤岛运行状态且一端的并网断路器有故障时,使该两端的所述微电网通过该背靠背变流系统并联。
- 一种存储有计算机程序的计算机可读存储介质,其中,当所述计算机程序被处理器执行时实现如权利要求14~21中的任一项所述的微电网群控制方法。
- 一种微电网群控制装置,其中,所述装置包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求14~21中的任一项所述的微电网群控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110481544.4 | 2021-04-30 | ||
CN202110481544.4A CN113300399B (zh) | 2021-04-30 | 2021-04-30 | 微电网群中央控制器、微电网群控制方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022227403A1 true WO2022227403A1 (zh) | 2022-11-03 |
Family
ID=77320958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/121518 WO2022227403A1 (zh) | 2021-04-30 | 2021-09-29 | 微电网群中央控制器、微电网群控制方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113300399B (zh) |
WO (1) | WO2022227403A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113300399B (zh) * | 2021-04-30 | 2024-02-13 | 北京天诚同创电气有限公司 | 微电网群中央控制器、微电网群控制方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106786494A (zh) * | 2017-03-01 | 2017-05-31 | 中南大学 | 带有并联变换器的直流微电网系统及其稳定方法 |
CN107181275A (zh) * | 2017-06-13 | 2017-09-19 | 湖南大学 | 一种含分布式储能系统的光伏直流微网控制方法 |
CN108183486A (zh) * | 2018-01-17 | 2018-06-19 | 中国科学院电工研究所 | 一种柔性多状态开关及其控制方法 |
CN109617145A (zh) * | 2018-11-30 | 2019-04-12 | 国网江苏省电力有限公司连云港供电分公司 | 一种基于能源路由器的多微电网控制系统及方法 |
CN110601272A (zh) * | 2019-10-28 | 2019-12-20 | 南京工程学院 | 一种基于虚拟同步机的背靠背变流器控制方法及系统 |
US20200335977A1 (en) * | 2017-11-23 | 2020-10-22 | Abb Power Grids Switzerland Ag | Microgrid Control System and Method Thereof |
CN113300399A (zh) * | 2021-04-30 | 2021-08-24 | 北京天诚同创电气有限公司 | 微电网群中央控制器、微电网群控制方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104852404A (zh) * | 2015-05-25 | 2015-08-19 | 国家电网公司 | 一种并网型海岛电网的微电网系统 |
CN108321831B (zh) * | 2017-03-24 | 2021-02-26 | 湘潭大学 | 一种铁路功率调节器滤波电感参数不确定的控制方法 |
CN109038691A (zh) * | 2018-07-10 | 2018-12-18 | 东南大学 | 基于虚拟惯量的混合型电力电子变压器调频调压控制策略 |
-
2021
- 2021-04-30 CN CN202110481544.4A patent/CN113300399B/zh active Active
- 2021-09-29 WO PCT/CN2021/121518 patent/WO2022227403A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106786494A (zh) * | 2017-03-01 | 2017-05-31 | 中南大学 | 带有并联变换器的直流微电网系统及其稳定方法 |
CN107181275A (zh) * | 2017-06-13 | 2017-09-19 | 湖南大学 | 一种含分布式储能系统的光伏直流微网控制方法 |
US20200335977A1 (en) * | 2017-11-23 | 2020-10-22 | Abb Power Grids Switzerland Ag | Microgrid Control System and Method Thereof |
CN108183486A (zh) * | 2018-01-17 | 2018-06-19 | 中国科学院电工研究所 | 一种柔性多状态开关及其控制方法 |
CN109617145A (zh) * | 2018-11-30 | 2019-04-12 | 国网江苏省电力有限公司连云港供电分公司 | 一种基于能源路由器的多微电网控制系统及方法 |
CN110601272A (zh) * | 2019-10-28 | 2019-12-20 | 南京工程学院 | 一种基于虚拟同步机的背靠背变流器控制方法及系统 |
CN113300399A (zh) * | 2021-04-30 | 2021-08-24 | 北京天诚同创电气有限公司 | 微电网群中央控制器、微电网群控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113300399A (zh) | 2021-08-24 |
CN113300399B (zh) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110943483B (zh) | 一种微电网系统及控制方法 | |
Shi et al. | Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids | |
CN111064223B (zh) | 一种基于边缘计算的微电网电能质量控制系统及方法 | |
Jia et al. | Analysis of the transition between multiple operational modes for hybrid AC/DC microgrids | |
Zhang et al. | Analysis of networked control schemes and data-processing method for parallel inverters | |
Khatibi et al. | Impact of distributed energy resources on frequency regulation of the bulk power system | |
CN110544938A (zh) | 一种含电池和超级电容的低压微电网并离网控制方法 | |
CN110460056B (zh) | 串联补偿环节与交直流母线接口变换器的协调控制方法 | |
Gadde et al. | Comparison of PR and PI controllers for inverter control in an unbalanced microgrid | |
Li et al. | The steady-state and fault ride-through control strategies of soft normally open point in distribution network | |
WO2022227403A1 (zh) | 微电网群中央控制器、微电网群控制方法及系统 | |
Yu et al. | Study on Small Disturbance Stability of Photovoltaic Grid-Connected Power Generation System | |
Mexis et al. | Voltage unbalance mitigation by novel control of bess single–phase inverters | |
Li et al. | A hierarchical control strategy of micro-grid based on grid-friendly distributed generation technology | |
Li et al. | An adaptive coordinated constant voltage control method considering power margin for parallel bidirectional power converters in AC/DC hybrid microgrid | |
Mu et al. | Transient Fault Current Calculation Method of Photovoltaic Grid-Connected System Considering the Dynamic Response of Phase-Locked Loop | |
Xu et al. | Fast frequency regulation strategy for improving frequency stability of off-grid microgrid | |
Ionescu | Voltage control design for grid connected photovoltaic systems | |
Zhao et al. | Mechanism Analysis on Transient Stability of the Weak Sending-end System Considering Dynamic Characteristics of HVDC | |
Saleh et al. | Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation | |
Lei et al. | Power sharing between parallel inverters in microgrid by improved droop control | |
Hasnain et al. | High-Speed Control Framework to Reduce System Awareness Delay In Microgrids: A Conceptual Approach | |
Zhang et al. | Rapid Power Support-based Frequency Response Strategy for Grid Forming Inverter in Low-Inertia Power Systems | |
Zaide et al. | Design and research of a novel multi-energy flexible switching energy router | |
Nagliero et al. | Management of grid-inverter outages and power quality disturbances in distributed power generation systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938866 Country of ref document: EP Kind code of ref document: A1 |