WO2022226991A1 - 一种资源指示方法、装置及系统 - Google Patents

一种资源指示方法、装置及系统 Download PDF

Info

Publication number
WO2022226991A1
WO2022226991A1 PCT/CN2021/091457 CN2021091457W WO2022226991A1 WO 2022226991 A1 WO2022226991 A1 WO 2022226991A1 CN 2021091457 W CN2021091457 W CN 2021091457W WO 2022226991 A1 WO2022226991 A1 WO 2022226991A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time domain
time
information
data packet
Prior art date
Application number
PCT/CN2021/091457
Other languages
English (en)
French (fr)
Inventor
高磊
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180003281.4A priority Critical patent/CN113841459B/zh
Priority to PCT/CN2021/091457 priority patent/WO2022226991A1/zh
Priority to EP21938465.8A priority patent/EP4322655A4/en
Publication of WO2022226991A1 publication Critical patent/WO2022226991A1/zh
Priority to US18/497,076 priority patent/US20240057049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communication technologies, and provides a resource indication method, device, and system, and in particular, to the field of short-distance communication.
  • wireless communication technology develops rapidly, and the related applications of wireless communication technology are in full swing.
  • Various smart terminals supporting wireless communication technology such as smart wearable devices, smart transportation devices, smart home devices, and robots, are gradually entering people's daily lives.
  • a certain communication area or range may include multiple communication domains.
  • the communication domain refers to a system composed of a group of communication nodes with a communication relationship and communication connection relationships (ie communication links) between the communication nodes.
  • a communication domain includes a main communication node (may be referred to as a main node for short) and at least A slave communication node (may be referred to as a slave node for short), wherein the master node manages time-frequency resources in the communication domain, and has the function of scheduling resources for communication links between communication nodes in the communication domain.
  • the master node can allocate time domain resources corresponding to the number of transmissions that satisfy the reliability to the slave nodes, and the master node avoids resource conflict by not overlapping the time domain resources allocated for different communication links in the time domain. In this way, each node will start data transmission at the start time of the respective allocated time domain resources, which reduces the flexibility of resource use.
  • the present application provides a resource indication method, device and system to improve the flexibility of resource usage.
  • an embodiment of the present application provides a resource indication method, and the method may be executed by a first device, or executed by a component (eg, a chip or a chip system, etc.) of the first device.
  • the first device may be an in-vehicle device or a non-vehicle device.
  • the first device is, for example, a device with a communication function such as a smart wearable device, a smart home device, a smart manufacturing device, or a smart transportation device, such as a mobile phone, a vehicle, a drone, an unmanned transportation vehicle, a car, a vehicle, Or a robot, etc., or the first device may be a control device in the above equipment, such as a cockpit domain controller (also known as a vehicle machine), a central control device, and the like.
  • a cockpit domain controller also known as a vehicle machine
  • central control device and the like.
  • the first device transmits first information indicating at least one time domain resource, wherein each time domain resource is consecutive in the time domain; and the second device is sent within the first time domain resource to the second device Send second information, wherein the second information is used to indicate the start time K of data transmission between the first device and the second device, and the time domain resources used for data transmission between the first device and the second device belong to A first time domain resource, where the first time domain resource is one of at least one time domain resource.
  • the start time K may refer to the start time of initial data transmission and/or retransmission between the first device and the second device.
  • the first device may configure at least one time domain resource for the second device, and then indicate the start time K of data transmission with the second device by sending the second information to the second device, the The data transmission is at the first time domain resource. That is to say, when the data transmission between the first device and the second device starts is determined by the first device, which means that by using the method provided by this embodiment of the present application, the first device can also instruct the other two devices (such as Data between the first device and another device except the second device, or the second device and the other device except the first device, or the other two devices except the first device and the second device) The starting moment of transmission, which can avoid resource conflict and improve the flexibility of resource use.
  • the other two devices such as Data between the first device and another device except the second device, or the second device and the other device except the first device, or the other two devices except the first device and the second device
  • the first device may first determine to send the second information to the second device in the first time domain resource.
  • the first device can determine whether to send the second information to the second device within the first time domain resource. For example, the first device can determine whether to send the second information in the first device according to the historical transmission with the second device and/or other devices.
  • the second information is sent to the second device within a time domain resource, that is, the first device determines whether to perform data transmission with the second device within the first time domain resource according to historical transmission conditions. For example, after the first device performs data transmission with other devices within the first time domain resources, the remaining time domain resources of the first time domain resources are insufficient, the first device determines not to send the second device to the second device within the first time domain resources information.
  • the priority of data transmission between the first device and other devices is higher than the priority of data transmission between the first device and the second device, then the first device determines that it is not in the first device.
  • the second information is sent to the second device within the time domain resource. Further, if the first device determines not to send the second information to the second device within the first time domain resource, the first time domain resource is not used for data transmission between the first device and the second device.
  • the method may also include:
  • the first device receives the first data packet from the second device within the first time domain resource; or,
  • the first device sends the second data packet to the second device within the first time domain resource; or,
  • the first device receives a first data packet from the second device within the first time domain resource, and sends a second data packet to the second device within the first time domain resource.
  • the data transmission between the first device and the second device can be unidirectional data transmission, for example, the second device sends the first data packet to the first device within the first time domain resource, or the first device transmits the first data packet in the first time domain resource.
  • the second data packet is sent to the second device within the time domain resource.
  • the start time K may be the start time of starting initial data transmission or retransmission in one-way data transmission.
  • the data transmission between the first device and the second device may also be bidirectional data transmission, for example, the second device sends the first data packet to the first device in the first time domain resource, and the first device transmits the first data packet in the first time domain Send the second data packet to the second device within the resource.
  • the start time K may be the start time of the initial data transmission or retransmission in the bidirectional data transmission, or the start time of the initial data transmission in one data transmission direction.
  • the second information includes identification information of the second device, or includes identification information of a communication link between the first device and the second device, or includes identification information of the second device and the first device. Identification information of the communication link between the device and the second device.
  • the second information when the second information only includes the identification information of the second device, the second information can be used to distinguish data transmission with other devices to indicate the start of data packet transmission with the second device time.
  • the second information when the second information only includes the identification information of the communication link with the second device, the second information can be used to distinguish it from other communication links (eg, between the first device and the second device except for the communication link) data transmission on a communication link other than a communication link, or a communication link between other devices) to indicate the start moment of a data transmission or a series of data transmissions on the communication link.
  • the second information can be used to distinguish data transmission with other communication links, and distinguish from other devices data transfer between to indicate the start moment of a data transfer or a series of data transfers with the second device.
  • the first device and multiple devices can perform data transmission on the same communication link, and the identification information of the second device can identify the first device.
  • the second information is used to indicate data transmission with the second device through the communication link.
  • the time domain resource of the second information is used to indicate the starting moment K.
  • the second information is used to indicate the start time K, and the time domain resource that can be the second information is used to indicate the start time K.
  • the second information may be a trigger signal for triggering data transmission between the first device and the second device.
  • the second information may also include channel-coded and/or modulated data, where the data includes service data and/or control information, in this case, the data corresponding to the data transmission may or may not include the second information data in .
  • the time domain resource of the second information is used to indicate the starting moment K may be:
  • the sending time of the second information is equal to the starting time K; or,
  • the completion time of the transmission of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the sending time of the second information can be equal to the starting time K, for example, the first device acts as a sending node and sends the second data packet and the second information to the second device together; or, the sending completion time of the second information is equal to the starting time K, if the first device acts as a sending node, it sends the second information and the second data packet to the second device successively; or, there is a first interval between the sending time of the second information and the starting time K, such as The second device acts as a sending node, and there is a first interval between the time when the second information is sent and when the second device starts sending the first data packet to the first device; or, between the time when the transmission of the second information is completed and the start time K There is a first interval. If the second device acts as a sending node, there is a first interval between the moment when the second information is sent and when the second device starts to send the first data packet to the first device.
  • the first interval is predefined or configured, and the first interval may be an interval selected by the sending node (eg, the first device or the second device) from a predefined or preconfigured interval set or range. Accordingly, the receiving node may detect data packets from the sending node according to a predefined or preconfigured interval set or range.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time The time domain resource unit where K is located is the Mth time domain resource unit in the N time domain resource units.
  • the first device can configure time-domain resources for data transmission with the second device with the granularity of time-domain resource units.
  • the N time domain resource units may be counted from 1, such as time domain resource units 1 to N, or may be counted from 0, such as time domain resource units 0 to N-1.
  • the first time-domain resource unit in the N time-domain resource units may be the most advanced time-domain resource unit in the time domain among the N time-domain resource units.
  • the start time K may be the start time or the end time of the Mth time domain resource unit.
  • the first device sends the second information to the second device in the first time domain resource, which may be: the first device starts to send the Lth time domain resource unit in the N time domain resource units
  • L is a positive integer greater than 0 and less than or equal to M.
  • the first device can send the second information to the second device in advance, or can send the second information in the Mth time domain resource unit, that is, the sending time of the second information can be at the same time as the start time K within a time domain resource unit.
  • the first device starts to send the second information at the Lth time-domain resource unit among the N time-domain resource units, which may be: the first device starts sending the second information at the start time of the L time-domain resource units Start sending the second message.
  • the sending moment of the second information may be the start moment of the Lth time domain resource unit.
  • the method may further include: the first device sends third information, where the third information is used to indicate the configuration of the time domain resource unit.
  • the time domain resource unit can be configured by the third information sent by the first device.
  • the method may further include: the first device sends fourth information to the third device within the second time domain resource, where the fourth information is used to indicate data between the first device and the third device
  • the time domain resources used for data transmission between the first device and the third device belong to the second time domain resources, the second time domain resources are continuous in the time domain, and the second time domain resources There is an overlapping portion with the first time domain resource, and the start time H is located in the overlapping portion between the second time domain resource and the first time domain resource.
  • the first device since when the data transmission between the first device and the second device starts is flexibly determined by the first device, when the first data packet and/or the second data packet are correctly received, or the first data packet is stopped After the data packet and/or the second data packet is sent, and the first time domain resources are still remaining, the first device may indicate a certain moment in the remaining time domain resources as data transmission with other devices start time. That is to say, through this design, the first device can configure the remaining time domain resources for data transmission between the first device and the second device for data transmission with other devices, so as to avoid wasting the remaining time domain resources , to improve the utilization of time domain resources.
  • the start time of the first time domain resource is later than the start time of the third time domain resource
  • the third time domain resource is continuous in the time domain
  • the time domain resource used for data transmission between the first device and the fourth device belongs to the third time domain resource
  • the starting time K may be located between the third time domain resource and the fourth time domain resource. within the overlapping portion between the first time domain resources.
  • the first device since when the data transmission between the first device and the second device starts is flexibly determined by the first device, when the data transmission between the first device and the fourth device in the third time domain resource ends, , and when the third time domain resources are still remaining, the first device may indicate a certain moment in the remaining time domain resources as the start moment of data transmission with the second device. In other words, the first device can configure the remaining time domain resources for data transmission between the first device and other devices for data transmission with the second device, so as to avoid wasting the remaining time domain resources and improve Time domain resource utilization.
  • an embodiment of the present application provides a communication method, and the method may be executed by a second device, or by a component of the second device (eg, a chip or a chip system) or the like.
  • the second device may be an in-vehicle device or a non-vehicle device.
  • the second device is, for example, a device with a communication function, such as a smart wearable device, a smart home device, a smart manufacturing device, or a smart transportation device, such as a headset, a mobile phone, a vehicle, and a drone.
  • the second device receives first information from the first device, the first information is used to indicate at least one time domain resource, wherein each time domain resource is consecutive in the time domain; and the first time domain resource Receive second information from the first device, the second information is used to indicate the start time K of the data transmission between the second device and the first
  • the time domain resource belongs to the first time domain resource, and the first time domain resource is one of at least one time domain resource.
  • the method may also include:
  • the second device receives the second data packet from the first device within the first time domain resource; or,
  • the second device sends the first data packet to the first device within the first time domain resource; or,
  • the second device receives the second data packet from the first device within the first time domain resource, and sends the first data packet to the first device within the first time domain resource.
  • the second information includes identification information of the second device, or includes identification information of a communication link between the first device and the second device, or includes identification information of the second device and the first device Identification information of the communication link with the second device.
  • the time domain resource of the second information is used to indicate the starting moment K.
  • the time domain support of the second information is used to indicate that the starting time K may be:
  • the moment when the second information is received is equal to the start moment K; or,
  • the reception completion time of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time K The time domain resource unit where it is located is the Mth time domain resource unit in the N time domain resource units.
  • the start time K is the start time or the end time of the Mth time domain resource unit.
  • the second device receives the second information from the first device in the first time domain resource, which may be: the Lth time domain resource unit of the N time domain resource units by the second device Start receiving the second information from the first device, L is a positive integer greater than 0 and less than or equal to M.
  • the second device starts to receive the second information from the first device at the Lth time domain resource unit among the N time domain resource units, which may be: the second device is at the Lth time domain The start time of the resource unit starts to receive the second information.
  • the method may further include: the second apparatus starts to detect the second information at the start time of each time-domain resource unit in the N time-domain resource units.
  • the second device can only blindly detect the second information at the start time of each time domain resource unit, without performing blind detection in the entire time domain resource, thereby reducing the amount of blind detection of the second device and simplifying the
  • the implementation complexity of the second device can further reduce the power consumption of the second device.
  • the method may further include: the second device receives third information from the first device, where the third information is used to indicate the configuration of the time domain resource unit.
  • an embodiment of the present application provides a resource indication device.
  • the device may include a processing unit, a sending unit, and a receiving unit, and these units may perform corresponding functions performed by the first device in any of the design examples of the first aspect.
  • the resource indicating device may be the first device or a functional unit, a chip, an integrated circuit, or the like inside the first device.
  • the sending unit is configured to send first information, where the first information is used to indicate at least one time domain resource, wherein each time domain resource is continuous in time domain; and, within the first time domain resource, to the second time domain resource;
  • the device sends second information, the second information is used to indicate the start time K of the data transmission between the resource indicating device and the second device, and the time domain resources used for the data transmission between the resource indicating device and the second device belong to the first A time domain resource, where the first time domain resource is one of at least one time domain resource.
  • the processing unit before the resource indicating device sends the second information to the second device within the first time domain resource, the processing unit is configured to determine to send the second information to the second device within the first time domain resource.
  • the receiving unit is configured to receive the first data packet from the second device within the first time domain resource; or,
  • the sending unit is configured to send the second data packet to the second device within the first time domain resource; or,
  • the sending unit is configured to send the second data packet to the second device within the first time domain resource, and the receiving unit receives the first data packet from the second device within the first time domain resource.
  • the second information includes identification information of the second device, or includes identification information of a communication link between the resource indicating device and the second device, or includes identification information of the second device and the resource indicating device Identification information of the communication link with the second device.
  • the time domain resource of the second information is used to indicate the starting moment K.
  • the time domain resource of the second information is used to indicate the starting moment K may be:
  • the sending time of the second information is equal to the starting time K; or,
  • the completion time of the transmission of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time K The time domain resource unit where it is located is the Mth time domain resource unit in the N time domain resource units.
  • the start time K is the start time or the end time of the Mth time domain resource unit.
  • the sending unit is specifically configured to: start sending the second information at the Lth time domain resource unit in the N time domain resource units, where L is a positive integer greater than 0 and less than or equal to M .
  • the sending unit is specifically configured to: start sending the second information at the starting moment of the L time-domain resource units.
  • the sending unit is further configured to: send third information, where the third information is used to indicate the configuration of the time domain resource unit.
  • the sending unit is further configured to: in the second time domain Send fourth information to the third device within the resource, where the fourth information is used to indicate the start time H of data transmission between the resource indicating device and the third device, and is used for data transmission between the resource indicating device and the third device
  • the time domain resource belongs to the second time domain resource
  • the second time domain resource is continuous in the time domain, there is an overlap between the second time domain resource and the first time domain resource
  • the transmission time of the fourth information is located in the second time domain resource. within the overlapping portion between the time domain resource and the first time domain resource.
  • the start time H may also be located in the overlapping portion between the second time domain resource and the first time domain resource.
  • the first time domain resource and the third time domain resource there may be an overlap between the first time domain resource and the third time domain resource, and the start time of the first time domain resource is later than the start time of the third time domain resource
  • the third time domain resources are continuous in the time domain, and the time domain resources used for data transmission between the resource indicating device and the fourth device belong to the third time domain resources; when the resource indicating device and the fourth device are in the third time domain
  • the sending moment of the second information may be located in the overlapping portion between the first time domain resource and the third time domain resource.
  • the start time K may also be located in the overlapping portion between the third time domain resource and the first time domain resource.
  • an embodiment of the present application provides a communication device, which may include a processing unit, a sending unit, and a receiving unit, and these units may perform corresponding functions performed by the second device in any of the design examples of the second aspect.
  • the communication device may be a second device or a functional unit, a chip, an integrated circuit, or the like inside the second device.
  • a receiving unit configured to receive first information from the first device, where the first information is used to indicate at least one time domain resource, wherein each time domain resource is continuous in the time domain; and, receive within the first time domain resource
  • the second information from the first device the second information is used to indicate the start time K of the data transmission between the communication device and the first device, and the time domain resources used for the data transmission between the communication device and the first device belong to The first time domain resource, where the first time domain resource is one of at least one time domain resource.
  • the receiving unit is further configured to receive the second data packet from the first device within the first time domain resource; or,
  • the sending unit is further configured to send the first data packet to the first device within the first time domain resource; or,
  • the sending unit is further configured to send a first data packet to the first device within the first time domain resource
  • the receiving unit is further configured to receive a second data packet from the first device within the first time domain resource.
  • the second information includes identification information of the communication device, or includes identification information of a communication link between the first device and the communication device, or includes identification information of the communication device and the first device and the communication device. Identification information of the communication link between them.
  • the time domain resource of the second information is used to indicate the starting moment K.
  • the time domain resource of the second information is used to indicate the starting moment K may be:
  • the moment when the second information is received is equal to the start moment K; or,
  • the reception completion time of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time K The time domain resource unit where it is located is the Mth time domain resource unit in the N time domain resource units.
  • the start time K is the start time or the end time of the Mth time domain resource unit.
  • the receiving unit is specifically configured to: start to receive the second information from the first device at the Lth time domain resource unit in the N time domain resource units, where L is greater than 0 and less than or A positive integer equal to M.
  • the receiving unit is specifically configured to: start to receive the second information at the starting moment of the Lth time domain resource unit.
  • the processing unit is configured to start detecting the second information at a start time of each time domain resource unit in the N time domain resource units.
  • the receiving unit is further configured to: receive third information from the first device, where the third information is used to indicate the configuration of the time domain resource unit.
  • the present application provides a resource indicating device, where the resource indicating device may be a first device or a device in the first device.
  • the resource indication apparatus may include one or more processors configured to implement the method performed by the first apparatus in the first aspect.
  • the resource indicating device may also include a memory for storing program instructions and data.
  • the memory is coupled to the one or more processors, and the one or more processors can call and execute program instructions stored in the memory, so as to implement any one of the methods performed by the first apparatus in the first aspect.
  • the resource indication apparatus may further include a transceiver, and the transceiver is used for the resource indication apparatus to communicate with other devices.
  • the present application provides a communication device, where the communication device may be a second device or a device in the second device.
  • the communication apparatus may include one or more processors configured to implement the method performed by the second apparatus in the above-mentioned second aspect.
  • the communication apparatus may also include memory for storing program instructions and data.
  • the memory is coupled to the one or more processors, and the one or more processors can call and execute program instructions stored in the memory, so as to implement any one of the methods performed by the second apparatus in the second aspect.
  • the communication apparatus may further include a transceiver, and the transceiver is used for the communication apparatus to communicate with other devices.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the first device in any of the design examples of the first aspect can be implemented method performed.
  • the present application provides a computer-readable storage medium in which a computer program or instruction is stored.
  • the second device in any of the design examples of the second aspect can be implemented. method performed.
  • the present application provides a computer program product, comprising instructions, when the instructions are run on a computer, the computer executes the method performed by the first device in any of the design examples of the first aspect.
  • the present application provides a computer program product, comprising instructions, which, when the instructions are run on a computer, cause the computer to execute the method executed by the second apparatus in any of the design examples of the second aspect.
  • the present application further provides a chip system
  • the chip system includes at least one processor and an interface circuit
  • the processor is configured to execute instruction and/or data interaction through the interface circuit, so that the chip system
  • the device where the device is located implements the method performed by the first device in any one of the above design examples of the first aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application further provides a system-on-chip
  • the system-on-chip includes at least one processor and an interface circuit, where the processor is configured to execute instruction and/or data interaction through the interface circuit, so that the system-on-chip
  • the device where the device is located implements the method performed by the second device in any one of the design examples of the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application further provides a communication system, which includes the resource indication device in any of the design examples of the fifth aspect and the communication device in any of the design examples of the sixth aspect.
  • the present application further provides a terminal device, the terminal device comprising the resource indication device in any of the design examples of the fifth aspect and/or the communication device in any of the design examples of the sixth aspect, or It includes the chip system in any one of the design examples of the eleventh aspect and/or the chip system in any one of the design examples of the twelfth aspect above.
  • the chip systems involved in the eleventh aspect and the twelfth aspect may be the same chip system or different chip systems.
  • FIG. 1A is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 1B is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 1C is a schematic diagram of still another application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of data transmission between master and slave nodes in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a time domain resource allocated by a master node to a slave node in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a resource indication method provided by an embodiment of the present application.
  • 5A is a schematic diagram of a start time K provided by an embodiment of the present application.
  • 5B is a schematic diagram of a start time K provided by an embodiment of the present application.
  • FIG. 5C is another schematic diagram of a start time K provided by an embodiment of the present application.
  • FIG. 5D is another schematic diagram of a start time K provided by an embodiment of the present application.
  • FIG. 6A is still another schematic diagram of a start time K provided by an embodiment of the present application.
  • FIG. 6B is still another schematic diagram of the start time K provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of data transmission provided by an embodiment of the present application.
  • 8A is a schematic diagram of unidirectional data transmission provided by an embodiment of the present application.
  • FIG. 8B is another schematic diagram of unidirectional data transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of bidirectional data transmission provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of bidirectional data transmission provided by an embodiment of the present application.
  • FIG. 11 is still another schematic diagram of bidirectional data transmission provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a resource indication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a time domain resource 3 and a time domain resource 4 provided by an embodiment of the present application;
  • FIG. 14 is a schematic flowchart of another resource indication method provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a time domain resource 3 and a time domain resource 5 provided by an embodiment of the present application;
  • FIG. 16 is a schematic structural diagram of a resource indication apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the master node and the slave node are two types of nodes distinguished in terms of logical functions, namely the master node and the slave node.
  • the master node manages the slave nodes, has the function of allocating resources, and is responsible for allocating resources to the slave nodes; the slave nodes use the resources allocated by the master node to communicate according to the scheduling of the master node.
  • the nodes can be various devices, for example, the master node is a mobile phone, the slave node is a headset, and the mobile phone and the headset establish a communication connection to realize data interaction.
  • the mobile phone manages the headset, and the mobile phone has the function of allocating resources, which can allocate resources to the headset.
  • the data transmission involved in the embodiments of this application may be data transmission between a master node and a slave node, or data transmission between a slave node and a slave node implemented by scheduling resources of the master node.
  • the example does not limit this.
  • Time domain resource units which may be time units such as superframes, frames (or radio frames), subframes, time slots, events or sub-events, or may be a unit group constructed of multiple consecutive time units.
  • the time domain resource unit may be predefined by a protocol, or configured by sending a message from the master node to the slave node, or pre-agreed between the master node and the slave node.
  • the superframe is used by the coordinator to limit the access time of the device to each channel.
  • the superframe can divide the communication time into two periods, namely, an active period and an inactive period. During periods of inactivity, the coordinator enters a low power mode or sleep mode.
  • a superframe may include multiple radio frames, such as 48 radio frames, each radio frame has a duration of about 20.83 microseconds (us), and each frame may include S symbols, where S is a positive integer, such as S can be 7 or 8, etc.
  • S is a positive integer, such as S can be 7 or 8, etc.
  • the length or granularity of the specific time-domain resource unit can be set or defined according to the needs of system design.
  • Cockpit domain controller (cockpit domain controller or control domain cockpit, CDC), referred to as vehicle machine.
  • vehicle machine the functions of the car already have cellular communication functions (3G, 4G, etc.), which can be combined with the car's controller area network (CAN)-bus ( BUS) technology to realize information communication between people and vehicles, vehicles and the outside world, and enhance user experience, service, and safety-related functions.
  • CAN controller area network
  • BUS BUS
  • Communication domain a system composed of a group of communication nodes with communication relationship and communication connection relationship between communication nodes.
  • a device or device may be in multiple communication domains.
  • the mobile phone communicates with the headset wirelessly, the mobile phone is in the communication domain a including the mobile phone and the headset.
  • the mobile phone is the master node and the headset is the slave node; then when the mobile phone detects the CDC, it communicates with the CDC.
  • the mobile phone is also in the communication domain b including the mobile phone and the CDC.
  • the CDC is the master node, the mobile phone is the slave node, and the mobile phone obeys the scheduling of the CDC.
  • the communication domain b may also include other slave nodes, such as a car speaker, a microphone, and the like.
  • Network equipment can also be called wireless access network equipment, which can be base station (base station), eNodeB, transmission reception point (TRP), gNB, 6th generation (6G) mobile communication system
  • base station base station
  • eNodeB transmission reception point
  • TRP transmission reception point
  • gNB 6th generation (6G) mobile communication system
  • the wireless access network equipment may be a macro base station, a micro base station, an indoor station, or the like.
  • the wireless access network device may also be a Bluetooth (bluetooth, BT) gateway, a low-power Bluetooth (bluetooth low energy, BLE) gateway, a BT/BLE dual-mode gateway or a multi-mode gateway, or a gateway compatible with the above-mentioned Bluetooth related technologies, and other possible The short-range communication gateway, etc.
  • BT Bluetooth
  • BLE low-power Bluetooth
  • the terminal equipment may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the terminal may also be a short-range communication type device that supports BT, or BLE, or is compatible with BT or BLE technology, or supports other possible short-range communication technologies.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the ordinal numbers such as “first”, “second”, and “third” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, Content, sequence, timing, priority or importance, etc.
  • the first information, the second information, and the third information, etc. are only for distinguishing different information, and do not indicate the difference in size, content, transmission order, priority, or importance of the three pieces of information.
  • the wireless communication scenarios to which the technical solutions provided in the embodiments of the present application are applied may include wide area wireless communication, for example, communication between multiple base stations and multiple terminal devices, where the base station may serve as a master node, and the terminal device may serve as a slave node.
  • the base station as the master node can allocate resources to the terminal equipment, and the terminal equipment obeys the scheduling of the base station.
  • the wireless communication scenarios to which the technical solutions provided in the embodiments of the present application are applied may also include short-range wireless communication scenarios, for example, including the communication between the CDC and the car speaker, car microphone, and mobile phone, and the communication between the mobile phone and wearable devices such as headphones. communication, etc.
  • the wireless communication scenarios to which the technical solutions provided in the embodiments of the present application are applied may also include local area wireless communication, such as communication between multiple access points (access points, APs) and multiple stations (stations).
  • the network architecture shown in FIG. 1A may be a network architecture applied by the embodiments of the present application. If the technical solutions provided by the embodiments of the present application are applied to other wide-area wireless communication or local-area wireless communication scenarios, the network architecture applied by the embodiments of the present application may be changed accordingly.
  • one of the communication domains includes a master node and at least one slave node, wherein the master node schedules the slave nodes and configures resources for the slave nodes to realize the communication between the master and slave nodes.
  • the mobile phone, the headset and the wearable device belong to a communication domain, such as communication domain 1, in which the mobile phone is the master node, and the headset and the wearable device are the slave nodes; the CDC, the display screen, the microphone, and the speaker belong to a communication domain.
  • Communication domain 2 for example, called communication domain 2, in which CDC is the master node, and the display screen, microphone and speaker are slave nodes; keyless entry and start system (passive entry passive start, PEPS), body control module (body control module, BCM) , mobile key and car key belong to one communication domain, for example called communication domain 3, where PEPS is the master node, BCM, mobile key and car key are slave nodes; MDC, camera and radar belong to one communication domain, such as called communication domain 4, where MDC is the master node, camera and radar are slave nodes.
  • the master node of one communication domain can also serve as the slave node of another communication domain.
  • the mobile phone in the communication domain 1 can serve as the slave node of the communication domain 2.
  • FIG. 1B may be referred to, which is an application scenario of the embodiments of the present application.
  • FIG. 1B includes a terminal device 1 and a terminal device 2, and the terminal device 1 and the terminal device 2 can communicate through a sidelink (SL).
  • terminal device 1 may act as a master node
  • terminal device 2 may act as a slave node.
  • FIG. 1C is an application scenario of the embodiments of the present application.
  • FIG. 1C includes a network device and a terminal device, and the network device and the terminal device can communicate through a Uu port.
  • FIG. 1B and FIG. 1C take that the terminal device is a mobile phone as an example, and the terminal device in this embodiment of the present application is not limited to this.
  • in-vehicle wireless can further reduce the number, length, and weight of in-vehicle wiring harnesses, as well as the corresponding installation, maintenance, and maintenance costs.
  • In-vehicle communication technology has a trend of gradual wirelessization.
  • the communication domain includes a master node and at least one slave node.
  • the master node schedules the slave nodes, and configures resources for the slave nodes, so as to realize the transmission of service data between the master node and the slave nodes, or between the slave nodes and the slave nodes.
  • the communication system between the master node and the slave node is compatible with the BT technology, or the BLE technology, or other possible short-range communication technologies.
  • BLE technology aims to significantly reduce power consumption and cost while maintaining the same communication range.
  • BLE technology sends broadcast messages through the broadcast channel (ie, broadcast frequency point) from the slave node, and the master node scans the broadcast channel to realize mutual discovery or connection establishment between nodes.
  • the BT technology or the BLT technology only supports data transmission based on a single hybrid automatic repeat request (HARQ, HARQ) and other stop protocols. That is, after the sending node sends a data packet to the receiving node, it will stop and wait for an acknowledgement (acknowledge, ACK) message or a nonacknowledge (NACK) message from the receiving node.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgement
  • NACK nonacknowledge
  • the master node allocates a time domain resource 1 to the slave node, where the time domain resource 1 is a time domain resource corresponding to the number of transmissions that satisfies reliability. For example, the master node allocates a time domain resource 1 for data transmission to the slave node, and the time domain resource 1 is a time domain resource corresponding to the number of times of transmission that is greater than or equal to satisfying reliability. For example, a single transmission requires 0.5ms, and the number of transmissions satisfying the reliability is 3, then the master node needs to allocate a time domain resource greater than or equal to 1.5ms for data transmission between the master node and the slave node.
  • the master node may also send indication information to the slave node to indicate the time domain resource 1 .
  • S22 The master node sends the data packet 1 to the slave node at time t1 in the time domain resource 1.
  • the slave node sends a NACK message to the master node at time t2 in time domain resource 1.
  • the slave node does not receive the data packet 1 correctly, and the slave node sends a NACK message to the master node at time t2.
  • the slave node fails to receive the data packet 1, or fails to decode the data packet 1, or the transmission time of the data packet 1 exceeds the set time. time etc.
  • the master node sends the data packet 1 to the slave node at time t3 in the time domain resource 1.
  • the master node retransmits the data packet 1 at time t3 after receiving the NACK message from the slave node.
  • S25 The slave node sends an ACK message to the master node at time t4 in time domain resource 1. After the slave node correctly receives the data packet 1, the slave node sends an ACK message to the master node at time t4.
  • the master node can allocate time domain resources corresponding to the number of transmissions that satisfy the reliability to the slave nodes, and the time domain resources allocated by the master node for different communication links generally do not overlap in the time domain to avoid resource conflict. Then, in the process of data transmission, each node will start data transmission at the start time of the time domain resources allocated by each node, which reduces the flexibility of resource use.
  • the number of transmissions actually used by the receiving node to correctly receive the data is often less than the number of transmissions required to ensure reliability.
  • the packet error rate of a single transmission is 10%.
  • 3 transmissions are required, but there is a 90% probability that the receiving node receives the data correctly in a single transmission, that is, in the actual data transmission.
  • the allocated time domain resources are often more than the time domain resources actually used for data transmission.
  • the master node allocates time domain resources corresponding to time t1 to time t5 to the slave nodes, and time domain resource 1 is from time t1 to time t5.
  • time domain resource 1 is from time t1 to time t5.
  • data packet 1 is slaved at time t4. If the node receives correctly, the time domain resources corresponding to time 4 to time t5 are unused time domain resources. Since the time domain resources allocated by the master node to different slave nodes do not overlap in the time domain, the remaining part of the time domain resource 1 is wasted, which reduces the utilization rate of the time domain resources.
  • the first device may configure at least one time domain resource for the second device, and then indicates the start time K of data transmission with the second device by sending the second information to the second device.
  • the data transmission It is located in the first time domain resource, and the first time domain resource is one of at least one time domain resource.
  • the first device can also indicate Two other devices (such as the first device and the other device except the second device, or the second device and the other device except the first device, or the other two devices except the first device and the second device In this way, resource conflict can be avoided and the flexibility of resource use can be improved.
  • the first device can also indicate the start time of data transmission between the other two devices, it means that using the method provided by the embodiment of the present application, when the first time domain resource is still remaining, the first device can A certain moment in the remaining time domain resources is indicated as the start moment of data transmission with other devices, in other words, the first device can configure the remaining time domain resources for data transmission with other devices In this way, the waste of time domain resources can be avoided and the utilization rate of time domain resources can be improved.
  • FIG. 4 is a schematic flowchart of a resource indication method provided by an embodiment of the present application. In the following introduction process, it is taken as an example that the method is applied to the network architecture shown in any one of FIG. 1A to FIG. 1C .
  • the method is performed by the first device and the second device.
  • the second device described below may be any slave node in any communication domain shown in FIG. 1A , for example, a communication
  • the headset in domain 1, or the microphone in communication domain 2, or the radar in communication domain 4, etc., or the second device can also be any slave node set in any communication domain shown in FIG. 1A
  • the first device described below can be any master node in any communication domain shown in FIG.
  • the first device may also be a chip system provided in any one of the master nodes in any one of the communication domains shown in FIG. 1A .
  • the first apparatus described below may be the terminal device 1 shown in FIG. 1B
  • the second apparatus described below may be the terminal device 1 shown in FIG. 1B .
  • Terminal equipment 2 Alternatively, if this embodiment is applied to the network architecture shown in FIG. 1C , the first apparatus described below may be the network device shown in FIG. 1C , and the second apparatus described below may be the terminal shown in FIG. 1C equipment.
  • the first device sends the first information to the second device. Accordingly, the second device receives the first information from the first device.
  • the first information may be used to indicate at least one time domain resource, and each time domain resource in the at least one time domain resource is continuous in the time domain.
  • the multiple time domain resources may be periodic or aperiodic, which is not limited in this embodiment of the present application.
  • the data transmission between the first device and the second device is a periodic service, and the first device may allocate multiple periodic time domain resources to the second device, such as allocating one time domain resource in each service transmission cycle , the one time domain resource is continuous in the service transmission period.
  • the data transmission between the first device and the second device is a periodic service
  • the first device may also allocate a plurality of aperiodic time domain resources to the second device, such as allocated in each service transmission cycle.
  • the number of time domain resources is different, but each time domain resource is continuous in time domain.
  • the start time of each time domain resource in the multiple time domain resources in the service transmission period may be the same or different. , which is not limited in the embodiments of the present application.
  • the first device may indicate the start time and end time of each time domain resource within the service transmission cycle, or may only indicate the start time of each time domain resource within the service transmission cycle, without indicating each time domain resource. The end moment of the resource in the service transmission period is not limited in this embodiment of the present application.
  • the time domain length of each time domain resource may be a service transmission cycle, that is, the end time of one time domain resource may be the start time of the next time domain resource, but the embodiment of the present application is not limited to this.
  • the first device is a master node
  • the second device is a slave node
  • the first device may allocate at least one time domain resource to the second device, and the at least one time domain resource is greater than or equal to the number of times of transmission that satisfies reliability. time domain resources.
  • At least one time domain resource is used for data transmission between the first device and the second device.
  • Each time domain resource of the at least one time domain resource is contiguous in the time domain.
  • the first information may be physical layer signaling, media access layer signaling, or high-level signaling such as link control layer signaling, or other signaling or signals, or one of the above signaling One or more fields, etc., in the embodiment of the present application does not limit the specific form of the first information.
  • the first apparatus may allocate at least one time domain resource to the second apparatus with the granularity of time domain resource units.
  • the number of time domain resource units included in each time domain resource in the at least one time domain resource may be the same or different, which is not limited in this embodiment of the present application.
  • the first time domain resource is one of the at least one time domain resource
  • the first time domain resource includes N time domain resource units
  • N is a positive integer greater than 0.
  • the time-domain resource unit may be a time unit such as a superframe, a frame, a subframe, a time slot, an event, or a sub-event, or may be a unit group composed of multiple consecutive time units, or the like.
  • the time domain resource unit may be predefined by a protocol, or pre-agreed by the first device and the second device, or configured by the first device, for example, the first device sends third information to the second device, the third The information is used to indicate the configuration of the time domain resource unit.
  • the third information may be high layer signaling. It can be understood that, the embodiment of the present application does not limit the specific implementation form of the time domain resource unit.
  • the third information and the first information may be the same information, that is, the first information is not only used to indicate at least one time domain resource, but also used to indicate the configuration of the time domain resource unit, or it may be different information.
  • the application examples are not limited.
  • S42 The first device sends the second information to the second device within the first time domain resource.
  • the second device receives the second information from the first device in the first time domain resource.
  • the first apparatus may determine whether to send the second information to the second apparatus within the first time domain resource. That is, the first device first determines whether to send the second information to the second device within the first time domain resource, and after determining to send the second information to the second device within the first time domain resource, the first device sends the second information to the second device within the first time domain resource.
  • the second information is sent inward to the second device.
  • the first device may determine whether to send the second information to the second device according to the historical transmission situation with the second device and/or other devices, that is, the first device determines whether it is within the first time domain resource according to the historical transmission situation Data transfer with the second device.
  • the first device determines not to send the second device to the second device within the first time domain resource information. For another example, in the first time domain resource, the priority of data transmission between the first device and other devices is higher than the priority of data transmission between the first device and the second device, then the first device determines that it is not in the first device. The second information is sent to the second device within the time domain resource. Further, if the first device determines not to send the second information to the second device within the first time domain resource, the first time domain resource is not used for data transmission between the first device and the second device.
  • the second information may include the identification information of the second device, or the identification information of the communication link between the first device and the second device, or the identification information of the second device and the information between the first device and the second device.
  • the identification information of the communication link to indicate that the second information is used for data transmission between the first device and the second device.
  • the data transmitted between the first device and the second device may be video data, audio data, or picture information, etc., which is not limited in this embodiment of the present application.
  • the identification information of the second device may be an identification of the second device, or may be other information used to distinguish it from other devices.
  • the identification information of the communication link between the first device and the second device may be the identification of the communication link, or may be other information used to distinguish it from other communication links (such as the one between the first device and the second device). communication links other than the communication link, and/or communication links between the first device and other devices).
  • the second information when the second information only includes the identification of the second device, the second information may be used to distinguish it from data transmission with other devices.
  • the second information when the second information includes only the identification of the communication link with the second device, the second information may be used to distinguish data transmissions with other communication links.
  • the second information includes the identification of the second device and the identification of the communication link with the second device, the second information can be used to distinguish data transmission with other communication links, and distinguish between communication with other devices data transmission.
  • the first device and multiple devices can perform data transmission on the same communication link, and the second device can be identified through the identification of the second device.
  • the information is used to indicate data transfer with the second device over the communication link.
  • the second information may be used to indicate the start time K of data transmission between the first device and the second device.
  • the start time K may be the start time of one or a series of data transmissions between the first device and the second device.
  • the start time K is located in a first time domain resource, and the first time domain resource is one of at least one time domain resource, and is used for the time domain resource for data transmission between the first device and the second device.
  • the first device sends the second information to the second device in the first time domain resource, and the second device detects and receives the second information in the first time domain resource.
  • the second device may determine the start time K of data transmission with the first device according to the second information.
  • the data packet sent by the second device to the first device is referred to as the first data packet
  • the data sent by the first device to the second device is referred to as the second data packet for description. That is, the first data packet is a data packet generated by the second device and then sent to the first device, and the second data packet is a data packet generated by the first device and then sent to the second device.
  • the generation of the data packet may include one or more of operations such as encoding, modulating, or resource mapping for high-level data.
  • the data transmission between the first device and the second device may be unidirectional data transmission, for example, the second device sends a first data packet to the first device within the first time domain resource, or the first device The second data packet is sent to the second device within the first time domain resource.
  • the data transmission between the first device and the second device may also be bidirectional data transmission, for example, the second device sends the first data packet to the first device in the first time domain resource, and the first device transmits the first data packet in the first time domain A second data packet is sent within the resource to the second device.
  • the aforementioned series of data transmission between the first device and the second device refers to a series of data transmission in a one-way transmission direction.
  • the first device sends multiple data packets to the second device, and each time the second device successfully receives one data packet, the first device sends the next data packet to the second device.
  • the start time K is the start time of the first data packet in the plurality of data packets.
  • the start time K may be understood as the start time when the first device and the second device start initial transmission and/or retransmission of data. That is, the start time K may be the start time when initial transmission or retransmission of data is started in one-way data transmission.
  • the starting time K may be the sending time when the first device initially transmits the second data packet to the second device.
  • the starting time K may be the sending time when the second device retransmits the first data packet to the first device.
  • the start time K may also be the start time of starting data retransmission in both data transmission directions, or the start time of starting data initial transmission in one data transmission direction, and the start time of the other data transmission direction.
  • the start time of data retransmission is the sending time when the first device initially transmits the second data packet to the second device, and is also the sending time when the second device initially transmits the first data packet to the first device.
  • the start time K is the sending time when the first device retransmits the second data packet to the second device, and is also the sending time when the second device initially transmits the first data packet to the first device.
  • the start time K can also be understood as the start time when the first device and the second device start data transmission. That is, regardless of whether the data is initially transmitted or retransmitted, the start time K is the start time when the first device and the second device start data transmission.
  • the first time domain resource may be a time domain resource that does not distinguish between initial transmission and retransmission, or may be a time domain resource dedicated to retransmission or initial transmission.
  • the first time domain resource may be a time domain resource dedicated to initial transmission or retransmission for one transmission direction, and a time domain resource that does not distinguish between initial transmission or retransmission for the other transmission direction;
  • the transmission direction is dedicated to time-domain resources for initial transmission or retransmission.
  • the second information may be a trigger signal or include a trigger signal, where the trigger signal is used to trigger data transmission between the first device and the second device.
  • the second information may also include data obtained through channel coding and/or modulation, where the data may be service data, or control information, or service data and control information.
  • the data transmitted between the first device and the second device may include the data included in the second information, or may not include the data included in the second information.
  • the form is not limited.
  • the second information indicates the start time K, which may be an implicit indication or an explicit indication.
  • the second information may implicitly indicate the start time K, for example, time domain resources used by the second information are used to indicate the start time K.
  • an implicit indication manner is that the sending time of the second information is used to indicate the starting time K, for example, the sending time of the second information is equal to the starting time K.
  • the first device is a sending node
  • the second device is a receiving node
  • the first device may send the second data packet together with the second information to the second device at time K in the first time domain resource, that is, the first device
  • the second information and the second data packet are sent to the second device at the same time, as shown in FIG. 5A .
  • the second device receives (or detects) the second information in the first time domain resource, and after receiving (or detects) the second information, may determine that the start time K is the time when the second information is received.
  • an implicit indication manner is that the sending time of the second information is used to indicate the starting time K, for example, there is a first interval between the sending time of the second information and the starting time K.
  • the first device sends the second information to the second device at time J of the first time domain resource. Then, after detecting the second information, the second device may determine that the starting time K is the sum of the time J and the first interval. Further, the first device starts to send the second data packet to the second device at the start time K, or the second device starts to send the first data packet to the first device at the start time K, as shown in FIG. 5B .
  • an implicit indication manner is that the completion time of sending the second information is used to indicate the start time K, for example, the time when the transmission of the second information is completed is equal to the start time K.
  • the first device is a sending node
  • the second device is a receiving node
  • the first device sends the second information and the second data packet to the second device successively within the first time domain resource, for example, the first device is in the first time domain Time J1 in the resource starts to send the second information to the second device, completes the transmission of the second information at time J2, and sends the second data packet to the second device at time J2, that is, the completion time of the transmission of the second information is equal to the first time.
  • the sending time of the two data packets is shown in FIG. 5C .
  • the second device receives (or detects) the second information in the first time domain resource, and after the reception of the second information is completed, the start time K may be determined as the time when the reception of the second information is completed.
  • an implicit indication method is that the completion time of sending the second information is used to indicate the start time K, for example, there is a second interval between the time when the transmission of the second information is completed and the start time K.
  • the first device starts to send the second information to the second device at time J1 of the first time domain resource, and completes the sending of the second information at time J2.
  • the second device may determine that the starting time K is the sum of the time J2 and the second interval, as shown in FIG. 5D . Further, the first device starts to send the second data packet to the second device at the start time K, and/or the second device starts to send the first data packet to the first device at the start time K.
  • the first interval and the second interval may be the same or different, which is not limited in this embodiment of the present application.
  • the first interval may be predefined, or pre-agreed by the first device and the second device, or configured by the first device.
  • the first interval may be an interval selected by the sending node from a predefined, or pre-agreed, or pre-configured interval set or range; correspondingly, the receiving node may The sending node detects packets from the sending node at a pre-agreed or pre-configured set or range of intervals.
  • the second interval may also be predefined, or pre-agreed between the first device and the second device, or configured by the first device.
  • the second information may also indicate the start time K through other implicit indication manners.
  • the above is just an example, and is not a limitation on the implicit indication manner.
  • the start time K of the data transmission between the first device and the second device is indicated in an implicit manner, and there is no need to carry additional information in the second information to indicate the start time K, which helps to save the overhead of the second information .
  • the less information is transmitted the higher the transmission reliability.
  • the second information indicates the start time K, which may also be indicated explicitly.
  • the second information includes time domain information about the start time K, which indicates the position of the start time K in the first time domain resource. Then, after detecting the second information, the second device can decode the second information to obtain time domain information about the start time K, and determine the start time K according to the time domain information about the start time K.
  • a display indication method is that the second information includes the identification (or number, or sequence number, etc.) of the time domain resource unit, for example, the first time domain resource includes N time domain resource units, and the start time K is located at the location.
  • the time-domain resource unit is the M-th time-domain resource unit in the N time-domain resource units, and the second information may include an identifier of the M-th time-domain resource unit.
  • the second device detects the second information, it can perform one or more operations such as demodulation, decoding, and translation on the second information to obtain the identifier of the time-domain resource unit. According to the identifier of the time-domain resource unit It is determined that the starting time K is the time in the time domain resource unit.
  • the N time-domain resource units may be counted from 1, such as time-domain resource units 1 to N, or may be counted from 0, such as time-domain resource units 0 to N-1, of course.
  • the counting can also be started from other numbers, which is not limited in this embodiment of the present application.
  • the embodiments of the present application take N time-domain resource units counting from 1 as an example for description.
  • the first time domain resource unit in the N time domain resource units may be the most advanced time domain resource unit in the time domain among the N time domain resource units, that is, the number of time domain resource units 1 is N The most advanced time domain resource unit in the time domain among the time domain resource units.
  • N is a positive integer greater than 0.
  • M is a positive integer greater than 0 and less than or equal to N.
  • M is equal to 1
  • the time domain resource unit where the start time K is located is the first time domain resource unit in the N time domain resource units, that is, the data transmission between the first device and the second device is in the It starts within the first time-domain resource unit among the N time-domain resource units.
  • the time domain resource unit where the start time K is located is a time domain resource unit other than the first time domain resource unit among the N time domain resource units, that is, the first device and the second time domain resource unit.
  • the previous data transmission of the device does not start in the first time domain resource unit among the N time domain resource units, for example, the preceding (M-1) time domain resource units of the Mth time domain resource unit are not in the idle state.
  • the (M-1) time-domain resource units have been used for data transmission between the first device and other devices except the second device, or used for the second device and other devices except the first device Data transfer between devices, or data transfer between devices other than the first device and the second device.
  • the second information may also indicate the start time K through other explicit indication manners, and the above is just an example, not a limitation on the explicit indication manner.
  • timing adjustment error is ignored. inconsistency. For example, there is actually a certain error between the start time K indicated by the sending node and the start time K determined according to its own timing after the receiving node receives the indication. At present, the error can be handled by the receiving node trying to receive at multiple times near the receiving time and other means, and how to handle the error is not limited in this embodiment of the present application.
  • the first device uses the sending time (or the sending completion time) of the second information to indicate the starting time K as an example to describe the sending time (or the sending time) of the second information by the second device receiving the second information.
  • the sending completion time and the corresponding way of determining the starting time K, as well as other situations involving inconsistent understandings of timing between the sending node and the receiving node, please refer to the following understanding.
  • the sending time of the second information indicates the starting time K, which can be understood as the time when the second information is received indicating the starting time K, or according to the time when the second information is received and other information (for example, the first device is configured to the second device
  • the time at which the first device sends the second information determined by the timing advance information indicates the starting time K.
  • there is a first interval between the time when the second information is sent and the starting time K it can be understood that there is a first interval between the time when the second information is received and the starting time K, or the first device sends the second There is a first interval between the moment of the message and the start moment K.
  • the sending completion time of the second information indicates the starting time K, which can be understood as the receiving completion time of the second information indicating the starting time K, or the completion time of the first device sending the second information indicating the starting time K.
  • There is a second interval between the time when the transmission of the second information is completed and the starting time K which can be understood as the existence of a second interval between the time when the receiving of the second information is completed and the starting time K, or when the first device sends the second information.
  • There is a second interval between the completion time and the start time K In other possible designs, the above other information may also be indicated or preconfigured in other ways.
  • a first device sends a second data packet to a second device.
  • the sending time (or the sending completion time) of the second information indicates the starting time K, which can be understood as the time when the second information is received (or the receiving completion time of the second information) indicating the starting time K, if the second device receives the second information in the first time domain resource, after receiving the second information, it can be determined that the starting time K is the time when the second information is received; or, it can be understood that the first device sends the first
  • the time of the second message indicates the start time K.
  • the second device receives the second message in the first time domain resource, after receiving the second message, it can The time of the second information and other information sent together with the second information (such as the timing advance information configured by the first device to the second device, etc.) obtain the time when the first device sends the second information, and determine the starting time K as The time when the first device sends the second information.
  • the time of the second information and other information sent together with the second information (such as the timing advance information configured by the first device to the second device, etc.) obtain the time when the first device sends the second information, and determine the starting time K as The time when the first device sends the second information.
  • the second device sends the first data packet to the first device.
  • the sending time (or the sending completion time) of the second information implicitly indicates the starting time K, which can be understood as the time when the second information is received (or the receiving completion time of the second information) indicating the starting time. start time. That is, the second device starts to send the first data packet to the first device at the moment of receiving the second information (or the moment when the reception of the second information is completed).
  • the start time K can be understood as two time points, that is, the time when the second device starts to send the first data packet and the time when the first device starts to send the second data packet.
  • the sending time (or the sending completion time) of the second information indicates the starting time K, which can be understood as the time when the first device starts sending the second data packet when the first device sends the second information.
  • the time (or the completion time when the first device sends the second information), and the time when the second device starts to send the first data packet is the time when the second information is received (or the time when the reception of the second information is completed).
  • the first apparatus may explicitly indicate the start time K including two time moments in the second information.
  • the second information may include time domain information about the start time of transmitting the second data packet and time domain information about the start time of transmitting the first data packet, to respectively indicate the start time of transmitting the second data packet. position of the start time and the start time of transmitting the first data packet in the first time domain resource.
  • the start time K may be the start time of the first time domain resource, for example, the first device may send the second information to the second device at the start time of the first time domain resource, the The second information implicitly indicates that the start time of the first time domain resource is the start time K; alternatively, the start time K may not be the start time of the first time domain resource, that is, the start time K is the first time Any time in the domain resource except the start time.
  • the first apparatus may allocate time domain resources to the second apparatus with the granularity of time domain resource units.
  • the first time domain resource includes N time domain resource units, and the time domain resource unit where the start time K is located is the Mth time domain resource unit in the Nth time domain resource unit.
  • the starting time K may be a specific time in the Mth time domain resource unit, or may be any time in the Mth time domain resource unit.
  • the start time K is the start time or the end time of the Mth time domain resource unit, or the like.
  • the first device may send the second information to the second device at the start time or end time of the Mth time domain resource unit (or complete the processing of the second information). sending), in this way, the second apparatus only needs to detect the second information for the start time or the end time of each time domain resource unit in the N time domain resource units. That is, the second device does not need to detect the entire time domain resource unit, which reduces the amount of blind detection of the second device.
  • the start time K indicated by the second information may be the time in the Mth time domain resource unit. That is, the second information may implicitly or explicitly indicate part of the information indicating the start time K, and the specific position of the start time K in the Mth time domain resource unit is not indicated by the second information.
  • the second information indicates the first time Identification of the M time-domain resource units.
  • the second device may determine that the start time K is located in the Mth time domain resource unit. Further, the second apparatus may determine the position of the start time K in the Mth time domain resource unit according to the transmission situation in the Mth time domain resource unit.
  • the second device detects the second information at the start time of the Mth time-domain resource unit, and may determine that the start time K is the time between the Mth time-domain resource unit and the time when the reception of the second information is completed. Time to set the interval.
  • the first device allocates at least one time domain resource to the second device with the time domain resource unit as the granularity, that is, the first time domain resource includes N time domain resource units. Then, the first device sends the second information to the second device within the first time domain resource, which may be the Lth time domain resource unit of the N time domain resource units for the first device to start sending the second information. For example, the first device may start sending the second information at the start time or the end time of the Lth time domain resource unit, so as to reduce the amount of blind detection of the second device.
  • the L is a positive integer greater than 0 and less than or equal to M. That is to say, the first device may start sending the second information to the second device at the time domain resource unit before the time domain resource unit where the start time K is located, for example, the start time of the Lth time domain resource is the second time domain resource.
  • the start time of the Mth time domain resource unit is the start time K, as shown in FIG. 6A ; it is also possible to start sending the second information to the second device at the time domain resource unit where the start time K is located , that is, L is equal to M, for example, the start time of the Mth time domain resource unit is the transmission time of the second information and the second data packet, as shown in FIG. 6B .
  • L may be equal to 1, that is, the first device starts to send the second information to the second device at the first time-domain resource unit among the N time-domain resource units.
  • the second information is sent to the second device from the start time or the end time of the first time domain resource unit.
  • L may not be equal to 1, that is, L is a positive integer greater than 1 and less than or equal to M, that is, the first device in the N time domain resource units except the first time domain resource, and not later
  • the second information is sent to the second device within one time domain resource unit of the Mth time domain resource unit.
  • the first device starts sending the second information to the second device at the start time of the Lth time domain resource unit, which means that the transmission time of the second information is the start time of the Lth time domain resource unit.
  • the completion time of the transmission of the second information may be the end time of the Lth time domain resource unit, or may not be the end time of the Lth time domain resource unit, that is, the completion time of the transmission of the second information is not necessarily the same as the end time of the Lth time domain resource unit.
  • the end times of time-domain resource units are aligned.
  • the start time K is the time when the transmission of the second information is completed, which may mean that the start time K is the start time of the next time domain resource unit of the Lth time domain resource unit, that is, the (L+1th time domain resource unit) ) start time of time-domain resource units.
  • there is a second interval between the start time K and the completion time of sending the second information which may refer to the start time of the next time domain resource of the time domain resource unit where the second information is sent after the second interval has elapsed.
  • the data transmission between the first device and the second device may be unidirectional data transmission or bidirectional data transmission. Then, the data transmission between the first device and the second device will be described in detail below with reference to FIG. 7 . It should be understood that FIG. 7 is used as an example, and does not limit the embodiment of the present application.
  • time domain resource 1 (also referred to as a reservation interval, reserve interval) may include one or more time domain resource units, and FIG. 7 takes the inclusion of more than two time domain resource units as an example.
  • Time domain resource 2 (also known as retransmission time domain resource, or retry interval, etc., retry interval) may also include one or more time domain resource units.
  • Figure 7 includes more than three time domain resource units as example.
  • One time domain resource unit can complete the transmission of a data packet.
  • the transmission of a data packet includes the sending node sending the data packet to the receiving node, and the receiving node receiving the data packet and feeding back the receiving status of the data packet to the sending node, that is, to the sending node.
  • the process of sending an ACK message or a NACK message is described in the sending node.
  • each time domain resource unit may include one or two transmission directions.
  • one time domain resource unit includes two transmission directions as an example.
  • G>T indicates that the master node sends a data packet or message to the slave node
  • T>G indicates that the slave node sends a data packet or message to the master node.
  • the process of sending data or messages from the first device to the second device can be recorded as G>T1, and the process of sending data packets or messages from the second device to the first device can be recorded as T1>G ;
  • the process of the first device sending data or messages to the third device may be recorded as G>T2, and the process of the third device sending data packets or messages to the first device may be recorded as T2>G.
  • the first device may send data packets to multiple devices.
  • time domain resource 1 the first device sends the second data packet to the second device, and the second device feeds back the reception status of the second data packet to the first device; the first device sends the third data packet to the third device packet, the third device feeds back the reception status of the third data packet to the first device.
  • the time domain resource 1 may be used for initial transmission of data, may also be used for retransmission of data, and may also be used for initial transmission and retransmission of data, which is not limited in this embodiment of the present application.
  • FIG. 7 only describes the situation in which the first device sends data packets to other devices in time domain resource 1. It can be understood that other devices may also send data packets to the first device within the time domain resource 1, or other devices may also perform data transmission within the time domain resource 1 under the scheduling of the first device. Further, the time domain resource 1 can be used for unidirectional data transmission, and can also be used for bidirectional data transmission. For example, in time domain resource 1, the first device sends the second data packet to the second device, and the second device sends the first data packet to the first device.
  • Time domain resource 2 is used to retransmit data packets that were not correctly received in time domain resource 1. For example, in time domain resource 1, if the second device does not correctly receive the second data packet from the first device, the first device may retransmit the second data packet in time domain resource 2. For another example, in time domain resource 1, if the first device does not correctly receive the first data packet from the second device, the second device may retransmit the first data packet in time domain resource 2. As an example, FIG. 7 only describes the situation in which the first device retransmits data packets to other devices in time domain resource 2. It can be understood that other devices may also retransmit data packets to the first device within time domain resource 2, or other devices may also perform data retransmission within time domain resource 2 under the scheduling of the first device.
  • the first apparatus allocates a first time domain resource to the second apparatus, and the first time domain resource may be part or all of the time domain resource 2 .
  • the first time domain resource may include N time domain resource units, which are denoted as time domain resource units 1 to N, as shown in FIG. 7 .
  • the first time domain resource may be used for retransmission of the first data packet, or for the retransmission of the second data packet, or for the retransmission of the first data packet and the second data packet.
  • the data transfer between the first device and the second device may be a one-way data transfer.
  • the second device does not correctly receive the second data packet from the first device.
  • the first device may send second information to the second device within the first time domain resource, where the second information is used to indicate the start time K of transmitting the second data packet, such as The start time K is located in the Mth time domain resource unit (denoted as time domain resource unit M) in the first time domain resource.
  • the process of retransmitting the second data packet by the first device may be: the Lth time domain resource unit of the first device in the first time domain resource (denoted as The start time of the time domain resource unit L) sends the second information and the second data packet to the second device; the second device starts to check the second information at the start time of each time domain resource unit, and at the time domain resource unit The second information is detected at the starting moment of L, and the second data packet retransmitted by the first device is started to be received; as shown in FIG. 8A .
  • L is a positive integer less than or equal to M and greater than 0. In order to facilitate the understanding of this embodiment, the following description takes L equal to M as an example.
  • L is not equal to 1, that is, the first device does not send the second information to the second device at the start time of the time-domain resource unit 1, the part of the time-domain resource units 1 to (L-1) or All can be used for data transfer between the first device and other devices except the second device, or for data transfer between other two devices except the first device.
  • the first device determines that the second device does not correctly receive the second data packet
  • the first device receives a NACK message from the second device in time domain resource 1, and determines the second device according to the NACK message.
  • the second data packet is not received correctly, as shown in FIG. 8A; it can also be understood that the first device does not receive the ACK message or NACK message from the second device within the time domain resource 1 for a set period of time, and then the first device determines that the second data packet is not received correctly. The second device did not receive the second data packet correctly.
  • the moment when the receiving node starts to receive can be understood as the reference time, that is, the receiving node will search around the reference time to determine the actual time to start receiving.
  • the moment when the receiving node starts checking can be understood as the reference moment, and the receiving node detects multiple moments near the reference moment when detecting.
  • the first device does not correctly receive the first data packet from the second device. After the first device determines that it has not received the first data packet correctly, it can send second information to the second device within the first time domain resource, where the second information is used to indicate the start time K of transmitting the second data packet, such as the start time K. Time K is located in time domain resource unit M. Taking the first interval between the start time K and the sending time of the second information as an example, the process of retransmitting the first data packet by the second device may be as follows: the first device sends a message to the first data packet at the start time of the time domain resource unit L.
  • the second device sends the second information; the second device starts to check the second information at the start time of each time domain resource unit, detects the second information at the start time of the time domain resource unit L, and according to the second information When there is a first interval between the sending times of the second information, the first data packet starts to be retransmitted to the first device; as shown in FIG. 8B .
  • the first device may send a NACK message to the second device within time domain resource 1, so that the second device determines that the first device does not correctly receive the first data packet;
  • the second device may determine the first device by detecting the second information in the time domain resource unit M. A device does not correctly receive the first data packet, as shown in Figure 8B.
  • the first device correctly receives the first data packet from the second device within the time domain resource 1, and the first time domain resource does not need to retransmit the first data packet; or , the second device correctly receives the second data packet from the first device in the time domain resource 1, and the first time domain resource does not need to retransmit the second data packet.
  • the first device may pre-allocate part or all of the first time domain resources to data transmission between the first device and other devices other than the second device, or to the second device and other devices other than the first device.
  • the second information indicates a device that uses the part or all of the first time domain resources, which not only avoids time domain resource conflict, but also improves the utilization rate of time domain resources.
  • the data transfer between the first device and the second device may be bidirectional data transfer.
  • the first device does not correctly receive the first data packet from the second device, and the second device does not correctly receive the second data packet from the first device.
  • the first device determines that it has not correctly received the first data packet and that the second device has not correctly received the second data packet, it can send second information to the second device within the first time domain resource, where the second information is used to instruct the transmission of the first data packet.
  • the start time K of the data packet and the second data packet is located in the time domain resource unit M.
  • the start time of transmitting the second data packet is the time of sending the second information, for example, the first device retransmits the second information.
  • the process of the data packet and the second device retransmitting the first data packet may be as follows: the first device sends the second information to the second device at the start time of the time domain resource unit L and starts to retransmit the second data packet to the second device
  • the second device starts to check the second information at the starting moment of each time domain resource unit, detects the second information at the starting moment of the time domain resource unit L, starts to receive the second data packet of the retransmission, and according to the first
  • the second information starts to retransmit the first data packet to the first device at the moment when there is a first interval between the second information and the sending moment of the second information; as shown in FIG. 9 .
  • the first device correctly receives the first data packet from the second device, but the second device does not correctly receive the second data packet from the first device.
  • the first device may send second information to the second device within the first time domain resource, where the second information is used to indicate the start time K of transmitting the second data packet, such as The start time K is located in the time domain resource unit M.
  • the process of retransmitting the second data packet by the first device may be as follows: The device sends the second information and starts to retransmit the second data packet to the second device; the second device starts to check the second information at the start time of each time domain resource unit, and detects at the start time of the time domain resource unit L The second information, and start to receive the retransmitted second data packet; as shown in FIG. 10 .
  • the second device may send a new data packet to the first device. For example, after the second device receives the second information, there may be a first interval from the time when the second information is sent. Send a new data packet to the first device; or not send a new data packet to the first device, for example, the second device only sends an ACK message or a NACK message to the first device to feed back the first device for retransmission. Two data packets received.
  • the second device correctly receives the second data packet from the first device, but the first device does not correctly receive the first data packet from the second device.
  • the first device determines that it has not received the first data packet correctly, it can send second information to the second device within the first time domain resource, where the second information is used to indicate the start time K of transmitting the first data packet, such as the start time K.
  • Time K is located in time domain resource unit M.
  • the process of retransmitting the first data packet by the second device may be as follows:
  • the second information is sent to the second device at the start time; the second device starts to check the second information at the start time of each time domain resource unit, and detects the second information at the start time of the time domain resource unit L.
  • the second information starts to retransmit the first data packet to the first device at the moment when there is a first interval with the sending moment of the second information; as shown in FIG. 11 .
  • the first device may send a new data packet to the second device, for example, the first device sends a new data packet to the second device while sending the second information to the second device; or A new data packet may not be sent to the second device, for example, the first device only sends an ACK message or a NACK message to the second device, so as to feed back the reception status of the retransmitted first data packet to the second device.
  • the first device correctly receives the first data packet from the second device in time domain resource 1
  • the second device correctly receives the first data packet from the first device in time domain resource 1.
  • the second data packet does not need to retransmit the first data packet and the second data packet.
  • the first device may pre-allocate part or all of the first time domain resources to data transmission between the first device and other devices other than the second device, or to the second device and other devices other than the first device.
  • the second information indicates a device that uses the part or all of the first time domain resources, which not only avoids time domain resource conflict, but also improves the utilization rate of time domain resources.
  • step S42 the first device indicates the start time K to the second device.
  • the first device and the second device start data transmission at the start time K, that is, the content shown in step S43 is executed.
  • the second device sends the first data packet to the first device at the start time K, and accordingly, the first device receives the first data packet.
  • the first device sends the second data packet to the second device at the start time K, and correspondingly, the second device receives the second data packet.
  • the second device may determine the start time K implicitly or explicitly indicated by the second information, and start sending the first device at the start time K to the first device. a packet.
  • the fact that the second device starts to send the first data packet to the first device at the start time K can be understood as the fact that the second device starts to interact with the first device with necessary signals and/or necessary control information at the time K, and starts to send the first data packet to the first device.
  • a device sends the first data packet; or it is understood that the second device starts to send the first data packet to the first device at time K.
  • the necessary signal may include one or more of a preamble signal, a synchronization signal or a reference signal.
  • the necessary control information refers to necessary control information required for transmitting the first data packet, such as modulation mode information, coding mode information, length information of the first data packet, and resource time length for transmitting the first data packet. information, or one or more of information such as bandwidth resources.
  • the start time K is implicitly indicated, and the second device starts to send the first data packet to the first device when the second information is received.
  • the start time K is determined according to the time at which the second information is received and the first interval, and then At the start time K, the first data packet is sent to the first device.
  • start time K is implicitly indicated at the time when the reception of the second information is completed, and the second device starts to send the first data packet to the first device at the time when the reception of the second information is completed.
  • the second device determines the start time K according to the reception completion time of the second information and the second interval, Then, at the start time K, the first data packet is sent to the first device.
  • the second information explicitly indicates the start time K.
  • the second information includes time domain information about the start time K, and after receiving the second information, the second device determines according to the time domain information about the start time K. start time K, and then start sending the first data packet to the first device at the start time K.
  • the second device may also receive an ACK message or a NACK message from the first device.
  • the second device receives an ACK message from the first device, indicating that the first device correctly receives the first data packet from the second device. So far, the one-way data between the first device and the second device in the first time domain resource Transmission ends.
  • the second device receives a NACK message from the first device, indicating that the first device did not correctly receive the first data packet from the second device, such as unsuccessfully receiving the first data packet or failing to decode the first data packet. , or the transmission duration of the first data packet exceeds the set duration, etc., then the second device may send the first data packet to the first device again within the first time domain resource.
  • the second device may send the first data packet to the first device again within the first time domain resource.
  • the first device may start sending the second data packet to the second device at the start time K.
  • that the first device starts to send the first data packet to the second device at the start time K can be understood as the first device starts to interact with the second device with necessary signals and/or necessary control information at the start time K, and starts Send the second data packet to the second device; or it can be understood that the first device directly starts to send the second data packet to the second device at the starting time K.
  • the necessary signals may include one or more of a preamble signal, a synchronization signal, or a reference signal.
  • the second information itself can also carry or indicate necessary control information required for sending the second data packet, or the second information itself is also necessary for sending the second data packet Part of the interaction of control information.
  • the necessary control information required for sending the second data packet may include modulation mode information, coding mode information, length information of the second data packet, resource time length information for transmitting the second data packet, or bandwidth resources, etc. one or more of the information.
  • the first device may also receive an ACK message or a NACK message from the second device.
  • the first device receives an ACK message from the second device, indicating that the second device correctly receives the second data packet from the first device. So far, the unidirectional data between the first device and the second device in the first time domain resource Transmission ends.
  • the first device receives a NACK message from the second device, indicating that the second device has not correctly received the second data packet from the first device, such as unsuccessfully receiving the second data packet or failing to decode the second data packet. , or the transmission duration of the second data packet exceeds the set duration, etc., then the first device may send the second data packet to the second device again within the first time domain resource.
  • the first device may send the second data packet to the second device again within the first time domain resource.
  • the first device may configure at least one time domain resource for the second device, and then indicate the start time K of data transmission with the second device by sending the second information to the second device, the The data transmission is located in a first time domain resource, and the first time domain resource is one of at least one time domain resource. That is to say, when the data transmission between the first device and the second device starts is determined by the second information sent by the first device, which means that the first device can also use the method provided by the embodiment of the present application to indicate the The start time of data transmission between other devices, so as to avoid resource conflict and improve the flexibility of resource use.
  • the first device may send fourth information to the third device within the second time domain resource, where the fourth information is used to indicate the start of data transmission between the first device and the third device time H.
  • the time domain resources used for data transmission between the first device and the third device belong to the second time domain resources, and the second time domain resources are continuous in the time domain.
  • the start time of the second time domain resource is later than the start time of the first time domain resource, and there is an overlap (or overlap) part with the first time domain resource, and the start time H is located at the second time within the overlapping portion between the domain resource and the first time domain resource.
  • the first device may allocate the second half of the consecutive time domain resources in the first time domain resources to the third device.
  • the data transmission between the first device and the second device in the first time domain resource ends (for example, correctly receiving the first data packet and/or the second data packet, or stopping the communication between the first device and the second device).
  • the first device may indicate a certain moment in the overlapping portion as the start moment of the data transmission between the first device and the third device. That is to say, through the above implementation manner, the first device can allocate the remaining time domain resources for data transmission between the first device and the second device for data transmission between the first device and the second device (or for the second device to communicate with other devices except the first device). Data transmission between devices other than one device, or data transmission between other devices except the first device and the second device), so as to avoid wasting the remaining time domain resources and improve the time domain resources utilization.
  • FIG. 12 is a schematic flowchart of a resource indication method provided by an embodiment of the present application. The method may be applied to the network architecture shown in any one of FIG. 1A to FIG. 1C as an example.
  • the first device, the second device and the third device may be located in the same communication domain, the first device is a master node, and the second device and the third device are slave nodes.
  • the first device sends the first information to the second device, and the corresponding second device receives the first information.
  • the first information is used to indicate the time domain resource 3, and the time domain resource 3 is continuous in the time domain.
  • the first device may allocate time domain resource 3 to the second device, and the time domain resource used for data transmission between the first device and the second device belongs to time domain resource 3.
  • the specific implementation process refer to step S41. The content will not be repeated here.
  • the first device sends fifth information to the third device, and the corresponding third device receives the fifth information.
  • the fifth information is used to indicate the time domain resource 4 that is continuous in the time domain.
  • the start time of the time domain resource 4 is later than the start time of the time domain resource 3 and overlaps with the time domain resource 3 in the time domain.
  • the first device may allocate time domain resource 4 to the third device, and the time domain resource used for data transmission between the first device and the third device belongs to time domain resource 4.
  • step S41 refer to step S41. The content will not be repeated here.
  • the first device sends the second information to the second device in the time domain resource 3, and the corresponding second device receives the second information.
  • the second information includes identification information of the second device.
  • the second information is used to indicate the start time K of data transmission between the first device and the second device.
  • the second information may indicate the start time K implicitly or explicitly.
  • the first device may further determine that the second device sends the second information on the time domain resource 3.
  • the specific implementation process of step S1203 may refer to the content shown in step S42, which will not be repeated here.
  • the data transmission between the first device and the second device is described as an example of unidirectional data transmission in which the first device sends a second data packet to the second device.
  • S1204 The first device starts to send the second data packet to the second device at the start time K, and the corresponding second device receives the second data packet.
  • S1205 The second device sends a NACK message to the first device, and correspondingly, the first device receives the NACK message.
  • the second device sends a NACK message to the first device at a time later than the start time K in the time domain resource 3, indicating that the second device does not correctly receive the second data packet from the first device.
  • S1206 The first device sends the second data packet to the second device, and the corresponding second device receives the second data packet.
  • the first device may retransmit the second data packet to the second device at a time later than time K in the time domain resource 3 .
  • the second device sends an ACK message to the first device, and correspondingly, the first device receives the ACK message.
  • the second device sends an ACK message to the first device, indicating that the second device correctly receives the second data packet of the first device. So far, the data transmission between the first device and the second device in the time domain resource 3 ends, and the time domain resource 3 remains.
  • the first device sends the fourth information to the third device in the time domain resource 4, and correspondingly, the third device receives the fourth information.
  • the fourth information includes identification information of the third device.
  • the fourth information is used to indicate the start time H of data transmission between the first device and the third device.
  • the fourth information may indicate the start time H implicitly or explicitly.
  • the first device may further determine that the third device sends the fourth information within the time domain resource 4.
  • the first device may send the fourth information to the third device within the overlapping portion of the time domain resource 3 and the time domain resource 4 .
  • the start time H may be located in the overlapping portion of the time domain resource 3 and the time domain resource 4 . Since the data transmission between the first device and the second device in the time domain resource 3 has ended, and the remaining time domain resources of the time domain resource 3 are in an idle state, the first device can transfer the remaining time domain resources in the time domain resource 3 For data transmission with other devices, the waste of time domain resources is avoided, and the utilization rate of time domain resources can be improved.
  • the data transmission between the first device and the third device is described as an example of unidirectional data transmission in which the third device sends a third data packet to the first device.
  • the third device starts to send the third data packet to the first device at the start time H, and correspondingly, the first device receives the third data packet from the third device.
  • S1210 The first device sends an ACK message to the third device, and correspondingly, the third device receives the ACK message.
  • the first device sends an ACK message to the first device at a time later than time H in time domain resource 3 or time domain resource 4, indicating that the first device correctly receives the third data packet from the third device.
  • the time domain resource 3 and the time domain resource 4 overlap in the time domain, and the start time of the time domain resource 3 is earlier than the start time of the time domain resource 4 .
  • the first device sends the second information and the second data packet to the second device at the time K of the time domain resource 3, and receives the ACK message of the second device at the time M of the time domain resource 3, that is, the first device and the second device.
  • the data transmission of the device in time domain resource 3 ends here, and the remaining time domain resources in time domain resource 3 are in an idle state.
  • the first device sends fifth information to the third device at time N, where time N is located in the overlapping portion of time domain resource 3 and time domain resource 4 and is later than time M.
  • the third device After receiving the fifth information, the third device sends a third data packet to the first device at time H, and receives an ACK message from the first device at time L of time domain resource 4 .
  • the time H is located in the overlapping portion of the time domain resource 3 and the time domain resource 4, and is later than the time N. That is to say, the data transmission between the first device and the third device occupies the remaining time domain resources in the time domain resource 3, which can avoid the waste of the remaining time domain resources in the time domain resource 3, and can improve the utilization of the time domain resources. Rate.
  • the sequence of each step shown in FIG. 12 is only an example, which is not limited in this embodiment of the present application.
  • the first device may send the fifth information to the third device before step S1203, or may send the fifth information to the third device after step S1203 and before step S1208.
  • the first device may first send the second information to the second device, and then send the second data packet to the second device, or may simultaneously send the second information and the second data packet to the second device.
  • the number of times of transmission of the second data packet and the number of times of transmission of the third data packet in FIG. 12 are only examples, which are not limited in this embodiment of the present application.
  • the first device may allocate the second half of the continuous time domain resources in the third time domain resources to the second device.
  • the first device may indicate a certain moment in the remaining time domain resource as the start moment of data transmission between the first device and the second device.
  • the first device may use the remaining time domain resources for data transmission between the first device and other devices (or the remaining time domain resources for data transmission between the second device and other devices except the first device, Or the remaining time domain resources for data transmission between other devices except the first device and the second device) are configured for data transmission with the second device, so as to avoid wasting the remaining time domain resources and improve the Time domain resource utilization.
  • FIG. 14 is another schematic flowchart of a resource indication method provided by an embodiment of the present application.
  • the method may be applied to the network architecture shown in any one of FIG. 1A to FIG. 1C as an example.
  • the first device, the second device and the fourth device may be located in the same communication domain, the first device is a master node, and the second device and the fourth device are slave nodes.
  • the first device sends sixth information to the fourth device, and the corresponding fourth device receives the sixth information.
  • the sixth information is used to indicate the time domain resource 5, and the time domain resource 5 is continuous in the time domain.
  • the first device may allocate a time domain resource 5 to the fourth device, and the time domain resource used for data transmission between the first device and the fourth device belongs to the time domain resource 5.
  • the specific implementation process refer to step S41. The content will not be repeated here.
  • the data transmitted between the first device and the fourth device is referred to as a fourth data packet for description below.
  • the first device sends the first information to the second device, and the corresponding second device receives the first information.
  • the first information is used to indicate the time domain resource 3, and the time domain resource 3 is continuous in the time domain. Moreover, the start time of the time domain resource 3 is later than the start time of the time domain resource 5 , and there is an overlapping part between the time domain resource 3 and the time domain resource 5 .
  • the first device may allocate time domain resource 3 to the second device, and the time domain resource used for data transmission between the first device and the second device belongs to time domain resource 3. For the specific implementation process, refer to step S41. The content will not be repeated here.
  • the first device sends the seventh information to the fourth device within the time domain resource 5, and the corresponding fourth device receives the seventh information.
  • the seventh information includes identification information of the fourth device.
  • the seventh information is used to indicate the start time P of data transmission between the first device and the fourth device.
  • the seventh information may indicate the start time P implicitly or explicitly.
  • the first device may further determine that the fourth device sends the seventh information within the time domain resource 5.
  • reference may be made to the content shown in step S42, which will not be repeated here.
  • S1404 The first device starts to send the fourth data packet to the fourth device at the start time P, and the corresponding fourth device receives the fourth data packet.
  • the data transmission between the first device and the fourth device is described as an example of unidirectional data transmission in which the first device sends a fourth data packet to the fourth device.
  • the fourth device sends an ACK message to the first device, and correspondingly, the first device receives the ACK message.
  • the fourth device sends an ACK message to the first device at a time later than the start time P in the time domain resource 5, indicating that the fourth device correctly receives the fourth data packet of the first device. So far, the data transmission in the time domain resource 5 by the first device and the fourth device is completed, and the time domain resource 5 still exists.
  • S1406 The first device sends the second information to the second device in the time domain resource 3, and accordingly, the second device receives the second information.
  • the second information includes identification information of the second device.
  • the second information is used to indicate the start time K of data transmission between the first device and the second device.
  • the second information may indicate the start time K implicitly or explicitly.
  • the first device may further determine that the second device sends the second information on the time domain resource 3.
  • reference may be made to the content shown in step S42, which will not be repeated here.
  • the first device may send the second information to the second device in the overlapping portion of the time domain resource 3 and the time domain resource 5 .
  • the start time K may be located in the overlapping portion of the time domain resource 3 and the time domain resource 5 . Since the data transmission between the first device and the fourth device in the time domain resource 5 has ended, and the remaining time domain resources in the time domain resource 5 are in an idle state, the first device can transfer the remaining time domain resources in the time domain resource 5 For data transmission with other devices, the waste of time domain resources is avoided, and the utilization rate of time domain resources can be improved.
  • the second device starts to send the first data packet to the first device at the start time K, and accordingly, the first device receives the first data packet from the second device.
  • the data transmission between the first device and the second device is described as an example of unidirectional data transmission in which the second device sends the first data packet to the first device.
  • S1408 The first device sends an ACK message to the second device, and correspondingly, the second device receives the ACK message.
  • the first device sends an ACK message to the second device at a time later than time K in time domain resource 3 or time domain resource 5, indicating that the first device correctly receives the first data packet from the second device.
  • the time domain resource 3 and the time domain resource 5 overlap in the time domain, and the start time of the time domain resource 5 is earlier than the start time of the time domain resource 3 .
  • the first device sends the seventh message and the fourth data packet to the fourth device at the time P of the time domain resource 5, and receives the ACK message of the fourth device at the time Q of the time domain resource 5, that is, the first device is connected to the fourth device.
  • the data transmission of the device in the time domain resource 5 ends here, and the time domain resource 5 still exists.
  • the first device sends the second information to the second device at time N, which is located in the overlapping portion of time domain resource 3 and time domain resource 5 and is later than time Q.
  • the second device After receiving the second information, the second device sends the first data packet to the first device at time K, and receives an ACK message from the first device at time L of time domain resource 3 .
  • the time K is located in the overlapping part of the time domain resource 3 and the time domain resource 5, and is later than the time N. That is to say, the data transmission between the first device and the second device occupies the remaining time domain resources in the time domain resources 5, which can avoid the waste of the remaining time domain resources in the time domain resources 5, and can improve the utilization of the time domain resources. Rate.
  • the sequence of each step shown in FIG. 14 is only an example, which is not limited in this embodiment of the present application.
  • the first device may send the first information to the second device before step S1403, or may send the first information to the second device after step S1403 and before step S1406.
  • the number of times of transmission of the first data packet and the number of times of transmission of the fourth data packet in FIG. 14 are only examples, which are not limited in this embodiment of the present application.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first device and the second device.
  • the first device and the second device may include hardware structures and/or software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. each function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 16 shows a schematic structural diagram of a resource indicating apparatus 1600 .
  • the resource indicating device 1600 may be the first device in the embodiment shown in FIG. 4 or FIG. 12 or FIG. 14, and can implement the function of the first device in the method provided by the embodiment of the present application; the resource indicating device 1600 may also It is a device capable of supporting the first device to implement the function of the first device in the method provided by the embodiment of the present application.
  • the resource indicating device 1600 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the resource indicating device 1600 may be implemented by a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the resource indication apparatus 1600 may include a processing unit 1601 , a sending unit 1602 and a receiving unit 1603 .
  • the processing unit 1601 is configured to determine the first information.
  • a sending unit 1602, configured to send first information, where the first information is used to indicate at least one time domain resource, wherein each time domain resource is continuous in the time domain.
  • the sending unit 1602 is further configured to send second information to the second device within the first time domain resource, where the second information is used to indicate the start time K of data transmission between the resource indicating device 1600 and the second device, and is used for resource indicating
  • the time domain resource for data transmission between the device 1600 and the second device belongs to the first time domain resource, and the first time domain resource is one of at least one time domain resource.
  • the processing unit 1601 is configured to determine to send the second information to the second device within the first time domain resource information.
  • the receiving unit 1603 is configured to receive the first data packet from the second device in the first time domain resource; or,
  • the sending unit 1602 is configured to send the second data packet to the second device within the first time domain resource; or,
  • the sending unit 1602 is configured to send the second data packet to the second device within the first time domain resource, and the receiving unit 1603 receives the first data packet from the second device within the first time domain resource.
  • the second information includes identification information of the second device, or includes identification information of a communication link between the resource indicating device 1600 and the second device, or includes identification information of the second device and
  • the resource indicates identification information of the communication link between the apparatus 1600 and the second apparatus.
  • the time domain resource of the second information is used to indicate the start time K.
  • the time domain resource of the second information is used to indicate the starting moment K may be:
  • the sending time of the second information is equal to the starting time K; or,
  • the completion time of the transmission of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time The time domain resource unit where time K is located is the Mth time domain resource unit in the N time domain resource units.
  • the start time K is the start time or the end time of the Mth time domain resource unit.
  • the sending unit 1602 is specifically configured to: start sending the second information at the Lth time domain resource unit in the N time domain resource units, where L is greater than 0 and less than or equal to M positive integer of .
  • the sending unit 1602 is specifically configured to: start sending the second information at the start time of the L time-domain resource units.
  • the sending unit 1602 is further configured to: send third information, where the third information is used to indicate the configuration of the time domain resource unit.
  • the sending unit 1602 is further configured to: send fourth information to the third device within the second time domain resource, where the fourth information is used to indicate the relationship between the resource indicating device 1600 and the third device
  • the start time H of the data transmission in the resource indicates that the time domain resources used for the data transmission between the device 1600 and the third device belong to the second time domain resources, the second time domain resources are continuous in the time domain, and the second time domain resources are continuous in the time domain. There is an overlapping portion between the time domain resource and the first time domain resource, and the start time H may be located in the overlapping portion between the second time domain resource and the first time domain resource.
  • the start time of the first time domain resource is later than the start time of the third time domain resource time
  • the third time domain resources are continuous in the time domain
  • the time domain resources used for data transmission between the resource indicating device 1600 and the fourth device belong to the third time domain resources
  • the starting time K may be located at the third time domain within the overlapping portion between the domain resource and the first time domain resource.
  • the sending unit 1602 and/or the receiving unit 1603 are used for the resource indicating device 1600 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers or any other devices that can implement communication.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • FIG. 17 shows a schematic structural diagram of a communication apparatus 1700 .
  • the communication device 1700 may be the second device in the embodiment shown in FIG. 4 or FIG. 12 or FIG. 14, and can implement the function of the second device in the method provided in the embodiment of the present application; the communication device 1700 may also be capable of A device that supports the second device to implement the function of the second device in the method provided by the embodiment of the present application.
  • the communication apparatus 1700 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication apparatus 1700 may be implemented by a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1700 may include a processing unit 1701 , a sending unit 1702 and a receiving unit 1703 .
  • the receiving unit 1703 is configured to receive first information from the first device, where the first information is used to indicate at least one time domain resource, wherein each time domain resource is continuous in the time domain; and, in the first The second information from the first device is received in the time domain resource, and the second information is used to indicate the start time K of data transmission between the resource indicating device and the first device, and is used for the data transmission between the resource indicating device and the first device.
  • the time domain resource for data transmission belongs to the first time domain resource, and the first time domain resource is one of at least one time domain resource.
  • the receiving unit 1703 is further configured to receive the second data packet from the first device in the first time domain resource; or,
  • the sending unit 1702 is further configured to send the first data packet to the first device within the first time domain resource; or,
  • the sending unit 1702 is further configured to send the first data packet to the first device within the first time domain resource
  • the receiving unit 1703 is further configured to receive the second data packet from the first device within the first time domain resource.
  • the second information includes identification information of the communication device 1700, or includes identification information of a communication link between the first device and the communication device 1700, or includes the identification information of the communication device 1700 and the first Identification information of the communication link between a device and the communication device 1700 .
  • the time domain resource of the second information is used to indicate the start time K.
  • the time domain resource of the second information is used to indicate the starting moment K may be:
  • the moment when the second information is received is equal to the start moment K; or,
  • the reception completion time of the second information is equal to the start time K; or,
  • the first interval is predefined or configured.
  • the first time domain resource includes N time domain resource units, where N is a positive integer greater than 0; the second information is used to indicate the time domain resource unit where the start time K is located, and the start time The time domain resource unit where time K is located is the Mth time domain resource unit in the N time domain resource units.
  • the start time K is the start time or the end time of the Mth time domain resource unit.
  • the receiving unit 1703 is specifically configured to: start to receive the second information from the first device at the Lth time domain resource unit in the N time domain resource units, where L is greater than 0, A positive integer less than or equal to M.
  • the receiving unit 1703 is specifically configured to: start to receive the second information at the start time of the Lth time domain resource unit.
  • the processing unit 1701 is configured to: start to detect the second information at the start time of each time-domain resource unit in the N time-domain resource units.
  • the receiving unit 1703 is further configured to: receive third information from the first device, where the third information is used to indicate the configuration of the time domain resource unit.
  • the sending unit 1702 and/or the receiving unit 1703 are also used for the communication device 1700 to communicate with other modules, which may be circuits, devices, interfaces, buses, software modules, transceivers or any other devices that can implement communication.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • FIG. 18 shows a communication apparatus 1800 provided by an embodiment of the present application, where the communication apparatus 1800 may be the first apparatus in the embodiment shown in FIG. 4 or FIG. 12 or FIG.
  • the function of the first device in the method; the communication device 1800 may also be a device capable of supporting the first device to implement the function of the first device in the method provided by the embodiment of the present application.
  • the communication apparatus 1800 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned sending unit 1602 and receiving unit 1603 may be transceivers, and the transceivers are integrated in the communication device 1800 to form a communication interface 1810 .
  • the communication apparatus 1800 may include at least one processor 1820, which is configured to implement or support the communication apparatus 1800 to implement the first apparatus in the methods provided in the embodiments of this application.
  • the processor 1820 may allocate at least one time domain resource to the second device, determine to send the second information to the second device, etc.
  • the processor 1820 may allocate at least one time domain resource to the second device, determine to send the second information to the second device, etc.
  • Communication apparatus 1800 may also include at least one memory 1830 for storing program instructions and/or data.
  • Memory 1830 and processor 1820 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1820 may cooperate with memory 1830.
  • Processor 1820 may execute program instructions stored in memory 1830 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1800 may also include a communication interface 1810 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1800 may communicate with other devices.
  • the communication apparatus 1800 is the first apparatus, and the other device may be the second apparatus.
  • the processor 1820 may utilize the communication interface 1810 to send and receive data.
  • the communication interface 1810 may specifically be a transceiver.
  • the specific connection medium between the communication interface 1810, the processor 1820, and the memory 1830 is not limited in this embodiment of the present application.
  • the memory 1830, the processor 1820, and the communication interface 1810 are connected through a bus 1840 in FIG. 18.
  • the bus is represented by a thick line in FIG. 18, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the processor 1820 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1830 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • FIG. 19 shows a communication apparatus 1900 provided in this embodiment of the present application, where the communication apparatus 1900 may be the second apparatus in the embodiment shown in FIG. 4 or FIG. 12 or FIG.
  • the function of the second device in the method; the communication device 1900 may also be a device capable of supporting the first device to implement the function of the first device in the method provided by the embodiment of the present application.
  • the communication apparatus 1900 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned sending unit 1702 and receiving unit 1703 may be transceivers, and the transceivers are integrated in the communication device 1900 to form a communication interface 1910 .
  • the communication apparatus 1900 may include at least one processor 1920, which is configured to implement or support the communication apparatus 1900 to implement the first apparatus in the methods provided in the embodiments of this application.
  • the processor 1920 may detect the second information at the start position or end position of each time domain resource unit, etc. For details, refer to the detailed description in the method example, which is not repeated here.
  • Communication apparatus 1900 may also include at least one memory 1930 for storing program instructions and/or data.
  • Memory 1930 and processor 1920 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1920 may cooperate with memory 1930.
  • Processor 1920 may execute program instructions stored in memory 1930 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1900 may also include a communication interface 1910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1900 may communicate with other devices.
  • the communication apparatus 1900 is the second apparatus, and the other device may be the first apparatus.
  • the processor 1920 may use the communication interface 1910 to send and receive data.
  • the communication interface 1910 may specifically be a transceiver.
  • the specific connection medium between the communication interface 1910 , the processor 1920 , and the memory 1930 is not limited in the embodiments of the present application.
  • the memory 1930, the processor 1920, and the communication interface 1910 are connected through a bus 1940 in FIG. 19.
  • the bus is represented by a thick line in FIG. 19, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 19, but it does not mean that there is only one bus or one type of bus.
  • the processor 1920 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), and may also be a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device involved in the embodiments of the present application may be in-vehicle equipment such as a car machine, an in-vehicle speaker, an in-vehicle microphone, etc., or may be a mobile phone, a tablet computer, a desktop type, a laptop type, a notebook computer, or an Ultra-mobile Personal Computer (Ultra-mobile Personal Computer).
  • UMPC Ultra-mobile Personal Computer
  • handheld computers netbooks
  • personal digital assistants Personal Digital Assistant, PDA
  • wearable electronic devices virtual reality devices and other electronic devices.
  • the communication devices involved in the embodiments of the present application may also be machine intelligent devices, such as self-driving (self-driving) devices, transportation safety (transportation safety) devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented) devices reality, AR) terminal equipment, MTC equipment, industrial control equipment, remote medical equipment, smart grid equipment, smart city equipment, wearable equipment (such as smart watches, smart bracelets, pedometers, etc.), smart home devices, etc.
  • the communication device involved in the embodiment of the present application may also be a short-range communication device that supports BT, or BLE, or is compatible with BT or BLE technology, or supports other possible short-range communication technologies.
  • the communication device involved in the embodiment of the present application may also be a functional module, such as a chip system, provided in any of the above devices.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the first apparatus or the second apparatus in the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method executed by the first apparatus or the second apparatus in the foregoing embodiments.
  • An embodiment of the present application provides a chip system, where the chip system includes at least one processor and an interface circuit, where the processor is configured to execute instruction and/or data interaction through the interface circuit, so that the device where the chip system is located implements the foregoing embodiments
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application provides a communication system, where the communication system includes the first device and/or the second device in the foregoing embodiments.
  • An embodiment of the present application provides a terminal device, where the terminal device includes the first device and/or the second device in the foregoing embodiments, or includes a chip system that implements the function of the first device and/or a device that implements the second device. functional system-on-chip.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL), or wireless (eg, infrared, wireless, microwave, etc.)
  • a readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tapes) ), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, SSD), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源指示方法、装置及系统,应用于短距离通信领域,尤其涉及智能驾驶、智能家居、智能制造等场景。在该方法中,第一装置发送第一信息,该第一信息用于指示至少一个时域资源,该至少一个时域资源包括第一时域资源;以及在第一时域资源内向第二装置发送第二信息,该第二信息用于指示第一装置与第二装置之间的数据传输的起始时刻K。通过该方案,两个装置之间的数据传输何时开始可以由第一装置确定并指示,这样即可以避免资源冲突,又可以提高资源使用的灵活性。

Description

一种资源指示方法、装置及系统 技术领域
本申请涉及通信技术领域,提供一种资源指示方法、装置及系统,尤其涉及短距离通信领域。
背景技术
随着全球通信技术的不断发展,无线通信技术随之发展速度,无线通信技术相关的应用呈现出如火如荼的发展态势。智能穿戴设备、智能运输设备、智能家居设备、机器人等各种支持无线通信技术的智能终端正在逐步进入人们的日常生活中。
在智能终端所在的无线通信场景中,在一定通信区域或范围内可以包括多个通信域。该通信域是指一组具有通信关系的通信节点,以及通信节点之间的通信连接关系(即通信链路)组成的系统,一个通信域包括一个主通信节点(可以简称为主节点)和至少一个从通信节点(可以简称为从节点),其中,主节点管理通信域的时频资源,并具有为通信域中的通信节点间的通信链路调度资源的功能。主节点可以为从节点分配满足可靠性的传输次数对应的时域资源,主节点通过为不同通信链路分配的时域资源在时域上不交叠避免资源冲突。这样,各节点会在各自分配的时域资源的起始时刻开始进行数据传输,使得资源使用的灵活性降低。
发明内容
本申请提供一种资源指示方法、装置及系统,用以提高资源使用的灵活性。
第一方面,本申请实施例提供一种资源指示方法,该方法可以由第一装置执行,或者由第一装置的部件(如芯片或芯片系统等)执行。示例性地,所述第一装置可以是车载装置,或者也可以是非车载装置。可选的,第一装置例如为智能穿戴设备、智能家居设备、智能制造设备、或智能运输设备等具有通信功能的设备,例如手机、车辆、无人机、无人运输车、汽车、车辆、或机器人等,或者第一装置可以为上述设备中的控制装置,例如座舱域控制器(又称车机)、中控装置等。在该方法中,第一装置发送第一信息,该第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续;以及在第一时域资源内向第二装置发送第二信息,其中,第二信息用于指示第一装置与第二装置之间的数据传输的起始时刻K,用于第一装置与第二装置之间的数据传输的时域资源属于第一时域资源,该第一时域资源为至少一个时域资源中的一个。
可选的,起始时刻K可以指第一装置与第二装置之间开始数据初传和/或重传的起始时刻。
在本申请的上述实施例中,第一装置可以为第二装置配置至少一个时域资源,然后通过向第二装置发送第二信息来指示与第二装置进行数据传输的起始时刻K,该数据传输位于第一时域资源。也就是说,第一装置与第二装置之间的数据传输何时开始是由第一装置确定的,意味着采用本申请实施例提供的方法,第一装置还可以指示其它两个装置(如第一装置与除了第二装置之外的其它装置,或第二装置与除了第一装置之外的其它装置,或除了第一装置和第二装置之外的其它两个装置)之间的数据传输的起始时刻,这样即可以 避免资源冲突,又可以提高资源使用的灵活性。
在一种可能的设计中,在第一装置在第一时域资源内向第二装置发送第二信息之前,第一装置可以先确定在第一时域资源内向第二装置发送第二信息。
通过该设计,第一装置可以确定是否在第一时域资源内向第二装置发送第二信息,例如第一装置可以根据与第二装置和/或其它装置之间的历史传输情况确定是否在第一时域资源内向第二装置发送第二信息,即第一装置根据历史传输情况确定是否在第一时域资源内与第二装置进行数据传输。例如,第一装置在第一时域资源内与其它装置进行数据传输后,第一时域资源的剩余时域资源不足,则第一装置确定不在第一时域资源内向第二装置发送第二信息。再例如,在第一时域资源内第一装置与其它装置之间进行数据传输的优先级高于第一装置与第二装置之间进行数据传输的优先级,则第一装置确定不在第一时域资源内向第二装置发送第二信息。进一步,在第一装置确定不在第一时域资源内向第二装置发送第二信息的情况下,该第一时域资源不用于第一装置与第二装置之间的数据传输。
在一种可能的设计中,该方法还可以包括:
第一装置在第一时域资源内接收来自第二装置的第一数据包;或者,
第一装置在第一时域资源内向第二装置发送第二数据包;或者,
第一装置在第一时域资源内接收来自第二装置的第一数据包,以及在第一时域资源内向第二装置发送第二数据包。
通过该设计,第一装置与第二装置之间的数据传输可以是单向数据传输,如第二装置在第一时域资源内向第一装置发送第一数据包,或者第一装置在第一时域资源内向第二装置发送第二数据包,在此情况下,起始时刻K可以是单向数据传输中开始数据初传或重传的起始时刻。或者,第一装置与第二装置之间的数据传输也可以是双向数据传输,如第二装置在第一时域资源内向第一装置发送第一数据包,并且第一装置在第一时域资源内向第二装置发送第二数据包,在此情况下,起始时刻K可以是双向数据传输中开始数据初传或重传的起始时刻,或者是一个数据传输方向上开始数据初传的起始时刻,以及是另一个数据传输方向上的开始数据重传的起始时刻。
在一种可能的设计中,第二信息中包括第二装置的标识信息,或者包括第一装置与第二装置之间的通信链路的标识信息,或者包括第二装置的标识信息和第一装置与第二装置之间的通信链路的标识信息。
通过该设计,当第二信息仅包括第二装置的标识信息时,第二信息可以用于区别于与其它装置之间的数据传输,以指示与第二装置之间的数据包传输的起始时刻。当第二信息仅包括与第二装置之间的通信链路的标识信息时,第二信息可以用于区别于与其它通信链路(如第一装置与第二装置之间除了该通信链路之外的通信链路,或其它装置之间的通信链路)上的数据传输,以指示该通信链路上的一次或一系列数据传输的起始时刻。当第二信息包括第二装置的标识信息和与第二装置之间的通信链路的标识信息时,第二信息可用于区别于与其它通信链路上的数据传输,以及区别于与其它装置之间的数据传输,以指示与第二装置之间的一次或一系列数据传输的起始时刻。例如组播、广播或其它类型的通信链路中,第一装置与多个装置(包括第二装置)可以在同一个通信链路上进行数据传输,通过第二装置的标识信息可以明确该第二信息用于指示通过该通信链路与第二装置进行数据传输。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K。
通过该设计,第二信息用于指示该起始时刻K,可以为该第二信息的时域资源用于指示该起始时刻K。可选的,第二信息可以是一个触发信号,用于触发第一装置和第二装置之间的数据传输。或者,第二信息也可以包含经过信道编码和/或调制的数据,这里的数据包含业务数据和/或控制信息,在此情况下,所述数据传输对应的数据可以包含或不包含第二信息中的数据。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K可以为:
第二信息的发送时刻等于起始时刻K;或者,
第二信息的发送完成时刻等于起始时刻K;或者,
第二信息的发送时刻与起始时刻K之间存在第一间隔;或者,
第二信息的发送完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
通过该设计,第二信息的发送时刻可以等于起始时刻K,如第一装置作为发送节点,将第二数据包和第二信息一起发送给第二装置;或者,第二信息的发送完成时刻等于起始时刻K,如第一装置作为发送节点,先后向第二装置发送第二信息和第二数据包;或者,第二信息的发送时刻与起始时刻K之间存在第一间隔,如第二装置作为发送节点,第二信息的发送时刻与第二装置向第一装置开始发送第一数据包之间存在第一间隔;或者,第二信息的发送完成时刻与起始时刻K之间存在第一间隔,如第二装置作为发送节点,第二信息的发送完成时刻与第二装置向第一装置开始发送第一数据包之间存在第一间隔。
可选的,第一间隔是预先定义或者配置的,可以为第一间隔是由发送节点(如第一装置或第二装置)从预定义或预配置的间隔集合或范围中选择的一个间隔。相应的,接收节点可以根据预定义或预配置的间隔集合或范围检测来自发送节点的数据包。
在一种可能的设计中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,该起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
通过该设计,第一装置可以以时域资源单元为粒度为与第二装置之间的数据传输配置时域资源。其中,该N个时域资源单元可以从1开始计数,如记为时域资源单元1~N,或者也可以从0开始计数,如记为时域资源单元0~N-1。该N个时域资源单元中的第一个时域资源单元可以为该N个时域资源单元中在时域上最靠前的一个时域资源单元。
在一种可能的设计中,起始时刻K可以为第M个时域资源单元的起始时刻或者结束时刻。
在一种可能的设计中,第一装置在第一时域资源内向第二装置发送第二信息,可以为:第一装置在N个时域资源单元中的第L个时域资源单元开始发送第二信息,L为大于0、且小于或等于M的正整数。
通过该设计,第一装置可以提前向第二装置发送第二信息,也可以在第M个时域资源单元内发送该第二信息,即第二信息的发送时刻可以与起始时刻K位于同一个时域资源单元内。
在一种可能的设计中,第一装置在N个时域资源单元中的第L个时域资源单元开始发送第二信息,可以为:第一装置在L个时域资源单元的起始时刻开始发送第二信息。
通过该设计,第二信息的发送时刻可以为第L个时域资源单元的起始时刻。
在一种可能的设计中,该方法还可以包括:第一装置发送第三信息,第三信息用于指 示时域资源单元的配置。
通过该设计,时域资源单元可以由第一装置发送的第三信息配置。
在一种可能的设计中,该方法还可以包括:第一装置在第二时域资源内向第三装置发送第四信息,该第四信息用于指示第一装置与第三装置之间的数据传输的起始时刻H,用于该第一装置与第三装置之间的数据传输的时域资源属于第二时域资源,第二时域资源在时域上连续,该第二时域资源与第一时域资源之间存在重叠部分,且该起始时刻H位于第二时域资源与第一时域资源之间的重叠部分内。
通过该设计,由于第一装置与第二装置之间的数据传输何时开始是由第一装置灵活确定的,那么当第一数据包和/或第二数据包被正确接收,或者停止第一数据包和/或第二数据包的发送后,且第一时域资源还有剩余时,第一装置可以将该剩余的时域资源中的某一时刻指示为与其它装置之间的数据传输的起始时刻。也就是说,通过该设计第一装置可以将第一装置与第二装置进行数据传输所剩余的时域资源配置用于与其它装置之间的数据传输,这样就可以避免浪费剩余的时域资源,提高时域资源利用率。
在一种可能的设计中,第一时域资源可以与第三时域资源之间存在重叠部分,且第一时域资源的起始时刻晚于所述第三时域资源的起始时刻,其中,第三时域资源在时域上连续,用于第一装置与第四装置之间的数据传输的时域资源属于第三时域资源,起始时刻K可以位于第三时域资源与第一时域资源之间的重叠部分内。
通过该设计,由于第一装置与第二装置之间的数据传输何时开始是由第一装置灵活确定的,那么当第一装置与第四装置在第三时域资源内的数据传输结束后,且第三时域资源还有剩余时,第一装置可以将该剩余的时域资源中的某一时刻指示为与第二装置之间的数据传输的起始时刻。换而言之,第一装置可以将第一装置与其它装置进行数据传输所剩余的时域资源配置用于与第二装置之间的数据传输,这样就可以避免浪费剩余的时域资源,提高时域资源利用率。
第二方面,本申请实施例提供一种通信方法,该方法可以由第二装置执行,或者由第二装置的部件(如芯片或芯片系统)等执行。示例性地,所述第二装置可以是车载装置,或者也可以是非车载装置。可选的,第二装置例如为智能穿戴设备、智能家居设备、智能制造设备、或智能运输设备等具备通信功能的设备,例如耳机、手机、车辆、无人机等。在该方法中,第二装置接收来自第一装置的第一信息,第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续;以及在第一时域资源内接收来自第一装置的第二信息,第二信息用于指示第二装置与第一装置之间的数据传输的起始时刻K,用于第二装置与第一装置之间的数据传输的时域资源属于第一时域资源,该第一时域资源为至少一个时域资源中的一个。
在一种可能的设计中,该方法还可以包括:
第二装置在第一时域资源内接收来自第一装置的第二数据包;或者,
第二装置在第一时域资源内向第一装置发送第一数据包;或者,
第二装置在第一时域资源内接收来自第一装置的第二数据包,以及在第一时域资源内向第一装置发送第一数据包。
在一种可能的设计中,第二信息包括第二装置的标识信息,或者包括第一装置与第二装置之间的通信链路的标识信息,或者包括第二装置的标识信息和第一装置与第二装置之间的通信链路的标识信息。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K。
在一种可能的设计中,第二信息的时域支援用于指示起始时刻K可以为:
接收到第二信息的时刻等于起始时刻K;或者,
第二信息的接收完成时刻等于起始时刻K;或者,
接收到第二信息的时刻与起始时刻K之间存在第一间隔;或者,
第二信息的接收完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
在一种可能的设计中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
在一种可能的设计中,起始时刻K为第M个时域资源单元的起始时刻或者结束时刻。
在一种可能的设计中,第二装置在第一时域资源内接收来自第一装置的第二信息,可以为:第二装置在N个时域资源单元中的第L个时域资源单元开始接收来自第一装置的第二信息,L为大于0、且小于或等于M的正整数。
在一种可能的设计中,第二装置在N个时域资源单元中的第L个时域资源单元开始接收来自第一装置的第二信息,可以为:第二装置在第L个时域资源单元的起始时刻开始接收第二信息。
在一种可能的设计中,该方法还可以包括:第二装置在N个时域资源单元中的每个时域资源单元的起始时刻开始检测第二信息。
通过该设计,第二装置可以仅在每个时域资源单元的起始时刻盲检第二信息,无需在整个时域资源内进行盲检,由此可以减少第二装置的盲检量,简化第二装置的实现复杂度,进一步也可以减小第二装置的功耗。
在一种可能的设计中,该方法还可以包括:第二装置接收来自第一装置的第三信息,第三信息用于指示时域资源单元的配置。
第三方面,本申请实施例提供一种资源指示装置,该装置可以包括处理单元、发送单元和接收单元,这些单元可以执行上述第一方面任一种设计示例中第一装置所执行的相应功能。该资源指示装置可以为第一装置或者第一装置内部的功能单元、芯片或者集成电路等。
示例性的,发送单元,用于发送第一信息,第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续;以及,在第一时域资源内向第二装置发送第二信息,第二信息用于指示资源指示装置与第二装置之间的数据传输的起始时刻K,用于资源指示装置与第二装置之间的数据传输的时域资源属于第一时域资源,第一时域资源为至少一个时域资源中的一个。
在一种可能的设计中,在资源指示装置在第一时域资源内向第二装置发送第二信息之前,处理单元用于确定在第一时域资源内向第二装置发送第二信息。
在一种可能的设计中,接收单元,用于在第一时域资源内接收来自第二装置的第一数据包;或者,
发送单元用于在第一时域资源内向第二装置发送第二数据包;或者,
发送单元用于在第一时域资源内向第二装置发送第二数据包,以及接收单元在第一时域资源内接收来自第二装置的第一数据包。
在一种可能的设计中,第二信息包括第二装置的标识信息,或者包括资源指示装置与第二装置之间的通信链路的标识信息,或者包括第二装置的标识信息和资源指示装置与第二装置之间的通信链路的标识信息。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K可以为:
第二信息的发送时刻等于起始时刻K;或者,
第二信息的发送完成时刻等于起始时刻K;或者,
第二信息的发送时刻与起始时刻K之间存在第一间隔;或者,
第二信息的发送完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
在一种可能的设计中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
在一种可能的设计中,起始时刻K为第M个时域资源单元的起始时刻或者结束时刻。
在一种可能的设计中,发送单元,具体用于:在N个时域资源单元中的第L个时域资源单元开始发送第二信息,L为大于0、且小于或等于M的正整数。
在一种可能的设计中,发送单元,具体用于:在L个时域资源单元的起始时刻开始发送第二信息。
在一种可能的设计中,发送单元进一步用于:发送第三信息,第三信息用于指示时域资源单元的配置。
在一种可能的设计中,当资源指示装置与第二装置在第一时域资源内的数据传输结束、且第一时域资源存在剩余时,该发送单元进一步用于:在第二时域资源内向第三装置发送第四信息,该第四信息用于指示资源指示装置与第三装置之间的数据传输的起始时刻H,用于该资源指示装置与第三装置之间的数据传输的时域资源属于第二时域资源,第二时域资源在时域上连续,该第二时域资源与第一时域资源之间存在重叠部分,且第四信息的发送时刻位于第二时域资源与第一时域资源之间的重叠部分内。进一步的,该起始时刻H也可以位于第二时域资源与第一时域资源之间的重叠部分内。
在一种可能的设计中,第一时域资源可以与第三时域资源之间存在重叠部分,且第一时域资源的起始时刻晚于所述第三时域资源的起始时刻,其中,第三时域资源在时域上连续,用于资源指示装置与第四装置之间的数据传输的时域资源属于第三时域资源;当资源指示装置与第四装置在第三时域资源内的数据传输结束、且第三时域资源存在剩余时,第二信息的发送时刻可以位于第一时域资源与第三时域资源之间的重叠部分内。进一步,起始时刻K也可以位于第三时域资源与第一时域资源之间的重叠部分内。
第四方面,本申请实施例提供一种通信装置,该装置可以包括处理单元、发送单元以及接收单元,这些单元可以执行上述第二方面任一种设计示例中第二装置所执行的相应功能。该通信装置可以为第二装置或者第二装置内部的功能单元、芯片或者集成电路等。
接收单元,用于接收来自第一装置的第一信息,第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续;以及,在第一时域资源内接收来自第一装置的第二信息,第二信息用于指示通信装置与第一装置之间的数据传输的起始时刻K,用于通信装置 与第一装置之间的数据传输的时域资源属于第一时域资源,第一时域资源为至少一个时域资源中的一个。
在一种可能的设计中,接收单元进一步用于在第一时域资源内接收来自第一装置的第二数据包;或者,
发送单元进一步用于在第一时域资源内向第一装置发送第一数据包;或者,
发送单元进一步用于在第一时域资源内向第一装置发送第一数据包,以及接收单元进一步用于在第一时域资源内接收来自第一装置的第二数据包。
在一种可能的设计中,第二信息包括通信装置的标识信息,或者包括第一装置与通信装置之间的通信链路的标识信息,或者包括通信装置的标识信息和第一装置与通信装置之间的通信链路的标识信息。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K。
在一种可能的设计中,第二信息的时域资源用于指示起始时刻K可以为:
接收到第二信息的时刻等于起始时刻K;或者,
第二信息的接收完成时刻等于起始时刻K;或者,
接收到第二信息的时刻与起始时刻K之间存在第一间隔;或者,
第二信息的接收完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
在一种可能的设计中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
在一种可能的设计中,起始时刻K为第M个时域资源单元的起始时刻或者结束时刻。
在一种可能的设计中,接收单元,具体用于:在N个时域资源单元中的第L个时域资源单元开始接收来自第一装置的第二信息,L为大于0、且小于或等于M的正整数。
在一种可能的设计中,接收单元,具体用于:在第L个时域资源单元的起始时刻开始接收第二信息。
在一种可能的设计中,处理单元用于:在N个时域资源单元中的每个时域资源单元的起始时刻开始检测第二信息。
在一种可能的设计中,接收单元,进一步用于:接收来自第一装置的第三信息,第三信息用于指示时域资源单元的配置。
第五方面,本申请提供一种资源指示装置,该资源指示装置可以是第一装置,也可以是第一装置中的装置。该资源指示装置可以包括一个或多个处理器,用于实现上述第一方面中第一装置所执行的方法。该资源指示装置还可以包括存储器,用于存储程序指令和数据。该存储器与该一个或多个处理器耦合,该一个或多个处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面中第一装置所执行的任意一种方法。
可选的,该资源指示装置还可以包括收发器,该收发器用于该资源指示装置与其它设备进行通信。
第六方面,本申请提供一种通信装置,该通信装置可以是第二装置,也可以是第二装置中的装置。该通信装置可以包括一个或多个处理器,用于实现上述第二方面中第二装置所执行的方法。该通信装置还可以包括存储器,用于存储程序指令和数据。该存储器与该一个或多个处理器耦合,该一个或多个处理器可以调用并执行该存储器中存储的程序指令, 用于实现上述第二方面中第二装置所执行的任意一种方法。
可选的,该通信装置还可以包括收发器,该收发器用于该通信装置与其它设备进行通信。
第七方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第一方面任一种设计示例中第一装置所执行的方法。
第八方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第二方面任一种设计示例中第二装置所执行的方法。
第九方面,本申请提供一种计算机程序产品,包括指令,当指令在计算机上运行时,使得计算机执行上述第一方面任一种设计示例中第一装置所执行的方法。
第十方面,本申请提供一种计算机程序产品,包括指令,当指令在计算机上运行时,使得计算机执行上述第二方面任一种设计示例中第二装置所执行的方法。
第十一方面,本申请还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统所在装置实现上述第一方面任一种设计示例中第一装置执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统所在的装置实现上述第二方面任一种设计示例中第二装置执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请还提供一种通信系统,该通信系统包括上述第五方面任一种设计示例中的资源指示装置以及上述第六方面任一种设计示例中的通信装置。
第十四方面,本申请还提供一种终端设备,该终端设备包括上述第五方面任一种设计示例中的资源指示装置和/或上述第六方面任一种设计示例中的通信装置,或者包括上述第十一方面任一种设计示例中的芯片系统和/或上述第十二方面任一种设计示例中的芯片系统。其中上述第十一方面和第十二方面涉及的芯片系统可以是同一套芯片系统或者不同的芯片系统。
上述第二方面至第十四方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述。
附图说明
图1A为本申请实施例的一种应用场景示意图;
图1B为本申请实施例的又一种应用场景示意图;
图1C为本申请实施例的再一种应用场景示意图;
图2为本申请实施例中主从节点间的数据传输的流程示意图;
图3为本申请实施例中主节点为从节点分配的时域资源的示意图;
图4为本申请实施例提供的一种资源指示方法的流程示意图;
图5A为本申请实施例提供的起始时刻K的一种示意图;
图5B为本申请实施例提供的起始时刻K的一种示意图;
图5C为本申请实施例提供的起始时刻K的另一种示意图;
图5D为本申请实施例提供的起始时刻K的另一种示意图;
图6A为本申请实施例提供的起始时刻K的再一种示意图;
图6B为本申请实施例提供的起始时刻K的再一种示意图;
图7为本申请实施例提供的数据传输的一种示意图;
图8A为本申请实施例提供的单向数据传输的一种示意图;
图8B为本申请实施例提供的单向数据传输的又一种示意图;
图9为本申请实施例提供的双向数据传输的一种示意图;
图10为本申请实施例提供的双向数据传输的又一种示意图;
图11为本申请实施例提供的双向数据传输的再一种示意图
图12为本申请实施例提供的一种资源指示方法的流程示意图;
图13为本申请实施例提供的时域资源3和时域资源4的示意图;
图14为本申请实施例提供的另一种资源指示方法的流程示意图;
图15为本申请实施例提供的时域资源3和时域资源5的示意图;
图16为本申请实施例提供的一种资源指示装置的结构示意图;
图17为本申请实施例提供的一种通信装置的结构示意图;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面首先对本申请实施例涉及的部分用语进行解释说明,以便于本领域技术人员理解。
(1)主节点、从节点,在逻辑功能上区分的两类节点,分别是主节点和从节点。其中主节点管理从节点,具有分配资源的功能,负责为从节点分配资源;从节点根据主节点的调度,使用主节点分配的资源通信。节点可以为各种装置,例如主节点为手机,从节点为耳机,手机与耳机建立通信连接实现数据交互。手机管理耳机,手机具有分配资源的功能,可以为耳机分配资源。
需要说明的是,本申请实施例涉及的数据传输可以为主节点与从节点之间的数据传输,也可以为主节点调度资源所实现的从节点与从节点之间的数据传输,本申请实施例对此不作限定。
(2)时域资源单元,可以为超帧、帧(或称无线帧)、子帧、时隙、事件或子事件等时间单元,还可以是连续多个时间单元构造的单元组等。例如时域资源单元可以为协议预定义的,或者为主节点向从节点发送消息指示配置的,或者为主节点与从节点预先约定的等。具体的,超帧,用于协调器限定设备对各信道的访问时间。可选的设计中,超帧可以将通信时间划分为两个时段,即活跃期和非活跃期。在非活跃期内,协调器进入低功耗模式或睡眠模式。或者,超帧可以包含多个无线帧,例如48个无线帧,每个无线帧的时长约为20.83微秒(us),每个帧中可以包含S个符号,所述S为正整数,例如S可以为7或者8等。具体的时域资源单元的长度或者粒度可以根据系统设计的需要设置或者定义。
(4)座舱域控制器(cockpit domain controller或control domain cockpit,CDC),简称车机。目前车机的功能除了传统的收音机、音乐时频播放、导航功能以外,已经带有蜂窝通信功能(3G,4G等),能结合汽车的控制器局域网络(controller area network,CAN)- 总线(BUS)技术,实现人与车,车与外界的信息通讯,增强了用户体验及服务、安全相关的功能。
(5)通信域,一组具有通信关系的通信节点,以及通信节点之间的通信连接关系组成的系统。其中,一个装置或设备可以在多个通信域中。例如当手机与耳机进行无线通信时,手机在包括手机与耳机在内的通信域a中,在通信域a中手机为主节点,耳机为从节点;然后当手机检测到CDC,并与该CDC建立无线连接后,手机也在包括手机与CDC在内的通信域b中,在通信域b中CDC为主节点,手机为从节点,手机听从该CDC的调度。通信域b中还可以包括其他从节点,如车载音箱、麦克等。
(6)网络设备也可以称为无线接入网设备,可以是基站(base station)、eNodeB、发送接收点(transmission reception point,TRP)、gNB、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站,也可以是微基站或室内站等。无线接入网设备还可以是蓝牙(bluetooth,BT)网关、低功耗蓝牙(bluetooth low energy,BLE)网关、BT/BLE双模网关或多模网关或者兼容上述蓝牙相关技术的网关、其他可能的短距离通信网关等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
(7)终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。终端还可以是支持BT、或BLE、或者兼容BT或者BLE技术、或者支持其他可能的短距离通信技术等短距离通信类设备。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
(8)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”、“第三”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息、第二信息和第三信息等,只是为了区分不同的信息,而并不是表示这三个信息的大小、内容、发送顺序、优先级或者重要程度等的不同。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或 单元。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例适用的应用场景。
本申请实施例提供的技术方案所应用的无线通信场景,可以包括广域无线通信,例如包括多个基站与多个终端设备之间的通信,其中,基站可以作为主节点,终端设备可以作为从节点。例如,基站作为主节点可以为终端设备分配资源,终端设备听从基站的调度。本申请实施例提供的技术方案所应用的无线通信场景,也可以包括短距离无线通信场景,例如包括CDC与车载音箱、车载麦克、手机之间的通信,手机与耳机等穿戴式设备之间的通信等。本申请实施例提供的技术方案所应用的无线通信场景,还可以包括局域无线通信,例如多个接入点(access point,AP)与多个站点(station)之间的通信等。
例如,将本申请实施例提供的技术方案应用于车内的无线通信场景,则图1A所示的网络架构可以是本申请实施例所应用的一种网络架构。如果将本申请实施例提供的技术方案应用于其他的广域无线通信或局域无线通信场景,则本申请实施例所应用的网络架构可以相应有所变化。
如图1A所示,车内存在多个通信域,其中的一个通信域包括一个主节点和至少一个从节点,其中,主节点调度从节点,为从节点配置资源,以实现主从节点之间互相传输业务数据。例如图1A中,手机、耳机和穿戴式设备属于一个通信域,例如称为通信域1,其中手机是主节点,耳机和穿戴式设备是从节点;CDC、显示屏、麦克、音箱属于一个通信域,例如称为通信域2,其中CDC是主节点,显示屏、麦克和音箱是从节点;无钥匙进入及启动系统(passive entry passive start,PEPS)、车身控制模块(body control module,BCM)、手机钥匙和车钥匙属于一个通信域,例如称为通信域3,其中PEPS是主节点,BCM、手机钥匙和车钥匙是从节点;MDC、摄像头和雷达属于一个通信域,例如称为通信域4,其中MDC是主节点,摄像头和雷达是从节点。另外,一个通信域的主节点也可以作为另一个通信域的从节点,例如,通信域1中的手机可以作为通信域2的从节点。
又例如,将本申请实施例提供的技术方案应用于V2X通信场景,那么可参考图1B,为本申请实施例的一种应用场景。图1B包括终端设备1和终端设备2,终端设备1和终端设备2可通过侧行链路(sidelink,SL)通信。例如,终端设备1可以作为主节点,终端设备2可以作为从节点。
再例如,将本申请实施例提供的技术方案应用于LTE系统或NR系统的Uu接口的通信,可参考图1C,为本申请实施例的一种应用场景。图1C包括网络设备和终端设备,网络设备和终端设备可通过Uu口通信。
图1B和图1C都以终端设备是手机为例,本申请实施例的终端设备不限于此。
接下来介绍本申请实施例涉及的技术特征。
随着全球通信技术的不断发展,无线通信技术的发展速度与应用已经超过了固定通信技术,呈现出如火如荼的发展态势。智能运输设备、智能家居设备、机器人等智能终端正在逐步进入人们的日常生活中。以智能终端为智能运输设备为例,车联网技术的发展与应用越来越受到人们的关注。由于相比现有的有线通信,车载无线可以进一步降低车内线束数量、长度、重量,以及与之对应的安装、维护、保养成本,车载通信技术有逐步无线化的趋势。随着车载应用的多样化,车内通信节点数量、类型都越来越多,对于车载通信的 能力提出了更高的要求。在智能终端所在的无线通信场景中,在一定通信区域或范围内往往会存在多个通信域,例如图1A中的通信域1、通信域2、通信域3、或通信域4。
通信域包括一个主节点和至少一个从节点。主节点调度从节点,为从节点配置资源,以实现主节点与从节点、或从节点与从节点之间的业务数据的传输。例如主节点与从节点的通信系统兼容BT技术、或者BLE技术、或者其它可能的短距离通信技术等。以BLE技术为例,BLE技术旨在保持同等通信范围的同时显著降低功耗和成本。BLE技术通过从节点在广播信道(即广播频点)发送广播消息,主节点通过扫描广播信道以实现节点间的互相发现或连接建立。目前,BT技术或BLT技术仅支持基于单混合自动重传请求(hybrid automatic repeat request,HARQ),)等停协议的数据传输。即发送节点向接收节点发送一个数据包后,就会停下来等待来自接收节点的确认(acknowledge,ACK)消息或否认(nonacknowledge,NACK)消息。主从节点间数据传输的流程,请参考图2。
S21:主节点为从节点分配时域资源1,该时域资源1为满足可靠性的传输次数对应的时域资源。例如主节点为从节点分配用于数据传输的时域资源1,该时域资源1为大于或等于满足可靠性的传输次数对应的时域资源。例如单次传输需要0.5ms,满足可靠性的传输次数为3,则主节点需要分配大于或等于1.5ms的时域资源用于该主节点与从节点之间数据传输。
进一步,主节点还可以向从节点发送指示信息,以指示该时域资源1。
S22:主节点在时域资源1内的时刻t1向从节点发送数据包1。
S23:从节点在时域资源1内的时刻t2向主节点发送NACK消息。从节点未正确接收数据包1,从节点在时刻t2向主节点发送NACK消息,例如从节点未成功接收到数据包1,或者对数据包1解码失败,或者数据包1的传输时长超过设定时长等。
S24:主节点在时域资源1内的时刻t3向从节点发送数据包1。主节点在接收到来自从节点的NACK消息后在时刻t3重传该数据包1。
S25:从节点在时域资源1内的时刻t4向主节点发送ACK消息。当从节点正确接收到数据包1后,从节点在时刻t4向主节点发送ACK消息。
至此,主从节点间完成对数据包1的传输。
主节点可以为从节点分配满足可靠性的传输次数对应的时域资源,主节点通过为不同通信链路分配的时域资源在时域上一般不交叠以避免资源冲突。那么,在数据传输过程中,各节点会在各自分配的时域资源的起始时刻开始进行数据传输,使得资源使用的灵活性降低。
另外,接收节点正确接收数据所实际用到的传输次数往往小于为了保证可靠性所需要的传输次数。例如,单次传输的误包率为10%,为了保证99.9%的可靠性那么需要3次传输次数,但单次传输中有90%的概率是接收节点正确接收数据的,即在实际数据传输过程中,有99%的概率数据传输的次数不超过2次就被接收节点正确接收了。换而言之,分配的时域资源往往多于数据传输实际用到的时域资源。如图3所示,主节点为从节点分配时刻t1至时刻t5对应的时域资源,即时域资源1为时刻t1至时刻t5,按照图2所示的流程,数据包1在时刻t4被从节点正确接收,那么时刻4至时刻t5对应的时域资源为未使用的时域资源。由于主节点为不同从节点分配的时域资源在时域上不是交叠的,这就导致时域资源1的剩余部分被浪费掉了,降低了时域资源的利用率。
鉴于此,本申请实施例提供一种资源指示方法、装置及系统。在本申请实施例中,第 一装置可以为第二装置配置至少一个时域资源,然后通过向第二装置发送第二信息来指示与第二装置进行数据传输的起始时刻K,该数据传输位于第一时域资源,第一时域资源为至少一个时域资源中的一个。也就是说,第一装置与第二装置之间的数据传输何时开始是由第一装置发送的第二信息来确定的,意味着采用本申请实施例提供的方法,第一装置还可以指示其它两个装置(如第一装置与除了第二装置之外的其它装置,或第二装置与除了第一装置之外的其它装置,或除了第一装置和第二装置之外的其它两个装置)之间的数据传输的起始时刻,这样即可以避免资源冲突,又可以提高资源使用的灵活性。
另外,由于第一装置还可以指示其它两个装置之间的数据传输的起始时刻,意味着采用本申请实施例提供的方法,当第一时域资源还有剩余时,第一装置可以将该剩余的时域资源中的某一时刻指示为与其它装置之间的数据传输的起始时刻,换而言之第一装置可以将该剩余的时域资源配置用于与其它装置之间的数据传输,这样就可以避免时域资源的浪费,提高时域资源利用率。
图4所示为本申请实施例提供的一种资源指示方法的流程示意图。在下文的介绍过程中,以该方法应用于图1A~图1C中的任一个附图所示的网络架构为例。
为了便于介绍,在下文中,以该方法由第一装置和第二装置执行为例。在可能的场景中,如果将本实施例应用在图1A所示的网络架构,则下文所述的第二装置可以是图1A所示的任一个通信域中的任一个从节点,例如为通信域1中的耳机,或者为通信域2中的麦克,或为作为通信域4中的雷达等,或者第二装置也可以是设置在图1A所示的任一个通信域中的任一个从节点中的芯片系统;下文所述的第一装置可以是图1A所示的任一个通信域中的任一个主节点,例如为通信域1中的手机,或者为通信域2中的CDC,或者为通信域4中的MDC等,或者第一装置也可以是设置在图1A所示的任一个通信域中的任一个主节点中的芯片系统。或者,如果将本实施例应用在图1B所示的网络架构,则下文所述的第一装置可以是图1B所示的终端设备1,下文所述的第二装置可以是图1B所示的终端设备2。或者,如果将本实施例应用在图1C所示的网络架构,则下文所述的第一装置可以是图1C所示的网络设备,下文所述的第二装置可以是图1C所示的终端设备。
S41:第一装置向第二装置发送第一信息。相应的,第二装置接收来自第一装置的第一信息。
其中,第一信息可以用于指示至少一个时域资源,该至少一个时域资源中的每个时域资源在时域上连续。当第一信息用于指示多个时域资源时,该多个时域资源可以是周期性的,也可以是非周期性的,本申请实施例对此不作限定。例如,第一装置与第二装置之间的数据传输为周期性业务,第一装置可以为第二装置分配多个周期性的时域资源,如在每个业务传输周期内分配一个时域资源,该一个时域资源在业务传输周期内是连续的。再例如,第一装置与第二装置之间的数据传输为周期性业务,第一装置也可以为第二装置分配多个非周期性的时域资源,如在每个业务传输周期内分配的时域资源的数量不同,但每个时域资源在时域上是连续的。
需要说明的是,多个时域资源无论是周期性的,还是非周期性的,该多个时域资源中的每个时域资源在业务传输周期内的起始时刻可以相同,也可以不同,本申请实施例对此不作限定。进一步,第一装置可以指示每个时域资源在业务传输周期内的起始时刻和结束时刻,也可以仅指示每个时域资源在业务传输周期内的起始时刻,不指示每个时域资源在业务传输周期内的结束时刻,本申请实施例对此不作限定。另外,当每个业务传输周期内 分配一个时域资源,且第一装置仅指示每个时域资源在业务传输周期内的起始时刻,不指示每个时域资源在业务传输周期内的结束时刻时,每个时域资源的时域长度可以为一个业务传输周期,即一个时域资源的结束时刻可以为下一个时域资源的起始时刻,但本申请实施例并不限定于此。
示例性的,第一装置为主节点,第二装置为从节点,第一装置可以为第二装置分配至少一个时域资源,至少一个时域资源大于或等于满足可靠性的传输次数所对应的时域资源。至少一个时域资源用于第一装置与第二装置之间的数据传输。该至少一个时域资源中的每个时域资源在时域上是连续的。其中,第一信息可以是物理层信令,也可以是媒体接入层信令、或链路控制层信令等高层信令,还可以是其它信令或信号,或者是上述某个信令中的一个或多个字段等,本申请实施例对第一信息的具体形式不作限定。
示例性的,第一装置可以以时域资源单元为粒度为第二装置分配至少一个时域资源。该至少一个时域资源中的每个时域资源包括的时域资源单元的数量可以相同,也可以不同,本申请实施例对此不作限定。例如,第一时域资源为该至少一个时域资源中的一个,第一时域资源中包括N个时域资源单元,该N为大于0的正整数。其中,时域资源单元可以为超帧、帧、子帧、时隙、事件或子事件等时间单元,还可以为连续多个时间单元组成的单元组等。例如该时域资源单元可以是协议预定义的,或者是第一装置与第二装置预先约定的,或者是第一装置配置的,如第一装置向第二装置发送第三信息,该第三信息用于指示该时域资源单元的配置。其中,第三信息可以是高层信令。可以理解的是,本申请实施例对时域资源单元的具体实现形式不作限定。另外,第三信息与第一信息可以为同一个信息,也即是第一信息不仅用于指示至少一个时域资源,还用于指示时域资源单元的配置,也可以为不同的信息,本申请实施例不作限定。
S42:第一装置在第一时域资源内向第二装置发送第二信息。相应的,第二装置在第一时域资源内接收来自第一装置的第二信息。
示例性的,第一装置可以确定是否在第一时域资源内向第二装置发送第二信息。即,第一装置先确定是否在第一时域资源内向第二装置发送第二信息,在确定在第一时域资源内向第二装置发送第二信息后,第一装置在第一时域资源内向第二装置发送第二信息。例如,第一装置可以根据与第二装置和/或其它装置之间的历史传输情况确定是否向第二装置发送第二信息,即第一装置根据历史传输情况确定是否在第一时域资源内与第二装置进行数据传输。例如,第一装置在第一时域资源内与其它装置进行数据传输后,第一时域资源的剩余时域资源不同,则第一装置确定不在第一时域资源内向第二装置发送第二信息。再例如,在第一时域资源内第一装置与其它装置之间进行数据传输的优先级高于第一装置与第二装置之间进行数据传输的优先级,则第一装置确定不在第一时域资源内向第二装置发送第二信息。进一步,在第一装置确定不在第一时域资源内向第二装置发送第二信息的情况下,该第一时域资源不用于第一装置与第二装置之间的数据传输。
第二信息中可以包括第二装置的标识信息,或者包括第一装置与第二装置之间的通信链路的标识信息,或者包括第二装置的标识信息和第一装置与第二装置之间的通信链路的标识信息,以指示该第二信息用于第一装置与第二装置之间的数据传输。第一装置与第二装置之间传输的数据可以为视频数据、音频数据、或图片信息等,本申请实施例对此不作限定。其中,第二装置的标识信息可以是第二装置的标识,也可以是其它用于区别于其它装置的信息。类似的,第一装置与第二装置之间的通信链路的标识信息可以是该通信链路 的标识,也可以是其它用于区别于其它通信链路(如第一装置与第二装置之间除了该通信链路之外的通信链路,和/或第一装置与其它装置之间的通信链路)的信息。
例如,当第二信息仅包括第二装置的标识时,第二信息可以用于区别于与其它装置之间的数据传输。当第二信息仅包括与第二装置之间的通信链路的标识时,第二信息可以用于区别于与其它通信链路上的数据传输。当第二信息包括第二装置的标识和与第二装置之间的通信链路的标识时,第二信息可用于区别于与其它通信链路上的数据传输,以及区别于与其它装置之间的数据传输。例如组播、广播或其它类型的通信链路中,第一装置与多个装置(包括第二装置)可以在同一个通信链路上进行数据传输,通过第二装置的标识可以明确该第二信息用于指示通过该通信链路与第二装置进行数据传输。
在本申请实施例中,第二信息可用于指示第一装置与第二装置之间的数据传输的起始时刻K。该起始时刻K可以为第一装置与第二装置之间的一次或一系列数据传输的起始时刻。该起始时刻K位于第一时域资源内,第一时域资源为至少一个时域资源中的一个,且用于第一装置与第二装置进行数据传输的时域资源。例如第一装置在第一时域资源内向第二装置发送第二信息,第二装置在第一时域资源内检测到该第二信息,并接收。进一步,第二装置可以根据该第二信息确定与第一装置之间的数据传输的起始时刻K。
为了便于理解本申请实施例,下文将第二装置向第一装置发送的数据包称为第一数据包,第一装置向第二装置发送的数据称为第二数据包来描述。即,第一数据包是第二装置生成的、然后发送给第一装置的数据包,第二数据包是第一装置生成的、然后发送给第二装置的数据包。其中,数据包的生成可以包括对高层数据进行编码、调制、或资源映射等操作中的一项或多项。
在本申请实施例中,第一装置与第二装置之间的数据传输可以是单向数据传输,如第二装置在第一时域资源内向第一装置发送第一数据包,或者第一装置在第一时域资源内向第二装置发送第二数据包。或者,第一装置与第二装置之间的数据传输也可以是双向数据传输,如第二装置在第一时域资源内向第一装置发送第一数据包,并且第一装置在第一时域资源内向第二装置发送第二数据包。
需要说明的是,前述第一装置与第二装置之间的一系列数据传输是指单向传输方向上的一系列数据传输。例如,第一装置向第二装置发送多个数据包,每当第二装置成功接收一个数据包后,第一装置向第二装置发送下一个数据包。在此情况下,起始时刻K为多个数据包中的第一个数据包的起始时刻。
起始时刻K可以理解为第一装置与第二装置开始进行数据初传和/或重传的起始时刻。即,起始时刻K可以是单向数据传输中开始数据初传或重传的起始时刻。例如,当第一装置为发送节点,第二装置为接收节点时,该起始时刻K可以为第一装置向第二装置初传第二数据包的发送时刻。再例如,当第一装置为接收节点,第二装置为发送节点时,该起始时刻K可以为第二装置向第一装置重传第一数据包的发送时刻。或者,起始时刻K还可以是两个数据传输方向上皆开始数据重传的起始时刻,或者是一个数据传输方向上开始数据初传的起始时刻、以及是另一个数据传输方向上开始数据重传的起始时刻。例如,起始时刻K是第一装置向第二装置初传第二数据包的发送时刻,同时也是第二装置向第一装置初传第一数据包的发送时刻。再例如,起始时刻K是第一装置向第二装置重传第二数据包的发送时刻,同时也是第二装置向第一装置初传第一数据包的发送时刻。
或者,起始时刻K还可以理解为第一装置与第二装置开始进行数据传输的起始时刻。 即,不区分数据是初传还是重传,起始时刻K为第一装置与第二装置开始进行数据传输的起始时刻。
需要说明的是,第一时域资源可以是不区分初传或重传的时域资源;也可以是专用于重传或初传的时域资源。对于双向传输,第一时域资源可以是针对一个传输方向专用于初传或重传的时域资源,对于另一个传输方向不区分初传或重传的时域资源;或者,是针对两个传输方向专用于初传或重传的时域资源。
在另一种可能的实现方式中,第二信息可以是一个触发信号或包含一个触发信号,该触发信号用于触发第一装置与第二装置之间的数据传输。进一步,第二信息还可以包括经过信道编码和/或调制得到的数据,这里的数据可以是业务数据、或者是控制信息、或者是业务数据和控制信息。在此情况下,第一装置与第二装置之间所传输的数据可以包括第二信息所包含的数据,也可以不包括第二信息所包含的数据,本申请实施例对第二信息的具体形式不作限定。
在本申请实施例中,第二信息指示起始时刻K,可以隐式指示,也可以显示指示。
第二信息可以隐式指示起始时刻K,如第二信息使用的时域资源用于指示起始时刻K。
例如,一种隐式指示方式为,第二信息的发送时刻用于指示起始时刻K,如第二信息的发送时刻等于起始时刻K。例如,第一装置为发送节点,第二装置为接收节点,第一装置可以在第一时域资源内的时刻K将第二数据包与第二信息一起发送给第二装置,即第一装置在同一时刻向第二装置发送第二信息和第二数据包,如图5A所示。第二装置在第一时域资源接收(或检测)第二信息,接收到(或检测到)第二信息后可以确定该起始时刻K为接收到第二信息的时刻。
例如,一种隐式指示方式为,第二信息的发送时刻用于指示起始时刻K,如第二信息的发送时刻与起始时刻K之间存在第一间隔。例如,第一装置在第一时域资源的时刻J向第二装置发送第二信息。那么,第二装置检测到第二信息后可以确定起始时刻K为时刻J与第一间隔之和。进一步,第一装置在起始时刻K开始向第二装置发送第二数据包,或者第二装置在起始时刻K开始向第一装置发送第一数据包,如图5B所示。
又例如,一种隐式指示方式为,第二信息的发送完成时刻用于指示起始时刻K,如第二信息的发送完成时刻等于起始时刻K。例如,第一装置为发送节点,第二装置为接收节点,第一装置在第一时域资源内先后向第二装置发送第二信息和第二数据包,如第一装置在第一时域资源内的时刻J1开始向第二装置发送第二信息,在时刻J2完成对第二信息的发送,并在时刻J2向第二装置发送第二数据包,即第二信息的发送完成时刻等于第二数据包的发送时刻,如图5C所示。第二装置在第一时域资源接收(或检测)第二信息,对第二信息的接收完成后可以确定该起始时刻K为第二信息的接收完成时刻。
再例如,一种隐式指示方式为,第二信息的发送完成时刻用于指示起始时刻K,如第二信息的发送完成时刻与起始时刻K之间存在第二间隔。例如,第一装置在第一时域资源的时刻J1开始向第二装置发送第二信息,并在时刻J2完成对第二信息的发送。那么,第二装置检测到第二信息后可以确定起始时刻K为时刻J2与第二间隔之和,如图5D所示。进一步,第一装置在起始时刻K开始向第二装置发送第二数据包,和/或第二装置在起始时刻K开始向第一装置发送第一数据包。
示例性的,第一间隔与第二间隔可以相同,也可以不同,本申请实施例对此不作限定。第一间隔可以是预先定义的,或者是第一装置与第二装置预先约定的,或者是第一装置配 置的。例如,第一间隔可以是由发送节点从预先定义的、或与接收节点预先约定的、或预先配置的间隔集合或范围中选择的一个间隔;相应的,接收节点可以根据预先定义的、或与发送节点预先约定的、或预先配置的间隔集合或范围检测来自发送节点的数据包。类似的,第二间隔也可以是预先定义的,或者是第一装置与第二装置预先约定的,或者是第一装置配置的。
或者第二信息还可以通过其他的隐式指示方式指示起始时刻K,如上只是举例,并不是对隐式指示方式的限制。通过隐式方式来指示第一装置与第二装置之间的数据传输的起始时刻K,无需在第二信息中携带额外的信息指示该起始时刻K,有助于节省第二信息的开销。而且一般来讲,在使用同样多的资源的情况下,传输的信息越少,则传输可靠性越高。那么,由于无需在第二信息中携带额外的信息指示该起始时刻K,相当于用同样多的资源传输了较少的信息,由此可以提升第二信息的传输可靠性。
或者,第二信息指示起始时刻K,也可以显式指示。
例如,一种显式指示方式为,第二信息中包括有关起始时刻K的时域信息,就表明了该起始时刻K在第一时域资源中的位置。那么,第二装置检测到第二信息后,可以对第二信息解码得到有关起始时刻K的时域信息,并根据该有关起始时刻K的时域信息确定起始时刻K。
再例如,一种显示指示方式为,第二信息中包括时域资源单元的标识(或编号、或序号等),如第一时域资源包括N个时域资源单元,起始时刻K所在的时域资源单元为该N个时域资源单元中的第M个时域资源单元,第二信息中可以包括第M个时域资源单元的标识。那么,第二装置检测到第二信息后,可以对第二信息进行解调、解码、转译等操作中的一种或多种,得到时域资源单元的标识,根据该时域资源单元的标识确定起始时刻K为该时域资源单元内的时刻。
示例性的,该N个时域资源单元可以从1开始计数,如记为时域资源单元1~N,或者也可以从0开始计数,如记为时域资源单元0~N-1,当然还可以从其它数字开始计数,本申请实施例对此不作限定。为了便于描述,本申请实施例以N个时域资源单元从1开始计数为例进行描述。该N个时域资源单元中的第一个时域资源单元可以为该N个时域资源单元中在时域上最靠前的一个时域资源单元,即,时域资源单元1为N个时域资源单元中在时域上最靠前的一个时域资源单元。
其中,N为大于0的正整数。M为大于0、且小于或等于N的正整数。例如,M等于1,起始时刻K所在的时域资源单元为该N个时域资源单元中的第一个时域资源单元,即,第一装置与第二装置之间的数据传输是在该N个时域资源单元中的第一个时域资源单元内开始的。又例如,M大于1,起始时刻K所在的时域资源单元是该N个时域资源单元中除了第一个时域资源单元之外的时域资源单元,即,第一装置与第二装置之前的数据传输不是在该N个时域资源单元中的第一个时域资源单元内开始的,如该第M个时域资源单元的前面(M-1)个时域资源单元未处于空闲状态。例如,该(M-1)个时域资源单元已经用于第一装置与除第二装置之外的其它装置之间的数据传输,或者用于第二装置与除了第一装置之外的其它装置之间的数据传输,或者除了第一装置和第二装置之外的其它装置间的数据传输。
当然,第二信息还可以通过其他的显式指示方式指示起始时刻K,如上只是举例,并不是对显式指示方式的限制。
需要说明的是,出于描述简单的考虑,本申请实施例中忽略了由于电磁波传播、发送节点和接收节点的同步误差、定时调整误差等非理想因素导致的发送节点和接收节点对定时理解的不一致性。例如,发送节点指示的起始时刻K,与接收节点接收到该指示后根据自身的定时确定的起始时刻K之间实际上存在一定的误差。目前,可以通过接收节点在接收时刻附近的多个时刻尝试接收等多种手段处理该误差,本申请实施例对如何处理该误差不作限定。
在本申请实施例中,以第一装置使用第二信息的发送时刻(或发送完成时刻)指示起始时刻K为例,描述接收第二信息的第二装置对第二信息的发送时刻(或发送完成时刻)的可能的理解方式以及对应的确定起始时刻K的方式,以及其它涉及发送节点和接收节点对定时理解不一致的情况,可参考如下理解。
第二信息的发送时刻指示起始时刻K,可以理解为接收到第二信息的时刻指示起始时刻K、或根据接收到第二信息的时刻以及其它信息(例如第一装置配置给第二装置的定时提前信息)确定的第一装置发送第二信息的时刻指示起始时刻K。类似的,第二信息的发送时刻与起始时刻K之间存在第一间隔,可以理解为接收到第二信息的时刻与起始时刻K之间存在第一间隔、或第一装置发送第二信息的时刻与起始时刻K之间存在第一间隔。第二信息的发送完成时刻指示起始时刻K,可以理解为第二信息的接收完成时刻指示起始时刻K、或第一装置发送第二信息的完成时刻指示起始时刻K。第二信息的发送完成时刻与起始时刻K之间存在第二间隔,可以理解为第二信息的接收完成时刻与起始时刻K之间存在第二间隔、或第一装置发送第二信息的完成时刻与起始时刻K之间存在第二间隔。其它可能的设计中,上述其它信息也可以通过其他方式指示或者预先配置。
例如,在单向数据传输中,第一装置向第二装置发送第二数据包。对于第二装置而言,第二信息的发送时刻(或发送完成时刻)指示起始时刻K,可以理解为接收到的第二信息的时刻(或第二信息的接收完成时刻)指示起始时刻K,如第二装置在第一时域资源内接收第二信息,接收到第二信息后,可以确定该起始时刻K为接收到第二信息的时刻;或者,可以理解第一装置发送第二信息的时刻(或第一装置发送第二信息的完成时刻)指示起始时刻K,如第二装置在第一时域资源内接收第二信息,接收到第二信息后,可以根据接收到第二信息的时刻以及与第二信息一起发送的其它信息(如第一装置配置给第二装置的定时提前信息等)获取第一装置发送第二信息的时刻,并确定该起始时刻K为第一装置发送第二信息的时刻。
又例如,在单向数据传输中,第二装置向第一装置发送第一数据包。对于第二装置而言,第二信息的发送时刻(或发送完成时刻)隐式指示起始时刻K,可以理解为接收到的第二信息的时刻(或第二信息的接收完成时刻)指示起始时刻。即第二装置在接收到第二信息的时刻(或第二信息的接收完成时刻)开始向第一装置发送第一数据包。
再例如,在双向数据传输中,起始时刻K可以理解为两个时刻,即第二装置开始发送第一数据包的时刻和第一装置开始发送第二数据包的时刻。例如,对于第二装置而言,第二信息的发送时刻(或发送完成时刻)指示起始时刻K,可以理解为第一装置开始发送第二数据包的时刻为第一装置发送第二信息的时刻(或第一装置发送第二信息的完成时刻),以及第二装置开始发送第一数据包的时刻为接收到第二信息的时刻(或第二信息的接收完成时刻)。
当然,第一装置可以在第二信息显式指示包括两个时刻的起始时刻K。例如,第二信 息中可以包括有关传输第二数据包的起始时刻的时域信息,以及有关传输第一数据包的起始时刻的时域信息,用以分别指示传输第二数据包的起始时刻和传输第一数据包的起始时刻在第一时域资源中的位置。
在一种可能的实现方式中,起始时刻K可以为第一时域资源的起始时刻,例如第一装置可以在第一时域资源的起始时刻向第二装置发送第二信息,该第二信息隐式指示第一时域资源的起始时刻为起始时刻K;或者,起始时刻K也可以不是第一时域资源的起始时刻,即,起始时刻K是第一时域资源内除了起始时刻之外的任一时刻。
在前文介绍了,第一装置可以以时域资源单元为粒度为第二装置分配时域资源。例如,第一时域资源包括N个时域资源单元,起始时刻K所在的时域资源单元为第N个时域资源单元中的第M个时域资源单元。
在本申请实施例中,起始时刻K可以为第M个时域资源单元中的特定时刻,也可以为第M个时域资源单元中的任一时刻。例如,起始时刻K为第M个时域资源单元的起始时刻或结束时刻等。那么,当第二信息隐式指示起始时刻K时,第一装置可以在第M个时域资源单元的起始时刻或结束时刻向第二装置发送第二信息(或完成对第二信息的发送),这样,第二装置仅需要对N个时域资源单元中的每个时域资源单元的起始时刻或结束时刻检测第二信息。也就是说,第二装置无需对整个时域资源单元进行检测,减少了第二装置的盲检量。
在一种可能的实现方式中,第二信息指示的起始时刻K可以为第M个时域资源单元内的时刻。即,第二信息可以隐式或显示指示起始时刻K的部分信息,而起始时刻K在第M个时域资源单元中的具体位置,第二信息并不指示,如第二信息指示第M个时域资源单元的标识。第二装置接收到第二信息后,可以确定起始时刻K位于第M个时域资源单元内。进一步,第二装置可以根据第M个时域资源单元内的传输情况,确定起始时刻K在该第M个时域资源单元内的位置。例如,第二装置在第M个时域资源单元的起始时刻检测到第二信息,可以确定起始时刻K为第M个时域资源单元中的与第二信息的接收完成时刻之间存在设定间隔的时刻。
可选的,如果第一装置以时域资源单元为粒度为第二装置分配至少一个时域资源,即第一时域资源中包括N个时域资源单元。那么,第一装置在第一时域资源内向第二装置发送第二信息,可以为第一装置在N个时域资源单元中的第L个时域资源单元开始发送第二信息。例如,第一装置可以在第L个时域资源单元的起始时刻或结束时刻开始发送第二信息,以减少第二装置的盲检量。
示例性的,该L为大于0、且小于或等于M的正整数。也即是说,第一装置可以在起始时刻K所在的时域资源单元之前的时域资源单元开始向第二装置发送第二信息,如第L个时域资源的起始时刻为第二信息的发送时刻,第M个时域资源单元的起始时刻为起始时刻K,如图6A所示;也可以在起始时刻K所在的时域资源单元开始向第二装置发送第二信息,即L等于M,如第M个时域资源单元的起始时刻为第二信息和第二数据包的发送时刻,如图6B所示。
在一种可能的实现方式中,L可以等于1,即,第一装置在N个时域资源单元中的第一个时域资源单元开始向第二装置发送第二信息,如第一装置在该第一个时域资源单元的起始时刻或结束时刻开始向第二装置发送第二信息。或者,L可以不等于1,即L为大于1且小于或等于M的正整数,也就是说,第一装置在N个时域资源单元中除了第一个时域 资源之外、且不晚于第M个时域资源单元的一个时域资源单元内向第二装置发送第二信息。
需要说明的是,第一装置在第L个时域资源单元的起始时刻开始向第二装置发送第二信息,是指第二信息的发送时刻为第L个时域资源单元的起始时刻。第二信息的发送完成时刻可以是第L个时域资源单元的结束时刻,也可以不是第L个时域资源单元的结束时刻,即,第二信息的发送完成时刻并不一定与第L个时域资源单元的结束时刻对齐。例如,起始时刻K为第二信息的发送完成时刻,可以指该起始时刻K为第L个时域资源单元的下一个时域资源单元的起始时刻,也即是第(L+1)个时域资源单元的起始时刻。再例如,起始时刻K与第二信息的发送完成时刻存在第二间隔,可以指第二信息发送完成,并经过第二间隔后所在时域资源单元的下一个时域资源的起始时刻。
在前文介绍了,第一装置与第二装置之间的数据传输可以是单向数据传输,也可以是双向数据传输。那么下面结合图7对第一装置与第二装置之间的数据传输进行详细介绍。应理解的是,图7作为一个示例,并不对本申请实施例进行限定。
如图7所示,时域资源1(又可以称为预留间隔,reserve interval)内可以包括一个或多个时域资源单元,图7以包括两个以上的时域资源单元为例。时域资源2(又可以称为重传时域资源、或重试间隔等,retry interval)内也可以包括一个或多个时域资源单元,图7以包括三个以上的时域资源单元为例。一个时域资源单元内可以完成一个数据包的传输,一个数据包的传输包括发送节点向接收节点发送数据包,以及接收节点接收数据包并向发送节点反馈数据包的接收情况,即向发送节点发送ACK消息或NACK消息的过程。
图7中通过一个方框来表示一个传输方向,每个时域资源单元内中可以包括一个或两个传输方向,图7中以一个时域资源单元包括两个传输方向为例。另外,图7中通过G>T表示主节点向从节点发送数据包或消息,以及通过T>G表示从节点向主节点发送数据包或消息。以第一装置为主节点为例,第一装置向第二装置发送数据或消息的过程可记为G>T1,第二装置向第一装置发送数据包或消息的过程可记为T1>G;第一装置向第三装置发送数据或消息的过程可记为G>T2,第三装置向第一装置发送数据包或消息的过程可记为T2>G。如图7所示,在时域资源1内,第一装置可以向多个装置发送数据包。具体的,在时域资源1内,第一装置向第二装置发送第二数据包,第二装置向第一装置反馈第二数据包的接收情况;第一装置向第三装置发送第三数据包,第三装置向第一装置反馈第三数据包的接收情况。可以理解的是,时域资源1可以用于数据的初传,也可以用于数据的重传,还可以用于数据的初传和重传,本申请实施例对此不作限定。
图7作为一个示例仅描述了时域资源1内第一装置向其它装置发送数据包的情况。可以理解的是,其它装置也可以在时域资源1内向第一装置发送数据包,或者在第一装置的调度下其它装置间也可以在时域资源1内进行数据的传输。进一步,时域资源1可用于单向数据的传输,也可用于双向数据的传输。例如,在时域资源1内,第一装置向第二装置发送第二数据包,第二装置向第一装置发送第一数据包。
时域资源2用于对在时域资源1中未正确接收的数据包进行重传。例如,在时域资源1内,第二装置未正确接收来自第一装置的第二数据包,第一装置可以在时域资源2内重传第二数据包。再例如,在时域资源1内,第一装置未正确接收来自第二装置的第一数据包,第二装置可以在时域资源2内重传第一数据包。图7作为一个示例仅描述了时域资源2内第一装置向其它装置重传数据包的情况。可以理解的是,其它装置也可以在时域资源2内向第一装置重传数据包,或者在第一装置的调度下其它装置间也可以在时域资源2内 进行数据的重传。
第一装置为第二装置分配第一时域资源,该第一时域资源可以为时域资源2的部分或全部。该第一时域资源中可以包括N个时域资源单元,记为时域资源单元1~N,如图7所示。第一时域资源可以用于第一数据包的重传,或者用于第二数据包的重传,或者用于第一数据包和第二数据包的重传。
第一装置与第二装置之间的数据传输可以是单向数据传输。
例如,在时域资源1内,第二装置未正确接收来自第一装置的第二数据包。第一装置确定第二装置未正确接收第二数据包后可以在第一时域资源内向第二装置发送第二信息,该第二信息用于指示传输第二数据包的起始时刻K,如起始时刻K位于第一时域资源中的第M个时域资源单元(记为时域资源单元M)内。以起始时刻K为第二信息的发送时刻为例,第一装置重传第二数据包的流程可以为:第一装置在第一时域资源中的第L个时域资源单元(记为时域资源单元L)的起始时刻向第二装置发送第二信息和第二数据包;第二装置在每个时域资源单元的起始时刻开始检查第二信息,并在时域资源单元L的起始时刻检测到第二信息,以及开始接收第一装置重传的第二数据包;如图8A所示。其中,L为小于或等于M、且大于0的正整数。为了便于理解本实施例,下文中以L等于M为例进行描述。
可以理解的是,当L不等于1时,即第一装置不在时域资源单元1的起始时刻向第二装置发送第二信息,时域资源单元1~(L-1)中的部分或全部可用于第一装置与除第二装置之外的其它装置之间的数据传输,或用于除第一装置之外的其它两个装置之间的数据传输。
需要说明的是,第一装置确定第二装置未正确接收第二数据包,可以理解为第一装置在时域资源1内接收到来自第二装置的NACK消息,根据该NACK消息确定第二装置未正确接收第二数据包,如图8A所示;也可以理解为第一装置在时域资源1内超过设定时长未接收到第二装置的ACK消息或NACK消息,进而第一装置确定第二装置未正确接收第二数据包。
需要说明的是,由于接收节点相对于发送节点的同步误差,接收节点开始接收的时刻可以理解为参考时刻,即接收节点会在参考时刻附近搜索,确定实际开始接收的时刻。同理,接收节点开始检查的时刻可以理解为参考时刻,接收节点检测时会检测参考时刻附近的多个时刻。
又例如,在时域资源1内,第一装置未正确接收来自第二装置的第一数据包。第一装置确定自身未正确接收第一数据包后可以在第一时域资源内向第二装置发送第二信息,该第二信息用于指示传输第二数据包的起始时刻K,如起始时刻K位于时域资源单元M内。以起始时刻K与第二信息的发送时刻之间存在第一间隔为例,第二装置重传第一数据包的流程可以为:第一装置在时域资源单元L的起始时刻向第二装置发送第二信息;第二装置在每个时域资源单元的起始时刻开始检查第二信息,在时域资源单元L的起始时刻检测到第二信息,并根据第二信息在与第二信息的发送时刻之间存在第一间隔的时刻开始向第一装置重传第一数据包;如图8B所示。
需要说明的是,第一装置未正确接收第一数据包后,第一装置可以在时域资源1内向第二装置发送NACK消息,以便第二装置确定第一装置未正确接收第一数据包;或者,第一装置未正确接收第一数据包后,也可以不向第二装置发送NACK消息,在此情况下,第 二装置可以通过在时域资源单元M检测到第二信息,来确定第一装置未正确接收第一数据包,如图8B所示。
可以理解的是,在单向数据传输情况下,第一装置在时域资源1内正确接收来自第二装置的第一数据包,第一时域资源无需进行第一数据包的重传;或者,第二装置在时域资源1内正确接收来自第一装置的第二数据包,第一时域资源无需进行第二数据包的重传。第一装置可以预先将第一时域资源中部分或全部分配给第一装置与除第二装置之外的其它装置之间的数据传输,或者分配给第二装置与除第一装置之外的其它装置之间的数据传输,或者分配给除了第一装置与第二装置之间的其它装置之间的数据传输,这样第一装置可以根据时域资源1中数据的实际传输情况下,通过发送第二信息指示使用该部分或全部的第一时域资源的装置,既避免了时域资源冲突,又可以提高时域资源的利用率。
或者,第一装置与第二装置之间的数据传输可以是双向数据传输。
例如,在时域资源1内,第一装置未正确接收来自第二装置的第一数据包,并且第二装置也未正确接收第一装置的第二数据包。第一装置确定自身未正确接收第一数据包以及第二装置未正确接收第二数据包后可以在第一时域资源内向第二装置发送第二信息,该第二信息用于指示传输第一数据包和第二数据包的起始时刻K,如起始时刻K位于时域资源单元M内。以传输第一数据包的起始时刻与第二信息的发送时刻之间存在第一间隔,传输第二数据包的起始时刻为第二信息的发送时刻为例,第一装置重传第二数据包以及第二装置重传第一数据包的流程可以为:第一装置在时域资源单元L的起始时刻向第二装置发送第二信息以及开始向第二装置重传第二数据包;第二装置在每个时域资源单元的起始时刻开始检查第二信息,在时域资源单元L的起始时刻检测到第二信息、开始接收重传的第二数据包,以及根据第二信息在与第二信息的发送时刻之间存在第一间隔的时刻开始向第一装置重传第一数据包;如图9所示。
又例如,在时域资源1内,第一装置正确接收来自第二装置的第一数据包,但第二装置未正确接收第一装置的第二数据包。第一装置确定第二装置未正确接收第二数据包后可以在第一时域资源内向第二装置发送第二信息,该第二信息用于指示传输第二数据包的起始时刻K,如起始时刻K位于时域资源单元M内。以传输第二数据包的起始时刻为第二信息的发送时刻为例,第一装置重传第二数据包的流程可以为:第一装置在时域资源单元L的起始时刻向第二装置发送第二信息以及开始向第二装置重传第二数据包;第二装置在每个时域资源单元的起始时刻开始检查第二信息,在时域资源单元L的起始时刻检测到第二信息,以及开始接收重传的第二数据包;如图10所示。
进一步,在第一时域资源内,第二装置可以向第一装置发送新的数据包,如第二装置接收到第二信息后,可以在与第二信息的发送时刻存在第一间隔的时刻向第一装置发送新的数据包;也可以不向第一装置发送新的数据包,如第二装置仅向第一装置发送ACK消息或NACK消息,以向第一装置反馈对重传的第二数据包的接收情况。
再例如,在时域资源1内,第二装置正确接收来自第一装置的第二数据包,但第一装置未正确接收来自第二装置的第一数据包。第一装置确定自身未正确接收第一数据包后可以在第一时域资源内向第二装置发送第二信息,该第二信息用于指示传输第一数据包的起始时刻K,如起始时刻K位于时域资源单元M内。以传输第一数据包的起始时刻与第二信息的发送时刻之间存在第一间隔为例,第二装置重传第一数据包的流程可以为:第一装置在时域资源单元L的起始时刻向第二装置发送第二信息;第二装置在每个时域资源单元 的起始时刻开始检查第二信息,在时域资源单元L的起始时刻检测到第二信息,根据第二信息在与第二信息的发送时刻存在第一间隔的时刻开始向第一装置重传第一数据包;如图11所示。
进一步,在第一时域资源内,第一装置可以向第二装置发送新的数据包,如第一装置在向第二装置发送第二信息的同时向第二装置发送新的数据包;也可以不向第二装置发送新的数据包,如第一装置仅向第二装置发送ACK消息或NACK消息,以向第二装置反馈对重传的第一数据包的接收情况。
可以理解的是,在双向数据传输的情况下,第一装置在时域资源1内正确接收来自第二装置的第一数据包,且第二装置在时域资源1内正确接收来自第一装置的第二数据包,第一时域资源无需进行第一数据包和第二数据包的重传。第一装置可以预先将第一时域资源中部分或全部分配给第一装置与除第二装置之外的其它装置之间的数据传输,或者分配给第二装置与除第一装置之外的其它装置之间的数据传输,或者分配给除了第一装置与第二装置之间的其它装置之间的数据传输,这样第一装置可以根据时域资源1中数据的实际传输情况下,通过发送第二信息指示使用该部分或全部的第一时域资源的装置,既避免了时域资源冲突,又可以提高时域资源的利用率。
在步骤S42中,第一装置将起始时刻K指示给第二装置。接下来,第一装置与第二装置在起始时刻K开始进行数据传输,即执行步骤S43所示的内容。
S43:第二装置在起始时刻K向第一装置发送第一数据包,相应的,第一装置接收第一数据包。或者,第一装置在起始时刻K向第二装置发送第二数据包,相应的,第二装置接收第二数据包。
如果第一装置为接收节点,第二装置为发送节点,那么,第二装置可以确定第二信息隐式或显式指示的起始时刻K,并在起始时刻K开始向第一装置发送第一数据包。其中,第二装置在起始时刻K开始向第一装置发送第一数据包可以理解为第二装置在时刻K开始与第一装置进行必要信号和/或必要控制信息的交互,以及开始向第一装置发送第一数据包;或者理解为第二装置在时刻K开始向第一装置发送第一数据包。其中,该必要信号可以包括前导信号、同步信号或参考信号中的一项或多项。该必要控制信息是指传输第一数据包所需的必要控制信息,例如传输第一数据包的调制方式信息、编码方式信息、第一数据包的长度信息、传输第一数据包的资源时间长度信息、或带宽资源等信息中的一项或多项。
例如,接收到第二信息的时刻隐式指示起始时刻K,第二装置在接收到第二信息的时刻就开始向第一装置发送第一数据包。
或者,该起始时刻K与接收到第二信息的时刻之间存在第一间隔,第二装置接收到第二信息后根据接收到第二信息的时刻和第一间隔确定起始时刻K,然后在起始时刻K开始向第一装置发送第一数据包。
又例如,第二信息的接收完成时刻隐式指示起始时刻K,第二装置在第二信息的接收完成时刻开始向第一装置发送第一数据包。
或者,该起始时刻K与第二信息的接收完成时刻之间存在第二间隔,第二装置接收到第二信息后,根据第二信息的接收完成时刻和第二间隔确定起始时刻K,然后在起始时刻K开始向第一装置发送第一数据包。
再例如,第二信息显式指示起始时刻K,如第二信息中包括有关起始时刻K的时域信息,第二装置接收到第二信息后根据有关起始时刻K的时域信息确定起始时刻K,然后在 起始时刻K开始向第一装置发送第一数据包。
进一步,在步骤S43之后,第二装置还可以接收来自第一装置的ACK消息或NACK消息。例如,第二装置接收来自第一装置的ACK消息,表明第一装置正确接收来自第二装置的第一数据包,至此,第一装置与第二装置在第一时域资源内的单向数据传输结束。再例如,第二装置接收来自第一装置的NACK消息,表明第一装置未正确接收来自第二装置的第一数据包,如未成功接收到第一数据包、或者对第一数据包解码失败、或者第一数据包的传输时长超过设定时长等,那么,第二装置可以在第一时域资源内再次向第一装置发送第一数据包,具体可参考图2所示的内容。
如果第一装置为发送节点,第二装置为接收节点,那么,第一装置可以在起始时刻K开始向第二装置发送第二数据包。其中,第一装置在起始时刻K开始向第二装置发送第一数据包可以理解为第一装置在起始时刻K开始与第二装置进行必要信号和/或必要控制信息的交互,以及开始向第二装置发送第二数据包;或者理解为第一装置在起始时刻K直接开始向第二装置发送第二数据包。必要信号可以包括前导信号、同步信号或参考信号的一项或多项。当第二信息的发送时刻等于起始时刻K时,第二信息本身也可以携带或指示发送第二数据包所需的必要控制信息,或者第二信息本身也是发送第二数据包所需的必要控制信息的交互的一部分。发送第二数据包所需的必要控制信息可以包括传输第二数据包的调制方式信息、编码方式信息、第二数据包的长度信息、传输第二数据包的资源时间长度信息、或带宽资源等信息中的一项或多项。其中,起始时刻K的确定方式可以参见前述步骤S42描述的内容,在此不再赘述。
进一步,在步骤S43之后,第一装置还可以接收来自第二装置的ACK消息或NACK消息。例如,第一装置接收来自第二装置的ACK消息,表明第二装置正确接收来自第一装置的第二数据包,至此,第一装置与第二装置在第一时域资源内的单向数据传输结束。再例如,第一装置接收来自第二装置的NACK消息,表明第二装置未正确接收来自第一装置的第二数据包,如未成功接收到第二数据包、或者对第二数据包解码失败、或者第二数据包的传输时长超过设定时长等,那么,第一装置可以在第一时域资源内再次向第二装置发送第二数据包,具体可参考图2所示的内容。
在本申请的上述实施例中,第一装置可以为第二装置配置至少一个时域资源,然后通过向第二装置发送第二信息来指示与第二装置进行数据传输的起始时刻K,该数据传输位于第一时域资源,第一时域资源为至少一个时域资源中的一个。也就是说,第一装置与第二装置之间的数据传输何时开始是由第一装置发送的第二信息来确定的,意味着第一装置还可以采用本申请实施例提供的方法指示与其它装置之间的数据传输的起始时刻,这样即可以避免资源冲突,又可以提高资源使用的灵活性。
在一种可能的实现方式中,第一装置可以在第二时域资源内向第三装置发送第四信息,该第四信息用于指示第一装置与第三装置之间的数据传输的起始时刻H。其中,用于第一装置与第三装置之间的数据传输的时域资源属于第二时域资源,第二时域资源在时域上连续。并且,该第二时域资源的起始时刻晚于第一时域资源的起始时刻、且与第一时域资源之间存在重叠(或交叠)部分,起始时刻H位于第二时域资源与第一时域资源之间的重叠部分内。例如,在步骤S41中,第一装置可以将第一时域资源中的后半部分的连续时域资源分配给第三装置。
通过上述实现方式,第一装置与第二装置在第一时域资源内的数据传输结束(如正确 接收第一数据包和/或第二数据包,或者停止第一装置与第二装置之间的数据传输等)后,且第一时域资源还有剩余时,第一装置可以在该重叠部分内的某一时刻指示为第一装置与第三装置之间的数据传输的起始时刻。也就是说,通过上述实现方式第一装置可以将第一装置与第二装置进行数据传输所剩余的时域资源分配用于与其它装置之间的数据传输(或者用于第二装置与除了第一装置之外的其它装置之间的数据传输,或者用于除了第一装置和第二装置之外的其它装置间的数据传输),这样就可以避免浪费剩余的时域资源,提高时域资源利用率。
下面结合图12和图13对上述实现方式进行介绍。
图12为本申请实施例提供的资源指示方法的一种流程示意图。该方法可以应用于图1A~图1C中的任一个附图所示的网络架构为例。其中,第一装置、第二装置和第三装置可以位于同一个通信域中,第一装置为主节点,第二装置和第三装置为从节点。
S1201:第一装置向第二装置发送第一信息,相应的第二装置接收第一信息。
其中,第一信息用于指示时域资源3,该时域资源3在时域上是连续的。例如,第一装置可以为第二装置分配时域资源3,用于第一装置与第二装置之间的数据传输的时域资源属于时域资源3,具体实现过程可参考步骤S41所示的内容,在此不再赘述。
S1202:第一装置向第三装置发送第五信息,相应的第三装置接收第五信息。
第五信息用于指示在时域上连续的时域资源4。该时域资源4的起始时刻晚于时域资源3的起始时刻、且与时域资源3在时域上存在交叠。例如,第一装置可以为第三装置分配时域资源4,用于第一装置与第三装置之间的数据传输的时域资源属于时域资源4,具体实现过程可参考步骤S41所示的内容,在此不再赘述。
S1203:第一装置在时域资源3内向第二装置发送第二信息,相应的第二装置接收第二信息。
第二信息中包括第二装置的标识信息。第二信息用于指示第一装置与第二装置之间的数据传输的起始时刻K。例如,第二信息可以隐式或显式指示该起始时刻K。可选的,在S1203之前,第一装置还可以确定在时域资源3内上第二装置发送第二信息。其中,步骤S1203的具体实现过程可参考步骤S42所示的内容,在此不再赘述。
为了便于理解,本申请实施例中以第一装置与第二装置之间的数据传输为第一装置向第二装置发送第二数据包的单向数据传输为例进行描述。
S1204:第一装置在起始时刻K开始向第二装置发送第二数据包,相应的第二装置接收第二数据包。
S1205:第二装置向第一装置发送NACK消息,相应的,第一装置接收NACK消息。
例如,第二装置在时域资源3中晚于起始时刻K的时刻向第一装置发送NACK消息,表明第二装置未正确接收来自第一装置的第二数据包。
S1206:第一装置向第二装置发送第二数据包,相应的第二装置接收第二数据包。
例如,第一装置可以在时域资源3中晚于时刻K的时刻向第二装置重传第二数据包。
S1207:第二装置向第一装置发送ACK消息,相应的,第一装置接收ACK消息。
第二装置向第一装置发送ACK消息,表明第二装置正确接收第一装置的第二数据包。至此,第一装置与第二装置在时域资源3中的数据传输结束,且时域资源3存在剩余。
S1208:第一装置在时域资源4内向第三装置发送第四信息,相应的,第三装置接收第四信息。
第四信息中包括第三装置的标识信息。第四信息用于指示第一装置与第三装置之间的数据传输的起始时刻H,例如,第四信息可以隐式或显式指示该起始时刻H。可选的,在S1208之前,第一装置还可以确定在时域资源4内上第三装置发送第四信息。步骤S1208的具体实现过程可参考步骤S42所示的内容,在此不再赘述。
示例性的,第一装置可以在时域资源3与时域资源4的交叠部分内向第三装置发送第四信息。进一步,起始时刻H可以位于时域资源3与时域资源4的交叠部分内。由于第一装置与第二装置在时域资源3内的数据传输已经结束,该时域资源3剩余的时域资源处于空闲状态,那么第一装置可以将时域资源3中剩余的时域资源用于与其它装置之间的数据传输,避免了时域资源的浪费,可以提高时域资源的利用率。
为了便于理解,本申请实施例中以第一装置与第三装置之间的数据传输为第三装置向第一装置发送第三数据包的单向数据传输为例进行描述。
S1209:第三装置在起始时刻H开始向第一装置发送第三数据包,相应的,第一装置接收来自第三装置的第三数据包。
S1210:第一装置向第三装置发送ACK消息,相应的,第三装置接收ACK消息。
例如,第一装置在时域资源3或时域资源4中晚于时刻H的时刻向第一装置发送ACK消息,表明第一装置正确接收来自第三装置的第三数据包。
如图13所示,时域资源3与时域资源4在时域上交叠,且时域资源3的起始时刻早于时域资源4的起始时刻。第一装置在时域资源3的时刻K向第二装置发送第二信息和第二数据包,以及在时域资源3的时刻M接收到第二装置的ACK消息,即第一装置与第二装置在时域资源3的数据传输就此结束,时域资源3中剩余的时域资源处于空闲状态。进一步,第一装置在时刻N向第三装置发送第五信息,该时刻N位于时域资源3与时域资源4的交叠部分内、且晚于时刻M。第三装置接收到第五信息后,在时刻H向第一装置发送第三数据包,以及在时域资源4的时刻L接收到来自第一装置的ACK消息。其中,时刻H位于时域资源3和时域资源4的交叠部分内、且晚于时刻N。也就是说第一装置与第三装置之间的数据传输占用了时域资源3中剩余的时域资源,这样可以避免时域资源3中剩余时域资源的浪费,可以提高时域资源的利用率。
需要说明的是,图12所示的各步骤的顺序仅为一个示例,本申请实施例对此不作限定。例如,第一装置可以在步骤S1203之前向第三装置发送第五信息,也可以在步骤S1203之后、且在步骤S1208之前向第三装置发送第五信息。再例如,第一装置可以先向第二装置发送第二信息,再向第二装置发送第二数据包,也可以同时向第二装置发送第二信息和第二数据包。另外,图12中第二数据包的传输次数、以及第三数据包的传输次数仅为示例,本申请实施例对此也不作限定。
在另一种可能的实现方式中,第一时域资源可以与第三时域资源之间存在重叠部分,且第一时域资源的起始时刻晚于所述第三时域资源的起始时刻,其中,第三时域资源在时域上连续,用于第一装置与第四装置之间的数据传输的时域资源属于该第三时域资源,起始时刻K可以位于第三时域资源与第一时域资源之间的重叠部分内。例如,在步骤S41中,第一装置可以将第三时域资源中的后半部分的连续时域资源分配给第二装置。
通过上述实现方式,由于第一装置与第二装置之间的数据传输何时开始是由第一装置灵活确定的,那么当第一装置与第四装置在第三时域资源内的数据传输结束后,且第三时域资源还有剩余时,第一装置可以在该剩余的时域资源中的某一时刻指示为第一装置与第 二装置之间的数据传输的起始时刻。换而言之,第一装置可以将第一装置与其它装置进行数据传输所剩余的时域资源(或者第二装置与除了第一装置之外的其它装置进行数据传输所剩余的时域资源,或者除了第一装置和第二装置之外的其它装置间进行数据传输所剩余的时域资源)配置用于与第二装置之间的数据传输,这样就可以避免浪费剩余的时域资源,提高时域资源利用率。
下面结合图14和图15对上述实现方式进行介绍。
图14为本申请实施例提供的资源指示方法的另一种流程示意图。该方法可以应用于图1A~图1C中的任一个附图所示的网络架构为例。其中,第一装置、第二装置和第四装置可以位于同一个通信域中,第一装置为主节点,第二装置和第四装置为从节点。
S1401:第一装置向第四装置发送第六信息,相应的第四装置接收第六信息。
其中,第六信息用于指示时域资源5,该时域资源5在时域上是连续的。例如,第一装置可以为第四装置分配时域资源5,用于第一装置与第四装置之间的数据传输的时域资源属于时域资源5,具体实现过程可参考步骤S41所示的内容,在此不再赘述。
为了便于理解本申请实施例,下文中将第一装置与第四装置之间传输的数据称为第四数据包进行描述。
S1402:第一装置向第二装置发送第一信息,相应的第二装置接收第一信息。
其中,第一信息用于指示时域资源3,该时域资源3在时域上是连续的。并且,该时域资源3的起始时刻晚于时域资源5的起始时刻,且时域资源3与时域资源5之间存在重叠部分。例如,第一装置可以为第二装置分配时域资源3,用于第一装置与第二装置之间的数据传输的时域资源属于时域资源3,具体实现过程可参考步骤S41所示的内容,在此不再赘述。
S1403:第一装置在时域资源5内向第四装置发送第七信息,相应的第四装置接收第七信息。
第七信息中包括第四装置的标识信息。第七信息用于指示第一装置与第四装置之间的数据传输的起始时刻P。例如,第七信息可以隐式或显式指示该起始时刻P。可选的,在S1403之前,第一装置还可以确定在时域资源5内上第四装置发送第七信息。其中,步骤S1403的具体实现过程可参考步骤S42所示的内容,在此不再赘述。
S1404:第一装置在起始时刻P开始向第四装置发送第四数据包,相应的第四装置接收第四数据包。
为了便于理解,本申请实施例中以第一装置与第四装置之间的数据传输为第一装置向第四装置发送第四数据包的单向数据传输为例进行描述。
S1405:第四装置向第一装置发送ACK消息,相应的,第一装置接收ACK消息。
例如,第四装置在时域资源5中晚于起始时刻P的时刻向第一装置发送ACK消息,表明第四装置正确接收第一装置的第四数据包。至此,第一装置与第四装置在时域资源5中的数据传输结束,且时域资源5还存在剩余。
S1406:第一装置在时域资源3内向第二装置发送第二信息,相应的,第二装置接收第二信息。
第二信息中包括第二装置的标识信息。第二信息用于指示第一装置与第二装置之间的数据传输的起始时刻K,例如,第二信息可以隐式或显式指示该起始时刻K。可选的,在S1406之前,第一装置还可以确定在时域资源3内上第二装置发送第二信息。步骤S1406 的具体实现过程可参考步骤S42所示的内容,在此不再赘述。
示例性的,第一装置可以在时域资源3与时域资源5的交叠部分内向第二装置发送第二信息。进一步,起始时刻K可以位于时域资源3与时域资源5的交叠部分内。由于第一装置与第四装置在时域资源5内的数据传输已经结束,该时域资源5剩余的时域资源处于空闲状态,那么第一装置可以将时域资源5中剩余的时域资源用于与其它装置之间的数据传输,避免了时域资源的浪费,可以提高时域资源的利用率。
S1407:第二装置在起始时刻K开始向第一装置发送第一数据包,相应的,第一装置接收来自第二装置的第一数据包。
为了便于理解,本申请实施例中以第一装置与第二装置之间的数据传输为第二装置向第一装置发送第一数据包的单向数据传输为例进行描述。
S1408:第一装置向第二装置发送ACK消息,相应的,第二装置接收ACK消息。
例如,第一装置在时域资源3或时域资源5中晚于时刻K的时刻向第二装置发送ACK消息,表明第一装置正确接收来自第二装置的第一数据包。
如图15所示,时域资源3与时域资源5在时域上交叠,且时域资源5的起始时刻早于时域资源3的起始时刻。第一装置在时域资源5的时刻P向第四装置发送第七消息和第四数据包,以及在时域资源5的时刻Q接收到第四装置的ACK消息,即第一装置与第四装置在时域资源5的数据传输就此结束,且时域资源5还存在剩余。进一步,第一装置在时刻N向第二装置发送第二信息,该时刻N位于时域资源3与时域资源5的交叠部分内、且晚于时刻Q。第二装置接收到第二信息后,在时刻K向第一装置发送第一数据包,以及在时域资源3的时刻L接收到来自第一装置的ACK消息。其中,时刻K位于时域资源3和时域资源5的交叠部分内、且晚于时刻N。也就是说第一装置与第二装置之间的数据传输占用了时域资源5中剩余的时域资源,这样可以避免时域资源5中剩余时域资源的浪费,可以提高时域资源的利用率。
需要说明的是,图14所示的各步骤的顺序仅为一个示例,本申请实施例对此不作限定。例如,第一装置可以在步骤S1403之前向第二装置发送第一信息,也可以在步骤S1403之后、且在步骤S1406之前向第二装置发送第一信息。另外,图14中第一数据包的传输次数、以及第四数据包的传输次数仅为示例,本申请实施例对此也不作限定。
上述本申请提供的实施例中,分别从第一装置与第二装置两者之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一装置、第二装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图16示出了一种资源指示装置1600的结构示意图。其中,资源指示装置1600可以是上述图4或图12或图14所示的实施例中的第一装置,能够实现本申请实施例提供的方法中第一装置的功能;资源指示装置1600也可以是能够支持第一装置实现本申请实施例提供的方法中第一装置的功能的装置。资源指示装置1600可以是硬件结构、软件模块、或硬件结构加软件模块。资源指示装置1600可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
资源指示装置1600可以包括处理单元1601、发送单元1602和接收单元1603。
示例性的,处理单元1601用于确定第一信息。发送单元1602,用于发送第一信息,第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续。发送单元1602还用于在第一时域资源内向第二装置发送第二信息,第二信息用于指示资源指示装置1600与第二装置之间的数据传输的起始时刻K,用于资源指示装置1600与第二装置之间的数据传输的时域资源属于第一时域资源,第一时域资源为至少一个时域资源中的一个。
在一种可选的实施方式中,在资源指示装置1600在第一时域资源内向第二装置发送第二信息之前,处理单元1601用于确定在第一时域资源内向第二装置发送第二信息。
在一种可选的实施方式中,接收单元1603,用于在第一时域资源内接收来自第二装置的第一数据包;或者,
发送单元1602用于在第一时域资源内向第二装置发送第二数据包;或者,
发送单元1602用于在第一时域资源内向第二装置发送第二数据包,以及接收单元1603在第一时域资源内接收来自第二装置的第一数据包。
在一种可选的实施方式中,第二信息包括第二装置的标识信息,或者包括资源指示装置1600与第二装置之间的通信链路的标识信息,或者包括第二装置的标识信息和资源指示装置1600与第二装置之间的通信链路的标识信息。
在一种可选的实施方式中,第二信息的时域资源用于指示起始时刻K。
在一种可选的实施方式中,第二信息的时域资源用于指示起始时刻K可以为:
第二信息的发送时刻等于起始时刻K;或者,
第二信息的发送完成时刻等于起始时刻K;或者,
第二信息的发送时刻与起始时刻K之间存在第一间隔;或者,
第二信息的发送完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
在一种可选的实施方式中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
在一种可选的实施方式中,起始时刻K为第M个时域资源单元的起始时刻或者结束时刻。
在一种可选的实施方式中,发送单元1602,具体用于:在N个时域资源单元中的第L个时域资源单元开始发送第二信息,L为大于0、且小于或等于M的正整数。
在一种可选的实施方式中,发送单元1602,具体用于:在L个时域资源单元的起始时刻开始发送第二信息。
在一种可选的实施方式中,发送单元1602进一步用于:发送第三信息,第三信息用于指示时域资源单元的配置。
在一种可选的实施方式中,该发送单元1602进一步用于:在第二时域资源内向第三装置发送第四信息,该第四信息用于指示资源指示装置1600与第三装置之间的数据传输的起始时刻H,用于该资源指示装置1600与第三装置之间的数据传输的时域资源属于第二时域资源,第二时域资源在时域上连续,该第二时域资源与第一时域资源之间存在重叠部分,该起始时刻H可以位于第二时域资源与第一时域资源之间的重叠部分内。
在一种可选的实施方式中,第一时域资源可以与第三时域资源之间存在重叠部分,且第一时域资源的起始时刻晚于所述第三时域资源的起始时刻,其中,第三时域资源在时域 上连续,用于资源指示装置1600与第四装置之间的数据传输的时域资源属于第三时域资源,起始时刻K可以位于第三时域资源与第一时域资源之间的重叠部分内。
发送单元1602和/或接收单元1603用于资源指示装置1600和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图17示出了一种通信装置1700的结构示意图。其中,通信装置1700可以是上述图4或图12或图14所示的实施例中的第二装置,能够实现本申请实施例提供的方法中第二装置的功能;通信装置1700也可以是能够支持第二装置实现本申请实施例提供的方法中第二装置的功能的装置。通信装置1700可以是硬件结构、软件模块、或硬件结构加软件模块。通信装置1700可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1700可以包括处理单元1701、发送单元1702以及接收单元1703。
示例性的,接收单元1703,用于接收来自第一装置的第一信息,第一信息用于指示至少一个时域资源,其中,每个时域资源在时域上连续;以及,在第一时域资源内接收来自第一装置的第二信息,第二信息用于指示资源指示装置与第一装置之间的数据传输的起始时刻K,用于资源指示装置与第一装置之间的数据传输的时域资源属于第一时域资源,第一时域资源为至少一个时域资源中的一个。
在一种可选的实施方式中,接收单元1703进一步用于在第一时域资源内接收来自第一装置的第二数据包;或者,
发送单元1702进一步用于在第一时域资源内向第一装置发送第一数据包;或者,
发送单元1702进一步用于在第一时域资源内向第一装置发送第一数据包,以及接收单元1703进一步用于在第一时域资源内接收来自第一装置的第二数据包。
在一种可选的实施方式中,第二信息包括通信装置1700的标识信息,或者包括第一装置与通信装置1700之间的通信链路的标识信息,或者包括通信装置1700的标识信息和第一装置与通信装置1700之间的通信链路的标识信息。
在一种可选的实施方式中,第二信息的时域资源用于指示起始时刻K。
在一种可选的实施方式中,第二信息的时域资源用于指示起始时刻K可以为:
接收到第二信息的时刻等于起始时刻K;或者,
第二信息的接收完成时刻等于起始时刻K;或者,
接收到第二信息的时刻与起始时刻K之间存在第一间隔;或者,
第二信息的接收完成时刻与起始时刻K之间存在第一间隔;
其中,第一间隔是预先定义或者配置的。
在一种可选的实施方式中,第一时域资源包括N个时域资源单元,N为大于0的正整数;第二信息用于指示起始时刻K所在的时域资源单元,起始时刻K所在的时域资源单元为N个时域资源单元中的第M个时域资源单元。
在一种可选的实施方式中,起始时刻K为第M个时域资源单元的起始时刻或者结束时刻。
在一种可选的实施方式中,接收单元1703,具体用于:在N个时域资源单元中的第L个时域资源单元开始接收来自第一装置的第二信息,L为大于0、且小于或等于M的正整数。
在一种可选的实施方式中,接收单元1703,具体用于:在第L个时域资源单元的起始时刻开始接收第二信息。
在一种可选的实施方式中,处理单元1701用于:在N个时域资源单元中的每个时域资源单元的起始时刻开始检测第二信息。
在一种可选的实施方式中,接收单元1703,进一步用于:接收来自第一装置的第三信息,第三信息用于指示时域资源单元的配置。
发送单元1702和/或接收单元1703还用于通信装置1700和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图18所示为本申请实施例提供的通信装置1800,其中,通信装置1800可以是图4或图12或图14所示的实施例中的第一装置,能够实现本申请实施例提供的方法中第一装置的功能;通信装置1800也可以是能够支持第一装置实现本申请实施例提供的方法中第一装置的功能的装置。其中,该通信装置1800可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述发送单元1602和接收单元1603可以为收发器,收发器集成在通信装置1800中构成通信接口1810。
通信装置1800可以包括至少一个处理器1820,用于实现或用于支持通信装置1800实现本申请实施例提供的方法中第一装置。例如,处理器1820可以为第二装置分配至少一个时域资源,确定向第二装置发送第二信息等,具体参见方法示例中的详细描述,此处不做赘述。
通信装置1800还可以包括至少一个存储器1830,用于存储程序指令和/或数据。存储器1830和处理器1820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1820可能和存储器1830协同操作。处理器1820可能执行存储器1830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1800还可以包括通信接口1810,用于通过传输介质和其它设备进行通信,从而用于通信装置1800中的装置可以和其它设备进行通信。示例性地,通信装置1800为第一装置,该其它设备可以是第二装置。处理器1820可以利用通信接口1810收发数据。通信接口1810具体可以是收发器。
本申请实施例中不限定上述通信接口1810、处理器1820以及存储器1830之间的具体 连接介质。本申请实施例在图18中以存储器1830、处理器1820以及通信接口1810之间通过总线1840连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1820可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1830可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
如图19所示为本申请实施例提供的通信装置1900,其中,通信装置1900可以是图4或图12或图14所示的实施例中的第二装置,能够实现本申请实施例提供的方法中第二装置的功能;通信装置1900也可以是能够支持第一装置实现本申请实施例提供的方法中第一装置的功能的装置。其中,该通信装置1900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述发送单元1702和接收单元1703可以为收发器,收发器集成在通信装置1900中构成通信接口1910。
通信装置1900可以包括至少一个处理器1920,用于实现或用于支持通信装置1900实现本申请实施例提供的方法中第一装置。例如,处理器1920可以在每个时域资源单元的起始位置或结束位置检测第二信息等,具体参见方法示例中的详细描述,此处不做赘述。
通信装置1900还可以包括至少一个存储器1930,用于存储程序指令和/或数据。存储器1930和处理器1920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1920可能和存储器1930协同操作。处理器1920可能执行存储器1930中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1900还可以包括通信接口1910,用于通过传输介质和其它设备进行通信,从而用于通信装置1900中的装置可以和其它设备进行通信。示例性地,通信装置1900为第二装置,该其它设备可以是第一装置。处理器1920可以利用通信接口1910收发数据。通信接口1910具体可以是收发器。
本申请实施例中不限定上述通信接口1910、处理器1920以及存储器1930之间的具体连接介质。本申请实施例在图19中以存储器1930、处理器1920以及通信接口1910之间通过总线1940连接,总线在图19中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1920可以是通用处理器、数字信号处理器、专用集成电 路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例涉及的通信装置可以是车机、车载扬声器、车载麦克风等车载设备,也可以是手机、平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、可穿戴电子设备、虚拟现实设备等电子设备。或者,本申请实施例涉及通信装置也可以是机器智能设备,如无人驾驶(self-driving)设备、运输安全(transportation safety)设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、MTC设备、工业控制(industrial control)设备、远程医疗(remote medical)设备、智能电网(smart grid)设备、智慧城市(smart city)设备、可穿戴设备(如智能手表,智能手环,计步器等)、智能家居设备等等。或者,本申请实施例涉及通信装置还可以是支持BT、或BLE、或者兼容BT或者BLE技术、或者支持其他可能的短距离通信技术等短距离通信类设备。或者,本申请实施例所涉及的通信装置也可以是设置在如上的任一种设备中的功能模块,例如芯片系统。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中第一装置或第二装置执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中第一装置或第二装置执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口电路,该处理器用于通过接口电路执行指令和/或数据的交互,使得该芯片系统所在的装置实现前述实施例中第一装置的功能,或实现前述实施例中第二装置的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种通信系统,所述通信系统包括前述实施例中的第一装置和/或第二装置。
本申请实施例提供了一种终端设备,所述终端设备包括前述实施例中的第一装置和/或第二装置,或者包括实现第一装置的功能的芯片系统和/或实现第二装置的功能的芯片系统。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可 以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种资源指示方法,其特征在于,所述方法包括:
    发送第一信息,所述第一信息用于指示至少一个时域资源,其中,每个所述时域资源在时域上连续;
    在第一时域资源内向第二装置发送第二信息,所述第二信息用于指示第一装置与所述第二装置之间的数据传输的起始时刻K,用于所述第一装置与所述第二装置之间的数据传输的时域资源属于所述第一时域资源,所述第一时域资源为所述至少一个时域资源中的一个。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一时域资源内接收来自所述第二装置的第一数据包;和/或,
    在所述第一时域资源内向所述第二装置发送第二数据包。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信息包括所述第二装置的标识信息,和/或所述第一装置与所述第二装置之间的通信链路的标识信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第二信息的时域资源用于指示所述起始时刻K。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二信息的发送时刻等于所述起始时刻K;或者,
    所述第二信息的发送完成时刻等于所述起始时刻K;或者,
    所述第二信息的发送时刻与所述起始时刻K之间存在第一间隔;或者,
    所述第二信息的发送完成时刻与所述起始时刻K之间存在第一间隔;
    其中,所述第一间隔是预先定义或者配置的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一时域资源包括N个时域资源单元,所述N为大于0的正整数;
    所述第二信息用于指示所述起始时刻K所在的时域资源单元,所述起始时刻K所在的时域资源单元为所述N个时域资源单元中的第M个时域资源单元。
  7. 根据权利要求6所述的方法,其特征在于,
    所述起始时刻K为所述第M个时域资源单元的起始时刻或者结束时刻。
  8. 根据权利要求6或7所述的方法,其特征在于,在第一时域资源内向第二装置发送第二信息,包括:
    在所述N个时域资源单元中的第L个时域资源单元开始发送所述第二信息,所述L为大于0、且小于或等于所述M的正整数。
  9. 根据权利要求8所述的方法,其特征在于,在所述N个时域资源单元中的第L个时域资源单元开始发送所述第二信息,包括:
    在所述L个时域资源单元的起始时刻开始发送所述第二信息。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息用于指示所述时域资源单元的配置。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    在第二时域资源内向第三装置发送第四信息,所述第四信息用于指示所述第一装置与所述第三装置之间的数据传输的起始时刻H,用于所述第一装置与所述第三装置之间的数 据传输的时域资源属于所述第二时域资源,所述第二时域资源与所述第一时域资源之间存在重叠部分,所述起始时刻H位于所述重叠部分内。
  12. 一种通信方法,其特征在于,所述方法包括:
    接收来自第一装置的第一信息,所述第一信息用于指示至少一个时域资源,其中,每个所述时域资源在时域上连续;
    在第一时域资源内接收来自所述第一装置的第二信息,所述第二信息用于指示第二装置与所述第一装置之间的数据传输的起始时刻K,用于所述第二装置与所述第一装置之间的数据传输的时域资源属于所述第一时域资源,所述第一时域资源为所述至少一个时域资源中的一个。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述第一时域资源内接收来自所述第一装置的第二数据包;和/或,
    在所述第一时域资源内向所述第一装置发送所述第一数据包。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二信息包括所述第二装置的标识信息,和/或所述第一装置与所述第二装置之间的通信链路的标识信息。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第二信息的时域资源用于指示所述起始时刻K。
  16. 根据权利要求15所述的方法,其特征在于,
    接收到所述第二信息的时刻等于所述起始时刻K;或者,
    所述第二信息的接收完成时刻等于所述起始时刻K;或者,
    接收到所述第二信息的时刻与所述起始时刻K之间存在第一间隔;或者,
    所述第二信息的接收完成时刻与所述起始时刻K之间存在第一间隔;
    其中,所述第一间隔是预先定义或者配置的。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述第一时域资源包括N个时域资源单元,所述N为大于0的正整数;
    所述第二信息用于指示所述起始时刻K所在的时域资源单元,所述起始时刻K所在的时域资源单元为所述N个时域资源单元中的第M个时域资源单元。
  18. 根据权利要求17所述的方法,其特征在于,
    所述起始时刻K为所述第M个时域资源单元的起始时刻或者结束时刻。
  19. 根据权利要求17或18所述的方法,其特征在于,在所述第一时域资源内接收来自所述第一装置的第二信息,包括:
    在所述N个时域资源单元中的第L个时域资源单元开始接收来自所述第一装置的所述第二信息,所述L为大于0、且小于或等于所述M的正整数。
  20. 根据权利要求19所述的方法,其特征在于,在所述N个时域资源单元中的第L个时域资源单元开始接收来自所述第一装置的所述第二信息,包括:
    在所述第L个时域资源单元的起始时刻开始接收所述第二信息。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述方法还包括:
    在所述N个时域资源单元中的每个时域资源单元的起始时刻开始检测所述第二信息。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一装置的第三信息,所述第三信息用于指示所述时域资源单元的配置。
  23. 一种通信装置,其特征在于,包括用于实现如权利要求1至11中任一项所述的方法的单元,或包括用于实现如权利要求12至22中任一项所述的方法的单元。
  24. 一种芯片系统,其特征在于,包括:至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统所在的装置执行如权利要求1至11中任一项所述的方法,或使得所述芯片系统所在的装置执行如权利要求12至22中任一项所述的方法。
  25. 一种终端设备,其特征在于,包括如权利要求23所述的通信装置,或,如权利要求24所述的芯片系统。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行权利要求1至11中任一项所述的方法,或使得所述计算机执行权利要求12至22中任一项所述的方法。
PCT/CN2021/091457 2021-04-30 2021-04-30 一种资源指示方法、装置及系统 WO2022226991A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180003281.4A CN113841459B (zh) 2021-04-30 2021-04-30 一种资源指示方法、装置及系统
PCT/CN2021/091457 WO2022226991A1 (zh) 2021-04-30 2021-04-30 一种资源指示方法、装置及系统
EP21938465.8A EP4322655A4 (en) 2021-04-30 2021-04-30 RESOURCE DISPLAY METHOD, APPARATUS AND SYSTEM
US18/497,076 US20240057049A1 (en) 2021-04-30 2023-10-30 Resource indication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091457 WO2022226991A1 (zh) 2021-04-30 2021-04-30 一种资源指示方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/497,076 Continuation US20240057049A1 (en) 2021-04-30 2023-10-30 Resource indication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022226991A1 true WO2022226991A1 (zh) 2022-11-03

Family

ID=78971952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091457 WO2022226991A1 (zh) 2021-04-30 2021-04-30 一种资源指示方法、装置及系统

Country Status (4)

Country Link
US (1) US20240057049A1 (zh)
EP (1) EP4322655A4 (zh)
CN (1) CN113841459B (zh)
WO (1) WO2022226991A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200120651A1 (en) * 2017-09-30 2020-04-16 Huawei Technologies Co., Ltd. Information transmission method and apparatus
WO2020168574A1 (zh) * 2019-02-22 2020-08-27 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
WO2020200187A1 (zh) * 2019-04-02 2020-10-08 华为技术有限公司 通信方法及装置
CN111867074A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 接收数据和发送数据的方法、通信装置
CN112153705A (zh) * 2019-06-29 2020-12-29 华为技术有限公司 一种通信方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154466B2 (en) * 2016-09-24 2018-12-11 Ofinno Technologies, Llc Power headroom transmission in a licensed assisted access cell
CN113207179A (zh) * 2016-12-23 2021-08-03 Oppo广东移动通信有限公司 数据传输方法和装置
US10945283B2 (en) * 2018-06-08 2021-03-09 Qualcomm Incorporated Two-stage grant for uplink data transmission in new radio-unlicensed (NR-U)
EP3925357A1 (en) * 2019-02-12 2021-12-22 Telefonaktiebolaget LM Ericsson (publ) Control signalling for transmission in unlicensed frequency spectrum
US10651906B1 (en) * 2019-02-15 2020-05-12 At&T Intellectual Property I, L.P. Indicating frequency and time domain resources in communication systems with multiple transmission points
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
CN112188443B (zh) * 2019-07-04 2022-04-12 华为技术有限公司 一种数据传输方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200120651A1 (en) * 2017-09-30 2020-04-16 Huawei Technologies Co., Ltd. Information transmission method and apparatus
WO2020168574A1 (zh) * 2019-02-22 2020-08-27 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
WO2020200187A1 (zh) * 2019-04-02 2020-10-08 华为技术有限公司 通信方法及装置
CN111867074A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 接收数据和发送数据的方法、通信装置
CN112153705A (zh) * 2019-06-29 2020-12-29 华为技术有限公司 一种通信方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink resource allocation mode 2 for NR V2X", 3GPP DRAFT; R1-1911884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823066 *
See also references of EP4322655A4 *

Also Published As

Publication number Publication date
US20240057049A1 (en) 2024-02-15
CN113841459B (zh) 2023-07-21
EP4322655A1 (en) 2024-02-14
CN113841459A (zh) 2021-12-24
EP4322655A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
US11128488B2 (en) System and method for full-duplex media access control using request-to-send signaling
US8416799B2 (en) Systems, methods and apparatuses for wireless communication
WO2021004406A1 (zh) 通信方法、装置及系统
WO2021180098A1 (zh) 无线通信方法和通信装置
US20180077727A1 (en) System and Method for Medium Access Control Enabling Both Full-Duplex and Half-Duplex Communications
WO2021233164A1 (zh) 一种通信方法及装置
WO2020192319A1 (zh) 一种资源配置方法及通信装置
WO2022021244A1 (zh) 一种通信方法及装置
WO2015062477A1 (zh) 一种数据传输方法及设备
JP2023533004A (ja) リンクエラーリカバリ方法及び装置
WO2022226991A1 (zh) 一种资源指示方法、装置及系统
WO2021240202A1 (en) Communication device and method of transmission of repeated feedback in sidelink
WO2022170976A1 (zh) 一种数据传输方法及通信装置
WO2022087929A1 (zh) 数据传输方法及装置
WO2020164542A1 (zh) 通信方法、装置及存储介质
WO2021056585A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2023016285A1 (zh) 通信方法及装置
WO2022082806A1 (zh) 无线通信的方法和装置
WO2022193105A1 (zh) 一种传输指示方法、装置及系统
WO2023197223A1 (zh) 用于短距离无线通信的数据传输方法及通信装置
WO2024007814A1 (zh) 数据的传输方法和装置
US20240015785A1 (en) Systems, devices, and methods related to conserving communication bandwidth with spare time schedule
WO2021204263A1 (zh) 一种多收发点架构下重传的方法及装置
WO2022267593A1 (zh) 一种通信方法及设备
WO2024094199A1 (en) User equipment and channel access method for sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021938465

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021938465

Country of ref document: EP

Effective date: 20231107

NENP Non-entry into the national phase

Ref country code: DE