WO2022225327A1 - 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치 - Google Patents

통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치 Download PDF

Info

Publication number
WO2022225327A1
WO2022225327A1 PCT/KR2022/005651 KR2022005651W WO2022225327A1 WO 2022225327 A1 WO2022225327 A1 WO 2022225327A1 KR 2022005651 W KR2022005651 W KR 2022005651W WO 2022225327 A1 WO2022225327 A1 WO 2022225327A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
pdsch
dci
terminal
information
Prior art date
Application number
PCT/KR2022/005651
Other languages
English (en)
French (fr)
Inventor
윤수하
정의창
김현정
명세호
박성진
여정호
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2022225327A1 publication Critical patent/WO2022225327A1/ko
Priority to US18/469,198 priority Critical patent/US20240008025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to a mobile communication system, and more particularly, to a method of transmitting data to a plurality of terminals.
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speed and new services. It can also be implemented in the very high frequency band ('Above 6GHz') called Wave).
  • 6G mobile communication technology which is called a system after 5G communication (Beyond 5G)
  • Beyond 5G in order to achieve transmission speed 50 times faster than 5G mobile communication technology and ultra-low latency reduced by one-tenth, Tera Implementations in the Terahertz band (such as, for example, the 95 GHz to 3 THz band) are being considered.
  • ultra-wideband service enhanced Mobile BroadBand, eMBB
  • high reliability / ultra-low latency communication Ultra-Reliable Low-Latency Communications, URLLC
  • massive-scale mechanical communication massive Machine-Type Communications, mMTC
  • Beamforming and Massive MIMO to increase the propagation distance and mitigate the path loss of radio waves in the ultra-high frequency band with the goal of service support and performance requirements, and efficient use of ultra-high frequency resources
  • various numerology eg, operation of multiple subcarrier intervals
  • New channel coding methods such as LDPC (Low Density Parity Check) code for data transmission and polar code for reliable transmission of control information, L2 pre-processing, dedicated dedicated to specific services Standardization of network slicing that provides a network has progressed.
  • LDPC Low Density Parity Check
  • the Intelligent Factory Intelligent Internet of Things, IIoT
  • IAB Intelligent Internet of Things
  • IAB Intelligent Internet of Things
  • 5G baseline for the grafting of Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies Standardization of the system architecture/service field for architecture (eg, Service based Architecture, Service based Interface), Mobile Edge Computing (MEC) receiving services based on the location of the terminal, etc.
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • the present disclosure provides a configuration method for transmission/reception processing of a group common semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) and a unicast SPS PDSCH in a communication system, and a transmission/reception processing method and apparatus for the SPS configuration activation signal provides
  • SPS group common semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • unicast SPS PDSCH unicast SPS
  • the present disclosure provides a method and apparatus for transmitting/receiving a group common SPS PDSCH and a unicast SPS PDSCH in a communication system.
  • the present disclosure for solving the above problems provides a method performed by a terminal in a communication system, the method comprising: receiving semi-persistent scheduling (SPS) configuration information from a base station; when an SPS activation signal is detected, checking a set of an SPS PDSCH (physical downlink shared channel) based on the SPS configuration information and the SPS activation signal; receiving data by selecting an SPS PDSCH having a lowest index when a plurality of SPS PDSCHs are included in the set of the SPS PDSCHs in one slot; and excluding the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH from the SPS PDSCH set, wherein when two or more SPS PDSCHs having the lowest index exist, the SPS activation signal includes The method, characterized in that the data is received through the SPS PDSCH selected based on the information.
  • SPS semi-persistent scheduling
  • the present disclosure for solving the above problems is a method performed by a base station in a communication system, comprising: transmitting SPS (semi persistent scheduling) configuration information to a terminal; Identifying a set of SPS PDSCH (physical downlink shared channel) to be activated; When a plurality of SPS PDSCHs are included in the set of SPS PDSCHs in one slot, selecting the SPS PDSCH having the lowest index and transmitting data; and excluding the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH from the SPS PDSCH set, wherein when two or more SPS PDSCHs having the lowest index exist, the SPS activation signal includes It is characterized in that the data is transmitted through the SPS PDSCH selected based on the information.
  • the present disclosure for solving the above problems is a transmission and reception unit in a terminal in a communication system; and SPS PDSCH (physical downlink shared channel) connected to the transceiver, receiving semi-persistent scheduling (SPS) configuration information from the base station, and when an SPS activation signal is detected, based on the SPS configuration information and the SPS activation signal , and when a plurality of SPS PDSCHs are included in the set of SPS PDSCHs in one slot, select the SPS PDSCH having the lowest index to receive data, and the selected SPS PDSCH and the selected SPS PDSCH and a controller for excluding the PDSCH overlapping from the SPS PDSCH set, and when there are two or more SPS PDSCHs having the lowest index, the SPS PDSCH selected based on the information included in the SPS activation signal. data is received.
  • SPS PDSCH physical downlink shared channel
  • the present disclosure for solving the above problems is a transceiver unit in a base station in a communication system; And it is connected to the transceiver, transmits SPS (semi persistent scheduling) configuration information to the terminal, checks a set of SPS PDSCH (physical downlink shared channel) to be activated, and includes a plurality of sets of SPS PDSCHs within one slot.
  • SPS semi persistent scheduling
  • the SPS PDSCH of the SPS PDSCH having the lowest index is selected to transmit data, and the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH are excluded from the SPS PDSCH set.
  • the data is transmitted through the SPS PDSCH selected based on information included in the SPS activation signal.
  • a method for configuring the SPS PDSCHs and a method for transmitting and receiving the SPS configuration activation signal are provided by doing so, more efficient data transmission/reception can be performed.
  • a terminal and a base station may communicate smoothly.
  • FIG. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a slot structure considered in a 5G system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system according to an embodiment of the present disclosure.
  • CA 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of setting a control resource set (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • CORESET control resource set
  • FIG. 9 is a diagram illustrating an example of a downlink data channel (Physical Downlink Shared Channel) processing in a wireless communication system according to an embodiment of the present disclosure.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • FIG. 10 is a diagram illustrating an example of a method of obtaining a size of a transport block in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an operation of determining a modulation and coding scheme (mcs)-Table of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating timings of a retransmission SPS activation signal and an SPS PDSCH according to an embodiment of the present disclosure.
  • 17A is a diagram illustrating timings of a retransmission SPS activation signal and an SPS PDSCH according to an embodiment of the present disclosure.
  • 17B is a diagram illustrating timings of a retransmission SPS activation signal and an SPS PDSCH according to an embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • FIG. 19 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • 20 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flowchart block(s) may also be possible for the instructions stored in the flowchart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible for instructions to perform the processing equipment to provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in the blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • ' ⁇ unit' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • computer or a multimedia system capable of performing a communication function.
  • the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after the 4 th generation (4G) system with Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • 3GPP NR new radio or new radio access technology
  • FIG. 1 is a diagram illustrating a structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the radio access network of the next-generation mobile communication system is a next-generation base station (new radio node B, hereinafter, NR gNB or NR base station) 110 and a next-generation radio core network (new radio core network, NR CN) 105 .
  • a new radio user equipment (NR UE or terminal) 115 may access an external network through the NR gNB 110 and the NR CN 105 .
  • the NR gNB 110 may correspond to an evolved node B (eNB) of the existing LTE system.
  • the NR gNB is connected to the NR UE 115 through a radio channel, and can provide a more improved service than the existing Node B.
  • all user traffic may be serviced through a shared channel. Accordingly, an apparatus for scheduling by collecting status information such as buffer status, available transmission power status, and channel status of UEs is required, and the NR gNB 110 may be responsible for this.
  • One NR gNB can control multiple cells.
  • a bandwidth greater than or equal to the current maximum bandwidth may be applied to implement ultra-high-speed data transmission compared to current LTE.
  • beamforming technology may be additionally grafted by using orthogonal frequency division multiplexing (OFDM) as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation & doding
  • the NR CN 105 may perform functions such as mobility support, bearer establishment, and QoS establishment.
  • the NR CN is a device in charge of various control functions as well as a mobility management function for the terminal, and can be connected to a plurality of base stations.
  • the next-generation mobile communication system may be interlocked with the existing LTE system, and the NR CN may be connected to the MME 125 through a network interface.
  • the MME may be connected to the existing base station, the eNB 130 .
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the radio protocol of the next-generation mobile communication system is NR service data adaptation protocol (SDAP) 201 and 245, NR PDCP (packet data convergence protocol) 205, respectively, in the terminal and the NR base station. 240), NR RLCs 210 and 235, NR MAC (medium access control) 215 and 230, and NR PHY (physical) 220 and 225.
  • SDAP NR service data adaptation protocol
  • PDCP packet data convergence protocol
  • NR RLCs 210 and 235 NR MAC (medium access control) 215 and 230
  • NR PHY physical
  • the main functions of the NR SDAPs 201 and 245 may include some of the following functions.
  • the UE uses the header of the SDAP layer device for each PDCP layer device or for each bearer or for each logical channel as a radio resource control (RRC) message or whether to use the function of the SDAP layer device can be set.
  • RRC radio resource control
  • the terminal reflects the non-access stratum (NAS) quality of service (QoS) reflection setting 1-bit indicator (NAS reflective QoS) of the SDAP header and the access layer (access stratum, AS) QoS reflection As a set 1-bit indicator (AS reflective QoS), it can be instructed so that the UE can update or reconfigure mapping information for uplink and downlink QoS flows and data bearers.
  • the SDAP header may include QoS flow ID information indicating QoS.
  • the QoS information may be used as data processing priority, scheduling information, etc. to support a smooth service.
  • the main functions of the NR PDCPs 205 and 240 may include some of the following functions.
  • the reordering function of the NR PDCP device may refer to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN).
  • the reordering function of the NR PDCP device may include a function of delivering data to a higher layer in the rearranged order, and may include a function of directly delivering data without considering the order, It may include a function of recording PDCP PDUs, a function of reporting a status on the lost PDCP PDUs to the transmitting side, and a function of requesting retransmission of the lost PDCP PDUs.
  • the main functions of the NR RLCs 210 and 235 may include some of the following functions.
  • in-sequence delivery of the NR RLC device may refer to a function of sequentially delivering RLC SDUs received from a lower layer to a higher layer.
  • the in-sequence delivery function of the NR RLC device may include a function of reassembling it and delivering it.
  • In-sequence delivery of the NR RLC device may include a function of rearranging the received RLC PDUs based on an RLC sequence number (SN) or a PDCP sequence number (SN), and may be lost by rearranging the order It may include a function of recording the lost RLC PDUs, a function of reporting a status on the lost RLC PDUs to the transmitting side, and a function of requesting retransmission of the lost RLC PDUs. have.
  • the in-sequence delivery function of the NR RLC (210, 235) device may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to a higher layer when there is a lost RLC SDU.
  • the in-sequence delivery function of the NR RLC device includes a function of sequentially delivering all RLC SDUs received before the timer starts to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. can do.
  • the in-sequence delivery function of the NR RLC device may include a function of sequentially delivering all RLC SDUs received so far to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. .
  • the NR RLC (210, 235) device may process the RLC PDUs in the order in which they are received, regardless of the sequence number (Out of sequence delivery), and deliver it to the NR PDCP (205, 240) device.
  • the NR RLC (210, 235) device When the NR RLC (210, 235) device receives a segment, it receives the segments stored in the buffer or to be received later, reconstructs it into one complete RLC PDU, and then delivers it to the NR PDCP device. have.
  • the NR RLC layer may not include a concatenation function, and may perform a function in the NR MAC layer or may be replaced with a multiplexing function of the NR MAC layer.
  • the out-of-sequence delivery function of the NR RLC device may refer to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order.
  • the out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one RLC SDU is originally divided into several RLC SDUs and received.
  • the out of sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs and arranging the order to record the lost RLC PDUs.
  • the NR MACs 215 and 230 may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
  • the NR PHY layers 220 and 225 channel-code and modulate the upper layer data, make an OFDM symbol and transmit it to the radio channel, or demodulate the OFDM symbol received through the radio channel, decode the channel, and deliver the operation to the upper layer. can be done
  • FIG. 3 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a 5G system.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the basic unit of resources in the time and frequency domain is a resource element (RE) 301 as one orthogonal frequency division multiplexing (OFDM) symbol 302 on the time axis and one subcarrier (subcarrier) 303 on the frequency axis.
  • RE resource element
  • OFDM orthogonal frequency division multiplexing
  • subcarrier subcarrier
  • RB resource block
  • FIG. 4 is a diagram illustrating an example of a slot structure considered in a 5G system.
  • One frame 400 may be defined as 10 ms.
  • One subframe 401 may be defined as 1 ms, and therefore, one frame 400 may consist of a total of 10 subframes 401 .
  • One subframe 401 may consist of one or a plurality of slots 402 and 403, and the number of slots 402 and 403 per one subframe 401 is a set value ⁇ (404, 405) for the subcarrier spacing. ) may vary depending on In the example of FIG.
  • one subframe 401 may consist of one slot 402
  • one subframe 401 may consist of two slots 403.
  • each subcarrier spacing setting ⁇ and may be defined in Table 1 below.
  • bandwidth part (BWP) setting in the 5G communication system will be described in detail with reference to FIG. 5 .
  • 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system.
  • the base station may set one or a plurality of bandwidth portions to the terminal, and may set information as shown in Table 2 below for each bandwidth portion, for example.
  • the following BWP may be referred to as BWP setting information.
  • various parameters related to the bandwidth portion may be configured in the terminal.
  • the information may be transmitted from the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • RRC signaling for example, RRC signaling.
  • At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the UE through RRC signaling or may be dynamically transmitted through downlink control information (DCI).
  • DCI downlink control information
  • the terminal before the RRC connection may receive an initial bandwidth portion (initial BWP) for the initial connection from the base station through a master information block (MIB). More specifically, the UE may transmit a PDCCH for reception of system information (remaining system information; RMSI or system information block 1; may correspond to SIB1) required for initial access through the MIB in the initial access step.
  • system information maining system information; RMSI or system information block 1; may correspond to SIB1
  • Setting information for a control resource set (CORESET) and a search space may be received.
  • the control resource set and the search space set by the MIB may be regarded as an identifier (identity, ID) 0, respectively.
  • the base station may notify the terminal of configuration information such as frequency allocation information, time allocation information, and numerology for the control resource set #0 through the MIB.
  • the base station may notify the terminal through the MIB of configuration information on the monitoring period and occasion for the control resource set #0, that is, configuration information on the search space #0.
  • the UE may regard the frequency domain set as the control resource set #0 obtained from the MIB as an initial bandwidth portion for initial access.
  • the identifier (ID) of the initial bandwidth portion may be regarded as 0.
  • the configuration of the bandwidth part supported by the 5G may be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, this may be supported through the bandwidth part setting.
  • the base station sets the frequency position (setting information 2) of the bandwidth portion to the terminal, the terminal can transmit/receive data at a specific frequency location within the system bandwidth.
  • the base station may set a plurality of bandwidth portions to the terminal for the purpose of supporting different numerologies. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to a certain terminal, two bandwidth portions may be set to a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be frequency division multiplexed, and when data is transmitted and received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
  • the base station may set a bandwidth portion having different sizes of bandwidths to the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits and receives data using the corresponding bandwidth, very large power consumption may occur. In particular, monitoring an unnecessary downlink control channel with a large bandwidth of 100 MHz in a situation without traffic may be very inefficient in terms of power consumption.
  • the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In a situation in which there is no traffic, the terminal may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data in the 100 MHz bandwidth portion according to the instruction of the base station.
  • terminals before RRC connection may receive configuration information for the initial bandwidth part through the MIB in the initial access step. More specifically, the UE may receive a control resource set (CORESET) for a downlink control channel through which DCI scheduling SIB can be transmitted from the MIB of a physical broadcast channel (PBCH).
  • CORESET control resource set
  • the bandwidth of the control resource set set as the MIB may be regarded as an initial bandwidth portion, and the terminal may receive the PDSCH through which the SIB is transmitted through the configured initial bandwidth portion.
  • the initial bandwidth portion may be utilized for other system information (OSI), paging, and random access in addition to the purpose of receiving the SIB.
  • OSI system information
  • CA 6 is a diagram for explaining carrier aggregation (CA) according to an embodiment of the present disclosure.
  • a primary cell (PCell) and a secondary cell (SCell) may be configured in the terminal.
  • PCell is included in PCC (primary component carrier), RRC connection establishment/re-establishment, measurement, mobility procedure, random access procedure and selection, system information acquisition, initial random access, security key change and non-access stratum (NAS) function etc. can be provided.
  • PCC primary component carrier
  • RRC connection establishment/re-establishment measurement, mobility procedure, random access procedure and selection, system information acquisition, initial random access, security key change and non-access stratum (NAS) function etc.
  • the PCell Since the UE performs system information monitoring through the PCell, the PCell is not deactivated, and the PCC in the UL is carried through a physical uplink control channel (PUCCH) for transmitting control information.
  • PUCCH physical uplink control channel
  • only one RRC connection is possible between the UE and the PCell, and PDCCH/PDSCH/PUSCH (physical uplink shared channel)/PUCCH transmission is possible.
  • a spcell of a secondary cell group may be configured and operated as the PCell. The operation for the PCell described below may also be performed by the PSCell.
  • a maximum of 31 SCells can be added, and when additional radio resource provision is required, the SCell can be configured through an RRC message message (eg, dedicated signaling).
  • the RRC message may include a physical cell ID for each cell, and may include a DL carrier frequency (absolute radio frequency channel number: ARFCN).
  • ARFCN absolute radio frequency channel number
  • Cross-carrier scheduling may mean allocating at least one (eg, PDCCH) of all L1 control channels or L2 control channels for at least one other CC (component carrier) to one CC.
  • a carrier indicator field may be used to transmit data information of another CC through the PDCCH of one CC.
  • Resources (PDSCH, PUSCH) for data transmission of the CC or resources (PDSCH, PUSCH) for data transmission of another CC may be allocated through control information transmitted through the PDCCH of one CC.
  • the n-bit CIF is added to the DCI format by applying the cross-carrier scheduling, the bit size may vary according to the higher layer configuration or the DCI format, and the position of the CIF in the DCI format may be fixed.
  • FIG. 7 is a diagram illustrating an example of a cross-carrier scheduling method according to an embodiment of the present disclosure.
  • PDSCH or PUSCH for two CCs may be scheduled through the PDCCH 701 of one CC.
  • the PDSCH or PUSCH of each CC may be scheduled using the PDCCHs 721 and 723 of the two CCs.
  • Each CC may be mapped to a CI (carrier indicator) value for CIF application, which may be transmitted from the base station to the terminal through a dedicated RRC signal as a UE-specific configuration.
  • CI carrier indicator
  • Each PDSCH/PUSCH CC may be scheduled from one DL CC. Accordingly, the UE only needs to monitor the PDCCH for the DL CC for each PDSCH/PUSCH CC.
  • the UE may monitor the PDCCH in the DL CC to obtain PUSCH scheduling information in the linked UL carrier.
  • the UE may monitor the PDCCH in the DL CC to obtain PDSCH scheduling information in the linked DL carrier.
  • FIG. 8 is a diagram illustrating an example of setting a control area (CORESET) of a downlink control channel in a wireless communication system according to an embodiment of the present disclosure.
  • CORESET control area
  • control region #1 (CORESET #1) 801) in a bandwidth part 810 of the terminal on the frequency axis and one slot 820 on the time axis.
  • #2 (CORESET #2) 802) is set is shown.
  • the control regions 801 and 802 may be set in a specific frequency resource 803 within the entire terminal bandwidth portion 810 on the frequency axis.
  • the control regions 801 and 802 may be set with one or a plurality of OFDM symbols on the time axis, which may be defined as a control resource set duration (804).
  • the control region #1 801 is set to a control region length of two symbols
  • the control region #2 802 is set to a control region length of one symbol.
  • the control region in 5G described above may be configured by the base station through higher layer signaling (eg, system information, MIB, RRC signaling) to the terminal.
  • Setting the control region to the terminal means to provide the terminal with information such as a control region identity, a frequency position of the control region, and a symbol length of the control region.
  • the information in Table 3 may be included.
  • the number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is based on link adaptation of the downlink control channel.
  • AL aggregation level
  • the UE must detect a signal (blind decoding) without knowing information about the downlink control channel, and a search space indicating a set of CCEs is defined for blind decoding.
  • the search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level, and various aggregations that make one bundle with 1, 2, 4, 8, or 16 CCEs Since there is a level, the terminal may have a plurality of search spaces.
  • a search space set may be defined as a set of search spaces in all set aggregation levels.
  • the search space may be classified into a common search space and a UE-specific search space.
  • a group of terminals or all terminals may search the common search space of the PDCCH in order to receive control information common to cells such as dynamic scheduling for system information or a paging message.
  • the PDSCH scheduling assignment information for transmission of the SIB including the operator information of the cell may be received by examining the common search space of the PDCCH.
  • the common search space since terminals of a certain group or all terminals need to receive the PDCCH, it may be defined as a set of promised CCEs.
  • the UE-specific scheduling assignment information for PDSCH or PUSCH may be received by examining the UE-specific search space of the PDCCH.
  • the UE-specific search space may be UE-specifically defined as a function of UE identity and various system parameters.
  • the parameter for the search space for the PDCCH may be set from the base station to the terminal through higher layer signaling (eg, SIB, MIB, RRC signaling).
  • the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), A combination of a DCI format and a radio network temporary identifier (RNTI) to be monitored in the corresponding search space, a control resource set index for monitoring the search space, etc. may be set to the UE.
  • the parameter for the search space for the PDCCH may include, for example, at least a part of information as shown in Table 4 below.
  • the base station may set one or a plurality of search space sets to the terminal. According to some embodiments, the base station may set the search space set 1 and the search space set 2 to the terminal. In search space set 1, the UE may be configured to monitor DCI format A scrambled with X-RNTI in the common search space, and in search space set 2, the UE uses DCI format B scrambled with Y-RNTI in the UE-specific search space. can be set to monitor.
  • one or a plurality of search space sets may exist in the common search space or the terminal-specific search space.
  • the search space set #1 and the search space set #2 may be set as the common search space
  • the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
  • a combination of the following DCI format and RNTI may be monitored.
  • DCI format a combination of the following DCI format and RNTI.
  • RNTI a combination of the following DCI format and RNTI.
  • the specified RNTIs may follow the definitions and uses below.
  • C-RNTI Cell RNTI
  • Cell RNTI UE-specific PDSCH scheduling purpose
  • TC-RNTI Temporal Cell RNTI
  • CS-RNTI Configured Scheduling RNTI
  • RA-RNTI Random Access RNTI
  • P-RNTI Paging RNTI
  • SI-RNTI System Information RNTI
  • INT-RNTI Used to indicate whether PDSCH is pucturing
  • TPC-PUSCH-RNTI Transmit Power Control for PUSCH RNTI
  • TPC-PUCCH-RNTI Transmit Power Control for PUCCH RNTI
  • TPC-SRS-RNTI Transmit Power Control for SRS RNTI
  • the search space of the aggregation level L in the control resource set p and the search space set s may be expressed as in Equation 1 below.
  • the value may correspond to 0 in the case of a common search space.
  • the value may correspond to a value that changes depending on the terminal's identity (C-RNTI or ID set for the terminal by the base station) and the time index.
  • the terminal may monitor the PDCCH in the control region configured by the base station, and may transmit/receive data based on the received control information.
  • scheduling information for uplink data (or physical uplink data channel (PUSCH)) or downlink data (or physical downlink data channel (PDSCH)) may be transmitted from the base station to the terminal through DCI.
  • the UE may monitor a DCI format for fallback and a DCI format for non-fallback for PUSCH or PDSCH.
  • the DCI format for countermeasures may be composed of a fixed field predetermined between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
  • DCI may be transmitted through a PDCCH, which is a physical downlink control channel, through channel coding and modulation.
  • a CRC is added to the DCI message payload, and the CRC may be scrambling based on the RNTI corresponding to the identity of the UE.
  • Different RNTIs may be used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but included in the CRC calculation process and transmitted.
  • the UE Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
  • DCI scheduling PDSCH for system information may be scrambled with SI-RNTI.
  • DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI.
  • DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI.
  • DCI notifying a slot format indicator (SFI) may be scrambled with an SFI-RNTI.
  • DCI notifying transmit power control (TPC) may be scrambled with TPC-RNTI.
  • DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (cell RNTI).
  • various types of DCI formats may be provided as shown in Table 5 below for efficient reception of control information of the UE.
  • the base station may use DCI format 1_0, DCI format 1_1, or DCI format 1_2 to allocate (scheduling) the PDSCH for one cell to the terminal.
  • the base station may use DCI format 0_0, DCI format 0_1, or DCI format 0_2 to allocate (scheduling) the PUSCH for one cell to the terminal.
  • DCI format 1_0 is transmitted together with CRC scrambled by C-RNTI or CS-RNTI or MCS-C-RNTI or new-RNTI, for example, at least the information shown in Table 6 may include:
  • N RBG bits or bits indicates frequency axis resource allocation, and when DCI format 1_0 is monitored in the UE specific search space is the size of the active DL BWP, otherwise is the size of the initial DL BWP.
  • N RBG is the number of resource block groups. For a detailed method, refer to the frequency axis resource allocation.
  • - Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Redundancy version (2 bits) indicates the redundancy version used for PDSCH transmission.
  • - HARQ process number (4 bits): indicates the HARQ process number used for PDSCH transmission.
  • - PDSCH-to-HARQ_feedback timing indicator (3 bits): As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as a higher layer.
  • DCI format 1_1 is transmitted together with CRC scrambled by cell radio network temporary identifier (C-RNTI) or configured scheduling RNTI (CS-RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 7.
  • C-RNTI cell radio network temporary identifier
  • CS-RNTI configured scheduling RNTI
  • MCS-C-RNTI new-RNTI
  • - Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator - Carrier indicator (0 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
  • - Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation, is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • - Time domain resource assignment (0 ⁇ 4 bits): indicates time domain resource assignment according to the above description.
  • - VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. It is 0 bit when frequency axis resource allocation is set to resource allocation type 0 or when interleaved VRB-to-PRB mapping is not set by an upper layer.
  • - PRB bundling size indicator (0 or 1 bit): When the upper layer parameter prb-BundlingType is not set or is set to 'static', it is 0 bit, and when it is set to 'dynamic', it is 1 bit.
  • - Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
  • - ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
  • - Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit) indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Transmission configuration indication (0 or 3 bits): TCI indicator.
  • CBG transmission information (0 or 2 or 4 or 6 or 8 bits): an indicator indicating whether to transmit code block groups in the allocated PDSCH. 0 means that the CBG is not transmitted, and 1 means that it is transmitted.
  • - CBG flushing out information (0 or 1 bit): An indicator indicating whether previous CBGs are contaminated. If 0, it means that it may have been contaminated, and if 1, it means that it can be used when receiving retransmission (combinable).
  • - DMRS sequence initialization (0 or 1 bit): DMRS scrambling ID selection indicator
  • DCI format 1_2 is transmitted together with CRC scrambled by C-RNTI (cell radio network temporary identifier) or CS-RNTI (configured scheduling RNTI) or MCS-C-RNTI or new-RNTI, for example, at least the table It may include information such as 8.
  • - Identifier for DCI formats (1 bit): Always set to 1 as a DCI format indicator - Carrier indicator (0 or 1 or 2 or 3 bits): indicates the CC (or cell) to which the PDSCH allocated by the corresponding DCI is transmitted.
  • - Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (determining payload according to the frequency axis resource allocation): indicates frequency axis resource allocation, is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • - Time domain resource assignment (0 ⁇ 4 bits): indicates time domain resource assignment according to the above description.
  • - VRB-to-PRB mapping (0 or 1 bit): 0 indicates Non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. If the vrb-ToPRB-InterleaverForDCI-Format1-2 setting parameter of the upper layer is not set, it is 0 bit.
  • - PRB bundling size indicator (0 or 1 bit): 0 bit if the upper layer parameter prb-BundlingTypeForDCI-Format1-2 is not set or set to 'static', and 1 bit if set to 'dynamic'.
  • - Rate matching indicator (0 or 1 or 2 bits): indicates the rate matching pattern.
  • - ZP CSI-RS trigger (0 or 1 or 2 bits): an indicator for triggering aperiodic ZP CSI-RS.
  • - Modulation and coding scheme (5 bits): indicates the modulation order and coding rate used for PDSCH transmission.
  • - New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission depending on whether toggle.
  • - Redundancy version (0 or 1 or 2 bits): indicates the redundancy version used for PDSCH transmission.
  • - HARQ process number (0 or 1 or 2 or 3 or 4 bits): indicates the HARQ process number used for PDSCH transmission.
  • - PDSCH-to-HARQ_feedback timing indicator (0 or 1 or 2 or 3 bits): As a HARQ feedback timing indicator, it indicates one of the feedback timing offsets set as a higher layer.
  • Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
  • - Transmission configuration indication (0 or 1 or 2 or 3 bits): TCI indicator.
  • the maximum number of DCIs of different sizes that the UE can receive per slot in the corresponding cell is 4.
  • the maximum number of DCIs of different sizes scrambled with C-RNTIs that the UE can receive per slot in the corresponding cell is 3.
  • the base station transmits time domain resource allocation information (eg, may be information configured in the form of a table) to the UE for a downlink data channel (PDSCH) and an uplink data channel (PUSCH) higher layer signaling (eg, For example, it can be set through RRC signaling).
  • the time domain resource allocation information includes, for example, the PDCCH-to-PDSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PDSCH scheduled by the received PDCCH is transmitted, denoted by K0) or PDCCH-to-PUSCH slot timing (corresponding to the time interval in slot units between the time when the PDCCH is received and the time when the PUSCH scheduled by the received PDCCH is transmitted, denoted by K2), the PDSCH or PUSCH scheduled within the slot Information on the position and length of the start symbol, the mapping type of PDSCH or PUSCH, etc. may be included. For example, information as shown in Table 9 or Table 10 below may be notified from the base station to the terminal.
  • the base station may notify the UE of one of the entries in the table for the time domain resource allocation information through L1 signaling (eg, DCI) (eg, it may be indicated by the time domain resource allocation field in DCI).
  • the UE may acquire time domain resource allocation information for the PDSCH or PUSCH based on the DCI received from the base station.
  • resource allocation type 0 and resource allocation type 1 are supported as a method of indicating frequency domain resource allocation information for a downlink data channel (PDSCH) and an uplink data channel (PUSCH).
  • PDSCH downlink data channel
  • PUSCH uplink data channel
  • RB allocation information may be notified from the base station to the terminal in the form of a bitmap for a resource block group (RBG).
  • RBG resource block group
  • the RBG may be composed of a set of consecutive VRBs, and the size P of the RBG is based on a value set as a higher layer parameter (rbg-Size) and a size value of the bandwidth part defined as shown in Table 11 below. can be determined by
  • the total number of RBGs in bandwidth part i ( ) may be defined as follows.
  • the size of the first RBG is .
  • the size of all other RBGs is P.
  • Each bit of the bit-sized bitmap may correspond to each RBG.
  • RBGs may be indexed in the order of increasing frequency, starting from the lowest frequency position of the bandwidth part. within the bandwidth For RBGs, from RBG#0 to RBG#( ) may be mapped from the MSB to the LSB of the RBG bitmap.
  • a specific bit value in the bitmap is 1, the UE can determine that the RBG corresponding to the bit value is allocated, and when the specific bit value in the bitmap is 0, the RBG corresponding to the bit value is not allocated. can judge
  • RB allocation information may be notified from the base station to the terminal as information on the start position and length of the continuously allocated VRBs.
  • interleaving or non-interleaving may be additionally applied to consecutively allocated VRBs.
  • the resource allocation field of resource allocation type 1 may consist of a resource indication value (RIV), and the RIV is the starting point of the VRB ( ) and the length of consecutively allocated RBs ( ) can be composed of More specifically,
  • the RIV in the bandwidth part of the size may be defined as follows.
  • FIG. 9 is a diagram illustrating an example of downlink data channel processing in a wireless communication system according to an embodiment of the present disclosure.
  • a scrambling process may be performed for each of one codeword or two codewords ( S901 ). length a sequence of codewords q with A scrambling sequence obtained through initialization as in Equation 3 A sequence scrambled through the same process as in Equation 2 using can be obtained. The value is set through the upper layer parameter, or otherwise as the cell ID value. can be determined, may mean an RNTI associated with PDSCH transmission.
  • a modulation symbol sequence with a length of may be generated (902).
  • Each modulation symbol may be mapped (903), which represents same as Table 12 shows the relationship between the number of layers, the number of codewords, and the codeword-layer mapping.
  • the modulation symbols mapped to the layer may be mapped to an antenna port as shown in Equation (4). may be determined by information included in the DCI format (904).
  • Symbols may be mapped to REs that satisfy conditions that can be used for PDSCH transmission among REs in VRBs allocated for transmission (eg, mapping impossible to DM-RS resources, etc.) (905).
  • VRBs that have completed the above process may be mapped to PRBs through an interleaving mapping method or a non-interleaving mapping method ( 906 ).
  • the mapping method may be indicated through the VRB-to-PRB mapping field in DCI. If there is no indication of the mapping method, it may mean a non-interleaving mapping method.
  • VRB n may be mapped to PRB n except in specific cases.
  • VRB n of a PDSCH scheduled using DCI format 1_0 through a common search space is PRB ( may include a case in which the DCI is mapped to the first PRB of the transmitted CORESET).
  • RBs in the BWP are RB bundles are divided into RB bundles, and the RB bundles may be mapped in the manner shown in Table 13.
  • RBs in BWP One example of dividing into RB bundles may be as follows. Starting point within the BWP with A set of RBs is It is divided into RB bundles, and the RB bundles may be indexed in an increasing order.
  • L i means a bundle size in BWP i, which may be transmitted to the UE by the higher layer parameter vrb-ToPRB-Interleaver.
  • RB bundle 0 is Consists of RBs, RB bundle Is If you are satisfied with RBs, otherwise it may be composed of L i RBs. And the remaining RB bundles may be composed of L i RBs.
  • the MCS index for the PDSCH ie, the modulation order (or method) Qm and the target code rate R, may be determined through the following process.
  • DCI with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI (e.g., DCI format 1_0, DCI format 1_1, or DCI format 1_2) including PDCCH (PDCCH with DCI format 1_0, format 1_1, or format 1_2 with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, For PDSCH scheduled through SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI), or without corresponding PDCCH transmission, using the PDSCH configuration SPS-Config (or SPS configuration) provided in the upper layer For the scheduled PDSCH,
  • the UE determines the modulation order Qm and the target code rate R To do this, the MCS index I MCS value of [Table 15] can be used.
  • (c) The conditions of (a) and (b) do not hold, and the UE is set by MCS-C-RNTI, and the PDSCH is scheduled by the PDCCH to which the CRC scrambled by the MCS-C-RNTI is applied.
  • the UE determines the modulation order Qm and the target code rate R [Table 16] MCS index I MCS value can be used.
  • PDSCH is scheduled by PDCCH of DCI format 1_1 to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by CS-RNTI or),
  • the UE may use the MCS index I MCS value of [Table 15] to determine the modulation order Qm and the target code rate R.
  • PDSCH is scheduled by PDCCH to which CRC scrambled by CS-RNTI is applied (if the PDSCH is scheduled by a PDCCH with CRC scrambled by CS-RNTI or),
  • the UE may use the MCS index I MCS value of [Table 16] to determine the modulation order Qm and the target code rate R.
  • the UE determines the modulation order Qm and the target code rate R of [Table 14].
  • MCS index I MCS value can be used.
  • MCS Index I MCS Modulation Order Qm Target code rate [R x 1024] Spectral efficiency 0 2 30 0.0586 One 2 40 0.0781 2 2 50 0.0977 3 2 64 0.1250 4 2 78 0.1523 5 2 99 0.1934 6 2 120 0.2344 7 2 157 0.3066 8 2 193 0.3770 9 2 251 0.4902 10 2 308 0.6016 11 2 379 0.7402 12 2 449 0.8770 13 2 526 1.0273 14 2 602 1.1758 15 4 340 1.3281 16 4 378 1.4766 17 4 434 1.6953 18 4 490 1.9141 19 4 553 2.1602 20 4 616 2.4063 21 6 438 2.5664 22 6 466 2.7305 23 6 517 3.0293 24 6 567 3.3223 25 6 616 3.6094 26 6 666 3.9023 27 6 719 4.2129 28 6 772 4.5234 29 2 reserved 30 4 reserved 31 6 reserved
  • the UE may first obtain (determine, or calculate) the number of REs in the slot (N RE ) (1001).
  • the UE is the number of REs allocated to PDSCH mapping in one PRB in the allocated resource. can be obtained (calculated). Is can be calculated as From here, is 12, may indicate the number of OFDM symbols allocated to the PDSCH.
  • is the number of REs of DMRSs of the same CDM group within one PRB. is the number of REs occupied by the overhead in the PRB as long as it is set by higher-order signaling, and may be set to one of 0, 6, 12, or 18 (if not set as higher-order signaling, it may be set to 0).
  • the total number of REs allocated to the PDSCH can be calculated. Is is calculated based on indicates the number of PRBs allocated to the UE. The value can be calculated as above. Alternatively, information including the number of all cases that can be set as the value of N RE (for example, it may be configured in the form of at least one or more tables) is stored, , , , , , In the stored information (eg, table) through at least one parameter value of A value may be obtained.
  • the number of temporary information bits can be obtained (computed) (1002).
  • N info is can be calculated as
  • R denotes a code rate
  • Qm denotes a modulation order
  • the information includes modulation and coding scheme (MCS) information included in control information (eg, DCI, RRC configuration information, etc.).
  • MCS modulation and coding scheme
  • v may mean the number of allocated layers. The value is calculated as above or information including the number of all cases (eg, in the form of at least one or more tables) is stored, and the stored information is stored through at least one parameter value among R, Qm, and v from information A value may be obtained.
  • a value of 3824 can be compared with the value of 3824 (1003). different methods depending on whether the value of is less than or equal to 3824 and TBS may be obtained (computed) (1004).
  • n A value may be obtained.
  • TBS in Table 17 of values not less than can be determined as the closest value to .
  • the value is calculated as above or information about the number of all cases (eg, at least one table) is stored, , in the stored table through at least one parameter value of n A value may be obtained.
  • TBS It can be determined through the value and the pseudo code included in Table 18 or another type of pseudo code that produces the same result. Or, the TBS stores information on the number of all cases (eg, at least one or more tables), R, A TBS value may be obtained from the stored information through at least one parameter value among , C .
  • the maximum data rate supported by the UE in the NR system may be determined through Equation (6).
  • the terminal can be reported by setting it to one of 1, 0.8, 0.75, and 0.4, can be given as in Table 19.
  • Is can be calculated as is the maximum number of RBs in BW(j). As an overhead value, it may be given as 0.14 in the downlink of FR1 (band below 6 GHz) and 0.18 in the uplink, and as 0.08 in the downlink of FR2 (band above 6 GHz) and 0.10 in the uplink.
  • the maximum data rate in downlink in a cell having a 100 MHz frequency bandwidth at a 30 kHz subcarrier interval may be as shown in Table 20 below.
  • the actual data rate representing the actual data transmission efficiency may be a value obtained by dividing the amount of transmitted data by the data transmission time. That is, it may be a value obtained by dividing the TBS in one TB transmission or the sum of two TBSs in two transmissions by a transmission time interval (TTI) length.
  • TTI transmission time interval
  • the maximum actual downlink data rate in a cell having a 30 kHz subcarrier interval and a 100 MHz frequency bandwidth may be determined as shown in Table 21 below according to the number of allocated PDSCH symbols.
  • the data rate supportable of the terminal may be determined (calculated, obtained) between the base station and the terminal using the maximum frequency band, the maximum modulation order, the maximum number of layers, etc. supported by the terminal.
  • the data rate supportable by the terminal may be different from the actual data rate calculated based on TBS and TTI, and in some cases, the base station transmits data having a larger TBS than the supportable data rate of the terminal to the terminal. can happen
  • the base station may configure the configuration information for the SPS to the terminal through higher layer signaling (eg, RRC signaling).
  • the configuration information may be delivered to the terminal through the SPS-Config IE.
  • the setting information may include, for example, at least the information shown in Table 22.
  • the base station may configure a plurality of SPSs by using, for example, configuration information shown in Table 22 according to the capability of the terminal.
  • the plurality of SPSs may be distinguished by sps-ConfigIndex of Table 22.
  • sps-ConfigIndex may be referred to as an SPS index.
  • SPS setting (or SPS setting information) may be made for each BWP of a serving cell, and a plurality of SPS settings may be simultaneously activated within the same BWP.
  • SPS-Config information element SPS-Config :: SEQUENCE ⁇ periodicity ENUMERATED ⁇ ms10, ms20, ms32, ms40, ms64, ms80, ms128, ms160, ms320, ms640, spare6, spare5, spare4, spare3, spare2, spare1 ⁇ , (cycle of DL SPS) nrofHARQ-Processes INTEGER (1..8), (Number of HARQ Processes set for DL SPS) n1PUCCH-AN PUCCH-ResourceId OPTIONAL, -- Need M (set HARQ resource of PUCCH for DL SPS, format0 or format1) mcs-Table ENUMERATED ⁇ qam64LowSE ⁇ OPTIONAL, -- Need S (configuration information related to MCS table used for DL SPS) ..., [[ sps-ConfigIndex-r16 SPS-ConfigIndex-r16 OPTIONAL, -- Con
  • the base station may instruct the terminal to activate or release at least one SPS among the SPSs configured through a control signal (eg, DCI or MAC CE).
  • a control signal eg, DCI or MAC CE.
  • the base station sets at least one specific field in the DCI to a specific value, scrambles the CRC generated through the DCI with a specific RNTI, and transmits it to the UE through the PDCCH, thereby activating the SPS or Deactivation (release) may be indicated.
  • the CRC is scrambled using CS-RNTI (provided to the UE as RRC configuration)
  • the value of the new data indicator (NDI) field in DCI is set to 0, and the DFI flag field is 0 if present.
  • the DCI can be interpreted as activation or deactivation. If there is only one SPS setting, all HARQ process number fields of the DCI are set to 0 and all redundancy version fields are set to 0, it is activated, and all of the HARQ process number fields of the DCI are set to 0 and all redundancy version fields are set to 0.
  • All of the modulation and coding scheme fields are set to 0 and all of the modulation and coding scheme fields are set to 1, and in the case of FDRA type 0 or dynamicSwitch (that is, when the resource allocation type can be changed based on DCI), all of the FDRA fields are set to 0, FDRA In the case of type 1, if all FDRA fields are set to 1, it may be interpreted as deactivation.
  • the HARQ process number field in DCI is the SPS-config. It indicates sps-ConfigIndex in the configuration, and when all redundancy version fields of the DCI are set to 0, by activation of the SPS corresponding to the sps-ConfigIndex, the redundancy version fields of the DCI are all set to 0, and the modulation and coding scheme fields are All are set to 1, in the case of FDRA type 0 or dynamicSwitch, all FDRA fields are set to 0, and in the case of FDRA type 1, if all FDRA fields are set to 1, it may be interpreted as deactivation of the SPS corresponding to the sps-ConfigIndex.
  • the terminal When the terminal receives the DCI indicating deactivation, if there is a configured downlink assignment of the corresponding serving cell, it clears it, and if the HARQ feedback is transmitted, the timeAlignmentTimer associated with the TAG including the serving cell When is running, an ACK for deactivation may be transmitted.
  • the downlink assignment of the corresponding serving cell and associated HARQ information are stored as configured downlink assignment, and the configured downlink assignment of the corresponding serving cell (configured downlink) assignment) can be (re-)initialized.
  • the base station may schedule retransmission for SPS PDSCH transmission by setting the value of the NDI field of DCI to 1, scrambled CRC of DCI with CS-RNTI, and transmitting it through PDCCH.
  • the base station may transmit the PDSCH to a resource determined according to the RRC configuration and activation DCI signal. More specifically, as shown in Equation 7, the transmission slot of the N-th PDSCH may be determined.
  • the HARQ process ID associated with SPS transmission may be determined as in Equation 8 when harq-ProcID-Offset is not set, and Equation 9 when it is set.
  • SFN start time and slot start time indicate the SFN and slot of the first PDSCH transmission in which the configured downlink assignment is (re-)initialized, and numberOfSlotsPerFrame is the number of slots included in the frame. indicates.
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (numberOfSlotsPerFrame ⁇ periodicity))] modulo nrofHARQ-Processes
  • - CURRENT_slot indicates the slot index of the first transmission time of the bundle of the configured downlink assignment.
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (numberOfSlotsPerFrame ⁇ periodicity))] modulo nrofHARQ-Processes + harq-ProcID-Offset
  • - CURRENT_slot indicates the slot index of the first transmission time of the bundle of the configured downlink assignment.
  • the base station may transmit data to the terminal in a 1:1 relationship (uni-cast) or may transmit data in a 1:N relationship (multi-cast, group-cast). , broad-cast, etc.).
  • the base station may set the unicast SPS configuration and/or the group common SPS configuration to the terminal.
  • the unicast SPS configuration may include a CS-RNTI scrambling CRC of DCI indicating activation or release of unicast SPS
  • the group common SPS configuration may include scrambling CRC of DCI indicating activation or release of group common SPS.
  • group common CS-RNTI may include a CS-RNTI scrambling CRC of DCI indicating activation or release of group common SPS.
  • a DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common CS-RNTI is a group common PDCCH (group-common CS-RNTI).
  • group-common PDCCH group-common PDCCH
  • the DCI may activate or deactivate a group-common SPS PDSCH (group-common SPS PDSCH). After activation, the group common SPS PDSCH may be transmitted according to at least one embodiment described above.
  • the RNTI used in Equation 3 of step 901 may be the group-common CS-RNTI (group-common CS-RNTI), and the same value is set for the group common CS-RNTI for the terminal of the group.
  • group-common CS-RNTI group-common CS-RNTI
  • the group common CS-RNTI of the present disclosure may be a newly defined RNTI for group communication, or an RNTI configured to be used for group communication among RNTIs configured in the terminal.
  • a PDSCH configured through SPS configuration may be referred to as an SPS PDSCH.
  • SPS PDSCH refers to the PDSCH configured by the SPS configuration and may be described in various terms with the same meaning.
  • the DCI to which a CRC (CRC generated by using DCI information) scrambled based on a UE-specific CS-RNTI (CS-RNTI) for each UE is attached is a UE-specific PDCCH (UE-specific CS-RNTI).
  • PDCCH UE-specific CS-RNTI
  • the DCI may activate or deactivate a group-common SPS PDSCH (group-common SPS PDSCH). After activation, the group common SPS PDSCH may be transmitted according to at least one embodiment described above.
  • the RNTI used in Equation 3 of step 901 may be a group-common CS-RNTI (CS-RNTI), and the same value may be set for the terminals of the group.
  • the base station can set the mcs-Table (eg, Table 14, Table 15 or Table 16) for group-common SPS PDSCH (group-common SPS PDSCH) transmission to the terminal.
  • mcs-Table information information on at least one modulation order and a target code rate that can be determined according to at least one MCS index value may be referred to as mcs-Table information, but in other terms (eg, MCS-related information).
  • mcs-Table (mcs-Table or group common SPS mcs-Table for group SPS communication) for group common SPS PDSCH (group-common SPS PDSCH) transmission configured in the terminal is set for unicast SPS PDSCH mcs- It may be configured separately from the Table (or UE-specific SPS mcs-Table).
  • the mcs-Table for group common SPS PDSCH transmission may be defined (or designed) or configured in consideration of lower performance than the mcs-Table for unicast SPS PDSCH.
  • the mcs-Table for group common SPS PDSCH transmission may include at least one or at least a part of mcs-Table entries configured for unicast SPS PDSCH. have.
  • the mcs-Table configuration for group-common SPS PDSCH (group-common SPS PDSCH) transmission is included in the SPS configuration parameter in the BWP configuration parameter for each BWP and/or for each sps-ConfigIndex in the BWP. can be set.
  • configuration information for downlink BWP (BWP-Downlink) and configuration information for uplink BWP (BWP-Uplink) may be configured in the terminal.
  • the downlink BWP may include configuration information for a downlink common BWP (BWP-DownlinkCommon) and a downlink dedicated BWP (BWP-DownlinkDedicated).
  • the downlink common BWP is a cell-specific BWP, and the downlink common BWP configuration information may include parameters commonly applied to terminals located in a cell.
  • the downlink-specific BWP is a UE-specific BWP, and the downlink-specific BWP configuration information may include a UE-specific (dedicated) parameter.
  • the BWP including the group common SPS PDSCH may be referred to as a group common BWP. That is, the group common BWP may mean a BWP used for 1: multiple communication, such as multicast or broadcast.
  • the group common BWP may be set in the terminal as a BWP separate from the previously configured BWP (legacy BWP), or some of the frequency resources of the BWP configured in the terminal may be set in the terminal as the group common BWP.
  • configuration information for the group common BWP is included in the downlink common BWP, or configuration information for the group common BWP may be defined separately.
  • the configuration information for the group common BWP may include information on the group common PDCCH region, information on the group common PDSCH region, group common SPS configuration information, and the like.
  • the terminal may use all or part of the downlink common BWP as the group common BWP.
  • some BWPs or frequency resources among a plurality of BWPs set in the terminal may be used as the group common BWP.
  • the group common BWP setting information may be included in the group common SPS setting information included in .
  • the mcs-Table configuration for group-common SPS PDSCH (group-common SPS PDSCH) transmission is included in the group common frequency resource configuration parameter for group common PDSCH transmission, so that the group common frequency resource can be set separately.
  • the group common frequency resource may be configured with a part or all of the BWP, and in the present disclosure, the group common frequency resource may be configured with all or at least a part of the frequency resource of the group common BWP. Accordingly, the group common frequency resource may also be set as a part of the frequency resource set in the terminal or a frequency resource separate from the frequency resource set in the terminal, and information for setting the group common frequency resource includes the group common frequency resource.
  • An mcs-Table configuration for SPS PDSCH transmission may be included.
  • DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common CS-RNTI is a group common PDCCH (group-common CS-RNTI).
  • group-common CS-RNTI group-common CS-RNTI
  • -common PDCCH group common PDCCH
  • the UE may use the mcs-Table configured for group common SPS PDSCH transmission. .
  • the UE is configured for the mcs-Table configured for the unicast PDSCH or the mcs-Table configured for the unicast SPS PDSCH or the mcs configured for the group common PDSCH -Table can be used to determine a modulation order (Qm) and a target coding rate R corresponding to the modulation and coding scheme field (I MCS ) included in the DCI.
  • Qm modulation order
  • I MCS modulation and coding scheme field
  • the UE when receiving a PDCCH scheduled through a group-specific search space, the UE receives a modulation order (Qm) corresponding to the Modulation and Coding Scheme field (I MCS ) included in the DCI. ) and the target code rate R, the mcs-Table configured for group common SPS PDSCH transmission may be used.
  • Qm modulation order
  • I MCS Modulation and Coding Scheme field
  • the UE is configured for the mcs-Table configured for the unicast PDSCH or the mcs-Table configured for the unicast SPS PDSCH or the mcs configured for the group common PDSCH -Table can be used to determine a modulation order (Qm) and a target coding rate R corresponding to the modulation and coding scheme field (I MCS ) included in the DCI.
  • DCI transmitted through the group-specific search space may use a DCI format defined separately for group communication or a DCI format previously defined for unicast communication may be used.
  • DCI to which a scrambled CRC (CRC generated using DCI information) is attached based on a group-common CS-RNTI (group-common CS-RNTI) is a group common PDCCH (group-common CS-RNTI).
  • -common PDCCH may be received through a group-specific search space.
  • the UE may use the mcs-Table configured for group common SPS PDSCH transmission. .
  • the UE is configured for the mcs-Table configured for the unicast PDSCH or the mcs-Table configured for the unicast SPS PDSCH or the mcs configured for the group common PDSCH -Table can be used to determine a modulation order (Qm) and a target coding rate R corresponding to the modulation and coding scheme field (I MCS ) included in the DCI.
  • Qm modulation order
  • I MCS modulation and coding scheme field
  • FIG. 11 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • the terminal may receive configuration information from the base station.
  • the configuration information may be received through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like.
  • the mcs-Table is a mcs-Table configured for a unicast PDSCH or a mcs-Table configured for a group common PDSCH or an mcs-Table configured for a unicast SPS PDSCH or a group common SPS PDSCH It may include at least one of the mcs-Tables set for The mcs-Table configured for the group common PDSCH and the mcs-Table configured for the group common SPS PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
  • the UE may monitor the PDCCH in at least one search space according to the above embodiments (1101).
  • the search space may include a common search space.
  • the common search space may include a group search space commonly set only to a specific group i for group communication.
  • the search space may include a UE-specific search space.
  • the UE-specific search space may include a group search space commonly set only to a specific group i for group communication.
  • the group search space commonly set only to the group i can be obtained by setting the Yp,-1 value of Equation 1 to the group common RNTI and substituting it in Equation 1.
  • the terminal included in the group may monitor the PDCCH in the group search space, and information included in the DCI received in the group search space may be used for group communication of the terminal.
  • the base station may transmit information on the group search space to the terminal.
  • the base station may configure information on the PDCCH in which the group search space is located (or to be used for group communication) to the terminal through RRC signaling or SIB.
  • time resource information and frequency resource information for the CORESET may be directly indicated through RRC signaling, MIB, or SIB.
  • the time resource information and the frequency resource information for the PDCCH indicate any one of predetermined information (eg, information configured in the form of a table) through information included in RRC signaling, MIB, or SIB. can make it
  • the CCE index of the common search space included in the PDCCH may be determined based on Equation 1 above.
  • DCI may be detected ( 1102 ). That is, the UE may receive DCI through the PDCCH as a result of monitoring the PDCCH. The UE may determine whether the received DCI satisfies the above-described SPS activation condition.
  • the UE may check whether the RNTI used for scrambling the CRC of the DCI transmitted through the PDCCH is the first RNTI or the second RNTI (1103).
  • the terminal included in group i may be assigned a group common RNTI (received through higher layer signaling, MIB, or SIB), and when the group common RNTI is assigned, step 1103 may be performed. .
  • the second RNTI may refer to a group common RNTI or a group common CS-RNTI
  • the first RNTI is an RNTI other than the group common RNTI configured in the terminal (eg, C-RNTI, CS-RNTI, etc.) can refer to
  • step 1103 may be a step of confirming whether the RNTI used for scrambling the CRC of the DCI is the second RNTI. That is, the terminal may determine whether a scrambled CRC is attached based on the group common RNTI, and may determine whether scheduling information for group communication is received based on this.
  • step 1103 may be omitted.
  • step 1103 may be changed to a step of determining whether the DCI is for group communication (or whether the DCI is group common or UE-specific).
  • the UE may use the first mcs-Table (or mcs-Table #1) (1104). That is, the UE may identify at least one of the modulation order (Qm) and the target code rate R corresponding to the value of the MCS index (I MCS ) bit field included in the received DCI.
  • the UE may use the second mcs-Table (or mcs-Table #2) (1105). That is, the UE may check at least one of the modulation order (Qm) and the target code rate R corresponding to the MCS index (I MCS ) value included in the received DCI.
  • the terminal determines the modulation order (Qm) and the target code rate R of the PDSCH scheduled by the DCI based on the confirmed at least one modulation order (Qm) and the target code rate R, and a subsequent operation, for example, determination of TBS etc. can be performed.
  • the first mcs-Table may correspond to an mcs-Table configured for unicast PDSCH or unicast SPS PDSCH
  • the second mcs-Table is mcs configured for group common PDSCH or group common SPS PDSCH. It may correspond to -Table.
  • FIG. 12 is a diagram illustrating a DCI generation operation of a base station according to an embodiment of the present disclosure.
  • the base station may transmit configuration information to the terminal ( 1201 ).
  • the configuration information may refer to information transmitted through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP, and in the present disclosure, the setting information may include information on mcs-Table and the like.
  • the mcs-Table is a mcs-Table configured for a unicast PDSCH or a mcs-Table configured for a group common PDSCH or an mcs-Table configured for a unicast SPS PDSCH or a group common SPS PDSCH It may include at least one of the mcs-Tables set for The mcs-Table configured for the group common PDSCH and the mcs-Table configured for the group common SPS PDSCH may be configured for each BWP or group common frequency resource as described above. In this case, the detailed content of the configuration information for the BWP or the configuration information for the group common frequency resource is the same as described above, and will be omitted below.
  • the base station may determine the type of DCI to transmit (1202). However, step 1202 may be omitted. Specific details will be described later.
  • the base station may determine the type of DCI according to data to be transmitted through the PDSCH (or according to whether the data is for group communication, or whether the data is group common data or UE-specific data). In addition, depending on whether it is for activation of group SPS PDSCH transmission or activation of unicast SPS PDSCH transmission, at least among the DCI type, the field value included in the DCI, and the RNTI to be used for scrambling the CRC generated using the DCI You can decide some
  • the type of DCI may be determined depending on whether data is transmitted to one terminal or data transmitted to terminals belonging to a specific group (ie, multiple terminals).
  • the base station determines a modulation order (Qm) and a target code rate R of data to be transmitted through the PDSCH, and an MCS index (I MCS ) for indicating the modulation order (Qm) and/or the target code rate R can be decided
  • the MCS index is determined according to the data (ie, whether data transmitted for group communication or data for unicast transmission, whether for group SPS PDSCH transmission or unicast SPS PDSCH transmission) ) or it may be determined using different mcs-Tables according to the determined DCI type, and details will be described later.
  • the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
  • the base station determines the type of DCI according to whether the DCI to be transmitted through the PDCCH is for group communication (or whether the DCI is group common or UE-specific and whether it is group SPS PDSCH transmission or unicast SPS PDSCH transmission). There is (1202).
  • the DCI may be for one UE (UE-specific) or a specific group (group-common). Therefore, the base station determines the modulation order (Qm) and the target code rate R of data to be transmitted through the PDSCH scheduled by the DCI, and the MCS index (I) for indicating the modulation order (Qm) and/or the target code rate R MCS ) can be determined.
  • the MCS index may be determined using different mcs-Tables according to the determined DCI type, and details will be described later.
  • the DCI type (or format) for group communication and the DCI type (or format) for unicast communication may be the same, and in this case, step 1202 may be omitted.
  • the base station When the determined DCI is UE-specific, the base station generates a DCI using the first mcs-Table (mcs-Table #1) (1203), generates a CRC using the generated DCI, and sets the CRC to the first
  • the RNTI may be used to scramble ( 1205 ).
  • the first mcs-Table may be an mcs-Table set in the UE for unicast PDSCH or unicast SPS PDSCH through the process of 1201, and the RNTI is a UE-specific RNTI (UE-specific RNTI), for example, C-RNTI or CS-RNTI may be included.
  • the base station may transmit the DCI and CRC generated as above through the PDCCH.
  • the base station When the determined DCI type is group-common, the base station generates a DCI using the second mcs-Table (1204), generates a CRC using the generated DCI, and scrambles the CRC using a second RNTI.
  • the second mcs-Table may be an mcs-Table configured in the terminal for a group common PDSCH through the process of 1201 or an mcs-Table configured for a group common SPS PDSCH, and the RNTI is a group common RNTI (group). -common RNTI) or group-common CS-RNTI (group-common CS-RNTI).
  • the base station may transmit the DCI and CRC generated as above through the PDCCH.
  • the PDCCH may be transmitted by being mapped to a common search space or a group search space.
  • the base station may configure the configuration information for the SPS to the terminal through higher layer signaling (eg, RRC signaling).
  • the SPS configuration may include a unicast SPS configuration and a group common SPS configuration for transmission of a group common PDSCH.
  • the base station may set the terminal so that the sum of the number of unicast SPS settings and the number of group common SPS settings does not exceed the capability of the terminal.
  • the base station sets up a group common SPS of up to 1 NN (ie, 1 NN or less) using sps-ConfigToAddModList. can be set in the terminal.
  • the base station uses sps-ConfigToAddModList to unicast SPS of up to 2 NNs (or 2 NNs or less) Settings can be set in the terminal.
  • the base station releases some of the N 1 unicast SPS configurations using sps-ConfigToReleaseList and configures sps-ConfigToAddModList. It is possible to additionally set N 2 groups of common SPS by using , so that the total sum of the number of SPS settings does not exceed N.
  • N 2 group common SPS configurations are configured in a terminal capable of supporting N SPS configurations
  • the base station releases some of the N 2 group common SPS configurations using sps-ConfigToReleaseList and sps- By using ConfigToAddModList, N 1 unicast SPSs can be additionally set, and the total number of SPS settings can be set not to exceed N.
  • the terminal may transmit information on the maximum number of SPS configurations to the base station through a UE capability message.
  • the terminal may receive a UE capability enquiry message from the base station and transmit the UE capability message accordingly, or may transmit the UE capability message after the RRC connection with the base station is established. Accordingly, when the base station receives the UE capability message in advance, the procedure for transmitting the UE capability message may be omitted.
  • the SPS PDSCH may be transmitted after being scrambled (step 901 in FIG. 9 ) based on the first CS-RNTI and the initialization factor determined using Equation (3).
  • the SPS setting having a value corresponding to m 1 is activated.
  • the SPS PDSCH may be transmitted after being scrambled (step 901 in FIG. 9 ) based on the second CS-RNTI and the initialization factor determined using Equation (3).
  • the first CS-RNTI may be a CS-RNTI for unicast SPS
  • the second CS-RNTI may be a group common CS-RNTI for a group common SPS
  • the first DCI may be transmitted through a UE-specific PDCCH (UE-specific PDCCH)
  • the second DCI may be transmitted through a group-common PDCCH (PDCCH).
  • UE-specific PDCCH UE-specific PDCCH
  • PDCCH group-common PDCCH
  • group common SPS configuration may be activated through a UE-specific PDCCH (UE-specific PDCCH).
  • UE-specific PDCCH UE-specific PDCCH
  • unicast SPS can be activated through UE-specific PDCCH (UE-specific PDCCH) as described above, when a signal for SPS activation is transmitted through UE-specific PDCCH, to scramble the SPS PDSCH transmitted after activation. It is necessary to define which RNTI to use.
  • the scrambling of the SPS PDSCH is the HARQ process number included in the DCI. It may be determined based on a field value.
  • the SPS PDSCH may be scrambled based on CS-RNTI (CS-RNTI for unicast SPS or UE-specific CS-RNTI). More specifically, if the activated sps-ConfigIndex corresponds to the unicast SPS configuration, the SPS PDSCH is a factor initialized by using the CS-RNTI (CS-RNTI for unicast SPS or UE-specific CS-RNTI) in Equation 3 It can be scrambled based on CS-RNTI (CS-RNTI for unicast SPS or UE-specific CS-RNTI) in Equation 3 It can be scrambled based on
  • the SPS PDSCH may be scrambled based on the group common CS-RNTI (G-CS-RNTI). More specifically, if the activated sps-ConfigIndex corresponds to the group common SPS configuration, the SPS PDSCH may be scrambled using a factor initialized by using the group common CS-RNTI in Equation (3).
  • the unicast SPS configuration and the group common SPS configuration may not be transmitted in the same information element (IE), but may be transmitted through separate IEs.
  • the sps-ConfigIndex used for the unicast SPS configuration and the sps-ConfigIndex used for the group common SPS configuration may not have a common value.
  • at least some bits (eg, MSB 1 bit or LSB 1 bit) of the HARQ process number field included in DCI indicating SPS activation are the remaining bits except for the some bits.
  • the DCI may include a separate 1-bit field for indicating whether sps-ConfigIndex is a unicast SPS or a group common SPS.
  • a 1-bit field is included in DCI, when 1-bit information is included, it may indicate that sps-ConfigIndex is for group common SPS configuration (or for unicast SPS configuration).
  • At least some bits (eg, MSB 1 bit or LSB 1 bit) of a field indicating sps-ConfigIndex included in a MAC CE (control element) indicating SPS activation is It indicates whether sps-ConfigIndex indicated through bits other than some of the bits is unicast SPS or group common SPS, and a factor used for generating a sequence used for scrambling of the SPS PDSCH may be determined according to the indication.
  • the MAC CE may include a separate 1-bit field for indicating whether sps-ConfigIndex is a unicast SPS or a group common SPS.
  • 1-bit information is included, it may indicate that sps-ConfigIndex is for group common SPS configuration (or for unicast SPS configuration). .
  • the unicast SPS setting may be set as shown in Table 22 above, and the group common SPS setting may be separately set as shown in Table 23 below.
  • the group common SPS setting may include at least some of the parameters included in Table 23.
  • the group common SPS setting may be expressed in various terms to indicate that it is for group communication. In the present disclosure, it is expressed as, for example, MBS-SPS-Config, but the present disclosure is not limited thereto. It is possible to divide the unicast SPS setting and the group common SPS setting into a first SPS setting and a second SPS setting, respectively. .
  • MBS-SPS-Config information element SPS-Config :: SEQUENCE ⁇ periodicity ENUMERATED ⁇ ms10, ms20, ms32, ms40, ms64, ms80, ms128, ms160, ms320, ms640, spare6, spare5, spare4, spare3, spare2, spare1 ⁇ , nrofHARQ-Processes INTEGER (1..8), n1PUCCH-AN PUCCH-ResourceId OPTIONAL, -- Need M mcs-Table ENUMERATED ⁇ qam64LowSE ⁇ OPTIONAL, -- Need S ..., [[ sps-ConfigIndex-r16 SPS-ConfigIndex-r16 OPTIONAL, -- Cond SPS-List harq-ProcID-Offset-r16 INTEGER (0..15) OPTIONAL, -- Need R periodicityExt-r16 INTEGER (1..5120) OPTIONAL, -- Need R pdsch
  • the sps-ConfigIndex in the unicast SPS setting and the group common SPS setting starts from 0 (the number of SPS settings included in the SPS-List - 1 ) or from 1 (the number of SPS settings included in the SPS-List).
  • the SPS-List for unicast SPS setting and the SPS-List for group common SPS setting can be set separately, and the SPS-List for unicast SPS setting and the SPS-List for group common SPS setting are different numbers. of SPS settings.
  • DCI may include 1-bit information indicating whether sps-ConfigIndex is for group common SPS configuration or unicast SPS configuration.
  • DCI may indicate that sps-ConfigIndex is for group common SPS configuration (or for unicast SPS configuration).
  • a part (MSB or LSB) of the HARQ process number field may be used to indicate whether sps-ConfigIndex is for group common SPS configuration or unicast SPS configuration.
  • the unicast SPS configuration and the group common SPS configuration may be transmitted by belonging to the same IE (Information Element) through the configuration shown in Table 22 above.
  • sps-ConfigIndex used for unicast SPS configuration and sps-ConfigIndex used for group common SPS configuration in the same IE may not have a common value.
  • the above-described unicast SPS configuration and group common SPS configuration may be configured in the terminal through a higher layer or through system information.
  • FIG. 13 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • the terminal may receive SPS configuration information from the base station.
  • the SPS configuration may include a unicast SPS configuration and a group common SPS configuration.
  • the SPS configuration information may be transmitted through higher layer signaling (eg, RRC signaling or SIB, etc.).
  • the terminal may monitor the SPS activation signal (1301).
  • the SPS activation signal may include at least one of DCI and MAC CE.
  • the UE may monitor the SPS activation signal transmitted through the PDCCH in at least one search space according to the above embodiments.
  • the UE may monitor the SPS activation signal transmitted through the PDSCH by using the MAC CE (1301).
  • the monitoring process may be a process including determining whether the SPS activation condition according to the above-described embodiments is satisfied.
  • CRC of DCI transmitted through the monitoring PDCCH may be scrambled using CS-RNTI.
  • the terminal may check the SPS setting based on information included in the SPS activation signal. That is, the UE may check the SPS setting of sps-ConfigIndex corresponding to the information included in the SPS activation signal. In addition, the UE may check whether the confirmed SPS configuration (or sps-ConfigIndex) corresponds to a unicast SPS configuration or a group common SPS configuration (1303).
  • the UE checks (or reads) the value of the HARQ process number field (HPN field) included in the DCI transmitted through the PDCCH, and determines whether the sps-ConfigIndex corresponding to the value corresponds to the unicast SPS setting. You can check whether it corresponds to the SPS setting. Alternatively, the UE may read the value of some fields included in the MAC CE transmitted through the PDSCH and determine whether the sps-ConfigIndex corresponding to the value corresponds to the unicast SPS configuration or the group common SPS configuration.
  • HPN field HARQ process number field
  • the UE may descramble the SPS PDSCHs activated by the activation signal and transmitted using a CS-RNTI (terminal specific CS-RNTI). That is, the UE understands that SPS PDSCHs that are activated by an activation signal and transmitted are scrambled using a factor initialized using a CS-RNTI (terminal specific CS-RNTI) and can operate (descramble) (1304). .
  • CS-RNTI terminal specific CS-RNTI
  • the UE can descramble the SPS PDSCHs activated by the activation signal and transmitted using the group common CS-RNTI (GC-CS-RNTI).
  • GC-CS-RNTI group common CS-RNTI
  • the UE understands that the SPS PDSCHs activated by the activation signal and transmitted are scrambled using a factor initialized using the group common CS-RNTI (GC-CS-RNTI) and can operate (descramble) ( 1305).
  • FIG. 14 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • the base station may transmit SPS configuration information to the terminal.
  • the SPS configuration may include a unicast SPS configuration and a group common SPS configuration (1401).
  • the SPS configuration information may be transmitted through higher layer signaling (eg, RRC signaling or SIB, etc.).
  • the base station may determine the SPS configuration to be activated among the configured SPS settings. Specifically, the base station may determine whether to activate the unicast SPS setting or the group common SPS setting to determine the corresponding SPS setting (1402).
  • the base station may determine sps-ConfigIndex of the determined SPS configuration and information corresponding thereto.
  • the base station may activate the SPS configuration through DCI, the base station may determine a value of the HARQ process number field (HPN field), and transmit an SPS activation signal.
  • the base station may activate the SPS configuration through the MAC CE transmitted through the PDSCH, and the value of at least some fields of the MAC CE may be determined as a value corresponding to the sps-ConfigIndex corresponding to the SPS configuration to be activated.
  • the base station may scramble and transmit the SPS PDSCH using the CS-RNTI. Specifically, the base station may initialize parameters for obtaining a scrambling sequence using the UE-specific CS-RNTI (1403), and use the scrambling sequence to scramble and transmit the SPS PDSCH (1405).
  • the base station may scramble and transmit the SPS PDSCH using the group common CS-RNTI (GC-CS-RNTI). Specifically, the base station may initialize parameters for obtaining a scrambling sequence using the group common CS-RNTI ( 1404 ), and use the scrambling sequence to scramble and transmit the SPS PDSCH ( 1406 ).
  • group common CS-RNTI group common CS-RNTI
  • the base station may initialize parameters for obtaining a scrambling sequence using the group common CS-RNTI ( 1404 ), and use the scrambling sequence to scramble and transmit the SPS PDSCH ( 1406 ).
  • the base station sets at least one group common SPS(s) to the terminals and sends a signal for activating at least one of the group common SPSs through a group-common PDCCH. It can be transmitted to terminals.
  • the base station may receive feedback on the reception of the group common SPS PDSCH and determine whether at least one terminal among terminals belonging to the group has not received the activation signal of the group common SPS. Specifically, when the base station does not receive feedback on the reception of the group common SPS PDSCH from at least one of the terminals belonging to the group, the base station may determine that the activation signal of the group common SPS has not been received.
  • the base station may retransmit the SPS activation signal to the terminal that has failed to receive the SPS activation signal through at least one of a terminal-specific PDCCH, a group common PDCCH, or a MAC CE.
  • the resource for feedback of the terminals may be included in the group common SPS configuration, for example, PUCCH-ResourceId may be included in the group common SPS configuration, and the PUCCH-ResourceId is terminal-specific. It may indicate one of the PUCCH-Resources configured as .
  • the resource for feedback of the terminals may be included in the group common SPS configuration, for example, PUCCH-ResourceId may be included in the group common SPS configuration, and the PUCCH-ResourceId is the group One of the PUCCH-Resources commonly configured to the UE belonging to may be indicated.
  • the PUCCH-Resource Id included in the group common SPS configuration may indicate one of the UE-specifically configured PUCCH-Resources. Accordingly, feedback information on whether the SPS PDSCH is received may be transmitted to the base station for each terminal.
  • the base station is a UE-specific PUCCH transmission timing offset (eg, by setting a value of offset 1 , and transmitting the PUCCH determined through the SPS activation signal in n+offset 1 rather than slot n) or/and PUCCH transmission A frequency domain offset of the resource (eg, by setting a value of offset 2 , when the startingPRB of the PUCCH-ResourceId is m, transmits the startingPRB as m+offset 2 ).
  • the base station may transmit PUCCH configuration information including at least one of a time offset, a frequency offset, and period information to the terminal in order to set the PUCCH transmission timing to the terminal.
  • the base station may set at least one piece of PUCCH configuration information to the terminal (for example, it may be configured in the form of a List), and information indicating any one of the PUCCH configuration information in the SPS activation signal (for example, , may be referred to as timing information) may indicate a resource to which the terminal will transmit feedback.
  • the SPS activation signal does not include information indicating any one of the PUCCH configuration information
  • the UE may transmit feedback using the default PUCCH configuration information.
  • information related to a PUCCH transmission resource may be included in the SPS activation signal without configuration through a higher layer.
  • only ACK/NACK-based feedback ie, ACK if decoding succeeds, NACK feedback if decoding fails
  • ACK only feedback That is, no feedback is provided if decoding is successful, and NACK is fed back only when decoding fails
  • 15 is a diagram illustrating an operation of a base station according to an embodiment of the present disclosure.
  • the base station may transmit SPS configuration information to the terminal.
  • the SPS configuration may include a unicast SPS configuration and a group common SPS configuration (1501).
  • the configuration information may include resource-related configuration for feedback of the aforementioned group common SPS.
  • the SPS configuration information may be transmitted through higher layer signaling (eg, RRC signaling or SIB, etc.).
  • the base station transmits a group common SPS activation signal for activating at least one of the set group common SPS configurations by using a group common signal (eg, MAC CE transmitted through a group common PDCCH or a group common PDSCH). may (1502).
  • the base station may transmit a group common SPS activation signal for activating at least one of the group common SPS configurations by using a terminal-specific signal (eg, a MAC CE transmitted through a terminal-specific PDCCH or a terminal-specific PDSCH).
  • a terminal-specific signal eg, a MAC CE transmitted through a terminal-specific PDCCH or a terminal-specific PDSCH.
  • the base station may transmit the group common PDSCH to the resource determined according to the above-described embodiments.
  • the base station may monitor the feedback of the terminal(s) in a resource determined based on at least a part of the SPS configuration and the embodiment ( 1503 ).
  • the base station may determine whether all terminals belonging to the group have successfully received the SPS activation signal through the feedback (1504).
  • the base station may determine that all terminals belonging to the group have successfully received the SPS activation signal. Therefore, when the base station determines that at least one terminal has not received the SPS PDSCH based on the feedback information received from the terminals (ie, when a NACK is received), the base station may retransmit the SPS PDSCH. . In this case, the base station may retransmit the SPS PDSCH through the UE-specific SPS PDSCH or the group common SPS PDSCH.
  • the resource for SPS retransmission may use the activated SPS configuration, or a separate SPS configuration may be configured in the terminal for retransmission, or information on resource allocation for retransmission may be transmitted through the PDCCH.
  • information on resource allocation for retransmission may be included in DCI, and may be allocated using a method of setting resource allocation information of existing DCI formats 1_1 to 1_3.
  • the base station may determine that the terminal has not received the SPS activation signal. Accordingly, the base station may retransmit the SPS activation signal (1505). In addition, the base station may retransmit the SPS PDSCH when a NACK is received for a terminal that has received a feedback among terminals belonging to the group. In this case, the base station may retransmit the SPS PDSCH through the UE-specific SPS PDSCH or the group common SPS PDSCH.
  • the resource for SPS retransmission may use the activated SPS configuration, or a separate SPS configuration may be configured in the terminal for retransmission, or information on resource allocation for retransmission may be transmitted through the PDCCH.
  • information on resource allocation for retransmission may be included in DCI, and may be allocated using a method of setting resource allocation information of existing DCI formats 1_1 to 1_3.
  • 16 is a diagram illustrating timings of a retransmission SPS activation signal and an SPS PDSCH according to an embodiment of the present disclosure.
  • the base station may transmit the SPS activation signal 1601 and transmit the SPS PDSCHs 1602 , 1604 , and 1605 according to the SPS PDSCH transmission timing determined by Equation (7).
  • the base station may retransmit the SPS activation signal 1603 based on the feedback signal of the SPS PDSCH. That is, when the feedback signal for the SPS PDSCH is not received, the base station may retransmit the SPS activation signal.
  • the base station may first determine the SPS PDSCH transmission slot m to satisfy the above relationship, first determine the retransmission slot n of the SPS activation signal according to this, and determine the K 0 value included in the SPS activation signal.
  • the base station may first determine a value of K 0 included in the SPS activation signal and determine the retransmission slot n of the SPS activation signal.
  • the retransmission SPS activation signal may be transmitted as DCI through PDCCH or as MAC CE through PDSCH.
  • the retransmission SPS activation signal is transmitted as a higher layer signal (eg, MAC CE), more processing time may be required.
  • a higher layer signal eg, MAC CE
  • the terminal receiving the SPS activation signal through the upper layer signal in slot n with a processing time (hereinafter, proc_time or processing time) for the higher layer signaling signal is present after the activation signal.
  • the SPS PDSCHs satisfying the condition that the start boundary of the first symbol of the SPS PDSCH exists after slot n + proc_time may be received and decoded, and feedback thereof may be transmitted to the base station.
  • the UE may not receive and transmit feedback on SPS PDSCHs that do not satisfy the above conditions, that is, the start boundary of the first symbol of the SPS PDSCH is located before slot n + proc_time.
  • the base station transmitting the SPS activation signal through the upper layer signal in slot n with the higher layer signaling processing time proc_time is the first symbol of the SPS PDSCH among the SPS PDSCHs existing after the activation signal. It is possible to monitor the feedback of UEs for SPS PDSCHs that satisfy the condition that the start boundary of n + proc_time exists after. The base station may not monitor the feedback of UEs for SPS PDSCHs that do not satisfy the above condition, that is, the start boundary of the first symbol of the SPS PDSCH is located before n + proc_time.
  • the proc_time for example, a value set by the base station is used, or it is set in a terminal capability exchange process with a different value according to the processing capability of the terminal, or is defined in a standard and communicated with the base station. In the manufacturing process of each terminal, it may be stored in a memory or set to operate as HW.
  • the proc_time is can have the same value as
  • the application time of the MAC CE ie, the starting point of reception, decoding, and HARQ-ACK feedback operation of the SPS PDSCH
  • the slot for transmitting the HARQ-ACK for the transmitted PDSCH is k, k + It may be the first slot after that.
  • the slot k may be indicated through a 'PDSCH-to-HARQ_feedback timing indicator' field (k 1 value) included in DCI transmitted through a PDCCH scheduling a PDSCH including the MAC CE. If the PDSCH-to-HARQ_feedback timing indicator field does not exist, it may be indicated by one value (k 1 value) set in RRC.
  • 17A and 17B are diagrams illustrating timings of a retransmission SPS activation signal and an SPS PDSCH according to an embodiment of the present disclosure.
  • a terminal that has received an SPS activation signal may receive and decode the SPS PDSCHs 1702, 1704, 1705, and 1706 satisfying the above-described condition and provide feedback thereto.
  • the base station may retransmit the SPS activation signal (1703, 1703-1), and as described above, the slot of the retransmitted SPS activation signal is slot m of the SPS PDSCH. (1704) and K 0 determined by the SPS activation signal.
  • the processing time may be considered.
  • the base station is activated in consideration of the processing time according to the transmission of the SPS activation signal.
  • a slot 1703 to transmit a signal may be determined.
  • the base station may determine the slot 1703 for transmitting the activation signal in consideration of the processing time after the terminal feedback information reception 1703-1.
  • the terminal transmits the SPS in a slot before the processing time (ie, slot n + the slot before the processing time) with respect to the slot n 1703 in which the activation signal is received.
  • the PDSCH 1704 may not be received (or may not be received), or the SPS PDSCH may be received and decoded, and feedback therefor may not be provided.
  • the UE may receive and decode the SPS PDSCHs 1705 and 1706 received after the processing time, and provide feedback thereto.
  • the terminal with respect to the slot n 1703 in which the activation signal is received, the processing time after the slot k 1703-2 in which the feedback signal is transmitted (that is, Does not receive (or does not receive) the SPS PDSCH 1704 transmitted in the slot of slot k + processing time or slot n + K1 + processing time), or receives and decodes the SPS PDSCH and does not provide feedback on it it may not be
  • the UE may receive and decode the SPS PDSCHs 1705 and 1706 received after the processing time, and provide feedback thereto.
  • the terminal that has already successfully received the group common SPS activation signal re-receives the group common SPS activation signal may occur.
  • the terminal Upon receiving the SPS activation signal, the terminal (re-)initializes (re-)initializes the configured downlink assignment of the corresponding serving cell, so the data transmitted through the SPS PDSCH received and processed before retransmission Inefficiency may occur in processing (eg, data waiting for retransmission after transmitting a NACK).
  • the terminal that has successfully received the group common SPS activation signal may discard the re-received signal when re-receiving the group common SPS activation signal. That is, the configured downlink assignment of the corresponding serving cell may not be (re)initialized ((re-)initialized).
  • the terminal that has successfully received the group common SPS activation signal 1 re-receives the group common SPS activation signal 2, the contents of signals 1 and 2 (eg, FDRA, TDRA) , MCS, etc.), signal 2 may be discarded (discard). That is, the configured downlink assignment of the corresponding serving cell may not be (re)initialized ((re-)initialized).
  • the terminal successfully receiving the group common SPS activation signal re-receives the group common SPS activation signal
  • data transmitted through the SPS PDSCH received before the retransmission SPS activation signal is The contained HARQ buffer is not flushed, and when the base station retransmits the data, it can be received and processed.
  • the terminal that has already successfully received the group common SPS activation signal 1 re-receives the group common SPS activation signal 2
  • the contents of signals 1 and 2 eg, FDRA, TDRA, MCS, etc.
  • the configured downlink assignment of the corresponding serving cell is (re)initialized ((re-)initialized)
  • the SPS PDSCH received before the signal 2
  • the HARQ buffer containing the data transmitted through is not flushed, and when the base station retransmits the data, it can be received and processed.
  • the retransmission DCI of the group common SPS activation signal is transmitted through a UE-specific PDCCH (UE-specific PDCCH), or the retransmission MAC CE of the group common SPS activation signal is transmitted through the UE-specific PDSCH, It is possible to prevent the terminal that has already received the group common SPS activation signal from receiving redundantly.
  • UE-specific PDCCH UE-specific PDCCH
  • the terminal when at least one or more SPS configurations are simultaneously activated, and at least two or more SPS PDSCHs (PDSCHs having no corresponding PDCCHs) exist in one slot of one serving cell, the terminal can receive at least one or more PDSCH(s) by determining the PDSCH(s) to be received through the method shown in Table 24 below.
  • the value of j indicating the number of PDSCH(s) selected for decoding is set to 0.
  • a set of activated SPS PDSCHs (PDSCHs having no corresponding PDCCH) in the slot is set to Q. 1.
  • the UE receives the PDSCH corresponding to the lowest sps-ConfigIndex value set in the Q, and increases the j value by 1. And, the received PDSCH is designated as a survival (survivor) PDSCH. 2. Exclude from Q the living PDSCH of step 1 and other PDSCHs that partially overlap with the living PDSCH. 3. Repeat steps 1 and 2 until Q is empty or the value of j is equal to the number of PDSCHs that can be received in one slot provided (supported) by the UE.
  • the unicast SPS setting may be set as shown in Table 22, and the group common SPS setting may be separately set as shown in Table 23 described above.
  • the group common SPS configuration may include at least some of the parameters included in Table 23, and the range of index values of the unicast SPS configuration and sps-ConfigIndex of the group common SPS configuration may be the same.
  • the scope of the present disclosure is not limited thereto. That is, the setting shown in Table 22 may be used for group common SPS setting, and when the setting shown in Table 22 is used, the method of instructing the terminal whether unicast SPS setting or group common SPS setting is described above. Since it is the same as the bar, it is omitted below.
  • the sps-ConfigIndex value of at least one SPS activated among the unicast SPS setting(s) set in the terminal and the sps-ConfigIndex value of at least one SPS activated among the group common SPS setting(s) can have values like this.
  • PDSCHs of each of the activated SPSs may be located in one (same) slot.
  • a case in which the sps-ConfigIndex value is the same occurs during step 1 of the process of determining the PDSCH of Table 24, so that it is unclear which SPS PDSCH to receive.
  • the sps-ConfigIndex value of at least one SPS activated among the unicast SPS setting(s) set in the terminal and the sps-ConfigIndex value of at least one SPS activated among the group common SPS setting(s) It can have values like this.
  • PDSCHs of each of the activated SPSs may be located in one (same) slot.
  • the UE may receive at least one or more PDSCH(s) by determining the PDSCH(s) to be received through the method shown in Table 25 below.
  • information on the number of PDSCHs receivable in one slot that the terminal can support may be included in the terminal capability information, and the base station is the terminal It is possible to transmit a capability information request message to the terminal and receive terminal capability information from the terminal accordingly.
  • the value of j indicating the number of PDSCH(s) selected for decoding is set to 0.
  • a set of activated SPS PDSCHs (PDSCHs having no corresponding PDCCH) in the slot is set to Q. 1.
  • the UE receives the PDSCH corresponding to the lowest sps-ConfigIndex value set in the Q, and increases the j value by 1. And, the received PDSCH is designated as a survival (survivor) PDSCH. 1-A. If there is not one PDSCH corresponding to the lowest sps-ConfigIndex value (for example, two), the SPS PDSCH of sps-ConfigIndex belonging to the group common SPS configuration can be selected (or designated as a living PDSCH) and received.
  • step 2 Exclude from Q the living PDSCH of step 1 and other PDSCHs that partially overlap with the living PDSCH. 3. Repeat steps 1 and 2 until Q is empty or the value of j is equal to the number of PDSCHs that can be received in one slot provided (supported) by the UE.
  • the sps-ConfigIndex value of at least one SPS activated among the unicast SPS setting(s) set in the terminal and the sps-ConfigIndex value of at least one SPS activated among the group common SPS setting(s) It can have values like this.
  • PDSCHs of each of the activated SPSs may be located in one (same) slot.
  • the UE may receive at least one PDSCH(s) by determining the PDSCH(s) to be received through the method shown in Table 25-2 below.
  • information on the number of PDSCHs receivable in one slot that the terminal can support may be included in the terminal capability information, and the base station is the terminal It is possible to transmit a capability information request message to the terminal and receive terminal capability information from the terminal accordingly.
  • the value of j indicating the number of PDSCH(s) selected for decoding is set to 0.
  • a set of activated SPS PDSCHs (PDSCHs having no corresponding PDCCH) in the slot is set to Q. 1.
  • the UE receives the PDSCH corresponding to the lowest sps-ConfigIndex value set in the Q, and increases the j value by 1. And, the received PDSCH is designated as a survival (survivor) PDSCH. 1-A.
  • the SPS PDSCH of sps-ConfigIndex belonging to the unicast SPS configuration may be selected (or designated as a living PDSCH) and received. 2. Exclude from Q the living PDSCH of step 1 and other PDSCHs that partially overlap with the living PDSCH. 3. Repeat steps 1 and 2 until Q is empty or the value of j is equal to the number of PDSCHs that can be received in one slot provided (supported) by the UE.
  • the sps-ConfigIndex value of at least one SPS activated among the unicast SPS setting(s) set in the terminal and the sps-ConfigIndex value of at least one SPS activated among the group common SPS setting(s) It can have values like this.
  • PDSCHs of each of the activated SPSs may be located in one (same) slot.
  • the UE may receive at least one or more PDSCH(s) by determining the PDSCH(s) to be received through the method shown in Table 27 below.
  • information on the number of PDSCHs receivable in one slot that the terminal can support may be included in the terminal capability information, and the base station is the terminal It is possible to transmit a capability information request message to the terminal and receive terminal capability information from the terminal accordingly.
  • the value of j indicating the number of PDSCH(s) selected for decoding is set to 0.
  • a set of activated SPS PDSCHs (PDSCHs having no corresponding PDCCH) in the slot is set to Q. 1.
  • the UE receives the PDSCH corresponding to the lowest sps-ConfigIndex value set in the Q, and increases the j value by 1. And, the received PDSCH is designated as a survival (survivor) PDSCH. 1-A.
  • the SPS PDSCH of sps-ConfigIndex corresponding to the setting (or indication) of the base station is selected (or designated as the living PDSCH) can receive 2. Exclude from Q the living PDSCH of step 1 and other PDSCHs that partially overlap with the living PDSCH. 3. Repeat steps 1 and 2 until Q is empty or the value of j is equal to the number of PDSCHs that can be received in one slot provided (supported) by the UE.
  • the base station may set information on which SPS PDSCH to receive in the above case to the terminal.
  • the configuration (or indication) information may be transmitted, for example, through higher layer signaling (RRC signaling), MAC CE, or DCI.
  • RRC signaling higher layer signaling
  • the 'configuration information on which SPS PDSCH to receive' may be included in each unicast SPS configuration IE and/or MBS SPS configuration IE of RRC signaling.
  • the configuration information on which SPS PDSCH is to be received may be referred to as PDSCH selection related information, PDSCH selection rule, and priority information.
  • the information is composed of 1 bit and may be information indicating unicast SPS or group common SPS or directly indicating unicast SPS or group common SPS.
  • the PDSCH selection related information may be a configuration applied to all MBS SPS configuration(s) or all unicast SPS configuration(s). That is, the information may be a setting applied to the entire sps-ConfigIndex included in the unicast SPS-Config setting(s) shown in Table 22, and to the entire sps-ConfigIndex included in the MBS SPS-Config setting(s) shown in Table 23. .
  • the information is, for example, unciast SPS-Config.
  • Setting information including a list of setting(s) (eg, BWP setting IE, etc.), MBS SPS-Config.
  • setting information eg, MBS BWP setting IE, MBS dedicated BWP IE, etc.
  • the PDSCH selection related information may be information configured for each BWP.
  • the unicast SPS-Config configuration and the group common SPS-Config may include the PDSCH selection related information, respectively, and for a plurality of sps-ConfigIndex included in the unicast SPS-Config configuration and the group common SPS-Config, respectively, Information can be applied in common.
  • the unicast SPS-Config configuration and the PDSCH selection related information included in the group common SPS-Config may be configured to indicate the same value (or the same method, that is, either group common or unicast).
  • the PDSCH selection related information may be included in any one of the group common SPS-Config or SPS-Config, and it may be configured to preferentially apply PDSCH reception of a specific method (group common or unicast).
  • the terminal may be configured to receive the PDSCH according to a predetermined scheme. That is, when the information included in the unicast SPS-Config configuration indicates priority reception of the unicast SPS PDSCH, and the information included in the group common SPS-Config configuration indicates priority reception of the group common SPS PDSCH, or vice versa, The UE may select and receive a unicast SPS PDSCH or a group common SPS PDSCH according to a predetermined method.
  • At least one of a unicast SPS-Config and a group common SPS-Config may be included in the SPS-Config, and the PDSCH selection related information may be included in the SPS-Config. Accordingly, when the SPS PDSCHs overlap and the sps-ConfigIndex is the same, the SPS PDSCH may be selected based on the PDSCH selection related information.
  • the 'information on which SPS PDSCH to receive' is information configured for each sps-ConfigIndex of the SPS configuration, and may be a value configured for each sps-ConfigIndex in the MBS SPS configuration and for each sps-ConfigIndex in the unicast SPS configuration.
  • a setting value corresponding to sps-ConfigIndex included in the unicast SPS-Config setting as shown in Table 22 exists, and a setting value corresponding to sps-ConfigIndex included in the MBS SPS-Config setting as shown in Table 23 may exist.
  • the information is, for example, unicast SPS-Config. Settings IE, MBS SPS-Config. It may be included in the setting IE and applied to each of the SPS settings included in each of the setting IEs.
  • the setting value corresponding to sps-ConfigIndex included in the unicast SPS-Config setting and the setting value corresponding to sps-ConfigIndex included in the group common SPS-Config are the same value for the same index (or in the same way, that is, , group common or unicast).
  • the PDSCH selection related information may be included in the information corresponding to the sps-ConfigIndex of any one of the group common SPS-Config or SPS-Config, and the PDSCH reception of a specific method (group common or unicast) is set to be applied with priority.
  • the PDSCH selection related information corresponding to the sps-ConfigIndex 1 Based on the unicast SPS PDSCH or group common SPS PDSCH, any one of the selected can be received.
  • the UE may be configured to receive the PDSCH according to a predetermined scheme. That is, in the above-described embodiment, the PDSCH selection related information corresponding to sps-ConfigIndex 1 included in the unicast SPS-Config configuration indicates priority reception of the unicast SPS PDSCH, and sps-ConfigIndex 1 included in the group common SPS-Config configuration.
  • the UE may select and receive a unicast SPS PDSCH or a group common SPS PDSCH according to a predetermined method.
  • configuration information may be included for each sps-ConfigIndex, and the PDSCH selection related information may be included in the configuration information.
  • At least one of unicast SPS-Config and group common SPS-Config may be included in SPS-Config.
  • the configuration information set for each sps-ConfigIndex may be included in the SPS-Config or set separately.
  • the unicast SPS-Config and the group common SPS-Config may each refer to the sps-ConfigIndex, and thus may receive the same SPS PDSCH for the same sps-ConfigIndex.
  • PDSCH selection related information (information on which SPS PDSCH to receive) may be delivered to the UE through at least one field included in the above-described SPS activation signal.
  • the SPS activation signal may include DCI and MAC CE.
  • the SPS activation signal may be transmitted through a group-common PDCCH (PDCCH) or a UE-specific PDCCH (UE-specific PDCCH).
  • One field indicating the PDSCH selection related information (information on which SPS PDSCH to receive) may be included in the HARQ process number field.
  • One field indicating the 'information on which SPS PDSCH to receive' may be included in the Priority indicator field.
  • At least some bits (eg, MSB 1 bit or LSB 1 bit) of the HARQ process number field included in DCI indicating SPS activation indicate the PDSCH selection related information. can do. That is, the remaining bits except for the at least some bits of the HARQ process number field indicate the sps-ConfigIndex value, and the SPS PDSCH corresponding to the sps-ConfigIndex value is activated by another SPS PDSCH located in the same slot (activated by another DCI). It can be used to determine whether to receive priority over other SPS PDSCHs corresponding to the same sps-ConfigIndex value).
  • the SPS PDSCH when the bit value of the HARQ process number field is 1, the SPS PDSCH can be received, and when the bit value is 0, the other SPS PDSCH can be received (or when the bit value of the HARQ process number field is 0) SPS PDSCH activated by DCI including the HARQ process number may not be received, may not be decoded, or may not attempt decoding).
  • the SPS PDSCH when the bit value of the HARQ process number field is 0, the SPS PDSCH can be received, and when the bit value is 1, the other SPS PDSCH can be received (or the bit value of the HARQ process number field is 1) case, the SPS PDSCH activated by the DCI including the HARQ process number may not be received, may not be decoded, or may not attempt decoding).
  • the value of the Priority indicator field included in DCI indicating SPS activation may indicate the PDSCH selection related information.
  • the sps-ConfigIndex value may be indicated through the HARQ process number included in the DCI, and the SPS PDSCH corresponding to the sps-ConfigIndex is located in the same slot. It can be used to determine whether to receive priority over other SPS PDSCHs corresponding to the same sps-ConfigIndex) activated by .
  • the bit value of the priority indicator field is 1, an SPS PDSCH activated by DCI including the priority indicator field is received, and when it is 0, the other SPS PDSCH can be received (or the priority indicator If the bit value of the field is 0, the SPS PDSCH activated by DCI including the HARQ process number may not be received, decoded, or decoding may not be attempted). Or conversely, if the bit value is 0, the SPS PDSCH may be received, and if the bit value is 1, the other SPS PDSCH may be received (or if the bit value of the HARQ process number field is 1, the HARQ process number SPS PDSCH activated by DCI including , may not be received, may not be decoded, or may not attempt decoding).
  • the UE decodes the SPS PDSCH selected through Table 25, Table 26 or Table 27 and the above description, and the resultant HARQ-ACK information may be fed back to the base station through PUCCH or PUSCH. .
  • FIG. 18 is a diagram illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • the terminal may receive SPS configuration information from the base station.
  • the SPS configuration information may include unicast SPS configuration information and group common SPS configuration information.
  • the terminal may receive unicast SPS configuration information and group common SPS configuration information from the base station.
  • the unicast SPS configuration information may include an sps-ConfigIndex value
  • the group common SPS configuration information may include an sps-ConfigIndex value.
  • the sps-ConfigIndex may be configured in a form that refers to a number of a plurality of preset sps-ConfigIndex. Specific details are the same as described above, and will be omitted below.
  • the terminal may receive a signal for activating the SPS setting. Specific details are the same as described above and will be omitted below.
  • the UE may check the activated SPS PDSCH.
  • At least one activated SPS PDSCH may be located in one slot, and the SPS PDSCH located in the one slot may be referred to as an SPS PDSCH set.
  • the UE may receive data in the non-overlapping SPS PDSCH, and may select an SPS PDSCH for receiving data for this purpose.
  • the SPS PDSCH may be referred to as a live SPS PDSCH.
  • the UE may receive data by selecting the SPS PDSCH corresponding to the lowest index.
  • the UE may select the SPS PDSCH according to the above-described method. For example, the UE may select the SPS PDSCH according to a predetermined method or the configuration of the base station (PDSCH selection related information). Since the specific method is the same as described above, it is omitted.
  • the UE may exclude the SPS PDSCH overlapping the living SPS PDSCH from the SPS PDSCH set, and the SPS PDSCH is not included in the set of the SPS PDSCH or the maximum number of SPS PDSCHs supported by the UE is selected.
  • the selection and exclusion steps may be repeated.
  • the maximum number of SPS PDSCHs supported by the terminal may be included in the terminal capability information. Accordingly, the base station may transmit a message requesting the terminal capability information to the terminal and receive a message including the terminal capability information. However, when the base station has previously received the terminal capability information, the above step may be omitted.
  • PDSCHs of each of the activated SPSs may be located in one (same) slot.
  • the UE sets the value of j indicating the number of PDSCH(s) selected for decoding to 0, and sets the set of activated SPS PDSCHs (PDSCHs having no corresponding PDCCH) in the slot to Q. (1801).
  • the UE may receive the PDSCH corresponding to the lowest sps-ConfigIndex value set in the Q, increase the j value by 1, and designate the received PDSCH as a survivor PDSCH.
  • the sps-ConfigIndex value of at least one SPS activated among the unicast SPS configuration(s) configured in the terminal and the sps-ConfigIndex value of at least one SPS activated among the group common SPS configuration(s) may have the same value.
  • the UE selects and receives the SPS PDSCH of sps-ConfigIndex corresponding to the configuration (or indication) of the base station. There is (1802).
  • the UE may exclude the living PDSCH and other PDSCHs that partially overlap the living PDSCH from Q (1803).
  • the UE may repeat steps 1802 and 1803 until the Q becomes empty or the value of j becomes equal to the number of PDSCHs that can be received in one slot supported by the UE (1804). Through this process, the UE can determine which PDSCH(s) to receive from among a plurality of SPS PDSCHs located in one slot.
  • the UE may receive and decode the received PDSCH(s), generate HARQ-ACK information for each PDSCH(s), and feed it back to the base station.
  • the UE generates HARQ-ACK information for unicast (SPS) PDSCH and HARQ-ACK information for group common (SPS) PDSCH, respectively, and concatenates them, for example, HARQ-ACK information (s) for unicast PDSCH ), the HARQ-ACK information(s) for the group common PDSCH may be located or vice versa) and transmitted as one HARQ-ACK codebook.
  • SPS unicast
  • SPS group common
  • the HARQ-ACK information of the selected SPS PDSCH in the HARQ-ACK codebook is A location may be determined.
  • the base station may transmit SPS configuration information to the terminal.
  • the SPS configuration information may include unicast SPS configuration information and group common SPS configuration information.
  • the base station may transmit unicast SPS configuration information(s) and group common SPS configuration information(s) to the terminal.
  • the unicast SPS configuration information may include an sps-ConfigIndex value
  • the group common SPS configuration information may include an sps-ConfigIndex value.
  • the sps-ConfigIndex may be configured in a form that refers to a number of a plurality of preset sps-ConfigIndex. Specific details are the same as described above, and will be omitted below.
  • the base station may transmit the above-described SPS activation signal 1 to activate one of the configured unicast SPS configuration and group common SPS configuration.
  • the base station may transmit the above-described SPS activation signal 2 to activate the other one of the set unicast SPS configuration and group common SPS configuration.
  • One of the activated SPS settings may be a unicast SPS setting, and the other may be a group common SPS setting.
  • At least one PDSCH according to the activated SPS configuration may be located in one slot, and the SPS PDSCH located in one slot may be referred to as an SPS PDSCH set.
  • the base station may transmit data in the non-overlapping SPS PDSCH, and may select an SPS PDSCH for data transmission for this purpose.
  • the SPS PDSCH may be referred to as a live SPS PDSCH.
  • the base station may transmit data by selecting the SPS PDSCH corresponding to the lowest index.
  • the base station may transmit data through the SPS PDSCH selected according to the above-described method.
  • the base station may transmit PDSCH selection related information (information on which SPS PDSCH should be received) to the terminal.
  • the PDSCH selection related information (information on which SPS PDSCH should be received) may be transmitted while being included in the SPS configuration information and/or the SPS activation signal.
  • the base station determines which SPS PDSCH to transmit if the SPS PDSCHs corresponding to each of the two activated SPSs are located in one slot according to the PDSCH selection related information (information on which SPS PDSCH to receive) , the determined SPS PDSCH may be transmitted.
  • the method for selecting the SPS PDSCH may be predefined. Since the specific method of selecting the SPS PDSCH is the same as described above, it will be omitted below.
  • the base station may exclude the SPS PDSCH overlapping the living SPS PDSCH from the SPS PDSCH set, and the SPS PDSCH is not included in the set of the SPS PDSCH or the maximum number of SPS PDSCHs supported by the UE is selected until the selection and repeating the exclusion step to transmit data through the determined SPS PDSCH.
  • the HARQ-ACK information fed back by the UE may be received and processed.
  • the base station may receive HARQ-ACK information through PUCCH or PUSCH.
  • the location of HARQ-ACK information for the transmitted SPS PDSCH in the HARQ-ACK codebook received through the PUCCH or PUSCH eg, HARQ-ACK information for unicast PDSCH and HARQ-ACK information for group common PDSCH are Concatenated (concatenate), this can constitute one HARQ-ACK codebook HARQ-ACK information (s) for group common PDSCH after HARQ-ACK information (s) for unicast PDSCH is located, or vice versa
  • a method of a terminal includes: receiving semi-persistent scheduling (SPS) configuration information from a base station; when an SPS activation signal is detected, checking a set of an SPS PDSCH (physical downlink shared channel) based on the SPS configuration information and the SPS activation signal; receiving data by selecting an SPS PDSCH having a lowest index when a plurality of SPS PDSCHs are included in the set of the SPS PDSCHs in one slot; and excluding the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH from the SPS PDSCH set, wherein when two or more SPS PDSCHs having the lowest index exist, the SPS activation signal includes It is characterized in that the data is received through the SPS PDSCH selected based on the information.
  • SPS semi-persistent scheduling
  • the method of the base station includes transmitting semi-persistent scheduling (SPS) configuration information to the terminal; Identifying a set of SPS PDSCH (physical downlink shared channel) to be activated; When a plurality of SPS PDSCHs are included in the set of SPS PDSCHs in one slot, selecting the SPS PDSCH having the lowest index and transmitting data; and excluding the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH from the SPS PDSCH set, wherein when two or more SPS PDSCHs having the lowest index exist, the SPS activation signal includes It is characterized in that the data is transmitted through the SPS PDSCH selected based on the information.
  • SPS semi-persistent scheduling
  • the terminal includes a transceiver; and SPS PDSCH (physical downlink shared channel) connected to the transceiver, receiving semi-persistent scheduling (SPS) configuration information from the base station, and when an SPS activation signal is detected, based on the SPS configuration information and the SPS activation signal , and when a plurality of SPS PDSCHs are included in the set of SPS PDSCHs in one slot, select the SPS PDSCH having the lowest index to receive data, and the selected SPS PDSCH and the selected SPS PDSCH and a controller for excluding the PDSCH overlapping from the SPS PDSCH set, and when there are two or more SPS PDSCHs having the lowest index, the SPS PDSCH selected based on the information included in the SPS activation signal. data is received.
  • SPS semi-persistent scheduling
  • the base station includes a transceiver; And it is connected to the transceiver, transmits SPS (semi persistent scheduling) configuration information to the terminal, checks a set of SPS PDSCH (physical downlink shared channel) to be activated, and includes a plurality of sets of SPS PDSCHs within one slot.
  • SPS semi persistent scheduling
  • the SPS PDSCH of the SPS PDSCH having the lowest index is selected to transmit data, and the selected SPS PDSCH and the PDSCH overlapping the selected SPS PDSCH are excluded from the SPS PDSCH set.
  • the data is transmitted through the SPS PDSCH selected based on information included in the SPS activation signal.
  • FIG. 19 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 1910 , a control unit 1920 , and a storage unit 1930 .
  • the controller may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the transceiver 1910 may transmit/receive a signal to/from another network entity.
  • the transceiver 1910 may receive, for example, SPS configuration information from a base station, and the configuration information may be received through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP and information on mcs-Table.
  • the transceiver 1910 may receive DCI through group common PDCCH or group common PDCCH, receive DCI through UE-specific PDCCH, or receive MAC CE.
  • the DCI or MAC CE may be a signal for activating the SPS.
  • the transceiver 1910 may receive the retransmitted SPS activation signal.
  • the transceiver 1910 may receive configuration (instruction) information including PDSCH selection related information (information on which SPS PDSCH to receive) through RRC signaling, MAC CE or DCI.
  • the transceiver 1910 may receive data from the base station.
  • the transceiver 1910 may receive new transmission data or retransmission data from the base station through the SPS PDSCH.
  • the transceiver 1910 may perform signal transmission and reception of the terminal of the present disclosure as described above.
  • the controller 1920 may control the overall operation of the terminal according to the embodiment proposed in the present disclosure. For example, the controller 1920 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 1920 may receive an SPS activation signal to determine whether the SPS is activated. Also, the controller 1920 may check the activated SPS setting based on the SPS activation signal. Also, the controller 1920 may receive the PDSCH from the base station based on the SPS configuration.
  • the controller 1920 determines whether a plurality of SPS PDSCHs exist in one slot based on the SPS configuration, and when there are a plurality of SPS PDSCHs, an SPS PDSCH for receiving data (ie, a survival PDSCH) can decide In this case, the controller 1920 may determine the SPS PDSCH for data reception according to the PDSCH selection related information (information on which SPS PDSCH to receive) received from the base station. Alternatively, the controller 1920 may select the SPS PDSCH according to a predefined method. A specific method of selecting the SPS PDSCH is the same as described above.
  • the controller 1920 descrambles the PDSCH based on the group common CS-RNTI when the SPS PDSCH determined to be received is the group common SPS, and decodes the PDSCH based on the UE specific CS-RNTI when the UE-specific SPS is configured. can be scrambled.
  • the operation of the terminal described above may be controlled by the controller 1920 .
  • the storage unit 1930 may store at least one of information transmitted and received through the transceiver 1910 and information generated through the control unit 1920 .
  • 20 is a diagram illustrating a structure of a base station according to an embodiment of the present disclosure.
  • the base station may include a transceiver 2010 , a control unit 2020 , and a storage unit 2030 .
  • the controller may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the transceiver 2010 may transmit/receive signals to and from other network entities.
  • the transceiver 2010 may transmit, for example, SPS configuration information from a base station, and the configuration information may be transmitted through RRC signaling, MIB, or SIB.
  • the setting information may include information on BWP and information on mcs-Table.
  • the transceiver 2010 may transmit a DCI through a group common PDCCH or a group common PDCCH, transmit a DCI through a UE-specific PDCCH, or transmit a MAC CE.
  • the DCI or MAC CE may be a signal for activating the SPS.
  • the transceiver 2010 may retransmit the SPS activation signal.
  • the transceiver 2010 may transmit configuration (instruction) information including PDSCH selection related information (information on which SPS PDSCH should be received) through RRC signaling, MAC CE or DCI.
  • the transceiver 2010 may transmit data to the terminal.
  • the transceiver 2010 may transmit new transmission data or retransmission data to the terminal through the SPS PDSCH.
  • the transceiver 2010 may perform signal transmission/reception of the base station of the present disclosure as described above.
  • the controller 2020 may control the overall operation of the base station according to the embodiment proposed in the present disclosure. For example, the controller 2020 may control a signal flow between blocks to perform an operation according to the above-described flowchart. For example, the controller 2020 may transmit an SPS activation signal to activate the SPS setting. Also, the controller 2020 may transmit the PDSCH to the terminal based on the SPS configuration. In addition, the control unit 2020 determines whether a plurality of SPS PDSCHs exist in one slot based on the SPS configuration, and according to the transmitted 'information on which SPS PDSCH to receive', which SPS PDSCH the terminal selects. It is determined whether or not to receive the HARQ-ACK information fed back by the UE according to the received information and can be processed.
  • the controller 2020 determines whether a plurality of SPS PDSCHs exist in one slot based on the SPS configuration, and when there are a plurality of SPS PDSCHs, an SPS PDSCH for receiving data (ie, a survival PDSCH) can decide In this case, the controller 2020 may determine and transmit the SPS PDSCH to be transmitted according to the PDSCH selection related information (information on which SPS PDSCH to be received) transmitted to the UE. Alternatively, the controller 2020 may select the SPS PDSCH according to a predefined method. A specific method of selecting the SPS PDSCH is the same as described above.
  • the controller 2020 scrambles the PDSCH based on the group common CS-RNTI when the SPS PDSCH determined to be transmitted is the group common SPS, and scrambles the PDSCH based on the UE specific CS-RNTI in the case of the UE specific SPS configuration.
  • the controller 2020 may retransmit the activation signal.
  • the operation of the base station described above may be controlled by the controller 2020 .
  • the storage unit 2030 may store at least one of information transmitted/received through the transceiver 2010 and information generated through the control unit 2020 .
  • drawings for explaining the method of the present invention may omit some components and include only some components within a range that does not impair the essence of the present invention.
  • the method of the present invention may be implemented in a combination of some or all of the contents contained in each embodiment within a range that does not impair the essence of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 6G 통신 시스템에 관련된 것이다. 본 개시에 따라 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하는 단계; SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계; 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하는 단계; 및 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 한다.

Description

통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치
본 개시는 이동 통신 시스템에 대한 것으로, 보다 구체적으로 복수의 단말에 데이터를 전송하는 방법에 관한 것이다.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수('Sub 6GHz') 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역('Above 6GHz')에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.
본 개시는 통신 시스템에서 그룹 공통의 SPS (semi-persistent scheduling) PDSCH (physical downlink shared channel) 및 유니캐스트(unicast) SPS PDSCH의 송수신 처리를 위한 설정 방법 및 상기 SPS 설정 활성화 신호의 송수신 처리 방법 및 장치를 제공한다.
본 개시는 통신 시스템에서 그룹 공통의 SPS PDSCH 및 unicast SPS PDSCH의 송수신 처리를 위한 방법 및 장치를 제공한다.
상기와 같은 문제점을 해결하기 위한 본 개시는 통신 시스템에서 단말에 의해 수행되는 방법에 있어서, SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하는 단계; SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계; 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하는 단계; 및 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 하는 방법.
또한, 상기와 같은 문제점을 해결하기 위한 본 개시는 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서 SPS (semi persistent scheduling) 설정 정보를 단말에 전송하는 단계; 활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계; 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하는 단계; 및 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 한다.
또한, 상기와 같은 문제점을 해결하기 위한 본 개시는 통신 시스템에서 단말에 있어서 송수신부; 및 상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하고, SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고, 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하고, 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 한다.
또한, 상기와 같은 문제점을 해결하기 위한 본 개시는 통신 시스템에서 기지국에 있어서 송수신부; 및 상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 단말에 전송하고, 활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고, 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하고, 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 한다.
본 개시에 따르면, 통신 시스템에서 그룹 공통의 SPS PDSCH 및/혹은 유니캐스트 SPS PDSCH를 통해 복수의 단말에 데이터가 전송되는 경우, 상기 SPS PDSCH들을 위한 설정 방법 및 상기 SPS 설정 활성화 신호의 송수신 방법을 제공함으로서, 보다 효율적인 데이터 송수신을 수행할 수 있다.
본 개시에 따르면, 그룹 공통의 SPS PDSCH 및 unicast SPS PDSCH의 송수신 처리 방법을 제공함으로써, 단말과 기지국이 원활하게 통신을 수행할 수 있다.
도 1은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 2는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.
도 3은 본 개시의 일 실시예에 따른 5G 통신시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.
도 4는 본 개시의 일 실시예에 따른 5G 시스템에서 고려하는 슬롯 구조의 일 예를 도시한 도면이다.
도 5는 본 개시의 일 실시예에 따른 5G 통신 시스템에서 대역폭부분에 대한 설정의 일 예를 도시한 도면이다.
도 6은 본 개시의 일 실시예에 따른 캐리어 어그리게이션 (carrier aggregation: CA)을 설명하기 위한 도면이다.
도 7은 본 개시의 일 실시예에 따른 크로스 캐리어 스케줄링 방법의 일 예를 도시한 도면이다.
도 8은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역(control resource set, CORESET) 설정의 일 예를 도시한 도면이다.
도 9는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 데이터 채널(Physical Downlink Shared Channel) 처리의 일 예를 도시한 도면이다.
도 10은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 트랜스포트 블록의 크기를 획득하는 방법의 일 예를 도시한 도면이다.
도 11은 본 개시의 일 실시예에 따른 단말의 mcs (modulation and coding scheme)-Table 결정 동작을 도시한 도면이다.
도 12는 본 개시의 일 실시예에 따른 기지국의 DCI 생성 동작을 도시한 도면이다.
도 13은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.
도 14는 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 도면이다.
도 15는 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 도면이다.
도 16은 본 개시의 일 실시예에 따른 재전송 SPS 활성화 신호 및 SPS PDSCH의 타이밍을 도시한 도면이다.
도 17A는 본 개시의 일 실시예에 따른 재전송 SPS 활성화 신호 및 SPS PDSCH의 타이밍을 도시한 도면이다.
도 17B는 본 개시의 일 실시예에 따른 재전송 SPS 활성화 신호 및 SPS PDSCH의 타이밍을 도시한 도면이다.
도 18은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.
도 19는 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다.
도 20은 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. 이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격 혹은 3GPP NR (new radio 혹은 new radio access technology) 에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
도 1은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 1를 참조하면, 차세대 이동통신 시스템(이하 NR 또는 5g)의 무선 액세스 네트워크는 차세대 기지국(new radio node B, 이하 NR gNB 또는 NR 기지국)(110)과 차세대 무선 코어 네트워크(new radio core network, NR CN)(105)로 구성될 수 있다. 차세대 무선 사용자 단말(new radio user equipment, NR UE 또는 단말)(115)은 NR gNB(110) 및 NR CN (105)를 통해 외부 네트워크에 접속할 수 있다.
도 1에서 NR gNB(110)는 기존 LTE 시스템의 eNB (evolved node B)에 대응될 수 있다. NR gNB는 NR UE(115)와 무선 채널로 연결되며, 기존 노드 B 보다 더 향상된 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR gNB(110)가 담당할 수 있다. 하나의 NR gNB는 다수의 셀들을 제어할 수 있다. 차세대 이동통신 시스템에서는, 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서, 현재의 최대 대역폭 이상의 대역폭이 적용될 수 있다. 또한, 직교 주파수 분할 다중 방식(orthogonal frequency division multiplexing, OFDM)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한, 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(adaptive modulation & doding, 이하 AMC라 한다) 방식이 적용될 수 있다.
NR CN (105)는 이동성 지원, 베어러 설정, 및 QoS 설정 등의 기능을 수행할 수 있다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME (125)와 네트워크 인터페이스를 통해 연결될 수 있다. MME는 기존 기지국인 eNB (130)과 연결될 수 있다.
도 2는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.
도 2를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR 서비스 데이터 적응 프로토콜(service data adaptation protocol, SDAP)(201, 245), NR PDCP(packet data convergence protocol)(205, 240), NR RLC(210, 235), NR MAC(medium access control)(215, 230), NR PHY(physical)(220, 225)으로 이루어진다.
NR SDAP(201, 245)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 reflective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(radio resource control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. SDAP 헤더가 설정된 경우, 단말은 SDAP 헤더의 비접속 계층(non-access stratum, NAS) QoS(quality of service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층 (access stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로, 단말이 상향 링크와 하향 링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. QoS 정보는 원활한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케줄링 정보 등으로 사용될 수 있다.
NR PDCP (205, 240)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있고, 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있고, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있고, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(210, 235)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC (210, 235) 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC (210, 235) 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP(205, 240) 장치로 전달할 수 있다.
NR RLC(210, 235) 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고, NR MAC 계층에서 기능을 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out of sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(215, 230)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케줄링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ (hybrid automatic repeat request))
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말 간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
이하에서는 5G 시스템의 프레임 구조에 대해 도면을 참조하여 보다 구체적으로 설명한다.
도 3은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.
도 3의 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element, RE)(301)로서 시간 축으로 1 OFDM(orthogonal frequency division multiplexing) 심볼(302) 및 주파수 축으로 1 부반송파(subcarrier)(303)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2022005651-appb-I000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(resource block, RB)(304)을 구성할 수 있다.
도 4는 5G 시스템에서 고려하는 슬롯 구조의 일 예를 도시한 도면이다.
도 4에는 프레임(frame)(400), 서브프레임(subframe)(401), 슬롯(slot)(402) 구조의 일 예가 도시되어 있다. 1 프레임(400)은 10ms로 정의될 수 있다. 1 서브프레임(401)은 1ms로 정의될 수 있으며, 따라서 1 프레임(400)은 총 10개의 서브프레임(401)으로 구성될 수 있다. 1 슬롯(402, 403)은 14개의 OFDM 심볼로 정의될 수 있다(즉 1 슬롯 당 심볼 수(
Figure PCTKR2022005651-appb-I000002
)=14). 1 서브프레임(401)은 하나 또는 복수 개의 슬롯(402, 403)으로 구성될 수 있으며, 1 서브프레임(401)당 슬롯(402, 403)의 개수는 부반송파 간격에 대한 설정 값 μ(404, 405)에 따라 다를 수 있다. 도 4의 일 예에서는 부반송파 간격 설정 값으로 μ=0(404)인 경우와 μ=1(405)인 경우가 도시되어 있다. μ=0(404)일 경우, 1 서브프레임(401)은 1개의 슬롯(402)으로 구성될 수 있고, μ=1(405)일 경우, 1 서브프레임(401)은 2개의 슬롯(403)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2022005651-appb-I000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2022005651-appb-I000004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2022005651-appb-I000005
Figure PCTKR2022005651-appb-I000006
는 하기의 표 1로 정의될 수 있다.
[표 1]
Figure PCTKR2022005651-appb-I000007
다음으로 5G 통신 시스템에서 대역폭부분(Bandwidth Part; BWP) 설정에 대하여 도 5를 참조하여 구체적으로 설명하도록 한다.
도 5는 5G 통신 시스템에서 대역폭부분에 대한 설정의 일 예를 도시한 도면이다.
도 5에는 단말 대역폭(UE bandwidth)(500)이 두 개의 대역폭부분, 즉, 대역폭부분#1(BWP#1)(501)과 대역폭부분#2(BWP#2)(502)로 설정된 일 예가 도시되어 있다. 기지국은 단말에게 하나 또는 복수 개의 대역폭부분을 설정해줄 수 있으며, 각 대역폭부분에 대하여 예를 들어 하기의 표 2와 같은 정보들을 설정해 줄 수 있다. 하기의 BWP는 BWP 설정 정보라 칭할 수 있다.
[표 2]
Figure PCTKR2022005651-appb-I000008
물론 상기 예시에 제한되는 것은 아니며, 상기 설정 정보 외에도 대역폭부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상기 정보들은 상위 계층 시그널링, 예를 들면, RRC 시그널링을 통해 기지국이 단말에게 전달될 수 있다. 설정된 하나 또는 복수 개의 대역폭부분들 중에서 적어도 하나의 대역폭부분이 활성화 (activation)될 수 있다. 설정된 대역폭부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적으로 전달되거나 DCI (downlink control information)를 통해 동적으로 전달될 수 있다.
일부 실시예에 따르면, RRC 연결 전의 단말은 초기 접속을 위한 초기 대역폭부분 (initial BWP)을 MIB(master information block)를 통해 기지국으로부터 설정 받을 수 있다. 보다 구체적으로 설명하면, 단말은 초기 접속 단계에서 MIB를 통해 초기 접속에 필요한 시스템 정보(remaining system information; RMSI 또는 system Information block 1; SIB1에 해당할 수 있음)의 수신을 위한 PDCCH가 전송될 수 있는 제어자원세트(CORESET)와 탐색 공간(search space)에 대한 설정 정보를 수신할 수 있다. MIB로 설정되는 제어자원세트와 탐색공간은 각각 식별자(identity, ID) 0으로 간주될 수 있다. 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 주파수 할당 정보, 시간 할당 정보, 뉴머롤로지(numerology) 등의 설정 정보를 통지할 수 있다. 또한 기지국은 단말에게 MIB를 통해 제어자원세트#0에 대한 모니터링 주기 및 occasion에 대한 설정정보, 즉 탐색공간#0에 대한 설정 정보를 통지할 수 있다. 단말은 MIB로부터 획득한 제어자원세트#0으로 설정된 주파수 영역을 초기 접속을 위한 초기 대역폭부분으로 간주할 수 있다. 이때, 초기 대역폭부분의 식별자(ID)는 0으로 간주될 수 있다.
상기 5G에서 지원하는 대역폭부분에 대한 설정은 다양한 목적으로 사용될 수 있다.
일부 실시 예에 따르면, 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에 상기 대역폭부분 설정을 통해 이를 지원할 수 있다. 예를 들면, 기지국이 대역폭부분의 주파수 위치(설정정보 2)를 단말에게 설정함으로써, 단말이 시스템 대역폭 내의 특정 주파수 위치에서 데이터를 송수신할 수 있다.
또한 일부 실시예에 따르면, 서로 다른 뉴머롤로지를 지원하기 위한 목적으로 기지국이 단말에게 복수 개의 대역폭부분을 설정할 수 있다. 예를 들면, 어떤 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분을 각각 15kHz와 30kHz의 부반송파 간격으로 설정할 수 있다. 서로 다른 대역폭 부분은 주파수 분할 다중화(frequency division multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우, 해당 부반송파 간격으로 설정되어 있는 대역폭부분이 활성화 될 수 있다.
또한 일부 실시예에 따르면, 단말의 전력 소모 감소를 위한 목적으로 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭부분을 설정할 수 있다. 예를 들면, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모가 발생될 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 100MHz의 큰 대역폭으로 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적일 수 있다. 단말의 전력 소모를 줄이기 위한 목적으로, 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭부분, 예를 들면, 20MHz의 대역폭부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭부분으로 데이터를 송수신할 수 있다.
대역폭부분을 설정하는 방법에 있어서, RRC 연결(connected) 전의 단말들은 초기 접속 단계에서 MIB을 통해 초기 대역폭부분(initial bandwidth part)에 대한 설정 정보를 수신할 수 있다. 보다 구체적으로 설명하면, 단말은 PBCH(physical broadcast channel)의 MIB로부터 SIB를 스케줄링하는 DCI가 전송될 수 있는 하향링크 제어채널을 위한 제어자원세트(CORESET)를 설정 받을 수 있다. MIB로 설정된 제어자원세트의 대역폭이 초기 대역폭부분으로 간주될 수 있으며, 설정된 초기 대역폭부분을 통해 단말은 SIB가 전송되는 PDSCH를 수신할 수 있다. 초기 대역폭부분은 SIB을 수신하는 용도 외에도, 다른 시스템 정보(other system information, OSI), 페이징(paging), 랜덤 엑세스(random access) 용으로 활용될 수도 있다.
도 6은 본 개시의 일 실시예에 따른 캐리어 어그리게션 (CA)을 설명하기 위한 도면이다.
도 6을 참고하면, CA가 설정되는 경우 (600), PCell (primary cell)과 SCell (secondary cell)이 단말에 설정될 수 있다.
PCell은 PCC (primary component carrier)에 포함되며, RRC 연결 수립/재수립, 측정, 이동성 절차, 랜덤 액세스 절차 및 selection, 시스템 정보 취득, initial random access, security key 변경과 non-access stratum (NAS)기능 등을 제공할 수 있다.
단말은 PCell을 통해 시스템 정보 모니터링을 수행하기 때문에, 상기 PCell은 비활성화되지 않으며, UL에서 PCC는 제어 정보 (control information) 전송을 위해 PUCCH (physical uplink control channel)를 통해 운반된다. 또한, 단말과 상기 PCell 사이에 하나의 RRC만 연결이 가능하며, PDCCH/PDSCH/PUSCH (physical uplink shared channel)/PUCCH 전송이 가능하다. 또한 secondary cell group에서는 PSCell (spcell of a secondary cell group)이 상기 PCell로 설정되어 동작할 수 있다. 이하 기술되는 PCell에 대한 동작은 PSCell서도 수행할 수 있다.
SCell은 최대 총 31개까지 추가가 가능하며, 추가적인 무선 자원 제공이 필요한 경우에 RRC message 메시지 (예: dedicated signaling)을 통해 SCell이 설정될 수 있다. RRC 메시지에는 각 cell에 대한 물리적 cell ID가 포함될 수 있으며, DL carrier frequency (absolute radio frequency channel number: ARFCN)가 포함될 수 있다. SCell을 통해 PDCCH/PDSCH/PUSCH 전송이 가능하다. MAC 계층을 통해 UE의 배터리 보존을 위하여 SCell의 동적 활성, 비활성 절차를 지원한다.
크로스 캐리어 스케줄링은 적어도 하나의 다른 CC (component carrier)에 대한 모든 L1 제어채널 또는 L2 제어채널 중 적어도 하나(예를 들어, PDCCH)를 하나의 CC에 할당하는 것을 의미할 수 있다. 하나의 CC의 PDCCH를 통해 다른 CC의 데이터 정보를 전송하기 위해 CIF(carrier indicator field)가 사용될 수 있다.
하나의 CC의 PDCCH를 통해 전송되는 제어 정보를 통해 상기 CC의 데이터 전송을 위한 자원 (PDSCH, PUSCH) 혹은 다른 CC의 데이터 전송을 위한 자원 (PDSCH, PUSCH)이 할당될 수 있다.
크로스 캐리어 스케줄링의 적용으로 DCI 포맷에 n-bit CIF가 추가 되었으며, bit의 크기는 상위레이어 설정 혹은 DCI format에 따라 다를 수 있으며, DCI 포맷 내의 CIF의 위치는 고정될 수 있다.
도 7은 본 개시의 일 실시예에 따른 크로스 캐리어 스케줄링 방법의 일 예를 도시한 도면이다.
도 7의 710을 참고하면, 한 CC의 PDCCH (701)를 통해 두 개의 CC에 대한 PDSCH 또는 PUSCH를 스케줄링할 수 있다.
또한, 도 7의 720을 참고하면, 총 4개의 CC가 설정되는 경우, 두 CC의 PDCCH (721, 723)를 이용하여 각 CC의 PDSCH 또는 PUSCH를 스케줄링할 수 있다.
각 CC는 CIF 적용을 위해 CI (carrier indicator)값으로 매핑될 수 있으며, 이는 UE specific 설정으로 dedicated RRC 신호를 통해 기지국이 단말에 전송될 수 있다.
각 PDSCH/PUSCH CC는 하나의 DL CC로부터 스케줄링 될 수 있다. 따라서, UE는 각 PDSCH/PUSCH CC에 대해 상기 DL CC에서만 PDCCH을 모니터링 하면 된다. 단말은 상기 DL CC에서 PDCCH를 모니터링하여, 링크된 UL carrier에서의 PUSCH 스케줄링 정보를 획득할 수 있다. 단말은 상기 DL CC에서 PDCCH를 모니터링하여, 링크된 DL carrier에서의 PDSCH 스케줄링 정보를 획득할 수 있다.
도 8는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 제어채널의 제어영역(CORESET) 설정의 일 예를 도시한 도면이다.
도 8을 참조하면, 도 8에는 주파수 축으로 단말의 대역폭 부분(810), 시간 축으로 하나의 슬롯(820) 내에 2개의 제어영역(제어영역 #1(CORESET #1)(801), 제어영역 #2(CORESET #2)(802))이 설정되어 있는 일 예가 도시되어 있다. 제어영역(801, 802)은 주파수 축으로 전체 단말 대역폭 부분(810) 내에서 특정 주파수 자원(803)에 설정될 수 있다. 제어영역(801, 802)은 시간 축으로는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고, 이는 제어영역 길이(control resource set duration, 804)로 정의될 수 있다. 도 8의 일 예에서 제어영역 #1(801)은 2개의 심볼의 제어영역 길이로 설정되어 있고, 제어영역 #2(802)는 1개의 심볼의 제어영역 길이로 설정되어 있다.
상기에서 설명된 5G에서의 제어영역은, 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보, MIB, RRC 시그널링)을 통해 설정할 수 있다. 단말에게 제어영역을 설정한다는 것은, 단말에게 제어영역 식별자(identity), 제어영역의 주파수 위치, 제어영역의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예컨대 표 3의 정보들이 포함될 수 있다.
[표 3]
Figure PCTKR2022005651-appb-I000009
Figure PCTKR2022005651-appb-I000010
PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(aggregation level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대, AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. 단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출 (블라인드 디코딩)해야 하며, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space) 이 정의되었다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(candidate)들의 집합이며, 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로 단말은 복수개의 탐색공간을 가질 수 있다. 탐색공간 세트(set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.
탐색공간은 공통(common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 일정 그룹의 단말들 또는 모든 단말들이 시스템정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다. 예를 들어, 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보는 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 또는 모든 단말들이 PDCCH를 수신해야 하므로 기 약속된 CCE의 집합으로써 정의될 수 있다. 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케줄링 할당 정보는 PDCCH의 단말-특정 탐색공간을 조사함으로써 수신될 수 있다. 단말-특정 탐색공간은 단말의 신원(identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)을 통해 기지국으로부터 단말에 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI (radio network temporary identifier)의 조합, 탐색공간을 모니터링 하고자 하는 제어자원세트 인덱스 등을 단말에게 설정할 수 있다. 예를 들면, PDCCH에 대한 탐색공간에 대한 파라미터는 예컨데 하기의 표 4와 같은 정보들의 적어도 일부를 포함할 수 있다.
[표 4]
Figure PCTKR2022005651-appb-I000011
Figure PCTKR2022005651-appb-I000012
Figure PCTKR2022005651-appb-I000013
기지국은 단말에게 하나 또는 복수 개의 탐색공간 세트를 설정할 수 있다. 일부 실시예에 따르면, 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있다. 탐색공간 세트 1에서는 단말이 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정될 수 있고, 탐색공간 세트 2에서는 단말이 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정될 수 있다.
설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 복수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.
공통 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
DCI format 0_0/1_0 with CRC (cyclic redundancy check) scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
DCI format 2_0 with CRC scrambled by SFI-RNTI
DCI format 2_1 with CRC scrambled by INT-RNTI
DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다. 물론 하기 예시에 제한되지 않는다.
DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
명시되어 있는 RNTI들은 하기의 정의 및 용도를 따를 수 있다.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케줄링 용도
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케줄링 용도
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케줄링 용도
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케줄링 용도
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케줄링 용도
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도
5G에서 제어자원세트 p, 탐색공간 세트 s에서 집성 레벨 L의 탐색공간은 하기의 수학식 1과 같이 표현될 수 있다.
[수학식 1]
Figure PCTKR2022005651-appb-I000014
Figure PCTKR2022005651-appb-I000015
Figure PCTKR2022005651-appb-I000016
값은 공통 탐색공간의 경우 0에 해당할 수 있다.
Figure PCTKR2022005651-appb-I000017
값은 단말-특정 탐색공간의 경우, 단말의 신원(C-RNTI 또는 기지국이 단말에게 설정해준 ID)과 시간 인덱스에 따라 변하는 값에 해당할 수 있다.
따라서, 단말은 기지국으로부터 설정된 제어영역에서 PDCCH를 모니터링할 수 있고, 수신된 제어 정보에 기반하여 데이터를 송수신할 수 있다.
5G 시스템에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(PDSCH))에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달될 수 있다. 단말은 PUSCH 또는 PDSCH에 대하여 대비책(Fallback)용 DCI 포맷과 비대비책(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 대비책 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.
DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC가 부착 (add)되며 CRC는 단말의 신원에 해당하는 RNTI에 기반하여 스크램블링(scrambling) 될 수 있다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 사용될 수 있다. 즉, RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI 메시지를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 확인하여 CRC 확인 결과가 맞으면 단말은 해당 메시지가 단말에게 전송된 것임을 알 수 있다.
예를 들면, 시스템 정보(system information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(random access response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(slot format indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(transmit power control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(cell RNTI)로 스크램블링 될 수 있다.
한편, NR에서는 단말의 효율적인 제어 정보 수신을 위해 아래 표 5와 같이 다양한 형태의 DCI format을 제공할 수 있다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
0_2 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
1_2 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
예를 들어, 기지국은 하나의 셀(cell)에 대한 PDSCH를 단말에 할당(scheduling)하기 위하여 DCI format 1_0, DCI format 1_1 혹은 DCI format 1_2를 사용할 수 있다. 또 다른 예를 들어, 기지국은 하나의 셀(cell)에 대한 PUSCH를 단말에 할당(scheduling)하기 위하여 DCI format 0_0, DCI format 0_1 혹은 DCI format 0_2를 사용할 수 있다.
DCI format 1_0은, C-RNTI 혹은 CS-RNTI 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 6과 같은 정보들을 포함할 수 있다:
- Identifier for DCI formats(1 bits): DCI format 지시자로 항상 1로 설정
- frequency domain resource assignment(NRBG bits 혹은
Figure PCTKR2022005651-appb-I000018
bits): 주파수 축 자원 할당을 지시하며, DCI format 1_0이 UE specific search space에서 모니터 되는 경우
Figure PCTKR2022005651-appb-I000019
는 active DL BWP의 크기이며, 이외의 경우
Figure PCTKR2022005651-appb-I000020
는 initial DL BWP의 크기이다. NRBG 는 resource block group의 숫자이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- time domain resource assignment(0~4 bits): PDSCH의 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다.
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(2 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
DCI format 1_1은, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 7과 같은 정보들을 포함할 수 있다.
- Identifier for DCI formats(1 bit): DCI format 지시자로 항상 1로 설정
- Carrier indicator(0 또는 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
- Bandwidth part indicator(0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
- Frequency domain resource assignment(상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2022005651-appb-I000021
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- Time domain resource assignment(0 ~ 4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(0 or 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 주파수 축 자원 할당이 resource allocation type 0으로 설정된 경우 혹은 상위 레이어에 의해 interleaved VRB-to-PRB mapping이 설정되지 않은 경우 0 bit 이다.
- PRB bundling size indicator(0 or 1 bit): 상위 레이어 파라미터 prb-BundlingType이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
- Rate matching indicator(0 or 1 or 2 bits): rate matching pattern을 지시한다.
- ZP CSI-RS trigger(0 or 1 or 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
- For transport block 1:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- For transport block 2:
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(0 or 2 or 4 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(3 bits): PUCCH 자원 지시자로, 상위 레이어로 설정된 8가지 자원 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
- Antenna port(4 or 5 or 6 bits): DMRS port 및 CDM group without data를 지시한다.
- Transmission configuration indication(0 or 3 bits): TCI 지시자.
- SRS request(2 or 3 bits): SRS 전송 요청 지시자
- CBG transmission information(0 or 2 or 4 or 6 or 8 bits): 할당된 PDSCH 내 code block group들에 대한 전송 여부를 알려주는 지시자. 0은 해당 CBG가 전송되지 않음을 의미하고, 1은 전송 됨을 의미한다.
- CBG flushing out information(0 or 1 bit): 이전 CBG들의 오염 여부를 알려주는 지시자로, 0이면 오염되었을 수 있음을 의미하고, 1이면 재전송 수신 시 사용할 수 있음(combinable)을 의미한다.
- DMRS sequence initialization(0 or 1 bit): DMRS scrambling ID 선택 지시자
DCI format 1_2는, C-RNTI(cell radio network temporary identifier) 혹은 CS-RNTI(configured scheduling RNTI) 혹은 MCS-C-RNTI 혹은 new-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우, 예를 들어 적어도 표 8과 같은 정보들을 포함할 수 있다.
- Identifier for DCI formats(1 bit): DCI format 지시자로 항상 1로 설정
- Carrier indicator(0 or 1 or 2 or 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
- Bandwidth part indicator(0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
- Frequency domain resource assignment(상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2022005651-appb-I000022
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
- Time domain resource assignment(0 ~ 4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
- VRB-to-PRB mapping(0 or 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 상위 레이어의 vrb-ToPRB-InterleaverForDCI-Format1-2 설정 파라미터가 설정되지 않은 경우 0 bit 이다.
- PRB bundling size indicator(0 or 1 bit): 상위 레이어 파라미터 prb-BundlingTypeForDCI-Format1-2이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
- Rate matching indicator(0 or 1 or 2 bits): rate matching pattern을 지시한다.
- ZP CSI-RS trigger(0 or 1 or 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
- Modulation and coding scheme(5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator(1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version(0 or 1 or 2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
- HARQ process number(0 or 1 or 2 or 3 or 4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
- Downlink assignment index(0 or 1 or 2 or 4 bits): DAI 지시자
- TPC command for scheduled PUCCH(2 bits): PUCCH power control 지시자
- PUCCH resource indicator(0 or 1 or 2 or 3 bits): PUCCH 자원 지시자로, 상위 레이어로 설정된 자원들 중 하나를 지시한다.
- PDSCH-to-HARQ_feedback timing indicator(0 or 1 or 2 or 3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 feedback timing offset들 중 하나를 지시한다.
- Antenna port(4 or 5 or 6 bits): DMRS port 및 CDM group without data를 지시한다.
- Transmission configuration indication(0 or 1 or 2 or 3 bits): TCI 지시자.
- SRS request(0 or 1 or 2 or 3 bits): SRS 전송 요청 지시자
- DMRS sequence initialization(0 or 1 bit): DMRS scrambling ID 선택 지시자
- Priority indicator(0 or 1 bit): 상위레이어 priorityIndicatorForDCI-Format1-2 파라미터가 설정되지 않으면 0 bit, 설정되면 1 bit
단말이 해당 cell에서 slot 당 수신 가능한 서로 다른 크기의 DCI 수는 최대 4이다. 단말이 해당 셀에서 slot 당 수신 가능한 C-RNTI로 스크램블링 된 서로 다른 크기의 DCI 수는 최대 3이다.
기지국은 단말에게 하향링크 데이터채널(PDSCH) 및 상향링크 데이터채널(PUSCH)에 대한 시간 도메인 자원할당 정보 (예를 들어, 테이블(table)의 형태로 구성된 정보일 수 있다)을 상위 계층 시그널링 (예를 들어 RRC 시그널링)을 통해 설정할 수 있다. 기지국은 PDSCH에 대해서는 최대 maxNrofDL-Allocations=16 개의 엔트리(Entry)로 구성된 자원할당 정보 (예를 들어, 테이블 형태의 정보로 구성됨)를 설정할 수 있고, PUSCH에 대해서는 최대 maxNrofUL-Allocations=16 개의 엔트리(Entry)로 구성된 자원할당 정보 (예를 들어, 테이블 형태의 정보로 구성됨)을 설정할 수 있다. 시간 도메인 자원할당 정보에는 예를 들어 PDCCH-to-PDSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PDSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K0로 표기함) 또는 PDCCH-to-PUSCH 슬롯 타이밍 (PDCCH를 수신한 시점과 수신한 PDCCH가 스케줄링하는 PUSCH가 전송되는 시점 사이의 슬롯 단위의 시간 간격에 해당함, K2로 표기함), 슬롯 내에서 PDSCH 또는 PUSCH가 스케줄링된 시작 심볼의 위치 및 길이에 대한 정보, PDSCH 또는 PUSCH의 매핑 타입 등이 포함될 수 있다. 예를 들어 하기의 표 9 혹은 표 10과 같은 정보들이 기지국으로부터 단말로 통지될 수 있다.
[표 9]
Figure PCTKR2022005651-appb-I000023
[표 10]
Figure PCTKR2022005651-appb-I000024
기지국은 상기 시간 도메인 자원할당 정보에 대한 테이블의 엔트리 중 하나를 L1 시그널링(예를 들어 DCI)를 통해 단말에게 통지할 수 있다 (예를 들어 DCI 내의 시간 도메인 자원할당 필드로 지시할 수 있음). 단말은 기지국으로부터 수신한 DCI에 기반하여 PDSCH 또는 PUSCH에 대한 시간 도메인 자원할당 정보를 획득할 수 있다.
하기에서는 5G 통신 시스템에서 데이터 채널에 대한 주파수 도메인 자원할당 방법에 대해 설명하도록 한다.
5G에서는 하향링크 데이터채널(PDSCH) 및 상향링크 데이터채널(PUSCH)에 대한 주파수 도메인 자원 할당 정보를 지시하는 방법으로 두가지 타입, 자원할당 타입 0 및 자원할당 타입 1을 지원한다.
자원할당 타입 0에서는, RB 할당 정보가 RBG(resource block group)에 대한 비트맵(bitmap)의 형태로 기지국으로부터 단말로 통지될 수 있다. 이 때, RBG는 연속적인 VRB들의 세트로 구성될 수 있으며, RBG의 크기 P는 상위 계층 파라미터(rbg-Size)로 설정되는 값과 하기의 표 11과 같이 정의되어 있는 대역폭 파트의 크기 값에 기반하여 결정될 수 있다.
[표 11] Nominal RBG size P
Figure PCTKR2022005651-appb-I000025
크기가
Figure PCTKR2022005651-appb-I000026
인 대역폭 파트 i의 총 RBG의 수 (
Figure PCTKR2022005651-appb-I000027
)는 하기와 같이 정의될 수 있다.
Figure PCTKR2022005651-appb-I000028
, where
the size of the first RBG is
Figure PCTKR2022005651-appb-I000029
,
the size of last RBG is
Figure PCTKR2022005651-appb-I000030
if
Figure PCTKR2022005651-appb-I000031
and P otherwise,
the size of all other RBGs is P.
Figure PCTKR2022005651-appb-I000032
비트 크기의 비트맵의 각 비트들은 각각의 RBG에 대응될 수 있다. RBG들은 대역폭파트의 가장 낮은 주파수 위치에서 시작하여 주파수가 증가하는 순서대로 인덱스가 부여될 수 있다. 대역폭파트 내의
Figure PCTKR2022005651-appb-I000033
개의 RBG들에 대하여, RBG#0에서부터 RBG#(
Figure PCTKR2022005651-appb-I000034
)이 RBG 비트맵의 MSB에서부터 LSB로 매핑될 수 있다. 비트맵 내의 특정 비트 값이 1일 경우, 단말은 해당 비트 값에 대응되는 RBG가 할당되었다고 판단할 수 있고, 비트맵 내의 특정 비트 값이 0일 경우, 해당 비트 값에 대응되는 RBG가 할당되지 않았다고 판단할 수 있다.
자원할당 타입 1에서는, RB 할당 정보가 연속적으로 할당된 VRB들에 대한 시작 위치 및 길이에 대한 정보로 기지국으로부터 단말로 통지될 수 있다. 이 때, 연속적으로 할당된 VRB들에 대하여 인터리빙 또는 비인터리빙이 추가적으로 적용될 수 있다. 자원할당 타입 1의 자원할당 필드는 자원 지시자 값 (resource indication value, RIV)으로 구성될 수 있으며, RIV는 VRB의 시작 지점 (
Figure PCTKR2022005651-appb-I000035
)과 연속적으로 할당된 RB의 길이 (
Figure PCTKR2022005651-appb-I000036
)로 구성될 수 있다. 보다 구체적으로,
Figure PCTKR2022005651-appb-I000037
크기의 대역폭파트 내의 RIV는 하기와 같이 정의될 수 있다.
Figure PCTKR2022005651-appb-I000038
도 9는 본 개시의 일 실시예에 따른 무선 통신 시스템에서 하향링크 데이터 채널 처리의 일 예를 도시한 도면이다.
한 개의 코드워드(codeword) 혹은 두 개의 코드워드 각각에 대해 스크램블링(scrambling)과정이 수행될 수 있다(901). 길이
Figure PCTKR2022005651-appb-I000039
를 가지는 코드워드 q의 시퀀스
Figure PCTKR2022005651-appb-I000040
를 수학식 3과 같은 초기화를 통해 얻어진 스크램블링 시퀀스
Figure PCTKR2022005651-appb-I000041
를 사용하여 수학식 2와 같은 과정을 통해 스크램블링 된 시퀀스
Figure PCTKR2022005651-appb-I000042
를 획득할 수 있다.
Figure PCTKR2022005651-appb-I000043
는 상위레이어 파라미터를 통해 그 값이 설정되거나, 그렇지 않을 경우 셀 ID값으로
Figure PCTKR2022005651-appb-I000044
정해질 수 있으며,
Figure PCTKR2022005651-appb-I000045
는 PDSCH 전송과 연계된 RNTI를 의미할 수 있다.
Figure PCTKR2022005651-appb-I000046
스크램블링된 비트들의 시퀀스
Figure PCTKR2022005651-appb-I000047
및 무선 통신 시스템이 지원하는 다양한 변조 방식(modulation scheme) 중 한 개를 이용하여
Figure PCTKR2022005651-appb-I000048
의 길이를 가지는 변조 심볼 시퀀스
Figure PCTKR2022005651-appb-I000049
가 생성될 수 있다(902).
v 개의 레이어(layer)에 각 레이어 별로
Figure PCTKR2022005651-appb-I000050
개씩의 변조 심볼들이 매핑될 수 있고 (903), 이를 표현하면
Figure PCTKR2022005651-appb-I000051
와 같다. 레이어 개수 와 코드워드 개수와 코드워드-레이어 매핑 관계는 표 12와 같다.
[표 12]
Figure PCTKR2022005651-appb-I000052
레이어에 매핑된 변조 심볼들은 수학식 4와 같이 안테나 포트(antenna port)에 매핑될 수 있다.
Figure PCTKR2022005651-appb-I000053
는 DCI format에 포함된 정보에 의해 결정될 수 있다 (904).
[수학식 4]
Figure PCTKR2022005651-appb-I000054
위의 과정을 마친
Figure PCTKR2022005651-appb-I000055
심볼들은 전송을 위해 할당된 VRB들 내의 RE들 중 PDSCH의 전송에 사용될 수 있는 조건들(예. DM-RS 자원에는 매핑 불가 등)을 만족하는 RE들에 매핑될 수 있다 (905).
위의 과정을 마친 VRB들은 PRB들에 인터리빙(interleaving) 매핑 방식 혹은 비인터리빙(non-interleaving) 매핑 방식을 통해 매핑될 수 있다 (906). 매핑 방식은 DCI 내의 VRB-to-PRB mapping 필드를 통해 지시될 수 있는데, 매핑 방식에 대한 지시가 없는 경우 비인터리빙 매핑 방식을 의미할 수 있다.
비인터리빙 매핑 방식이 사용되는 경우 VRB n 은 특정 경우를 제외하고는 PRB n 으로 매핑될 수 있다. 예를 들어, 상기 특정 경우는 공통 탐색 공간을 통해 DCI format 1_0을 사용하여 스케줄링된 PDSCH의 VRB n 이 PRB
Figure PCTKR2022005651-appb-I000056
(
Figure PCTKR2022005651-appb-I000057
은 상기 DCI가 전송된 CORESET의 첫번째 PRB를 의미)에 매핑되는 경우를 포함할 수 있다.
인터리빙 매핑 방식이 사용되는 경우, BWP 내의 RB들을
Figure PCTKR2022005651-appb-I000058
개의 RB 번들들(RB bundles)로 나누고, 상기 RB 번들들을 표 13과 같은 방식을 통해 매핑할 수 있다.
BWP 내의 RB들을
Figure PCTKR2022005651-appb-I000059
개의 RB 번들들(RB bundles)로 나누는 한 가지 예를 들면 다음과 같을 수 있다. 시작점
Figure PCTKR2022005651-appb-I000060
을 가진 BWP 내의
Figure PCTKR2022005651-appb-I000061
개의 RB들의 셋(set)은
Figure PCTKR2022005651-appb-I000062
개의 RB 번들들로 나눠지는데, 상기 RB 번들들은 오름차순(increasing order)으로 인덱싱(indexing)될 수 있다. 여기서 Li 는 BWP i 에서의 번들 크기(bundle size)를 의미하며, 이는 상위 레이어 파라미터 vrb-ToPRB-Interleaver에 의해 단말에 전송될 수 있다. 그리고, RB 번들 0는
Figure PCTKR2022005651-appb-I000063
개의 RB들로 구성되고, RB 번들
Figure PCTKR2022005651-appb-I000064
Figure PCTKR2022005651-appb-I000065
을 만족하면
Figure PCTKR2022005651-appb-I000066
개의 RB들로 구성되고 그렇지 않으면 Li 개의 RB들로 구성될 수 있다. 그리고 나머지 RB 번들들은 Li 개의 RB들로 구성될 수 있다.
[표 13]
Figure PCTKR2022005651-appb-I000067
본 개시의 일 실시예에 따르면, 5G NR 시스템에서는 다음과 같은 과정을 통해 PDSCH에 대한 MCS 인덱스, 즉, 변조 오더 (또는 방식) Qm 및 타겟 부호율 R이 결정될 수 있다.
[MCS index 테이블 결정 방법]
C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI에 의해 스크램블된 CRC와 함께인 DCI (예를 들어, DCI format 1_0, DCI format 1_1, or DCI format 1_2)을 포함하는 PDCCH (PDCCH with DCI format 1_0, format 1_1, or format 1_2 with CRC scrambled by C-RNTI, MCS-C-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, MSGB-RNTI, or P-RNTI)를 통해 스케줄링되는 PDSCH에 대해서, 또는 대응되는 PDCCH 전송 없이, 상위 계층에서 제공되는 PDSCH configuartion SPS-Config (또는 SPS configuration)을 사용하여 스케줄링되는 PDSCH에 대해서,
(a) PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam256'으로 세팅되었고, PDSCH가 C-RNTI에 의해 스크램블된 CRC와 함께인 DCI 포맷 1_1의 PDCCH에 의해 스케줄링 된 경우 (if the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', and the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by C-RNTI)에 단말은 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 15]의 MCS index IMCS 값을 사용할 수 있다.
(b) (a)의 조건이 성립하지 않고, 또한 UE가 MCS-C-RNTI에 의해 설정되지 않았으며 (UE is not configured with MCS-C-RNTI), PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam64LowSE'로 설정되었고, PDSCH가 C-RNTI에 의해 스크램블된 CRC와 함께인 UE-Specific 서치 공간 (search space)에 있는 PDCCH에 의해 스케줄링 된 경우에 (if the UE is not configured with MCS-C-RNTI, the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam64LowSE', and the PDSCH is scheduled by a PDCCH with a DCI format other than DCI format 1_2 in a UE-specific search space with CRC scrambled by C-RNTI), UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다.
(c) (a), (b)의 조건이 성립하지 않고, 또한 UE가 MCS-C-RNTI에 의해 설정되어 있으며, PDSCH가 MCS-C-RNTI에 의해 스크램블된 CRC를 적용한 PDCCH에 의해 스케줄링 된 경우에 (if the UE is configured with MCS-C-RNTI, and the PDSCH is scheduled by a PDCCH with CRC scrambled by MCS-C-RNTI), UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다.
(d) (a), (b), (c)의 조건이 성립하지 않고, 또한 UE가 SPS-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table에 의해 설정되지 않았고, PDSCH-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 'qam256'으로 세팅 되었고 (if the UE is not configured with the higher layer parameter mcs-Table given by SPS-Config, and the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256'),
(d-1) CS-RNTI에 의해 스크램블된 CRC를 적용한 DCI format 1_1의 PDCCH에 의해 PDSCH가 스케줄링 되었거나 (if the PDSCH is scheduled by a PDCCH with DCI format 1_1 with CRC scrambled by CS-RNTI or),
(d-2) SPS-Config를 사용하는 대응되는 PDCCH 전송 없이 PDSCH가 스케줄링 되었을 경우에,
단말은 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 15]의 MCS index IMCS 값을 사용할 수 있다.
(e) (a), (b), (c), (d)의 조건이 성립하지 않고, UE가 SPS-Config에 의해 주어지는 상위 계층 파라미터 mcs-Table이 qam64LowSE로 세팅되어 설정 되었을 경우에 (if the UE is configured with the higher layer parameter mcs-Table given by SPS-Config set to 'qam64LowSE'),
(e-1) CS-RNTI에 의해 스크램블된 CRC를 적용한 PDCCH에 의해 PDSCH가 스케줄링 되었거나 (if the PDSCH is scheduled by a PDCCH with CRC scrambled by CS-RNTI or),
(e-2) SPS-Config를 사용하는 대응되는 PDCCH 전송 없이 PDSCH가 스케줄링 되었을 경우에 (if the PDSCH is scheduled without corresponding PDCCH transmission using SPS-Config,),
UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 16]의 MCS index IMCS 값을 사용할 수 있다.
(f) (a), (b), (c), (d), (e)의 조건이 성립하지 않는 경우에, UE는 변조 오더 Qm과 타겟 부호율 R을 결정하기 위해 [표 14]의 MCS index IMCS 값을 사용할 수 있다.
MCS Index
IMCS
Modulation Order
Qm
Target code Rate
[R x 1024]
Spectral
efficiency
0 2 120 0.2344
1 2 157 0.3066
2 2 193 0.3770
3 2 251 0.4902
4 2 308 0.6016
5 2 379 0.7402
6 2 449 0.8770
7 2 526 1.0273
8 2 602 1.1758
9 2 679 1.3262
10 4 340 1.3281
11 4 378 1.4766
12 4 434 1.6953
13 4 490 1.9141
14 4 553 2.1602
15 4 616 2.4063
16 4 658 2.5703
17 6 438 2.5664
18 6 466 2.7305
19 6 517 3.0293
20 6 567 3.3223
21 6 616 3.6094
22 6 666 3.9023
23 6 719 4.2129
24 6 772 4.5234
25 6 822 4.8164
26 6 873 5.1152
27 6 910 5.3320
28 6 948 5.5547
29 2 reserved
30 4 reserved
31 6 reserved
MCS Index
IMCS
Modulation Order
Qm
Target code Rate
[R x 1024]
Spectral
efficiency
0 2 120 0.2344
1 2 193 0.3770
2 2 308 0.6016
3 2 449 0.8770
4 2 602 1.1758
5 4 378 1.4766
6 4 434 1.6953
7 4 490 1.9141
8 4 553 2.1602
9 4 616 2.4063
10 4 658 2.5703
11 6 466 2.7305
12 6 517 3.0293
13 6 567 3.3223
14 6 616 3.6094
15 6 666 3.9023
16 6 719 4.2129
17 6 772 4.5234
18 6 822 4.8164
19 6 873 5.1152
20 8 682.5 5.3320
21 8 711 5.5547
22 8 754 5.8906
23 8 797 6.2266
24 8 841 6.5703
25 8 885 6.9141
26 8 916.5 7.1602
27 8 948 7.4063
28 2 reserved
29 4 reserved
30 6 reserved
31 8 reserved
MCS Index
IMCS
Modulation Order
Qm
Target code Rate
[R x 1024]
Spectral
efficiency
0 2 30 0.0586
1 2 40 0.0781
2 2 50 0.0977
3 2 64 0.1250
4 2 78 0.1523
5 2 99 0.1934
6 2 120 0.2344
7 2 157 0.3066
8 2 193 0.3770
9 2 251 0.4902
10 2 308 0.6016
11 2 379 0.7402
12 2 449 0.8770
13 2 526 1.0273
14 2 602 1.1758
15 4 340 1.3281
16 4 378 1.4766
17 4 434 1.6953
18 4 490 1.9141
19 4 553 2.1602
20 4 616 2.4063
21 6 438 2.5664
22 6 466 2.7305
23 6 517 3.0293
24 6 567 3.3223
25 6 616 3.6094
26 6 666 3.9023
27 6 719 4.2129
28 6 772 4.5234
29 2 reserved
30 4 reserved
31 6 reserved
도 10은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 트랜스포트 블록(transport block)의 크기(transport block size, TBS)를 획득하는 방법의 일 예를 도시한 도면이다. 단말은 먼저 슬롯 내에서의 RE의 수 (NRE)를 획득 (결정, 또는 계산)할 수 있다 (1001). 단말은 할당된 자원 내의 한 PRB에서 PDSCH 매핑에 할당된 RE 수인
Figure PCTKR2022005651-appb-I000068
를 획득(계산)할 수 있다.
Figure PCTKR2022005651-appb-I000069
Figure PCTKR2022005651-appb-I000070
로 계산될 수 있다. 여기에서,
Figure PCTKR2022005651-appb-I000071
는 12이며,
Figure PCTKR2022005651-appb-I000072
는 PDSCH에 할당된 OFDM 심볼 수를 나타낼 수 있다.
Figure PCTKR2022005651-appb-I000073
는 한 PRB 내에서 같은 CDM 그룹의 DMRS의 RE 수이다.
Figure PCTKR2022005651-appb-I000074
는 상위 시그널링으로 설정되는 한 PRB 내의 오버헤드가 차지하는 RE 수이며, 0, 6, 12, 18 중 하나로 설정될 수 있다 (상위 시그널링으로 설정되지 않는 경우 0으로 설정 될 수 있다).
그리고, PDSCH에 할당된 총 RE 수
Figure PCTKR2022005651-appb-I000075
가 계산될 수 있다.
Figure PCTKR2022005651-appb-I000076
Figure PCTKR2022005651-appb-I000077
에 기반하여 계산되며,
Figure PCTKR2022005651-appb-I000078
는 단말에게 할당된 PRB의 개수를 나타낸다.
Figure PCTKR2022005651-appb-I000079
값은 위와 같이 계산될 수 있다. 또는, NRE의 값으로 설정될 수 있는 모든 경우의 수를 포함한 정보 (예를 들어, 적어도 한 개 이상의 표(table)의 형태로 구성될 수 있다)가 저장되고,
Figure PCTKR2022005651-appb-I000080
,
Figure PCTKR2022005651-appb-I000081
,
Figure PCTKR2022005651-appb-I000082
,
Figure PCTKR2022005651-appb-I000083
,
Figure PCTKR2022005651-appb-I000084
중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보 (예를 들어, 표)에서
Figure PCTKR2022005651-appb-I000085
값이 획득될 수 있다.
그리고, 단말은 임시 정보 비트 수
Figure PCTKR2022005651-appb-I000086
를 획득(계산)할 수 있다 (1002). 예를 들어, 상기 임시 정보 비트 수 Ninfo
Figure PCTKR2022005651-appb-I000087
과 같이 계산될 수 있다. 여기에서, R은 부호율을, Qm은 변조 오더 (modulation order)를 의미하며, 상기 정보는 제어 정보(예를 들어, DCI, RRC 설정 정보 등)에 포함된 MCS(modulation and coding scheme) 정보에 기반하여 결정될 수 있다. 구체적으로, 상기 부호율과 변조 오더에 대해 미리 약속된 정보 (예를 들어 표 12, 13, 14 등의 MCS 인덱스 테이블)가 사용될 수 있으며, 상기 부호율과 변조 오더는 상기 MCS 정보와 상기 미리 약속된 정보에 기반하여 결정될 수 있다. v는 할당된 레이어 수를 의미할 수 있다.
Figure PCTKR2022005651-appb-I000088
값은 위와 같이 계산되거나 혹은 모든 경우의 수를 포함한 정보 (예를 들어, 적어도 한 개 이상의 표(table)의 형태)가 저장되고, R, Qm, v 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서
Figure PCTKR2022005651-appb-I000089
값이 획득될 수 있다.
단말은 획득(계산)한
Figure PCTKR2022005651-appb-I000090
의 값과 3824의 값을 비교할 수 있다(1003).
Figure PCTKR2022005651-appb-I000091
의 값이 3824 이하인지 혹은 초과인지에 따라 다른 방법으로
Figure PCTKR2022005651-appb-I000092
및 TBS가 획득(계산)될 수 있다 (1004).
Figure PCTKR2022005651-appb-I000093
인 경우에는,
Figure PCTKR2022005651-appb-I000094
Figure PCTKR2022005651-appb-I000095
의 수식을 통해
Figure PCTKR2022005651-appb-I000096
가 계산될 수 있다.
Figure PCTKR2022005651-appb-I000097
값은 위와 같이 계산되거나 혹은 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고,
Figure PCTKR2022005651-appb-I000098
, n 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서
Figure PCTKR2022005651-appb-I000099
값이 획득될 수 있다. TBS는 표 17에서
Figure PCTKR2022005651-appb-I000100
보다 작지 않은 값 중
Figure PCTKR2022005651-appb-I000101
에 가장 가까운 값으로 결정될 수 있다.
[표 17]
Figure PCTKR2022005651-appb-I000102
Figure PCTKR2022005651-appb-I000103
인 경우에는,
Figure PCTKR2022005651-appb-I000104
Figure PCTKR2022005651-appb-I000105
의 수식을 통해
Figure PCTKR2022005651-appb-I000106
가 계산될 수 있다.
Figure PCTKR2022005651-appb-I000107
값은 위와 같이 계산되거나 혹은 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고,
Figure PCTKR2022005651-appb-I000108
, n 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 표에서
Figure PCTKR2022005651-appb-I000109
값이 획득될 수 있다. TBS는
Figure PCTKR2022005651-appb-I000110
값 및 표 18에 포함된 pseudo code 혹은 같은 결과를 내는 다른 형태의 pseudo code를 통해 결정될 수 있다. 혹은 상기 TBS는 모든 경우의 수에 대한 정보 (예를 들어, 적어도 한 개 이상의 표(table))가 저장되고, R,
Figure PCTKR2022005651-appb-I000111
, C 중 적어도 한 개 이상의 파라미터 값을 통해 상기 저장된 정보에서 TBS 값이 획득될 수 있다.
[표 18]
Figure PCTKR2022005651-appb-I000112
NR 시스템에서 단말이 지원하는 최대 데이터율은 수학식 6을 통해 결정될 수 있다.
[수학식 6]
Figure PCTKR2022005651-appb-I000113
수학식 6에서 J는 주파수 집적(carrier aggregation)으로 묶인 캐리어의 수이며, Rmax = 948/1024,
Figure PCTKR2022005651-appb-I000114
는 최대 레이어 수,
Figure PCTKR2022005651-appb-I000115
는 최대 변조 오더,
Figure PCTKR2022005651-appb-I000116
는 스케일링 지수,
Figure PCTKR2022005651-appb-I000117
는 부반송파 간격을 의미할 수 있다. 단말은
Figure PCTKR2022005651-appb-I000118
을 1, 0.8, 0.75, 0.4 중 하나의 값으로 설정하여 보고할 수 있으며,
Figure PCTKR2022005651-appb-I000119
는 표 19와 같이 주어질 수 있다.
[표 19]
Figure PCTKR2022005651-appb-I000120
Figure PCTKR2022005651-appb-I000121
는 평균 OFDM 심볼 길이이며,
Figure PCTKR2022005651-appb-I000122
Figure PCTKR2022005651-appb-I000123
로 계산될 수 있고,
Figure PCTKR2022005651-appb-I000124
는 BW(j)에서 최대 RB 개수이다.
Figure PCTKR2022005651-appb-I000125
는 오버헤드 값으로, FR1 (6 GHz 이하 대역)의 하향링크에서는 0.14, 상향링크에서는 0.18로 주어질 수 있으며, FR2 (6 GHz 초과 대역)의 하향링크에서는 0.08, 상향링크에서는 0.10로 주어질 수 있다. 예를 들어, 수학식 6을 통해 30 kHz 부반송파 간격에서 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크에서의 최대 데이터율은 하기의 표 20과 같을 수 있다.
[표 20]
Figure PCTKR2022005651-appb-I000126
한편, 실제 데이터 전송 효율을 나타내는 실제 데이터율은 전송 데이터양을 데이터 전송 시간으로 나눈 값이 될 수 있다. 즉, 1개 TB 전송에서는 TBS 또는 2개 전송에서는 TBS 2개의 합을 TTI(transmission time interval) 길이로 나눈 값이 될 수 있다. 30 kHz 부반송파 간격, 100 MHz 주파수 대역폭을 갖는 셀에서의 하향링크 최대 실제 데이터율은 할당된 PDSCH 심볼 개수에 따라 하기의 표 21과 같이 정해질 수 있다.
[표 21]
Figure PCTKR2022005651-appb-I000127
표 20과 같은 단말이 지원하는 최대 데이터율과 표 21과 같은 할당된 TBS에 따른 실제 데이터율을 참고하면, 스케줄링 정보에 따라 상기 단말이 지원하는 최대 데이터율보다 실제 데이터율이 더 큰 경우가 있는 것을 확인할 수 있다.
무선 통신 시스템, NR 시스템에서는 단말이 지원하는 최대 주파수 대역, 최대 변조 오더, 최대 레이어 수 등을 이용하여 단말의 지원 가능한 데이터율이 기지국과 단말 사이에 결정(계산, 획득)될 수 있다. 다만, 단말이 지원 가능한 데이터율은 TBS 및 TTI에 기반하여 계산되는 실제 데이터율과 다를 수 있고, 어떤 경우에는 단말의 지원 가능한 데이터율에 비해 큰 TBS를 가지는 데이터를 기지국이 단말에 전송하는 경우가 생길 수 있다.
본 개시의 일 실시예에 따르면 기지국은 단말에게 SPS에 대한 설정 정보를 상위 계층 시그널링 (예를 들어 RRC 시그널링)을 통해 설정할 수 있다. 예를 들어, 상기 설정 정보는 SPS-Config IE를 통해 단말에 전달될 수 있다. 상기 설정 정보는 예를 들어 적어도 표 22와 같은 정보들을 포함할 수 있다. 기지국은 단말의 능력(capability)에 따라 예를 들어 표 22와 같은 설정 정보를 이용하여 복수의 SPS를 설정할 수 있다. 상기 복수의 SPS는 표 22의 sps-ConfigIndex에 의해서 구분될 수 있다. 본 개시에 따르면 sps-ConfigIndex는 SPS 인덱스라 칭해질 수 있다. SPS 설정 (또는 SPS 설정 정보)은 서빙셀의 BWP별로 이루어질 수 있으며 같은 BWP 내에서 복수의 SPS 설정이 동시에 활성화될 수 있다.
SPS-Config information element
SPS-Config ::= SEQUENCE {
periodicity ENUMERATED {ms10, ms20, ms32, ms40, ms64, ms80, ms128, ms160, ms320, ms640,
spare6, spare5, spare4, spare3, spare2, spare1}, (DL SPS의 주기)
nrofHARQ-Processes INTEGER (1..8), (DL SPS에 대해 설정된 HARQ Process의 개수)
n1PUCCH-AN PUCCH-ResourceId OPTIONAL, -- Need M (DL SPS에 대한 PUCCH의 HARQ 자원, format0 혹은 format1을 설정)
mcs-Table ENUMERATED {qam64LowSE} OPTIONAL, -- Need S (DL SPS에 사용하는 MCS table 관련 설정 정보)
...,
[[
sps-ConfigIndex-r16 SPS-ConfigIndex-r16 OPTIONAL, -- Cond SPS-List (복수의 SPS 설정 시 이에 대한 index)
harq-ProcID-Offset-r16 INTEGER (0..15) OPTIONAL, -- Need R (HARQ process ID 도출 시 사용되는 offset)
periodicityExt-r16 INTEGER (1..5120) OPTIONAL, -- Need R (DL SPS의 주기, 만약 이 필드가 존재하면 peridocity 필드는 무시)
harq-CodebookID-r16 INTEGER (1..2) OPTIONAL, -- Need R (SPS PDSCH 및 SPS PDSCH release를 위한 HARQ-ACK 코드북에 상응하는 HARQ-ACK 코드북 index)
pdsch-AggregationFactor-r16 ENUMERATED {n1, n2, n4, n8 } OPTIONAL -- Need S (SPS PDSCH의 repetition 회수, 만약 이 필드가 없으면 PDSCH-Config.의 PDSCH aggregation factor를 사용) ]]
}
기지국은 제어 신호(예를 들어, DCI, 혹은 MAC CE)를 통하여 설정한 SPS 중 적어도 한 개의 SPS의 활성화(activation) 혹은 해제(release)를 단말에 지시할 수 있다. 예를 들어, 기지국은 DCI 내의 적어도 한 개 이상의 특정 필드를 특정 값으로 설정하고, 상기 DCI를 통해 생성된 CRC를 특정 RNTI로 스크램블링하여 PDCCH를 통해 단말에 전송함으로써, 상기 SPS의 활성화(activation) 혹은 비활성화(release)를 지시할 수 있다. 보다 구체적으로 말하면, CS-RNTI(RRC 설정으로 단말에 제공)를 이용하여 상기 CRC가 스크램블링되고, DCI 내의 new data indicator(NDI) 필드의 값이 0으로 설정되고, DFI flag 필드가 만약 존재하면 0으로 설정되고, 만약 활성화인 경우 PDSCH-to-HARQ_feedback timing indicator 필드가 만약 존재하고 해당 필드의 값이 dl-DataToUL-ACK의 값 중 적용불가(inapplicable) 값을 제공하지 않는 조건을 만족하면, 상기 DCI는 활성화 혹은 비활성화로 해석될 수 있다. 만약 SPS 설정이 한 개인 경우 상기 DCI의 HARQ process number 필드가 모두 0으로 설정되고 redundancy version 필드가 모두 0으로 설정되면 활성화로, 상기 DCI의 HARQ process number 필드가 모두 0으로 설정되고 redundancy version 필드가 모두 0으로 설정되고 modulation and coding scheme 필드는 모두 1로 설정되고, FDRA type 0 혹은 dynamicSwitch인 경우 (즉, resource allocation type을 DCI에 기반하여 변경할 수 있는 경우)는 FDRA 필드가 모두 0으로 설정되고, FDRA type 1인 경우는 FDRA 필드가 모두 1로 설정되면 비활성화로 해석될 수 있다.
만약 SPS 설정이 복수 개인 경우 DCI 내의 HARQ process number 필드는 상기 SPS-config. 설정 내의 sps-ConfigIndex를 가리키며, 상기 DCI의 redundancy version 필드가 모두 0으로 설정되면 상기 sps-ConfigIndex에 상응하는 SPS의 활성화로, 상기 DCI의 redundancy version 필드가 모두 0으로 설정되고 modulation and coding scheme 필드는 모두 1로 설정되고, FDRA type 0 혹은 dynamicSwitch인 경우는 FDRA 필드가 모두 0으로 설정되고, FDRA type 1인 경우는 FDRA 필드가 모두 1로 설정되면 상기 sps-ConfigIndex에 상응하는 SPS의 비활성화로 해석될 수 있다.
단말은 비활성화를 지시하는 DCI를 수신하면 해당 서빙셀의 설정된 다운링크 할당 (configured downlink assignment)이 존재하는 경우 이를 클리어(clear)하고, 만약 HARQ 피드백이 전송될 서빙셀을 포함하는 TAG와 연계된 timeAlignmentTimer가 돌고 있는(running) 경우 비활성화에 대한 ACK을 전송할 수 있다.
단말은 활성화를 지시하는 DCI를 수신하면 해당 서빙셀의 하향링크 할당(downlink assignment) 및 연계된 HARQ 정보를 설정된 다운링크 할당 (configured downlink assignment)로써 저장하고 해당 서빙셀의 설정된 다운링크 할당 (configured downlink assignment)를 (재)초기화((re-)initialize)할 수 있다.
기지국은 DCI의 NDI 필드의 값을 1로 설정하고 상기 DCI의 CRC를 CS-RNTI로 스크램블링하여 PDCCH를 통해 전송하여 SPS PDSCH 전송에 대한 재전송을 스케줄링할 수 있다.
기지국은 상기 RRC 설정 및 활성화 DCI 신호에 따라 결정되는 자원에 PDSCH를 전송할 수 있다. 보다 구체적으로 말하면, 수학식 7과 같이 N번째 PDSCH의 전송 slot이 결정될 수 있다. SPS 전송과 연계된 HARQ process ID는 harq-ProcID-Offset이 설정되지 않은 경우는 수학식 8, 설정되는 경우는 수학식 9와 같이 결정될 수 있다.
[수학식 7]
(numberOfSlotsPerFrame × SFN + slot number in the frame) =
[(numberOfSlotsPerFrame × SFNstart time + slotstart time) + N × periodicity × numberOfSlotsPerFrame / 10] modulo (1024 × numberOfSlotsPerFrame)
- SFNstart time 와 slotstart time는 설정된 다운링크 할당 (configured downlink assignment)이 (재)초기화((re-)initialize)된 첫번째 PDSCH 전송의 SFN 및 slot을 가리키며, numberOfSlotsPerFrame은 frame에 포함된 slot의 개수를 나타냄.
[수학식 8]
HARQ Process ID = [floor (CURRENT_slot × 10 / (numberOfSlotsPerFrame × periodicity))] modulo nrofHARQ-Processes
- CURRENT_slot = [(SFN × numberOfSlotsPerFrame) + slot number in the frame]
- CURRENT_slot은 설정된 다운링크 할당 (configured downlink assignment)의 번들(bundle)의 첫번째 전송 시점의 slot index를 가리킴
[수학식 9]
HARQ Process ID = [floor (CURRENT_slot × 10 / (numberOfSlotsPerFrame × periodicity))] modulo nrofHARQ-Processes + harq-ProcID-Offset
- CURRENT_slot = [(SFN × numberOfSlotsPerFrame) + slot number in the frame]
- CURRENT_slot은 설정된 다운링크 할당 (configured downlink assignment)의 번들(bundle)의 첫번째 전송 시점의 slot index를 가리킴
1. Group common SPS PDSCH를 위한 mcs-Table 설정
한편, 본 개시의 일 실시예에 따르면, 기지국은 단말에 1:1의 관계로 데이터를 전송하거나(uni-cast) 혹은 1:N의 관계로 데이터를 전송할 수 있다(multi-cast, group-cast, broad-cast 등).
본 개시의 일 실시예에 따르면, 기지국은 unicast SPS 설정 및/혹은 그룹 공통 SPS 설정을 단말에 설정할 수 있다. 상기 unicast SPS 설정은 unicast SPS의 활성화 혹은 해제를 지시하는 DCI의 CRC를 스크램블링하는 CS-RNTI를 포함할 수 있고, 상기 그룹 공통 SPS 설정은 그룹 공통 SPS의 활성화 혹은 해제를 지시하는 DCI의 CRC를 스크램블링하는 그룹 공통 CS-RNTI를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통의 CS-RNTI(group-common CS-RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH (group-common PDCCH)를 통해 전송될 수 있다. 상기 DCI는 그룹 공통 SPS PDSCH(group-common SPS PDSCH)를 활성화 혹은 해제할 수 있다. 활성화 이후 상기 상술된 적어도 한 개의 실시예에 따라 그룹 공통 SPS PDSCH가 전송될 수 있다. 이 때 901 과정의 수학식 3에서 사용되는 RNTI는 상기 그룹 공통의 CS-RNTI(group-common CS-RNTI)일 수 있으며, 상기 그룹 공통의 CS-RNTI는 상기 그룹의 단말에 대해 동일한 값이 설정될 수 있다.
한편, 본 개시의 그룹 공통의 CS-RNTI는 그룹 통신을 위해 새롭게 정의된 RNTI일 수 있으며, 혹은 단말에 설정된 RNTI 중 그룹 통신을 위해 사용하도록 설정된 RNTI일 수 있다. 한편, 본 개시에서는 SPS 설정을 통해 설정된 PDSCH를 SPS PDSCH라 칭할 수 있다. 다만 이는 SPS 설정에 의해 설정된 PDSCH를 의미하는 것으로 동일한 의미의 다양한 용어로 기술될 수 있다.
본 개시의 일 실시예에 따르면, 단말 별 CS-RNTI(UE-specific CS-RNTI)에 기반하여 스크램블링된 CRC (DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI는 단말 별 PDCCH(UE-specific PDCCH)를 통해 전송될 수 있다. 상기 DCI는 그룹 공통 SPS PDSCH (group-common SPS PDSCH)를 활성화 혹은 해제할 수 있다. 활성화 이후 상기 상술된 적어도 한 개의 실시예에 따라 그룹 공통 SPS PDSCH가 전송될 수 있다. 이 때 901 과정의 수학식 3에서 사용되는 RNTI는 상기 그룹 공통의 CS-RNTI(group-common CS-RNTI)일 수 있으며, 상기 그룹의 단말에 대해 동일한 값이 설정될 수 있다.
한편, 본 개시의 일 실시예에 따르면, 기지국은 단말에 그룹 공통의 SPS PDSCH (group-common SPS PDSCH) 전송을 위한 mcs-Table(예를 들어, 표 14, 표 15 혹은 표 16)을 설정할 수 있다. 이하 본 개시에서는 적어도 하나의 MCS index 값에 따라 결정될 수 있는 적어도 하나의 변조 오더 및 타겟 부호율에 대한 정보를 mcs-Table 정보라 칭할 수 있으나, 이외에 다른 용어 (예를 들어, MCS 관련 정보)로 칭할 수 있음은 자명하다. 상기 단말에 설정되는 그룹 공통의 SPS PDSCH (group-common SPS PDSCH) 전송을 위한 mcs-Table (그룹 SPS 통신을 위한 mcs-Table 또는 group common SPS mcs-Table)은 유니캐스트 SPS PDSCH를 위해 설정된 mcs-Table (또는 UE-specific SPS mcs-Table)과 별도로 설정되는 것일 수 있다. 예를 들어, 그룹 공통의 SPS PDSCH 전송을 위한 mcs-Table은 유니캐스트 SPS PDSCH를 위한 mcs-Table보다 더 낮은 성능을 고려하여 정의될 (또는, 설계될) 수 혹은 설정될 수 있다. 다만, 본 개시의 일 실시예가 이에 한정되는 것은 아니며, 그룹 공통의 SPS PDSCH 전송을 위한 mcs-Table은 유니캐스트 SPS PDSCH를 위해 설정된 mcs-Table 엔트리(entry)의 적어도 하나 또는 적어도 일부를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통의 SPS PDSCH(group-common SPS PDSCH) 전송을 위한 mcs-Table 설정은 BWP 설정 파라미터 내의 SPS 설정 파라미터에 포함되어 BWP별로 그리고/혹은 BWP 내의 sps-ConfigIndex별로 설정될 수 있다.
구체적으로, 하향링크 BWP에 대한 설정 정보 (BWP-Downlink) 및 상향링크 BWP에 대한 설정 정보 (BWP-Uplink)가 단말에 설정될 수 있다. 상기 하향링크 BWP는 하향링크 공통 BWP (BWP-DownlinkCommon)과 하향링크 전용 BWP (BWP-DownlinkDedicated)에 대한 설정 정보를 포함할 수 있다. 하향링크 공통 BWP는 셀 특정 BWP로서, 하향링크 공통 BWP 설정 정보는 셀 내에 위치한 단말에 공통적으로 적용되는 파라미터를 포함할 수 있다. 하향링크 특정 BWP는 단말 특정 BWP로서, 하향링크 전용 BWP 설정 정보는 단말 전용 (dedicated) 파라미터를 포함할 수 있다. 한편, 본 개시에서 그룹 공통 SPS PDSCH이 포함되는 BWP는 그룹 공통 BWP라 칭할 수 있다. 즉, 그룹 공통 BWP는 멀티캐스트 또는 브로드캐스트와 같이 1: 다수의 통신을 위해 사용되는 BWP를 의미할 수 있다. 상기 그룹 공통 BWP는 기존에 설정되는 BWP (legacy BWP)와 별개의 BWP로서 단말에 설정되거나, 또는 단말에 설정된 BWP 중 일부의 주파수 자원이 그룹 공통 BWP로 단말에 설정될 수 있다.
legacy BWP와 별개의 BWP로 단말에 설정되는 경우, 하향링크 공통 BWP 내에 그룹 공통 BWP를 위한 설정 정보가 포함되거나, 또는 그룹 공통 BWP를 위한 설정 정보가 별도로 정의될 수도 있다. 그룹 공통 BWP를 위한 설정 정보에는 그룹 공통의 PDCCH 영역에 대한 정보 및 그룹 공통의 PDSCH 영역에 대한 정보, 그룹 공통 SPS 설정 정보 등이 포함될 수 있다.
단말에 설정된 BWP 중 특정 주파수 자원이 그룹 공통 BWP로 단말에 설정되는 경우, 예를 들어, 단말은 하향링크 공통 BWP의 전부 또는 일부를 그룹 공통 BWP로 사용할 수 있다. 또는, 단말에 설정되는 복수의 BWP 중 일부의 BWP 또는 주파수 자원이 그룹 공통 BWP로 사용될 수 있다.
따라서, 본 개시의 일 실시예에 따르면, 단말의 BWP와 별개의 BWP로 그룹 공통 BWP가 설정되는 경우 또는 단말에 설정된 BWP 중 특정 주파수 자원이 그룹 공통 BWP로 설정되는 경우, 상기 그룹 공통 BWP 설정 정보에 포함된 그룹 공통 SPS 설정 정보 내에 mcs-Table에 대한 설정이 포함될 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통의 SPS PDSCH(group-common SPS PDSCH) 전송을 위한 mcs-Table 설정은 그룹 공통의 PDSCH 전송을 위한 그룹 공통의 주파수 자원 설정 파라미터에 포함되어 그룹 공통 주파수 자원별로 설정될 수 있다.
상기 그룹 공통 주파수 자원은 BWP의 일부 또는 전체의 자원으로 구성될 수 있으며, 본 개시에서 상기 그룹 공통 주파수 자원은 상기 그룹 공통 BWP의 전체 또는 적어도 일부의 주파수 자원으로 구성될 수 있다. 따라서, 상기 그룹 공통 주파수 자원 역시 단말에 설정되는 주파수 자원의 일부 또는 단말에 설정되는 주파수 자원과는 별도의 주파수 자원으로 설정될 수 있으며, 상기 그룹 공통 주파수 자원을 설정하기 위한 정보에 상기 그룹 공통의 SPS PDSCH 전송을 위한 mcs-Table 설정이 포함될 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통의 CS-RNTI(group-common CS-RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH(group-common PDCCH)를 통해 수신될 수 있다. 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table 혹은 유니캐스트 SPS PDSCH를 위해 설정된 mcs-Table 혹은 그룹 공통의 PDSCH를 위해 설정된 mcs-Table을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다. 이 때, 상기 그룹 공통의 CS-RNTI에 기반하여 스크램블링된 CRC가 부착된 DCI는 그룹 통신을 위해 별도로 정의된 DCI 포맷이 사용되거나 혹은 유니캐스트 통신을 위해 기 정의된 DCI 포맷이 사용될 수 있다.
본 개시의 일 실시예에 따르면, group-specific 서치 공간 (search space)를 통해 스케줄링된 PDCCH를 수신하는 경우 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table 혹은 유니캐스트 SPS PDSCH를 위해 설정된 mcs-Table 혹은 그룹 공통의 PDSCH를 위해 설정된 mcs-Table 을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다. 한편, group-specific search space를 통해 전송되는 DCI는 그룹 통신을 위해 별도로 정의된 DCI 포맷이 사용되거나 혹은 유니캐스트 통신을 위해 기 정의된 DCI 포맷이 사용될 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통의 CS-RNTI(group-common CS-RNTI)에 기반하여 스크램블링된 CRC(DCI 정보를 활용하여 생성된 CRC)가 부착된 DCI가 그룹 공통의 PDCCH(group-common PDCCH)의 group-specific 서치 공간 (search space)를 통해 수신될 수 있다. 단말은 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정하기 위하여, 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table을 사용할 수 있다. 만약 상기 그룹 공통의 SPS PDSCH 전송을 위해 설정된 mcs-Table이 존재하지 않는 경우 단말은 유니캐스트 PDSCH를 위해 설정된 mcs-Table 혹은 유니캐스트 SPS PDSCH를 위해 설정된 mcs-Table 혹은 그룹 공통의 PDSCH를 위해 설정된 mcs-Table을 사용하여 상기 DCI에 포함된 Modulation and coding scheme 필드(IMCS)에 해당하는 변조 오더(Qm)과 타겟 부호율 R을 결정할 수 있다.
도 11은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.
도 11을 참고하면, 단말은 기지국으로부터 설정 정보를 수신할 수 있다. 상기 설정 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 수신될 수 있다.
상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, 본 개시에서 상기 설정 정보에는 mcs-Table에 대한 정보 등이 포함될 수 있다. 상술한 바와 같이 상기 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table 또는 유니캐스트 SPS PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 SPS PDSCH를 위해 설정되는 mcs-Table 중 적어도 하나를 포함할 수 있다. 상기 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table 및 그룹 공통의 SPS PDSCH를 위해 설정되는 mcs-Table은 상술한 바와 같이 BWP별로 설정되거나 혹은 그룹 공통 주파수 자원별로 설정될 수 있다. 이 때, BWP에 대한 설정 정보 또는 그룹 공통 주파수 자원에 대한 설정 정보에 대한 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다.
단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 모니터링할 수 있다 (1101). 상기 탐색 공간은 common search space를 포함할 수 있다. 상기 common search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다. 또한, 상기 탐색 공간은 UE-specific search space를 포함할 수 있다. 상기 UE-specific search space는 그룹 통신을 위해 특정 group i에게만 공통적으로 설정된 group search space를 포함할 수 있다.
보다 구체적으로 말하면, 상기 group i 에게만 공통적으로 설정된 group search space는 수학식 1의 Yp,-1 값을 그룹 공통의 RNTI로 설정하여 수학식 1에 대입함으로써 구해질 수 있다. 그룹에 포함되는 단말은 상기 group search space에서 PDCCH를 모니터링할 수 있으며, 상기 group search space에서 수신된 DCI에 포함된 정보는 단말의 그룹 통신에 사용될 수 있다.
또는, 상기 group search space에 대한 정보를 기지국이 단말에 전송할 수 있다. 기지국은 group search space가 위치하는 (또는 그룹 통신에 사용될) PDCCH에 대한 정보를 RRC 시그널링 또는 SIB를 통해 단말에 설정할 수 있다. 이 때, 상기 CORESET에 대한 시간 자원 정보 및 주파수 자원 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 직접적으로 지시될 수 있다. 또는 상기 PDCCH에 대한 시간 자원 정보 및 주파수 자원 정보는 미리 정해진 정보들 (예를 들어, 테이블의 형태로 구성된 정보일 수 있다) 중 어느 하나를 RRC 시그널링, MIB, 또는 SIB에 포함된 정보를 통해 지시하도록 할 수 있다. 또한, 상기 PDCCH에 포함되는 common search space의 CCE index는 상술한 수학식 1에 기반하여 결정될 수 있다.
단말의 모니터링 결과 DCI가 수신(detect)될 수 있다 (1102). 즉, 단말은 PDCCH를 모니터링한 결과 상기 PDCCH를 통해 DCI를 수신할 수 있다. 단말은 상기 수신한 DCI가 상술한 SPS 활성화 조건을 만족하는지 여부를 판단할 수 있다.
DCI가 수신된 경우 단말은 상기 PDCCH를 통해 전송된 DCI의 CRC의 스크램블링에 사용된 RNTI가 제1 RNTI인지 혹은 제2 RNTI인지를 확인할 수 있다 (1103). 상술한 바와 같이 group i에 포함된 단말은 그룹 공통 RNTI를 할당 받을 수 있으며 (상위레이어 시그널링, MIB, 또는 SIB를 통해 수신할 수 있다), 그룹 공통 RNTI를 할당 받은 경우 1103 단계가 수행될 수 있다. 본 개시에서는 상기 제2 RNTI가 그룹 공통 RNTI 혹은 그룹 공통 CS-RNTI를 지칭할 수 있으며, 제1 RNTI는 단말에 설정된 그룹 공통 RNTI 이외의 RNTI(예를 들어, C-RNTI, CS-RNTI 등)를 지칭할 수 있다. 한편, 본 개시에서 1103 단계는 DCI의 CRC의 스크램블링에 사용된 RNTI가 제2 RNTI인지 확인하는 단계일 수 있다. 즉, 단말은 그룹 공통 RNTI에 기반하여 스크램블링된 CRC가 부착되었는지 여부를 확인하고, 이에 기반하여 그룹 통신을 위한 스케줄링 정보가 수신되었는지 확인할 수 있다.
다만, group search space는 그룹 공통 RNTI에 기반하여 group i에게만 공통적으로 설정된 search space인 경우, group search space에서 수신된 DCI는 그룹 공통의 DCI이므로, 1103 단계를 생략할 수 있다.
또한, 1103 단계는 상기 DCI가 그룹 통신을 위한 것인지 여부 (또는 DCI가 group common한지 UE-specific한지 여부)를 판단하는 단계로 변경될 수 있다.
상기 RNTI가 제1 RNTI인 경우 단말은 제1 mcs-Table (또는, mcs-Table #1)을 사용할 수 있다 (1104). 즉, 단말은 수신된 DCI 내에 포함된 MCS index (IMCS) 비트 필드의 값에 상응하는 변조 오더(Qm)과 타겟 부호율 R 중 적어도 한 개를 확인할 수 있다.
상기 RNTI가 제2 RNTI인 경우 단말은 제2 mcs-Table (또는, mcs-Table #2)를 사용할 수 있다 (1105). 즉, 단말은 수신된 DCI 내에 포함된 MCS index (IMCS) 값에 상응하는 변조 오더(Qm)과 타겟 부호율 R 중 적어도 한 개를 확인할 수 있다.
단말은 상기 확인된 적어도 한 개의 변조 오더(Qm)과 타겟 부호율 R에 기반하여 상기 DCI가 스케줄링하는 PDSCH의 변조 오더(Qm)과 타겟 부호율 R를 결정하고, 추후 동작 예를 들어 TBS의 결정 등을 수행할 수 있다.
상기 제1 mcs-Table은 유니캐스트 PDSCH 혹은 유니캐스트 SPS PDSCH를 위해 설정되는 mcs-Table에 해당할 수 있고, 상기 제2 mcs-Table는 그룹 공통의 PDSCH 혹은 그룹 공통의 SPS PDSCH를 위해 설정되는 mcs-Table에 해당할 수 있다.
도 12는 본 개시의 일 실시예에 따른 기지국의 DCI 생성 동작을 도시한 도면이다.
도 12를 참고하면, 기지국은 단말에 설정 정보를 전송할 수 있다 (1201). 상기 설정 정보는 RRC 시그널링, MIB, 또는 SIB를 통해 송신되는 정보를 의미할 수 있다.
상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, 본 개시에서 상기 설정 정보에는 mcs-Table에 대한 정보 등이 포함될 수 있다. 상술한 바와 같이 상기 mcs-Table은 유니캐스트 PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 PDSCH를 위해 설정되는 mcs-Table 또는 유니캐스트 SPS PDSCH를 위해 설정되는 mcs-Table 또는 그룹 공통의 SPS PDSCH를 위해 설정되는 mcs-Table 중 적어도 하나를 포함할 수 있다. 상기 그룹 공통의 PDSCH를 위해 설정하는 mcs-Table 및 그룹 공통의 SPS PDSCH를 위해 설정되는 mcs-Table은 상술한 바와 같이 BWP별로 설정하거나 혹은 그룹 공통 주파수 자원별로 설정할 수 있다. 이 때, BWP에 대한 설정 정보 또는 그룹 공통 주파수 자원에 대한 설정 정보에 대한 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다.
그리고, 기지국은 전송할 DCI의 타입을 결정할 수 있다 (1202). 다만, 1202 단계는 생략될 수 있다. 구체적인 내용은 후술한다.
구체적으로, 기지국은 PDSCH를 통해 전송하고자 하는 데이터에 따라 (또는 그룹 통신을 위한 데이터인지 여부에 따라, 또는 데이터가 group common 데이터인지 UE-specific 데이터인지 여부에 따라) DCI의 타입을 결정할 수 있다. 또한, 추가적으로 그룹 SPS PDSCH 전송의 활성화를 위한 것인지 혹은 유니캐스트 SPS PDSCH 전송의 활성화를 위한 것인지에 따라 DCI의 타입, DCI 내에 포함된 필드의 값, DCI를 활용하여 생성된 CRC를 스크램블링하는데 사용할 RNTI 중 적어도 일부를 결정할 수 있다.
예를 들어, 단말 1개에 전송되는 데이터인지 혹은 특정 그룹에 속한 단말들 (즉, 다수의 단말)에 전송하는 데이터 인지 여부에 따라 DCI의 타입이 결정될 수 있다. 기지국은 상기 PDSCH를 통해 전송하고자 하는 데이터의 변조 오더(Qm)과 타겟 부호율 R을 결정하고, 상기 변조 오더(Qm) 및/또는 타겟 부호율 R을 지시하기 위한 MCS 인덱스 (IMCS)의 값을 결정할 수 있다. 이 때, 상기 MCS 인덱스는 상기 데이터에 따라 (즉, 그룹 통신을 위해 전송되는 데이터인지 혹은 유니캐스트 전송을 위한 데이터인지 혹은 그룹 SPS PDSCH 전송을 위한 것인지 혹은 유니캐스트 SPS PDSCH 전송을 위한 것인지 여부에 따라) 또는 상기 정해진 DCI의 타입에 따라서 각기 다른 mcs-Table를 사용하여 결정될 수 있으며, 구체적인 내용은 후술한다. 다만, 상술한 바와 같이 그룹 통신에 대한 DCI의 타입 (또는 포맷)과 유니캐스트 통신에 대한 DCI의 타입 (또는 포맷)이 동일할 수 있으며, 이와 같은 경우에 1202 단계는 생략될 수 있다.
혹은 기지국은 PDCCH를 통해 전송하고자 하는 DCI가 그룹 통신을 위한 것인지 여부 (또는 DCI가 group common인지 UE-specific인지 여부 및 그룹 SPS PDSCH 전송인지 unicast SPS PDSCH 전송인지 여부)에 따라 DCI의 타입을 결정할 수 있다 (1202). 예를 들어, 상기 DCI가 단말 1개 (UE-specific) 혹은 특정 그룹 (group-common)에 대한 것일 수 있다. 따라서, 기지국은 상기 DCI가 스케줄링하는 PDSCH를 통해 전송할 데이터의 변조 오더(Qm)과 타겟 부호율 R을 결정하고, 상기 변조 오더(Qm) 및/또는 타겟 부호율 R을 지시하기 위한 MCS 인덱스 (IMCS)의 값을 결정할 수 있다. 이 때, 상기 MCS 인덱스는 상기 정해진 DCI의 타입에 따라서 각기 다른 mcs-Table를 사용하여 결정될 있으며, 구체적인 내용은 후술한다. 다만, 상술한 바와 같이 그룹 통신에 대한 DCI의 타입 (또는 포맷)과 유니캐스트 통신에 대한 DCI의 타입 (또는 포맷)이 동일할 수 있으며, 이와 같은 경우에 1202 단계는 생략될 수 있다.
기지국은 상기 결정된 DCI가 UE-specific한 경우 제1 mcs-Table (mcs-Table #1)을 사용하여 DCI를 생성하고 (1203), 생성된 DCI를 사용하여 CRC를 생성하고, 상기 CRC를 제1 RNTI를 사용하여 스크램블할 수 있다 (1205). 상기 제1 mcs-Table은 1201의 과정을 통해 유니캐스트 PDSCH 혹은 유니캐스트 SPS PDSCH를 위해 단말에 설정한 mcs-Table일 수 있으며, 상기 RNTI는 단말 특정 RNTI (UE-specific RNTI)로써, 예를 들어 C-RNTI 혹은 CS-RNTI를 포함할 수 있다. 기지국은 위와 같이 생성된 DCI 및 CRC를 PDCCH를 통하여 전송할 수 있다.
기지국은 상기 결정된 DCI의 type이 group-common한 경우 제2 mcs-Table를 사용하여 DCI를 생성하고 (1204), 생성된 DCI를 사용하여 CRC를 생성하고, 상기 CRC를 제2 RNTI를 사용하여 스크램블할 수 있다 (1206). 상기 제2 mcs-Table는 1201의 과정을 통해 그룹 공통의 PDSCH를 위해 단말에 설정한 mcs-Table 혹은 그룹 공통 SPS PDSCH를 위해 설정한 mcs-Table일 수 있으며, 상기 RNTI는 그룹 공통의 RNTI (group-common RNTI) 혹은 그룹 공통 CS-RNTI(group-common CS-RNTI)를 포함할 수 있다. 기지국은 위와 같이 생성된 DCI 및 CRC를 PDCCH를 통하여 전송할 수 있다. 상기 PDCCH는 common search space 혹은 group search space에 매핑되어 전송될 수 있다.
2. UE-specific PDCCH를 통한 group common SPS 활성화
본 개시의 일 실시예에 따르면, 기지국은 단말에게 SPS에 대한 설정 정보를 상위 계층 시그널링 (예를 들어 RRC 시그널링)을 통해 설정할 수 있다. 상기 SPS 설정은 unicast SPS 설정 및 그룹 공통 PDSCH의 전송을 위한 그룹 공통 SPS 설정을 포함할 수 있다. 기지국은 unicast SPS 설정의 개수와 그룹 공통 SPS 설정의 개수의 합이 단말의 능력(capability)를 넘지 않도록 단말에 설정할 수 있다.
예를 들어, N개의 SPS 설정을 지원할 수 있는 단말에 N1개의 unicast SPS 설정이 설정되는 경우, 기지국은 sps-ConfigToAddModList를 이용하여 최대 N-N1개 (즉, N-N1개 이하)의 그룹 공통 SPS 설정을 단말에 설정할 수 있다.
또 다른 예를 들어, N개의 SPS 설정을 지원할 수 있는 단말에 N2개의 그룹 공통 SPS 설정이 설정되는 경우, 기지국은 sps-ConfigToAddModList를 이용하여 최대 N-N2개 (또는 N-N2개 이하)의 unicast SPS 설정을 단말에 설정할 수 있다.
또 다른 예를 들어, N개의 SPS 설정을 지원할 수 있는 단말에 N1개의 unicast SPS 설정이 설정되는 경우, 기지국은 sps-ConfigToReleaseList를 이용하여 N1개의 unicast SPS 설정 중 일부를 해제하고 sps-ConfigToAddModList를 이용하여 N2개의 그룹 공통 SPS를 추가로 설정할 수 있으며, SPS 설정 개수의 총 합이 N을 넘지 않도록 할 수 있다.
또 다른 예를 들어, N개의 SPS 설정을 지원할 수 있는 단말에 N2개의 그룹 공통 SPS 설정이 설정되는 경우, 기지국은 sps-ConfigToReleaseList를 이용하여 N2개의 그룹 공통 SPS 설정 중 일부를 해제하고 sps-ConfigToAddModList를 이용하여 N1개의 unicast SPS를 추가로 설정할 수 있으며, SPS 설정 개수의 총 합이 N을 넘지 않도록 할 수 있다.
단말은 SPS 설정의 최대 수에 대한 정보를 UE capability message를 통해 기지국에 전송할 수 있다. 단말은 기지국으로부터 UE capability message를 요청하는 메시지 (UE capability enquiry message)를 수신하고 이에 따라 UE capability message를 전송할 수 있으며 혹은 기지국과 RRC connection이 설립된 이후에 UE capability message를 전송할 수 있다. 따라서, 기지국이 사전에 UE capability message를 수신한 경우 UE capability message를 전송하는 절차는 생략될 수 있다.
본 개시의 일 실시예에 따르면, SPS 활성화 조건을 만족하는 제1 DCI 내의 HARQ process number 필드 값이 m1이고 상기 제1 DCI의 CRC가 제1 CS-RNTI로 스크램블링된 경우 m1에 상응하는 값을 가지는 SPS 설정이 활성화될 수 있다. 또한, SPS PDSCH는 제1 CS-RNTI 및 수학식 3을 사용하여 결정된 초기화 인자에 기반하여 스크램블링(도 9의 901 과정)되어 전송될 수 있다.
또한, SPS 활성화 조건을 만족하는 제2 DCI 필드 내의 HARQ process number 필드 값이 m2이고 상기 제2 DCI의 CRC가 제2 CS-RNTI로 스크램블링된 경우 m1에 상응하는 값을 가지는 SPS 설정이 활성화될 수 있다. 또한, SPS PDSCH는 제2 CS-RNTI 및 수학식 3을 사용하여 결정된 초기화 인자에 기반하여 스크램블링(도 9의 901 과정)되어 전송될 수 있다.
상기 제1 CS-RNTI는 unicast SPS를 위한 CS-RNTI일 수 있고, 제2 CS-RNTI는 그룹 공통 SPS를 위한 그룹 공통 CS-RNTI일 수 있다. 또한, 상기 제1 DCI는 단말 특정 PDCCH(UE-specific PDCCH)를 통해 전송될 수 있고, 제2 DCI는 그룹 공통 PDCCH(group-common PDCCH)를 통해 전송될 수 있다.
본 개시의 일 실시예에 따르면, 단말 특정 PDCCH(UE-specific PDCCH)를 통해 그룹 공통 SPS 설정이 활성화될 수 있다. 또한 상술한 바와 같이 단말 특정 PDCCH(UE-specific PDCCH)를 통해 unicast SPS가 활성화할 수 있기 때문에, 단말 특정 PDCCH를 통해 SPS 활성화를 위한 신호가 전송되는 경우, 활성화 이후 전송되는 SPS PDSCH를 스크램블링하기 위해 어떤 RNTI를 사용할 것인지 정의될 필요가 있다.
본 개시의 일 실시예에 따르면, 단말에 설정된 CS-RNTI로 스크램블링된 CRC 및 DCI가 단말 특정 PDCCH를 통해 전송되어 SPS PDSCH를 활성화 하는 경우, 상기 SPS PDSCH의 스크램블링은 상기 DCI에 포함된 HARQ process number 필드 값에 기반하여 결정될 수 있다.
상기 HARQ process number 필드에 상응하는 sps-ConfigIndex가 unicast SPS 설정에 해당하면 상기 SPS PDSCH는 CS-RNTI (unicast SPS를 위한 CS-RNTI 또는 UE-specific CS-RNTI)에 기반하여 스크램블링될 수 있다. 보다 구체적으로, 활성화된 sps-ConfigIndex가 unicast SPS 설정에 해당하면 상기 SPS PDSCH는 CS-RNTI (unicast SPS를 위한 CS-RNTI 또는 UE-specific CS-RNTI)를 수학식 3에 사용하여 초기화된 인자에 기반하여 스크램블링될 수 있다.
상기 HARQ process number 필드에 상응하는 sps-ConfigIndex가 그룹 공통 SPS 설정에 해당되면 상기 SPS PDSCH는 그룹 공통 CS-RNTI(G-CS-RNTI)에 기반하여 스크램블링될 수 있다. 보다 구체적으로, 활성화된 sps-ConfigIndex가 그룹 공통 SPS 설정에 해당하면, 상기 SPS PDSCH는 그룹 공통 CS-RNTI를 수학식 3에 사용하여 초기화된 인자를 사용하여 스크램블링될 수 있다.
본 개시의 일 실시예에 따르면, 상기 unicast SPS 설정과 그룹 공통 SPS 설정은 같은 IE(Information Element)에 속해 전송되지 않고, 각각 별도의 IE를 통해 전송될 수 있다. 상기 unicast SPS 설정에 사용된 sps-ConfigIndex들과 상기 그룹 공통 SPS 설정에 사용된 sps-ConfigIndex들은 공통 값을 갖지 않을 수 있다. 또는, 본 개시의 일 실시예에 따르면, SPS 활성화를 지시하는 DCI에 포함된 HARQ process number 필드의 적어도 일부 bit(예를 들어, MSB 1 bit 혹은 LSB 1 bit) 가 상기 일부 bit를 제외한 나머지 bit들을 통해 지시되는 sps-ConfigIndex가 unicast SPS인지 그룹 공통 SPS인지를 지시하고, 상기 지시에 따라서 SPS PDSCH의 스크램블링에 사용되는 시퀀스를 생성하는데 사용되는 인자를 결정할 수 있다. 또는, DCI에는 sps-ConfigIndex가 unicast SPS인지 그룹 공통 SPS인지를 지시하기 위한 별도의 1비트 필드가 포함될 수 있다. 또는, DCI에 1 비트의 필드가 포함되었는지 여부에 따라, 1 비트의 정보가 포함되면 sps-ConfigIndex가 그룹 공통 SPS 설정에 대한 것 (또는 unicast SPS 설정에 대한 것)임을 지시할 수 있다.
또는, 본 개시의 일 실시예에 따르면, SPS 활성화를 지시하는 MAC CE (control element)에 포함된 sps-ConfigIndex를 지시하는 필드의 적어도 일부 bit(예를 들어, MSB 1 bit 혹은 LSB 1 bit)가 상기 일부 bit를 제외한 나머지 bit들을 통해 지시되는 sps-ConfigIndex가 unicast SPS인지 그룹 공통 SPS인지를 지시하고, 상기 지시에 따라서 SPS PDSCH의 스크램블링에 사용되는 시퀀스를 생성하는데 사용되는 인자를 결정할 수 있다. 또는 MAC CE에는 sps-ConfigIndex가 unicast SPS인지 그룹 공통 SPS인지를 지시하기 위한 별도의 1비트 필드가 포함될 수 있다. 또는, MAC CE에 별도의 1 비트의 필드가 포함되었는지 여부에 따라, 1 비트의 정보가 포함되면 sps-ConfigIndex가 그룹 공통 SPS 설정에 대한 것 (또는 unicast SPS 설정에 대한 것)임을 지시할 수 있다.
unicast SPS 설정은 상술한 표 22와 같이 설정될 수 있으며, 그룹 공통 SPS 설정은 하기의 표 23과 같이 별도로 설정될 수 있다. 그룹 공통 SPS 설정은 표 23에 포함된 파라미터의 적어도 일부를 포함할 수 있다. 이 때, 그룹 공통 SPS 설정은 그룹 통신을 위한 것임을 나타내기 위한 다양한 용어로 표기될 수 있다. 본 개시에서는 예를 들어 MBS-SPS-Config라고 표현하였으나 본 개시가 이에 한정되는 것은 아니며, unicast SPS 설정과 그룹 공통 SPS 설정을 각각 제1 SPS 설정 및 제2 SPS 설정 등으로 구분하여 칭하는 것이 가능하다.
MBS-SPS-Config information element
SPS-Config ::= SEQUENCE {
periodicity ENUMERATED {ms10, ms20, ms32, ms40, ms64, ms80, ms128, ms160, ms320, ms640,
spare6, spare5, spare4, spare3, spare2, spare1},
nrofHARQ-Processes INTEGER (1..8),
n1PUCCH-AN PUCCH-ResourceId OPTIONAL, -- Need M
mcs-Table ENUMERATED {qam64LowSE} OPTIONAL, -- Need S
...,
[[
sps-ConfigIndex-r16 SPS-ConfigIndex-r16 OPTIONAL, -- Cond SPS-List
harq-ProcID-Offset-r16 INTEGER (0..15) OPTIONAL, -- Need R
periodicityExt-r16 INTEGER (1..5120) OPTIONAL, -- Need R
pdsch-AggregationFactor-r16 ENUMERATED {n1, n2, n4, n8 } OPTIONAL -- Need S
]]
}
한편, 본 개시에서는 unicast SPS 설정과 그룹 공통 SPS 설정의 sps-ConfigIndex들이 공통 값을 갖지 않는 경우를 예를 들어 설명하였으나, 본 개시의 범위가 이에 한정되는 것은 아니다.
상기와 같이 unicast SPS 설정과 그룹 공통 SPS 설정이 별도의 IE를 통해 설정되는 경우, unicast SPS 설정과 그룹 공통 SPS 설정 내의 sps-ConfigIndex는 각각 0부터 (SPS-List에 포함되는 SPS 설정의 수 - 1) 또는 1부터 (SPS-List에 포함되는 SPS 설정의 수)만큼의 인덱스를 가질 수 있다. 이와 같은 경우 unicast SPS 설정을 위한 SPS-List와 그룹 공통 SPS 설정을 위한 SPS-List는 별도로 설정될 수 있으며, unicast SPS 설정을 위한 SPS-List와 그룹 공통 SPS 설정을 위한 SPS-List는 서로 다른 수의 SPS 설정을 포함할 수 있다. 이와 같은 경우 DCI에는 sps-ConfigIndex가 그룹 공통 SPS 설정에 대한 것인지 unicast SPS 설정에 대한 것인지 지시하는 1 비트의 정보가 포함될 수 있다. 또는, DCI에 특정 1 비트의 정보가 포함되면 sps-ConfigIndex가 그룹 공통 SPS 설정에 대한 것 (또는 unicast SPS 설정에 대한 것)임을 지시할 수 있다. 또는 상술한 바와 같이 HARQ process number 필드의 일부 (MSB 또는 LSB)를 이용하여 sps-ConfigIndex가 그룹 공통 SPS 설정에 대한 것인지 unicast SPS 설정에 대한 것인지를 지시할 수 있다.
또는, unicast SPS 설정과 그룹 공통 SPS 설정은 상기 표 22와 같은 설정을 통해 같은 IE(Information Element)에 속해 전송될 수도 있다. 이 때, 같은 IE 내에서 unicast SPS 설정에 사용된 sps-ConfigIndex들과 상기 그룹 공통 SPS 설정에 사용된 sps-ConfigIndex들은 공통 값을 갖지 않을 수 있다.
한편, 상술한 unicast SPS 설정과 그룹 공통 SPS 설정은 상위 레이어를 통해 또는 시스템 정보를 통해 단말에 설정될 수 있다.
도 13은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.
단말은 기지국으로부터 SPS 설정 정보를 수신할 수 있다. 상기 SPS 설정은 unicast SPS 설정과 그룹 공통 SPS 설정을 포함할 수 있다. 상기 SPS 설정 정보는 상위 레이어 시그널링 (예를 들어, RRC 시그널링 또는 SIB 등)을 통해 전송될 수 있다.
단말은 SPS 활성화 신호를 모니터링할 수 있다 (1301). 이 때, 상기 SPS 활성화 신호는 DCI 또는 MAC CE 중 적어도 하나를 포함할 수 있다.
단말은 상기 실시예들에 따라 적어도 한 개 이상의 탐색 공간(search space)에서 PDCCH를 통해 전송되는 SPS 활성화 신호를 모니터링할 수 있다. 또는, 단말은 MAC CE를 활용하여 PDSCH를 통해 전송되는 SPS 활성화 신호를 모니터링할 수 있다 (1301). 상기 모니터링 과정은 상술한 실시예들에 따른 SPS 활성화 조건을 만족하는지 여부에 대한 판단을 포함하는 과정일 수 있다. 상기 모니터링하는 PDCCH를 통해 전송되는 DCI의 CRC는 CS-RNTI를 활용하여 스크램블링될 수 있다.
상기 모니터링 결과 SPS 활성화 신호가 발견(detect)되는 경우 (1302), 단말은 SPS 활성화 신호에 포함된 정보에 기반하여 SPS 설정을 확인할 수 있다. 즉, 단말은 SPS 활성화 신호에 포함된 정보에 상응하는 sps-ConfigIndex의 SPS 설정을 확인할 수 있다. 그리고 단말은 상기 확인된 SPS 설정 (또는 sps-ConfigIndex)이 unicast SPS 설정에 해당하는지 그룹 공통 SPS 설정에 해당하는지 확인할 수 있다(1303).
구체적으로, 단말은 상기 PDCCH를 통해 전송된 DCI에 포함된 HARQ process number 필드(HPN field)의 값을 확인하고 (또는 읽고), 상기 값에 상응하는 sps-ConfigIndex가 unicast SPS 설정에 해당하는지 그룹 공통 SPS 설정에 해당하는지 확인할 수 있다. 혹은/그리고, 단말은 상기 PDSCH를 통해 전송된 MAC CE에 포함된 일부 필드의 값을 읽고, 상기 값에 상응하는 sps-ConfigIndex가 unicast SPS 설정에 해당하는지 그룹 공통 SPS 설정에 해당하는지 결정할 수 있다.
상기 과정의 결과, sps-ConfigIndex가 unicast SPS 설정에 상응하는 경우 단말은 상기 활성화 신호에 의해 활성화되어 전송되는 SPS PDSCH들을 CS-RNTI (단말 특정 CS-RNTI)를 사용하여 디스크램블링 할 수 있다. 즉, 단말은 활성화 신호에 의해 활성화되어 전송되는 SPS PDSCH들이 CS-RNTI (단말 특정 CS-RNTI)를 사용하여 초기화된 인자를 활용하여 스크램블링되는 것으로 이해하고 동작(디스크램블)할 수 있다 (1304).
상기 과정의 결과, sps-ConfigIndex가 그룹 공통 SPS 설정에 상응하는 경우 단말은 상기 활성화 신호에 의해 활성화되어 전송되는 SPS PDSCH들을 그룹 공통 CS-RNTI(GC-CS-RNTI)를 사용하여 디스크램블링 할 수 있다. 즉, 단말은 활성화 신호에 의해 활성화되어 전송되는 SPS PDSCH들이 그룹 공통 CS-RNTI(GC-CS-RNTI)를 사용하여 초기화된 인자를 활용하여 스크램블링되는 것으로 이해하고 동작(디스크램블)할 수 있다 (1305).
도 14는 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 도면이다.
기지국은 단말에 SPS 설정 정보를 전송할 수 있다. 상기 SPS 설정은 unicast SPS 설정과 그룹 공통 SPS 설정을 포함할 수 있다 (1401). 상기 SPS 설정 정보는 상위 레이어 시그널링 (예를 들어, RRC 시그널링 또는 SIB 등)을 통해 전송될 수 있다.
기지국은 상기 설정한 SPS 설정 중 활성화할 SPS 설정을 결정할 수 있다. 구체적으로 기지국은 unicast SPS 설정을 활성화할지 그룹 공통 SPS 설정을 활성화할지 여부를 결정하여, 해당하는 SPS 설정을 결정할 수 있다 (1402).
또한, 기지국은 결정된 SPS 설정의 sps-ConfigIndex 및 이에 상응하는 정보를 결정할 수 있다. 기지국은 DCI를 통해 SPS 설정을 활성화할 수 있으며, 기지국은 HARQ process number 필드(HPN field)의 값을 결정하고, SPS 활성화 신호를 전송할 수 있다. 기지국은 PDSCH를 통해 전송되는 MAC CE를 통해 SPS 설정을 활성화할 수 있으며, 상기 MAC CE의 적어도 일부 필드의 값은 상기 활성화할 SPS 설정에 상응하는 sps-ConfigIndex에 상응하는 값으로 결정될 수 있다.
상기 활성화할 SPS 설정이 unicast SPS 설정에 상응하는 경우 기지국은 CS-RNTI를 사용하여 SPS PDSCH를 스크램블링하여 전송할 수 있다. 구체적으로, 기지국은 단말 특정 CS-RNTI를 사용하여 스크램블링 시퀀스를 얻기 위한 파라미터를 초기화하고 (1403), 상기 스크램블링 시퀀스를 사용하여 SPS PDSCH를 스크램블링하여 전송할 수 있다 (1405).
상기 활성화할 SPS 설정이 그룹 공통 SPS 설정에 상응하는 경우 기지국은 그룹 공통 CS-RNTI (GC-CS-RNTI)를 사용하여 SPS PDSCH를 스크램블링하여 전송할 수 있다. 구체적으로, 기지국은 그룹 공통 CS-RNTI를 사용하여 스크램블링 시퀀스를 얻기 위한 파라미터를 초기화하고 (1404), 상기 스크램블링 시퀀스를 사용하여 SPS PDSCH를 스크램블링하여 전송할 수 있다 (1406).
3. activation signal 재전송 관련
본 개시의 일 실시예에 따르면, 기지국은 적어도 하나의 그룹 공통 SPS(들)를 단말들에 설정하고 그룹 공통 PDCCH(group-common PDCCH)를 통해 상기 그룹 공통 SPS 중 적어도 한 개를 활성화하는 신호를 단말들에 전송할 수 있다. 기지국은 상기 그룹 공통 SPS PDSCH의 수신에 대한 피드백을 수신하여 상기 그룹에 속한 단말들 중 적어도 하나의 단말이 상기 그룹 공통 SPS의 활성화 신호를 수신하지 못하였는지 여부를 결정할 수 있다. 구체적으로, 기지국은 상기 그룹에 속한 단말들 중 적어도 하나의 단말들로부터 그룹 공통 SPS PDSCH의 수신에 대해 피드백을 수신하지 못한 경우에 상기 그룹 공통 SPS의 활성화 신호를 수신하지 못하였다고 판단할 수 있다. 기지국은 상기 SPS 활성화 신호의 수신을 실패한 단말에 SPS 활성화 신호를 단말 특정 PDCCH 혹은 그룹 공통 PDCCH 혹은 MAC CE 중 적어도 한 개를 통하여 재전송할 수 있다.
본 개시의 일 실시예에 따르면, 상기 단말들의 피드백을 위한 자원은 상기 그룹 공통 SPS 설정에 포함될 수 있는데, 예를 들어 그룹 공통 SPS 설정에는 PUCCH-ResourceId가 포함될 수 있으며, 상기 PUCCH-ResourceId는 단말 특정으로 설정된 PUCCH-Resource들 중 한 개를 지시할 수 있다.
본 개시의 일 실시예에 따르면, 상기 단말들의 피드백을 위한 자원은 상기 그룹 공통 SPS 설정에 포함될 수 있는데, 예를 들어 그룹 공통 SPS 설정에는 PUCCH-ResourceId가 포함될 수 있으며, 상기 PUCCH-ResourceId는 상기 그룹에 속한 단말에 공통으로 설정된 PUCCH-Resource들 중 한 개를 지시할 수 있다. 또는 상기 그룹 공통 SPS 설정에 포함된 PUCCH-Resource Id는 단말 특정으로 설정된 PUCCH-Resource들 중 한 개를 지시할 수 있다. 따라서, 단말 별로 SPS PDSCH 수신 여부에 대한 피드백 정보를 기지국에 전송할 수 있다.
또는, 기지국은 단말 특정으로 PUCCH 전송 타이밍 오프셋(예를 들어, offset1 값을 설정하여, SPS 활성화 신호를 통해 결정된 PUCCH를 전송해야 하는 slot n이 아닌 n+offset1에 전송) 혹은/그리고 PUCCH 전송 자원의 주파수 도메인 오프셋(예를 들어, offset2 값을 설정하여, 상기 PUCCH-ResourceId의 startingPRB가 m일 때, startingPRB를 m+offset2으로 하여 전송)을 설정할 수 있다. 또는 기지국은 PUCCH 전송 타이밍을 단말에 설정하기 위해 시간 오프셋, 주파수 오프셋 및 주기 정보 중 적어도 하나를 포함하는 PUCCH 설정 정보를 단말에 전송할 수 있다. 이 때, 기지국은 적어도 하나의 PUCCH 설정 정보를 단말에 설정할 수 있으며 (예를 들어, List의 형태로 설정할 수 있다), SPS 활성화 신호에 상기 PUCCH 설정 정보 중 어느 하나를 지시하는 정보 (예를 들어, 타이밍 정보로 칭할 수 있다) 를 포함하여 단말이 피드백을 전송할 자원을 지시할 수 있다. 다만, 상기 SPS 활성화 신호에 PUCCH 설정 정보 중 어느 하나를 지시하는 정보가 포함되지 않는 경우, 단말은 default로 설정된 PUCCH 설정 정보를 이용해 피드백을 전송할 수 있다.
또는, 상위 레이어를 통한 설정 없이 상기 SPS 활성화 신호에 PUCCH 전송 자원 (예. 타이밍 등)과 관련된 정보가 포함될 수도 있다.
본 개시의 일 실시예에 따르면, 그룹 공통 SPS PDSCH에 대한 단말의 HARQ 피드백은 ACK/NACK 기반 피드백 (즉, 디코딩에 성공하면 ACK, 디코딩에 실패하면 NACK을 피드백)만이 허용되며, NACK only 피드백 (즉, 디코딩에 성공하면 피드백하지 않고, 디코딩에 실패하는 경우만 NACK을 피드백)은 허용(설정)되지 않을 수 있다.
도 15는 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 도면이다.
기지국은 단말에 SPS 설정 정보를 전송할 수 있다. 상기 SPS 설정은 unicast SPS 설정과 그룹 공통 SPS 설정을 포함할 수 있다 (1501). 상기 설정 정보에는 상술한 그룹 공통 SPS의 피드백을 위한 자원 관련 설정이 포함될 수 있다. 상기 SPS 설정 정보는 상위 레이어 시그널링 (예를 들어, RRC 시그널링 또는 SIB 등)을 통해 전송될 수 있다.
그리고, 기지국은 그룹 공통 신호 (예를 들어, 그룹 공통 PDCCH 혹은 그룹 공통 PDSCH를 통해 전송되는 MAC CE)를 활용하여 상기 설정한 그룹 공통 SPS 설정 중 적어도 한 개를 활성화하는 그룹 공통 SPS 활성화 신호를 전송할 수 있다 (1502). 또는 기지국은 단말 특정 신호 (예를 들어, 단말 특정 PDCCH 혹은 단말 특정 PDSCH를 통해 전송되는 MAC CE)를 활용하여 그룹 공통 SPS 설정 중 적어도 한 개를 활성화하는 그룹 공통 SPS 활성화 신호를 전송할 수 있다. 단말 특정 신호를 이용하여 그룹 공통 SPS 설정을 활성화하는 구체적인 방법은 상술한 내용에 따른다. 따라서, 본 개시에 따르면 도 13 내지 도 14에 대한 내용은 SPS 활성화 신호를 재전송하는 방법과 결합하여 적용될 수 있다.
기지국은 SPS 활성화 이후 상술한 실시예들에 따라 정해진 자원에 그룹 공통 PDSCH를 전송할 수 있다. 기지국은 상기 SPS 설정 및 상기 실시예 중 적어도 일부에 기반하여 정해진 자원에서 단말(들)의 피드백을 모니터할 수 있다 (1503).
기지국은 그룹에 속한 모든 단말들이 모두 성공적으로 상기 SPS 활성화 신호를 수신하였는지 여부를 상기 피드백을 통하여 결정할 수 있다 (1504).
만약, 그룹에 속한 모든 단말들로부터 피드백 정보를 수신하는 경우, 기지국은 그룹에 속한 모든 단말들이 성공적으로 SPS 활성화 신호를 수신한 것으로 판단할 수 있다. 따라서, 기지국은 상기 단말들로부터 수신된 피드백 정보에 기반하여 적어도 하나의 단말이 SPS PDSCH를 수신하지 못한 것으로 판단되는 경우 (즉, NACK을 수신한 경우), 기지국은 상기 SPS PDSCH를 재전송할 수 있다. 이 때, 기지국은 단말 특정 SPS PDSCH 또는 그룹 공통 SPS PDSCH를 통해 상기 SPS PDSCH를 재전송할 수 있다. 이 때, 상기 SPS 재전송을 위한 자원은 활성화된 SPS 설정을 이용하거나 혹은 재전송을 위해 별도의 SPS 설정이 단말에 설정되거나 재전송을 위한 자원 할당에 대한 정보가 PDCCH를 통해 전송될 수 있다. 이 때, 재전송을 위한 자원 할당에 대한 정보는 DCI에 포함될 수 있으며, 기존의 DCI format 1_1 내지 1_3의 자원 할당 정보를 설정하는 방법을 이용하여 할당될 수 있다.
만약 그룹에 속한 단말들 중 적어도 하나의 단말로부터 피드백을 수신하지 못하는 경우 기지국은 상기 단말이 SPS 활성화 신호를 수신하지 못하였다고 판단할 수 있다. 따라서, 기지국은 SPS 활성화 신호를 재전송할 수 있다 (1505). 또한, 기지국은 그룹에 속한 단말들 중 피드백을 수신한 단말에 대해, NACK이 수신된 경우 SPS PDSCH를 재전송할 수 있다. 이 때, 기지국은 단말 특정 SPS PDSCH 또는 그룹 공통 SPS PDSCH를 통해 상기 SPS PDSCH를 재전송할 수 있다. 이 때, 상기 SPS 재전송을 위한 자원은 활성화된 SPS 설정을 이용하거나 혹은 재전송을 위해 별도의 SPS 설정이 단말에 설정되거나 재전송을 위한 자원 할당에 대한 정보가 PDCCH를 통해 전송될 수 있다. 이 때, 재전송을 위한 자원 할당에 대한 정보는 DCI에 포함될 수 있으며, 기존의 DCI format 1_1 내지 1_3의 자원 할당 정보를 설정하는 방법을 이용하여 할당될 수 있다.
도 16은 본 개시의 일 실시예에 따른 재전송 SPS 활성화 신호 및 SPS PDSCH의 타이밍을 도시한 도면이다.
기지국은 SPS 활성화 신호 (1601)을 전송하고, 수학식 7에 의해 결정되는 SPS PDSCH 전송 타이밍에 맞추어 SPS PDSCH (1602, 1604, 1605)를 전송할 수 있다. 기지국은 SPS PDSCH의 피드백 신호에 기반하여 SPS 활성화 신호 (1603)를 재전송할 수 있다. 즉, 기지국은 SPS PDSCH에 대한 피드백 신호가 수신되지 않는 경우, SPS 활성화 신호를 재전송할 수 있다.
본 개시의 일 실시예에 따르면, 재전송되는 SPS 활성화 신호 (1603)의 slot을 slot n, 재전송되는 SPS 활성화 신호에 포함되는 K0 값 (상술한 바와 같이 상위 레이어 시그널링을 통해 K0 값의 후보들을 설정하고, SPS 활성화 신호를 통해 이 중 어느 하나를 지시하거나 활성화 신호에 상기 K0 값 자체가 포함되는 방법 모두 사용될 수 있다), 및 SPS 활성화 신호 및 수학식 7에 의해 결정되는 SPS PDSCH 전송 slot m (1604) 사이에는 n + K0 = m과 같은 관계가 성립할 수 있다.
따라서, 기지국은 위와 같은 관계를 만족하도록, 먼저 SPS PDSCH 전송 slot m을 결정하고, 이에 맞추어 먼저 SPS 활성화 신호의 재전송 slot n을 결정하고, SPS 활성화 신호에 포함되는 K0 값을 결정할 수 있다. 혹은 기지국은 먼저 SPS 활성화 신호에 포함되는 K0 값을 결정하고, 상기 SPS 활성화 신호의 재전송 slot n을 결정할 수 있다. 상기 재전송 SPS 활성화 신호는 DCI로 PDCCH를 통해 전송되거나 MAC CE로 PDSCH를 통해 전송될 수 있다.
한편, 재전송 SPS 활성화 신호가 상위 레이어 신호(예를 들어 MAC CE)로 전송되는 경우 이에 대한 프로세싱 타임이 더 필요할 수 있다.
본 개시의 일 실시예에 따르면, 상위 레이어 시그널링 신호를 위한 프로세싱 타임 (이하, proc_time 또는 프로세싱 타임)을 가지고 slot n에서 상위 레이어 신호를 통해 SPS 활성화 신호를 수신한 단말은 상기 활성화 신호 이후에 존재하는 SPS PDSCH들 중 SPS PDSCH의 첫 번째 심볼의 시작 바운더리(boundary)가 slot n + proc_time 이후에 존재하는 조건을 만족하는 SPS PDSCH들을 수신하여 디코딩하고, 이에 대한 피드백을 기지국에 전송할 수 있다. 단말은 상기 조건을 만족하지 않는 즉, SPS PDSCH의 첫 번째 심볼의 시작 바운더리(boundary)가 slot n + proc_time 이전에 위치하는 SPS PDSCH들은 수신하지 않고 이에 대한 피드백을 전송하지 않을 수 있다.
본 개시의 일 실시예에 따르면, 상위 레이어 시그널링 프로세싱 타임 proc_time을 가지고 slot n에서 상위 레이어 신호를 통해 SPS 활성화 신호를 송신한 기지국은 상기 활성화 신호 이후에 존재하는 SPS PDSCH들 중 SPS PDSCH의 첫 번째 심볼의 시작 바운더리(boundary)가 n + proc_time 이후에 존재하는 조건을 만족하는 SPS PDSCH들에 대한 단말들의 피드백을 모니터할 수 있다. 기지국은 상기 조건을 만족하지 않는 즉, SPS PDSCH의 첫 번째 심볼의 시작 바운더리(boundary)가 n + proc_time 이전에 위치하는 SPS PDSCH들에 대한 단말들의 피드백은 모니터하지 않을 수 있다.
본 개시의 일 실시예에 따르면, 상기 proc_time으로는 예를 들어 기지국이 설정하는 값이 사용되거나, 단말의 processing 능력에 따라 다른 값을 가지고 단말 능력 교환 과정에서 설정되거나, 표준 상으로 정의되어 기지국과 단말 각각의 제조 과정에서 메모리에 저장되거나 HW적으로 동작하게 설정될 수 있다. 예를 들어 상기 proc_time은
Figure PCTKR2022005651-appb-I000128
과 같은 값을 가질 수 있다.
본 개시의 일 실시예에 따르면, SPS 활성화 신호가 MAC CE를 통해 전송되는 경우, 상기 MAC CE의 적용 시점 (즉, SPS PDSCH의 수신, 디코딩 및 HARQ-ACK 피드백 동작의 시작점)은 상기 MAC CE가 전송된 PDSCH에 대한 HARQ-ACK을 전송하는 slot이 k일 때, k +
Figure PCTKR2022005651-appb-I000129
이후의 첫 번째 slot일 수 있다. 즉 단말은 상기 조건을 만족하는 slot(s) (즉, MAC CE를 포함하는 PDSCH에 대한 HARQ-ACK을 slot k에서 전송하였을 때,
Figure PCTKR2022005651-appb-I000130
이후의 slot들)에 위치하는 SPS PDSCH들을 수신하여 디코딩하고, 이에 대한 피드백을 기지국에 전송할 수 있으며, 상기 조건을 만족하지 않는 slot(s)에 위치하는 SPS PDSCH들은 수신하지 않고, 혹은 수신하였어도 디코딩하지 않고, 이에 대한 피드백을 전송하지 않을 수 있다.
상기 slot k는 상기 MAC CE를 포함하는 PDSCH를 스케줄링하는 PDCCH를 통해 전송되는 DCI에 포함된 'PDSCH-to-HARQ_feedback timing indicator' 필드(k1 값)를 통해 지시될 수 있다. 만약 PDSCH-to-HARQ_feedback timing indicator 필드가 존재하지 않으면 RRC에 설정된 1개 값(k1 값)으로 지시될 수 있다.
도 17A 및 도 17B는 본 개시의 일 실시예에 따른 재전송 SPS 활성화 신호 및 SPS PDSCH의 타이밍을 도시한 도면이다.
앞에서 상술한 실시예에 따라, 도 17A의 17-1a 및 도 17B의 17-1b를 참고하면, SPS 활성화 신호 (PDCCH를 통해 전송되는 DCI 또는 상위 레이어 시그널링을 통해 전송되는 MAC CE)를 수신한 단말은 상술한 조건을 만족하는 SPS PDSCH들 (1702, 1704, 1705, 1706)을 수신하여 디코딩하고 이에 대한 피드백을 제공할 수 있다. 피드백 전송에 따라 단말이 SPS 활성화 신호를 수신하지 못한 경우, 기지국은 SPS 활성화 신호를 재전송할 수 있으며 (1703, 1703-1), 상술한 바와 같이 재전송되는 SPS 활성화 신호의 slot은 SPS PDSCH의 slot m (1704) 및 SPS 활성화 신호에 의해 결정되는 K0에 기반하여 결정될 수 있다.
또한, 상술한 바와 같이 MAC CE를 통해 SPS 활성화 신호를 전송하는 경우 프로세싱 타임이 고려될 수 있으며, 도 17A의 17-1a를 참고하면, 기지국은 SPS 활성화 신호의 전송에 따른 프로세싱 타임을 고려하여 활성화 신호를 전송할 슬롯 (1703)을 결정할 수 있다. 또한, 도 17B의 17-1b를 참고하면, 기지국은 단말의 피드백 정보 수신 (1703-1) 이후의 프로세싱 타임을 고려하여 활성화 신호를 전송할 슬롯 (1703)을 결정할 수 있다.
한편, 도 17A의 17-2a 또는 17-3a를 참고하면 단말은 활성화 신호가 수신된 slot n (1703)에 대해, 프로세싱 타임 이전 (즉, slot n + 프로세싱 타임 이전 slot)의 slot에서 전송되는 SPS PDSCH (1704)를 수신하지 않거나(혹은 수신하지 못하거나), 상기 SPS PDSCH를 수신하여 디코딩하고 이에 대한 피드백을 제공하지 않을 수 있다. 또한, 단말은 프로세싱 타임 이후에 수신되는 SPS PDSCH (1705, 1706)들을 수신하여 디코딩하고 이에 대한 피드백을 제공할 수 있다.
또한, 도 17B의 17-2b 또는 17-3b를 참고하면, 단말은 활성화 신호가 수신된 slot n (1703)에 대해, 피드백 신호가 전송되는 슬롯 k (1703-2) 이후 프로세싱 타임 이전 (즉, slot k + 프로세싱 타임 또는 slot n + K1 + 프로세싱 타임)의 slot에서 전송되는 SPS PDSCH (1704)를 수신하지 않거나(혹은 수신하지 못하거나), 상기 SPS PDSCH를 수신하여 디코딩하고 이에 대한 피드백을 제공하지 않을 수 있다. 또한, 단말은 프로세싱 타임 이후에 수신되는 SPS PDSCH (1705, 1706)들을 수신하여 디코딩하고 이에 대한 피드백을 제공할 수 있다.
4. UE re-initialize
본 개시의 상기 실시예들에 따라 그룹 공통 SPS 활성화 신호가 재전송 되는 경우, 이미 그룹 공통 SPS 활성화 신호를 성공적으로 수신한 단말이 상기 그룹 공통 SPS 활성화 신호를 재수신하는 경우가 발생할 수 있다. SPS 활성화 신호를 수신하면 단말은 해당 서빙셀의 설정된 다운링크 할당(configured downlink assignment)을 (재)초기화((re-)initialize) 하게 되어 있어, 재전송 전에 수신하여 처리하던 SPS PDSCH를 통해 전송된 데이터(예를 들어, NACK을 전송 후 재전송을 기다리고 있는 데이터)의 처리에 비효율이 발생할 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통 SPS 활성화 신호를 성공적으로 수신한 단말은 상기 그룹 공통 SPS 활성화 신호를 재수신하는 경우 재수신된 신호를 버릴 수 있다 (discard). 즉, 해당 서빙셀의 설정된 다운링크 할당(configured downlink assignment)을 (재)초기화((re-)initialize)하지 않을 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통 SPS 활성화 신호1를 성공적으로 수신한 단말은 상기 그룹 공통 SPS 활성화 신호2를 재수신하는 경우, 신호1과 신호2의 내용(예를 들어, FDRA, TDRA, MCS 등)이 같은 경우 신호2를 버릴 수 있다 (discard). 즉, 해당 서빙셀의 설정된 다운링크 할당(configured downlink assignment)을 (재)초기화((re-)initialize)하지 않을 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통 SPS 활성화 신호를 성공적으로 수신한 단말은 상기 그룹 공통 SPS 활성화 신호를 재수신하는 경우, 상기 재전송 SPS 활성화 신호 이전에 수신한 SPS PDSCH를 통해 전송된 데이터가 담긴 HARQ 버퍼는 초기화(flush)하지 않고, 기지국이 상기 데이터를 재전송하는 경우 이를 수신하여 처리할 수 있다.
본 개시의 일 실시예에 따르면, 이미 그룹 공통 SPS 활성화 신호1를 성공적으로 수신한 단말은 상기 그룹 공통 SPS 활성화 신호2를 재수신하는 경우, 신호1과 신호2의 내용(예를 들어, FDRA, TDRA, MCS 등)의 적어도 일부가 다를 경우 이에 기반하여 해당 서빙셀의 설정된 다운링크 할당(configured downlink assignment)을 (재)초기화((re-)initialize)하고, 상기 신호2 이전에 수신한 SPS PDSCH를 통해 전송된 데이터가 담긴 HARQ 버퍼는 초기화(flush)하지 않고, 기지국이 상기 데이터를 재전송하는 경우 이를 수신하여 처리할 수 있다.
본 개시의 일 실시예에 따르면, 그룹 공통 SPS 활성화 신호의 재전송 DCI는 단말 특정 PDCCH (UE-specific PDCCH)를 통해 전송되거나, 그룹 공통 SPS 활성화 신호의 재전송 MAC CE는 단말 특정 PDSCH를 통해 전송되어, 이미 그룹 공통 SPS 활성화 신호를 수신한 단말이 중복 수신하지 않도록 할 수 있다.
본 개시의 일 실시예에 따르면 적어도 한 개 이상의 SPS 설정이 동시에 활성화되고, SPS PDSCH(상응하는 PDCCH가 존재하지 않는 PDSCH)가 한 개의 서빙셀의 한 개의 slot에 적어도 두 개 이상 존재하는 경우, 단말은 다음 표 24와 같은 방법을 통하여 수신할 PDSCH(들)를 결정하여 적어도 한 개 이상의 PDSCH(들)를 수신할 수 있다.
0. 디코딩을 위해 선택된 PDSCH(들)의 개수를 나타내는 j의 값을 0으로 설정. 그리고, slot 내의 활성화된 SPS PDSCH들(상응하는 PDCCH가 존재하지 않는 PDSCH들)의 set을 Q로 설정.
1. 단말은 상기 Q 내에서 설정된 가장 낮은 sps-ConfigIndex값에 상응하는 PDSCH를 수신하고, j값을 1 증가시킴. 그리고, 상기 수신 PDSCH를 생존(survivor) PDSCH로 지정함.
2. 1단계의 생존 PDSCH, 그리고 상기 생존 PDSCH와 부분적으로라도 겹치는 다른 PDSCH들을 Q로부터 제외함.
3. 1단계 및 2단계를 Q가 다 비워질 때까지 혹은 j의 값이 단말이 제공하는(support하는) 한 개 slot에서 수신 가능한 PDSCH의 개수와 같아질 때까지 반복함.
본 개시의 일 실시예에 따르면, unicast SPS 설정은 상술한 표 22와 같이 설정될 수 있으며, 그룹 공통 SPS 설정은 상술한 표 23과 같이 별도로 설정될 수 있다. 그룹 공통 SPS 설정은 표 23에 포함된 파라미터의 적어도 일부를 포함할 수 있고, unicast SPS 설정과 그룹 공통 SPS 설정의 sps-ConfigIndex들이 가지는 인덱스 값의 범위는 같을 수 있다. 다만, 본 개시의 권리 범위는 이에 한정되지 않는다. 즉, 그룹 공통 SPS 설정을 위해서도 상기의 표 22와 같은 설정이 사용될 수 있으며, 표 22와 같은 설정이 사용되는 경우에 단말에 unicast SPS 설정인지 그룹 공통 SPS 설정인 지 여부를 지시하는 방법은 상술한 바와 동일하므로 이하에서는 생략한다. 또한, 이하에서는 unicast SPS 설정은 표 22와 같이 설정되고, 그룹 공통 SPS 설정은 표 23과 같이 설정되는 경우를 예를 들어 설명하지만, 본 개시가 이에 한정되는 것은 아니다. 즉, 그룹 공통 SPS 설정에 표 22와 같은 설정이 사용되는 경우에도 unicast SPS 설정과 그룹 공통 SPS 설정이 동일한 sps-ConfigIndex를 갖는 경우에는 본 개시가 적용될 수 있다. 본 개시의 일 실시예에 따르면, 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 그리고, 상기 활성화된 SPS들 각각의 PDSCH들이 한 개의(같은) slot에 위치할 수 있다. 이 경우 표 24의 PDSCH를 결정하는 과정 1단계 중에 sps-ConfigIndex 값이 같은 경우가 발생하여 어떤 SPS PDSCH를 수신하여야 하는지 불명확한 문제가 발생할 수 있다.
본 개시의 일 실시예에 따르면, 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 그리고, 상기 활성화된 SPS들 각각의 PDSCH들이 한 개의(같은) slot에 위치할 수 있다. 단말은 다음 표 25과 같은 방법을 통하여 수신할 PDSCH(들)를 결정하여 적어도 한 개 이상의 PDSCH(들)를 수신할 수 있다. 한편, 본 개시에서는 단말이 지원할 수 있는 한 개의 슬롯에서 수신 가능한 PDSCH의 개수 (또는 단말이 한 개의 슬롯에서 수신하능한 최대 PDSCH의 개수)에 대한 정보는 단말 능력 정보에 포함될 수 있으며, 기지국이 단말 능력 정보 요청 메시지를 단말에 전송하고 이에 따라 단말로부터 단말 능력 정보를 수신할 수 있다.
0. 디코딩을 위해 선택된 PDSCH(들)의 개수를 나타내는 j의 값을 0으로 설정. 그리고, slot 내의 활성화된 SPS PDSCH들(상응하는 PDCCH가 존재하지 않는 PDSCH들)의 set을 Q로 설정.
1. 단말은 상기 Q 내에서 설정된 가장 낮은 sps-ConfigIndex값에 상응하는 PDSCH를 수신하고, j값을 1 증가시킴. 그리고, 상기 수신 PDSCH를 생존(survivor) PDSCH로 지정함.
1-A. 상기 가장 낮은 sps-ConfigIndex 값에 상응하는 PDSCH가 1개가 아닐 경우(예를 들어 2개), 그룹 공통 SPS 설정에 속한 sps-ConfigIndex의 SPS PDSCH를 선택 (또는 생존 PDSCH로 지정)하여 수신할 수 있다.
2. 1단계의 생존 PDSCH, 그리고 상기 생존 PDSCH와 부분적으로라도 겹치는 다른 PDSCH들을 Q로부터 제외함.
3. 1단계 및 2단계를 Q가 다 비워질 때까지 혹은 j의 값이 단말이 제공하는(support하는) 한 개 slot에서 수신 가능한 PDSCH의 개수와 같아질 때까지 반복함.
본 개시의 일 실시예에 따르면, 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 그리고, 상기 활성화된 SPS들 각각의 PDSCH들이 한 개의(같은) slot에 위치할 수 있다. 단말은 다음 표 25-2와 같은 방법을 통하여 수신할 PDSCH(들)를 결정하여 적어도 한 개 이상의 PDSCH(들)를 수신할 수 있다. 한편, 본 개시에서는 단말이 지원할 수 있는 한 개의 슬롯에서 수신 가능한 PDSCH의 개수 (또는 단말이 한 개의 슬롯에서 수신하능한 최대 PDSCH의 개수)에 대한 정보는 단말 능력 정보에 포함될 수 있으며, 기지국이 단말 능력 정보 요청 메시지를 단말에 전송하고 이에 따라 단말로부터 단말 능력 정보를 수신할 수 있다.
0. 디코딩을 위해 선택된 PDSCH(들)의 개수를 나타내는 j의 값을 0으로 설정. 그리고, slot 내의 활성화된 SPS PDSCH들(상응하는 PDCCH가 존재하지 않는 PDSCH들)의 set을 Q로 설정.
1. 단말은 상기 Q 내에서 설정된 가장 낮은 sps-ConfigIndex값에 상응하는 PDSCH를 수신하고, j값을 1 증가시킴. 그리고, 상기 수신 PDSCH를 생존(survivor) PDSCH로 지정함.
1-A. 상기 가장 낮은 sps-ConfigIndex 값에 상응하는 PDSCH가 1개가 아닐 경우(예를 들어 2개), unicast SPS 설정에 속한 sps-ConfigIndex의 SPS PDSCH를 선택(또는 생존 PDSCH로 지정)하여 수신할 수 있다.
2. 1단계의 생존 PDSCH, 그리고 상기 생존 PDSCH와 부분적으로라도 겹치는 다른 PDSCH들을 Q로부터 제외함.
3. 1단계 및 2단계를 Q가 다 비워질 때까지 혹은 j의 값이 단말이 제공하는(support하는) 한 개 slot에서 수신 가능한 PDSCH의 개수와 같아질 때까지 반복함.
본 개시의 일 실시예에 따르면, 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 그리고, 상기 활성화된 SPS들 각각의 PDSCH들이 한 개의(같은) slot에 위치할 수 있다. 단말은 다음 표 27과 같은 방법을 통하여 수신할 PDSCH(들)를 결정하여 적어도 한 개 이상의 PDSCH(들)를 수신할 수 있다. 한편, 본 개시에서는 단말이 지원할 수 있는 한 개의 슬롯에서 수신 가능한 PDSCH의 개수 (또는 단말이 한 개의 슬롯에서 수신하능한 최대 PDSCH의 개수)에 대한 정보는 단말 능력 정보에 포함될 수 있으며, 기지국이 단말 능력 정보 요청 메시지를 단말에 전송하고 이에 따라 단말로부터 단말 능력 정보를 수신할 수 있다.
0. 디코딩을 위해 선택된 PDSCH(들)의 개수를 나타내는 j의 값을 0으로 설정. 그리고, slot 내의 활성화된 SPS PDSCH들(상응하는 PDCCH가 존재하지 않는 PDSCH들)의 set을 Q로 설정.
1. 단말은 상기 Q 내에서 설정된 가장 낮은 sps-ConfigIndex값에 상응하는 PDSCH를 수신하고, j값을 1 증가시킴. 그리고, 상기 수신 PDSCH를 생존(survivor) PDSCH로 지정함.
1-A. 상기 가장 낮은 sps-ConfigIndex 값에 상응하는 PDSCH가 1개가 아닐 경우(예를 들어 2개), 기지국의 설정(혹은 지시)에 상응하는 sps-ConfigIndex의 SPS PDSCH를 선택 (또는 생존 PDSCH로 지정)하여 수신할 수 있다.
2. 1단계의 생존 PDSCH, 그리고 상기 생존 PDSCH와 부분적으로라도 겹치는 다른 PDSCH들을 Q로부터 제외함.
3. 1단계 및 2단계를 Q가 다 비워질 때까지 혹은 j의 값이 단말이 제공하는(support하는) 한 개 slot에서 수신 가능한 PDSCH의 개수와 같아질 때까지 반복함.
본 개시의 일 실시예에 따르면, 기지국은 위와 같은 경우 어떤 SPS PDSCH를 수신할 것인지에 대한 정보를 단말에 설정할 수 있다. 상기 설정(혹은 지시) 정보는 예를 들어 상위 레이어 시그널링(RRC 시그널링), MAC CE, 혹은 DCI를 통해 전달될 수 있다. 본 개시의 일 실시예에 따르면, RRC 시그널링의 각 unicast SPS 설정 IE 및/혹은 MBS SPS 설정 IE 내에 상기 '어떤 SPS PDSCH를 수신할 것인지에 대한 설정 정보'가 포함될 수 있다. 상기 어떤 SPS PDSCH를 수신할 것인지에 대한 설정 정보는 PDSCH 선택 관련 정보, PDSCH 선택 규칙 (PDSCH selection rule), 우선 순위에 대한 정보로 칭해질 수 있다. 상기 정보는 1비트로 구성되어 unicast SPS 또는 그룹 공통 SPS를 지시하거나 혹은 unicast SPS 또는 그룹 공통 SPS를 직접 지시하는 정보일 수 있다.
상기 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신할 것인지에 대한 설정 정보)는 MBS SPS 설정(들) 전체 혹은 unicast SPS 설정(들) 전체에 대해 적용되는 설정일 수 있다. 즉, 상기 정보는 표 22와 같은 unicast SPS-Config 설정(들)에 포함된 sps-ConfigIndex 전체, 표 23과 같은 MBS SPS-Config 설정(들)에 포함된 sps-ConfigIndex 전체에 적용되는 설정일 수 있다. 상기 정보는 예를 들어, unciast SPS-Config. 설정(들)의 목록(list)를 포함하는 설정 정보(예, BWP 설정 IE 등), MBS SPS-Config. 설정(들)의 목록(list)를 포함하는 설정 정보(예, MBS BWP 설정 IE, MBS dedicated BWP IE 등)에 포함되어 상기 목록에 포함된 모든 sps-ConfigIndex 전체에 적용되는 것일 수 있다. 상기 PDSCH 선택 관련 정보는 BWP별로 설정되는 정보일 수 있다.
따라서, unicast SPS-Config 설정 및 그룹 공통 SPS-Config에는 각각 상기 PDSCH 선택 관련 정보가 포함될 수 있으며, 상기 unicast SPS-Config 설정 및 그룹 공통 SPS-Config에 각각 포함된 복수의 sps-ConfigIndex에 대해 상기의 정보가 공통적으로 적용될 수 있다.
이 때, unicast SPS-Config 설정 및 그룹 공통 SPS-Config에 포함된 PDSCH 선택 관련 정보는 동일한 값 (또는 동일한 방식, 즉, 그룹 공통 또는 unicast 중 어느 하나를)을 지시하도록 설정될 수 있다. 또는, 그룹 공통 SPS-Config 또는 SPS-Config 중 어느 하나에 상기 PDSCH 선택 관련 정보가 포함될 수 있으며, 특정 방식 (그룹 공통 또는 unicast)의 PDSCH 수신을 우선하여 적용하도록 설정될 수 있다.
또한, unicast SPS-Config 설정 및 그룹 공통 SPS-Config에 포함된 PDSCH 선택 관련 정보가 서로 다른 값 (또는 다른 방식, 즉, 어느 하나가 unicast를 지시하고 다른 하나가 그룹 공통을 지시)을 지시하는 경우 단말은 미리 정해진 방식에 따른 PDSCH를 수신하도록 설정될 수 있다. 즉, unicast SPS-Config 설정에 포함된 정보가 unicast SPS PDSCH의 우선 수신을 지시하고, 그룹 공통 SPS-Config 설정에 포함된 정보가 그룹 공통 SPS PDSCH의 우선 수신을 지시하는 경우 혹은 그 반대의 경우, 단말은 미리 정해진 방법에 따라 unicast SPS PDSCH 또는 그룹 공통 SPS PDSCH를 선택하여 수신할 수 있다.
또는 SPS-Config 내에 unicast SPS-Config 및 그룹 공통 SPS-Config 중 적어도 하나가 포함될 수 있으며, 상기 SPS-Config 내에 상기 PDSCH 선택 관련 정보가 포함될 수 있다. 따라서, SPS PDSCH가 중첩되고 sps-ConfigIndex가 동일한 경우에 상기 PDSCH 선택 관련 정보에 기반하여 SPS PDSCH를 선택할 수 있다.
혹은 상기 '어떤 SPS PDSCH를 수신할 것인지에 대한 정보'는 SPS 설정의 각 sps-ConfigIndex별로 설정되는 정보로써, MBS SPS 설정 내의 각 sps-ConfigIndex별로 그리고 unicast SPS 설정 내의 각 sps-ConfigIndex별로 설정되는 값일 수 있다. 즉, 표 22와 같은 unicast SPS-Config 설정에 포함된 sps-ConfigIndex에 상응하는 설정 값이 존재하고, 표 23과 같은 MBS SPS-Config 설정에 포함된 sps-ConfigIndex에 상응하는 설정 값이 존재할 수 있다. 상기 정보는 예를 들어, unicast SPS-Config. 설정 IE, MBS SPS-Config. 설정 IE에 포함되어 상기 설정 IE 각각에 포함된 SPS 설정 각각에 적용되는 것일 수 있다.
따라서, unicast SPS-Config 설정에 포함된 sps-ConfigIndex에 상응하는 설정 값과 그룹 공통 SPS-Config에 포함된 sps-ConfigIndex에 상응하는 설정 값은, 동일한 index에 대해 동일한 값 (또는, 동일한 방식, 즉, 그룹 공통 또는 unicast 중 어느 하나)를 지시하도록 설정될 수 있다. 또는, 그룹 공통 SPS-Config 또는 SPS-Config 중 어느 하나의 sps-ConfigIndex에 상응하는 정보에 상기 PDSCH 선택 관련 정보가 포함될 수 있으며, 특정 방식 (그룹 공통 또는 unicast)의 PDSCH 수신을 우선하여 적용하도록 설정될 수 있다.
따라서, 활성화된 SPS PDSCH들 중 lowest PDSCH index가 1이고, unicast SPS-config 설정 및 그룹 공통 SPS-config 설정에 대해 상기 sps-ConfigIndex 1이 활성화되었다면, 상기 sps-ConfigIndex 1에 상응하는 PDSCH 선택 관련 정보에 기반하여 unicast SPS PDSCH 또는 그룹 공통 SPS PDSCH 중 어느 하나를 선태갛여 수신할 수 있다.
또한, unicast SPS-Config 설정 및 그룹 공통 SPS-Config에 포함된 동일한 sps-ConfigIndex에 대해 PDSCH 선택 관련 정보가 서로 다른 값 (또는 다른 방식, 즉, 어느 하나가 unicast를 지시하고 다른 하나가 그룹 공통을 지시)을 지시하는 경우 단말은 미리 정해진 방식에 따른 PDSCH를 수신하도록 설정될 수 있다. 즉, 상술한 실시예에서 unicast SPS-Config 설정에 포함된 sps-ConfigIndex 1에 상응하는 PDSCH 선택 관련 정보가 unicast SPS PDSCH의 우선 수신을 지시하고, 그룹 공통 SPS-Config 설정에 포함된 sps-ConfigIndex 1에 상응하는 정보가 그룹 공통 SPS PDSCH의 우선 수신을 지시하는 경우 혹은 그 반대의 경우, 단말은 미리 정해진 방법에 따라 unicast SPS PDSCH 또는 그룹 공통 SPS PDSCH를 선택하여 수신할 수 있다.
또는 sps-ConfigIndex 별로 설정 정보가 포함될 수 있고, 상기 설정 정보에 상기 PDSCH 선택 관련 정보가 포함될 수 있다. SPS-Config 내에는 unicast SPS-Config 및 그룹 공통 SPS-Config 중 적어도 하나가 포함될 수 있다. 또한, sps-ConfigIndex 별로 설정되는 설정 정보는 상기 SPS-Config 내에 포함되거나 별도로 설정될 수 있다. 상기 unicast SPS-Config 및 그룹 공통 SPS-Config는 각각 상기 sps-ConfigIndex를 참조할 수 있으며, 따라서 동일한 sps-ConfigIndex에 대해서는 동일한 방식의 SPS PDSCH를 수신할 수 있다.
본 개시의 일 실시예에 따르면, 상술한 SPS 활성화 신호에 포함된 적어도 한 개의 필드를 통해 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신할 것인지에 대한 정보)가 단말에 전달될 수 있다. 상기 SPS 활성화 신호는 DCI 및 MAC CE를 포함할 수 있다. 상기 SPS 활성화 신호는 그룹 공통 PDCCH(group-common PDCCH) 혹은 단말 특정 PDCCH(UE-specific PDCCH)를 통해 전송될 수 있다. 상기 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신할 것인지에 대한 정보)를 지시하는 한 개의 필드는 HARQ process number 필드에 포함될 수 있다. 상기 '어떤 SPS PDSCH를 수신할 것인지에 대한 정보'를 지시하는 한 개의 필드는 Priority indicator 필드에 포함될 수 있다.
구체적으로, 본 개시의 일 실시예에 따르면, SPS 활성화를 지시하는 DCI에 포함된 HARQ process number 필드의 적어도 일부 bit(예를 들어, MSB 1 bit 혹은 LSB 1 bit)가 상기 PDSCH 선택 관련 정보를 지시할 수 있다. 즉, 상기 HARQ process number 필드의 상기 적어도 일부 bit를 제외한 나머지 bit들은 sps-ConfigIndex 값을 지시하며, 상기 sps-ConfigIndex 값에 상응하는 SPS PDSCH를 같은 slot에 위치하는 다른 SPS PDSCH(다른 DCI에 의해 활성화된, 같은 sps-ConfigIndex 값에 상응하는 다른 SPS PDSCH)에 우선하여 수신할 것인지를 결정하는데 사용될 수 있다. 예를 들어 HARQ process number 필드의 상기 bit 값이 1인 경우 상기 SPS PDSCH를 수신하고, 0인 경우는 상기 다른 SPS PDSCH를 수신할 수 있다 (또는 상기 HARQ process number 필드의 상기 bit 값이 0인 경우 상기 HARQ process number를 포함한 DCI에 의해 활성화된 SPS PDSCH를 수신하지 않거나, 디코딩하지 않거나, 디코딩을 시도하지 않을 수 있다). 혹은 그 반대로, HARQ process number 필드의 상기 bit 값이 0인 경우 상기 SPS PDSCH를 수신하고, 1인 경우는 상기 다른 SPS PDSCH를 수신할 수 있다 (또는 상기 HARQ process number 필드의 상기 bit 값이 1인 경우 상기 HARQ process number를 포함한 DCI에 의해 활성화된 SPS PDSCH를 수신하지 않거나, 디코딩하지 않거나, 디코딩을 시도하지 않을 수 있다).
본 개시의 일 실시예에 따르면, SPS 활성화를 지시하는 DCI에 포함된 Priority indicator 필드의 값이 상기 PDSCH 선택 관련 정보를 지시할 수 있다. 따라서, 상기 Priority indicator 필드의 값은 상기 DCI에 포함된 HARQ process number를 통해 sps-ConfigIndex 값이 지시될 수 있으며, 상기 sps-ConfigIndex에 상응하는 SPS PDSCH를 같은 slot에 위치하는 다른 SPS PDSCH(다른 DCI에 의해 활성화된, 같은 sps-ConfigIndex에 상응하는 다른 SPS PDSCH)에 우선하여 수신할 것인지를 결정하는데 사용될 수 있다. 예를 들어 상기 Priority indicator 필드의 bit 값이 1인 경우 상기 priority indicator 필드가 포함된 DCI에 의해 활성화된 SPS PDSCH를 수신하고, 0인 경우는 상기 다른 SPS PDSCH를 수신할 수 있다 (또는 상기 Priority indicator 필드의 상기 bit 값이 0인 경우 상기 HARQ process number를 포함한 DCI에 의해 활성화된 SPS PDSCH를 수신하지 않거나, 디코딩하지 않거나, 디코딩을 시도하지 않을 수 있다). 혹은 그 반대로, 상기 bit 값이 0인 경우 상기 SPS PDSCH를 수신하고, 1인 경우는 상기 다른 SPS PDSCH를 수신할 수 있다 (또는 상기 HARQ process number 필드의 상기 bit 값이 1인 경우 상기 HARQ process number를 포함한 DCI에 의해 활성화된 SPS PDSCH를 수신하지 않거나, 디코딩하지 않거나, 디코딩을 시도하지 않을 수 있다).
본 개시의 일 실시예에 따르면, 표 25, 표 26 혹은 표 27 및 상술한 설명을 통해 선택된 SPS PDSCH를 단말은 디코딩하여 그 결과인 HARQ-ACK 정보를 기지국에 PUCCH 혹은 PUSCH를 통하여 피드백할 수 있다.
도 18은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 도면이다.
단말은 기지국으로부터 SPS 설정 정보를 수신할 수 있다. 상술한 바와 같이 SPS 설정 정보는 unicast SPS 설정 정보 및 그룹 공통 SPS 설정 정보를 포함할 수 있다. 또는, 단말은 기지국으로부터 unicast SPS 설정 정보 및 그룹 공통 SPS 설정 정보를 수신할 수 있다. 상기 unicast SPS 설정 정보에는 sps-ConfigIndex 값이 포함될 수 있으며, 그룹 공통 SPS 설정 정보에는 sps-ConfigIndex 값이 포함될 수 있다. 또한, 상기 sps-ConfigIndex는 기 설정된 복수의 sps-ConfigIndex의 번호를 참조하는 형태로 구성될 수 있다. 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다.
그리고, 단말은 상기 SPS 설정을 활성화하기 위한 신호를 수신할 수 있다. 구체적인 내용은 상술한 바와 동일하며 이하에서는 생략한다.
단말은 상기 활성화된 SPS PDSCH를 확인할 수 있다. 하나의 슬롯 내에 활성화된 SPS PDSCH가 적어도 하나 위치할 수 있으며, 상기 하나의 슬롯 내에 위치한 SPS PDSCH를 SPS PDSCH 세트라 칭할 수 있다.
한편, 상기 하나의 슬롯 내에 복수의 SPS PDSCH가 위치하는 경우, 일부의 자원이 중첩될 수 있다. 단말은 중첩되지 않은 SPS PDSCH에서 데이터를 수신할 수 있으며 이를 위해 데이터를 수신하기 위한 SPS PDSCH를 선택할 수 있다. 상기 SPS PDSCH는 생존 SPS PDSCH라 칭할 수 있다. 단말은 가장 낮은 인덱스에 상응하는 SPS PDSCH를 선택하여 데이터를 수신할 수 있다.
한편, 상술한 바와 같이 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 따라서, 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상인 경우, 단말은 상술한 방법에 따라 SPS PDSCH를 선택할 수 있다. 예를 들어, 단말은 미리 정해진 방법 또는 기지국의 설정 (PDSCH 선택 관련 정보)에 따라 SPS PDSCH를 선택할 수 있다. 구체적인 방법은 상술한 바와 동일하므로 생략한다.
이후 단말은 상기 생존 SPS PDSCH와 중첩되는 SPS PDSCH를 상기 SPS PDSCH 세트에서 제외할 수 있으며, 상기 SPS PDSCH의 세트에 SPS PDSCH가 포함되지 않거나 단말이 지원하는 최대 수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외 단계는 반복될 수 있다.
또한, 상기 단말이 지원하는 SPS PDSCH의 최대 수는 단말 능력 정보에 포함될 수 있다. 따라서, 기지국은 단말 능력 정보를 요청하는 메시지를 단말에 전송하고, 단말 능력 정보를 포함한 메시지를 수신할 수 있다. 다만, 기지국이 단말 능력 정보를 기 수신한 경우에는 상기 단계는 생략될 수 있다.
한편, 상기 SPS PDSCH를 선택하는 단계를 구체적으로 설명하면 하기와 같다. 상기 활성화된 SPS들 각각의 PDSCH들이 한 개의(같은) slot에 위치할 수 있다. 먼저 단말은 디코딩을 위해 선택된 PDSCH(들)의 개수를 나타내는 j의 값을 0으로 설정하고, slot 내의 활성화된 SPS PDSCH들(상응하는 PDCCH가 존재하지 않는 PDSCH들)의 set을 Q로 설정할 수 있다 (1801).
단말은 상기 Q 내에서 설정된 가장 낮은 sps-ConfigIndex값에 상응하는 PDSCH를 수신하고, j값을 1 증가시키고, 상기 수신 PDSCH를 생존(survivor) PDSCH로 지정할 수 있다. 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값이 같은 값을 가질 수 있다. 따라서, 상기 가장 낮은 sps-ConfigIndex 값에 상응하는 PDSCH가 1개가 아닐 경우(예를 들어 2개), 단말은 기지국의 설정(혹은 지시)에 상응하는 sps-ConfigIndex의 SPS PDSCH를 선택하여 수신할 수 있다 (1802).
단말은 생존 PDSCH, 그리고 상기 생존 PDSCH와 부분적으로라도 겹치는 다른 PDSCH들을 Q로부터 제외할 수 있다 (1803).
단말은 상기 Q가 다 비워질 때까지 혹은 j의 값이 단말이 제공하는(support하는) 한 개 slot에서 수신 가능한 PDSCH의 개수와 같아질 때까지 1802 및 1803 단계를 반복할 수 있다 (1804). 이와 같은 과정을 통하여 단말은 한 개의 slot 내에 위치한 복수의 SPS PDSCH들 중 어떤 PDSCH(들)을 수신할 것인지를 결정할 수 있다.
단말은 상기 수신 결정된 PDSCH(들)을 수신하여 디코딩하고, 각 PDSCH(들)에 대한 HARQ-ACK 정보를 생성하여 기지국에 피드백할 수 있다. 단말은 unicast (SPS) PDSCH에 대한 HARQ-ACK 정보 및 그룹 공통 (SPS) PDSCH에 대한 HARQ-ACK 정보를 각각 생성하고, 이를 연결(concatenate, 예를 들어, unicast PDSCH에 대한 HARQ-ACK 정보(들) 뒤에 그룹 공통 PDSCH에 대한 HARQ-ACK 정보(들)이 위치, 혹은 그 반대)하여 한 개의 HARQ-ACK codebook으로 전송할 수 있다. 따라서, 상기 기지국의 설정(혹은 지시)에 따라 결정된 SPS PDSCH가 unicast SPS 설정에 상응하는지 혹은 그룹 공통 SPS 설정에 상응하는지에 따라 상기 HARQ-ACK codebook 내에서의 상기 선택된 SPS PDSCH의 HARQ-ACK 정보의 위치가 결정될 수 있다.
본 개시의 일 실시예에 따르면, 기지국은 단말에 SPS 설정 정보를 전송할 수 있다. 상술한 바와 같이 SPS 설정 정보는 unicast SPS 설정 정보 및 그룹 공통 SPS 설정 정보를 포함할 수 있다. 또는 기지국은 단말에 unicast SPS 설정 정보(들) 및 그룹 공통 SPS 설정 정보(들)을 전송할 수 있다. 상기 unicast SPS 설정 정보에는 sps-ConfigIndex 값이 포함될 수 있으며, 그룹 공통 SPS 설정 정보에는 sps-ConfigIndex 값이 포함될 수 있다. 또한, 상기 sps-ConfigIndex는 기 설정된 복수의 sps-ConfigIndex의 번호를 참조하는 형태로 구성될 수 있다. 구체적인 내용은 상술한 바와 동일하며, 이하에서는 생략한다.
기지국은 상술한 SPS 활성화 신호1를 전송하여 상기 설정된 unicast SPS 설정 및 그룹 공통 SPS 설정 중 한 개를 활성화 할 수 있다. 또한, 기지국은 상술한 SPS 활성화 신호2를 전송하여 상기 설정된 unicast SPS 설정 및 그룹 공통 SPS 설정 중 다른 한 개를 활성화 할 수 있다. 상기 활성화된 SPS 설정 중 한 개는 unicast SPS 설정이고, 다른 한 개는 그룹 공통 SPS 설정일 수 있다. 상기 활성화된 SPS 설정에 따른 적어도 하나의 PDSCH가 하나의 슬롯 내에 위치할 수 있으며, 하나의 슬롯 내에 위치한 SPS PDSCH를 SPS PDSCH 세트라 칭할 수 있다.
한편, 상기 하나의 슬롯 내에 복수의 SPS PDSCH가 위치하는 경우, 일부의 자원이 중첩될 수 있다. 기지국은 중첩되지 않은 SPS PDSCH에서 데이터를 전송할 수 있으며 이를 위해 데이터를 전송하기 위한 SPS PDSCH를 선택할 수 있다. 상기 SPS PDSCH는 생존 SPS PDSCH라 칭할 수 있다. 기지국은 가장 낮은 인덱스에 상응하는 SPS PDSCH를 선택하여 데이터를 전송할 수 있다.
한편, 상술한 바와 같이 단말에 설정된 unicast SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의 sps-ConfigIndex 값과 그룹 공통 SPS 설정(들) 중에서 활성화된 적어도 한 개 SPS의sps-ConfigIndex는 같은 값을 가질 수 있다. 따라서, 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상인 경우, 기지국은 상술한 방법에 따라 선택된 SPS PDSCH를 통해 데이터를 전송할 수 있다.
구체적으로 기지국은 단말에 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보)를 전송할 수 있다. 상기 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보)는 상기 SPS 설정 정보 및/혹은 상기 SPS 활성화 신호에 포함되어 전송될 수 있다. 기지국은 상기 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보)에 따라 만약 상기 활성화된 두 SPS 각각에 상응하는 SPS PDSCH들이 한 개의 slot에 위치할 경우 어떤 SPS PDSCH를 전송할 것인지를 결정하고, 상기 결정된 SPS PDSCH를 전송할 수 있다. 한편, 상기 SPS PDSCH를 선택하는 방법은 미리 정의될 수도 있다. SPS PDSCH를 선택하는 구체적인 방법은 상술한 바와 동일하므로, 이하에서는 생략한다.
그리고 기지국은 생존 SPS PDSCH와 중첩되는 SPS PDSCH를 상기 SPS PDSCH 세트에서 제외할 수 있으며, 상기 SPS PDSCH의 세트에 SPS PDSCH가 포함되지 않거나 단말이 지원하는 최대 수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외 단계를 반복하여 결정된 SPS PDSCH를 통해 데이터를 전송할 수 있다.
그리고, 상기 전송한 SPS PDSCH에 따라 단말이 피드백한 HARQ-ACK 정보를 수신하여 처리할 수 있다. 기지국은 HARQ-ACK 정보를 PUCCH혹은 PUSCH를 통해 수신할 수 있다. 상기 PUCCH 혹은 PUSCH를 통해 수신한 HARQ-ACK 코드북 내의 상기 전송한 SPS PDSCH에 대한 HARQ-ACK 정보의 위치(예를 들어, unicast PDSCH에 대한 HARQ-ACK 정보와 그룹 공통 PDSCH에 대한 HARQ-ACK 정보는 연속하여 위치하고(concatenate), 이는 한 개의 HARQ-ACK 코드북을 구성할 수 있다. unicast PDSCH에 대한 HARQ-ACK 정보(들) 뒤에 그룹 공통 PDSCH에 대한 HARQ-ACK 정보(들)이 위치, 혹은 그 반대일 수 있다.)는 상기 기지국의 설정(혹은 지시)에 따라 결정된 SPS PDSCH가 unicast SPS 설정에 상응하는지 혹은 그룹 공통 SPS 설정에 상응하는지에 따라 결정될 수 있다.
따라서, 본 개시의 일 실시예에 따른 단말의 방법은 SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하는 단계; SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계; 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하는 단계; 및 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 한다.
또한, 본 개시의 일 실시예에 따른 기지국의 방법은 SPS (semi persistent scheduling) 설정 정보를 단말에 전송하는 단계; 활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계; 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하는 단계; 및 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 한다.
또한, 본 개시의 일 실시예에 따른 단말은 송수신부; 및 상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하고, SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고, 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하고, 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 한다.
또한, 본 개시의 일 실시예에 따른 기지국은 송수신부; 및 상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 단말에 전송하고, 활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고, 하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하고, 상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며, 상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 한다.
도 19는 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다.
도 19을 참고하면, 단말은 송수신부 (1910), 제어부 (1920), 저장부 (1930)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (1910)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부 (1910)는 예를 들어, 기지국으로부터 SPS 설정 정보를 수신할 수 있으며, 상기 설정 정보는 RRC 시그널링, MIB 또는 SIB를 통해 수신될 수 있다. 또한, 상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, mcs-Table에 대한 정보가 포함될 수 있다. 송수신부 (1910)는 그룹 공통 PDCCH 또는 그룹 공통 PDCCH를 통해 DCI를 수신하거나 단말 특정 PDCCH를 통해 DCI를 수신하거나, MAC CE를 수신할 수 있다. 상기 DCI 또는 MAC CE는 SPS를 활성화하기 위한 신호일 수 있다. 또한, 송수신부 (1910)은 상기 SPS 활성화 신호를 수신하지 못하는 경우, 재전송된 SPS 활성화 신호를 수신할 수 있다. 송수신부 (1910)은 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신할 것인지에 대한 정보)를 포함하는 설정(지시) 정보를 RRC 시그널링, MAC CE 혹은 DCI를 통해 수신할 수 있다. 송수신부 (1910)은 기지국으로부터 데이터를 수신할 수 있다. 송수신부 (1910)는 기지국으로부터 SPS PDSCH를 통해 신규 전송 데이터 혹은 재전송 데이터를 수신할 수 있다. 또한, 송수신부 (1910)은 상술한 본 개시의 단말의 신호 송수신을 수행할 수 있다.
제어부 (1920)는 본 개시에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1920)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 예를 들어, 제어부 (1920)는 SPS 활성화 신호를 수신하여 SPS가 활성화되었는지 여부를 확인할 수 있다. 또한, 제어부 (1920)는 SPS 활성화 신호에 기반하여 활성화된 SPS 설정을 확인할 수 있다. 또한, 제어부 (1920)는 SPS 설정에 기반하여 PDSCH를 기지국으로부터 수신할 수 있다. 또한, 제어부 (1920)는 SPS 설정에 기반하여 한 개의 slot에 복수의 SPS PDSCH가 존재하는지 여부를 결정하고, 복수의 SPS PDSCH가 존재하는 경우 데이터를 수신하기 위한 SPS PDSCH (즉, 생존 PDSCH)를 결정할 수 있다. 이 때, 제어부 (1920)는 기지국으로부터 수신한 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신할 것인지에 대한 정보)에 따라 데이터 수신을 위한 SPS PDSCH를 결정할 수 있다. 또는, 제어부 (1920)는 미리 정의된 방법에 따라 상기 SPS PDSCH를 선택할 수 있다. SPS PDSCH를 선택하는 구체적은 방법은 상술한 바와 동일하다. 또한, 제어부 (1920)는 상기 수신 결정된 SPS PDSCH가 그룹 공통 SPS인 경우는 그룹 공통 CS-RNTI에 기반하여 PDSCH를 디스크램블링하고, 단말 특정 SPS 설정인 경우 단말 특정 CS-RNTI에 기반하여 PDSCH를 디스크램블링할 수 있다. 이외에 상기에서 기술한 단말의 동작은 제어부 (1920)에 의해 제어될 수 있다.
저장부(1930)는 상기 송수신부 (1910)를 통해 송수신되는 정보 및 제어부 (1920)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
도 20은 본 개시의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.
도 20을 참고하면, 기지국은 송수신부 (2010), 제어부 (2020), 저장부 (2030)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (2010)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부 (2010)는 예를 들어, 기지국으로부터 SPS 설정 정보를 전송할 수 있으며, 상기 설정 정보는 RRC 시그널링, MIB 또는 SIB를 통해 전송될 수 있다. 또한, 상기 설정 정보에는 BWP에 대한 정보가 포함될 수 있으며, mcs-Table에 대한 정보가 포함될 수 있다. 송수신부 (2010)는 그룹 공통 PDCCH 또는 그룹 공통 PDCCH를 통해 DCI를 전송하거나 단말 특정 PDCCH를 통해 DCI를 전송하거나, MAC CE를 전송할 수 있다. 상기 DCI 또는 MAC CE는 SPS를 활성화하기 위한 신호일 수 있다. 또한, 송수신부 (2010)은 상기 SPS 활성화 신호를 재전송할 수 있다. 송수신부 (2010)은 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보)를 포함하는 설정(지시) 정보를 RRC 시그널링, MAC CE 혹은 DCI를 통해 전송할 수 있다. 송수신부 (2010)은 단말에 데이터를 전송할 수 있다. 송수신부 (2010)는 단말에 SPS PDSCH를 통해 신규 전송 데이터 혹은 재전송 데이터를 전송할 수 있다. 또한, 송수신부 (2010)은 상술한 본 개시의 기지국의 신호 송수신을 수행할 수 있다.
제어부 (2020)는 본 개시에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2020)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 예를 들어, 제어부 (2020)는 SPS 활성화 신호를 전송하여 SPS 설정을 활성화할 수 있다. 또한, 제어부 (2020)는 SPS 설정에 기반하여 PDSCH를 단말에 전송할 수 있다. 또한, 제어부 (2020)는 SPS 설정에 기반하여 한 개의 slot에 복수의 SPS PDSCH가 존재하는지 여부를 결정하고, 전송한 '어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보'에 따라 단말이 어떤 SPS PDSCH를 수신할 것인지를 결정하고, 이에 따라 단말이 피드백한 HARQ-ACK 정보를 수신하여 처리할 수 있다. 또한, 제어부 (2020)는 SPS 설정에 기반하여 한 개의 slot에 복수의 SPS PDSCH가 존재하는지 여부를 결정하고, 복수의 SPS PDSCH가 존재하는 경우 데이터를 수신하기 위한 SPS PDSCH (즉, 생존 PDSCH)를 결정할 수 있다. 이 때, 제어부 (2020)는 단말에 전송한 PDSCH 선택 관련 정보 (어떤 SPS PDSCH를 수신해야 하는 것인지에 대한 정보)에 따라 전송할 SPS PDSCH를 결정하여 전송할 수 있다. 또는, 제어부 (2020)는 미리 정의된 방법에 따라 상기 SPS PDSCH를 선택할 수 있다. SPS PDSCH를 선택하는 구체적은 방법은 상술한 바와 동일하다. 또한, 제어부 (2020)는 상기 전송 결정된 SPS PDSCH가 그룹 공통 SPS인 경우는 그룹 공통 CS-RNTI에 기반하여 PDSCH를 스크램블링하고, 단말 특정 SPS 설정인 경우 단말 특정 CS-RNTI에 기반하여 PDSCH를 스크램블링할 수 있다. 또한, 제어부 (2020)는 활성화 신호를 단말이 수신하지 못했다고 판단되는 경우, 활성화 신호를 재전송할 수 있다. 이 외에 상기에서 기술한 기지국의 동작은 제어부 (2020)에 의해 제어될 수 있다.
저장부(2030)는 상기 송수신부 (2010)를 통해 송수신되는 정보 및 제어부 (2020)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행 될 수도 있다.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.

Claims (15)

  1. 통신 시스템에서 단말에 의해 수행되는 방법에 있어서,
    SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하는 단계;
    SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계;
    하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하는 단계; 및
    상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 SPS 활성화 신호는 MAC (medium access control) CE (control element) 또는 DCI (downlink control information) 중 적어도 하나를 포함하며,
    상기 DCI에는 상기 단말 특정 CS-RNTI에 기반하여 스크램블링된 CRC (cyclic redundancy check)가 부착되는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 포함된 HARQ (hybrid automatic repeat request) 프로세스 번호를 지시하는 필드의 적어도 하나의 비트가 1이면 상기 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 우선 순위 비트 필드가 1이면 상기 DCI에 포함된 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 SPS PDSCH의 세트에 SPS PDSCH가 존재하지 않거나, 상기 단말이 지원하는 개수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외가 반복되며,
    상기 선택된 SPS PDSCH를 통해 수신된 데이터에 대한 HARQ-ACK (acknowledgement) 코드북이 상기 기지국에 전송되는 것을 특징으로 하는 방법.
  5. 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서,
    SPS (semi persistent scheduling) 설정 정보를 단말에 전송하는 단계;
    활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하는 단계;
    하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하는 단계; 및
    상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 단계를 포함하며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 하는 방법.
  6. 제5항에 있어서,
    상기 SPS 활성화 신호는 MAC (medium access control) CE (control element) 또는 DCI (downlink control information) 중 적어도 하나를 포함하며,
    상기 DCI에는 상기 단말 특정 CS-RNTI에 기반하여 스크램블링된 CRC (cyclic redundancy check)가 부착되는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 포함된 HARQ (hybrid automatic repeat request) 프로세스 번호를 지시하는 필드의 적어도 하나의 비트가 1이면 상기 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 우선 순위 비트 필드가 1이면 상기 DCI에 포함된 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되는 것을 특징으로 하는 방법.
  8. 제5항에 있어서,
    상기 SPS PDSCH의 세트에 SPS PDSCH가 존재하지 않거나, 상기 단말이 지원하는 개수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외가 반복되며,
    상기 선택된 SPS PDSCH를 통해 전송된 데이터에 대한 HARQ-ACK (acknowledgement) 코드북이 상기 단말로부터 수신되는 것을 특징으로 하는 방법.
  9. 통신 시스템에서 단말에 있어서,
    송수신부; 및
    상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 기지국으로부터 수신하고,
    SPS 활성화 신호가 감지되는 경우, 상기 SPS 설정 정보 및 상기 SPS 활성화 신호에 기반하여 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고,
    하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 수신하고,
    상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 수신되는 것을 특징으로 하는 단말.
  10. 제9항에 있어서,
    상기 SPS 활성화 신호는 MAC (medium access control) CE (control element) 또는 DCI (downlink control information) 중 적어도 하나를 포함하며,
    상기 DCI에는 상기 단말 특정 CS-RNTI에 기반하여 스크램블링된 CRC (cyclic redundancy check)가 부착되는 것을 특징으로 하는 단말.
  11. 제10항에 있어서,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 포함된 HARQ (hybrid automatic repeat request) 프로세스 번호를 지시하는 필드의 적어도 하나의 비트가 1이면 상기 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 우선 순위 비트 필드가 1이면 상기 DCI에 포함된 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되는 것을 특징으로 하는 단말.
  12. 제11항에 있어서,
    상기 SPS PDSCH의 세트에 SPS PDSCH가 존재하지 않거나, 상기 단말이 지원하는 개수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외가 반복되며,
    상기 선택된 SPS PDSCH를 통해 수신된 데이터에 대한 HARQ-ACK (acknowledgement) 코드북이 상기 기지국에 전송되는 것을 특징으로 하는 단말.
  13. 통신 시스템에서 기지국에 있어서,
    송수신부; 및
    상기 송수신부와 연결되고, SPS (semi persistent scheduling) 설정 정보를 단말에 전송하고,
    활성화 할 SPS PDSCH (physical downlink shared channel)의 세트를 확인하고,
    하나의 슬롯 내에서 상기 SPS PDSCH의 세트에 복수의 SPS PDSCH가 포함되는 경우, 가장 낮은 인덱스를 갖는 SPS PDSCH를 선택하여 데이터를 전송하고,
    상기 선택된 SPS PDSCH 및 상기 선택된 SPS PDSCH와 중첩되는 PDSCH를 상기 SPS PDSCH 세트에서 제외하는 제어부를 포함하며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 SPS 활성화 신호에 포함된 정보에 기반하여 선택된 SPS PDSCH를 통해 상기 데이터가 전송되는 것을 특징으로 하는 기지국.
  14. 제13항에 있어서,
    상기 SPS 활성화 신호는 MAC (medium access control) CE (control element) 또는 DCI (downlink control information) 중 적어도 하나를 포함하며,
    상기 DCI에는 상기 단말 특정 CS-RNTI에 기반하여 스크램블링된 CRC (cyclic redundancy check)가 부착되는 것을 특징으로 하는 기지국.
  15. 제13항에 있어서,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 포함된 HARQ (hybrid automatic repeat request) 프로세스 번호를 지시하는 필드의 적어도 하나의 비트가 1이면 상기 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되며,
    상기 가장 낮은 인덱스를 갖는 SPS PDSCH가 2개 이상 존재하는 경우, 상기 DCI에 우선 순위 비트 필드가 1이면 상기 DCI에 포함된 HARQ 프로세스 번호에 상응하는 SPS PDSCH가 선택되며,
    상기 SPS PDSCH의 세트에 SPS PDSCH가 존재하지 않거나, 상기 단말이 지원하는 개수의 SPS PDSCH가 선택될 때까지 상기 선택 및 제외가 반복되며,
    상기 선택된 SPS PDSCH를 통해 전송된 데이터에 대한 HARQ-ACK (acknowledgement) 코드북이 상기 단말로부터 수신되는 것을 특징으로 하는 기지국.
PCT/KR2022/005651 2021-04-20 2022-04-20 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치 WO2022225327A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/469,198 US20240008025A1 (en) 2021-04-20 2023-09-18 Method and device for providing multicasting and broadcasting in communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0051307 2021-04-20
KR1020210051307A KR20220144680A (ko) 2021-04-20 2021-04-20 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/469,198 Continuation US20240008025A1 (en) 2021-04-20 2023-09-18 Method and device for providing multicasting and broadcasting in communication system

Publications (1)

Publication Number Publication Date
WO2022225327A1 true WO2022225327A1 (ko) 2022-10-27

Family

ID=83722531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005651 WO2022225327A1 (ko) 2021-04-20 2022-04-20 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치

Country Status (3)

Country Link
US (1) US20240008025A1 (ko)
KR (1) KR20220144680A (ko)
WO (1) WO2022225327A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360360A1 (en) * 2021-04-30 2022-11-10 Samsung Electronics Co., Ltd. Method and device for rate matching for multicast and broadcast services

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086137A1 (en) * 2011-04-29 2014-03-27 China Academy Of Telecommunications Technology Method and apparatus for semi-persistent scheduling transmission
US20200008097A1 (en) * 2015-04-10 2020-01-02 Kyocera Corporation Base station and user terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086137A1 (en) * 2011-04-29 2014-03-27 China Academy Of Telecommunications Technology Method and apparatus for semi-persistent scheduling transmission
US20200008097A1 (en) * 2015-04-10 2020-01-02 Kyocera Corporation Base station and user terminal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "MBS MAC Layer and Group Scheduling Aspects", 3GPP DRAFT; R2-2102839, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174414 *
NOKIA, NOKIA SHANGHAI BELL: "Corrections on Industrial IoT", 3GPP DRAFT; R1-2005155, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 12 June 2020 (2020-06-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051897602 *
VIVO: "Discussion on mechanisms to support group scheduling for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2102542, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993145 *

Also Published As

Publication number Publication date
KR20220144680A (ko) 2022-10-27
US20240008025A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2017171408A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 전송하는 방법 및 이를 위한 장치
WO2021157938A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 장치
WO2022145882A1 (ko) 무선 통신 시스템에서 pdcch 송수신 방법 및 장치
WO2021162483A1 (ko) 무선 통신 시스템에서 다중 송수신 포인트로부터의 하향링크 채널 송수신 방법 및 장치
WO2021162510A1 (ko) 네트워크 협력통신을 위한 상향링크 제어 정보 반복 전송 방법 및 장치
WO2016053057A1 (ko) 무선 통신 시스템에서 소프트 버퍼를 관리하는 방법 및 이를 수행하는 장치
WO2021158087A1 (en) Method and apparatus for transmitting control information for network cooperative communication
WO2022154607A1 (en) Method and apparatus of explicit linkage between repetitive transmission and reception for downlink control information in wireless communication system
WO2022015019A1 (ko) 통신 시스템에서 타이밍 어드밴스 지시 방법 및 장치
WO2021206446A1 (ko) 무선 통신 시스템에서 블라인드 디코딩 기반 하향링크 채널 송수신 방법 및 장치
WO2022065963A1 (ko) 무선 통신시스템에서 하크-애크 코드북 생성 방법, 장치 및 시스템
WO2022225327A1 (ko) 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치
WO2023153864A1 (en) Method and device for harq-ack transmission in wireless communication system
WO2023075526A1 (en) Method and apparatus for multiple physical shared channel scheduling in wireless communication systems
WO2022015061A1 (ko) 무선 통신 시스템에서 디폴트 공간 파라미터 기반 송수신 방법 및 장치
WO2022211585A1 (ko) 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치
WO2022154639A1 (ko) 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치
WO2022245025A1 (ko) 통신 시스템에서 harq 프로세스 id를 결정하는 방법 및 장치
WO2024096465A1 (ko) 무선 통신 시스템에서 전이중 통신을 위한 데이터 채널 송수신 방법 및 장치
WO2024090961A1 (ko) 무선 통신 시스템에서 전이중 통신을 위한 스케줄링 방법 및 장치
WO2024072085A1 (ko) 무선 통신 시스템에서 전이중 통신을 위한 주파수 자원을 설정하는 방법 및 장치
WO2024101804A1 (en) Method and apparatus for uplink data transmission by considering multi-panel simultaneous transmission in wireless communication system
WO2024101923A1 (en) Method and apparatus for transmitting phase tracking signal considering multi-panel simultaneous transmission in wireless communication system
WO2023128684A1 (ko) 무선통신시스템에서 harq 프로세스 id의 수 결정 및 harq-ack 전송 방법 및 장치
WO2024101813A1 (ko) 무선 통신 시스템에서 전이중 통신을 위한 참조 신호 송수신 및 레이트 매칭 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22792026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22792026

Country of ref document: EP

Kind code of ref document: A1