WO2022225300A1 - Sewage and wastewater treatment apparatus using algae granules - Google Patents
Sewage and wastewater treatment apparatus using algae granules Download PDFInfo
- Publication number
- WO2022225300A1 WO2022225300A1 PCT/KR2022/005595 KR2022005595W WO2022225300A1 WO 2022225300 A1 WO2022225300 A1 WO 2022225300A1 KR 2022005595 W KR2022005595 W KR 2022005595W WO 2022225300 A1 WO2022225300 A1 WO 2022225300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- algae
- granules
- sewage
- reaction tank
- granule
- Prior art date
Links
- 239000008187 granular material Substances 0.000 title claims abstract description 158
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 86
- 239000010865 sewage Substances 0.000 title claims abstract description 50
- 238000004065 wastewater treatment Methods 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 84
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 26
- 239000005416 organic matter Substances 0.000 claims abstract description 24
- 239000002351 wastewater Substances 0.000 claims description 36
- 238000003756 stirring Methods 0.000 claims description 32
- 239000010802 sludge Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 12
- 239000006228 supernatant Substances 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 241000192660 Aphanizomenon Species 0.000 claims description 3
- 241000192520 Oscillatoria sp. Species 0.000 claims description 3
- 241000192605 Phormidium sp. Species 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000029553 photosynthesis Effects 0.000 description 6
- 238000010672 photosynthesis Methods 0.000 description 6
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 241000192700 Cyanobacteria Species 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
Definitions
- the present invention relates to an apparatus for treating sewage and wastewater using algae granules.
- the method of using algae can significantly reduce the power required for sewage treatment facilities. Since microalgae require nitrogen and phosphorus to grow and have excellent heavy metal adsorption capacity, they have a high removal rate in treating organic matter, nutrients and heavy metals.
- An embodiment of the present invention has an object to provide an algae granule reactor for removing organic matter and nitrogen in sewage using algae granules.
- an embodiment of the present invention in removing organic matter and nitrogen in sewage using algae granules, it is an object to provide an algae granule reactor capable of continuously removing organic matter and nitrogen regardless of time. .
- the introduced sewage and wastewater are stored, and the microbes in the sewage or sludge granules formed from microorganisms
- a reaction tank that induces algae to adhere to generate algae granules a stirring unit that circulates in the opposite direction to the direction in which sunlight is incident into the reaction tank, and agitates the sewage and wastewater, and the flow rate of sewage and wastewater introduced into the reaction tank, lower Located at the bottom of the reactor and a measuring unit that measures some or all of suspended solids concentration (MLSS) in wastewater, turbidity of sewage and wastewater, dissolved oxygen in sewage and wastewater, carbon dioxide in sewage and wastewater, and flow rate of sewage and wastewater
- MMS suspended solids concentration
- the present invention characterized in that it further comprises a light source for irradiating light to the reaction tank.
- the light source unit receives sunlight and stores it as energy.
- a filter for filtering a wavelength band of sunlight incident to the reaction tank or light irradiated from the light source unit is further included between the light source unit and the reaction tank.
- the filter is characterized in that it passes a wavelength band that allows the preset microalgae in the reaction tank to dominate, and filters the remaining wavelength band.
- the preset microalgae are Aphanizomenon sp., Oscillatoria sp. and Phormidium sp. It is characterized by some or all of.
- the present invention is disposed on the bottom of the reaction tank, it characterized in that it further comprises an inclined portion for guiding the algal granules to be precipitated to the granule outlet.
- the inclined portion is characterized in that it has an inclination toward the granule outlet from the opposite side of the granule reactor.
- organic matter and nitrogen can be removed using algae granules, and organic matter and nitrogen can be continuously removed regardless of time in removing organic matter and nitrogen.
- FIG. 1 is a diagram showing the configuration of an algae granule reactor according to an embodiment of the present invention.
- Figure 2 is a view showing a cross-section of the algae granule reactor according to an embodiment of the present invention.
- Figure 3 is a view showing a cross-section of the algae granules according to an embodiment of the present invention.
- first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
- each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
- Figure 1 is a view showing the configuration of the algal granule reactor according to an embodiment of the present invention
- Figure 2 is a view showing a cross-section of the algae granule reactor according to an embodiment of the present invention.
- the algae granule reactor 100 includes a light source unit 110, agitation unit 120, a measurement unit 130, an inclined unit 140, a granule outlet 150, and supernatant water. It includes an outlet 160 , a reaction tank 170 , and a control unit (not shown).
- the algae granule reactor 100 receives sewage and wastewater from which suspended substances or solids are primarily removed, and generates algae granules with microalgae attached to microorganisms or sludge granules.
- the algae granule reactor 100 removes organic matter and nitrogen in sewage using algae granules.
- Algae granule reactor 100 forms sludge granules and breeds microalgae. Most microorganisms in the sewage introduced into the algae granulation tank 100 are present without being granulated in the sludge. These microorganisms aggregate with each other in the algal granule reactor 100 to form sludge granules.
- microalgae existing in the sewage in the algae granule reactor 100 receives light incident to the algae granule reactor 100 and reproduces.
- the light incident to the algae granule reaction tank 100 may be sunlight or artificial light from a separate light source. Microalgae reproduce by receiving sunlight or artificial light.
- the algae granule reaction tank 100 may include a filter or a screen that transmits a specific wavelength band, so that only a specific wavelength band is incident into the reaction tank.
- a specific type of microalgae may dominate and propagate in the reaction tank.
- the microalgae that dominate and reproduce are cyanobacteria or cyanobacteria with high cohesion of the alga itself and excellent cohesion with sludge granules, for example, Aphanizomenon sp., Oscillatoria sp. or Phormidium sp.
- the algae granule reaction tank 100 may use a filter or a screen to filter so that, for example, only light of a wavelength band of 450 to 650 nm is incident, to predominate the above-mentioned types of microalgae.
- the algal granule reactor 100 generates algal granules with microalgae attached to the sludge granules.
- the microalgae are attached to the surface of the sludge granules formed in the first settling tank 110 or formed in the algae granule reaction tank 100 .
- the microorganisms form sludge granules and microalgae reproduce in a sufficient amount
- the surface of the sludge granules releases a substance that allows the microalgae to adhere, so the microalgae are attached to the sludge granules, and algae granules are formed. .
- the algae granule reactor 100 provides a preset environment necessary for the formation of algae granules.
- the preset environment includes the temperature in the reaction tank, the amount of light incident to the reaction tank, or the flow rate of sewage in the reaction tank.
- the algal granule reaction tank 100 provides the temperature in the reaction tank, the amount of light incident into the reaction tank, or the flow rate of the sewage in the reaction tank as optimal conditions for forming the algae granules. Compounds may be added to the algal granules reactor 100 for smooth algal granules.
- the compound to be added corresponds to a substance that provides a cation, such as a calcium ion, a magnesium ion, a potassium ion, a copper ion, or a zinc ion.
- a cation such as a calcium ion, a magnesium ion, a potassium ion, a copper ion, or a zinc ion.
- the amount of the compound to be added may be 0.5 to 3 g per 1 m 3 of sewage introduced into the algae granule reactor 100 .
- microalgae are attached to the sludge granules to generate algal granules in the algal granule reactor 100, and the generated algal granules are shown in detail in FIG. 3 .
- Figure 3 is a view showing a cross-section of the algae granules according to an embodiment of the present invention.
- Algae granules 300 are formed by attaching microalgae 320 to the outside of the sludge granules 310 .
- Microorganisms are granulated and formed into sludge granules 310 in the algal granule reactor 100 .
- the algae granules 300 are generated in the algae granules reactor 100 .
- the generated algae granules 300 use oxygen generated by microalgae without a separate oxygen supply device, and the sludge granules 310 can remove organic matter and nitrogen.
- the sedimentation speed of the algae granules 300 from which organic matter and nitrogen are removed increases the processing speed, and the processing speed of sewage from which organic matter and nitrogen are removed It has the advantage of remarkably shortening the time until it is discharged for post-processing.
- the algal granule reactor 100 performs a denitrification reaction or a photosynthetic reaction and a nitrification reaction depending on whether light is incident using the generated algal granules.
- Algal granules perform different reactions depending on whether or not light is incident into the reactor.
- sunlight or artificial light is incident, the microalgae in the algae granules perform a photosynthetic reaction to generate oxygen, and the nitrifying microorganisms in the sludge granules perform a nitrification reaction.
- the denitrification microorganisms in the sludge granules perform the denitrification reaction.
- the generated algal granules remove organic matter and nitrogen depending on whether light is incident on or not.
- the algae granule reaction tank 100 may be operated by being disposed at a place where sunlight is incident. Accordingly, sunlight is incident on the reaction tank 170 during the time when the sun is rising. However, in order to induce photosynthesis of algal granules even during the time when the sun is not rising, the light source unit 110 is additionally disposed.
- the light source unit 110 may receive power from a separate power supply device (not shown) to irradiate light, and may additionally include an energy storage device (not shown) that receives sunlight and generates and stores energy. It is also possible to irradiate light using the energy stored from the
- the aforementioned filter or screen (not shown) is disposed between the light source unit 110 and the reaction tank 170 .
- a filter or screen (not shown) converts the wavelength band of the incident light into a preset wavelength band.
- the preset wavelength band may be a wavelength advantageous for the propagation of microalgae having a high cohesive force of the algae and excellent cohesion with sludge granules.
- the agitator 120 is mounted at one position of the reaction tank 170 and stirs the sewage and wastewater introduced into the reaction tank 170 up and down (the y-axis direction in FIG. 1 ).
- the stirring unit 120 may be implemented as any device capable of generating a water flow, such as a gas-type stirrer, an impeller-type stirrer, or a water flow motor.
- the agitator 120 is mounted in a direction to generate a water flow up and down, and stirs the waste water in the up and down directions in the reaction tank 170 .
- the reason why the stirring unit 120 stirs the sewage and wastewater in the vertical direction is as follows.
- Oxygen is absolutely required for the nitrification reaction required for nitrogen removal, and this oxygen is generated by photosynthesis of microalgae.
- the photosynthesis process proceeds with the following light reactions and dark reactions.
- microalgae In the presence of water and NADP + under light irradiation, microalgae perform a light reaction to produce energy (ATP), oxygen (O 2 ) and NADPH.
- energy ATP
- oxygen O 2
- NADPH oxygen
- microalgae consume energy to produce glucose, water and NADP + . That is, in order for microalgae to perform a light reaction to produce oxygen, NADP + , a product of the dark reaction, must exist. That is, it can be seen that in order for the light reaction to be continuously performed, the dark reaction must also occur continuously.
- the region in the reaction tank 170 is divided into an incident region 200 and a non-incident region 210 . are separated For this reason, only the light reaction may be continuously performed in the region 200 to which the light is incident, and only the dark reaction may be continuously performed in the non-incident region 210 . Accordingly, there may be a problem that the microalgae (or algae granules) in the reaction tank 170 cannot smoothly generate oxygen.
- the agitator 120 generates and stirs water flow up and down, so that the algae granules in the reaction tank 170 are evenly positioned in the area 200 where light is incident and the area 210 where it is not incident. make it possible When only relying on the incident of light by the sun, since the light reaction time and dark reaction time of the algae granules are clearly different, there is a situation in which organic matter and nitrogen cannot be removed in either case when the sun is rising or when the sun is setting. exist. In addition, since the conventional reaction tank operates with a region to which light is incident and a region not to be incident light, it is not possible to smoothly remove organic matter and nitrogen.
- the stirring unit 120 solves the above-described conventional problem.
- the microalgae entering the region 200 to which the light is incident performs a light reaction to react ammonia nitrogen with nitrate nitrogen or nitrite nitrogen
- the microalgae entering the non-incident region 210 are dark reaction and
- the nitrogen component is removed by performing a denitrification reaction, and a light reaction is prepared later. Since all algae granules can remove organic matter and nitrogen as long as light is incident into the reactor 170 , the algal granule reactor 100 can always operate regardless of the time to remove organic matter and nitrogen.
- the measurement unit 130 measures matters necessary for control of the control unit (not shown).
- the measuring unit 130 measures the flow rate, suspended matter concentration (MLSS), turbidity, dissolved oxygen amount, carbon dioxide amount or flow rate in the sewage and wastewater introduced into the reaction tank 170 and transmits it to the control unit (not shown).
- MMS suspended matter concentration
- the inclined portion 140 guides the sedimented algal granules to the granule outlet 150 .
- the inclined portion 140 is formed at the bottom of the reaction vessel 170 , and is inclined from the opposite side of the granule outlet 150 to the granule outlet 150 . Accordingly, when the stirring unit 120 stops stirring and tries to discharge some of the algae granules or algae granules that are too large in size due to photosynthesis or adsorption of suspended substances, the algae granules are generated. is precipitated in the lower part (-y-axis direction) of the reaction tank 170 . The precipitated granules may be discharged to the granule outlet 150 along the inclined portion 140 .
- the granule outlet 150 discharges the algae granules traveling along the inclined portion 140 to the outside of the algae granules reaction tank 100 .
- the supernatant water outlet 160 is located at a preset height in the reaction tank 170 to discharge supernatant water.
- the supernatant water outlet 160 discharges the supernatant water at a position above the height at which the algae granules are maximally settled. do.
- the reaction tank 170 stores the incoming sewage and wastewater, so that algae granules can be generated.
- the reaction tank 170 has a predetermined volume and receives and stores a predetermined amount of sewage and wastewater. Accordingly, the reaction tank 170 allows microalgae to be attached to microbes or sludge granules in sewage and wastewater to generate algae granules.
- a control unit (not shown) controls the operation of the stirring unit 120 or the light source unit 110 based on the measurements measured by the measurement unit 130 .
- the control unit controls the stirring unit 120 to perform the inflow of sewage and wastewater, the growth of algal granules, the reaction of the algal granules, and the sedimentation of the algal granules in the reaction tank 170 .
- the control unit determines whether the sewage has been introduced to a water level sufficient to grow algal granules into the reaction tank 170 by determining the flow rate and the concentration/turbidity of the suspended matter.
- the controller operates the stirring unit 120 so that the algae granules are stirred to continuously perform light and dark reactions, and to remove organic matter and nitrogen in sewage and wastewater.
- the control unit stops the operation of the stirring unit 120 to induce sedimentation of the algal granules.
- the controller may continuously remove organic matter and nitrogen without a pause in the agitation unit stopping the agitation in order to generate a product necessary for the reaction.
- a control unit controls the operation of the stirring unit 120 based on the measurement items of the measuring unit 130 .
- the size of the algal granules is excessively large, the surface area (concentration) of the algal granules per area of the reaction tank 170 is rather decreased.
- a decrease in the surface area (concentration) of algal granules leads to a decrease in photosynthetic amount, so that sufficient oxygen is not generated for nitrogen removal.
- the most suitable size for algal granules may be 0.5 to 1.0 mm.
- the controller determines the size of the algae granules, and controls the stirring speed of the stirring unit 120 when it is out of the above-described preset range.
- the control unit reduces the stirring speed of the stirring unit 120 .
- the time for each algae granules to stay in the region 200 on which light is incident increases and may grow. That is, based on one stirring cycle, the time for which the algal granules stay in the region 200 on which light is incident is increased, so that the algal granules can grow sufficiently.
- the control unit increases the stirring speed of the stirring unit 120 . As the stirring speed is increased, the time for each algal granules to stay in the region 200 on which light is incident is reduced, thereby inhibiting the growth of the algal granules, and the algal granules may become smaller again.
- control unit controls the operation of the stirring unit 120 according to the amount of suspended matter in the introduced sewage and wastewater.
- Algae granules are in physical contact with suspended substances in sewage and wastewater, and are removed by adsorbing suspended substances.
- the control unit controls the stirring unit 120 to increase the stirring speed. As the stirring speed increases, the contact of the algae granules with the suspended matter increases, and the suspended matter removal rate increases.
- a control unit controls the operation of the light source unit 110 .
- the controller may control the light source unit 110 so that the ratio of the area 200 on which the light is incident to the area 210 on which the light is not incident becomes 1:1 in a time period in which the sun is not incident.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Molecular Biology (AREA)
Abstract
Disclosed is a sewage and wastewater treatment apparatus using algae granules. One aspect of the present embodiment provides an algae granule reaction tank which removes organic matter and nitrogen from sewage using algae granules.
Description
본 발명은 조류 그래뉼을 이용하여 하·폐수를 처리하는 장치에 관한 것이다.The present invention relates to an apparatus for treating sewage and wastewater using algae granules.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information for the present embodiment and does not constitute the prior art.
하·폐수를 처리하는 생물학적 처리 공정의 경우, 유기물을 처리하고 질산화 반응을 유도하기 위해 적절한 농도의 용존산소가 필요하다. 통상적으로 널리 사용되는 활성슬러지 공정에서, 산소 공급을 위해 폭기로 사용되는 에너지는 하수처리장 전체 에너지 소비량의 약 40~60%를 차지하는 것으로 알려져 있다. 폭기에 소비되는 에너지를 줄이기 위해서는, 폭기 공정을 대체할 수 있는 미생물인 조류를 이용하여 오염물질을 제거하는 방법이 있다.In the case of a biological treatment process that treats sewage and wastewater, an appropriate concentration of dissolved oxygen is required to treat organic matter and induce a nitrification reaction. In a commonly used activated sludge process, it is known that the energy used as aeration for oxygen supply accounts for about 40 to 60% of the total energy consumption of the sewage treatment plant. In order to reduce the energy consumed in aeration, there is a method of removing pollutants using algae, a microorganism that can replace the aeration process.
조류를 이용하는 방법은 하수처리시설의 소요 전력을 대폭 감축할 수 있다. 미세조류는 생장하는데 질소와 인을 필요로 하고 중금속 흡착능이 뛰어나기 때문에, 유기물, 영양염류 및 중금속 등을 처리하는데 있어 높은 제거율을 갖는다.The method of using algae can significantly reduce the power required for sewage treatment facilities. Since microalgae require nitrogen and phosphorus to grow and have excellent heavy metal adsorption capacity, they have a high removal rate in treating organic matter, nutrients and heavy metals.
종래의 미생물 이용 처리공정은 유기성 오염물질을 제거하기 위해 개방형 또는 폐쇄형 반응조를 이용하여 오염물질을 제거해왔다. 개방형 반응조의 경우 설치비용이 저렴하고 설계와 운전이 용이한 장점이 있는 반면, 상부가 개방되어 있어 외부 조건에 의한 영향, 즉, 기상에 따른 광합성 불가로 인한 수질 악화 등의 큰 단점이 있다. 또한, 넓은 부지가 필요하고, HRT(Hydraulic Retention Time)가 길고 수처리 효율이 낮은 문제를 가지고 있다. 폐쇄형 반응조의 경우, 주로 다양한 형태의 PBR(Photobioreactor)로 운영되는데, 이는 대규모 플랜트로 가동이 어렵고 경제성이 낮은 문제가 있다.Conventional microbial treatment processes have removed contaminants by using an open or closed reactor to remove organic contaminants. In the case of an open reactor, it has the advantages of low installation cost and easy design and operation, while the upper part is open, so there are major disadvantages such as deterioration of water quality due to the inability of photosynthesis due to the weather. In addition, a large site is required, the HRT (Hydraulic Retention Time) is long, and the water treatment efficiency is low. In the case of a closed reactor, it is mainly operated with various types of photobioreactors (PBRs), which are difficult to operate as large-scale plants and have low economic feasibility.
이러한 문제로 인해, 하·폐수를 처리함에 있어 보다 효율적인 처리방식에 대한 요구가 증가하고 있다.Due to these problems, there is an increasing demand for a more efficient treatment method in treating sewage and wastewater.
본 발명의 일 실시예는, 조류 그래뉼을 이용하여 하수 내 유기물과 질소를 제거하는 조류 그래뉼 반응조를 제공하는 데 일 목적이 있다.An embodiment of the present invention has an object to provide an algae granule reactor for removing organic matter and nitrogen in sewage using algae granules.
또한, 본 발명의 일 실시예는, 조류 그래뉼을 이용하여 하수 내 유기물과 질소를 제거함에 있어, 시간에 관계없이 지속적으로 유기물과 질소를 제거할 수 있는 조류 그래뉼 반응조를 제공하는 데 일 목적이 있다.In addition, an embodiment of the present invention, in removing organic matter and nitrogen in sewage using algae granules, it is an object to provide an algae granule reactor capable of continuously removing organic matter and nitrogen regardless of time. .
본 발명의 일 측면에 의하면, 하·폐수를 유입받아 하·폐수 내 유기물 또는 질소를 제거하는 조류 그래뉼 반응조에 있어서, 유입된 하·폐수를 저장하며, 하수 내 미생물 또는 미생물로부터 형성된 슬러지 그래뉼에 미세조류가 부착되도록 유도하여 조류 그래뉼을 생성하는 반응조와 상기 반응조로 태양광이 입사되는 방향과 그의 반대방향으로 순환시키며 하·폐수를 교반하는 교반부와 상기 반응조 내 유입된 하·폐수의 유량, 하·폐수 내 부유물질 농도(MLSS), 하·폐수의 탁도, 하·폐수 내 용존 산소량, 하·폐수 내 수중 이산화탄소량 및 하·폐수의 유속 중 일부 또는 전부를 계측하는 계측부와 상기 반응조 하단에 위치하여, 침전되는 조류 그래뉼을 외부로 배출하는 그래뉼 배출구와 상기 반응조의 기 설정된 높이에 위치하여, 조류 그래뉼이 침전된 후의 상등수를 외부로 배출하는 상등수 배출구 및 상기 교반부의 동작을 제어하는 제어부를 포함하는 것을 특징으로 하는 조류 그래뉼 반응조를 제공한다.According to one aspect of the present invention, in the algae granule reactor for receiving sewage and wastewater to remove organic matter or nitrogen in the sewage and wastewater, the introduced sewage and wastewater are stored, and the microbes in the sewage or sludge granules formed from microorganisms A reaction tank that induces algae to adhere to generate algae granules, a stirring unit that circulates in the opposite direction to the direction in which sunlight is incident into the reaction tank, and agitates the sewage and wastewater, and the flow rate of sewage and wastewater introduced into the reaction tank, lower Located at the bottom of the reactor and a measuring unit that measures some or all of suspended solids concentration (MLSS) in wastewater, turbidity of sewage and wastewater, dissolved oxygen in sewage and wastewater, carbon dioxide in sewage and wastewater, and flow rate of sewage and wastewater Thus, the granule outlet for discharging the precipitated algae granules to the outside, the supernatant outlet for discharging the supernatant water after the algae granules are settled to the outside, which is located at a preset height of the reaction tank, and a control unit for controlling the operation of the stirring unit. It provides an algal granule reactor, characterized in that.
본 발명의 일 측면에 의하면, 상기 반응조로 광을 조사하는 광원부를 더 포함하는 것을 특징으로 한다.According to one aspect of the present invention, it characterized in that it further comprises a light source for irradiating light to the reaction tank.
본 발명의 일 측면에 의하면, 상기 광원부는 태양광을 입사받아 에너지로 저장하는 것을 특징으로 한다.According to an aspect of the present invention, the light source unit receives sunlight and stores it as energy.
본 발명의 일 측면에 의하면, 상기 광원부 및 상기 반응조의 사이에, 상기 반응조로 입사되는 태양광이나 상기 광원부에서 조사되는 광의 파장대역을 필터링하는 필터를 더 포함하는 것을 특징으로 한다.According to an aspect of the present invention, a filter for filtering a wavelength band of sunlight incident to the reaction tank or light irradiated from the light source unit is further included between the light source unit and the reaction tank.
본 발명의 일 측면에 의하면, 상기 필터는 상기 반응조 내 기 설정된 미세조류가 우점할 수 있도록 하는 파장대역을 통과시키고 나머지 파장대역은 필터링하는 것을 특징으로 한다.According to one aspect of the present invention, the filter is characterized in that it passes a wavelength band that allows the preset microalgae in the reaction tank to dominate, and filters the remaining wavelength band.
본 발명의 일 측면에 의하면, 상기 기 설정된 미세 조류는 Aphanizomenon sp., Oscillatoria sp. 및 Phormidium sp. 중 일부 또는 전부인 것을 특징으로 한다.According to one aspect of the present invention, the preset microalgae are Aphanizomenon sp., Oscillatoria sp. and Phormidium sp. It is characterized by some or all of.
본 발명의 일 측면에 의하면, 상기 반응조의 바닥에 배치되어, 침전되는 조류 그래뉼을 그래뉼 배출구로 유도하는 경사부를 더 포함하는 것을 특징으로 한다.According to one aspect of the present invention, it is disposed on the bottom of the reaction tank, it characterized in that it further comprises an inclined portion for guiding the algal granules to be precipitated to the granule outlet.
본 발명의 일 측면에 의하면, 상기 경사부는 상기 그래뉼 반응조의 반대편으로부터 상기 그래뉼 배출구로 경사를 갖는 것을 특징으로 한다.According to one aspect of the present invention, the inclined portion is characterized in that it has an inclination toward the granule outlet from the opposite side of the granule reactor.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 조류 그래뉼을 이용하여 하수 내 유기물과 질소를 제거할 수 있으며, 유기물과 질소를 제거함에 있어 시간에 관계없이 지속적으로 유기물과 질소를 제거할 수 있는 장점이 있다.As described above, according to one aspect of the present invention, organic matter and nitrogen can be removed using algae granules, and organic matter and nitrogen can be continuously removed regardless of time in removing organic matter and nitrogen. there are advantages to
도 1은 본 발명의 일 실시예에 따른 조류 그래뉼 반응조의 구성을 도시한 도면이다.1 is a diagram showing the configuration of an algae granule reactor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 조류 그래뉼 반응조의 단면을 도시한 도면이다.Figure 2 is a view showing a cross-section of the algae granule reactor according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 조류 그래뉼의 단면을 도시한 도면이다.Figure 3 is a view showing a cross-section of the algae granules according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that no other element is present in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. It should be understood that terms such as “comprise” or “have” in the present application do not preclude the possibility of addition or existence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification in advance. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호 간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
도 1은 본 발명의 일 실시예에 따른 조류 그래뉼 반응조의 구성을 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 조류 그래뉼 반응조의 단면을 도시한 도면이다.1 is a view showing the configuration of the algal granule reactor according to an embodiment of the present invention, Figure 2 is a view showing a cross-section of the algae granule reactor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 조류 그래뉼 반응조(100)는 광원부(110), 교반부(120), 계측부(130), 경사부(140), 그래뉼 배출구(150), 상등수 배출구(160), 반응조(170) 및 제어부(미도시)를 포함한다.1, the algae granule reactor 100 according to an embodiment of the present invention includes a light source unit 110, agitation unit 120, a measurement unit 130, an inclined unit 140, a granule outlet 150, and supernatant water. It includes an outlet 160 , a reaction tank 170 , and a control unit (not shown).
조류 그래뉼 반응조(100)는 1차적으로 부유물질 또는 고형물이 제거된 하·폐수를 유입받아, 미생물 또는 슬러지 그래뉼에 미세 조류가 부착된 조류 그래뉼을 생성한다. 조류 그래뉼 반응조(100)는 조류 그래뉼을 이용해 하수 내 유기물과 질소를 제거한다.The algae granule reactor 100 receives sewage and wastewater from which suspended substances or solids are primarily removed, and generates algae granules with microalgae attached to microorganisms or sludge granules. The algae granule reactor 100 removes organic matter and nitrogen in sewage using algae granules.
조류 그래뉼 반응조(100)는 슬러지 그래뉼을 형성하며, 미세조류를 번식시킨다. 조류 그래뉼 반응조(100)로 유입된 하수 중의 대부분의 미생물들은 슬러지 그래뉼화되지 않은 채로 존재한다. 이러한 미생물들은 조류 그래뉼 반응조(100)에서 서로 뭉치며 슬러지 그래뉼을 형성한다. 한편, 조류 그래뉼 반응조(100)에서 하수 내 존재하는 미세조류는 조류 그래뉼 반응조(100)로 입사하는 광을 수광하여 번식한다. 조류 그래뉼 반응조(100)로 입사되는 광은 태양광이거나 별도의 광원에 의한 인공광일 수 있다. 미세조류는 태양광 또는 인공광을 수광하여 번식한다. 이때, 조류 그래뉼 반응조(100)는 특정 파장대역을 투과시키는 필터나 스크린을 별도로 포함하여, 반응조 내로 특정 파장대역만이 입사하도록 할 수 있다. 조류 그래뉼 반응조(100)로 특정 파장대역의 광만이 입사되는 경우, 반응조 내에서 특정 종류의 미세조류가 우점하여 번식할 수 있다. 여기서, 우점하여 번식하도록 하는 미세조류는 조류 자체의 응집력이 크고, 슬러지 그래뉼과의 응집도 우수한 남세균(Cyanobacteria)이나 남조류로서, 예를 들어, Aphanizomenon sp., Oscillatoria sp. 또는 Phormidium sp. 일 수 있다. 조류 그래뉼 반응조(100)는 필터나 스크린을 이용해 예를 들어, 450 내지 650 nm 파장대역의 광만이 입사되도록 필터링하여 전술한 종류의 미세조류를 우점시킬 수 있다. Algae granule reactor 100 forms sludge granules and breeds microalgae. Most microorganisms in the sewage introduced into the algae granulation tank 100 are present without being granulated in the sludge. These microorganisms aggregate with each other in the algal granule reactor 100 to form sludge granules. On the other hand, microalgae existing in the sewage in the algae granule reactor 100 receives light incident to the algae granule reactor 100 and reproduces. The light incident to the algae granule reaction tank 100 may be sunlight or artificial light from a separate light source. Microalgae reproduce by receiving sunlight or artificial light. At this time, the algae granule reaction tank 100 may include a filter or a screen that transmits a specific wavelength band, so that only a specific wavelength band is incident into the reaction tank. When only light of a specific wavelength band is incident to the algae granule reaction tank 100 , a specific type of microalgae may dominate and propagate in the reaction tank. Here, the microalgae that dominate and reproduce are cyanobacteria or cyanobacteria with high cohesion of the alga itself and excellent cohesion with sludge granules, for example, Aphanizomenon sp., Oscillatoria sp. or Phormidium sp. can be The algae granule reaction tank 100 may use a filter or a screen to filter so that, for example, only light of a wavelength band of 450 to 650 nm is incident, to predominate the above-mentioned types of microalgae.
조류 그래뉼 반응조(100)는 슬러지 그래뉼에 미세조류가 부착된 조류 그래뉼을 생성한다. 조류 그래뉼 반응조(100)가 기 설정된 환경을 제공하는 경우, 미세조류는 제1 침전조(110)에서 형성되거나 조류 그래뉼 반응조(100)에서 형성된 슬러지 그래뉼의 표면에 부착된다. 미생물이 슬러지 그래뉼을 형성하고 미세조류가 충분한 양만큼 번식하였을 경우, 슬러지 그래뉼의 표면에서는 미세조류가 부착될 수 있도록 하는 물질이 배출되기 때문에, 미세조류가 슬러지 그래뉼에 부착되고, 조류 그래뉼이 형성된다. 조류 그래뉼 반응조(100)는 조류 그래뉼 형성에 필요한 기 설정된 환경을 제공한다. 기 설정된 환경에는 반응조 내 온도, 반응조로 입사하는 광량 또는 반응조 내 하수의 유속 등이 존재한다. 조류 그래뉼 반응조(100)는 반응조 내 온도, 반응조로 입사하는 광량 또는 반응조 내 하수의 유속 등을 조류 그래뉼이 형성되는데 최적의 조건으로 제공한다. 원활한 조류 그래뉼의 생성을 위해 조류 그래뉼 반응조(100)로 화합물이 첨가될 수 있다. 첨가되는 화합물은 칼슘 이온, 마그네슘 이온, 칼륨 이온, 구리 이온 또는 아연 이온 등 양 이온을 제공하는 물질에 해당한다. 화합물이 첨가되어 조류 그래뉼 반응조(100)로 양이온이 공급됨으로써, 공급되는 양이온이 미생물이나 슬러지 그래뉼의 생물막 고정화 진행을 촉진하는데 영향을 미친다. 첨가되는 화합물의 양은 조류 그래뉼 반응조(100)로 유입되는 하수 1m3 당 0.5 내지 3g이 첨가될 수 있다. 이처럼, 슬러지 그래뉼에 미세조류가 부착되어 조류 그래뉼 반응조(100)에서 조류 그래뉼이 생성되며, 생성되는 조류 그래뉼은 도 3에 상세히 도시되어 있다. The algal granule reactor 100 generates algal granules with microalgae attached to the sludge granules. When the algae granule reaction tank 100 provides a preset environment, the microalgae are attached to the surface of the sludge granules formed in the first settling tank 110 or formed in the algae granule reaction tank 100 . When the microorganisms form sludge granules and microalgae reproduce in a sufficient amount, the surface of the sludge granules releases a substance that allows the microalgae to adhere, so the microalgae are attached to the sludge granules, and algae granules are formed. . The algae granule reactor 100 provides a preset environment necessary for the formation of algae granules. The preset environment includes the temperature in the reaction tank, the amount of light incident to the reaction tank, or the flow rate of sewage in the reaction tank. The algal granule reaction tank 100 provides the temperature in the reaction tank, the amount of light incident into the reaction tank, or the flow rate of the sewage in the reaction tank as optimal conditions for forming the algae granules. Compounds may be added to the algal granules reactor 100 for smooth algal granules. The compound to be added corresponds to a substance that provides a cation, such as a calcium ion, a magnesium ion, a potassium ion, a copper ion, or a zinc ion. As the compound is added and the cations are supplied to the algae granule reactor 100, the supplied cations affect the promotion of biofilm immobilization of microorganisms or sludge granules. The amount of the compound to be added may be 0.5 to 3 g per 1 m 3 of sewage introduced into the algae granule reactor 100 . As such, microalgae are attached to the sludge granules to generate algal granules in the algal granule reactor 100, and the generated algal granules are shown in detail in FIG. 3 .
도 3은 본 발명의 일 실시예에 따른 조류 그래뉼의 단면을 도시한 도면이다.Figure 3 is a view showing a cross-section of the algae granules according to an embodiment of the present invention.
조류 그래뉼(300)은 슬러지 그래뉼(310)의 외부에 미세조류(320)가 부착되어 형성된다. 미생물들이 그래뉼화하여 조류 그래뉼 반응조(100)에서 슬러지 그래뉼(310)로 형성된다. 그리고 미세조류가 조류 그래뉼 반응조(100)에서 번식된 후 슬러지 그래뉼(310)의 표면에 부착되면서, 조류 그래뉼 반응조(100)에서 조류 그래뉼(300)이 생성된다. 이처럼 생성된 조류 그래뉼(300)은 별도의 산소 공급장치 없이도 미세조류가 생성한 산소를 이용해 슬러지 그래뉼(310)이 유기물 및 질소를 제거할 수 있다. 또한, 조류 그래뉼(300)은 슬러지 그래뉼(310)과 미세조류가 결합된 상태이기 때문에 유기물 및 질소를 제거한 조류 그래뉼(300)의 침전속도가 빨라져 처리 속도가 상승하고, 유기물 및 질소를 제거한 하수의 후처리를 위해 유출하는데 까지도 시간을 현저히 단축시키는 장점이 있다.Algae granules 300 are formed by attaching microalgae 320 to the outside of the sludge granules 310 . Microorganisms are granulated and formed into sludge granules 310 in the algal granule reactor 100 . And as the microalgae are attached to the surface of the sludge granules 310 after being propagated in the algae granule reactor 100 , the algae granules 300 are generated in the algae granules reactor 100 . The generated algae granules 300 use oxygen generated by microalgae without a separate oxygen supply device, and the sludge granules 310 can remove organic matter and nitrogen. In addition, since the algae granules 300 are in a state in which the sludge granules 310 and the microalgae are combined, the sedimentation speed of the algae granules 300 from which organic matter and nitrogen are removed increases the processing speed, and the processing speed of sewage from which organic matter and nitrogen are removed It has the advantage of remarkably shortening the time until it is discharged for post-processing.
다시 도 1 및 2를 참조하면, 조류 그래뉼 반응조(100)는 생성된 조류 그래뉼을 이용하여 광이 입사되는지 여부에 따라 탈질 반응 또는 광합성 반응과 질산화 반응을 수행한다. 조류 그래뉼은 반응조 내로 광이 입사되는지 여부에 따라, 상이한 반응을 수행한다. 태양광 또는 인공광을 입사받는 경우, 조류 그래뉼 내 미세조류는 광합성 반응을 수행하여 산소를 발생시키고, 슬러지 그래뉼 내 질산화 미생물은 질산화 반응을 수행한다. 반면, 태양광 또는 인공광을 입사받지 못하는 상황에서는, 슬러지 그래뉼 내 탈질 미생물은 탈질 반응을 수행한다. 이처럼 생성된 조류 그래뉼은 광이 입사되는지 여부에 따라 유기물과 질소를 제거한다.Referring back to FIGS. 1 and 2 , the algal granule reactor 100 performs a denitrification reaction or a photosynthetic reaction and a nitrification reaction depending on whether light is incident using the generated algal granules. Algal granules perform different reactions depending on whether or not light is incident into the reactor. When sunlight or artificial light is incident, the microalgae in the algae granules perform a photosynthetic reaction to generate oxygen, and the nitrifying microorganisms in the sludge granules perform a nitrification reaction. On the other hand, in a situation in which sunlight or artificial light is not incident, the denitrification microorganisms in the sludge granules perform the denitrification reaction. The generated algal granules remove organic matter and nitrogen depending on whether light is incident on or not.
조류 그래뉼 반응조(100)는 태양광이 입사되는 장소에 배치되어 운영될 수 있다. 이에, 태양이 떠 있는 시간 동안에는 반응조(170)로 태양광이 입사된다. 다만, 태양이 떠 있지 않은 시간 동안에도 조류 그래뉼의 광합성을 유도하기 위해, 광원부(110)가 추가로 배치된다. 광원부(110)는 별도의 전원장치(미도시)로부터 전원을 공급받아 광을 조사할 수 있고, 태양광을 입사받아 에너지를 생성하여 저장하는 에너지 저장장치(미도시)를 추가로 구비하여 태양광으로부터 저장된 에너지를 이용하여 광을 조사할 수도 있다.The algae granule reaction tank 100 may be operated by being disposed at a place where sunlight is incident. Accordingly, sunlight is incident on the reaction tank 170 during the time when the sun is rising. However, in order to induce photosynthesis of algal granules even during the time when the sun is not rising, the light source unit 110 is additionally disposed. The light source unit 110 may receive power from a separate power supply device (not shown) to irradiate light, and may additionally include an energy storage device (not shown) that receives sunlight and generates and stores energy. It is also possible to irradiate light using the energy stored from the
광원부(110)와 반응조(170) 사이에는 전술한 필터 또는 스크린(미도시)이 배치된다. 필터 또는 스크린(미도시)은 입사되는 광의 파장대역을 기 설정된 파장대역으로 변환한다. 여기서, 기 설정된 파장대역은 전술한 대로, 조류 자체의 응집력이 크며, 슬러지 그래뉼과의 응집도 우수한 미세조류가 번식하는데 유리한 파장일 수 있다.The aforementioned filter or screen (not shown) is disposed between the light source unit 110 and the reaction tank 170 . A filter or screen (not shown) converts the wavelength band of the incident light into a preset wavelength band. Here, as described above, the preset wavelength band may be a wavelength advantageous for the propagation of microalgae having a high cohesive force of the algae and excellent cohesion with sludge granules.
교반부(120)는 반응조(170)의 일 위치에 장착되어, 반응조(170)로 유입된 하·폐수를 상·하(도 1에서 y축 방향)로 교반한다. 교반부(120)는 가스형 교반기, 임펠러형 교반기 또는 수류모터 등 수류를 발생시킬 수 있는 장치이면 어떠한 것으로 구현되어도 무방하다. 이와 같은 교반부(120)는 수류를 상·하로 발생시키는 방향으로 장착되어, 반응조(170) 내에서 상·하 방향으로 하·폐수를 교반한다. 교반부(120)가 하·폐수를 상하방향으로 교반하는 이유는 다음과 같다.The agitator 120 is mounted at one position of the reaction tank 170 and stirs the sewage and wastewater introduced into the reaction tank 170 up and down (the y-axis direction in FIG. 1 ). The stirring unit 120 may be implemented as any device capable of generating a water flow, such as a gas-type stirrer, an impeller-type stirrer, or a water flow motor. The agitator 120 is mounted in a direction to generate a water flow up and down, and stirs the waste water in the up and down directions in the reaction tank 170 . The reason why the stirring unit 120 stirs the sewage and wastewater in the vertical direction is as follows.
질소의 제거를 위해 필요한 질산화 반응에는 반드시 산소가 필요하며, 이러한 산소는 미세조류의 광합성에 의해 발생한다. 광합성 과정은 다음과 같은 명반응과 암반응으로 진행한다.Oxygen is absolutely required for the nitrification reaction required for nitrogen removal, and this oxygen is generated by photosynthesis of microalgae. The photosynthesis process proceeds with the following light reactions and dark reactions.
광이 조사되는 상황에서 물과 NADP+가 존재할 경우, 미세조류는 명반응을 수행하여 에너지(ATP), 산소(O2) 및 NADPH를 생산한다. 한편, 광이 조사되지 않는 상황에서 이산화탄소와 NADPH가 존재할 경우, 미세조류는 에너지를 소비하여 포도당, 물 및 NADP+를 생산한다. 즉, 미세조류가 명반응을 수행하여 산소를 생산하기 위해서는 암반응의 산물인 NADP+가 존재해야 한다. 즉, 명반응이 지속적으로 수행되기 위해서는 암반응 역시 지속적으로 일어나야 함을 알 수 있다.In the presence of water and NADP + under light irradiation, microalgae perform a light reaction to produce energy (ATP), oxygen (O 2 ) and NADPH. On the other hand, when carbon dioxide and NADPH are present in a situation where light is not irradiated, microalgae consume energy to produce glucose, water and NADP + . That is, in order for microalgae to perform a light reaction to produce oxygen, NADP + , a product of the dark reaction, must exist. That is, it can be seen that in order for the light reaction to be continuously performed, the dark reaction must also occur continuously.
이때, 도 2에서와 같이, 수중으로는 태양광이든 인공광이든 일정 깊이까지만 광이 도달할 수 있기에, 반응조(170) 내의 영역은 광이 입사되는 영역(200)과 입사되지 않는 영역(210)으로 구분된다. 이러한 이유로, 광이 입사되는 영역(200)에서는 지속적으로 명반응만이 수행될 수 있으며, 입사되지 않는 영역(210)에서는 암반응만이 지속적으로 수행된다. 이에 따라, 반응조(170) 내 미세조류(또는 조류 그래뉼)가 원활히 산소를 생성하지 못하는 문제가 발생할 수 있다. 이러한 문제를 해소하고자, 교반부(120)는 상·하로 수류를 발생시켜 교반함으로써, 반응조(170) 내의 조류 그래뉼이 광이 입사되는 영역(200)과 입사되지 않는 영역(210)에 고르게 위치할 수 있도록 한다. 오직 태양에 의한 광의 입사에 의존할 경우, 조류 그래뉼의 명반응 시간대와 암반응 시간대가 명백히 갈리기 때문에, 태양이 떠 있을 경우 및 태양이 진 경우 중 어느 하나의 상황에서는 유기물과 질소를 제거하지 못하는 상황이 존재한다. 또한, 종래의 반응조는 광이 입사되는 영역과 입사되지 않는 영역이 구분된 채 동작하기 때문에, 원활히 유기물과 질소의 제거가 일어나지 못했다. 교반부(120)는 전술한 종래의 문제를 해소한다. 이에, 광이 입사되는 영역(200)으로 진입한 미세조류는 명반응을 수행하여 암모니아성 질소를 질산성 질소 또는 아질산성 질소로 반응시키고, 입사되지 않는 영역(210)으로 진입한 미세조류는 암반응과 탈질반응을 수행하여 질소 성분을 제거하고, 추후 명반응을 수행할 수 있도록 준비한다. 반응조(170) 내로 광이 입사되는 한 모든 조류 그래뉼이 유기물과 질소를 제거할 수 있기 때문에, 조류 그래뉼 반응조(100)는 유기물과 질소의 제거를 위해 시각과 무관하게 항상 동작할 수 있다.At this time, as in FIG. 2 , since light can reach only a certain depth in water, whether sunlight or artificial light, the region in the reaction tank 170 is divided into an incident region 200 and a non-incident region 210 . are separated For this reason, only the light reaction may be continuously performed in the region 200 to which the light is incident, and only the dark reaction may be continuously performed in the non-incident region 210 . Accordingly, there may be a problem that the microalgae (or algae granules) in the reaction tank 170 cannot smoothly generate oxygen. In order to solve this problem, the agitator 120 generates and stirs water flow up and down, so that the algae granules in the reaction tank 170 are evenly positioned in the area 200 where light is incident and the area 210 where it is not incident. make it possible When only relying on the incident of light by the sun, since the light reaction time and dark reaction time of the algae granules are clearly different, there is a situation in which organic matter and nitrogen cannot be removed in either case when the sun is rising or when the sun is setting. exist. In addition, since the conventional reaction tank operates with a region to which light is incident and a region not to be incident light, it is not possible to smoothly remove organic matter and nitrogen. The stirring unit 120 solves the above-described conventional problem. Accordingly, the microalgae entering the region 200 to which the light is incident performs a light reaction to react ammonia nitrogen with nitrate nitrogen or nitrite nitrogen, and the microalgae entering the non-incident region 210 are dark reaction and The nitrogen component is removed by performing a denitrification reaction, and a light reaction is prepared later. Since all algae granules can remove organic matter and nitrogen as long as light is incident into the reactor 170 , the algal granule reactor 100 can always operate regardless of the time to remove organic matter and nitrogen.
계측부(130)는 제어부(미도시)의 제어를 위해 필요한 사항을 계측한다. 계측부(130)는 반응조(170) 내로 유입된 하·폐수 내 유량, 부유물질 농도(MLSS), 탁도, 용존 산소량, 수중 이산화탄소량 또는 유속 등을 계측하여 제어부(미도시)로 전달한다.The measurement unit 130 measures matters necessary for control of the control unit (not shown). The measuring unit 130 measures the flow rate, suspended matter concentration (MLSS), turbidity, dissolved oxygen amount, carbon dioxide amount or flow rate in the sewage and wastewater introduced into the reaction tank 170 and transmits it to the control unit (not shown).
경사부(140)는 침전되는 조류 그래뉼을 그래뉼 배출구(150)로 유도한다. 경사부(140)는 반응조(170)의 바닥에 형성되며, 그래뉼 배출구(150)의 반대편으로부터 그래뉼 배출구(150)로 경사가 형성된다. 이에, 교반부(120)의 광합성이나 부유물질의 흡착으로 인해 크기가 지나치게 커진 조류 그래뉼이라든가, 지나치게 많은 조류 그래뉼이 발생하여 교반을 중단하고 일부를 배출시키려 할 때, 경사부(140)는 조류 그래뉼을 반응조(170)의 하부(-y축 방향)로 침전시킨다. 침전되는 그래뉼은 경사부(140)를 따라 그래뉼 배출구(150)로 배출될 수 있다.The inclined portion 140 guides the sedimented algal granules to the granule outlet 150 . The inclined portion 140 is formed at the bottom of the reaction vessel 170 , and is inclined from the opposite side of the granule outlet 150 to the granule outlet 150 . Accordingly, when the stirring unit 120 stops stirring and tries to discharge some of the algae granules or algae granules that are too large in size due to photosynthesis or adsorption of suspended substances, the algae granules are generated. is precipitated in the lower part (-y-axis direction) of the reaction tank 170 . The precipitated granules may be discharged to the granule outlet 150 along the inclined portion 140 .
그래뉼 배출구(150)는 경사부(140)를 따라 진행하는 조류 그래뉼을 조류 그래뉼 반응조(100) 외부로 배출한다.The granule outlet 150 discharges the algae granules traveling along the inclined portion 140 to the outside of the algae granules reaction tank 100 .
상등수 배출구(160)는 반응조(170) 내 기 설정된 높이에 위치하여, 상등수를 배출한다. 유입된 하·폐수와 조류 그래뉼의 반응이 충분히 진행된 후 (교반이 중단된 상태에서) 조류 그래뉼의 침전이 진행될 경우, 상등수 배출구(160)는 조류 그래뉼이 최대로 침전되는 높이 이상의 위치에서 상등수를 배출한다. The supernatant water outlet 160 is located at a preset height in the reaction tank 170 to discharge supernatant water. When the sedimentation of the algae granules proceeds after the reaction between the introduced sewage and wastewater and the algae granules has sufficiently progressed (in a state in which stirring is stopped), the supernatant water outlet 160 discharges the supernatant water at a position above the height at which the algae granules are maximally settled. do.
반응조(170)는 유입되는 하·폐수를 저장하여, 조류 그래뉼이 생성될 수 있도록 한다. 반응조(170)는 기 설정된 부피를 가져 일정량의 하·폐수를 유입받아 저장한다. 이에, 반응조(170)는 하·폐수 내에서 미생물 또는 슬러지 그래뉼에 미세 조류가 부착되어 조류 그래뉼로 생성되도록 한다. The reaction tank 170 stores the incoming sewage and wastewater, so that algae granules can be generated. The reaction tank 170 has a predetermined volume and receives and stores a predetermined amount of sewage and wastewater. Accordingly, the reaction tank 170 allows microalgae to be attached to microbes or sludge granules in sewage and wastewater to generate algae granules.
제어부(미도시)는 계측부(130)로부터 계측된 사항을 토대로, 교반부(120) 또는 광원부(110)의 동작을 제어한다.A control unit (not shown) controls the operation of the stirring unit 120 or the light source unit 110 based on the measurements measured by the measurement unit 130 .
제어부(미도시)는 반응조(170) 내에서 하·폐수의 유입, 조류 그래뉼의 성장, 조류 그래뉼의 반응 및 조류 그래뉼의 침전 과정이 수행될 수 있도록 교반부(120)를 제어한다. 제어부(미도시)는 유량 및 부유물질 농도/탁도를 파악하여, 하수가 반응조(170) 내로 조류 그래뉼을 성장시키는데 충분한 수위까지 유입되었는지를 판단한다. 조류 그래뉼이 충분히 성장한 경우, 제어부(미도시)는 조류 그래뉼이 교반되어 명반응과 암반응을 지속적으로 수행하며 하·폐수 내 유기물과 질소를 제거할 수 있도록 교반부(120)를 동작시킨다. 충분한 유기물과 질소가 제거되었다 판단한 경우, 조류 그래뉼이 지나치게 커진 경우 또는 조류 그래뉼의 농도가 지나치게 증가한 경우, 제어부(미도시)는 교반부(120)의 동작을 중단시켜 조류 그래뉼의 침전을 유도한다. 제어부(미도시)는 전술한 과정을 반복함으로써, 반응에 필요한 산물의 생성을 위해 교반을 중단하는 교반부의 휴지기 없이 지속적으로 유기물과 질소를 제거할 수 있다.The control unit (not shown) controls the stirring unit 120 to perform the inflow of sewage and wastewater, the growth of algal granules, the reaction of the algal granules, and the sedimentation of the algal granules in the reaction tank 170 . The control unit (not shown) determines whether the sewage has been introduced to a water level sufficient to grow algal granules into the reaction tank 170 by determining the flow rate and the concentration/turbidity of the suspended matter. When the algal granules are sufficiently grown, the controller (not shown) operates the stirring unit 120 so that the algae granules are stirred to continuously perform light and dark reactions, and to remove organic matter and nitrogen in sewage and wastewater. When it is determined that sufficient organic matter and nitrogen have been removed, when the algal granules are too large or the concentration of the algal granules is excessively increased, the control unit (not shown) stops the operation of the stirring unit 120 to induce sedimentation of the algal granules. By repeating the above-described process, the controller (not shown) may continuously remove organic matter and nitrogen without a pause in the agitation unit stopping the agitation in order to generate a product necessary for the reaction.
제어부(미도시)는 계측부(130)의 계측사항을 토대로, 교반부(120)의 동작을 제어한다. 조류 그래뉼의 사이즈가 지나치게 커질 경우, 반응조(170) 면적 당 조류 그래뉼의 표면적(농도)은 오히려 감소하게 된다. 조류 그래뉼의 표면적(농도) 감소는 광합성량 감소로 이어져, 질소 제거를 위한 충분한 산소가 발생하지 못하게 된다. 조류 그래뉼의 가장 적합한 크기는 0.5 내지 1.0 mm일 수 있다. 제어부(미도시)는 조류 그래뉼의 크기를 판단하여, 전술한 기 설정된 범위를 벗어나는 경우 교반부(120)의 교반 속도를 제어한다. 조류 그래뉼의 크기가 기 설정된 범위에 미치지 못할 경우, 제어부(미도시)는 교반부(120)의 교반속도를 감소시킨다. 교반속도의 감소에 따라, 각 조류 그래뉼들이 광이 입사되는 영역(200)에서 머무르는 시간이 증가하여 성장할 수 있다. 즉, 1회의 교반주기를 기준으로, 광이 입사되는 영역(200)에서 조류 그래뉼들이 머무르는 시간이 증가됨으로써, 조류 그래뉼은 충분히 성장할 수 있다. 반대로, 조류 그래뉼의 크기가 기 설정된 범위를 초과할 경우, 제어부(미도시)는 교반부(120)의 교반속도를 증가시킨다. 교반속도의 증가에 따라, 각 조류 그래뉼들이 광이 입사되는 영역(200)에 머무르는 시간이 감소되어 조류 그래뉼의 성장을 저지할 수 있으며, 조류 그래뉼들이 다시 작아질 수 있다. A control unit (not shown) controls the operation of the stirring unit 120 based on the measurement items of the measuring unit 130 . When the size of the algal granules is excessively large, the surface area (concentration) of the algal granules per area of the reaction tank 170 is rather decreased. A decrease in the surface area (concentration) of algal granules leads to a decrease in photosynthetic amount, so that sufficient oxygen is not generated for nitrogen removal. The most suitable size for algal granules may be 0.5 to 1.0 mm. The controller (not shown) determines the size of the algae granules, and controls the stirring speed of the stirring unit 120 when it is out of the above-described preset range. When the size of the algae granules does not reach the preset range, the control unit (not shown) reduces the stirring speed of the stirring unit 120 . As the agitation speed is decreased, the time for each algae granules to stay in the region 200 on which light is incident increases and may grow. That is, based on one stirring cycle, the time for which the algal granules stay in the region 200 on which light is incident is increased, so that the algal granules can grow sufficiently. Conversely, when the size of the algae granules exceeds the preset range, the control unit (not shown) increases the stirring speed of the stirring unit 120 . As the stirring speed is increased, the time for each algal granules to stay in the region 200 on which light is incident is reduced, thereby inhibiting the growth of the algal granules, and the algal granules may become smaller again.
또한, 제어부(미도시)는 유입된 하·폐수 내 부유물질의 양에 따라 교반부(120)의 동작을 제어한다. 조류 그래뉼은 하·폐수 내 부유물질과 물리적으로 접촉하고, 부유물질을 흡착하여 제거한다. 부유물질의 양이 증가될 경우, 하·폐수 내로 입사하는 광량이 감소하여 조류 그래뉼은 원활히 광합성을 수행하지 못한다. 이에, 부유물질의 양이 증가될 경우, 제어부(미도시)는 교반속도를 증가시키도록 교반부(120)를 제어한다. 교반속도가 증가함에 따라 조류 그래뉼이 부유물질과의 접촉이 증가하게 되어, 부유물질 제거율이 상승된다. In addition, the control unit (not shown) controls the operation of the stirring unit 120 according to the amount of suspended matter in the introduced sewage and wastewater. Algae granules are in physical contact with suspended substances in sewage and wastewater, and are removed by adsorbing suspended substances. When the amount of suspended matter increases, the amount of light incident into the sewage and wastewater decreases, so that the algae granules do not perform photosynthesis smoothly. Accordingly, when the amount of suspended matter is increased, the control unit (not shown) controls the stirring unit 120 to increase the stirring speed. As the stirring speed increases, the contact of the algae granules with the suspended matter increases, and the suspended matter removal rate increases.
제어부(미도시)는 광원부(110)의 동작을 제어한다. 반응조(170) 내 광이 입사되는 영역(200)과 입사되지 않는 영역(210)의 비율이 1:1일 경우, 가장 효율적으로 조류 그래뉼이 유기물과 질소를 제거할 수 있다. 이에, 제어부(미도시)는 태양이 입사되지 않는 시간대에서는 광이 입사되는 영역(200)과 입사되지 않는 영역(210)의 비율이 1:1이 되도록 광원부(110)를 제어할 수 있다.A control unit (not shown) controls the operation of the light source unit 110 . When the ratio of the light incident region 200 and the non-incident region 210 in the reaction tank 170 is 1:1, the algae granules can most efficiently remove organic matter and nitrogen. Accordingly, the controller (not shown) may control the light source unit 110 so that the ratio of the area 200 on which the light is incident to the area 210 on which the light is not incident becomes 1:1 in a time period in which the sun is not incident.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of this embodiment, and various modifications and variations will be possible without departing from the essential characteristics of the present embodiment by those of ordinary skill in the art to which this embodiment belongs. Accordingly, the present embodiments are intended to explain rather than limit the technical spirit of the present embodiment, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of this embodiment should be interpreted by the claims below, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2021년 4월 19일 한국에 출원한 특허출원번호 제10-2021-0050685호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority in accordance with U.S. Patent Law Article 119(a) (35 U.S.C § 119(a)) with respect to Patent Application No. 10-2021-0050685 filed in Korea on April 19, 2021. All contents are incorporated into this patent application by reference. In addition, if this patent application claims priority for countries other than the United States for the same reason as above, all contents thereof are incorporated into this patent application by reference.
Claims (8)
- 하·폐수를 유입받아 하·폐수 내 유기물 또는 질소를 제거하는 조류 그래뉼 반응조에 있어서,In the algae granule reactor for receiving sewage and wastewater to remove organic matter or nitrogen in the sewage and wastewater,유입된 하·폐수를 저장하며, 하수 내 미생물 또는 미생물로부터 형성된 슬러지 그래뉼에 미세조류가 부착되도록 유도하여 조류 그래뉼을 생성하는 반응조;a reaction tank that stores the introduced sewage and wastewater, and induces microalgae to adhere to microorganisms or sludge granules formed from microorganisms in sewage to generate algal granules;상기 반응조로 태양광이 입사되는 방향과 그의 반대방향으로 순환시키며 하·폐수를 교반하는 교반부;a stirring unit circulating in the opposite direction to the direction in which sunlight is incident to the reaction tank and stirring the wastewater;상기 반응조 내 유입된 하·폐수의 유량, 하·폐수 내 부유물질 농도(MLSS), 하·폐수의 탁도, 하·폐수 내 용존 산소량, 하·폐수 내 수중 이산화탄소량 및 하·폐수의 유속 중 일부 또는 전부를 계측하는 계측부;A portion of the flow rate of sewage and wastewater introduced into the reactor, the concentration of suspended substances in sewage and wastewater (MLSS), the turbidity of the sewage and wastewater, the amount of dissolved oxygen in the sewage and wastewater, the amount of carbon dioxide in the water and the flow rate of the sewage and wastewater or a measurement unit that measures all;상기 반응조 하단에 위치하여, 침전되는 조류 그래뉼을 외부로 배출하는 그래뉼 배출구;a granule outlet located at the bottom of the reactor to discharge the precipitated algae granules to the outside;상기 반응조의 기 설정된 높이에 위치하여, 조류 그래뉼이 침전된 후의 상등수를 외부로 배출하는 상등수 배출구; 및a supernatant water outlet located at a preset height of the reaction tank and discharging supernatant water after the algae granules are precipitated to the outside; and상기 교반부의 동작을 제어하는 제어부A control unit for controlling the operation of the stirring unit를 포함하는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reactor comprising a.
- 제1항에 있어서,According to claim 1,상기 반응조로 광을 조사하는 광원부를 더 포함하는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reaction tank, characterized in that it further comprises a light source for irradiating light to the reaction tank.
- 제2항에 있어서,3. The method of claim 2,상기 광원부는,The light source unit,태양광을 입사받아 에너지로 저장하는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reactor, characterized in that it receives sunlight and stores it as energy.
- 제1항에 있어서,According to claim 1,상기 광원부 및 상기 반응조의 사이에, 상기 반응조로 입사되는 태양광이나 상기 광원부에서 조사되는 광의 파장대역을 필터링하는 필터를 더 포함하는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reaction tank, characterized in that it further comprises a filter between the light source unit and the reaction tank to filter the wavelength band of the sunlight incident on the reaction tank or the light irradiated from the light source portion.
- 제4항에 있어서,5. The method of claim 4,상기 필터는,The filter is상기 반응조 내 기 설정된 미세조류가 우점할 수 있도록 하는 파장대역을 통과시키고 나머지 파장대역은 필터링하는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reaction tank, characterized in that it passes a wavelength band that allows the pre-set microalgae to dominate in the reaction tank and filters the remaining wavelength band.
- 제5항에 있어서,6. The method of claim 5,상기 기 설정된 미세 조류는,The preset microalgae,Aphanizomenon sp., Oscillatoria sp. 및 Phormidium sp. 중 일부 또는 전부인 것을 특징으로 하는 조류 그래뉼 반응조.Aphanizomenon sp., Oscillatoria sp. and Phormidium sp. Algae granule reactor, characterized in that some or all of.
- 제1항에 있어서,According to claim 1,상기 반응조의 바닥에 배치되어, 침전되는 조류 그래뉼을 그래뉼 배출구로 유도하는 경사부를 더 포함하는 것을 특징으로 하는 조류 그래뉼 반응조.The algal granule reactor according to claim 1, further comprising an inclined portion disposed at the bottom of the reactor and guiding the precipitated algal granules to the granule outlet.
- 제7항에 있어서,8. The method of claim 7,상기 경사부는,The inclined portion,상기 그래뉼 반응조의 반대편으로부터 상기 그래뉼 배출구로 경사를 갖는 것을 특징으로 하는 조류 그래뉼 반응조.Algae granule reactor, characterized in that it has a slope from the opposite side of the granule reactor to the granule outlet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210050685A KR102436828B1 (en) | 2021-04-19 | 2021-04-19 | Apparatus for Treating Wastewater Using Algae Granules |
KR10-2021-0050685 | 2021-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022225300A1 true WO2022225300A1 (en) | 2022-10-27 |
Family
ID=83113244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/005595 WO2022225300A1 (en) | 2021-04-19 | 2022-04-19 | Sewage and wastewater treatment apparatus using algae granules |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102436828B1 (en) |
WO (1) | WO2022225300A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102589760B1 (en) * | 2023-03-24 | 2023-10-16 | 주식회사 부강테크 | Carbon-Neutral Wastewater Treatment Apparatus for Accelerating the Granulation of Microalgae and Improving Energy Consumption Efficiency |
KR102589773B1 (en) * | 2023-03-24 | 2023-10-16 | 주식회사 부강테크 | Apparatus and Method for Accelerating the Granulation of Microalgae for Wastewater Treatment with Improved Energy Consumption Efficiency |
WO2024205011A1 (en) * | 2023-03-24 | 2024-10-03 | (주)부강테크 | Carbon-neutral sewage treatment apparatus capable of improving energy consumption efficiency and accelerating granulation of microalgae |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020057466A (en) * | 2001-01-05 | 2002-07-11 | 조양호 | Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms |
WO2012117490A1 (en) * | 2011-02-28 | 2012-09-07 | Katayose Shigeru | Primary treatment method in household septic tank |
KR20160024009A (en) * | 2014-08-22 | 2016-03-04 | 경기도 | Compact Type Waste Water Treatment Apparatus |
KR20180000628A (en) * | 2016-06-23 | 2018-01-03 | 주식회사 에코비젼 | Contaminants Purification Technology Using Selective Microorganism Immobilization Support |
KR102021289B1 (en) * | 2019-01-24 | 2019-09-11 | 주식회사 부강테크 | Apparatus and Method for Treating Sewage |
-
2021
- 2021-04-19 KR KR1020210050685A patent/KR102436828B1/en active IP Right Grant
-
2022
- 2022-04-19 WO PCT/KR2022/005595 patent/WO2022225300A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020057466A (en) * | 2001-01-05 | 2002-07-11 | 조양호 | Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms |
WO2012117490A1 (en) * | 2011-02-28 | 2012-09-07 | Katayose Shigeru | Primary treatment method in household septic tank |
KR20160024009A (en) * | 2014-08-22 | 2016-03-04 | 경기도 | Compact Type Waste Water Treatment Apparatus |
KR20180000628A (en) * | 2016-06-23 | 2018-01-03 | 주식회사 에코비젼 | Contaminants Purification Technology Using Selective Microorganism Immobilization Support |
KR102021289B1 (en) * | 2019-01-24 | 2019-09-11 | 주식회사 부강테크 | Apparatus and Method for Treating Sewage |
Also Published As
Publication number | Publication date |
---|---|
KR102436828B1 (en) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022225300A1 (en) | Sewage and wastewater treatment apparatus using algae granules | |
KR102021289B1 (en) | Apparatus and Method for Treating Sewage | |
PL182535B1 (en) | Method of treating sewages with oxygen | |
CN105036487B (en) | Heavy metal wastewater thereby advanced treating and the apparatus and method of regeneration | |
KR101444642B1 (en) | Wastewater Treating Apparatus for Saving Energy Using Microalgae | |
KR20210009111A (en) | Wastewater treatment facility with granule sludge acceleration reactor and recovery device and method using the same | |
CN214654342U (en) | Ultramicro power integrated sewage treatment equipment | |
CN108101316A (en) | A kind of asphalt production waste water treatment process | |
CN101993174A (en) | Integrated treatment process for coal mine sewage | |
CN208776408U (en) | Gap aeration stirring vertical partitioning Anoxic/Aerobic precipitates integral type sewage processing unit | |
KR20170101664A (en) | Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water | |
Gikonyo et al. | Scaling-up of oxygenic photogranular system in selective-CSTR | |
CN205874139U (en) | Coking wastewater treatment system | |
Hu et al. | Stable partial nitrification was achieved for nitrogen removal from municipal wastewater by gel immobilization: A pilot-scale study | |
JP4568528B2 (en) | Water treatment equipment | |
CN209098305U (en) | Aeration and precipitation integrated reaction device for biological oxidation and manganese removal of sludge water | |
KR101037888B1 (en) | Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor | |
CN103896452A (en) | Equipment and method for removing nitrogen out of domestic wastewater | |
CN204874208U (en) | Device of heavy metal wastewater advanced treatment and regeneration | |
CN215592879U (en) | System for cooperatively treating brewing wastewater and low-carbon domestic sewage | |
CN105084649B (en) | It is a kind of while the method for removing sulfate ion and thallium ion in sulfuric acid plant waste discharge | |
JPH047095A (en) | Uniformly mixing method of aeration tank in activated sludge treatment | |
CN209507925U (en) | A kind of MBBR integration apparatus | |
CN208327757U (en) | A kind of biochemical cell system using five sections of bioanalysis | |
CN1463932A (en) | Sewage treatment bioreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22792000 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317077386 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22792000 Country of ref document: EP Kind code of ref document: A1 |