WO2022225017A1 - Solventless composition - Google Patents

Solventless composition Download PDF

Info

Publication number
WO2022225017A1
WO2022225017A1 PCT/JP2022/018436 JP2022018436W WO2022225017A1 WO 2022225017 A1 WO2022225017 A1 WO 2022225017A1 JP 2022018436 W JP2022018436 W JP 2022018436W WO 2022225017 A1 WO2022225017 A1 WO 2022225017A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
solvent
composition according
Prior art date
Application number
PCT/JP2022/018436
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 中家
智規 古川
智恵 田中
勇樹 渡辺
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202280030290.7A priority Critical patent/CN117321141A/en
Priority to JP2023515517A priority patent/JPWO2022225017A1/ja
Priority to KR1020237039802A priority patent/KR20230174249A/en
Publication of WO2022225017A1 publication Critical patent/WO2022225017A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to solventless compositions.
  • liquid crystal displays organic electroluminescence (EL) elements (organic EL displays and organic EL lighting), touch panels, optical semiconductors (light-emitting diodes (LEDs), etc.) elements, solid-state imaging elements, organic thin-film solar cells, dye-sensitized solar cells , and organic thin film transistors (TFTs)
  • EL organic electroluminescence
  • LEDs light-emitting diodes
  • TFTs organic thin film transistors
  • a polymer containing a repeating unit having a triazine ring and an aromatic ring has a high refractive index, and the polymer alone has high heat resistance, high transparency, high refractive index, high solubility, It has already been found that it can achieve low volume shrinkage and is suitable as a film-forming composition for producing electronic devices (Patent Document 1).
  • the present invention has been made in view of the above circumstances, has a high refractive index, while maintaining a high solvent resistance even if the film thickness is thick, a cured film that can maintain a high transmittance and a low HAZE It is an object of the present invention to provide a solventless composition capable of forming and further reducing viscosity.
  • a triazine having at least one triazine ring terminal and at least part of the triazine ring terminal being blocked with an amino group having a cross-linking group By using a ring-containing polymer, a cross-linking agent, and inorganic fine particles in a solventless composition, it has a high refractive index and maintains high solvent resistance even when the film is thick, while achieving high transmittance and low HAZE.
  • the present invention provides the following solventless composition.
  • [1] containing a repeating unit structure represented by the following formula (1), having at least one triazine ring terminal, and at least part of the triazine ring terminal being blocked with an amino group having a cross-linking group; a triazine ring-containing polymer; a cross-linking agent; inorganic fine particles; including does not contain organic solvents,
  • a solvent-free composition characterized by: (In formula (1), R and R′ independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group; Q is a ring structure having 3 to 30 carbon atoms; represents a valence group.* represents a bond.)
  • [2] The inorganic material according to [1], wherein Q in formula (1) represents at least one selected from the group represented by formulas (2) to (13) and formulas (102) to (115).
  • R 1 to R 92 are each independently a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, represents a halogenated alkyl group or an alkoxy group having 1 to 10 carbon atoms
  • R 93 and R 94 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • W 1 and W 2 are each independently a single bond
  • CR 95 R 96 R 95 and R 96 are each independently a hydrogen atom, a C 1-10 alkyl group (provided that these may form a ring), or represents a halogenated alkyl group having 1 to 10 carbon atoms.
  • C ⁇ O, O, S, SO, SO 2 , or NR 97 R 97 is represents a hydrogen atom, an alkyl group having 1 to 10
  • R 1 and R 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • ) represents a group represented by * represents a bond.
  • R 1 and R 2 each independently represent an alkylene group having 1 to 5 carbon atoms which may have a branched structure. * represents a bond. .
  • R 1 to R 92 and R 98 to R 101 in formulas (2) to (13) are each independently a hydrogen atom, a halogen atom, or a halogenated alkyl group having 1 to 10 carbon atoms;
  • the solventless composition according to [1] or [2].
  • R 102 is a hydroxyalkyl group, a (meth)acryloyloxyalkyl group, or a group represented by the following formula (i).
  • a 1 represents an alkylene group having 1 to 10 carbon atoms
  • a 2 is a single bond or the following formula (j)
  • A3 represents an (a+1) -valent aliphatic hydrocarbon group which may be substituted with a hydroxy group
  • A4 represents a hydrogen atom or a methyl group
  • a represents 1 or 2 and * represents a bond.
  • R 102 is a hydroxymethyl group, a 2-hydroxyethyl group, a (meth)acryloyloxymethyl group, a (meth)acryloyloxyethyl group, and formulas (i-2) to (i-5) below;
  • [19] A film obtained from the solventless composition according to any one of [1] to [18].
  • An electronic device comprising a substrate and the film according to [19] formed on the substrate.
  • An optical member comprising a substrate and the film according to [19] formed on the substrate.
  • a solvent-free composition can be provided. Films produced from the solvent-free composition of the present invention can exhibit properties such as high heat resistance, high refractive index, low volume shrinkage, and solvent resistance (crack resistance).
  • the film produced from the solvent-free composition of the present invention has high transparency and high refractive index and solvent resistance (crack resistance). By using it as a material, its light extraction efficiency (light diffusion efficiency) can be improved, and its durability can be improved.
  • FIG. 1 is a 1 H-NMR spectrum diagram of compound P-1 (polymer compound [5]) obtained in Synthesis Example 1.
  • FIG. 1 is a 1 H-NMR spectrum diagram of compound P-2 (polymer compound [7]) obtained in Synthesis Example 3.
  • FIG. 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-1 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-2 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-3 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-2-1 after exposure to a solvent.
  • 2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-2-2 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-2-3 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-3-1 after exposure to a solvent.
  • 2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-3-2 after being exposed to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-3-3 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-4-1 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-4-2 after exposure to a solvent.
  • 2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-4-3 after being exposed to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-1 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-2 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-3 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-1 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-2 after exposure to a solvent.
  • 1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-3 after exposure to a solvent.
  • a solventless composition according to the present invention comprises a triazine ring-containing polymer, a cross-linking agent, and inorganic fine particles.
  • a solventless composition does not contain an organic solvent.
  • free of organic solvent means substantially free of organic solvent, and specifically indicates that the content of organic solvent is 10% by mass or less.
  • Triazine Ring-Containing Polymer contains a repeating unit structure represented by the following formula (1).
  • a triazine ring-containing polymer is, for example, a so-called hyperbranched polymer.
  • a hyperbranched polymer is a highly branched polymer having an irregularly branched structure.
  • the term "irregular" as used herein means that the branch structure is more irregular than that of a dendrimer, which is a highly branched polymer having a regular branch structure.
  • a triazine ring-containing polymer which is a hyperbranched polymer, has a structure larger than the repeating unit structure represented by formula (1), and each of the three bonds of the repeating unit structure represented by formula (1) has , and a structure (structure X) in which repeating unit structures represented by formula (1) are bonded.
  • structure X is distributed throughout the triazine ring-containing polymer except for the terminals.
  • the repeating unit structure may consist essentially of the repeating unit structure represented by formula (1).
  • R and R′ each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group. preferable.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 20. Considering that the heat resistance of the polymer is further improved, the number of carbon atoms in the alkyl group is 1 to 10. More preferably, 1 to 3 are even more preferable.
  • the structure of the alkyl group is not particularly limited, and may be, for example, linear, branched, cyclic, or a combination of two or more thereof.
  • alkyl groups are methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, s-butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl.
  • n-pentyl 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2 , 2-dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2-dimethyl-cyclopropyl, 2,3- dimethyl-cyclopropyl, 1-ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl -n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl,
  • the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 20, and in consideration of further increasing the heat resistance of the polymer, the number of carbon atoms in the alkoxy group is more preferably 1 to 10. 1 to 3 are even more preferred.
  • the structure of the alkyl moiety is not particularly limited, and may be, for example, linear, branched, cyclic, or a combination of two or more thereof.
  • alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, n-pentoxy, 1-methyl-n-butoxy, 2-methyl-n -butoxy, 3-methyl-n-butoxy, 1,1-dimethyl-n-propoxy, 1,2-dimethyl-n-propoxy, 2,2-dimethyl-n-propoxy, 1-ethyl-n-propoxy, n -hexyloxy, 1-methyl-n-pentyloxy, 2-methyl-n-pentyloxy, 3-methyl-n-pentyloxy, 4-methyl-n-pentyloxy, 1,1-dimethyl-n-butoxy, 1,2-dimethyl-n-butoxy, 1,3-dimethyl-n-butoxy, 2,2-dimethyl-n-butoxy, 2,3-dimethyl-n-butoxy, 3,3-dimethyl-n-butoxy, 1-ethoxy,
  • the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 40. In consideration of further increasing the heat resistance of the polymer, the number of carbon atoms in the aryl group is more preferably 6 to 16. 6 to 13 are even more preferred.
  • the aryl group includes an aryl group having a substituent. Examples of substituents include halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, nitro groups, and cyano groups.
  • aryl groups include phenyl, o-chlorophenyl, m-chlorophenyl, p-chlorophenyl, o-fluorophenyl, p-fluorophenyl, o-methoxyphenyl, p-methoxyphenyl, p-nitrophenyl, p-cyanophenyl, ⁇ -naphthyl, ⁇ -naphthyl, o-biphenylyl, m-biphenylyl, p-biphenylyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4 -phenanthryl, 9-phenanthryl groups and the like.
  • the aralkyl group includes an aralkyl group having a substituent.
  • substituents include halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, nitro groups, and cyano groups.
  • Specific examples include benzyl, p-methylphenylmethyl, m-methylphenylmethyl, o-ethylphenylmethyl, m-ethylphenylmethyl, p-ethylphenylmethyl, 2-propylphenylmethyl, 4-isopropylphenylmethyl, 4-isobutylphenylmethyl, ⁇ -naphthylmethyl group and the like.
  • Q in formula (1) is not particularly limited as long as it is a divalent group having 3 to 30 carbon atoms and having a ring structure.
  • the ring structure may be an aromatic ring structure or an alicyclic structure.
  • the above Q preferably represents at least one selected from the group represented by formulas (2) to (13).
  • R 1 to R 92 above each independently represent a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a halogen atom having 1 to 10 carbon atoms.
  • R 93 and R 94 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • W 1 and W 2 are each independently a single bond
  • CR 95 R 96 R 95 and R 96 are each independently a hydrogen atom, a C 1-10 alkyl group (provided that these may form a ring), or represents a halogenated alkyl group having 1 to 10 carbon atoms.
  • C ⁇ O, O, S, SO, SO 2 , or NR 97 R 97 is represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group).
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms. Examples of the alkyl group and alkoxy group are the same as those described above.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • alkyl group and the alkoxy group the same groups as the alkyl group and the alkoxy group in R and R' can be mentioned.
  • the halogenated alkyl group having 1 to 10 carbon atoms is obtained by substituting at least one hydrogen atom in the alkyl group having 1 to 10 carbon atoms with a halogen atom, and specific examples thereof include trifluoromethyl , 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl , 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, perfluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4,4-pentafluorobutyl, 2,2 , 3,3,4,4,4-heptafluorobutyl, perfluorobutyl, 2,2,3,3,4,4,5,5,5-nonafluoropentyl, 2,2,3,3,4 , 4,5,5-octafluoropenty
  • a perfluoroalkyl group having 1 to 10 carbon atoms is preferred, particularly 1 to 5 carbon atoms, in consideration of enhancing the solubility of the triazine ring-containing polymer in low-polar solvents while maintaining the refractive index. is more preferred, and a trifluoromethyl group is even more preferred.
  • X 1 and X 2 each independently represent a single bond, an alkylene group having 1 to 10 carbon atoms, or a group represented by formula (14).
  • the structures of these alkyl groups, halogenated alkyl groups, alkoxy groups, and alkylene groups are not particularly limited, and may be, for example, linear, branched, cyclic, or combinations of two or more thereof.
  • R 98 to R 101 each independently represent a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a representing 10 alkoxy groups
  • Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • halogen atoms, alkyl groups, halogenated alkyl groups and alkoxy groups include the same halogen atoms, alkyl groups, halogenated alkyl groups and alkoxy groups for R 1 to R 92 .
  • alkylene groups having 1 to 10 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene and pentamethylene groups.
  • the structure of the alkylene group is not particularly limited, and may be linear, branched, cyclic, or a combination of two or more thereof.
  • R 1 to R 92 and R 98 to R 101 are a hydrogen atom, a halogen atom, a sulfo group, an alkyl group having 1 to 5 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a An alkoxy group of 1 to 5 is preferred, and a hydrogen atom is more preferred.
  • the aromatic rings contained in Q when Q contains an aromatic ring, at least one of the aromatic rings contained in Q has a halogen atom or a halogen atom having 1 to 10 carbon atoms. It preferably contains at least one alkyl group. It is generally known that introduction of a fluorine atom into a compound tends to lower its refractive index. Regardless, the refractive index remains above 1.7.
  • the number of halogen atoms or halogenated alkyl groups in the aromatic ring can be any number that can be substituted on the aromatic ring, but considering the balance between maintaining the refractive index and solubility in a solvent, 1 to 4 are preferred, 1 to 2 are more preferred, and 1 is even more preferred.
  • the aromatic ring is a condensed aromatic ring such as a naphthalene ring, it may have at least one of the above groups as a whole.
  • Q contains a plurality of aromatic rings, at least one halogen atom or halogenated alkyl group may be contained in at least one aromatic ring, but all the aromatic rings are halogen atoms or halogen preferably contain at least one halogenated alkyl group, and more preferably all aromatic rings contain one halogen atom or halogenated alkyl group.
  • Q is preferably at least one represented by formulas (2) and (5) to (13), and formulas (2), (5), (7), (8), (11) to (13) ) is more preferred.
  • Specific examples of the divalent groups represented by the above formulas (2) to (13) include, but are not limited to, those represented by the following formulas.
  • Ph represents a phenyl group. * represents a bond.
  • A is each independently a halogen atom or a halogenated alkyl group having 1 to 10 carbon atoms
  • p is each independently an integer of 0 to 4
  • q is each independently an integer of 0 to 3
  • r is an integer of 0 to 2 independently of each other
  • s is an integer of 0 to 5 independently of each other
  • t is an integer of 1 to 6
  • u is an integer of 1 to 4
  • the sum of p, q, r, and s is 1 or more
  • "Ph” represents a phenyl group
  • * represents a bond.
  • Q is more preferably a divalent group represented by the following formula, since a polymer with a higher refractive index can be obtained.
  • Ph represents a phenyl group. * represents a bond.
  • Q is preferably an m-phenylene group represented by formula (17).
  • Q is preferably a group having a diphenyl ether skeleton represented by formulas (18) to (20).
  • Q in formula (1) represents at least one selected from the group represented by formulas (102) to (115), for example. * represents a bond.
  • R 1 and R 2 above independently represent an optionally branched alkylene group having 1 to 5 carbon atoms.
  • alkylene groups include methylene, ethylene, propylene, trimethylene, tetramethylene, and pentamethylene groups. is preferred, and an alkylene group having 1 to 2 carbon atoms, more preferably a methylene or ethylene group, most preferably a methylene group.
  • the triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and at least part of this triazine ring terminal is blocked with an amino group having a cross-linking group.
  • the triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and the triazine ring at this terminal usually has two halogen atoms that can be substituted with the amino group having the above-mentioned bridging group. there is Therefore, the amino group having the bridging group may be bonded to the same triazine ring terminal, and when there are a plurality of triazine ring terminals, each may be bonded to a different triazine ring terminal.
  • the number of cross-linking groups in the amino group having a cross-linking group is not particularly limited, and can be any number. 4 is preferred, 1-2 is more preferred, and 1 is even more preferred.
  • the amino group having a cross-linking group has a plurality of cross-linking groups, the plurality of cross-linking groups may have the same structure or different structures.
  • An amino group having a cross-linking group is represented, for example, by the following formula (X). (In the formula, Z represents a group having a cross-linking group. * represents a bond.)
  • Z may be the bridging group itself.
  • the bridging group is attached to the amino group through an arylene group.
  • the amino group having a cross-linking group is more preferably represented by the following formula (15), particularly preferably represented by the following formula (16).
  • R 102 represents a cross-linking group. * represents a bond.
  • R 102 has the same meaning as above. * represents a bond.
  • cross-linking groups examples include hydroxyl-containing groups, vinyl-containing groups, epoxy-containing groups, oxetane-containing groups, carboxy-containing groups, sulfo-containing groups, thiol-containing groups, and (meth)acryloyl-containing groups. Hydroxy-containing groups and (meth)acryloyl-containing groups are preferred in consideration of improving the heat resistance of the coalescence and the solvent resistance (crack resistance) of the resulting film.
  • the hydroxy-containing group includes a hydroxy group, a hydroxyalkyl group, and the like, preferably a hydroxyalkyl group having 1 to 10 carbon atoms, more preferably a hydroxyalkyl group having 1 to 5 carbon atoms, and a hydroxy group having 1 to 3 carbon atoms. Alkyl groups are even more preferred.
  • Hydroxyalkyl groups having 1 to 10 carbon atoms include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 5-hydroxypentyl, 6-hydroxyhexyl, 7-hydroxyheptyl, 8-hydroxyoctyl, 9-hydroxynonyl, 10-hydroxydecyl, 2-hydroxy-1-methylethyl, 2-hydroxy-1,1-dimethylethyl, 3-hydroxy-1-methylpropyl, 3-hydroxy-2-methylpropyl, 3- Hydroxy-1,1-dimethylpropyl, 3-hydroxy-1,2-dimethylpropyl, 3-hydroxy-2,2-dimethylpropyl, 4-hydroxy-1-methylbutyl, 4-hydroxy-2-methylbutyl, 4-hydroxy 1-Hydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypropyl, 1-Hydroxybutyl, 2-Hydroxybutyl, 1 -Hydroxy groups such as hydroxyhexyl, 2-
  • the carbon atom to which the hydroxy group is bonded is a primary carbon atom.
  • a hydroxyalkyl group having 1 to 3 carbon atoms is more preferred, a hydroxymethyl group and a 2-hydroxyethyl group are more preferred, and a 2-hydroxyethyl group is most preferred.
  • Examples of the (meth)acryloyl-containing group include (meth)acryloyl groups, (meth)acryloyloxyalkyl groups, groups represented by the following formula (i), and the like, having an alkylene group having 1 to 10 carbon atoms ( A meth)acryloyloxyalkyl group and a group represented by the following formula (i) are preferred, and a group represented by the following formula (i) is more preferred.
  • a 1 represents an alkylene group having 1 to 10 carbon atoms
  • a 2 is a single bond or the following formula (j)
  • A3 represents an (a+1) -valent aliphatic hydrocarbon group which may be substituted with a hydroxy group
  • A4 represents a hydrogen atom or a methyl group
  • a represents 1 or 2 and * represents a bond.
  • alkylene group contained in the (meth)acryloyloxyalkyl group having an alkylene group (alkanediyl group) having 1 to 10 carbon atoms examples include methylene, ethylene, trimethylene, propane-1,2-diyl, tetramethylene and butane-1. ,3-diyl, butane-1,2-diyl, 2-methylpropane-1,3-diyl, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene and decamethylene groups.
  • those having an alkylene group having 1 to 5 carbon atoms are preferable, those having an alkylene group having 1 to 3 carbon atoms are preferable, and 1 carbon atom, in consideration of improving heat resistance and high temperature and high humidity resistance. or 2 alkylene groups are more preferred.
  • (meth)acryloyloxyalkyl group examples include, for example, (meth)acryloyloxymethyl group, 2-(meth)acryloyloxyethyl group, 3-(meth)acryloyloxypropyl group, 4-(meth)acryloyl An oxybutyl group is mentioned.
  • a 1 is an alkylene group having 1 to 10 carbon atoms, preferably an alkylene group having 1 to 5 carbon atoms, more preferably a methylene group and an ethylene group.
  • alkylene group having 1 to 10 carbon atoms include the same alkylene groups included in the above (meth)acryloyloxyalkyl group.
  • A2 represents a single bond or a group represented by formula (j), preferably a group represented by formula (j).
  • a 3 is an (a+1)-valent aliphatic hydrocarbon group which may be substituted with a hydroxy group, and specific examples thereof include an alkylene group having 1 to 5 carbon atoms and the following formula (k-1) ⁇ (k - 3) (In the formula, * is the same as above.)
  • An alkylene group having 1 to 5 carbon atoms is preferred, an alkylene group having 1 to 3 carbon atoms is more preferred, and a methylene group and an ethylene group are even more preferred.
  • Examples of the alkylene group for A 3 include alkylene groups having 1 to 5 carbon atoms among the alkylene groups exemplified for A 1 .
  • a represents 1 or 2, but 1 is preferred.
  • Suitable embodiments of the group represented by formula (i) include those represented by the following formula (i-1).
  • More preferred embodiments of the group represented by formula (i) include those represented by formulas (i-2) to (i-5) below.
  • vinyl-containing groups include alkenyl groups with 2 to 10 carbon atoms having a vinyl group at the end. Specific examples include ethenyl, 1-propenyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 2-pentenyl groups and the like.
  • Epoxy-containing groups include epoxy, glycidyl, and glycidyloxy groups. Specific examples include glycidylmethyl, 2-glycidylethyl, 3-glycidylpropyl and 4-glycidylbutyl groups.
  • Oxetane-containing groups include oxetan-3-yl, (oxetan-3-yl)methyl, 2-(oxetan-3-yl)ethyl, 3-(oxetan-3-yl)propyl, 4-(oxetan-3- yl) butyl group and the like.
  • carboxy-containing groups include carboxy groups and carboxyalkyl groups having 2 to 10 carbon atoms.
  • the carbon atom to which the carboxy group is bonded is preferably a secondary carbon atom, and specific examples include carboxymethyl, 2-carboxyethyl, 3-carboxypropyl and 4- A carboxybutyl group and the like can be mentioned.
  • the sulfo-containing group includes a sulfo group and a sulfoalkyl group having 1 to 10 carbon atoms.
  • the carbon atom to which the sulfo group is bonded is preferably a primary carbon atom, and specific examples are sulfomethyl, 2-sulfoethyl, 3-sulfopropyl and 4-sulfobutyl groups. etc.
  • thiol-containing groups include thiol groups and mercaptoalkyl groups having 1 to 10 carbon atoms.
  • the mercaptoalkyl group having 1 to 10 carbon atoms is preferably one in which the carbon atom to which the thiol group is bonded is a primary carbon atom, and specific examples are mercaptomethyl, 2-mercaptoethyl, 3-mercaptopropyl and 4- A mercaptobutyl group and the like can be mentioned.
  • amino groups having a cross-linking group include those represented by the following formulas, but are not limited to these.
  • An arylamino group having a hydroxyalkyl group can be introduced using a corresponding hydroxyalkyl group-substituted arylamino compound in the production method described below.
  • Specific examples of hydroxyalkyl group-substituted arylamino compounds include (4-aminophenyl)methanol and 2-(4-aminophenyl)ethanol.
  • An arylamino group having a (meth)acryloyloxyalkyl group can be obtained by a method using a corresponding (meth)acryloyloxyalkyl group-substituted arylamino compound, or after introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer. Furthermore, it can be introduced by a method of reacting a (meth)acrylic acid halide or glycidyl (meth)acrylate on the hydroxy group contained in the hydroxyalkyl group.
  • An arylamino group having a group represented by formula (i) can be obtained by a method using an arylamino compound having a desired cross-linking group, or by introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer, followed by Furthermore, it can be introduced by a method of reacting a (meth)acrylic acid ester compound having an isocyanate group represented by the following formula (i') against the hydroxy group contained in the hydroxyalkyl group.
  • (meth)acryloyloxyalkyl group-substituted arylamino compound examples include, for example, those obtained by reacting the hydroxy group of the above hydroxyalkyl group-substituted arylamino compound with (meth)acrylic acid halide or glycidyl (meth)acrylate.
  • Ester compounds such as Examples of the (meth)acrylic acid halide include (meth)acrylic acid chloride, (meth)acrylic acid bromide and (meth)acrylic acid iodide.
  • (meth)acrylic acid ester compound having an isocyanate group represented by the above formula (i′) include, for example, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and 1,1-(bis Acryloyloxymethyl)ethyl isocyanate may be mentioned.
  • 2-isocyanatoethyl acrylate is preferred from the viewpoint of a simple synthesis method.
  • triazine ring-containing polymers include those containing repeating units represented by formulas (21) to (28).
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • the weight average molecular weight of the polymer in the present invention is not particularly limited, but is preferably 500 to 500,000, more preferably 500 to 100,000, to further improve heat resistance and reduce shrinkage. From the point of view, 2,000 or more is preferable, and from the viewpoint of further increasing the solubility and reducing the viscosity of the obtained composition, it is preferably 50,000 or less, more preferably 30,000 or less, and 25,000 or less. is more preferred, and 10,000 or less is most preferred.
  • the weight average molecular weight in the present invention is the average molecular weight obtained by standard polystyrene conversion by gel permeation chromatography (hereinafter referred to as GPC) analysis.
  • the triazine ring-containing polymer (hyperbranched polymer) of the present invention can be produced according to the method disclosed in International Publication No. 2010/128661 mentioned above. That is, after reacting a trihalogenated triazine compound and an aryldiamino compound in an organic solvent, for example, an amino compound having a hydroxyalkyl group (hydroxy-containing group), an acryloyloxyalkyl group (acryloyl containing group) and at least one amino compound selected from amino compounds having a group represented by formula (i) (acryloyl-containing group) to obtain the triazine ring-containing polymer of the present invention. be able to.
  • a triazine ring-containing polymer (23) is obtained by reacting a triazine compound (29) and an aryldiamino compound (30) in a suitable organic solvent, followed by a terminal blocking agent. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by formula (i).
  • a triazine ring-containing polymer (27) is obtained by reacting a triazine compound (29) and an aryldiamino compound (32) in a suitable organic solvent, followed by end-capping. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by formula (i).
  • the charging ratio of the aryldiamino compound (30) or (32) is arbitrary as long as the target polymer can be obtained.
  • (30) or (32) is preferably 0.01 to 10 equivalents, more preferably 0.7 to 5 equivalents.
  • the aryldiamino compound (30) or (32) may be added neat or in the form of a solution dissolved in an organic solvent. Considering ease of operation and ease of reaction control, the latter method is preferred. is preferred.
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent used, preferably about -30 to 150°C, more preferably -10 to 100°C.
  • the triazine ring-containing polymer (23) is obtained by reacting the triazine compound (29) and the aryldiamino compound (30) in a suitable organic solvent, and then obtaining an aryl having a hydroxyalkyl group as a terminal blocking agent.
  • a triazine ring-containing polymer (23′) is obtained by reacting with an amino compound (31′) (first step), and then a hydroxy alkyl group contained in the triazine ring-containing polymer (23′) is It can be obtained by reacting a (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') on the group (second stage).
  • the reaction in the second step may be omitted and the first step may be completed.
  • R a1 represents a hydroxyalkyl group
  • X, A 3 , A 4 , R a and a have the same meanings as above.
  • the technique shown in the following scheme 4 can be mentioned.
  • the triazine ring-containing polymer (27) is obtained by reacting the triazine compound (29) and the aryldiamino compound (32) in a suitable organic solvent, followed by an aryl
  • a triazine ring-containing polymer (27′) is obtained by reacting with an amino compound (31′) (first step), and then an alkyl It can be obtained by reacting a (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') on the group (second stage).
  • the reaction in the second step is not performed and the first step is sufficient.
  • R a1 represents a hydroxyalkyl group
  • X, A 3 , A 4 , R a and a have the same meanings as above.
  • the charging ratio and addition method of the aryldiamino compound (30) in the first step, and the reaction temperature in the reaction until the triazine ring-containing polymer (23′) is obtained are the same as those described in Scheme 1. can be the same.
  • the charging ratio of the (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') to the triazine ring-containing polymer (23') is hydroxyalkyl group and formula (i) It can be arbitrarily set according to the ratio with the group represented by, preferably 0.1 to 10 equivalents, more preferably 0.1 to 1 equivalent of the arylamino compound having a hydroxyalkyl group used.
  • the charging ratio is 1 equivalent of the arylamino compound having a hydroxyalkyl group used.
  • the (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.5 equivalents.
  • the reaction temperature in this reaction is the same as the reaction temperature in the reaction for obtaining the triazine ring-containing polymer (23′), but considering that the (meth)acryloyl group should not undergo polymerization during the reaction, it is 30 ⁇ 80°C is preferred, 40 to 70°C is more preferred, and 50 to 60°C is even more preferred.
  • the charging ratio, addition method, and reaction temperature of the aryldiamino compound (32) can be the same as those described in Scheme 2.
  • the charging ratio of the (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') to the triazine ring-containing polymer (27') is hydroxyalkyl group and formula (i) It can be arbitrarily set according to the ratio with the group represented by, preferably 0.1 to 10 equivalents, more preferably 0.1 to 1 equivalent of the arylamino compound having a hydroxyalkyl group used. 5 to 5 equivalents, more preferably 0.7 to 3 equivalents, still more preferably 0.9 to 1.5 equivalents.
  • the feed ratio is 1 equivalent of the arylamino compound having a hydroxyalkyl group used.
  • the (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.05 equivalents.
  • the reaction temperature in the reaction is the same, but considering that the (meth)acryloyl group does not polymerize during the reaction, it is preferably 30 to 80 ° C., more preferably 40 to 70 ° C., and 50 to 60°C is even more preferred.
  • Polymerization inhibitors include, for example, N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxyamine or salts thereof, benzoquinones, phenolic polymerization inhibitors, phenothiazine and the like.
  • N-nitrosophenylhydroxyamine salts include N-nitrosophenylhydroxyamine ammonium salts and N-nitrosophenylhydroxyamine aluminum salts.
  • benzoquinones include p-benzoquinone and 2-methyl-1,4-benzoquinone.
  • Phenolic polymerization inhibitors include, for example, hydroquinone, p-methoxyphenol, 4-t-butylcatechol, 2-t-butylhydroquinone, 2,6-di-t-butyl-4-methylphenol and the like.
  • the amount of the polymerization inhibitor used is not particularly limited, but for example, it is 1 to 200 ppm in mass ratio with respect to the (meth)acrylic acid ester compound having an isocyanate group represented by the formula (i'). or 10 to 100 ppm.
  • organic solvent various solvents commonly used in this type of reaction can be used, such as tetrahydrofuran (THF), dioxane, dimethylsulfoxide; methylurea, hexamethylphosphoramide, N,N-dimethylacetamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-methyl-2-piperidone, N, N'-dimethylethylene urea, N,N,N',N'-tetramethylmalonic acid amide, N-methylcaprolactam, N-acetylpyrrolidine, N,N-diethylacetamide, N-ethyl-2-pyrrolidone, N, Amide solvents such as N-dimethylpropionic acid amide, N,N-dimethylisobutyramide, N-methylformamide, N,N'-dimethylpropylene urea, and mixed solvents thereof can be used.
  • THF t
  • N,N-dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and mixtures thereof are preferred, and N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide are particularly preferred. is.
  • this base include potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, sodium ethoxide, sodium acetate, lithium carbonate, lithium hydroxide, lithium oxide, potassium acetate, magnesium oxide, oxide calcium, barium hydroxide, trilithium phosphate, trisodium phosphate, tripotassium phosphate, cesium fluoride, aluminum oxide, ammonia, n-propylamine, trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2,2,6,6-tetramethyl-N-methylpiperidine, pyridine, 4-dimethylaminopyridine, N-methylmorpholine, 2-aminoethanol, ethyldiethanolamine, diethylaminoethanol and the like.
  • the amount of the base to be added is preferably 1 to 100 equivalents, more preferably 1 to 10 equivalents, relative to 1 equivalent of the triazine compound (29).
  • These bases may be used in the form of an aqueous solution. Although it is preferable that no raw material components remain in the resulting polymer, some of the raw materials may remain as long as the effects of the present invention are not impaired. After completion of the reaction, the product can be easily purified by a reprecipitation method or the like.
  • a known method may be adopted as a terminal capping method using an amino compound having a cross-linking group.
  • the amount of the end blocking agent used is preferably about 0.05 to 10 equivalents, more preferably 0.1 to 5 equivalents, relative to 1 equivalent of halogen atoms derived from the surplus triazine compound that was not used in the polymerization reaction.
  • 0.5 to 2 equivalents is even more preferred.
  • the reaction solvent and reaction temperature include the same conditions as described in the first step reaction of Scheme 1 or Scheme 2 above, and the terminal blocking agent is the aryldiamino compound (30) or (32) You can prepare it at the same time.
  • an unsubstituted arylamino compound having no cross-linking group may be used, and the terminals may be blocked with two or more groups.
  • Examples of the aryl group of this unsubstituted arylamino compound are the same as those described above.
  • arylamino groups include, but are not limited to, those represented by the following formula (33).
  • An unsubstituted arylamino group can be introduced using a corresponding unsubstituted arylamino compound.
  • Aniline etc. are mentioned as a specific example of an unsubstituted arylamino compound.
  • the ratio of the amino compound having a cross-linking group and the unsubstituted arylamino compound should be such that the solubility in organic solvents and the yellowing resistance are exhibited in a well-balanced manner.
  • the unsubstituted arylamino compound is preferably 0.1 to 1.0 mol, more preferably 0.1 to 0.5 mol, even more preferably 0.1 to 0.3 mol, per 1 mol of the amino compound.
  • terminal blocking may be performed using an arylamino compound having a specific heteroatom-containing substituent.
  • an arylamino compound having a specific heteroatom-containing substituent By endcapping with an arylamino group having a specific heteroatom-containing substituent, the refractive index of the resulting film can be further increased.
  • Particular heteroatom-containing substituents include cyano groups, alkylamino groups, arylamino groups, nitro groups, alkylmercapto groups, arylmercapto groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups.
  • Arylamino groups having a specific heteroatom-containing substituent include those represented by the following formula (34).
  • Y is a "specific heteroatom-containing substituent" and is a cyano group, an alkylamino group, an arylamino group, a nitro group, an alkylmercapto group, an arylmercapto group, an alkoxycarbonyl group or an alkoxycarbonyloxy group.
  • m represents an integer of 1 to 5; When m is 2 or more, Y may be the same or different. * represents a bond.
  • Y is preferably a cyano group or a nitro group.
  • m is preferably 1.
  • Y is preferably substituted at the para- or meta-position.
  • the ratio of the amino compound having a bridging group to the arylamino compound having a specific heteroatom-containing substituent should be From the viewpoint of exhibiting in a well-balanced manner, 0.1 to 1.0 mol of an arylamino compound having a specific heteroatom-containing substituent is preferable with respect to 1 mol of an amino compound having a cross-linking group, and 0.1 to 0.5 mol. is more preferred, and 0.1 to 0.3 mol is even more preferred.
  • the content of the triazine ring-containing polymer in the solvent-free composition is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 1 to 10% by mass.
  • cross-linking agent is not particularly limited as long as it is a compound having two or more substituents capable of reacting with the cross-linking group of the triazine ring-containing polymer described above.
  • examples of such compounds include melamine-based compounds having cross-linking substituents such as methylol groups and methoxymethyl groups (e.g., phenoplast compounds, aminoplast compounds, etc.), substituted urea-based compounds, cross-linking groups such as epoxy groups and oxetane groups.
  • Compounds containing forming substituents e.g., polyfunctional epoxy compounds, polyfunctional oxetane compounds, etc.
  • compounds containing blocked isocyanate groups compounds having acid anhydride groups, compounds having (meth)acrylic groups, and the like.
  • compounds containing an epoxy group, a blocked isocyanate group, or a (meth)acrylic group are preferable.
  • a polyfunctional epoxy compound and/or a polyfunctional (meth)acrylic compound, which gives a composition having a high molecular weight, are preferred.
  • the polyfunctional epoxy compound is not particularly limited as long as it has two or more epoxy groups in one molecule. Specific examples thereof include tris(2,3-epoxypropyl) isocyanurate, 1,4-butanediol diglycidyl ether, 1,2-epoxy-4-(epoxyethyl) cyclohexane, glycerol triglycidyl ether, and diethylene glycol diglycidyl.
  • YH-434 and YH434L manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • Epolead GT-401 which is an epoxy resin having a cyclohexene oxide structure.
  • the polyfunctional (meth)acrylic compound is not particularly limited as long as it has two or more (meth)acrylic groups in one molecule.
  • Specific examples include ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethoxylated trimethylolpropane triacrylate, ethoxylated Trimethylolpropane trimethacrylate, ethoxylated glycerin triacrylate, ethoxylated glycerin trimethacrylate, ethoxylated pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetramethacrylate, ethoxylated dipentaerythritol hexaacrylate, polyglycerin monoethylene oxide polyacrylate, polygly
  • the polyfunctional (meth) acrylic compound is available as a commercial product, specific examples thereof include NK Ester A-200, A-400, A-600, A-1000, A- 9300 (tris(2-acryloyloxyethyl) isocyanurate), A-9300-1CL, A-TMPT, UA-53H, 1G, 2G, 3G, 4G, 9G, 14G, 23G, ABE-300, A-BPE-4, A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-80N, BPE- 100N, BPE-200, BPE-500, BPE-900, BPE-1300N, A-GLY-3E, A-GLY-9E, A-GLY-20E, A-TMPT-3EO, A-TMPT-9EO, AT-20E, ATM-4E, ATM-35E, APG-100, APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD
  • the compound having an acid anhydride group is not particularly limited as long as it is a carboxylic acid anhydride obtained by dehydration condensation of two molecules of carboxylic acid.
  • Specific examples thereof include phthalic anhydride and tetrahydrophthalic anhydride. , hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, maleic anhydride, succinic anhydride, octyl succinic anhydride, dodecenyl succinic anhydride, etc.
  • the compound containing a blocked isocyanate group has two or more blocked isocyanate groups in one molecule in which the isocyanate group (--NCO) is blocked with an appropriate protective group, and when exposed to a high temperature during thermosetting, Especially if the protective group (blocking portion) is removed by thermal dissociation and the resulting isocyanate group undergoes a cross-linking reaction with the cross-linking group (e.g., hydroxy-containing group) of the triazine ring-containing polymer of the present invention.
  • the cross-linking group e.g., hydroxy-containing group
  • examples include, but are not limited to, compounds having two or more groups represented by the following formulas in one molecule (these groups may be the same or different).
  • Rb represents the organic group of the block portion.
  • Such a compound can be obtained, for example, by reacting a compound having two or more isocyanate groups in one molecule with an appropriate blocking agent.
  • compounds having two or more isocyanate groups in one molecule include polyisocyanates such as isophorone diisocyanate, 1,6-hexamethylene diisocyanate, methylenebis(4-cyclohexyl isocyanate), trimethylhexamethylene diisocyanate, and dimers thereof. , trimers, and reaction products thereof with diols, triols, diamines, or triamines.
  • blocking agents include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N,N-dimethylaminoethanol, 2-ethoxyethanol and cyclohexanol; phenol, o-nitrophenol , p-chlorophenol, o-, m- or p-cresol, etc.; lactams, such as ⁇ -caprolactam; Pyrazoles such as pyrazole, 3,5-dimethylpyrazole and 3-methylpyrazole; Thiols such as dodecanethiol and benzenethiol.
  • alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N,N-dimethylaminoethanol, 2-ethoxyethanol and cyclohexanol
  • Compounds containing a blocked isocyanate group are also available as commercial products, and specific examples thereof include Takenate (registered trademark) B-830, B-815N, B-842N, B-870N, B-874N, B-882N, B-7005, B-7030, B-7075, B-5010 (manufactured by Mitsui Chemicals, Inc.), Duranate (registered trademark) 17B-60PX, TPA-B80E, MF-B60X, MF-K60X, E402-B80T (manufactured by Asahi Kasei Corporation), Karenz MOI-BM (registered trademark) (manufactured by Showa Denko K.K.), TRIXENE (registered trademark) BI-7950, BI-7951, BI-7960, BI-7961, BI-7963, BI-7982, BI-7991, BI-7992 (manufactured by Baxenden chemicals LTD) and the like
  • the aminoplast compound is not particularly limited as long as it has two or more methoxymethylene groups in one molecule.
  • Cymel series such as tetramethoxymethylbenzoguanamine 1123 (manufactured by Nippon Cytec Industries Co., Ltd.), methylated melamine resin Nikalac (registered trademark) MW-30HM, MW-390, MW-100LM, the same Melamine compounds such as Nicalac series such as MX-750LM and methylated urea resins such as MX-270, MX-280 and MX-290 (manufactured by Sanwa Chemical Co., Ltd.).
  • the oxetane compound is not particularly limited as long as it has two or more oxetanyl groups in one molecule. , manufactured by Toagosei Co., Ltd.) and the like.
  • the phenoplast compound has two or more hydroxymethylene groups in one molecule, and when exposed to a high temperature during thermosetting, it undergoes a dehydration condensation reaction with the cross-linking group of the triazine ring-containing polymer of the present invention. A cross-linking reaction proceeds.
  • phenoplast compounds include 2,6-dihydroxymethyl-4-methylphenol, 2,4-dihydroxymethyl-6-methylphenol, bis(2-hydroxy-3-hydroxymethyl-5-methylphenyl)methane, Bis(4-hydroxy-3-hydroxymethyl-5-methylphenyl)methane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, bis(3-formyl-4-hydroxyphenyl)methane , bis(4-hydroxy-2,5-dimethylphenyl)formylmethane, ⁇ , ⁇ -bis(4-hydroxy-2,5-dimethylphenyl)-4-formyltoluene, and the like.
  • Phenoplast compounds are also commercially available, and specific examples thereof include 26DMPC, 46DMOC, DM-BIPC-F, DM-BIOC-F, TM-BIP-A, BISA-F, and BI25X-DF. , BI25X-TPA (manufactured by Asahi Organic Chemicals Industry Co., Ltd.) and the like.
  • a polyfunctional (meth)acrylic compound is preferable because it can suppress a decrease in refractive index due to incorporation of a cross-linking agent and the curing reaction proceeds rapidly.
  • a polyfunctional (meth)acrylic compound having an isocyanuric acid skeleton described below is more preferable because of its excellent compatibility.
  • Examples of polyfunctional (meth)acrylic compounds having such a skeleton include NK Ester A-9300 and NK Ester A-9300-1CL (both manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • R 111 to R 113 are each independently a monovalent organic group having at least one (meth)acrylic group at the end.
  • the resulting cured film is preferably liquid at 25 ° C. and has a viscosity of 5,000 mPa s or less.
  • Such low-viscosity cross-linking agents are also available as commercial products. -9E (95mPa s, 25°C), A-GLY-20E (200mPa s, 25°C), A-TMPT-3EO (60mPa s, 25°C), A-TMPT-9EO, ATM -4E (150 mPa s, 25 ° C.), ATM-35E (350 mPa s, 25 ° C.) (both manufactured by Shin-Nakamura Chemical Co., Ltd.), etc.
  • the chain length between (meth) acrylic groups is relatively Long crosslinkers are included.
  • NK Ester A-GLY-20E manufactured by Shin-Nakamura Chemical Co., Ltd.
  • ATM-35E manufactured by Shin-Nakamura Chemical Co., Ltd.
  • a film comprising the triazine ring-containing polymer of the present invention is laminated on a protective film such as a PET or polyolefin film and light is irradiated through the protective film, even the film laminated film can be cured satisfactorily without being inhibited by oxygen. You can get sex.
  • the protective film since the protective film needs to be peeled off after curing, it is preferable to use a polybasic acid-modified acrylic oligomer that gives a film with good peelability.
  • the above-mentioned cross-linking agents may be used alone or in combination of two or more.
  • the content of the cross-linking agent in the solvent-free composition is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. ⁇ 300 parts by mass, more preferably 100 to 150 parts by mass.
  • inorganic Fine Particles By adding inorganic fine particles to a solvent-free composition containing a triazine ring-containing polymer, the viscosity can be lowered while maintaining a high refractive index. Since solvent-free compositions do not contain organic solvents, they generally tend to have high viscosity, but the solvent-free composition of the present invention can reduce the viscosity. Therefore, the solvent-free composition of the present invention can be applied by a coating method such as a slit coating method or an inkjet method, which requires a relatively low viscosity. In addition, even if inorganic fine particles are added to the solvent-free composition containing the triazine ring-containing polymer, the resulting cured film can maintain a low HAZE.
  • inorganic fine particles examples include Be, Al, Si, Ti, V, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. It contains oxides, sulfides or nitrides of one or more selected metals, and it is particularly preferred to contain these metal oxides. Incidentally, the inorganic fine particles may be used singly or in combination of two or more. Specific examples of metal oxides include Al2O3 , ZnO, TiO2 , ZrO2, Fe2O3 , Sb2O5 , BeO , ZnO , SnO2 , CeO2 , SiO2 , and WO3 . are mentioned.
  • a composite oxide is a mixture of two or more kinds of inorganic oxides in the production stage of fine particles.
  • composite oxides of TiO 2 and ZrO 2 composite oxides of TiO 2 , ZrO 2 and SnO 2 , composite oxides of ZrO 2 and SnO 2 and the like can be mentioned.
  • it may be a compound of the above metals. Examples include ZnSb 2 O 6 , BaTiO 3 , SrTiO 3 and SrSnO 3 . These compounds can be used alone or in admixture of two or more, and may also be used in admixture with the above oxides.
  • the inorganic fine particles may also be, for example, third metal oxide particles (C) obtained by coating the surfaces of the first metal oxide particles (A) with the second metal oxide particles (B).
  • the first metal oxide particles (A) can be produced by known methods such as ion exchange, deflocculation, hydrolysis, and reaction methods.
  • the ion exchange method include at least one metal selected from the group consisting of Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. and a method of treating an acid salt of the metal with a hydrogen-type ion exchange resin, or a method of treating a basic salt of the metal with a hydroxyl-type anion exchange resin.
  • Examples of deflocculation include washing the gel obtained by neutralizing the acid salt of the metal with a base or neutralizing the basic salt of the metal with an acid, followed by peptization with an acid or a base.
  • Examples of the hydrolysis method include a method of hydrolyzing the alkoxide of the above metal, or a method of hydrolyzing the basic salt of the above metal under heating and then removing unnecessary acid.
  • Examples of the reaction method include a method of reacting the metal powder with an acid.
  • the first metal oxide particles (A) are preferably oxides of metals having a valence of 2 to 6, such as Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta , W, Pb, Bi, Ba, Al, Sr, Hf and Ce.
  • metal oxides include, for example, TiO2 , Fe2O3 , CuO , ZnO, Y2O3 , ZrO2 , Nb2O5 , MoO3 , In2O3 , SnO2 , Sb2O5 .
  • metal oxides can be used singly or in combination of two or more.
  • the method of combining the metal oxides include a method of mixing several types of the metal oxides, a method of compounding the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
  • Combinations of the metal oxides include, for example, SnO 2 —TiO 2 composite particles in which SnO 2 particles and TiO 2 particles are chemically bonded at their interfaces, and SnO 2 particles and WO 3 particles.
  • 2 composite particles, and TiO 2 --ZrO 2 --SnO 2 composite particles obtained by forming a solid solution of TiO 2 , ZrO 2 and SnO 2 at the atomic level.
  • the first metal oxide particles ( A ) can also be used as a compound by combining metal components. ZnO, BaTiO 3 , SrTiO 3 , aluminum-doped zinc oxide, and the like.
  • the TiO 2 contained in the particles has any of anatase, rutile, anatase/rutile mixed, and brookite crystal structures.
  • those containing the rutile type are preferable in consideration of the refractive index and transparency of the resulting film.
  • the first metal oxide particles (A) form a thin film layer made of a metal oxide such as zirconium oxide, silicon oxide, and aluminum oxide on the surface from the viewpoint of suppressing the activity (for example, photocatalytic performance).
  • the thin film layer can be formed, for example, by adding a zirconium compound to an aqueous dispersion of the first metal oxide particles (A) and heating the mixture at 40 to 200.degree.
  • zirconium compound examples include zirconium oxychloride, zirconium chloride, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium oxynitrate, zirconium acetate, zirconyl carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, zirconium ethylhexanoate, and stearic acid.
  • the amount of the zirconia compound used, as zirconium oxide, is preferably 3 to 50% by mass relative to the first metal oxide particles (A) used.
  • the primary particle size of the first metal oxide particles (A) is preferably 2 to 60 nm, more preferably 2 to 30 nm, from the viewpoints of dispersion stability, refractive index and transparency of the resulting film. More preferably, 2 to 20 nm is particularly preferred.
  • the dynamic light scattering particle diameter (according to the dynamic light scattering method), which is the secondary particle diameter of the first metal oxide particles (A), is determined as 5 to 100 nm is preferred, 5 to 50 nm is more preferred, and 5 to 30 nm is particularly preferred.
  • the first metal oxide particles (A) can be synthesized, for example, according to the method described in International Publication No. 2013/081136.
  • the second metal oxide particles (B) are preferably oxide particles of at least one metal selected from the group consisting of Si, Al, Sn, Zr, Mo, Sb and W.
  • the second metal oxide particles (B) are in the form of metal oxides, for example, SiO 2 , Al 2 O 3 , SnO 2 , ZrO 2 , MoO 3 , Sb 2 O 5 , WO 3 and the like. can. And these metal oxides can be used individually by 1 type, and can also be used in combination of 2 or more type. Examples of the method of combining the metal oxides include a method of mixing several types of the metal oxides, a method of compounding the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
  • the second metal oxide particles (B) include, for example, SnO 2 —WO 3 composite particles, SnO 2 particles in which SnO 2 particles and WO 3 particles are chemically bonded at their interface to form a composite.
  • SnO 2 —WO 3 SiO 2 composite particles produced and composited
  • SnO 2 —MoO 3 composited by chemical bonding of SnO 2 particles, MoO 3 particles and SiO 2 particles at their interfaces
  • Examples include SiO 2 composite particles, Sb 2 O 5 -SiO 2 composite particles in which Sb 2 O 5 particles and SiO 2 particles are chemically bonded at their interface to form a composite.
  • the ratio (mass ratio) of the metal oxides contained is not particularly limited, but for example, SnO 2 —SiO 2 composite
  • the particles preferably have a SiO 2 /SnO 2 mass ratio of 0.1 to 5, and the Sb 2 O 5 —SiO 2 composite particles preferably have a Sb 2 O 5 /SiO 2 mass ratio of 0.1 to 5.
  • the second metal oxide particles (B) can be produced by known methods such as an ion exchange method and an oxidation method.
  • the ion exchange method include a method of treating an acid salt of the above metal with a hydrogen ion exchange resin.
  • the oxidation method include a method of reacting the powder of the metal or the oxide of the metal with hydrogen peroxide.
  • the primary particle size of the second metal oxide particles (B) is preferably 5 nm or less, more preferably 1 to 5 nm, from the viewpoints of dispersion stability and the refractive index and transparency of the resulting film. preferable.
  • the third metal oxide particles (C) are metal oxide particles obtained by coating the surfaces of the first metal oxide particles (A) with the second metal oxide particles (B). Examples of the manufacturing method include the following first method and second method.
  • an aqueous dispersion containing the first metal oxide particles (A) and an aqueous dispersion containing the second metal oxide particles (B) are separated by (B)/(A).
  • the aqueous dispersion is heated.
  • An aqueous dispersion of the third metal oxide particles (C) in which the surfaces of the first metal oxide particles (A) are coated with the Sb 2 O 5 —SiO 2 composite particles is obtained.
  • an aqueous dispersion containing the first metal oxide particles (A), a water-soluble tin oxide alkali salt and a silicon oxide alkali salt as the second metal oxide particles (B), SnO 2 After mixing so that the mass ratio represented by /SiO 2 (value in terms of metal oxide) is 0.1 to 5, cation exchange is performed to remove alkali metal ions SnO 2 —SiO obtained by 2 and an aqueous dispersion of composite particles so that the mass ratio represented by (B)/(A) (in terms of metal oxide) is 0.05 to 0.5, and then mixed. It is a method of heating an aqueous dispersion.
  • an aqueous solution of sodium salt can be preferably used as the aqueous solution of water-soluble alkali salt used in the second method.
  • an aqueous solution of sodium salt can be preferably used.
  • aqueous dispersion containing the first metal oxide particles (A) and an aqueous solution of sodium stannate and sodium silicate as the second metal oxide particles (B) After mixing an aqueous dispersion containing the first metal oxide particles (A) and an aqueous solution of sodium stannate and sodium silicate as the second metal oxide particles (B), cation exchange is performed to obtain and an aqueous dispersion of SnO 2 —SiO 2 composite particles obtained above are mixed so that the mass ratio is 0.05 to 0.5, and the aqueous dispersion is heated at 70 to 350° C.
  • An aqueous dispersion of the third metal oxide particles (C) in which the surface of the metal oxide particles (A) as nuclei is coated with the second metal oxide particles (B) composed of SnO 2 —SiO 2 composite particles. can get.
  • the temperature at which the first metal oxide particles (A) and the second metal oxide particles (B) are mixed is usually 1 to 100°C, preferably 20 to 60°C.
  • the heating temperature after mixing is preferably 70 to 350°C, more preferably 70 to 150°C.
  • the heating time after mixing is usually 10 minutes to 5 hours, preferably 30 minutes to 4 hours.
  • the aqueous dispersion of the third metal oxide particles (C) may contain any component.
  • oxycarboxylic acids it is possible to further improve performance such as dispersibility of the third metal oxide particles (C).
  • the oxycarboxylic acid include lactic acid, tartaric acid, citric acid, gluconic acid, malic acid and glycolic acid.
  • the content of the oxycarboxylic acids is preferably about 30% by mass or less with respect to all metal oxides in the third metal oxide particles (C).
  • the dispersion of the third metal oxide particles (C) may contain an alkaline component.
  • alkali component include alkali metal hydroxides such as Li, Na, K, Rb, and Cs; ammonia; ethylamine, isopropylamine, n-propylamine, n-butylamine, diethylamine, di-n-propylamine, Diisopropylamine, di-n-butylamine, diisobutylamine, triethylamine, tripropylamine, tributylamine, triisobutylamine, triamylamine (tri-n-pentylamine), tri-n-hexylamine, tri-n-octylamine , dimethylpropylamine, dimethylbutylamine, dimethylhexylamine, etc.
  • alkali component include alkali metal hydroxides such as Li, Na, K, Rb, and Cs; ammonia; ethylamine,
  • alkali component is preferably about 30% by mass or less with respect to all metal oxides in the third metal oxide particles (C). Moreover, these alkali components can be used in combination with the above oxycarboxylic acid.
  • the aqueous dispersion of the third metal oxide particles (C) When it is desired to further increase the concentration of the aqueous dispersion of the third metal oxide particles (C), it can be concentrated to a maximum of about 65% by mass by a conventional method.
  • the method includes, for example, an evaporation method and an ultrafiltration method.
  • the alkali metal hydroxide, amine, quaternary ammonium salt, oxycarboxylic acid, etc. may be added.
  • the total metal oxide concentration of the solvent dispersion of the third metal oxide particles (C) is preferably 10 to 60% by mass, more preferably 20 to 50% by mass.
  • an organic solvent dispersion of the third metal oxide particles (C) is obtained.
  • This substitution can be carried out by an ordinary method such as a distillation method or an ultrafiltration method.
  • the hydrophilic organic solvent include lower alcohols such as methanol, ethanol, isopropanol and 1-propanol; ethers such as propylene glycol monomethyl ether; linear amides such as dimethylformamide and N,N-dimethylacetamide; -cyclic amides such as methyl-2-pyrrolidone, glycols such as ethyl cellosolve and ethylene glycol.
  • the primary particle size of the third metal oxide particles (C) is preferably 20 nm or less from the viewpoint of dispersion stability and the refractive index and transparency of the resulting film.
  • the dynamic light scattering particle diameter (according to the dynamic light scattering method), which is the secondary particle diameter of the third metal oxide particles (C), is determined by 2 to 100 nm is preferred.
  • the inorganic fine particles used in the present invention may be surface-modified inorganic fine particles.
  • Such inorganic fine particles may have at least one of a hydrophilic group and a crosslinkable group on the surface.
  • Inorganic fine particles having at least one of a hydrophilic group and a crosslinkable group on the surface are, for example, the above inorganic fine particles as core particles, and hydrophilic It is obtained by modifying the surface of the core particles with at least one of an organosilicon compound having a group and an organosilicon compound having a crosslinkable group.
  • Organosilicon compounds have hydrolyzable groups that generate Si—OH groups upon hydrolysis.
  • Hydrolyzable groups include, for example, silicon-bonded alkoxy groups and silicon-bonded acetoxy groups.
  • the number of hydrolyzable groups in the organosilicon compound is not particularly limited, but may be 1 to 3, for example.
  • hydrophilic groups examples include polyether groups such as polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups.
  • organosilicon compounds having a hydrophilic group examples include [methoxy(polyethyleneoxy)n-propyl]trimethoxysilane, [methoxy(polyethyleneoxy)n-propyl]triethoxysilane, [methoxy(polyethyleneoxy)n-propyl ] Tripropoxysilane, [methoxy (polyethyleneoxy) n-propyl] triacetoxysilane, [methoxy (polypropyleneoxy) n-propyl] trimethoxysilane, [methoxy (polypropyleneoxy) n-propyl] triethoxysilane, [methoxy ( polypropyleneoxy)n-propyl]tripropoxysilane, "methoxy(polypropyleneoxy)n-propyl” triacetoxysilane, [methoxy(polybutyleneoxy)n-propyl]trimethoxysilane, [methoxy(polybutyleneoxy)n
  • the crosslinkable group is not particularly limited as long as it is a group capable of forming a crosslinked structure by reacting with a crosslinker, and examples thereof include radically polymerizable groups, epoxy groups, and amino groups.
  • examples of radically polymerizable groups include allyl groups and (meth)acryloyloxy groups.
  • Organosilicon compounds having radically polymerizable groups include, for example, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, and 3-acryloxypropyltriethoxysilane.
  • organosilicon compounds having an epoxy group include 3-glycidoxypropyltrimethoxysilane and 8-glycidoxyoctyltrimethoxysilane.
  • organosilicon compounds having an amino group include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyl triethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the bonding amount of the organosilicon compound to the surface of the core particles is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 1 to 15% by mass, relative to the core particles.
  • the primary particle size of the inorganic fine particles or surface-modified inorganic fine particles is preferably 20 nm or less from the viewpoints of dispersion stability, refractive index and transparency of the resulting film.
  • the secondary particle diameter (by dynamic light scattering method) of the inorganic fine particles or the surface-modified inorganic fine particles is preferably 2 to 100 nm, more preferably 5 to 50 nm, from the viewpoint of dispersion stability, refractive index and transparency of the obtained film. Preferably, 5 to 20 nm is even more preferred.
  • the surface-modified inorganic fine particles are prepared by adding a predetermined amount of an organosilicon compound to an aqueous dispersion of core particles or a dispersion in a hydrophilic organic solvent, hydrolyzing the organosilicon compound with a catalyst such as dilute hydrochloric acid, and treating the surface of the core particles. It can be obtained by binding to
  • the aqueous dispersion or hydrophilic organic solvent dispersion of the core particles can be further replaced with a hydrophobic organic solvent.
  • This replacement method can be carried out by a conventional method such as a distillation method or an ultrafiltration method.
  • hydrophobic solvents include ketones such as methyl ethyl ketone and methyl isobutyl ketone, cyclic ketones such as cyclopentanone and cyclohexanone, and esters such as ethyl acetate and butyl acetate.
  • the organic solvent dispersion of the core particles may contain optional components.
  • the dispersibility of the core particles can be further improved.
  • phosphoric acid derivatives include phenylphosphonic acid and metal salts thereof.
  • phosphoric acid-based surfactants include Disperbyk (manufactured by BYK-Chemie), Phosphanol (manufactured by Toho Chemical Industry Co., Ltd.), and Nikkor (manufactured by Nikko Chemicals Co., Ltd.).
  • Oxycarboxylic acids include, for example, lactic acid, tartaric acid, citric acid, gluconic acid, malic acid and glycolic acid.
  • the content of these optional components is preferably about 30% by mass or less with respect to all metal oxides in the core particles.
  • the concentration of the core particles in the organic solvent dispersion is preferably 10 to 60% by mass, more preferably 30 to 50% by mass.
  • the refractive index of the inorganic fine particles is not particularly limited, it is preferably 1.6 to 2.6, more preferably 1.8 to 2.6, from the viewpoint of not lowering the refractive index of the resulting film.
  • the refractive index of the inorganic fine particles is determined, for example, by measuring the refractive index of a liquid of inorganic fine particles dispersed in a solvent or resin having a known refractive index with an Abbe refractometer and extrapolating from the value, or by extrapolating the value.
  • the refractive index of the film or cured product is measured with an Abbe refractometer or spectroscopic ellipsometry, and the refractive index can be extrapolated from the measured value.
  • the content of the inorganic fine particles in the solvent-free composition may be within a range that does not impair the dispersibility in the final composition obtained. It is possible to control according to gender. For example, it can be added in the range of 0.1 to 1,000 parts by mass, preferably 1 to 500 parts by mass, with respect to 100 parts by mass of the triazine ring-containing polymer. And from the viewpoint of obtaining solvent resistance, it is more preferably 10 to 300 parts by mass.
  • the solventless compositions of the present invention preferably contain a reactive diluent.
  • the reactive diluent is a low-molecular-weight compound having one reactive group that reacts with at least one of the cross-linking group of the triazine ring-containing polymer and the cross-linking agent. can be used instead of organic solvents.
  • compounds having one radically polymerizable group and compounds having one cationic polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group are generally used.
  • the molecular weight of the reactive diluent is not particularly limited, and examples thereof include 200 or less.
  • a compound having one radically polymerizable group is preferable, and at least one compound represented by the following formulas (A) and (B) is more preferable in terms of excellent solubility of the triazine ring-containing polymer. .
  • R 201 and R 203 independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a polymerizable carbon-carbon double bond-containing group
  • R 202 is a hydrogen atom. , or an alkyl group having 1 to 10 carbon atoms. provided that either one of R 201 and R 203 is a polymerizable carbon-carbon double bond-containing group, and both R 201 and R 203 are polymerizable carbon-carbon double bond-containing groups at the same time; no.
  • R 201 is a polymerizable carbon-carbon double bond-containing group
  • R 202 and R 203 may together with N form a ring structure.
  • R 204 represents a hydrogen atom or a methyl group.
  • n represents an integer of 1-2.
  • alkyl groups having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl- n-propyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-n-butyl, 2,3-dimethyl-methyl-
  • the polymerizable carbon-carbon double bond-containing group is not particularly limited, but is a hydrocarbon group having 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms-carbon double bond-containing hydrocarbon group (alkenyl group). are preferred, for example, ethenyl (vinyl), n-1-propenyl, n-2-propenyl (allyl group), 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2- methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-2-pentenyl, n-3- Pentenyl, n-4-pentenyl, 1-n-propylethenyl, 1-methyl-1-butenyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 2-e
  • Specific examples of the compound represented by formula (A) include N-vinylformamide, N-vinylacetamide, N-allylformamide, N-allylacetamide, 4-acryloylmorpholine, (meth)acrylamide, N-methyl(meth) acrylamide, N,N-dimethyl(meth)acrylamide, N-ethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-diisopropyl(meth)acrylamide, etc. but N-vinylformamide, 4-acryloylmorpholine, N,N-dimethylacrylamide and N,N-diethyl(meth)acrylamide are preferred.
  • Specific examples of the compound represented by formula (B) include tetrahydrofuran-2-ylmethyl acrylate, tetrahydrofuran-2-ylmethyl methacrylate, tetrahydrofuran-2-ylethyl acrylate, and tetrahydrofuran-2-ylethyl methacrylate.
  • the reactive diluents described above may be used alone or in combination of two or more.
  • the content of the reactive diluent in the solvent-free composition is not particularly limited, and is preferably 1 to 2000 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. Considering the degree of improvement, solvent resistance and viscosity, it is preferably 500 to 1800 parts by mass, more preferably 1000 to 1500 parts by mass.
  • the solvent-free composition of the present invention can also contain an initiator suitable for each cross-linking agent and reactive diluent.
  • an initiator suitable for each cross-linking agent and reactive diluent.
  • a photoacid generator or a photobase generator can be used.
  • the photoacid generator may be appropriately selected from known ones and used.
  • onium salt derivatives such as diazonium salts, sulfonium salts and iodonium salts can be used.
  • aryldiazonium salts such as phenyldiazonium hexafluorophosphate, 4-methoxyphenyldiazonium hexafluoroantimonate, and 4-methylphenyldiazonium hexafluorophosphate; diphenyliodonium hexafluoroantimonate, bis(4-methylphenyl) diaryliodonium salts such as iodonium hexafluorophosphate, bis(4-tert-butylphenyl)iodonium hexafluorophosphate; triphenylsulfonium hexafluoroantimonate, tris(4-methoxyphenyl)sulfonium hexafluorophosphate, diphenyl-4-thiophenoxy phenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hex
  • onium salts may be commercially available products, and specific examples include San-Aid SI-60, SI-80, SI-100, SI-60L, SI-80L, SI-100L, SI-L145, SI- L150, SI-L160, SI-L110, SI-L147 (manufactured by Sanshin Chemical Industry Co., Ltd.), UVI-6950, UVI-6970, UVI-6974, UVI-6990, UVI-6992 (manufactured by Union Carbide company), CPI-100P, CPI-100A, CPI-200K, CPI-200S (manufactured by San-Apro Co., Ltd.), Adeka Optomer SP-150, SP-151, SP-170, SP-171 (manufactured by San-Apro Co., Ltd.) Asahi Denka Kogyo Co., Ltd.), Irgacure 261 (BASF), CI-2481, CI-2624, CI-2639, CI-2064
  • the photobase generator it may be appropriately selected from known ones and used. etc. can be used. Specific examples include 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl)oxy]carbonyl]cyclohexylamine, bis[[(2 -nitrobenzyl)oxy]carbonyl]hexane 1,6-diamine, 4-(methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, N- (2-nitrobenzyloxycarbonyl)pyrrolidine, hexaamminecobalt (III) tris(triphenylmethylborate), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2,6-dimethyl
  • a photoacid or base generator When a photoacid or base generator is used, it is preferably used in the range of 0.1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass, per 100 parts by mass of the polyfunctional epoxy compound. If necessary, an epoxy resin curing agent may be blended in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the polyfunctional epoxy compound.
  • a photoradical polymerization initiator when using a polyfunctional (meth)acrylic compound, a photoradical polymerization initiator can be used.
  • the radical photopolymerization initiator it may be appropriately selected and used from known ones. is mentioned.
  • a photocleavable photoradical polymerization initiator is preferred.
  • the photo-cleavable photoradical polymerization initiator is described in Latest UV Curing Techniques (page 159, published by: Kazuhiro Takasusu, published by: Technical Information Institute, 1991).
  • radical photopolymerization initiators include, for example, BASF trade name: Irgacure 127, 184, 369, 379, 379EG, 651, 500, 754, 819, 903, 907, 784, 2959, CGI1700, CGI1750, CGI1850 , CG24-61, OXE01, OXE02, Darocure 1116, 1173, MBF, manufactured by BASF Product name: Lucilin TPO, manufactured by UCB Product name: Ebecryl P36, manufactured by Fratetzuri Lamberti Product name: Ezacure KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46, KIP75/B and the like.
  • BASF trade name Irgacure 127, 184, 369, 379, 379EG, 651, 500, 754, 819, 903, 907, 784, 2959, CGI1700, CGI1750, CGI1850 , CG24-61, OXE01
  • a photoradical polymerization initiator When using a photoradical polymerization initiator, it is preferable to use it in the range of 0.1 to 200 parts by weight with respect to 100 parts by weight of the polyfunctional (meth) acrylate compound, and to use it in the range of 1 to 150 parts by weight. is more preferred.
  • a polyfunctional thiol compound having two or more mercapto groups in the molecule is added for the purpose of promoting the reaction between the triazine ring-containing polymer and the cross-linking agent.
  • a polyfunctional thiol compound represented by the following formula is preferred.
  • the above L represents a divalent to tetravalent organic group, preferably a divalent to tetravalent aliphatic group having 2 to 12 carbon atoms or a divalent to tetravalent heterocyclic ring-containing group, and a divalent to tetravalent carbon number of 2
  • An aliphatic group of ⁇ 8 or a trivalent group having an isocyanuric acid skeleton (1,3,5-triazine-2,4,6(1H,3H,5H)-trione ring) represented by the following formula is more preferable.
  • n represents an integer of 2 to 4 corresponding to the valence of L.
  • Specific compounds include 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4 , 6-(1H,3H,5H)-trione, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate) and the like. be done.
  • polyfunctional thiol compounds are also commercially available, and examples thereof include Karenz MT-BD1, Karenz MT NR1, Karenz MT PE1, TPMB, and TEMB (manufactured by Showa Denko KK). These polyfunctional thiol compounds may be used singly or in combination of two or more.
  • the amount added is not particularly limited as long as it does not adversely affect the resulting film, but in the present invention, the solid content of 100% by mass, 0.01 to 10 mass % is preferable, and 0.03 to 6% by mass is more preferable.
  • the solvent-free composition of the present invention may contain other components other than the triazine ring-containing polymer and the cross-linking agent, such as leveling agents, surfactants and silane coupling agents, as long as they do not impair the effects of the present invention. may contain additives.
  • surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol; Polyoxyethylene alkylallyl ethers such as ethers; polyoxyethylene/polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate sorbitan fatty acid esters such as; Nonionic surfactants such as sorbitan fatty acid esters, trade names Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.
  • surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 1 part by mass, and 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. Even more preferable.
  • the solvent-free composition of the present invention can be applied to a substrate and then heated or irradiated with light to form a desired cured film.
  • Any method can be used for applying the solventless composition, and examples thereof include spin coating, dipping, flow coating, inkjet, jet dispenser, spraying, bar coating, gravure coating, slit coating, and roll coating. method, transfer printing method, brush coating method, blade coating method, air knife coating method and the like can be used.
  • the base material silicon, glass on which indium tin oxide (ITO) is formed, glass on which indium zinc oxide (IZO) is formed, metal nanowires, polyethylene terephthalate (PET), plastic, glass, A base material made of quartz, ceramics, or the like can be mentioned, and a flexible base material having flexibility can also be used.
  • the calcination temperature is not particularly limited for the purpose of evaporating the solvent, and can be performed at, for example, 110 to 400°C.
  • the baking method is not particularly limited. For example, a hot plate or an oven may be used to evaporate under an appropriate atmosphere such as air, an inert gas such as nitrogen, or vacuum.
  • the sintering temperature and sintering time may be selected in accordance with the process steps of the intended electronic device, and the sintering conditions may be selected such that the physical properties of the obtained film are suitable for the required characteristics of the electronic device.
  • the conditions for light irradiation are not particularly limited either, and suitable irradiation energy and time may be adopted according to the triazine ring-containing polymer and cross-linking agent used.
  • the film and cured film of the present invention obtained as described above can achieve high heat resistance, high refractive index, and low volume shrinkage.
  • a component used in manufacturing touch panels, optical semiconductor (LED) elements, solid-state imaging elements, organic thin-film solar cells, dye-sensitized solar cells, organic thin-film transistors (TFT), lenses, prism cameras, binoculars, microscopes, semiconductor exposure devices, etc. etc. can be suitably used in the fields of electronic devices and optical materials.
  • the film and cured film produced from the solvent-free composition of the present invention have high transparency and a high refractive index, so when used as a planarizing film, a light scattering layer, and a sealing material for organic EL lighting.
  • the light extraction efficiency (light diffusion efficiency) can be improved, and the durability can be improved.
  • the solvent-free composition of the present invention is used for the light scattering layer of organic EL lighting
  • a known organic-inorganic composite light diffusing agent, organic light diffusing agent, or inorganic light diffusing agent can be used. , is not particularly limited. These may be used alone, may be used in combination of two or more of the same type, or may be used in combination of two or more of different types.
  • organic-inorganic composite light diffusing agent examples include melamine resin/silica composite particles.
  • organic light diffusing agents include crosslinked polymethylmethacrylate (PMMA) particles, crosslinked polymethylacrylate particles, crosslinked polystyrene particles, crosslinked styrene-acrylic copolymer particles, melamine-formaldehyde particles, silicone resin particles, silica-acrylic composite particles, and nylon particles.
  • PMMA polymethylmethacrylate
  • benzoguanamine-formaldehyde particles benzoguanamine/melamine/formaldehyde particles, fluorine resin particles, epoxy resin particles, polyphenylene sulfide resin particles, polyethersulfone resin particles, polyacrylonitrile particles, polyurethane particles, and the like.
  • inorganic light diffusing agents examples include calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), barium sulfate (BaSO 4 ), aluminum hydroxide (Al(OH) 3 ), silica (SiO 2 ), talc, and the like.
  • titanium oxide (TiO 2 ) and aggregated silica particles are preferred, and non-aggregated titanium oxide (TiO 2 ) is more preferred, from the viewpoint of further enhancing the light diffusibility of the resulting cured film.
  • These light diffusing agents may be used after being surface-treated with an appropriate surface modifier.
  • 1,3-phenylenediamine [2] (52.78 g, 0.488 mol, manufactured by Amino-Chem), 2,2'-bis(trifluoromethyl)-4,4'- Diaminodiphenyl ether [3] (82.05 g, 0.244 mol, manufactured by Wuhan Sunshine) and N-methyl-2-pyrrolidone (NMP, 1822.89 g, manufactured by Kanto Chemical Co., Ltd.) were added, and after nitrogen substitution, 1,3-phenylenediamine [2] and 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether [3] were dissolved in NMP with stirring. Then, it is cooled to ⁇ 5° C.
  • Compound P-1 had a weight average molecular weight Mw of 6,495 and a polydispersity Mw/Mn of 3.5 as measured by GPC in terms of polystyrene.
  • FIG. 1 shows the measurement results of the 1 H-NMR spectrum of compound P-1.
  • P-1[5] (40.00 g) obtained in Synthesis Example 1 and 135.08 g of tetrahydrofuran (THF, manufactured by Junsei Chemical Co., Ltd.) were added to a 300 mL four-necked flask, and the mixture was purged with nitrogen and then stirred. to dissolve. Thereafter, the solution was heated until the internal temperature reached 65° C., and 0.0040 g of N-nitrosophenylhydroxyamine aluminum salt (Q-1301, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 2-isocyanatoethyl acrylate were added.
  • THF tetrahydrofuran
  • 1,3-phenylenediamine [2] (47.5 g, 0.439 mol, manufactured by Amino-Chem) and 3-methoxy-N, N-dimethylpropanamide 799.2 g (KJCMPA -100, manufactured by KJ Chemicals Co., Ltd.) was added, and after purging with nitrogen, 1,3-phenylenediamine [2] was dissolved in KJCMPA-100 by stirring. Then, it is cooled to ⁇ 5° C.
  • Tetrahydrofuran (THF, 360 g, manufactured by Junsei Chemical Co., Ltd.), ammonium acetate (900.0 g) and ion-exchanged water (900.0 g) were added to the reaction solution and stirred for 30 minutes. After stirring was stopped, the solution was transferred to a separating funnel, separated into an organic layer and an aqueous layer, and the organic layer was recovered. The recovered organic layer was added dropwise to a mixture of methanol (1260 g) and ion-exchanged water (2160 g) for reprecipitation. The resulting precipitate was filtered and dried in a vacuum dryer at 150° C.
  • Compound P-2 had a weight-average molecular weight Mw of 3,816 and a polydispersity Mw/Mn of 2.9 as measured by GPC in terms of polystyrene.
  • FIG. 2 shows the measurement results of the 1 H-NMR spectrum of compound P-2.
  • THFA tetrahydrofurfuryl acrylate
  • oxalic acid dihydrate Substance 98 (contains 70 g in terms of oxalic acid, manufactured by Ube Industries, Ltd.) was added with stirring.
  • the resulting mixed solution had a molar ratio of oxalic acid/titanium atoms of 0.78 and a molar ratio of tetraethylammonium hydroxide/titanium atoms of 1.04.
  • 950 g of the mixed solution was held at 80° C. for 2 hours, and further reduced to 580 Torr and held for 2 hours to prepare a titanium mixed solution.
  • the titanium mixed solution after preparation had a pH of 4.7, an electrical conductivity of 27.2 mS/cm, and a metal oxide concentration of 10.0% by mass.
  • 950 g of the titanium mixed solution and 950 g of pure water were charged into a 3-liter glass-lined autoclave container, and hydrothermally treated at 140° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of pale milky white titanium oxide-containing colloidal particles.
  • the resulting dispersion had a pH of 3.9, a conductivity of 19.7 mS/cm, a TiO2 concentration of 4.2 wt%, a tetraethylammonium hydroxide concentration of 8.0 wt%, an oxalic acid concentration of 3.7 wt%, a dynamic Oval particles with a primary particle diameter of 4 to 10 nm were observed by light scattering method particle diameter 16 nm and transmission electron microscope observation.
  • the obtained dispersion was dried at 110° C. and the powder was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal.
  • the obtained colloidal particles containing titanium oxide were used as core particles (A).
  • zirconium oxychloride containing 21.19% by mass as ZrO2, manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.
  • 429.2 g of pure water 500 g of an aqueous zirconium oxychloride solution ( 3 as ZrO2).
  • a dispersion aqueous dispersion sol of the core particles (A) desalted with an ultrafiltration membrane was added thereto with stirring. Then, the mixture was heated to 95° C.
  • a water-dispersed sol of titanium oxide-containing core particles (A1) (hereinafter referred to as core particles (A1)) having a zirconium oxide thin film layer formed on the surface thereof.
  • the resulting water-dispersed sol had a pH of 1.2 and a total metal oxide concentration of 20% by mass, and colloidal particles having a primary particle diameter of 4 to 10 nm were observed by transmission electron microscope observation.
  • the obtained sol was a water-dispersed sol of alkaline silicon dioxide-stannic oxide composite colloidal particles (B1) (hereinafter referred to as coating particles (B1)) and had a pH of 8.0.
  • coating particles (B1) alkaline silicon dioxide-stannic oxide composite colloidal particles
  • the liquid was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and tri-n-pentyl Silicon dioxide-stannic oxide stabilized with amine and concentrated by ultrafiltration membrane method to form an intermediate thin film layer composed of zirconium oxide between the core particles (A1) and the coating particles (B1)
  • a water-dispersed sol of composite oxide-coated titanium oxide-containing colloidal particles (C1) (hereinafter referred to as modified colloidal particles (C1)) was obtained.
  • the resulting water-dispersed sol had a total metal oxide concentration of 20 mass %, and the primary particle diameter of this sol was 4 to 10 nm as determined by transmission electron microscope observation.
  • methanol-dispersed sol had a total metal oxide concentration of 30% by mass, a viscosity of 1.5 mPa ⁇ s, a particle diameter of 18 nm as determined by the dynamic light scattering method, and a water content of 1.0% by mass.
  • a methanol dispersion of surface-modified colloidal particles (D1) having surfaces bound to propylsilane (hereinafter referred to as surface-modified colloidal particles (D1)) was obtained.
  • methanol is distilled off while adding propylene glycol monomethyl ether at 80 Torr to replace methanol with propylene glycol monomethyl ether, and 530 g of the propylene glycol monomethyl ether dispersion of the surface-modified colloidal particles (D1) is obtained. Obtained.
  • the resulting dispersion has a specific gravity of 1.209, a viscosity of 3.6 mPa s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 11 nm.
  • the polyether-modified silane bound to the surfaces of the modified colloidal particles (C1) was 4.0% by mass with respect to the total metal oxides of the modified colloidal particles (C1).
  • methacryloxypropylsilane bound to the particle surface was 2.5% by mass with respect to the total metal oxides of the modified colloidal particles (C1).
  • oxalic acid dihydrate 75.0 g (contains 53.6 g of oxalic acid, manufactured by Ube Industries, Ltd.) was added with stirring.
  • the resulting mixed solution had a molar ratio of oxalic acid/titanium atoms of 0.52 and a molar ratio of tetraethylammonium hydroxide/titanium atoms of 0.70.
  • 1000 g of the mixed solution was kept at 80° C. for 2 hours, and the pressure was further reduced to 580 Torr to distill off isopropanol to prepare a titanium mixed solution.
  • the titanium mixed solution after preparation had a pH of 5.2, an electrical conductivity of 25.2 mS/cm, and a metal oxide concentration of 10.0% by mass.
  • 1,000 g of the titanium mixed solution and 1,000 g of pure water were put into a 3-liter glass-lined autoclave container, and hydrothermally treated at 140° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of pale milky white titanium oxide-containing colloidal particles.
  • the resulting dispersion has a pH of 3.9, a conductivity of 19.2 mS/cm, a TiO2 concentration of 5.0 wt%, a tetraethylammonium hydroxide concentration of 7.7 wt%, an oxalic acid concentration of 2.7 wt%, a dynamic Oval particles with a primary particle diameter of 4 to 10 nm were observed by light scattering method particle diameter 15 nm and transmission electron microscope observation.
  • the obtained dispersion was dried at 110° C. and the powder was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal.
  • the obtained colloidal particles containing titanium oxide were used as core particles (A2).
  • modified colloidal particles (C2) A water-dispersed sol of stannic oxide composite oxide-coated titanium oxide-containing colloidal particles (C2) (hereinafter referred to as modified colloidal particles (C2)) was obtained.
  • the resulting water-dispersed sol had a total metal oxide concentration of 18% by mass, and a primary particle size of this sol was 4 to 10 nm when observed with a transmission electron microscope.
  • the dispersion medium of the resulting water-dispersed sol was replaced with methanol using a rotary evaporator to obtain a methanol-dispersed sol of modified colloidal particles (C2).
  • This methanol-dispersed sol had a total metal oxide concentration of 30% by mass, a viscosity of 1.3 mPa ⁇ s, a particle diameter of 15 nm as determined by the dynamic light scattering method, and a water content of 1.2% by mass.
  • the resulting dispersion has a specific gravity of 1.365, a viscosity of 5.3 mPa s, a total metal oxide concentration of 40.5% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 11 nm.
  • the polyether-modified silane bonded to the surfaces of the modified colloidal particles (C2) was 4.0% by mass with respect to the total metal oxides of the modified colloidal particles (C2). rice field.
  • the resulting dispersion has a specific gravity of 1.212, a viscosity of 3.2 mPa s, a total metal oxide concentration of 30.3% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 10 nm.
  • the polyether-modified silane bonded to the surfaces of the modified colloidal particles (C1) was 3.9% by mass with respect to the total metal oxides of the modified colloidal particles (C1). rice field.
  • the 3-acryloxypropyltrimethoxysilane bound to the surface of the modified colloidal particles (C2) was 2.0 with respect to the total metal oxides of the modified colloidal particles (C2). % by mass.
  • NP-1 solution A solvent solution was prepared (hereinafter referred to as NP-1 solution). This NP-1 solution was spin-coated on a 50 mm ⁇ 50 mm ⁇ 0.7 mm alkali-free glass substrate with a spin coater at 200 rpm for 5 seconds and then at 1,480 rpm for 30 seconds.
  • NP-1 film a cured film obtained by irradiating light with a wavelength of 395 nm and an exposure amount of 900 mJ/cm 2 with a UV-LED irradiation device.
  • Example 1-2 A solvent-free solution was prepared in the same manner as in Example 1-1, except that the inorganic fine particle solution used was changed to the T-2 solution (14.740 g) obtained in Production Example 9 (hereinafter referred to as NP-2 solution). Using this NP-2 solution, a cured film (hereinafter referred to as NP-2 film) was obtained under the same conditions as in Example 1-1.
  • Example 1-3 A solvent-free solution was prepared (hereinafter referred to as NP-3 solution). Using this NP-3 solution, a cured film (hereinafter referred to as NP-3 film) was obtained under the same conditions as in Example 1-1.
  • Example 1-4 The P-2 solution (3.682 g) synthesized in Synthesis Example 4, the T-4 solution (19.330 g) obtained in Production Example 13, DN-0075 as a cross-linking agent (manufactured by Nippon Kayaku Co., Ltd., 0 0.663 g), pentaerythritol tetrakis (3-mercaptobutyrate, Karenz MT PE1, manufactured by Showa Denko KK) as a UV radical curing aid, 0.663 g, and OXE-02 (manufactured by BASF) as a UV radical generator.
  • a cross-linking agent manufactured by Nippon Kayaku Co., Ltd., 0 0.663 g
  • pentaerythritol tetrakis 3-mercaptobutyrate
  • Karenz MT PE1 manufactured by Showa Denko KK
  • OXE-02 manufactured by BASF
  • NP-4 solution a solvent-free solution was prepared (hereinafter referred to as NP-4 solution).
  • This NP-4 solution was spin-coated on a non-alkali glass substrate of 50 mm ⁇ 50 mm ⁇ 0.7 mm with a spin coater at 200 rpm for 5 seconds and 500 rpm for 30 seconds, and temporarily dried at 100 ° C. for 3 minutes using a hot plate.
  • NP-4 film a cured film obtained by irradiating with a UV-LED irradiation device at a wavelength of 395 nm and an exposure amount of 900 mJ/cm 2 under nitrogen.
  • Example 1-5 A solvent-free solution was prepared in the same manner as in Example 1-4, except that the UV radical curing aid was omitted (hereinafter referred to as NP-5 solution). Using this NP-5 solution, a cured film (hereinafter referred to as NP-5 film) was obtained under the same conditions as in Example 1-4.
  • Example 1-6 Example 1- except that no UV radical curing aid was used and the UV radical generator used was changed from OXE-02 (manufactured by BASF) 0.331 g to Omnirad 819 (manufactured by BASF) 0.331 g A solvent-free solution was prepared in the same manner as in 4 (hereinafter referred to as NP-6 solution). Using this NP-6 solution, a cured film (hereinafter referred to as NP-6 film) was obtained under the same conditions as in Example 1-4.
  • the refractive index, film thickness, b * , transmittance at 400 to 800 nm, and HAZE were measured. The results are shown in Tables 1-1 and 1-2.
  • the transmittance the average transmittance of 400 to 800 nm was calculated and shown in Tables 1-1 and 1-2.
  • the cured film prepared using the solvent-free compositions obtained in Examples 1-1 to 1-6 maintains a high refractive index and high transmittance while maintaining a low HAZE. It turns out that it has the outstanding effect.
  • Example 2-1 Using the NP-1 solution obtained in Example 1-1, the viscosity at 25° C. to 45° C. was measured using an EMS viscometer.
  • Example 2-2 The viscosity of the NP-2 solution obtained in Example 1-2 was measured in the same manner as in Example 2-1.
  • Example 2-3 The viscosity of the NP-3 solution obtained in Example 1-3 was measured in the same manner as in Example 2-1.
  • Example 2-4 The viscosity of the NP-4 solution obtained in Example 1-4 was measured in the same manner as in Example 2-1.
  • Example 2-5 The viscosity of the NP-5 solution obtained in Example 1-5 was measured in the same manner as in Example 2-1.
  • Example 2-6 The viscosity of the NP-6 solution obtained in Example 1-6 was measured in the same manner as in Example 2-1.
  • the measured viscosity at each temperature is shown in Tables 2-1 and 2-2.
  • Example 3-1-1 Thin film (10 ⁇ m or more) solvent resistance (crack resistance) and transmittance, HAZE measurement]
  • the NP-1 solution obtained in Example 1-1 was applied onto a non-alkali glass substrate of 50 mm ⁇ 50 mm ⁇ 0.7 mm with a spin coater at 200 rpm for 5 seconds and 200 rpm for 30 seconds. After temporary drying at 100 ° C. for 3 minutes, a cured film (hereinafter referred to as NP-1 film) is obtained by irradiating light with a wavelength of 395 nm and an exposure amount of 900 mJ / cm 2 with a UV-LED irradiation device. rice field.
  • PGME propylene glycol monomethyl ether
  • Example 3-1-2 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 2-1, except that the solvent to be applied was changed to propylene glycol monomethyl ether acetate (PGMEA).
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 3-1-3 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 2-1, except that the solvent to be applied was changed to cyclopentanone (CPN).
  • CPN cyclopentanone
  • Example 3-2-1 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-1, except that the solution used was changed to the NP-2 solution.
  • Example 3-2-2 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-2, except that the solution used was changed to the NP-2 solution.
  • Example 3-2-3 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-3, except that the solution used was changed to the NP-2 solution.
  • Example 3-3-1 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-1, except that the solution used was changed to the NP-3 solution.
  • Example 3-3-2 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-2, except that the solution used was changed to the NP-3 solution.
  • Example 3-3-3 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-3, except that the solution used was changed to the NP-3 solution.
  • Example 3-1-1 to 3-1-3 The results of film thickness measurement, residual film ratio, 400 to 800 nm average transmittance and HAZE of Examples 3-1-1 to 3-1-3 are shown in Table 3, Example 3-2-1 to Example The results of 3-2-3 are shown in Table 4, the results of Examples 3-3-1 to 3-3-3 are shown in Table 5, and the results of Examples 3-1-1 to 3-1-3 Micrographs of the surface of the cured film after solvent exposure are shown in FIGS. Microscopic photographs of the surfaces of the cured films of Examples 3-3-1 to 3-3-3 after solvent exposure are shown in FIG. 8 and FIGS. 9 to 11, respectively.
  • Example 3-4-2 A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the solvent to be applied was changed to propylene glycol monomethyl ether acetate (PGMEA).
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 3-4-3 A cured film was prepared and a solvent resistance test was performed in the same manner as in Example 3-4-1, except that the solvent to be applied was changed to cyclopentanone (CPN).
  • CPN cyclopentanone
  • Example 3-5-1 A solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the membrane used was changed to NP-5 membrane.
  • Example 3-5-2 A solvent resistance test was conducted in the same manner as in Example 3-4-2, except that the membrane used was changed to NP-5 membrane.
  • Example 3-5-3 A solvent resistance test was conducted in the same manner as in Example 3-4-3 except that the membrane used was changed to NP-5 membrane.
  • Example 3-6-1 A solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the membrane used was changed to NP-6 membrane.
  • Example 3-6-2 A solvent resistance test was conducted in the same manner as in Example 3-4-2, except that the membrane used was changed to NP-6 membrane.
  • Example 3-6-3 A solvent resistance test was conducted in the same manner as in Example 3-4-3, except that the membrane used was changed to NP-6 membrane.
  • the cured films obtained from the NP-1 to NP-6 solutions have an excellent effect of maintaining high transmittance and low HAZE while maintaining high solvent resistance even if the film thickness is thick. I understand. In addition, it can be seen that high solvent resistance is maintained even if the inorganic fine particles are not provided with crosslinked sites.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention provides a solventless composition characterized by comprising: a triazine-ring-containing polymer having a repeating unit structure represented by formula (1), having at least one triazine ring terminal, at least a part of the triazine ring terminal being capped by an amino group having a crosslinking group; a crosslinking agent; and inorganic particles, said solventless composition containing no organic solvent. (In the formula, R and R' each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Q represents a C3-C30 bivalent group having a ring structure. The symbol * represents a bond.)

Description

無溶剤型組成物solvent-free composition
 本発明は、無溶剤型組成物に関する。 The present invention relates to solventless compositions.
 近年、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体(発光ダイオード(LED)等)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、および有機薄膜トランジスタ(TFT)等の電子デバイスを開発する際に、高機能な高分子材料が要求されるようになってきた。
 求められる具体的な特性としては、1)耐熱性、2)透明性、3)高屈折率、4)高溶解性、5)低体積収縮率、6)高温高湿耐性、7)高膜硬度などが挙げられる。
 この点に鑑み、本出願人は、トリアジン環および芳香環を有する繰り返し単位を含む重合体が高屈折率を有し、ポリマー単独で高耐熱性、高透明性、高屈折率、高溶解性、低体積収縮を達成でき、電子デバイスを作製する際の膜形成用組成物として好適であることを既に見出している(特許文献1)。
In recent years, liquid crystal displays, organic electroluminescence (EL) elements (organic EL displays and organic EL lighting), touch panels, optical semiconductors (light-emitting diodes (LEDs), etc.) elements, solid-state imaging elements, organic thin-film solar cells, dye-sensitized solar cells , and organic thin film transistors (TFTs), demand for highly functional polymer materials has increased.
Specific properties required include 1) heat resistance, 2) transparency, 3) high refractive index, 4) high solubility, 5) low volume shrinkage, 6) high temperature and high humidity resistance, and 7) high film hardness. etc.
In view of this point, the present applicant has found that a polymer containing a repeating unit having a triazine ring and an aromatic ring has a high refractive index, and the polymer alone has high heat resistance, high transparency, high refractive index, high solubility, It has already been found that it can achieve low volume shrinkage and is suitable as a film-forming composition for producing electronic devices (Patent Document 1).
 ところで、有機EL照明における、平坦化層や光散乱層などでは、高屈折率材料を有機溶媒に溶かした組成物を用い、塗布法によって薄膜を作製することが一般的であるが、透明導電膜の種類によっては高極性の溶媒を使用することができない場合があった。
 この点に鑑み、本出願人は、トリアジン環含有重合体を含む無溶剤型光硬化性接着剤用組成物が、屈折率調整材料として好適であることを見出している(特許文献2)。
 しかし、耐溶剤性については、改善の余地があった。
By the way, in the flattening layer and the light scattering layer in the organic EL lighting, it is common to use a composition in which a high refractive index material is dissolved in an organic solvent, and to prepare a thin film by a coating method. In some cases, it was not possible to use a highly polar solvent depending on the type of the solvent.
In view of this point, the present applicant has found that a solventless photocurable adhesive composition containing a triazine ring-containing polymer is suitable as a refractive index adjusting material (Patent Document 2).
However, there is room for improvement in terms of solvent resistance.
国際公開第2010/128661号WO2010/128661 国際公開第2016/194920号WO2016/194920
 本発明は、上記事情に鑑みてなされたものであり、高い屈折率を有し、膜厚が厚くても高い溶剤耐性を維持しつつ、高い透過率及び低いHAZEを維持することができる硬化膜を形成でき、更に粘度を低くすることができる無溶剤型組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, has a high refractive index, while maintaining a high solvent resistance even if the film thickness is thick, a cured film that can maintain a high transmittance and a low HAZE It is an object of the present invention to provide a solventless composition capable of forming and further reducing viscosity.
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、少なくとも1つのトリアジン環末端を有するとともに、そのトリアジン環末端の少なくとも一部が架橋基を有するアミノ基で封止されたトリアジン環含有重合体、架橋剤、及び無機微粒子を無溶剤型組成物に用いることで、高い屈折率を有し、膜厚が厚くても高い溶剤耐性を維持しつつ、高い透過率及び低いHAZEを維持することができる硬化膜を形成できることを見出し、更にトリアジン環含有重合体を含有する無溶剤型組成物に無機微粒子を含有させることで、高屈折率を維持しつつ粘度を低くすることができることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have found that a triazine having at least one triazine ring terminal and at least part of the triazine ring terminal being blocked with an amino group having a cross-linking group By using a ring-containing polymer, a cross-linking agent, and inorganic fine particles in a solventless composition, it has a high refractive index and maintains high solvent resistance even when the film is thick, while achieving high transmittance and low HAZE. It has been found that a cured film that can be maintained can be formed, and by adding inorganic fine particles to a solvent-free composition containing a triazine ring-containing polymer, the viscosity can be reduced while maintaining a high refractive index. and completed the present invention.
 すなわち、本発明は、下記の無溶剤型組成物を提供する。
 [1] 下記式(1)で表される繰り返し単位構造を含み、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアミノ基で封止されているトリアジン環含有重合体と、
 架橋剤と、
 無機微粒子と、
を含み、
 有機溶剤を含まない、
ことを特徴とする無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、Qは、環構造を有する炭素数3~30の2価の基を表す。*は結合手を表す。)
 [2] 前記式(1)中のQが、式(2)~(13)及び式(102)~(115)で示される群から選ばれる少なくとも1種を表す、[1]に記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000014
〔式(2)~式(13)中、R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、
 WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子、炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)、または炭素数1~10のハロゲン化アルキル基を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表し、
 XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)
Figure JPOXMLDOC01-appb-C000015
(式(14)中、R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。)で示される基を表す。
 *は結合手を表す。〕
Figure JPOXMLDOC01-appb-C000016
(式(102)~式(115)中、RおよびRは、互いに独立して、分岐構造を有していてもよい炭素数1~5のアルキレン基を表す。*は結合手を表す。)
 [3] 前記式(2)~(13)における前記R~R92およびR98~R101が、互いに独立して、水素原子、ハロゲン原子または炭素数1~10のハロゲン化アルキル基である[1]又は[2]に記載の無溶剤型組成物。
 [4] 前記架橋基を有するアリールアミノ基が、式(15)で示される[1]~[3]のいずれかに記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000017
(式(15)中、R102は、架橋基を表す。*は結合手を表す。)
 [5] 前記架橋基を有するアミノ基が、式(16)で示される[4]に記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000018
(式(16)中、R102は、上記と同じ意味を表す。*は結合手を表す。)
 [6] 前記R102が、ヒドロキシ含有基または(メタ)アクリロイル含有基である[4]又は[5]に記載の無溶剤型組成物。
 [7] 前記R102が、ヒドロキシアルキル基、(メタ)アクリロイルオキシアルキル基または下記式(i)で表される基である[6]に記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000019
(式(i)中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
Figure JPOXMLDOC01-appb-C000020
で表される基を表し、Aは、ヒドロキシ基で置換されてもよい(a+1)価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
 [8] 前記R102が、ヒドロキシメチル基、2-ヒドロキシエチル基、(メタ)アクリロイルオキシメチル基、(メタ)アクリロイルオキシエチル基、および下記式(i-2)~式(i-5)で表される基から選ばれる基である[7]に記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000021
(式(i-2)~式(i-5)中、*は結合手を表す。)
 [9] 前記式(1)中のQ中の少なくとも1つの芳香族環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有する、[2]~[8]のいずれかに記載の無溶剤型組成物。
 [10] さらに、トリアジン環末端の一部が、無置換アリールアミノ基で封止されている[1]~[9]のいずれかに記載の無溶剤型組成物。
 [11] 前記無置換アリールアミノ基が、式(33)で示される[1]~[10]のいずれかに記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000022
(式(33)中、*は結合手を表す。)
 [12] 前記式(1)中のQが、式(17)で示される[1]~[11]のいずれかに記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000023
(式(17)中、*は結合手を表す。)
 [13] 前記式(1)中のQが、式(20)で示される[1]~[12]のいずれかに記載の無溶剤型組成物。
Figure JPOXMLDOC01-appb-C000024
(式(20)中、*は結合手を表す。)
 [14] 前記架橋剤が、多官能(メタ)アクリル化合物である[1]~[13]のいずれかに記載の無溶剤型組成物。
 [15] 前記無機微粒子が、金属酸化物、金属硫黄物または金属窒化物を含む[1]~[14]のいずれかに記載の無溶剤型組成物。
 [16] さらに反応性希釈剤を含む[1]~[15]のいずれかに記載の無溶剤型組成物。
 [17] 前記反応性希釈剤が、ラジカル重合性基を一つ有する化合物である[16]に記載の無溶剤型組成物。
 [18] 光硬化性である、[1]~[17]のいずれかに記載の無溶剤型組成物。
 [19] [1]~[18]のいずれかに記載の無溶剤型組成物から得られる膜。
 [20] 基材と、前記基材上に形成された[19]に記載の膜とを備える電子デバイス。
 [21] 基材と、前記基材上に形成された[19]に記載の膜とを備える光学部材。
That is, the present invention provides the following solventless composition.
[1] containing a repeating unit structure represented by the following formula (1), having at least one triazine ring terminal, and at least part of the triazine ring terminal being blocked with an amino group having a cross-linking group; a triazine ring-containing polymer;
a cross-linking agent;
inorganic fine particles;
including
does not contain organic solvents,
A solvent-free composition characterized by:
Figure JPOXMLDOC01-appb-C000013
(In formula (1), R and R′ independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group; Q is a ring structure having 3 to 30 carbon atoms; represents a valence group.* represents a bond.)
[2] The inorganic material according to [1], wherein Q in formula (1) represents at least one selected from the group represented by formulas (2) to (13) and formulas (102) to (115). Solvent-based composition.
Figure JPOXMLDOC01-appb-C000014
[In the formulas (2) to (13), R 1 to R 92 are each independently a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, represents a halogenated alkyl group or an alkoxy group having 1 to 10 carbon atoms,
R 93 and R 94 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
W 1 and W 2 are each independently a single bond, CR 95 R 96 (R 95 and R 96 are each independently a hydrogen atom, a C 1-10 alkyl group (provided that these may form a ring), or represents a halogenated alkyl group having 1 to 10 carbon atoms.), C═O, O, S, SO, SO 2 , or NR 97 (R 97 is represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group.),
X 1 and X 2 are each independently a single bond, an alkylene group having 1 to 10 carbon atoms, or formula (14)
Figure JPOXMLDOC01-appb-C000015
(In formula (14), R 98 to R 101 are each independently a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, or a halogenated alkyl group having 1 to 10 carbon atoms. , or represents an alkoxy group having 1 to 10 carbon atoms,
Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms. ) represents a group represented by
* represents a bond. ]
Figure JPOXMLDOC01-appb-C000016
(In formulas (102) to (115), R 1 and R 2 each independently represent an alkylene group having 1 to 5 carbon atoms which may have a branched structure. * represents a bond. .)
[3] R 1 to R 92 and R 98 to R 101 in formulas (2) to (13) are each independently a hydrogen atom, a halogen atom, or a halogenated alkyl group having 1 to 10 carbon atoms; The solventless composition according to [1] or [2].
[4] The solventless composition according to any one of [1] to [3], wherein the arylamino group having a cross-linking group is represented by formula (15).
Figure JPOXMLDOC01-appb-C000017
(In formula (15), R 102 represents a cross-linking group. * represents a bond.)
[5] The solvent-free composition according to [4], wherein the amino group having the crosslinking group is represented by formula (16).
Figure JPOXMLDOC01-appb-C000018
(In formula (16), R 102 has the same meaning as above. * represents a bond.)
[6] The solvent-free composition according to [4] or [5], wherein R 102 is a hydroxy-containing group or (meth)acryloyl-containing group.
[7] The solvent-free composition according to [6], wherein R 102 is a hydroxyalkyl group, a (meth)acryloyloxyalkyl group, or a group represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000019
(In formula (i), A 1 represents an alkylene group having 1 to 10 carbon atoms, and A 2 is a single bond or the following formula (j)
Figure JPOXMLDOC01-appb-C000020
A3 represents an (a+1) -valent aliphatic hydrocarbon group which may be substituted with a hydroxy group , A4 represents a hydrogen atom or a methyl group, a represents 1 or 2 and * represents a bond. )
[8] wherein R 102 is a hydroxymethyl group, a 2-hydroxyethyl group, a (meth)acryloyloxymethyl group, a (meth)acryloyloxyethyl group, and formulas (i-2) to (i-5) below; The solvent-free composition according to [7], which is a group selected from the groups represented by:
Figure JPOXMLDOC01-appb-C000021
(In formulas (i-2) to (i-5), * represents a bond.)
[9] Any of [2] to [8], wherein at least one aromatic ring in Q in the formula (1) contains at least one halogen atom or a halogenated alkyl group having 1 to 10 carbon atoms 2. The solvent-free composition according to 1.
[10] The solvent-free composition according to any one of [1] to [9], wherein a portion of the triazine ring terminal is further capped with an unsubstituted arylamino group.
[11] The solvent-free composition according to any one of [1] to [10], wherein the unsubstituted arylamino group is represented by formula (33).
Figure JPOXMLDOC01-appb-C000022
(In formula (33), * represents a bond.)
[12] The solvent-free composition according to any one of [1] to [11], wherein Q in formula (1) is represented by formula (17).
Figure JPOXMLDOC01-appb-C000023
(In formula (17), * represents a bond.)
[13] The solvent-free composition according to any one of [1] to [12], wherein Q in formula (1) is represented by formula (20).
Figure JPOXMLDOC01-appb-C000024
(In formula (20), * represents a bond.)
[14] The solventless composition according to any one of [1] to [13], wherein the cross-linking agent is a polyfunctional (meth)acrylic compound.
[15] The solvent-free composition according to any one of [1] to [14], wherein the inorganic fine particles contain a metal oxide, metal sulfur or metal nitride.
[16] The solventless composition according to any one of [1] to [15], further comprising a reactive diluent.
[17] The solvent-free composition according to [16], wherein the reactive diluent is a compound having one radically polymerizable group.
[18] The solventless composition according to any one of [1] to [17], which is photocurable.
[19] A film obtained from the solventless composition according to any one of [1] to [18].
[20] An electronic device comprising a substrate and the film according to [19] formed on the substrate.
[21] An optical member comprising a substrate and the film according to [19] formed on the substrate.
 本発明によれば、高い屈折率を有し、膜厚が厚くても高い溶剤耐性を維持しつつ、高い透過率及び低いHAZEを維持することができる硬化膜を形成でき、更に粘度を低くすることができる無溶剤型組成物を提供できる。
 本発明の無溶剤型組成物から作製された膜は、高耐熱性、高屈折率、低体積収縮、耐溶剤性(耐クラック性)という特性を発揮し得るため、液晶ディスプレイ、有機EL素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ、レンズ、プリズム、カメラ、双眼鏡、顕微鏡、半導体露光装置等を作製する際の一部材など、電子デバイスや光学材料の分野に好適に利用できる。
 特に、本発明の無溶剤型組成物から作製された膜は透明性が高く、屈折率や耐溶剤性(耐クラック性)も高いため、有機EL照明の平坦化層、光散乱層、封止材として使用することで、その光取出し効率(光拡散効率)を改善することができるとともに、その耐久性を改善することができる。
According to the present invention, it is possible to form a cured film having a high refractive index and maintaining high solvent resistance even when the film thickness is thick, while maintaining high transmittance and low HAZE, and further lowering the viscosity. A solvent-free composition can be provided.
Films produced from the solvent-free composition of the present invention can exhibit properties such as high heat resistance, high refractive index, low volume shrinkage, and solvent resistance (crack resistance). Organic EL displays and organic EL lighting), touch panels, optical semiconductor devices, solid-state imaging devices, organic thin-film solar cells, dye-sensitized solar cells, organic thin-film transistors, lenses, prisms, cameras, binoculars, microscopes, semiconductor exposure equipment, etc. It can be suitably used in the fields of electronic devices and optical materials, such as a member of the case.
In particular, the film produced from the solvent-free composition of the present invention has high transparency and high refractive index and solvent resistance (crack resistance). By using it as a material, its light extraction efficiency (light diffusion efficiency) can be improved, and its durability can be improved.
合成例1で得られた化合物P-1(高分子化合物[5])のH-NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of compound P-1 (polymer compound [5]) obtained in Synthesis Example 1. FIG. 合成例3で得られた化合物P-2(高分子化合物[7])のH-NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of compound P-2 (polymer compound [7]) obtained in Synthesis Example 3. FIG. 実施例3-1-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-1 after exposure to a solvent. 実施例3-1-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-2 after exposure to a solvent. 実施例3-1-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-1-3 after exposure to a solvent. 実施例3-2-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-2-1 after exposure to a solvent. 実施例3-2-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-2-2 after exposure to a solvent. 実施例3-2-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-2-3 after exposure to a solvent. 実施例3-3-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-3-1 after exposure to a solvent. 実施例3-3-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-3-2 after being exposed to a solvent. 実施例3-3-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-3-3 after exposure to a solvent. 実施例3-4-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-4-1 after exposure to a solvent. 実施例3-4-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-4-2 after exposure to a solvent. 実施例3-4-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。2 is an optical microscope photograph of the surface of the cured film obtained in Example 3-4-3 after being exposed to a solvent. 実施例3-5-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-1 after exposure to a solvent. 実施例3-5-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-2 after exposure to a solvent. 実施例3-5-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-5-3 after exposure to a solvent. 実施例3-6-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-1 after exposure to a solvent. 実施例3-6-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-2 after exposure to a solvent. 実施例3-6-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。1 is an optical microscope photograph of the surface of a cured film obtained in Example 3-6-3 after exposure to a solvent.
 以下、本発明についてさらに詳しく説明する。
 本発明に係る無溶剤型組成物は、トリアジン環含有重合体と、架橋剤と、無機微粒子とを含む。無溶剤型組成物は、有機溶剤を含まない。
 ここで、「有機溶剤を含まない」とは、実質的に有機溶剤を含まないことを意味し、具体的に有機溶剤の含有量が10質量%以下であることを示す。
The present invention will be described in more detail below.
A solventless composition according to the present invention comprises a triazine ring-containing polymer, a cross-linking agent, and inorganic fine particles. A solventless composition does not contain an organic solvent.
Here, "free of organic solvent" means substantially free of organic solvent, and specifically indicates that the content of organic solvent is 10% by mass or less.
(1).トリアジン環含有重合体
 トリアジン環含有重合体は、下記式(1)で表される繰り返し単位構造を含むものである。
 トリアジン環含有重合体は、例えば、いわゆるハイパーブランチポリマーである。ハイパーブランチポリマーとは、不規則な分岐構造を有する高分岐ポリマーである。ここでの不規則とは、規則的な分岐構造を有する高分岐ポリマーであるデンドリマーの分岐構造よりも不規則であることを意味する。
 例えば、ハイパーブランチポリマーであるトリアジン環含有重合体は、式(1)で表される繰り返し単位構造よりも大きな構造として、式(1)で表される繰り返し単位構造の3つの結合手のそれぞれに、式(1)で表される繰り返し単位構造が結合してなる構造(構造X)を含む。ハイパーブランチポリマーであるトリアジン環含有重合体においては、構造Xがトリアジン環含有重合体の末端を除く全体に分布している。
 ハイパーブランチポリマーであるトリアジン環含有重合体においては、繰り返し単位構造が、本質的に式(1)で表される繰り返し単位構造のみからであってもよい。
(1). Triazine Ring-Containing Polymer The triazine ring-containing polymer contains a repeating unit structure represented by the following formula (1).
A triazine ring-containing polymer is, for example, a so-called hyperbranched polymer. A hyperbranched polymer is a highly branched polymer having an irregularly branched structure. The term "irregular" as used herein means that the branch structure is more irregular than that of a dendrimer, which is a highly branched polymer having a regular branch structure.
For example, a triazine ring-containing polymer, which is a hyperbranched polymer, has a structure larger than the repeating unit structure represented by formula (1), and each of the three bonds of the repeating unit structure represented by formula (1) has , and a structure (structure X) in which repeating unit structures represented by formula (1) are bonded. In the triazine ring-containing polymer, which is a hyperbranched polymer, structure X is distributed throughout the triazine ring-containing polymer except for the terminals.
In the triazine ring-containing polymer, which is a hyperbranched polymer, the repeating unit structure may consist essentially of the repeating unit structure represented by formula (1).
Figure JPOXMLDOC01-appb-C000025
 *は結合手を表す。
Figure JPOXMLDOC01-appb-C000025
* represents a bond.
<<R、及びR’>>
 上記式中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表すが、屈折率をより高めるという観点から、ともに水素原子であることが好ましい。
 本発明において、アルキル基の炭素数としては特に限定されるものではないが、1~20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アルキル基の炭素数としては、1~10がより好ましく、1~3がより一層好ましい。また、アルキル基の構造は、特に限定されず、例えば、直鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
<<R and R'>>
In the above formula, R and R′ each independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group. preferable.
In the present invention, the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 20. Considering that the heat resistance of the polymer is further improved, the number of carbon atoms in the alkyl group is 1 to 10. More preferably, 1 to 3 are even more preferable. Moreover, the structure of the alkyl group is not particularly limited, and may be, for example, linear, branched, cyclic, or a combination of two or more thereof.
 アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、シクロプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、シクロブチル、1-メチル-シクロプロピル、2-メチル-シクロプロピル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、1,2-ジメチル-n-プロピル、2,2-ジメチル-n-プロピル、1-エチル-n-プロピル、シクロペンチル、1-メチル-シクロブチル、2-メチル-シクロブチル、3-メチル-シクロブチル、1,2-ジメチル-シクロプロピル、2,3-ジメチル-シクロプロピル、1-エチル-シクロプロピル、2-エチル-シクロプロピル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、3-メチル-n-ペンチル、4-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1,2-ジメチル-n-ブチル、1,3-ジメチル-n-ブチル、2,2-ジメチル-n-ブチル、2,3-ジメチル-n-ブチル、3,3-ジメチル-n-ブチル、1-エチル-n-ブチル、2-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、1,2,2-トリメチル-n-プロピル、1-エチル-1-メチル-n-プロピル、1-エチル-2-メチル-n-プロピル、シクロヘキシル、1-メチル-シクロペンチル、2-メチル-シクロペンチル、3-メチル-シクロペンチル、1-エチル-シクロブチル、2-エチル-シクロブチル、3-エチル-シクロブチル、1,2-ジメチル-シクロブチル、1,3-ジメチル-シクロブチル、2,2-ジメチル-シクロブチル、2,3-ジメチル-シクロブチル、2,4-ジメチル-シクロブチル、3,3-ジメチル-シクロブチル、1-n-プロピル-シクロプロピル、2-n-プロピル-シクロプロピル、1-イソプロピル-シクロプロピル、2-イソプロピル-シクロプロピル、1,2,2-トリメチル-シクロプロピル、1,2,3-トリメチル-シクロプロピル、2,2,3-トリメチル-シクロプロピル、1-エチル-2-メチル-シクロプロピル、2-エチル-1-メチル-シクロプロピル、2-エチル-2-メチル-シクロプロピル、2-エチル-3-メチル-シクロプロピル基等が挙げられる。 Specific examples of alkyl groups are methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, s-butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl. , n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2 , 2-dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2-dimethyl-cyclopropyl, 2,3- dimethyl-cyclopropyl, 1-ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl -n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-n-butyl, 2,3-dimethyl -n-butyl, 3,3-dimethyl-n-butyl, 1-ethyl-n-butyl, 2-ethyl-n-butyl, 1,1,2-trimethyl-n-propyl, 1,2,2-trimethyl -n-propyl, 1-ethyl-1-methyl-n-propyl, 1-ethyl-2-methyl-n-propyl, cyclohexyl, 1-methyl-cyclopentyl, 2-methyl-cyclopentyl, 3-methyl-cyclopentyl, 1 -ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3-ethyl-cyclobutyl, 1,2-dimethyl-cyclobutyl, 1,3-dimethyl-cyclobutyl, 2,2-dimethyl-cyclobutyl, 2,3-dimethyl-cyclobutyl, 2 ,4-dimethyl-cyclobutyl, 3,3-dimethyl-cyclobutyl, 1-n-propyl-cyclopropyl, 2-n-propyl-cyclopropyl, 1-isopropyl-cyclopropyl, 2-isopropyl-cyclopropyl, 1,2 ,2-trimethyl-cyclopropyl, 1,2,3-trimethyl-cyclopropyl, 2,2,3-trimethyl-cyclopropyl, 1-ethyl-2-methyl-cyclopropyl, 2-ethyl-1-methyl-cyclopropyl Examples include propyl, 2-ethyl-2-methyl-cyclopropyl, 2-ethyl-3-methyl-cyclopropyl groups and the like.
 上記アルコキシ基の炭素数としては特に限定されるものではないが、1~20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アルコキシ基の炭素数としては、1~10がより好ましく、1~3がより一層好ましい。また、そのアルキル部分の構造は、特に限定されず、例えば、直鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。 Although the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1 to 20, and in consideration of further increasing the heat resistance of the polymer, the number of carbon atoms in the alkoxy group is more preferably 1 to 10. 1 to 3 are even more preferred. The structure of the alkyl moiety is not particularly limited, and may be, for example, linear, branched, cyclic, or a combination of two or more thereof.
 アルコキシ基の具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、1-メチル-n-ブトキシ、2-メチル-n-ブトキシ、3-メチル-n-ブトキシ、1,1-ジメチル-n-プロポキシ、1,2-ジメチル-n-プロポキシ、2,2-ジメチル-n-プロポキシ、1-エチル-n-プロポキシ、n-ヘキシルオキシ、1-メチル-n-ペンチルオキシ、2-メチル-n-ペンチルオキシ、3-メチル-n-ペンチルオキシ、4-メチル-n-ペンチルオキシ、1,1-ジメチル-n-ブトキシ、1,2-ジメチル-n-ブトキシ、1,3-ジメチル-n-ブトキシ、2,2-ジメチル-n-ブトキシ、2,3-ジメチル-n-ブトキシ、3,3-ジメチル-n-ブトキシ、1-エチル-n-ブトキシ、2-エチル-n-ブトキシ、1,1,2-トリメチル-n-プロポキシ、1,2,2-トリメチル-n-プロポキシ、1-エチル-1-メチル-n-プロポキシ、1-エチル-2-メチル-n-プロポキシ基等が挙げられる。 Specific examples of alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, n-pentoxy, 1-methyl-n-butoxy, 2-methyl-n -butoxy, 3-methyl-n-butoxy, 1,1-dimethyl-n-propoxy, 1,2-dimethyl-n-propoxy, 2,2-dimethyl-n-propoxy, 1-ethyl-n-propoxy, n -hexyloxy, 1-methyl-n-pentyloxy, 2-methyl-n-pentyloxy, 3-methyl-n-pentyloxy, 4-methyl-n-pentyloxy, 1,1-dimethyl-n-butoxy, 1,2-dimethyl-n-butoxy, 1,3-dimethyl-n-butoxy, 2,2-dimethyl-n-butoxy, 2,3-dimethyl-n-butoxy, 3,3-dimethyl-n-butoxy, 1-ethyl-n-butoxy, 2-ethyl-n-butoxy, 1,1,2-trimethyl-n-propoxy, 1,2,2-trimethyl-n-propoxy, 1-ethyl-1-methyl-n- propoxy, 1-ethyl-2-methyl-n-propoxy group and the like.
 上記アリール基の炭素数としては特に限定されるものではないが、6~40が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アリール基の炭素数としては、6~16がより好ましく、6~13がより一層好ましい。
 本発明において上記アリール基には、置換基を有するアリール基が含まれる。置換基としては、例えば、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、シアノ基などが挙げられる。
 アリール基の具体例としては、フェニル、o-クロルフェニル、m-クロルフェニル、p-クロルフェニル、o-フルオロフェニル、p-フルオロフェニル、o-メトキシフェニル、p-メトキシフェニル、p-ニトロフェニル、p-シアノフェニル、α-ナフチル、β-ナフチル、o-ビフェニリル、m-ビフェニリル、p-ビフェニリル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられる。
Although the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 40. In consideration of further increasing the heat resistance of the polymer, the number of carbon atoms in the aryl group is more preferably 6 to 16. 6 to 13 are even more preferred.
In the present invention, the aryl group includes an aryl group having a substituent. Examples of substituents include halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, nitro groups, and cyano groups.
Specific examples of aryl groups include phenyl, o-chlorophenyl, m-chlorophenyl, p-chlorophenyl, o-fluorophenyl, p-fluorophenyl, o-methoxyphenyl, p-methoxyphenyl, p-nitrophenyl, p-cyanophenyl, α-naphthyl, β-naphthyl, o-biphenylyl, m-biphenylyl, p-biphenylyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4 -phenanthryl, 9-phenanthryl groups and the like.
 アラルキル基の炭素数としては特に限定されるものではないが、炭素数7~20が好ましく、そのアルキル部分の構造は、特に限定されず、例えば、直鎖、分岐、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 本発明において、アラルキル基には、置換基を有するアラルキル基が含まれる。置換基としては、例えば、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、シアノ基などが挙げられる。
 その具体例としては、ベンジル、p-メチルフェニルメチル、m-メチルフェニルメチル、o-エチルフェニルメチル、m-エチルフェニルメチル、p-エチルフェニルメチル、2-プロピルフェニルメチル、4-イソプロピルフェニルメチル、4-イソブチルフェニルメチル、α-ナフチルメチル基等が挙げられる。
Although the number of carbon atoms in the aralkyl group is not particularly limited, it is preferably 7 to 20 carbon atoms, and the structure of the alkyl moiety is not particularly limited. Any combination of
In the present invention, the aralkyl group includes an aralkyl group having a substituent. Examples of substituents include halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, nitro groups, and cyano groups.
Specific examples include benzyl, p-methylphenylmethyl, m-methylphenylmethyl, o-ethylphenylmethyl, m-ethylphenylmethyl, p-ethylphenylmethyl, 2-propylphenylmethyl, 4-isopropylphenylmethyl, 4-isobutylphenylmethyl, α-naphthylmethyl group and the like.
<<Q>>
 式(1)中のQとしては、環構造を有する炭素数3~30の2価の基であれば特に限定されるものではない。
 環構造は、芳香族環構造であってもよいし、脂環構造であってもよい。
<<Q>>
Q in formula (1) is not particularly limited as long as it is a divalent group having 3 to 30 carbon atoms and having a ring structure.
The ring structure may be an aromatic ring structure or an alicyclic structure.
 上記Qは、好ましくは、式(2)~(13)で示される群から選ばれる少なくとも1種を表す。 The above Q preferably represents at least one selected from the group represented by formulas (2) to (13).
Figure JPOXMLDOC01-appb-C000026
 *は結合手を表す。
Figure JPOXMLDOC01-appb-C000026
* represents a bond.
 上記R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、
 WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子、炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)、または炭素数1~10のハロゲン化アルキル基を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 なお、アルキル基、アルコキシ基としては上記と同様のものが挙げられる。
R 1 to R 92 above each independently represent a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a halogen atom having 1 to 10 carbon atoms. representing 10 alkoxy groups,
R 93 and R 94 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
W 1 and W 2 are each independently a single bond, CR 95 R 96 (R 95 and R 96 are each independently a hydrogen atom, a C 1-10 alkyl group (provided that these may form a ring), or represents a halogenated alkyl group having 1 to 10 carbon atoms.), C═O, O, S, SO, SO 2 , or NR 97 (R 97 is represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group).
Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
Examples of the alkyl group and alkoxy group are the same as those described above.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 なお、アルキル基、アルコキシ基としては、R,R’におけるアルキル基、アルコキシ基と同様のものが挙げられる。
Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
As the alkyl group and the alkoxy group, the same groups as the alkyl group and the alkoxy group in R and R' can be mentioned.
 炭素数1~10のハロゲン化アルキル基は、上記炭素数1~10のアルキル基中の水素原子の少なくとも1つをハロゲン原子で置換したものであり、その具体例としては、例えば、トリフルオロメチル、2,2,2-トリフルオロエチル、パーフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル、パーフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、パーフルオロペンチル、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシル、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびパーフルオロヘキシル基が挙げられる。本発明では、屈折率を維持しつつトリアジン環含有重合体の低極性溶媒等に対する溶解性を高めることを考慮すると、炭素数1~10のパーフルオロアルキル基が好ましく、特に、炭素数1~5のパーフルオロアルキル基がより好ましく、トリフルオロメチル基がより一層好ましい。 The halogenated alkyl group having 1 to 10 carbon atoms is obtained by substituting at least one hydrogen atom in the alkyl group having 1 to 10 carbon atoms with a halogen atom, and specific examples thereof include trifluoromethyl , 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl , 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, perfluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4,4-pentafluorobutyl, 2,2 , 3,3,4,4,4-heptafluorobutyl, perfluorobutyl, 2,2,3,3,4,4,5,5,5-nonafluoropentyl, 2,2,3,3,4 , 4,5,5-octafluoropentyl, perfluoropentyl, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl, 2,2,3,3, 4,4,5,5,6,6-decafluorohexyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl, and perfluorohexyl groups. In the present invention, a perfluoroalkyl group having 1 to 10 carbon atoms is preferred, particularly 1 to 5 carbon atoms, in consideration of enhancing the solubility of the triazine ring-containing polymer in low-polar solvents while maintaining the refractive index. is more preferred, and a trifluoromethyl group is even more preferred.
 また、XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)で示される基を表す。
 これらのアルキル基、ハロゲン化アルキル基、アルコキシ基、及びアルキレン基の構造は、特に限定されず、例えば、直鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
X 1 and X 2 each independently represent a single bond, an alkylene group having 1 to 10 carbon atoms, or a group represented by formula (14).
The structures of these alkyl groups, halogenated alkyl groups, alkoxy groups, and alkylene groups are not particularly limited, and may be, for example, linear, branched, cyclic, or combinations of two or more thereof.
Figure JPOXMLDOC01-appb-C000027
 *は結合手を表す。
Figure JPOXMLDOC01-appb-C000027
* represents a bond.
 上記R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。
 これらハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシ基としては、R~R92におけるハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシ基と同様のものが挙げられる。
R 98 to R 101 each independently represent a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a representing 10 alkoxy groups,
Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms.
These halogen atoms, alkyl groups, halogenated alkyl groups and alkoxy groups include the same halogen atoms, alkyl groups, halogenated alkyl groups and alkoxy groups for R 1 to R 92 .
 炭素数1~10のアルキレン基としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン基等が挙げられる。
 上記アルキレン基の構造は、特に限定されず、例えば、直鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
Examples of alkylene groups having 1 to 10 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene and pentamethylene groups.
The structure of the alkylene group is not particularly limited, and may be linear, branched, cyclic, or a combination of two or more thereof.
 これらの中でも、R~R92およびR98~R101としては、水素原子、ハロゲン原子、スルホ基、炭素数1~5のアルキル基、炭素数1~5のハロゲン化アルキル基、または炭素数1~5のアルコキシ基が好ましく、水素原子がより好ましい。 Among these, R 1 to R 92 and R 98 to R 101 are a hydrogen atom, a halogen atom, a sulfo group, an alkyl group having 1 to 5 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a An alkoxy group of 1 to 5 is preferred, and a hydrogen atom is more preferred.
 本発明のトリアジン環含有重合体は、Qが芳香族環を含む場合、上記Qに含まれる芳香族環の中の、少なくとも1つの芳香族環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有することが好ましい。一般的に、化合物にフッ素原子を導入することで、その屈折率は低下する傾向にあることが知られているが、本発明のトリアジン環含有重合体は、フッ素原子が導入されているにもかかわらず、1.7を超える屈折率を維持している。芳香族環中のハロゲン原子またはハロゲン化アルキル基の数は、当該芳香族環上に置換可能な任意の数とすることができるが、屈折率維持と溶媒に対する溶解性とのバランスを考慮すると、1~4個が好ましく、1~2個がより好ましく、1個がより一層好ましい。なお、芳香族環がナフタレン環などの複数の芳香族環が縮環したものである場合は、全体として少なくとも1つの上記基を有していればよい。
 また、Qが複数の芳香族環を含む場合、少なくとも1つの芳香族環中にハロゲン原子またはハロゲン化アルキル基を少なくとも1つ含有していればよいが、全ての芳香族環がハロゲン原子またはハロゲン化アルキル基を少なくとも1つ含有していることが好ましく、全ての芳香族環がハロゲン原子またはハロゲン化アルキル基を1つ含有していることがより好ましい。
In the triazine ring-containing polymer of the present invention, when Q contains an aromatic ring, at least one of the aromatic rings contained in Q has a halogen atom or a halogen atom having 1 to 10 carbon atoms. It preferably contains at least one alkyl group. It is generally known that introduction of a fluorine atom into a compound tends to lower its refractive index. Regardless, the refractive index remains above 1.7. The number of halogen atoms or halogenated alkyl groups in the aromatic ring can be any number that can be substituted on the aromatic ring, but considering the balance between maintaining the refractive index and solubility in a solvent, 1 to 4 are preferred, 1 to 2 are more preferred, and 1 is even more preferred. When the aromatic ring is a condensed aromatic ring such as a naphthalene ring, it may have at least one of the above groups as a whole.
Further, when Q contains a plurality of aromatic rings, at least one halogen atom or halogenated alkyl group may be contained in at least one aromatic ring, but all the aromatic rings are halogen atoms or halogen preferably contain at least one halogenated alkyl group, and more preferably all aromatic rings contain one halogen atom or halogenated alkyl group.
 特に、Qとしては、式(2)、(5)~(13)で示される少なくとも1種が好ましく、式(2)、(5)、(7)、(8)、(11)~(13)で示される少なくとも1種がより好ましい。上記式(2)~(13)で表される2価の基の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。 In particular, Q is preferably at least one represented by formulas (2) and (5) to (13), and formulas (2), (5), (7), (8), (11) to (13) ) is more preferred. Specific examples of the divalent groups represented by the above formulas (2) to (13) include, but are not limited to, those represented by the following formulas.
Figure JPOXMLDOC01-appb-C000028
 「Ph」はフェニル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000028
"Ph" represents a phenyl group. * represents a bond.
Figure JPOXMLDOC01-appb-C000029
 
 (式中、Aは、互いに独立して、ハロゲン原子または炭素数1~10のハロゲン化アルキル基を表し、pは、互いに独立して、0~4の整数、qは、互いに独立して、0~3の整数、rは、互いに独立して、0~2の整数、sは、互いに独立して、0~5の整数、tは1~6の整数、uは1~4の整数を表す。ただし、それぞれの基において、p、q、r、sの合計は1以上である。「Ph」はフェニル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000029

(Wherein, A is each independently a halogen atom or a halogenated alkyl group having 1 to 10 carbon atoms, p is each independently an integer of 0 to 4, q is each independently an integer of 0 to 3, r is an integer of 0 to 2 independently of each other, s is an integer of 0 to 5 independently of each other, t is an integer of 1 to 6, u is an integer of 1 to 4 However, in each group, the sum of p, q, r, and s is 1 or more, "Ph" represents a phenyl group, and * represents a bond.)
 これらの中でも、より高い屈折率のポリマーが得られることから、Qは下記式で示される2価の基がより好ましい。 Among these, Q is more preferably a divalent group represented by the following formula, since a polymer with a higher refractive index can be obtained.
Figure JPOXMLDOC01-appb-C000030
 「Ph」はフェニル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000030
"Ph" represents a phenyl group. * represents a bond.
Figure JPOXMLDOC01-appb-C000031
(式中、A、p、q、rおよびuは、上記と同じ意味を表す。「Ph」はフェニル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000031
(Wherein, A, p, q, r and u represent the same meanings as above. "Ph" represents a phenyl group. * represents a bond.)
 特に、低極性溶剤等の有機溶媒に対するトリアジン環含有重合体の溶解性をより高めることを考慮すると、Qとしては、式(17)で示されるm-フェニレン基が好ましい。 In particular, in consideration of further increasing the solubility of the triazine ring-containing polymer in organic solvents such as low-polar solvents, Q is preferably an m-phenylene group represented by formula (17).
Figure JPOXMLDOC01-appb-C000032
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000032
(In the formula, * represents a bond.)
 特に、トリアジン環含有重合体の屈折率をより高めることを考慮すると、Qとしては、式(18)~(20)で示されるジフェニルエーテル骨格を有する基が好ましい。 In particular, in consideration of further increasing the refractive index of the triazine ring-containing polymer, Q is preferably a group having a diphenyl ether skeleton represented by formulas (18) to (20).
Figure JPOXMLDOC01-appb-C000033
(式中、Aおよびpは、上記と同じ意味を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000033
(In the formula, A and p have the same meaning as above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000034
(式中、Aおよびpは、上記と同じ意味を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000034
(In the formula, A and p have the same meaning as above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000035
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000035
(In the formula, * represents a bond.)
 また、式(1)中のQは、例えば、式(102)~(115)で示される群から選ばれる少なくとも1種を表す。
Figure JPOXMLDOC01-appb-C000036
 *は結合手を表す。
Q in formula (1) represents at least one selected from the group represented by formulas (102) to (115), for example.
Figure JPOXMLDOC01-appb-C000036
* represents a bond.
 式(102)~(115)において、上記RおよびRは、互いに独立して、分岐構造を有していてもよい炭素数1~5のアルキレン基を表す。
 このようなアルキレン基としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン基等が挙げられるが、得られるポリマーの屈折率をより高めるということを考慮すると、炭素数1~3のアルキレン基が好ましく、炭素数1~2のアルキレン基、具体的には、メチレン、エチレン基がより好ましく、メチレン基が最適である。
In formulas (102) to (115), R 1 and R 2 above independently represent an optionally branched alkylene group having 1 to 5 carbon atoms.
Examples of such alkylene groups include methylene, ethylene, propylene, trimethylene, tetramethylene, and pentamethylene groups. is preferred, and an alkylene group having 1 to 2 carbon atoms, more preferably a methylene or ethylene group, most preferably a methylene group.
<架橋基を有するアミノ基>
 また、本発明のトリアジン環含有重合体は、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアミノ基で封止されている。
 なお、本発明のトリアジン環含有重合体は、少なくとも1つのトリアジン環末端を有するが、この末端のトリアジン環は、通常、上記架橋基を有するアミノ基と置換可能なハロゲン原子を2つ有している。そのため、上記架橋基を有するアミノ基は、同一のトリアジン環末端に結合していてもよく、また、トリアジン環末端が複数ある場合は、それぞれが別のトリアジン環末端に結合していてもよい。
<Amino group having a cross-linking group>
Moreover, the triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and at least part of this triazine ring terminal is blocked with an amino group having a cross-linking group.
The triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and the triazine ring at this terminal usually has two halogen atoms that can be substituted with the amino group having the above-mentioned bridging group. there is Therefore, the amino group having the bridging group may be bonded to the same triazine ring terminal, and when there are a plurality of triazine ring terminals, each may be bonded to a different triazine ring terminal.
 架橋基を有するアミノ基における架橋基の数は特に限定されるものではなく、任意の数とすることができるが、耐溶剤性と反応性希釈剤に対する溶解性とのバランスを考慮すると、1~4個が好ましく、1~2個がより好ましく、1個がより一層好ましい。
 架橋基を有するアミノ基が複数の架橋基を有する場合、複数の架橋基は同じ構造であってもよいし、異なる構造であってもよい。
The number of cross-linking groups in the amino group having a cross-linking group is not particularly limited, and can be any number. 4 is preferred, 1-2 is more preferred, and 1 is even more preferred.
When the amino group having a cross-linking group has a plurality of cross-linking groups, the plurality of cross-linking groups may have the same structure or different structures.
 架橋基を有するアミノ基は、例えば、下記式(X)で表される。
Figure JPOXMLDOC01-appb-C000037
(式中、Zは、架橋基を有する基を表す。*は結合手を表す。)
An amino group having a cross-linking group is represented, for example, by the following formula (X).
Figure JPOXMLDOC01-appb-C000037
(In the formula, Z represents a group having a cross-linking group. * represents a bond.)
 式(X)中、Zは、架橋基自体であってもよい。
 架橋基は、アリーレン基によってアミノ基に結合していることが好ましい。
In formula (X), Z may be the bridging group itself.
Preferably, the bridging group is attached to the amino group through an arylene group.
 そして、架橋基を有するアミノ基は、より好ましくは下記式(15)で示され、特に好ましくは下記式(16)で示される。
Figure JPOXMLDOC01-appb-C000038
(式中、R102は、架橋基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000039
(式中、R102は、上記と同じ意味を表す。*は結合手を表す。)
The amino group having a cross-linking group is more preferably represented by the following formula (15), particularly preferably represented by the following formula (16).
Figure JPOXMLDOC01-appb-C000038
(In the formula, R 102 represents a cross-linking group. * represents a bond.)
Figure JPOXMLDOC01-appb-C000039
(In the formula, R 102 has the same meaning as above. * represents a bond.)
 架橋基としては、ヒドロキシ含有基、ビニル含有基、エポキシ含有基、オキセタン含有基、カルボキシ含有基、スルホ含有基、チオール含有基、(メタ)アクリロイル含有基等を挙げることができ、トリアジン環含有重合体の耐熱性、および得られる膜の耐溶剤性(耐クラック性)を向上させることを考慮すると、ヒドロキシ含有基および(メタ)アクリロイル含有基が好ましい。 Examples of cross-linking groups include hydroxyl-containing groups, vinyl-containing groups, epoxy-containing groups, oxetane-containing groups, carboxy-containing groups, sulfo-containing groups, thiol-containing groups, and (meth)acryloyl-containing groups. Hydroxy-containing groups and (meth)acryloyl-containing groups are preferred in consideration of improving the heat resistance of the coalescence and the solvent resistance (crack resistance) of the resulting film.
 ヒドロキシ含有基としては、ヒドロキシ基およびヒドロキシアルキル基等が挙げられるが、炭素数1~10のヒドロキシアルキル基が好ましく、炭素数1~5のヒドロキシアルキル基がより好ましく、炭素数1~3のヒドロキシアルキル基がより一層好ましい。
 炭素数1~10のヒドロキシアルキル基としては、ヒドロキシメチル、2-ヒドロキシエチル、3-ヒドロキシプロピル、4-ヒドロキシブチル、5-ヒドロキシペンチル、6-ヒドロキシヘキシル、7-ヒドロキシヘプチル、8-ヒドロキシオクチル、9-ヒドロキシノニル、10-ヒドロキシデシル、2-ヒドロキシ-1-メチルエチル、2-ヒドロキシ-1,1-ジメチルエチル、3-ヒドロキシ-1-メチルプロピル、3-ヒドロキシ-2-メチルプロピル、3-ヒドロキシ-1,1-ジメチルプロピル、3-ヒドロキシ-1,2-ジメチルプロピル、3-ヒドロキシ-2,2-ジメチルプロピル、4-ヒドロキシ-1-メチルブチル、4-ヒドロキシ-2-メチルブチル、4-ヒドロキシ-3-メチルブチル基等のヒドロキシ基が結合する炭素原子が第1級炭素原子であるもの;1-ヒドロキシエチル、1-ヒドロキシプロピル、2-ヒドロキシプロピル、1-ヒドロキシブチル、2-ヒドロキシブチル、1-ヒドロキシヘキシル、2-ヒドロキシヘキシル、1-ヒドロキシオクチル、2-ヒドロキシオクチル、1-ヒドロキシデシル、2-ヒドロキシデシル、1-ヒドロキシ-1-メチルエチル、2-ヒドロキシ-2-メチルプロピル基等のヒドロキシ基が結合する炭素原子が第2級または第3級炭素原子であるものが挙げられる。
The hydroxy-containing group includes a hydroxy group, a hydroxyalkyl group, and the like, preferably a hydroxyalkyl group having 1 to 10 carbon atoms, more preferably a hydroxyalkyl group having 1 to 5 carbon atoms, and a hydroxy group having 1 to 3 carbon atoms. Alkyl groups are even more preferred.
Hydroxyalkyl groups having 1 to 10 carbon atoms include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 5-hydroxypentyl, 6-hydroxyhexyl, 7-hydroxyheptyl, 8-hydroxyoctyl, 9-hydroxynonyl, 10-hydroxydecyl, 2-hydroxy-1-methylethyl, 2-hydroxy-1,1-dimethylethyl, 3-hydroxy-1-methylpropyl, 3-hydroxy-2-methylpropyl, 3- Hydroxy-1,1-dimethylpropyl, 3-hydroxy-1,2-dimethylpropyl, 3-hydroxy-2,2-dimethylpropyl, 4-hydroxy-1-methylbutyl, 4-hydroxy-2-methylbutyl, 4-hydroxy 1-Hydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypropyl, 1-Hydroxybutyl, 2-Hydroxybutyl, 1 -Hydroxy groups such as hydroxyhexyl, 2-hydroxyhexyl, 1-hydroxyoctyl, 2-hydroxyoctyl, 1-hydroxydecyl, 2-hydroxydecyl, 1-hydroxy-1-methylethyl, and 2-hydroxy-2-methylpropyl groups Included are those in which the carbon atom to which the group is attached is a secondary or tertiary carbon atom.
 特に、耐熱性および高温高湿耐性を向上させることを考慮すると、ヒドロキシ基が結合する炭素原子が第1級炭素原子であるものが好ましく、その中でも、炭素数1~5のヒドロキシアルキル基がより好ましく、炭素数1~3のヒドロキシアルキル基がより一層好ましく、ヒドロキシメチル基および2-ヒドロキシエチル基がさらに好ましく、2-ヒドロキシエチル基が最も好ましい。 In particular, in consideration of improving heat resistance and high-temperature and high-humidity resistance, it is preferable that the carbon atom to which the hydroxy group is bonded is a primary carbon atom. A hydroxyalkyl group having 1 to 3 carbon atoms is more preferred, a hydroxymethyl group and a 2-hydroxyethyl group are more preferred, and a 2-hydroxyethyl group is most preferred.
 (メタ)アクリロイル含有基としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシアルキル基および下記式(i)で表される基等が挙げられるが、炭素数1~10のアルキレン基を有する(メタ)アクリロイルオキシアルキル基および下記式(i)で表される基が好ましく、下記式(i)で表される基がより好ましい。 Examples of the (meth)acryloyl-containing group include (meth)acryloyl groups, (meth)acryloyloxyalkyl groups, groups represented by the following formula (i), and the like, having an alkylene group having 1 to 10 carbon atoms ( A meth)acryloyloxyalkyl group and a group represented by the following formula (i) are preferred, and a group represented by the following formula (i) is more preferred.
Figure JPOXMLDOC01-appb-C000040
(式中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
Figure JPOXMLDOC01-appb-C000041
で表される基を表し、Aは、ヒドロキシ基で置換されてもよい(a+1)価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000040
(Wherein, A 1 represents an alkylene group having 1 to 10 carbon atoms, A 2 is a single bond or the following formula (j)
Figure JPOXMLDOC01-appb-C000041
A3 represents an (a+1) -valent aliphatic hydrocarbon group which may be substituted with a hydroxy group , A4 represents a hydrogen atom or a methyl group, a represents 1 or 2 and * represents a bond. )
 炭素数1~10のアルキレン基(アルカンジイル基)を有する(メタ)アクリロイルオキシアルキル基に含まれるアルキレン基としては、メチレン、エチレン、トリメチレン、プロパン-1,2-ジイル、テトラメチレン、ブタン-1,3-ジイル、ブタン-1,2-ジイル、2-メチルプロパン-1,3-ジイル、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デカメチレン基等が挙げられる。耐熱性および高温高湿耐性を向上させることを考慮すると、これらの中でも、炭素数1~5のアルキレン基を有するものが好ましく、炭素数1~3のアルキレン基を有するものが好ましく、炭素数1または2のアルキレン基を有するものがより好ましい。 Examples of the alkylene group contained in the (meth)acryloyloxyalkyl group having an alkylene group (alkanediyl group) having 1 to 10 carbon atoms include methylene, ethylene, trimethylene, propane-1,2-diyl, tetramethylene and butane-1. ,3-diyl, butane-1,2-diyl, 2-methylpropane-1,3-diyl, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene and decamethylene groups. Among these, those having an alkylene group having 1 to 5 carbon atoms are preferable, those having an alkylene group having 1 to 3 carbon atoms are preferable, and 1 carbon atom, in consideration of improving heat resistance and high temperature and high humidity resistance. or 2 alkylene groups are more preferred.
 上記(メタ)アクリロイルオキシアルキル基の具体例としては、例えば、(メタ)アクリロイルオキシメチル基、2-(メタ)アクリロイルオキシエチル基、3-(メタ)アクリロイルオキシプロピル基、4-(メタ)アクリロイルオキシブチル基が挙げられる。 Specific examples of the (meth)acryloyloxyalkyl group include, for example, (meth)acryloyloxymethyl group, 2-(meth)acryloyloxyethyl group, 3-(meth)acryloyloxypropyl group, 4-(meth)acryloyl An oxybutyl group is mentioned.
 式(i)において、Aは、炭素数1~10のアルキレン基であるが、炭素数1~5のアルキレン基が好ましく、メチレン基およびエチレン基がより好ましい。炭素数1~10のアルキレン基としては、上記の(メタ)アクリロイルオキシアルキル基に含まれるアルキレン基と同様のものが挙げられる。 In formula (i), A 1 is an alkylene group having 1 to 10 carbon atoms, preferably an alkylene group having 1 to 5 carbon atoms, more preferably a methylene group and an ethylene group. Examples of the alkylene group having 1 to 10 carbon atoms include the same alkylene groups included in the above (meth)acryloyloxyalkyl group.
 Aは、単結合または式(j)で表される基を表すが、式(j)で表される基が好ましい。 A2 represents a single bond or a group represented by formula (j), preferably a group represented by formula (j).
 Aは、ヒドロキシ基で置換されてもよい(a+1)価の脂肪族炭化水素基であるが、その具体例としては、例えば、炭素数1~5のアルキレン基および下記式(k-1)~(k-3)
Figure JPOXMLDOC01-appb-C000042
(式中、*は、上記と同様である。)
で表される基が挙げられ、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましく、メチレン基およびエチレン基がより一層好ましい。Aのアルキレン基としては、Aで例示したアルキレン基のうち、炭素数1~5のアルキレン基を挙げることができる。
A 3 is an (a+1)-valent aliphatic hydrocarbon group which may be substituted with a hydroxy group, and specific examples thereof include an alkylene group having 1 to 5 carbon atoms and the following formula (k-1) ~ (k - 3)
Figure JPOXMLDOC01-appb-C000042
(In the formula, * is the same as above.)
An alkylene group having 1 to 5 carbon atoms is preferred, an alkylene group having 1 to 3 carbon atoms is more preferred, and a methylene group and an ethylene group are even more preferred. Examples of the alkylene group for A 3 include alkylene groups having 1 to 5 carbon atoms among the alkylene groups exemplified for A 1 .
 aは、1または2を表すが、1が好ましい。 a represents 1 or 2, but 1 is preferred.
 式(i)で表される基の好適な態様としては、下記式(i-1)で表されるものが挙げられる。 Suitable embodiments of the group represented by formula (i) include those represented by the following formula (i-1).
Figure JPOXMLDOC01-appb-C000043
(式中、A、A、Aおよび*は、上記と同様である。)
Figure JPOXMLDOC01-appb-C000043
(In the formula, A 1 , A 3 , A 4 and * are the same as above.)
 式(i)で表される基のより好適な態様としては、下記式(i-2)~(i-5)で表されるものが挙げられる。 More preferred embodiments of the group represented by formula (i) include those represented by formulas (i-2) to (i-5) below.
Figure JPOXMLDOC01-appb-C000044
(式中、*は、上記と同様である。)
Figure JPOXMLDOC01-appb-C000044
(In the formula, * is the same as above.)
 ビニル含有基としては、末端にビニル基を有する炭素数2~10のアルケニル基等が挙げられる。具体例としては、エテニル、1-プロペニル、アリル、イソプロペニル、1-ブテニル、2-ブテニル、2-ペンテニル基等が挙げられる。 Examples of vinyl-containing groups include alkenyl groups with 2 to 10 carbon atoms having a vinyl group at the end. Specific examples include ethenyl, 1-propenyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 2-pentenyl groups and the like.
 エポキシ含有基としては、エポキシ、グリシジル、グリシジルオキシ基等が挙げられる。具体例としては、グリシジルメチル、2-グリシジルエチル、3-グリシジルプロピル、4-グリシジルブチル基等が挙げられる。 Epoxy-containing groups include epoxy, glycidyl, and glycidyloxy groups. Specific examples include glycidylmethyl, 2-glycidylethyl, 3-glycidylpropyl and 4-glycidylbutyl groups.
 オキセタン含有基としては、オキセタン-3-イル、(オキセタン-3-イル)メチル、2-(オキセタン-3-イル)エチル、3-(オキセタン-3-イル)プロピル、4-(オキセタン-3-イル)ブチル基等が挙げられる。 Oxetane-containing groups include oxetan-3-yl, (oxetan-3-yl)methyl, 2-(oxetan-3-yl)ethyl, 3-(oxetan-3-yl)propyl, 4-(oxetan-3- yl) butyl group and the like.
 カルボキシ含有基としては、カルボキシ基および炭素数2~10のカルボキシアルキル基等が挙げられる。炭素数2~10のカルボキシアルキル基としては、カルボキシ基が結合する炭素原子が第二級炭素原子であるものが好ましく、具体例として、カルボキシメチル、2-カルボキシエチル、3-カルボキシプロピルおよび4-カルボキシブチル基等が挙げられる。 Examples of carboxy-containing groups include carboxy groups and carboxyalkyl groups having 2 to 10 carbon atoms. As the carboxyalkyl group having 2 to 10 carbon atoms, the carbon atom to which the carboxy group is bonded is preferably a secondary carbon atom, and specific examples include carboxymethyl, 2-carboxyethyl, 3-carboxypropyl and 4- A carboxybutyl group and the like can be mentioned.
 スルホ含有基としては、スルホ基および炭素数1~10のスルホアルキル基等が挙げられる。炭素数1~10のスルホアルキル基としては、スルホ基が結合する炭素原子が第1級炭素原子であるものが好ましく、具体例として、スルホメチル、2-スルホエチル、3-スルホプロピルおよび4-スルホブチル基等が挙げられる。 The sulfo-containing group includes a sulfo group and a sulfoalkyl group having 1 to 10 carbon atoms. As the sulfoalkyl group having 1 to 10 carbon atoms, the carbon atom to which the sulfo group is bonded is preferably a primary carbon atom, and specific examples are sulfomethyl, 2-sulfoethyl, 3-sulfopropyl and 4-sulfobutyl groups. etc.
 チオール含有基としては、チオール基および炭素数1~10のメルカプトアルキル基等が挙げられる。炭素数1~10のメルカプトアルキル基としては、チオール基が結合する炭素原子が第1級炭素原子であるものが好ましく、具体例として、メルカプトメチル、2-メルカプトエチル、3-メルカプトプロピルおよび4-メルカプトブチル基等が挙げられる。 Examples of thiol-containing groups include thiol groups and mercaptoalkyl groups having 1 to 10 carbon atoms. The mercaptoalkyl group having 1 to 10 carbon atoms is preferably one in which the carbon atom to which the thiol group is bonded is a primary carbon atom, and specific examples are mercaptomethyl, 2-mercaptoethyl, 3-mercaptopropyl and 4- A mercaptobutyl group and the like can be mentioned.
 架橋基を有するアミノ基の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。 Specific examples of amino groups having a cross-linking group include those represented by the following formulas, but are not limited to these.
Figure JPOXMLDOC01-appb-C000045
 式中、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000045
In the formula, * represents a bond.
 なお、ヒドロキシアルキル基を有するアリールアミノ基は、後述の製造法において、対応するヒドロキシアルキル基置換アリールアミノ化合物を用いて導入することができる。
 ヒドロキシアルキル基置換アリールアミノ化合物の具体例としては、(4-アミノフェニル)メタノールおよび2-(4-アミノフェニル)エタノール等が挙げられる。
An arylamino group having a hydroxyalkyl group can be introduced using a corresponding hydroxyalkyl group-substituted arylamino compound in the production method described below.
Specific examples of hydroxyalkyl group-substituted arylamino compounds include (4-aminophenyl)methanol and 2-(4-aminophenyl)ethanol.
 (メタ)アクリロイルオキシアルキル基を有するアリールアミノ基は、対応する(メタ)アクリロイルオキシアルキル基置換アリールアミノ化合物を用いる方法や、トリアジン環含有重合体にヒドロキシアルキル基を有するアリールアミノ基を導入した後、さらに上記ヒドロキシアルキル基に含まれるヒドロキシ基に対して、(メタ)アクリル酸ハライドや(メタ)アクリル酸グリシジルを作用させる方法により導入することができる。 An arylamino group having a (meth)acryloyloxyalkyl group can be obtained by a method using a corresponding (meth)acryloyloxyalkyl group-substituted arylamino compound, or after introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer. Furthermore, it can be introduced by a method of reacting a (meth)acrylic acid halide or glycidyl (meth)acrylate on the hydroxy group contained in the hydroxyalkyl group.
 式(i)で表される基を有するアリールアミノ基は、目的とする架橋基を有するアリールアミノ化合物を用いる方法や、トリアジン環含有重合体にヒドロキシアルキル基を有するアリールアミノ基を導入した後、さらに上記ヒドロキシアルキル基に含まれるヒドロキシ基に対して下記式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる方法により導入することができる。 An arylamino group having a group represented by formula (i) can be obtained by a method using an arylamino compound having a desired cross-linking group, or by introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer, followed by Furthermore, it can be introduced by a method of reacting a (meth)acrylic acid ester compound having an isocyanate group represented by the following formula (i') against the hydroxy group contained in the hydroxyalkyl group.
Figure JPOXMLDOC01-appb-C000046
(式中、A、Aおよびaは、上記と同様である。)
Figure JPOXMLDOC01-appb-C000046
(In the formula, A 3 , A 4 and a are the same as above.)
 (メタ)アクリロイルオキシアルキル基置換アリールアミノ化合物の具体例としては、例えば、上記のヒドロキシアルキル基置換アリールアミノ化合物のヒドロキシ基に(メタ)アクリル酸ハライドまたは(メタ)アクリル酸グリシジルを作用させて得られるエステル化合物が挙げられる。
 上記(メタ)アクリル酸ハライドとしては、(メタ)アクリル酸クロリド、(メタ)アクリル酸ブロミドおよび(メタ)アクリル酸ヨージドを挙げることができる。
 上記式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の具体例としては、例えば、2-イソシアナトエチルアクリラート、2-イソシアナトエチルメタクリレートおよび1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを挙げることができる。本発明では、簡便な合成法という観点から、2-イソシアナトエチルアクリラートが好ましい。
Specific examples of the (meth)acryloyloxyalkyl group-substituted arylamino compound include, for example, those obtained by reacting the hydroxy group of the above hydroxyalkyl group-substituted arylamino compound with (meth)acrylic acid halide or glycidyl (meth)acrylate. Ester compounds such as
Examples of the (meth)acrylic acid halide include (meth)acrylic acid chloride, (meth)acrylic acid bromide and (meth)acrylic acid iodide.
Specific examples of the (meth)acrylic acid ester compound having an isocyanate group represented by the above formula (i′) include, for example, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and 1,1-(bis Acryloyloxymethyl)ethyl isocyanate may be mentioned. In the present invention, 2-isocyanatoethyl acrylate is preferred from the viewpoint of a simple synthesis method.
 本発明において、特に好適なトリアジン環含有重合体としては、式(21)~(28)で示される繰り返し単位を含むものが挙げられる。 In the present invention, particularly suitable triazine ring-containing polymers include those containing repeating units represented by formulas (21) to (28).
Figure JPOXMLDOC01-appb-C000047
(式中、R、R’、R~RおよびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000047
(In the formula, R, R', R 1 to R 4 and R 102 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000048
(式中、R~RおよびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000048
(In the formula, R 1 to R 4 and R 102 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000049
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000049
(In the formula, R 102 has the same meaning as above.)
Figure JPOXMLDOC01-appb-C000050
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000050
(In the formula, R 102 has the same meaning as above.)
Figure JPOXMLDOC01-appb-C000051
(式中、R、R’、R16~R23およびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000051
(Wherein, R, R′, R 16 to R 23 and R 102 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000052
(式中、R16~R23およびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000052
(In the formula, R 16 to R 23 and R 102 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000053
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000053
(In the formula, R 102 has the same meaning as above.)
Figure JPOXMLDOC01-appb-C000054
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000054
(In the formula, R 102 has the same meaning as above.)
 本発明における重合体の重量平均分子量は、特に限定されるものではないが、500~500,000が好ましく、500~100,000がより好ましく、より耐熱性を向上させるとともに、収縮率を低くするという点から、2,000以上が好ましく、より溶解性を高め、得られた組成物の粘度を低下させるという点から、50,000以下が好ましく、30,000以下がより好ましく、25,000以下がより一層好ましく、10,000以下が最も好ましい。
 なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCという)分析による標準ポリスチレン換算で得られる平均分子量である。
The weight average molecular weight of the polymer in the present invention is not particularly limited, but is preferably 500 to 500,000, more preferably 500 to 100,000, to further improve heat resistance and reduce shrinkage. From the point of view, 2,000 or more is preferable, and from the viewpoint of further increasing the solubility and reducing the viscosity of the obtained composition, it is preferably 50,000 or less, more preferably 30,000 or less, and 25,000 or less. is more preferred, and 10,000 or less is most preferred.
The weight average molecular weight in the present invention is the average molecular weight obtained by standard polystyrene conversion by gel permeation chromatography (hereinafter referred to as GPC) analysis.
 本発明のトリアジン環含有重合体(ハイパーブランチポリマー)は、上述した国際公開第2010/128661号に開示された手法に準じて製造することができる。
 すなわち、トリハロゲン化トリアジン化合物とアリールジアミノ化合物とを有機溶媒中で反応させた後、例えば、末端封止剤である、ヒドロキシアルキル基(ヒドロキシ含有基)を有するアミノ化合物、アクリロイルオキシアルキル基(アクリロイル含有基)を有するアミノ化合物および式(i)で表される基(アクリロイル含有基)を有するアミノ化合物から選ばれる少なくとも1種のアミノ化合物と反応させることにより本発明のトリアジン環含有重合体を得ることができる。
The triazine ring-containing polymer (hyperbranched polymer) of the present invention can be produced according to the method disclosed in International Publication No. 2010/128661 mentioned above.
That is, after reacting a trihalogenated triazine compound and an aryldiamino compound in an organic solvent, for example, an amino compound having a hydroxyalkyl group (hydroxy-containing group), an acryloyloxyalkyl group (acryloyl containing group) and at least one amino compound selected from amino compounds having a group represented by formula (i) (acryloyl-containing group) to obtain the triazine ring-containing polymer of the present invention. be able to.
 例えば、下記スキーム1に示されるように、トリアジン環含有重合体(23)は、トリアジン化合物(29)およびアリールジアミノ化合物(30)を適当な有機溶媒中で反応させた後、末端封止剤である、ヒドロキシアルキル基を有するアリールアミノ化合物および式(i)で表される基を有するアリールアミノ化合物から選ばれる少なくとも1種のアリールアミノ化合物(31)と反応させて得ることができる。 For example, as shown in Scheme 1 below, a triazine ring-containing polymer (23) is obtained by reacting a triazine compound (29) and an aryldiamino compound (30) in a suitable organic solvent, followed by a terminal blocking agent. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by formula (i).
Figure JPOXMLDOC01-appb-C000055
(式中、Xは、互いに独立してハロゲン原子を表し、Rは、ヒドロキシアルキル基または式(i)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000055
(Wherein, X independently represents a halogen atom, and R a represents a hydroxyalkyl group or a group represented by formula (i).)
 また、例えば、下記スキーム2に示されるように、トリアジン環含有重合体(27)は、トリアジン化合物(29)およびアリールジアミノ化合物(32)を適当な有機溶媒中で反応させた後、末端封止剤である、ヒドロキシアルキル基を有するアリールアミノ化合物および式(i)で表される基を有するアリールアミノ化合物から選ばれる少なくとも1種のアリールアミノ化合物(31)と反応させて得ることができる。 Alternatively, for example, as shown in Scheme 2 below, a triazine ring-containing polymer (27) is obtained by reacting a triazine compound (29) and an aryldiamino compound (32) in a suitable organic solvent, followed by end-capping. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by formula (i).
Figure JPOXMLDOC01-appb-C000056
(式中、Xは、互いに独立してハロゲン原子を表し、Rは、ヒドロキシアルキル基または式(i)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000056
(Wherein, X independently represents a halogen atom, and R a represents a hydroxyalkyl group or a group represented by formula (i).)
 上記スキーム1またはスキーム2において、アリールジアミノ化合物(30)または(32)の仕込み比は、目的とする重合体が得られる限り任意であるが、トリアジン化合物(29)1当量に対し、アリールジアミノ化合物(30)または(32)0.01~10当量が好ましく、0.7~5当量がより好ましい。
 アリールジアミノ化合物(30)または(32)は、ニートで加えても、有機溶媒に溶かした溶液で加えてもよいが、操作の容易さや反応のコントロールのし易さなどを考慮すると、後者の手法が好適である。
 反応温度は、用いる溶媒の融点から溶媒の沸点までの範囲で適宜設定すればよいが、-30~150℃程度が好ましく、-10~100℃がより好ましい。
In Scheme 1 or Scheme 2 above, the charging ratio of the aryldiamino compound (30) or (32) is arbitrary as long as the target polymer can be obtained. (30) or (32) is preferably 0.01 to 10 equivalents, more preferably 0.7 to 5 equivalents.
The aryldiamino compound (30) or (32) may be added neat or in the form of a solution dissolved in an organic solvent. Considering ease of operation and ease of reaction control, the latter method is preferred. is preferred.
The reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent used, preferably about -30 to 150°C, more preferably -10 to 100°C.
 別の態様としては、下記スキーム3に示す手法が挙げられる。この手法では、トリアジン環含有重合体(23)は、トリアジン化合物(29)およびアリールジアミノ化合物(30)を適当な有機溶媒中で反応させた後、末端封止剤であるヒドロキシアルキル基を有するアリールアミノ化合物(31’)と反応させて、トリアジン環含有重合体(23’)を得て(第1段階)、その後、さらに当該トリアジン環含有重合体(23’)に含まれるヒドロキシアルキル基のヒドロキシ基に対して式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる(第2段階)ことにより得ることができる。
 なお、トリアジン環含有重合体(23’)を目的物とする場合は、第2段階の反応を実施せず、第1段階で終了すればよい。
Another aspect is the method shown in Scheme 3 below. In this method, the triazine ring-containing polymer (23) is obtained by reacting the triazine compound (29) and the aryldiamino compound (30) in a suitable organic solvent, and then obtaining an aryl having a hydroxyalkyl group as a terminal blocking agent. A triazine ring-containing polymer (23′) is obtained by reacting with an amino compound (31′) (first step), and then a hydroxy alkyl group contained in the triazine ring-containing polymer (23′) is It can be obtained by reacting a (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') on the group (second stage).
When the target product is the triazine ring-containing polymer (23'), the reaction in the second step may be omitted and the first step may be completed.
Figure JPOXMLDOC01-appb-C000057
(式中、Ra1は、ヒドロキシアルキル基を表し、X、A、A、Rおよびaは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000057
(In the formula, R a1 represents a hydroxyalkyl group, and X, A 3 , A 4 , R a and a have the same meanings as above.)
 また、別の態様としては、下記スキーム4に示す手法が挙げられる。この手法では、トリアジン環含有重合体(27)は、トリアジン化合物(29)およびアリールジアミノ化合物(32)を適当な有機溶媒中で反応させた後、末端封止剤であるヒドロキシアルキル基を有するアリールアミノ化合物(31’)と反応させて、トリアジン環含有重合体(27’)を得て(第1段階)、その後、さらに当該トリアジン環含有重合体(27’)に含まれるヒドロキシアルキル基のアルキル基に対して式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる(第2段階)ことにより得ることができる。
 なお、トリアジン環含有重合体(27’)を目的物とする場合は、第2段階の反応を実施せず、第1段階で終了すればよい。
Moreover, as another aspect, the technique shown in the following scheme 4 can be mentioned. In this method, the triazine ring-containing polymer (27) is obtained by reacting the triazine compound (29) and the aryldiamino compound (32) in a suitable organic solvent, followed by an aryl A triazine ring-containing polymer (27′) is obtained by reacting with an amino compound (31′) (first step), and then an alkyl It can be obtained by reacting a (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') on the group (second stage).
When the triazine ring-containing polymer (27') is the target product, the reaction in the second step is not performed and the first step is sufficient.
Figure JPOXMLDOC01-appb-C000058
(式中、Ra1は、ヒドロキシアルキル基を表し、X、A、A、Rおよびaは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000058
(In the formula, R a1 represents a hydroxyalkyl group, and X, A 3 , A 4 , R a and a have the same meanings as above.)
 上記スキーム3おいて、第1段階でのアリールジアミノ化合物(30)の仕込み比および添加方法、トリアジン環含有重合体(23’)を得るまでの反応における反応温度は、スキーム1で説明したものと同様とすることができる。
 また、第2段階において、トリアジン環含有重合体(23’)に対する式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の仕込み比は、ヒドロキシアルキル基と式(i)で表される基との比に応じて任意に設定することができ、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、好ましくは0.1~10当量、より好ましくは0.5~5当量、より一層好ましくは0.7~3当量、さらに好ましくは0.9~1.5当量である。例えば、トリアジン環含有重合体(23’)に含まれるヒドロキシアルキル基を全て式(i)で表される基とする場合、その仕込み比は、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、上記(メタ)アクリル酸エステル化合物を好ましくは1.0~10当量、より好ましくは1.0~5当量、より一層好ましくは1.0~3当量、さらに好ましくは1.0~1.5当量である。
 当該反応における反応温度は、トリアジン環含有重合体(23’)を得る反応における反応温度と同様であるが、反応中に(メタ)アクリロイル基が重合を起こさないようにすることを考慮すると、30~80℃が好ましく、40~70℃がより好ましく、50~60℃がより一層好ましい。
In Scheme 3 above, the charging ratio and addition method of the aryldiamino compound (30) in the first step, and the reaction temperature in the reaction until the triazine ring-containing polymer (23′) is obtained are the same as those described in Scheme 1. can be the same.
In the second stage, the charging ratio of the (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') to the triazine ring-containing polymer (23') is hydroxyalkyl group and formula (i) It can be arbitrarily set according to the ratio with the group represented by, preferably 0.1 to 10 equivalents, more preferably 0.1 to 1 equivalent of the arylamino compound having a hydroxyalkyl group used. 5 to 5 equivalents, more preferably 0.7 to 3 equivalents, still more preferably 0.9 to 1.5 equivalents. For example, when all the hydroxyalkyl groups contained in the triazine ring-containing polymer (23′) are groups represented by formula (i), the charging ratio is 1 equivalent of the arylamino compound having a hydroxyalkyl group used. For, the (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.5 equivalents.
The reaction temperature in this reaction is the same as the reaction temperature in the reaction for obtaining the triazine ring-containing polymer (23′), but considering that the (meth)acryloyl group should not undergo polymerization during the reaction, it is 30 ~80°C is preferred, 40 to 70°C is more preferred, and 50 to 60°C is even more preferred.
 上記スキーム4において、アリールジアミノ化合物(32)の仕込み比および添加方法、反応温度は、スキーム2で説明したものと同様とすることができる。
 また、第2段階において、トリアジン環含有重合体(27’)に対する式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の仕込み比は、ヒドロキシアルキル基と式(i)で表される基との比に応じて任意に設定することができ、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、好ましくは0.1~10当量、より好ましくは0.5~5当量、より一層好ましくは0.7~3当量、さらに好ましくは0.9~1.5当量である。例えば、トリアジン環含有重合体(27’)に含まれるヒドロキシアルキル基を全て式(i)で表される基とする場合、その仕込み比は、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、上記(メタ)アクリル酸エステル化合物を好ましくは1.0~10当量、より好ましくは1.0~5当量、より一層好ましくは1.0~3当量、さらに好ましくは1.0~1.05当量である。
 当該反応における反応温度は、同様であるが、反応中に(メタ)アクリロイル基が重合を起こさないようにすることを考慮すると、30~80℃が好ましく、40~70℃がより好ましく、50~60℃がより一層好ましい。
In Scheme 4 above, the charging ratio, addition method, and reaction temperature of the aryldiamino compound (32) can be the same as those described in Scheme 2.
Further, in the second stage, the charging ratio of the (meth)acrylic acid ester compound having an isocyanate group represented by formula (i') to the triazine ring-containing polymer (27') is hydroxyalkyl group and formula (i) It can be arbitrarily set according to the ratio with the group represented by, preferably 0.1 to 10 equivalents, more preferably 0.1 to 1 equivalent of the arylamino compound having a hydroxyalkyl group used. 5 to 5 equivalents, more preferably 0.7 to 3 equivalents, still more preferably 0.9 to 1.5 equivalents. For example, when all the hydroxyalkyl groups contained in the triazine ring-containing polymer (27′) are groups represented by formula (i), the feed ratio is 1 equivalent of the arylamino compound having a hydroxyalkyl group used. For, the (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.05 equivalents.
The reaction temperature in the reaction is the same, but considering that the (meth)acryloyl group does not polymerize during the reaction, it is preferably 30 to 80 ° C., more preferably 40 to 70 ° C., and 50 to 60°C is even more preferred.
 スキーム3及びスキーム4の第2段階においては、
 重合禁止剤としては、例えば、N-メチル-N-ニトロソアニリン、N-ニトロソフェニルヒドロキシアミンまたはその塩類、ベンゾキノン類、フェノール系重合禁止剤、フェノチアジンなどが挙げられる。これらの中でも、重合禁止効果に優れる点で、
 N-ニトロソフェニルヒドロキシアミン塩類としては、例えば、N-ニトロソフェニルヒドロキシアミンアンモニウム塩、N-ニトロソフェニルヒドロキシアミンアルミニウム塩などが挙げられる。
 ベンゾキノン類としては、例えば、p-ベンゾキノン、2-メチル-1,4-ベンゾキノンなどが挙げられる。
 フェノール系重合禁止剤としては、例えば、ヒドロキノン、p-メトキシフェノール、4-t-ブチルカテコール、2-t-ブチルヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノールなどが挙げられる。
 重合禁止剤の使用量としては、特に制限されないが、例えば、式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物に対して、質量比で、1~200ppmであってもよいし、10~100ppmであってもよい。
 重合禁止剤を用いることで、反応温度を60~80℃程度まで上げても、(メタ)アクリロイル基の重合を抑えて第2段階の反応を行うことができる。
In the second step of schemes 3 and 4,
Polymerization inhibitors include, for example, N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxyamine or salts thereof, benzoquinones, phenolic polymerization inhibitors, phenothiazine and the like. Among these, in terms of excellent polymerization inhibition effect,
Examples of N-nitrosophenylhydroxyamine salts include N-nitrosophenylhydroxyamine ammonium salts and N-nitrosophenylhydroxyamine aluminum salts.
Examples of benzoquinones include p-benzoquinone and 2-methyl-1,4-benzoquinone.
Phenolic polymerization inhibitors include, for example, hydroquinone, p-methoxyphenol, 4-t-butylcatechol, 2-t-butylhydroquinone, 2,6-di-t-butyl-4-methylphenol and the like.
The amount of the polymerization inhibitor used is not particularly limited, but for example, it is 1 to 200 ppm in mass ratio with respect to the (meth)acrylic acid ester compound having an isocyanate group represented by the formula (i'). or 10 to 100 ppm.
By using a polymerization inhibitor, even if the reaction temperature is raised to about 60 to 80° C., polymerization of the (meth)acryloyl group can be suppressed and the second stage reaction can be carried out.
 有機溶媒としては、この種の反応において通常用いられる種々の溶媒を用いることができ、例えば、テトラヒドロフラン(THF)、ジオキサン、ジメチルスルホキシド;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラメチル尿素、ヘキサメチルホスホルアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピペリドン、N,N’-ジメチルエチレン尿素、N,N,N’,N’-テトラメチルマロン酸アミド、N-メチルカプロラクタム、N-アセチルピロリジン、N,N-ジエチルアセトアミド、N-エチル-2-ピロリドン、N,N-ジメチルプロピオン酸アミド、N,N-ジメチルイソブチルアミド、N-メチルホルムアミド、N,N’-ジメチルプロピレン尿素等のアミド系溶媒、およびそれらの混合溶媒が挙げられる。
 中でもN,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、およびそれらの混合系が好ましく、特に、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドが好適である。
As the organic solvent, various solvents commonly used in this type of reaction can be used, such as tetrahydrofuran (THF), dioxane, dimethylsulfoxide; methylurea, hexamethylphosphoramide, N,N-dimethylacetamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-methyl-2-piperidone, N, N'-dimethylethylene urea, N,N,N',N'-tetramethylmalonic acid amide, N-methylcaprolactam, N-acetylpyrrolidine, N,N-diethylacetamide, N-ethyl-2-pyrrolidone, N, Amide solvents such as N-dimethylpropionic acid amide, N,N-dimethylisobutyramide, N-methylformamide, N,N'-dimethylpropylene urea, and mixed solvents thereof can be used.
among others N,N-dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and mixtures thereof are preferred, and N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide are particularly preferred. is.
 また、上記スキーム1またはスキーム2の1段階目の反応では、重合時または重合後に通常用いられる種々の塩基を添加してもよい。
 この塩基の具体例としては、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、ナトリウムエトキシド、酢酸ナトリウム、炭酸リチウム、水酸化リチウム、酸化リチウム、酢酸カリウム、酸化マグネシウム、酸化カルシウム、水酸化バリウム、リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム、フッ化セシウム、酸化アルミニウム、アンモニア、n-プロピルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、2,2,6,6-テトラメチル-N-メチルピペリジン、ピリジン、4-ジメチルアミノピリジン、N-メチルモルホリン、2-アミノエタノール、エチルジエタノールアミン、ジエチルアミノエタノール等が挙げられる。
 塩基の添加量は、トリアジン化合物(29)1当量に対して1~100当量が好ましく、1~10当量がより好ましい。なお、これらの塩基は水溶液にして用いてもよい。
 得られる重合体には、原料成分が残存していないことが好ましいが、本発明の効果を損なわなければ一部の原料が残存していてもよい。
 反応終了後、生成物は再沈法等によって容易に精製できる。
In addition, in the reaction of the first step in Scheme 1 or Scheme 2 above, various bases that are commonly used during or after polymerization may be added.
Specific examples of this base include potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, sodium ethoxide, sodium acetate, lithium carbonate, lithium hydroxide, lithium oxide, potassium acetate, magnesium oxide, oxide calcium, barium hydroxide, trilithium phosphate, trisodium phosphate, tripotassium phosphate, cesium fluoride, aluminum oxide, ammonia, n-propylamine, trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2,2,6,6-tetramethyl-N-methylpiperidine, pyridine, 4-dimethylaminopyridine, N-methylmorpholine, 2-aminoethanol, ethyldiethanolamine, diethylaminoethanol and the like.
The amount of the base to be added is preferably 1 to 100 equivalents, more preferably 1 to 10 equivalents, relative to 1 equivalent of the triazine compound (29). These bases may be used in the form of an aqueous solution.
Although it is preferable that no raw material components remain in the resulting polymer, some of the raw materials may remain as long as the effects of the present invention are not impaired.
After completion of the reaction, the product can be easily purified by a reprecipitation method or the like.
 架橋基を有するアミノ化合物を用いた末端封止方法としては、公知の方法を採用すればよい。
 この場合、末端封止剤の使用量は、重合反応に使われなかった余剰のトリアジン化合物由来のハロゲン原子1当量に対し、0.05~10当量程度が好ましく、0.1~5当量がより好ましく、0.5~2当量がより一層好ましい。
 反応溶媒や反応温度としては、上記スキーム1またはスキーム2の1段階目の反応で述べたのと同様の条件が挙げられ、また、末端封止剤は、アリールジアミノ化合物(30)または(32)と同時に仕込んでもよい。
 なお、架橋基を有しない無置換アリールアミノ化合物を用い、2種類以上の基で末端封止を行ってもよい。この無置換アリールアミノ化合物のアリール基としては上記と同様のものが挙げられる。
A known method may be adopted as a terminal capping method using an amino compound having a cross-linking group.
In this case, the amount of the end blocking agent used is preferably about 0.05 to 10 equivalents, more preferably 0.1 to 5 equivalents, relative to 1 equivalent of halogen atoms derived from the surplus triazine compound that was not used in the polymerization reaction. Preferably, 0.5 to 2 equivalents is even more preferred.
Examples of the reaction solvent and reaction temperature include the same conditions as described in the first step reaction of Scheme 1 or Scheme 2 above, and the terminal blocking agent is the aryldiamino compound (30) or (32) You can prepare it at the same time.
In addition, an unsubstituted arylamino compound having no cross-linking group may be used, and the terminals may be blocked with two or more groups. Examples of the aryl group of this unsubstituted arylamino compound are the same as those described above.
 具体的な無置換アリールアミノ基としては、下記式(33)で示されるものが挙げられるが、これに限定されるものではない。 Specific unsubstituted arylamino groups include, but are not limited to, those represented by the following formula (33).
Figure JPOXMLDOC01-appb-C000059
 *は結合手を表す。
Figure JPOXMLDOC01-appb-C000059
* represents a bond.
 なお、無置換アリールアミノ基は、対応する無置換アリールアミノ化合物を用いて導入することができる。
 無置換アリールアミノ化合物の具体例としては、アニリン等が挙げられる。
An unsubstituted arylamino group can be introduced using a corresponding unsubstituted arylamino compound.
Aniline etc. are mentioned as a specific example of an unsubstituted arylamino compound.
 また、無置換アリールアミノ基を導入する場合、架橋基を有するアミノ化合物および無置換アリールアミノ化合物の比率は、有機溶媒に対する溶解性と耐黄変性とをバランスよく発揮させる観点から、架橋基を有するアミノ化合物1モルに対し、無置換アリールアミノ化合物0.1~1.0モルが好ましく、0.1~0.5モルがより好ましく、0.1~0.3モルがより一層好ましい。 Further, when introducing an unsubstituted arylamino group, the ratio of the amino compound having a cross-linking group and the unsubstituted arylamino compound should be such that the solubility in organic solvents and the yellowing resistance are exhibited in a well-balanced manner. The unsubstituted arylamino compound is preferably 0.1 to 1.0 mol, more preferably 0.1 to 0.5 mol, even more preferably 0.1 to 0.3 mol, per 1 mol of the amino compound.
 また、架橋基を有するアミノ化合物を用いた末端封止に加えて、特定のヘテロ原子含有置換基を有するアリールアミノ化合物を用いて末端封止を行ってもよい。特定のヘテロ原子含有置換基を有するアリールアミノ基で末端封止することで、得られる膜の屈折率を更に高くすることができる。
 特定のヘテロ原子含有置換基としては、シアノ基、アルキルアミノ基、アリールアミノ基、ニトロ基、アルキルメルカプト基、アリールメルカプト基、アルコキシカルボニル基、アルコキシカルボニルオキシ基が挙げられる。
 特定のヘテロ原子含有置換基を有するアリールアミノ基としては、下記式(34)で示されるものが挙げられる。
In addition to terminal blocking using an amino compound having a cross-linking group, terminal blocking may be performed using an arylamino compound having a specific heteroatom-containing substituent. By endcapping with an arylamino group having a specific heteroatom-containing substituent, the refractive index of the resulting film can be further increased.
Particular heteroatom-containing substituents include cyano groups, alkylamino groups, arylamino groups, nitro groups, alkylmercapto groups, arylmercapto groups, alkoxycarbonyl groups, alkoxycarbonyloxy groups.
Arylamino groups having a specific heteroatom-containing substituent include those represented by the following formula (34).
Figure JPOXMLDOC01-appb-C000060
 式中、Yは、「特定のヘテロ原子含有置換基」であって、シアノ基、アルキルアミノ基、アリールアミノ基、ニトロ基、アルキルメルカプト基、アリールメルカプト基、アルコキシカルボニル基又はアルコキシカルボニルオキシ基を表す。mは、1~5の整数を表す。mが2以上の場合、Yは同じであってもよいし、異なっていてもよい。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000060
In the formula, Y is a "specific heteroatom-containing substituent" and is a cyano group, an alkylamino group, an arylamino group, a nitro group, an alkylmercapto group, an arylmercapto group, an alkoxycarbonyl group or an alkoxycarbonyloxy group. show. m represents an integer of 1 to 5; When m is 2 or more, Y may be the same or different. * represents a bond.
 これらの中でも、Yは、シアノ基、ニトロ基が好ましい。mは1が好ましい。mが1のとき、Yはパラ位又はメタ位に置換していることが好ましい。 Among these, Y is preferably a cyano group or a nitro group. m is preferably 1. When m is 1, Y is preferably substituted at the para- or meta-position.
 また、特定のヘテロ原子含有置換基を有するアリールアミノ基を導入する場合、架橋基を有するアミノ化合物および特定のヘテロ原子含有置換基を有するアリールアミノ化合物の比率は、耐溶剤性と高屈折化とをバランスよく発揮させる観点から、架橋基を有するアミノ化合物1モルに対し、特定のヘテロ原子含有置換基を有するアリールアミノ化合物0.1~1.0モルが好ましく、0.1~0.5モルがより好ましく、0.1~0.3モルがより一層好ましい。 Further, when introducing an arylamino group having a specific heteroatom-containing substituent, the ratio of the amino compound having a bridging group to the arylamino compound having a specific heteroatom-containing substituent should be From the viewpoint of exhibiting in a well-balanced manner, 0.1 to 1.0 mol of an arylamino compound having a specific heteroatom-containing substituent is preferable with respect to 1 mol of an amino compound having a cross-linking group, and 0.1 to 0.5 mol. is more preferred, and 0.1 to 0.3 mol is even more preferred.
 無溶剤型組成物におけるトリアジン環含有重合体の含有量としては、特に制限されないが、0.1~50質量%が好ましく、1~10質量%がより好ましい。 The content of the triazine ring-containing polymer in the solvent-free composition is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 1 to 10% by mass.
(2).架橋剤
 架橋剤としては、上述したトリアジン環含有重合体の架橋基と反応し得る置換基を2つ以上有する化合物であれば特に限定されるものではない。
 そのような化合物としては、メチロール基、メトキシメチル基などの架橋形成置換基を有するメラミン系化合物(例えば、フェノプラスト化合物、アミノプラスト化合物など)、置換尿素系化合物、エポキシ基またはオキセタン基などの架橋形成置換基を含有する化合物(例えば、多官能エポキシ化合物、多官能オキセタン化合物など)、ブロックイソシアナート基を含有する化合物、酸無水物基を有する化合物、(メタ)アクリル基を有する化合物等が挙げられるが、耐熱性や保存安定性の観点からエポキシ基、ブロックイソシアネート基、(メタ)アクリル基を含有する化合物が好ましく、特に、ブロックイソシアネート基を有する化合物や、開始剤を用いなくとも光硬化可能な組成物を与える多官能エポキシ化合物および/または多官能(メタ)アクリル化合物が好ましい。
(2). Cross-linking agent The cross-linking agent is not particularly limited as long as it is a compound having two or more substituents capable of reacting with the cross-linking group of the triazine ring-containing polymer described above.
Examples of such compounds include melamine-based compounds having cross-linking substituents such as methylol groups and methoxymethyl groups (e.g., phenoplast compounds, aminoplast compounds, etc.), substituted urea-based compounds, cross-linking groups such as epoxy groups and oxetane groups. Compounds containing forming substituents (e.g., polyfunctional epoxy compounds, polyfunctional oxetane compounds, etc.), compounds containing blocked isocyanate groups, compounds having acid anhydride groups, compounds having (meth)acrylic groups, and the like. However, from the viewpoint of heat resistance and storage stability, compounds containing an epoxy group, a blocked isocyanate group, or a (meth)acrylic group are preferable. A polyfunctional epoxy compound and/or a polyfunctional (meth)acrylic compound, which gives a composition having a high molecular weight, are preferred.
 多官能エポキシ化合物としては、エポキシ基を一分子中2個以上有するものであれば特に限定されるものではない。
 その具体例としては、トリス(2,3-エポキシプロピル)イソシアヌレート、1,4-ブタンジオールジグリシジルエーテル、1,2-エポキシ-4-(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6-ジグリシジルフェニルグリシジルエーテル、1,1,3-トリス[p-(2,3-エポキシプロポキシ)フェニル]プロパン、1,2-シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、ビスフェノール-A-ジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等が挙げられる。
The polyfunctional epoxy compound is not particularly limited as long as it has two or more epoxy groups in one molecule.
Specific examples thereof include tris(2,3-epoxypropyl) isocyanurate, 1,4-butanediol diglycidyl ether, 1,2-epoxy-4-(epoxyethyl) cyclohexane, glycerol triglycidyl ether, and diethylene glycol diglycidyl. ether, 2,6-diglycidylphenyl glycidyl ether, 1,1,3-tris[p-(2,3-epoxypropoxy)phenyl]propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4,4'- methylenebis(N,N-diglycidylaniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, trimethylolethane triglycidyl ether, bisphenol-A-diglycidyl ether, pentaerythritol polyglycidyl ether, etc. mentioned.
 また、市販品として、少なくとも2個のエポキシ基を有するエポキシ樹脂である、YH-434、YH434L(日鉄ケミカル&マテリアル(株)製)、シクロヘキセンオキサイド構造を有するエポキシ樹脂である、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、同3000((株)ダイセル製)、ビスフェノールA型エポキシ樹脂である、jER1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(以上、三菱ケミカル(株)製)、ビスフェノールF型エポキシ樹脂である、jER807(三菱ケミカル(株)製)、フェノールノボラック型エポキシ樹脂である、jER152、同154(以上、三菱ケミカル(株)製)、EPPN201、同202(以上、日本化薬(株)製)、クレゾールノボラック型エポキシ樹脂である、EOCN-102、同103S、同104S、同1020、同1025、同1027(以上、日本化薬(株)製)、jER180S75(三菱ケミカル(株)製)、脂環式エポキシ樹脂である、デナコールEX-252(ナガセケムテックス(株)製)、CY175、CY177、CY179(以上、CIBA-GEIGY A.G製)、アラルダイトCY-182、同CY-192、同CY-184(以上、CIBA-GEIGY A.G製)、エピクロン200、同400(以上、DIC(株)製)、jER871、同872(以上、三菱ケミカル(株)製)、ED-5661、ED-5662(以上、セラニーズコーティング(株)製)、脂肪族ポリグリシジルエーテルである、デナコールEX-611、同EX-612、同EX-614、同EX-622、同EX-411、同EX-512、同EX-522、同EX-421、同EX-313、同EX-314、同EX-321(ナガセケムテックス(株)製)等を用いることもできる。 In addition, commercially available products include YH-434 and YH434L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), which are epoxy resins having at least two epoxy groups, and Epolead GT-401, which is an epoxy resin having a cyclohexene oxide structure. , GT-403, GT-301, GT-302, Celoxide 2021, 3000 (manufactured by Daicel Corporation), bisphenol A type epoxy resins, jER1001, 1002, 1003, 1004, 1007 , 1009, 1010, and 828 (manufactured by Mitsubishi Chemical Corporation), jER807 (manufactured by Mitsubishi Chemical Corporation), which is a bisphenol F type epoxy resin, and jER152 and 154, which are phenol novolak type epoxy resins. (manufactured by Mitsubishi Chemical Co., Ltd.), EPPN201 and 202 (manufactured by Nippon Kayaku Co., Ltd.), and cresol novolac type epoxy resins, EOCN-102, 103S, 104S, 1020 and 1025. , 1027 (manufactured by Nippon Kayaku Co., Ltd.), jER180S75 (manufactured by Mitsubishi Chemical Corporation), alicyclic epoxy resin, Denacol EX-252 (manufactured by Nagase ChemteX Co., Ltd.), CY175, CY177 , CY179 (manufactured by CIBA-GEIGY AG), Araldite CY-182, CY-192, CY-184 (manufactured by CIBA-GEIGY AG), Epicron 200, 400 (manufactured by DIC ( Co., Ltd.), jER871, jER872 (manufactured by Mitsubishi Chemical Corporation), ED-5661, ED-5662 (manufactured by Celanese Coating Co., Ltd.), aliphatic polyglycidyl ether Denacol EX- 611, EX-612, EX-614, EX-622, EX-411, EX-512, EX-522, EX-421, EX-313, EX-314, EX- 321 (manufactured by Nagase ChemteX Corporation) and the like can also be used.
 多官能(メタ)アクリル化合物としては、(メタ)アクリル基を一分子中2個以上有するものであれば特に限定されるものではない。
 その具体例としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリアクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールテトラメタクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、ポリグリセリンモノエチレンオキサイドポリアクリレート、ポリグリセリンポリエチレングリコールポリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、多塩基酸変性アクリルオリゴマー等が挙げられる。
The polyfunctional (meth)acrylic compound is not particularly limited as long as it has two or more (meth)acrylic groups in one molecule.
Specific examples include ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethoxylated trimethylolpropane triacrylate, ethoxylated Trimethylolpropane trimethacrylate, ethoxylated glycerin triacrylate, ethoxylated glycerin trimethacrylate, ethoxylated pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetramethacrylate, ethoxylated dipentaerythritol hexaacrylate, polyglycerin monoethylene oxide polyacrylate, polyglycerin Polyethylene glycol polyacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate , tricyclodecanedimethanol diacrylate, tricyclodecanedimethanol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, polybasic acid-modified acrylic oligomer, and the like.
 また、多官能(メタ)アクリル化合物は、市販品として入手が可能であり、その具体例としては、NKエステルA-200、同A-400、同A-600、同A-1000、同A-9300(イソシアヌル酸トリス(2-アクリロイルオキシエチル))、同A-9300-1CL、同A-TMPT、同UA-53H、同1G、同2G、同3G、同4G、同9G、同14G、同23G、同ABE-300、同A-BPE-4、同A-BPE-6、同A-BPE-10、同A-BPE-20、同A-BPE-30、同BPE-80N、同BPE-100N、同BPE-200、同BPE-500、同BPE-900、同BPE-1300N、同A-GLY-3E、同A-GLY-9E、同A-GLY-20E、同A-TMPT-3EO、同A-TMPT-9EO、同AT-20E、同ATM-4E、同ATM-35E、APG-100、APG-200(以上、新中村化学工業(株)製)、KAYARAD(登録商標)DPEA-12、同PEG400DA、同THE-330、同RP-1040(以上、日本化薬(株)製)、アロニックスM-210、M-350(以上、東亞合成(株)製)、KAYARAD(登録商標)DPHA、同NPGDA、同PET30(以上、日本化薬(株)製)、NKエステル A-DPH、同A-TMPT、同A-DCP、同A-HD-N、同TMPT、同DCP、同NPG、同HD-N(以上、新中村化学工業(株)製)、NKオリゴ U-15HA(新中村化学工業(株)製)、NKポリマー バナレジンGH-1203(新中村化学工業(株)製)、DN-0075(日本化薬(株)製)等が挙げられる。
 上記多塩基酸変性アクリルオリゴマーも市販品として入手が可能であり、その具体例としては、アロニックスM-510,520(以上、東亞合成(株)製)等が挙げられる。
Further, the polyfunctional (meth) acrylic compound is available as a commercial product, specific examples thereof include NK Ester A-200, A-400, A-600, A-1000, A- 9300 (tris(2-acryloyloxyethyl) isocyanurate), A-9300-1CL, A-TMPT, UA-53H, 1G, 2G, 3G, 4G, 9G, 14G, 23G, ABE-300, A-BPE-4, A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-80N, BPE- 100N, BPE-200, BPE-500, BPE-900, BPE-1300N, A-GLY-3E, A-GLY-9E, A-GLY-20E, A-TMPT-3EO, A-TMPT-9EO, AT-20E, ATM-4E, ATM-35E, APG-100, APG-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD (registered trademark) DPEA-12 , PEG400DA, THE-330, RP-1040 (manufactured by Nippon Kayaku Co., Ltd.), Aronix M-210, M-350 (manufactured by Toagosei Co., Ltd.), KAYARAD (registered trademark) DPHA , NPGDA, PET30 (manufactured by Nippon Kayaku Co., Ltd.), NK ester A-DPH, A-TMPT, A-DCP, A-HD-N, TMPT, DCP, NPG, Same HD-N (manufactured by Shin-Nakamura Chemical Co., Ltd.), NK Oligo U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.), NK Polymer Vanaresin GH-1203 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DN-0075 (manufactured by Nippon Kayaku Co., Ltd.) and the like.
The polybasic acid-modified acrylic oligomer is also available as a commercial product, and specific examples include Aronix M-510 and 520 (manufactured by Toagosei Co., Ltd.).
 酸無水物基を有する化合物としては、2分子のカルボン酸を脱水縮合させたカルボン酸無水物であれば、特に限定されるものではなく、その具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、無水マレイン酸、無水コハク酸、オクチル無水コハク酸、ドデセニル無水コハク酸等の分子内に1個の酸無水物基を有するもの;1,2,3,4-シクロブタンテトラカルボン酸二無水物、ピロメリット酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物等の分子内に2個の酸無水物基を有するもの等が挙げられる。 The compound having an acid anhydride group is not particularly limited as long as it is a carboxylic acid anhydride obtained by dehydration condensation of two molecules of carboxylic acid. Specific examples thereof include phthalic anhydride and tetrahydrophthalic anhydride. , hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, maleic anhydride, succinic anhydride, octyl succinic anhydride, dodecenyl succinic anhydride, etc. Those having one acid anhydride group; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, pyromellitic anhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro- 1-naphthalenesuccinic dianhydride, bicyclo[3.3.0]octane-2,4,6,8-tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydro-3-furanyl)- 3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride , 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 1,3-dimethyl-1,2, Those having two acid anhydride groups in the molecule such as 3,4-cyclobutanetetracarboxylic dianhydride can be mentioned.
 ブロックイソシアネート基を含有する化合物としては、イソシアネート基(-NCO)が適当な保護基によりブロックされたブロック化イソシアネート基を一分子中2個以上有し、熱硬化の際の高温に曝されると、保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基が本発明のトリアジン環含有重合体の架橋基(例えば、ヒドロキシ含有基)との間で架橋反応を起こすものであれば特に限定されるものではなく、例えば、下記式で示される基を一分子中2個以上(なお、これらの基は同一のものでも、また各々異なっているものでもよい)有する化合物が挙げられる。 The compound containing a blocked isocyanate group has two or more blocked isocyanate groups in one molecule in which the isocyanate group (--NCO) is blocked with an appropriate protective group, and when exposed to a high temperature during thermosetting, Especially if the protective group (blocking portion) is removed by thermal dissociation and the resulting isocyanate group undergoes a cross-linking reaction with the cross-linking group (e.g., hydroxy-containing group) of the triazine ring-containing polymer of the present invention. Examples include, but are not limited to, compounds having two or more groups represented by the following formulas in one molecule (these groups may be the same or different).
Figure JPOXMLDOC01-appb-C000061
(式中、Rはブロック部の有機基を表す。)
Figure JPOXMLDOC01-appb-C000061
(In the formula, Rb represents the organic group of the block portion.)
 このような化合物は、例えば、一分子中2個以上のイソシアネート基を有する化合物に対して適当なブロック剤を反応させて得ることができる。
 一分子中2個以上のイソシアネート基を有する化合物としては、例えば、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、トリメチルヘキサメチレンジイソシアネートのポリイソシアネートや、これらの二量体、三量体、および、これらとジオール類、トリオール類、ジアミン類、またはトリアミン類との反応物などが挙げられる。
 ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、2-エトキシヘキサノール、2-N,N-ジメチルアミノエタノール、2-エトキシエタノール、シクロヘキサノール等のアルコール類;フェノール、o-ニトロフェノール、p-クロロフェノール、o-、m-またはp-クレゾール等のフェノール類;ε-カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類;ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール等のピラゾール類;ドデカンチオール、ベンゼンチオール等のチオール類などが挙げられる。
Such a compound can be obtained, for example, by reacting a compound having two or more isocyanate groups in one molecule with an appropriate blocking agent.
Examples of compounds having two or more isocyanate groups in one molecule include polyisocyanates such as isophorone diisocyanate, 1,6-hexamethylene diisocyanate, methylenebis(4-cyclohexyl isocyanate), trimethylhexamethylene diisocyanate, and dimers thereof. , trimers, and reaction products thereof with diols, triols, diamines, or triamines.
Examples of blocking agents include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N,N-dimethylaminoethanol, 2-ethoxyethanol and cyclohexanol; phenol, o-nitrophenol , p-chlorophenol, o-, m- or p-cresol, etc.; lactams, such as ε-caprolactam; Pyrazoles such as pyrazole, 3,5-dimethylpyrazole and 3-methylpyrazole; Thiols such as dodecanethiol and benzenethiol.
 ブロックイソシアネート基を含有する化合物は、市販品としても入手が可能であり、その具体例としては、タケネート(登録商標)B-830、B-815N、B-842N、B-870N、B-874N、B-882N、B-7005、B-7030、B-7075、B-5010(以上、三井化学(株)製)、デュラネート(登録商標)17B-60PX、同TPA-B80E、同MF-B60X、同MF-K60X、同E402-B80T(以上、旭化成(株)製)、カレンズMOI-BM(登録商標)(以上、昭和電工(株)製)、TRIXENE(登録商標) BI-7950、BI-7951、BI-7960、BI-7961、BI-7963、BI-7982、BI-7991、BI-7992(Baxenden chemicals LTD社製)等が挙げられる。 Compounds containing a blocked isocyanate group are also available as commercial products, and specific examples thereof include Takenate (registered trademark) B-830, B-815N, B-842N, B-870N, B-874N, B-882N, B-7005, B-7030, B-7075, B-5010 (manufactured by Mitsui Chemicals, Inc.), Duranate (registered trademark) 17B-60PX, TPA-B80E, MF-B60X, MF-K60X, E402-B80T (manufactured by Asahi Kasei Corporation), Karenz MOI-BM (registered trademark) (manufactured by Showa Denko K.K.), TRIXENE (registered trademark) BI-7950, BI-7951, BI-7960, BI-7961, BI-7963, BI-7982, BI-7991, BI-7992 (manufactured by Baxenden chemicals LTD) and the like.
 アミノプラスト化合物としては、メトキシメチレン基を一分子中2個以上有するものであれば、特に限定されるものではなく、例えば、ヘキサメトキシメチルメラミン CYMEL(登録商標)303、テトラブトキシメチルグリコールウリル 同1170、テトラメトキシメチルベンゾグアナミン 同1123(以上、日本サイテックインダストリーズ(株)製)等のサイメルシリーズ、メチル化メラミン樹脂であるニカラック(登録商標)MW-30HM、同MW-390、同MW-100LM、同MX-750LM、メチル化尿素樹脂である同MX-270、同MX-280、同MX-290(以上、(株)三和ケミカル製)等のニカラックシリーズ等のメラミン系化合物が挙げられる。
 オキセタン化合物としては、オキセタニル基を一分子中2個以上有するものであれば、特に限定されるものではなく、例えば、オキセタニル基を含有するOXT-221、OX-SQ-H、OX-SC(以上、東亜合成(株)製)等が挙げられる。
The aminoplast compound is not particularly limited as long as it has two or more methoxymethylene groups in one molecule. , Cymel series such as tetramethoxymethylbenzoguanamine 1123 (manufactured by Nippon Cytec Industries Co., Ltd.), methylated melamine resin Nikalac (registered trademark) MW-30HM, MW-390, MW-100LM, the same Melamine compounds such as Nicalac series such as MX-750LM and methylated urea resins such as MX-270, MX-280 and MX-290 (manufactured by Sanwa Chemical Co., Ltd.).
The oxetane compound is not particularly limited as long as it has two or more oxetanyl groups in one molecule. , manufactured by Toagosei Co., Ltd.) and the like.
 フェノプラスト化合物は、ヒドロキシメチレン基を一分子中2個以上有し、そして熱硬化の際の高温に曝されると、本発明のトリアジン環含有重合体の架橋基との間で脱水縮合反応により架橋反応が進行するものである。
 フェノプラスト化合物としては、例えば、2,6-ジヒドロキシメチル-4-メチルフェノール、2,4-ジヒドロキシメチル-6-メチルフェノール、ビス(2-ヒドロキシ-3-ヒドロキシメチル-5-メチルフェニル)メタン、ビス(4-ヒドロキシ-3-ヒドロキシメチル-5-メチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、ビス(3-ホルミル-4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)ホルミルメタン、α,α-ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ホルミルトルエン等が挙げられる。
 フェノプラスト化合物は、市販品としても入手が可能であり、その具体例としては、26DMPC、46DMOC、DM-BIPC-F、DM-BIOC-F、TM-BIP-A、BISA-F、BI25X-DF、BI25X-TPA(以上、旭有機材工業(株)製)等が挙げられる。
The phenoplast compound has two or more hydroxymethylene groups in one molecule, and when exposed to a high temperature during thermosetting, it undergoes a dehydration condensation reaction with the cross-linking group of the triazine ring-containing polymer of the present invention. A cross-linking reaction proceeds.
Examples of phenoplast compounds include 2,6-dihydroxymethyl-4-methylphenol, 2,4-dihydroxymethyl-6-methylphenol, bis(2-hydroxy-3-hydroxymethyl-5-methylphenyl)methane, Bis(4-hydroxy-3-hydroxymethyl-5-methylphenyl)methane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, bis(3-formyl-4-hydroxyphenyl)methane , bis(4-hydroxy-2,5-dimethylphenyl)formylmethane, α,α-bis(4-hydroxy-2,5-dimethylphenyl)-4-formyltoluene, and the like.
Phenoplast compounds are also commercially available, and specific examples thereof include 26DMPC, 46DMOC, DM-BIPC-F, DM-BIOC-F, TM-BIP-A, BISA-F, and BI25X-DF. , BI25X-TPA (manufactured by Asahi Organic Chemicals Industry Co., Ltd.) and the like.
 これらの中でも、架橋剤配合による屈折率低下を抑制し得るとともに、硬化反応が速やかに進行するという点から、多官能(メタ)アクリル化合物が好適であり、その中でも、トリアジン環含有重合体との相溶性に優れていることから、下記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物がより好ましい。
 このような骨格を有する多官能(メタ)アクリル化合物としては、例えば、NKエステルA-9300、同A-9300-1CL(いずれも、新中村化学工業(株)製)が挙げられる。
Among these, a polyfunctional (meth)acrylic compound is preferable because it can suppress a decrease in refractive index due to incorporation of a cross-linking agent and the curing reaction proceeds rapidly. A polyfunctional (meth)acrylic compound having an isocyanuric acid skeleton described below is more preferable because of its excellent compatibility.
Examples of polyfunctional (meth)acrylic compounds having such a skeleton include NK Ester A-9300 and NK Ester A-9300-1CL (both manufactured by Shin-Nakamura Chemical Co., Ltd.).
Figure JPOXMLDOC01-appb-C000062
(式中、R111~R113は、互いに独立して、末端に少なくとも1つの(メタ)アクリル基を有する一価の有機基である。)
Figure JPOXMLDOC01-appb-C000062
(Wherein, R 111 to R 113 are each independently a monovalent organic group having at least one (meth)acrylic group at the end.)
 また、硬化速度をより向上させるとともに、得られる硬化膜の耐溶剤性および耐酸性、耐アルカリ性を高めるという観点から、25℃で液体であり、かつ、その粘度が5,000mPa・s以下、好ましくは1~3,000mPa・s、より好ましくは1~1,000mPa・s、より一層好ましくは1~500mPa・sの多官能(メタ)アクリル化合物(以下、低粘度架橋剤という)を、単独もしくは2種以上組み合わせて、または、上記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物と組み合わせて用いることが好適である。
 このような低粘度架橋剤も市販品として入手可能であり、例えば、上述した多官能(メタ)アクリル化合物のうち、NKエステルA-GLY-3E(85mPa・s,25℃)、同A-GLY-9E(95mPa・s,25℃)、同A-GLY-20E(200mPa・s,25℃)、同A-TMPT-3EO(60mPa・s,25℃)、同A-TMPT-9EO、同ATM-4E(150mPa・s,25℃)、同ATM-35E(350mPa・s,25℃)(以上、新中村化学工業(株)製)等の、(メタ)アクリル基間の鎖長が比較的長い架橋剤が挙げられる。
In addition, from the viewpoint of further improving the curing speed and increasing the solvent resistance, acid resistance, and alkali resistance of the resulting cured film, it is preferably liquid at 25 ° C. and has a viscosity of 5,000 mPa s or less. Is 1 to 3,000 mPa s, more preferably 1 to 1,000 mPa s, still more preferably 1 to 500 mPa s polyfunctional (meth) acrylic compound (hereinafter referred to as a low-viscosity cross-linking agent), alone or It is preferable to use two or more of them in combination or in combination with the above polyfunctional (meth)acrylic compound having an isocyanuric acid skeleton.
Such low-viscosity cross-linking agents are also available as commercial products. -9E (95mPa s, 25°C), A-GLY-20E (200mPa s, 25°C), A-TMPT-3EO (60mPa s, 25°C), A-TMPT-9EO, ATM -4E (150 mPa s, 25 ° C.), ATM-35E (350 mPa s, 25 ° C.) (both manufactured by Shin-Nakamura Chemical Co., Ltd.), etc. The chain length between (meth) acrylic groups is relatively Long crosslinkers are included.
 さらに、得られる硬化膜の耐アルカリ性をも向上させることを考慮すると、NKエステルA-GLY-20E(新中村化学工業(株)製)、および同ATM-35E(新中村化学工業(株)製)の少なくとも一方と、上記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物と組み合わせて用いることが好適である。 Furthermore, in consideration of improving the alkali resistance of the resulting cured film, NK Ester A-GLY-20E (manufactured by Shin-Nakamura Chemical Co., Ltd.) and ATM-35E (manufactured by Shin-Nakamura Chemical Co., Ltd.) ) and the above polyfunctional (meth)acrylic compound having an isocyanuric acid skeleton.
 また、PETやポリオレフィンフィルム等の保護フィルムに本発明のトリアジン環含有重合体からなる膜を積層し、保護フィルムを介して光照射する場合、膜積層フィルムにおいても酸素阻害を受けることなく良好な硬化性を得ることができる。この場合、保護フィルムは硬化後に剥離する必要があるため、剥離性の良好な膜を与える多塩基酸変性アクリルオリゴマーを用いることが好ましい。 In addition, when a film comprising the triazine ring-containing polymer of the present invention is laminated on a protective film such as a PET or polyolefin film and light is irradiated through the protective film, even the film laminated film can be cured satisfactorily without being inhibited by oxygen. You can get sex. In this case, since the protective film needs to be peeled off after curing, it is preferable to use a polybasic acid-modified acrylic oligomer that gives a film with good peelability.
 上述した架橋剤は単独で使用しても、2種以上組み合わせて使用してもよい。
 無溶剤型組成物における架橋剤の含有量は、トリアジン環含有重合体100質量部に対して、1~500質量部が好ましいが、屈折率をコントロールすること及び溶剤耐性を考慮すると、好ましくは50~300質量部、より好ましくは100~150質量部である。
The above-mentioned cross-linking agents may be used alone or in combination of two or more.
The content of the cross-linking agent in the solvent-free composition is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. ~300 parts by mass, more preferably 100 to 150 parts by mass.
(3).無機微粒子
 トリアジン環含有重合体を含有する無溶剤型組成物に無機微粒子を含有させることで、高屈折率を維持しつつ粘度を低くすることができる。無溶剤型組成物は有機溶剤を含有しないことから一般的に粘度が高くなりがちであるが、本発明の無溶剤型組成物は粘度を低くすることができる。そのため、本発明の無溶剤型組成物は、スリットコート法、インクジェット法などの比較的低粘度が求められる塗布法を利用可能である。
 また、トリアジン環含有重合体を含有する無溶剤型組成物に無機微粒子を含有させても、得られる硬化膜において低いHAZEを維持することができる。
(3). Inorganic Fine Particles By adding inorganic fine particles to a solvent-free composition containing a triazine ring-containing polymer, the viscosity can be lowered while maintaining a high refractive index. Since solvent-free compositions do not contain organic solvents, they generally tend to have high viscosity, but the solvent-free composition of the present invention can reduce the viscosity. Therefore, the solvent-free composition of the present invention can be applied by a coating method such as a slit coating method or an inkjet method, which requires a relatively low viscosity.
In addition, even if inorganic fine particles are added to the solvent-free composition containing the triazine ring-containing polymer, the resulting cured film can maintain a low HAZE.
 無機微粒子としては、例えば、Be、Al、Si、Ti、V、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、BiおよびCeからなる群から選ばれる1種または2種以上の金属の酸化物、硫化物または窒化物を含み、特に、これらの金属酸化物を含むことが好適である。なお、無機微粒子は単独で用いても、2種以上組み合わせて用いてもよい。
 金属酸化物の具体例としては、例えば、Al23、ZnO、TiO2、ZrO2、Fe23、Sb25、BeO、ZnO、SnO2、CeO2、SiO2、WO3などが挙げられる。
 また、複数の金属酸化物を複合酸化物として用いることも有効である。複合酸化物とは、微粒子の製造段階で2種以上の無機酸化物を混合させたものである。例えば、TiO2とZrO2との複合酸化物、TiO2とZrO2とSnO2との複合酸化物、ZrO2とSnO2との複合酸化物などが挙げられる。
 さらに、上記金属の化合物であってもよい。例えば、ZnSb26、BaTiO3、SrTiO3、SrSnO3などが挙げられる。これらの化合物は、単独でまたは2種以上を混合して用いることができ、さらに上記の酸化物と混合して用いてもよい。
Examples of inorganic fine particles include Be, Al, Si, Ti, V, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. It contains oxides, sulfides or nitrides of one or more selected metals, and it is particularly preferred to contain these metal oxides. Incidentally, the inorganic fine particles may be used singly or in combination of two or more.
Specific examples of metal oxides include Al2O3 , ZnO, TiO2 , ZrO2, Fe2O3 , Sb2O5 , BeO , ZnO , SnO2 , CeO2 , SiO2 , and WO3 . are mentioned.
It is also effective to use a plurality of metal oxides as a composite oxide. A composite oxide is a mixture of two or more kinds of inorganic oxides in the production stage of fine particles. For example, composite oxides of TiO 2 and ZrO 2 , composite oxides of TiO 2 , ZrO 2 and SnO 2 , composite oxides of ZrO 2 and SnO 2 and the like can be mentioned.
Further, it may be a compound of the above metals. Examples include ZnSb 2 O 6 , BaTiO 3 , SrTiO 3 and SrSnO 3 . These compounds can be used alone or in admixture of two or more, and may also be used in admixture with the above oxides.
 また、無機微粒子は、例えば、第1金属酸化物粒子(A)の表面を第2金属酸化物粒子(B)で被覆してなる第3金属酸化物粒子(C)であってもよい。 The inorganic fine particles may also be, for example, third metal oxide particles (C) obtained by coating the surfaces of the first metal oxide particles (A) with the second metal oxide particles (B).
 第1金属酸化物粒子(A)は、公知の方法、例えば、イオン交換法、解膠法、加水分解法、反応法により製造することができる。イオン交換法の例としては、Ti、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、BiおよびCeからなる群から選ばれる少なくとも1種の金属の酸性塩を水素型イオン交換樹脂で処理する方法、または上記金属の塩基性塩を水酸基型陰イオン交換樹脂で処理する方法が挙げられる。解膠法の例としては、上記金属の酸性塩を塩基で中和するか、または上記金属の塩基性塩を酸で中和させることによって得られるゲルを洗浄した後、酸または塩基で解膠する方法が挙げられる。加水分解法の例としては、上記金属のアルコキシドを加水分解する方法、または上記金属の塩基性塩を加熱下加水分解した後、不要の酸を除去する方法が挙げられる。反応法の例としては、上記金属の粉末と酸とを反応させる方法が挙げられる。 The first metal oxide particles (A) can be produced by known methods such as ion exchange, deflocculation, hydrolysis, and reaction methods. Examples of the ion exchange method include at least one metal selected from the group consisting of Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. and a method of treating an acid salt of the metal with a hydrogen-type ion exchange resin, or a method of treating a basic salt of the metal with a hydroxyl-type anion exchange resin. Examples of deflocculation include washing the gel obtained by neutralizing the acid salt of the metal with a base or neutralizing the basic salt of the metal with an acid, followed by peptization with an acid or a base. method. Examples of the hydrolysis method include a method of hydrolyzing the alkoxide of the above metal, or a method of hydrolyzing the basic salt of the above metal under heating and then removing unnecessary acid. Examples of the reaction method include a method of reacting the metal powder with an acid.
 第1金属酸化物粒子(A)は、原子価2~6の金属の酸化物であることが好ましく、Ti、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、Bi、Ba、Al、Sr、HfおよびCeからなる群から選ばれる少なくとも1種の金属の酸化物であることがより好ましい。金属酸化物の形態としては、例えば、TiO、Fe、CuO、ZnO、Y、ZrO、Nb、MoO、In、SnO、Sb、Ta、WO、PbO、Bi、BaO、Al、SrO、HfO、CeOなどが挙げられる。これらの金属酸化物は、1種を単独で用いることも、2種以上を組み合わせて用いることもできる。上記金属酸化物を組み合わせる方法としては、例えば、上記金属酸化物を数種類混合する方法、上記金属酸化物を複合化させる方法、または上記金属酸化物を原子レベルで固溶体化する方法が挙げられる。 The first metal oxide particles (A) are preferably oxides of metals having a valence of 2 to 6, such as Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta , W, Pb, Bi, Ba, Al, Sr, Hf and Ce. Forms of metal oxides include, for example, TiO2 , Fe2O3 , CuO , ZnO, Y2O3 , ZrO2 , Nb2O5 , MoO3 , In2O3 , SnO2 , Sb2O5 . , Ta 2 O 5 , WO 3 , PbO, Bi 2 O 3 , BaO, Al 2 O 3 , SrO, HfO 2 , CeO 2 and the like. These metal oxides can be used singly or in combination of two or more. Examples of the method of combining the metal oxides include a method of mixing several types of the metal oxides, a method of compounding the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
 上記金属酸化物の組み合わせとしては、例えば、SnO粒子とTiO粒子とがその界面で化学的な結合を生じて複合化されたSnO-TiO複合粒子、SnO粒子とWO粒子とがその界面で化学的な結合を生じて複合化されたSnO-WO複合粒子、SnO粒子とZrO粒子とがその界面で化学的な結合を生じて複合化されたSnO-ZrO複合粒子、TiOとZrOとSnOとが原子レベルで固溶体を形成して得られたTiO-ZrO-SnO複合粒子などが挙げられる。 Combinations of the metal oxides include, for example, SnO 2 —TiO 2 composite particles in which SnO 2 particles and TiO 2 particles are chemically bonded at their interfaces, and SnO 2 particles and WO 3 particles. SnO 2 —WO 3 composite particles in which are chemically bonded at their interfaces, and SnO 2 —ZrO in which SnO 2 particles and ZrO 2 particles are chemically bonded at their interfaces. 2 composite particles, and TiO 2 --ZrO 2 --SnO 2 composite particles obtained by forming a solid solution of TiO 2 , ZrO 2 and SnO 2 at the atomic level.
 また、第1金属酸化物粒子(A)は、金属成分の組み合わせにより化合物として用いることもでき、例えば、ZnSb、InSbO、ZnSnO、スズドープ酸化インジウム(ITO)、In-ZnO、BaTiO、SrTiO、アルミニウムドープ酸化亜鉛などが挙げられる。 The first metal oxide particles ( A ) can also be used as a compound by combining metal components. ZnO, BaTiO 3 , SrTiO 3 , aluminum-doped zinc oxide, and the like.
 第1金属酸化物粒子(A)がTiOを含む場合、当該粒子に含まれるTiOとしては、アナタース型、ルチル型、アナタース・ルチル混合型、ブルッカイト型のいずれの結晶構造を有するものであってもよいが、これらの中でも、得られる膜の屈折率および透明性を考慮すると、ルチル型を含むものが好ましい。 When the first metal oxide particles (A) contain TiO 2 , the TiO 2 contained in the particles has any of anatase, rutile, anatase/rutile mixed, and brookite crystal structures. However, among these, those containing the rutile type are preferable in consideration of the refractive index and transparency of the resulting film.
 さらに、上記第1金属酸化物粒子(A)は、その活性(例えば、光触媒性能)を抑制する点から、その表面に酸化ジルコニウム、酸化ケイ素、酸化アルミニウム等の金属酸化物からなる薄膜層を形成してもよい。上記薄膜層は、例えば、第1金属酸化物粒子(A)の水分散液に、ジルコニウム化合物を加えて、40~200℃で加熱することにより形成することができる。上記ジルコニウム化合物としては、例えば、オキシ塩化ジルコニウム、塩化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニル、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、エチルヘキサン酸ジルコニウム、ステアリン酸ジルコニウム、オクチル酸ジルコニウム、ジルコニウムエトキシド、ジルコニウム-n-プロポキシド、ジルコニウムイソプロポキシド、ジルコニウム-n-ブトキシド、ジルコニウム-イソプロポキシド、ジルコニウム-t-ブトキシド、ジルコニウムテトラアセチルアセトネートなどが挙げられ、オキシ塩化ジルコニウムが好ましい。上記ジルコニア化合物の使用量は、酸化ジルコニウムとして、用いる第1金属酸化物粒子(A)に対して、好ましくは3~50質量%である。 Furthermore, the first metal oxide particles (A) form a thin film layer made of a metal oxide such as zirconium oxide, silicon oxide, and aluminum oxide on the surface from the viewpoint of suppressing the activity (for example, photocatalytic performance). You may The thin film layer can be formed, for example, by adding a zirconium compound to an aqueous dispersion of the first metal oxide particles (A) and heating the mixture at 40 to 200.degree. Examples of the zirconium compound include zirconium oxychloride, zirconium chloride, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium oxynitrate, zirconium acetate, zirconyl carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, zirconium ethylhexanoate, and stearic acid. zirconium, zirconium octylate, zirconium ethoxide, zirconium-n-propoxide, zirconium isopropoxide, zirconium-n-butoxide, zirconium-isopropoxide, zirconium-t-butoxide, zirconium tetraacetylacetonate and the like, Zirconium oxychloride is preferred. The amount of the zirconia compound used, as zirconium oxide, is preferably 3 to 50% by mass relative to the first metal oxide particles (A) used.
 第1金属酸化物粒子(A)の一次粒子径(透過型電子顕微鏡観察による)は、分散安定性、得られる膜の屈折率および透明性の点から、2~60nmが好ましく、2~30nmがより好ましく、2~20nmが特に好ましい。
 第1金属酸化物粒子(A)の二次粒子径である動的光散乱法粒子径(動的光散乱法による)は、分散安定性、得られる膜の屈折率および透明性の点から、5~100nmが好ましく、5~50nmがより好ましく、5~30nmが特に好ましい。
The primary particle size of the first metal oxide particles (A) (observed with a transmission electron microscope) is preferably 2 to 60 nm, more preferably 2 to 30 nm, from the viewpoints of dispersion stability, refractive index and transparency of the resulting film. More preferably, 2 to 20 nm is particularly preferred.
The dynamic light scattering particle diameter (according to the dynamic light scattering method), which is the secondary particle diameter of the first metal oxide particles (A), is determined as 5 to 100 nm is preferred, 5 to 50 nm is more preferred, and 5 to 30 nm is particularly preferred.
 なお、第1金属酸化物粒子(A)は、例えば、国際公開第2013/081136号に記載の方法に従って合成することができる。 The first metal oxide particles (A) can be synthesized, for example, according to the method described in International Publication No. 2013/081136.
 第2金属酸化物粒子(B)は、Si、Al、Sn、Zr、Mo、SbおよびWからなる群から選ばれる少なくとも1種の金属の酸化物粒子であることが好ましい。第2金属酸化物粒子(B)は、金属酸化物の形態として、例えば、SiO、Al、SnO、ZrO、MoO、Sb、WO等を例示することができる。そして、これらの金属酸化物は、1種を単独で用いることも、2種以上を組み合わせて用いることもできる。上記金属酸化物を組み合わせる方法としては、例えば、上記金属酸化物を数種類混合する方法、上記金属酸化物を複合化させる方法、または上記金属酸化物を原子レベルで固溶体化する方法が挙げられる。 The second metal oxide particles (B) are preferably oxide particles of at least one metal selected from the group consisting of Si, Al, Sn, Zr, Mo, Sb and W. The second metal oxide particles (B) are in the form of metal oxides, for example, SiO 2 , Al 2 O 3 , SnO 2 , ZrO 2 , MoO 3 , Sb 2 O 5 , WO 3 and the like. can. And these metal oxides can be used individually by 1 type, and can also be used in combination of 2 or more type. Examples of the method of combining the metal oxides include a method of mixing several types of the metal oxides, a method of compounding the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
 第2金属酸化物粒子(B)の具体例としては、例えば、SnO粒子とWO粒子とがその界面で化学的な結合を生じて複合化されたSnO-WO複合粒子、SnO粒子とSiO粒子とがその界面で化学的な結合を生じて複合化されたSnO-SiO複合粒子、SnO粒子とWO粒子とSiO粒子とがその界面で化学的な結合を生じて複合化されたSnO-WO-SiO複合粒子、SnO粒子とMoO粒子とSiO粒子とがその界面で化学的な結合を生じて複合化されたSnO-MoO-SiO複合粒子、Sb粒子とSiO粒子とがその界面で化学的な結合を生じて複合化されたSb-SiO複合粒子などが挙げられる。 Specific examples of the second metal oxide particles (B) include, for example, SnO 2 —WO 3 composite particles, SnO 2 particles in which SnO 2 particles and WO 3 particles are chemically bonded at their interface to form a composite. SnO 2 —SiO 2 composite particles in which particles and SiO 2 particles are chemically bonded at their interfaces, and SnO 2 particles, WO 3 particles and SiO 2 particles are chemically bonded at their interfaces. SnO 2 —WO 3 —SiO 2 composite particles produced and composited, SnO 2 —MoO 3 — composited by chemical bonding of SnO 2 particles, MoO 3 particles and SiO 2 particles at their interfaces Examples include SiO 2 composite particles, Sb 2 O 5 -SiO 2 composite particles in which Sb 2 O 5 particles and SiO 2 particles are chemically bonded at their interface to form a composite.
 第2金属酸化物粒子(B)として複数種の金属酸化物を使用する場合、含有する金属酸化物の割合(質量比)は特に制限されるものではないが、例えば、SnO-SiO複合粒子では、SiO/SnOの質量比は0.1~5が好ましく、Sb-SiO複合粒子では、Sb/SiOの質量比は0.1~5が好ましい。 When using multiple kinds of metal oxides as the second metal oxide particles (B), the ratio (mass ratio) of the metal oxides contained is not particularly limited, but for example, SnO 2 —SiO 2 composite The particles preferably have a SiO 2 /SnO 2 mass ratio of 0.1 to 5, and the Sb 2 O 5 —SiO 2 composite particles preferably have a Sb 2 O 5 /SiO 2 mass ratio of 0.1 to 5.
 第2金属酸化物粒子(B)は、公知の方法、例えば、イオン交換法、酸化法により製造することができる。イオン交換法の例としては、上記金属の酸性塩を水素型イオン交換樹脂で処理する方法で処理する方法が挙げられる。酸化法の例としては、上記金属または上記金属の酸化物の粉末と過酸化水素とを反応させる方法が挙げられる。 The second metal oxide particles (B) can be produced by known methods such as an ion exchange method and an oxidation method. Examples of the ion exchange method include a method of treating an acid salt of the above metal with a hydrogen ion exchange resin. Examples of the oxidation method include a method of reacting the powder of the metal or the oxide of the metal with hydrogen peroxide.
 第2金属酸化物粒子(B)の一次粒子径(透過型電子顕微鏡観察による)は、分散安定性、得られる膜の屈折率および透明性の点から、5nm以下が好ましく、1~5nmがより好ましい。 The primary particle size of the second metal oxide particles (B) (observed with a transmission electron microscope) is preferably 5 nm or less, more preferably 1 to 5 nm, from the viewpoints of dispersion stability and the refractive index and transparency of the resulting film. preferable.
 第3金属酸化物粒子(C)は、第1金属酸化物粒子(A)の表面を第2金属酸化物粒子(B)で被覆して得られる金属酸化物粒子である。その製造方法としては、例えば、下記の第1方法および第2方法が挙げられる。 The third metal oxide particles (C) are metal oxide particles obtained by coating the surfaces of the first metal oxide particles (A) with the second metal oxide particles (B). Examples of the manufacturing method include the following first method and second method.
 第1方法は、第1金属酸化物粒子(A)を含有する水分散液と、第2金属酸化物粒子(B)を含有する水分散液とを、(B)/(A)で表される質量比(金属酸化物換算値)が0.05~0.5となるように混合した後、その水分散液を加熱する方法である。例えば、第1金属酸化物粒子(A)を含有する水分散液と、第2金属酸化物粒子(B)として、Sb-SiO複合粒子(Sb/SiO=0.1~5)を含有する水分散液とを、上記質量比が0.05~0.5となるように混合し、混合により得られた水分散液を70~350℃で加熱することにより、第1金属酸化物粒子(A)の表面が、Sb-SiO複合粒子で被覆された第3金属酸化物粒子(C)の水分散液が得られる。 In the first method, an aqueous dispersion containing the first metal oxide particles (A) and an aqueous dispersion containing the second metal oxide particles (B) are separated by (B)/(A). After mixing so that the mass ratio (converted to metal oxide) is 0.05 to 0.5, the aqueous dispersion is heated. For example, an aqueous dispersion containing the first metal oxide particles (A) and Sb 2 O 5 —SiO 2 composite particles (Sb 2 O 5 /SiO 2 =0. 1 to 5) by mixing with the aqueous dispersion containing 1 to 5) so that the above mass ratio is 0.05 to 0.5, and heating the aqueous dispersion obtained by mixing at 70 to 350 ° C. An aqueous dispersion of the third metal oxide particles (C) in which the surfaces of the first metal oxide particles (A) are coated with the Sb 2 O 5 —SiO 2 composite particles is obtained.
 第2方法は、第1金属酸化物粒子(A)を含有する水分散液と、第2金属酸化物粒子(B)として、水溶性の酸化スズアルカリ塩と酸化ケイ素アルカリ塩とを、SnO/SiOで表される質量比(金属酸化物換算値)が0.1~5となるように混合した後、陽イオン交換を行って、アルカリ金属イオンを除去して得たSnO-SiO複合粒子の水分散液とを、(B)/(A)で表される質量比(金属酸化物換算値)が0.05~0.5となるように混合した後、混合により得られた水分散液を加熱する方法である。この第2方法に用いられる水溶性アルカリ塩の水溶液は、ナトリウム塩の水溶液を好ましく用いることができる。例えば、第1金属酸化物粒子(A)を含有する水分散液と、第2金属酸化物粒子(B)として、スズ酸ナトリウムと珪酸ナトリウムの水溶液を混合した後、陽イオン交換を行って得られるSnO-SiO複合粒子の水分散液とを、上記質量比が0.05~0.5となるように混合し、当該水分散液を70~350℃で加熱することにより、第1金属酸化物粒子(A)を核として、その表面をSnO-SiO複合粒子からなる第2金属酸化物粒子(B)で被覆された第3金属酸化物粒子(C)の水分散液が得られる。 In the second method, an aqueous dispersion containing the first metal oxide particles (A), a water-soluble tin oxide alkali salt and a silicon oxide alkali salt as the second metal oxide particles (B), SnO 2 After mixing so that the mass ratio represented by /SiO 2 (value in terms of metal oxide) is 0.1 to 5, cation exchange is performed to remove alkali metal ions SnO 2 —SiO obtained by 2 and an aqueous dispersion of composite particles so that the mass ratio represented by (B)/(A) (in terms of metal oxide) is 0.05 to 0.5, and then mixed. It is a method of heating an aqueous dispersion. As the aqueous solution of water-soluble alkali salt used in the second method, an aqueous solution of sodium salt can be preferably used. For example, after mixing an aqueous dispersion containing the first metal oxide particles (A) and an aqueous solution of sodium stannate and sodium silicate as the second metal oxide particles (B), cation exchange is performed to obtain and an aqueous dispersion of SnO 2 —SiO 2 composite particles obtained above are mixed so that the mass ratio is 0.05 to 0.5, and the aqueous dispersion is heated at 70 to 350° C. to obtain a first An aqueous dispersion of the third metal oxide particles (C) in which the surface of the metal oxide particles (A) as nuclei is coated with the second metal oxide particles (B) composed of SnO 2 —SiO 2 composite particles. can get.
 上記第1金属酸化物粒子(A)と上記第2金属酸化物粒子(B)とを混合する際の温度は、通常1~100℃であり、20~60℃が好ましい。そして混合後の加熱温度は、70~350℃が好ましく、70~150℃がより好ましい。また、混合後の加熱時間は、通常10分間~5時間であり、30分間~4時間が好ましい。 The temperature at which the first metal oxide particles (A) and the second metal oxide particles (B) are mixed is usually 1 to 100°C, preferably 20 to 60°C. The heating temperature after mixing is preferably 70 to 350°C, more preferably 70 to 150°C. The heating time after mixing is usually 10 minutes to 5 hours, preferably 30 minutes to 4 hours.
 上記第3金属酸化物粒子(C)の水分散液は、任意の成分を含有してもよい。特に、オキシカルボン酸類を含有させることにより、第3金属酸化物粒子(C)の分散性等の性能をさらに向上させることができる。上記オキシカルボン酸としては、例えば、乳酸、酒石酸、クエン酸、グルコン酸、リンゴ酸およびグリコール酸が挙げられる。上記オキシカルボン酸類の含有量は、第3金属酸化物粒子(C)の全金属酸化物に対して、約30質量%以下とすることが好ましい。 The aqueous dispersion of the third metal oxide particles (C) may contain any component. In particular, by containing oxycarboxylic acids, it is possible to further improve performance such as dispersibility of the third metal oxide particles (C). Examples of the oxycarboxylic acid include lactic acid, tartaric acid, citric acid, gluconic acid, malic acid and glycolic acid. The content of the oxycarboxylic acids is preferably about 30% by mass or less with respect to all metal oxides in the third metal oxide particles (C).
 また、第3金属酸化物粒子(C)の分散液は、アルカリ成分を含有してもよい。上記アルカリ成分としては、例えば、Li、Na、K、Rb、Cs等のアルカリ金属水酸化物;アンモニア;エチルアミン、イソプロピルアミン、n-プロピルアミン、n-ブチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリイソブチルアミン、トリアミルアミン(トリ-n-ペンチルアミン)、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルヘキシルアミン等の第一級、第二級、及び第三級アルキルアミン;ベンジルアミン、ジメチルベンジルアミン等のアラルキルアミン;ピペリジン等の脂環式アミン;モノエタノールアミン、トリエタノールアミン等のアルカノールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド等の第四級アンモニウム塩が挙げられる。これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。上記アルカリ成分の含有量は、第3金属酸化物粒子(C)の全金属酸化物に対して、約30質量%以下とすることが好ましい。また、これらのアルカリ成分は、上記オキシカルボン酸と併用することができる。 Further, the dispersion of the third metal oxide particles (C) may contain an alkaline component. Examples of the alkali component include alkali metal hydroxides such as Li, Na, K, Rb, and Cs; ammonia; ethylamine, isopropylamine, n-propylamine, n-butylamine, diethylamine, di-n-propylamine, Diisopropylamine, di-n-butylamine, diisobutylamine, triethylamine, tripropylamine, tributylamine, triisobutylamine, triamylamine (tri-n-pentylamine), tri-n-hexylamine, tri-n-octylamine , dimethylpropylamine, dimethylbutylamine, dimethylhexylamine, etc. primary, secondary, and tertiary alkylamines; benzylamine, dimethylbenzylamine, etc. aralkylamines; cycloaliphatic amines, such as piperidine; monoethanolamine , alkanolamine such as triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and tetrapropylammonium hydroxide. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the alkali component is preferably about 30% by mass or less with respect to all metal oxides in the third metal oxide particles (C). Moreover, these alkali components can be used in combination with the above oxycarboxylic acid.
 第3金属酸化物粒子(C)の水分散液の濃度をさらに高めたいときは、最大約65質量%まで常法により濃縮することができる。その方法としては、例えば、蒸発法、限外ろ過法が挙げられる。また、この水分散液のpHを調整したいときには、上記アルカリ金属水酸化物、アミン、第四級アンモニウム塩、オキシカルボン酸等を加えればよい。
 第3金属酸化物粒子(C)の溶媒分散液の全金属酸化物濃度は、好ましくは10~60質量%であり、より好ましくは20~50質量%である。
When it is desired to further increase the concentration of the aqueous dispersion of the third metal oxide particles (C), it can be concentrated to a maximum of about 65% by mass by a conventional method. The method includes, for example, an evaporation method and an ultrafiltration method. Further, when it is desired to adjust the pH of this aqueous dispersion, the alkali metal hydroxide, amine, quaternary ammonium salt, oxycarboxylic acid, etc. may be added.
The total metal oxide concentration of the solvent dispersion of the third metal oxide particles (C) is preferably 10 to 60% by mass, more preferably 20 to 50% by mass.
 第3金属酸化物粒子(C)の水分散液に対して、その水媒体を親水性有機溶媒で置換することにより、第3金属酸化物粒子(C)の有機溶媒分散液が得られる。この置換は、蒸留法、限外ろ過法等の通常の方法により行うことができる。上記親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノールおよび1-プロパノール等の低級アルコール、プロピレングリコールモノメチルエーテル等のエーテル類、ジメチルホルムアミドおよびN,N-ジメチルアセトアミド等の直鎖アミド類、N-メチル-2-ピロリドン等の環状アミド類、エチルセロソルブおよびエチレングリコール等のグリコール類が挙げられる。 By replacing the aqueous medium of the aqueous dispersion of the third metal oxide particles (C) with a hydrophilic organic solvent, an organic solvent dispersion of the third metal oxide particles (C) is obtained. This substitution can be carried out by an ordinary method such as a distillation method or an ultrafiltration method. Examples of the hydrophilic organic solvent include lower alcohols such as methanol, ethanol, isopropanol and 1-propanol; ethers such as propylene glycol monomethyl ether; linear amides such as dimethylformamide and N,N-dimethylacetamide; -cyclic amides such as methyl-2-pyrrolidone, glycols such as ethyl cellosolve and ethylene glycol.
 第3金属酸化物粒子(C)の一次粒子径(透過型電子顕微鏡観察による)は、分散安定性、得られる膜の屈折率および透明性の点から、20nm以下が好ましい。
 第3金属酸化物粒子(C)の二次粒子径である動的光散乱法粒子径(動的光散乱法による)は、分散安定性、得られる膜の屈折率および透明性の点から、2~100nmが好ましい。
The primary particle size of the third metal oxide particles (C) (observed with a transmission electron microscope) is preferably 20 nm or less from the viewpoint of dispersion stability and the refractive index and transparency of the resulting film.
The dynamic light scattering particle diameter (according to the dynamic light scattering method), which is the secondary particle diameter of the third metal oxide particles (C), is determined by 2 to 100 nm is preferred.
 また、本発明で用いる無機微粒子は、表面修飾がされてなる無機微粒子であってもよい。そのような無機微粒子は、表面に親水性基および架橋性基の少なくともいずれかを有していてもよい。
 表面に親水性基および架橋性基の少なくともいずれかを有する無機微粒子(以下、「表面修飾無機微粒子」と称することがある。)は、例えば、上記のような無機微粒子を核粒子とし、親水性基を有する有機ケイ素化合物および架橋性基を有する有機ケイ素化合物の少なくともいずれかで核粒子の表面を修飾することにより得られる。
 無機微粒子として表面修飾無機微粒子を用いることで、樹脂中での分散安定性を向上でき、硬化膜のHAZEをより抑えることができる。
Further, the inorganic fine particles used in the present invention may be surface-modified inorganic fine particles. Such inorganic fine particles may have at least one of a hydrophilic group and a crosslinkable group on the surface.
Inorganic fine particles having at least one of a hydrophilic group and a crosslinkable group on the surface (hereinafter sometimes referred to as "surface-modified inorganic fine particles") are, for example, the above inorganic fine particles as core particles, and hydrophilic It is obtained by modifying the surface of the core particles with at least one of an organosilicon compound having a group and an organosilicon compound having a crosslinkable group.
By using surface-modified inorganic fine particles as the inorganic fine particles, the dispersion stability in the resin can be improved, and the HAZE of the cured film can be further suppressed.
 有機ケイ素化合物は、加水分解によりSi-OH基を生成する加水分解性基を有する。加水分解性基としては、例えば、ケイ素原子に結合したアルコキシ基、ケイ素原子に結合したアセトキシ基などが挙げられる。有機ケイ素化合物における加水分解基の数としては、特に限定されないが、例えば、1~3個が挙げられる。 Organosilicon compounds have hydrolyzable groups that generate Si—OH groups upon hydrolysis. Hydrolyzable groups include, for example, silicon-bonded alkoxy groups and silicon-bonded acetoxy groups. The number of hydrolyzable groups in the organosilicon compound is not particularly limited, but may be 1 to 3, for example.
 親水性基としては、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等のポリエーテル基が挙げられる。 Examples of hydrophilic groups include polyether groups such as polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups.
 親水性基を有する有機ケイ素化合物としては、例えば、[メトキシ(ポリエチレンオキシ)n-プロピル]トリメトキシシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]トリエトキシシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]トリプロポキシシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]トリアセトキシシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]トリメトキシシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]トリエトキシシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]トリプロポキシシラン、「メトキシ(ポリプロピレンオキシ)n-プロピル」トリアセトキシシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]トリメトキシシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]トリプロポキシシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]トリアセトキシシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]ジメトキシメチルシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]ジエトキシメチルシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]ジプロポキシメチルシラン、[メトキシ(ポリエチレンオキシ)n-プロピル]ジアセトキシメチルシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]ジメトキシメチルシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]ジエトキシメチルシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]ジプロポキシメチルシラン、[メトキシ(ポリプロピレンオキシ)n-プロピル]ジアセトキシメチルシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]ジメトキシメチルシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]ジエトキシメチルシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]ジプロポキシメチルシラン、[メトキシ(ポリブチレンオキシ)n-プロピル]ジアセトキシメチルシランなどが挙げられる。 Examples of organosilicon compounds having a hydrophilic group include [methoxy(polyethyleneoxy)n-propyl]trimethoxysilane, [methoxy(polyethyleneoxy)n-propyl]triethoxysilane, [methoxy(polyethyleneoxy)n-propyl ] Tripropoxysilane, [methoxy (polyethyleneoxy) n-propyl] triacetoxysilane, [methoxy (polypropyleneoxy) n-propyl] trimethoxysilane, [methoxy (polypropyleneoxy) n-propyl] triethoxysilane, [methoxy ( polypropyleneoxy)n-propyl]tripropoxysilane, "methoxy(polypropyleneoxy)n-propyl" triacetoxysilane, [methoxy(polybutyleneoxy)n-propyl]trimethoxysilane, [methoxy(polybutyleneoxy)n-propyl ] Tripropoxysilane, [methoxy(polybutyleneoxy)n-propyl]triacetoxysilane, [methoxy(polyethyleneoxy)n-propyl]dimethoxymethylsilane, [methoxy(polyethyleneoxy)n-propyl]diethoxymethylsilane, [ Methoxy(polyethyleneoxy)n-propyl]dipropoxymethylsilane, [methoxy(polyethyleneoxy)n-propyl]diacetoxymethylsilane, [methoxy(polypropyleneoxy)n-propyl]dimethoxymethylsilane, [methoxy(polypropyleneoxy)n -propyl]diethoxymethylsilane, [methoxy(polypropyleneoxy)n-propyl]dipropoxymethylsilane, [methoxy(polypropyleneoxy)n-propyl]diacetoxymethylsilane, [methoxy(polybutyleneoxy)n-propyl]dimethoxy Methylsilane, [methoxy(polybutyleneoxy)n-propyl]diethoxymethylsilane, [methoxy(polybutyleneoxy)n-propyl]dipropoxymethylsilane, [methoxy(polybutyleneoxy)n-propyl]diacetoxymethylsilane etc.
 架橋性基としては、架橋剤と反応して架橋構造を形成可能な基であれば、特に限定されず、例えば、ラジカル重合性基、エポキシ基、アミノ基などが挙げられる。
 ラジカル重合性基としては、例えば、アリル基、(メタ)アクリロイルオキシ基などが挙げられる。
The crosslinkable group is not particularly limited as long as it is a group capable of forming a crosslinked structure by reacting with a crosslinker, and examples thereof include radically polymerizable groups, epoxy groups, and amino groups.
Examples of radically polymerizable groups include allyl groups and (meth)acryloyloxy groups.
 ラジカル重合性基を有する有機ケイ素化合物としては、例えば、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、10-メタクリロキシデシルトリメトキシシランなどが挙げられる。
 エポキシ基を有する有機ケイ素化合物としては、例えば、3-グリシドキシプロピルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシランなどが挙げられる。
 アミノ基を有する有機ケイ素化合物としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンなどが挙げられる。
 これらは、1種を単独で用いても、2種以上を組み合せて用いてもよい。
Organosilicon compounds having radically polymerizable groups include, for example, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, and 3-acryloxypropyltriethoxysilane. , 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 8-methacryloxyoctyltrimethoxysilane, 10-methacryloxypropylmethyldimethoxysilane and roxydecyltrimethoxysilane.
Examples of organosilicon compounds having an epoxy group include 3-glycidoxypropyltrimethoxysilane and 8-glycidoxyoctyltrimethoxysilane.
Examples of organosilicon compounds having an amino group include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyl triethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, and the like.
These may be used individually by 1 type, or may be used in combination of 2 or more type.
 核粒子の表面への有機ケイ素化合物の結合量は、特に限定されないが、核粒子に対して、0.1~30質量%が好ましく、1~15質量%がより好ましい。 The bonding amount of the organosilicon compound to the surface of the core particles is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 1 to 15% by mass, relative to the core particles.
 無機微粒子又は表面修飾無機微粒子の一次粒子径(透過型電子顕微鏡観察による)は、分散安定性、得られる膜の屈折率および透明性の点から、20nm以下が好ましい。
 無機微粒子又は表面修飾無機微粒子の二次粒子径(動的光散乱法による)は、分散安定性、得られる膜の屈折率および透明性の点から、2~100nmが好ましく、5~50nmがより好ましく、5~20nmがより一層好ましい。
The primary particle size of the inorganic fine particles or surface-modified inorganic fine particles (observed with a transmission electron microscope) is preferably 20 nm or less from the viewpoints of dispersion stability, refractive index and transparency of the resulting film.
The secondary particle diameter (by dynamic light scattering method) of the inorganic fine particles or the surface-modified inorganic fine particles is preferably 2 to 100 nm, more preferably 5 to 50 nm, from the viewpoint of dispersion stability, refractive index and transparency of the obtained film. Preferably, 5 to 20 nm is even more preferred.
 例えば、表面修飾無機微粒子は、核粒子の水分散液または親水性有機溶媒分散液に有機ケイ素化合物を所定量添加し、希塩酸等の触媒により該有機ケイ素化合物を加水分解させて、核粒子の表面に結合させることにより得ることができる。 For example, the surface-modified inorganic fine particles are prepared by adding a predetermined amount of an organosilicon compound to an aqueous dispersion of core particles or a dispersion in a hydrophilic organic solvent, hydrolyzing the organosilicon compound with a catalyst such as dilute hydrochloric acid, and treating the surface of the core particles. It can be obtained by binding to
 上記核粒子の水分散液または親水性有機溶媒分散液は、さらに疎水性有機溶媒へ置換することができる。この置換方法は、蒸留法、限外ろ過法等の通常の方法により行なうことができる。疎水性溶媒の例としては、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、シクロペンタノン、シクロヘキサノン等の環状ケトン、酢酸エチル、酢酸ブチル等のエステル類が挙げられる。 The aqueous dispersion or hydrophilic organic solvent dispersion of the core particles can be further replaced with a hydrophobic organic solvent. This replacement method can be carried out by a conventional method such as a distillation method or an ultrafiltration method. Examples of hydrophobic solvents include ketones such as methyl ethyl ketone and methyl isobutyl ketone, cyclic ketones such as cyclopentanone and cyclohexanone, and esters such as ethyl acetate and butyl acetate.
 上記核粒子の有機溶媒分散液は、任意成分を含有してもよい。特に、リン酸、リン酸誘導体、リン酸系界面活性剤、オキシカルボン酸等を含有させることにより、上記核粒子の分散性等をさらに向上させることができる。リン酸系誘導体としては、例えば、フェニルホスホン酸およびその金属塩が挙げられる。リン酸系界面活性剤としては、例えば、Disperbyk(ビックケミー社製)、フォスファノール(東邦化学工業(株)製)、ニッコール(日光ケミカルズ(株)製)が挙げられる。オキシカルボン酸としては、例えば、乳酸、酒石酸、クエン酸、グルコン酸、リンゴ酸およびグリコール酸が挙げられる。これら任意成分の含有量は、上記核粒子の全金属酸化物に対して、約30質量%以下とすることが好ましい。 The organic solvent dispersion of the core particles may contain optional components. In particular, by containing phosphoric acid, phosphoric acid derivatives, phosphoric acid-based surfactants, oxycarboxylic acids, etc., the dispersibility of the core particles can be further improved. Examples of phosphoric acid derivatives include phenylphosphonic acid and metal salts thereof. Examples of phosphoric acid-based surfactants include Disperbyk (manufactured by BYK-Chemie), Phosphanol (manufactured by Toho Chemical Industry Co., Ltd.), and Nikkor (manufactured by Nikko Chemicals Co., Ltd.). Oxycarboxylic acids include, for example, lactic acid, tartaric acid, citric acid, gluconic acid, malic acid and glycolic acid. The content of these optional components is preferably about 30% by mass or less with respect to all metal oxides in the core particles.
 上記核粒子の有機溶媒分散液の濃度は、その分散安定性を考慮すると、10~60質量%が好ましく、30~50質量%がより好ましい。 Considering the dispersion stability, the concentration of the core particles in the organic solvent dispersion is preferably 10 to 60% by mass, more preferably 30 to 50% by mass.
 無機微粒子の屈折率としては、特に限定されないが、得られる膜の屈折率を低下させない点から、1.6~2.6が好ましく、1.8~2.6がより好ましい。無機微粒子の屈折率は、例えば、屈折率が既知の溶媒または樹脂に分散した無機微粒子の液体をアッベ屈折計にて屈折率を測定し、その値から外挿する方法、もしくは無機微粒子を含有した膜や硬化物をアッベ屈折計や分光エリプソメトリーで屈折率を測定し、その値から外挿する方法により測定することができる。 Although the refractive index of the inorganic fine particles is not particularly limited, it is preferably 1.6 to 2.6, more preferably 1.8 to 2.6, from the viewpoint of not lowering the refractive index of the resulting film. The refractive index of the inorganic fine particles is determined, for example, by measuring the refractive index of a liquid of inorganic fine particles dispersed in a solvent or resin having a known refractive index with an Abbe refractometer and extrapolating from the value, or by extrapolating the value. The refractive index of the film or cured product is measured with an Abbe refractometer or spectroscopic ellipsometry, and the refractive index can be extrapolated from the measured value.
 無溶剤型組成物における無機微粒子の含有量としては、得られる最終的な組成物において、その分散性が損なわれない範囲であればよく、作製する膜の目的とする屈折率、透過率、耐熱性等に合わせてコントロールすることが可能である。例えば、トリアジン環含有重合体100質量部に対して、0.1~1,000質量部の範囲で加えることができ、好ましくは1~500質量部であり、膜質を保持し、安定した屈折率および耐溶剤性を得るという観点から、より好ましくは10~300質量部である。 The content of the inorganic fine particles in the solvent-free composition may be within a range that does not impair the dispersibility in the final composition obtained. It is possible to control according to gender. For example, it can be added in the range of 0.1 to 1,000 parts by mass, preferably 1 to 500 parts by mass, with respect to 100 parts by mass of the triazine ring-containing polymer. And from the viewpoint of obtaining solvent resistance, it is more preferably 10 to 300 parts by mass.
(4).反応性希釈剤
 本発明の無溶剤型組成物は、反応性希釈剤を含むことが好ましい。
 反応性希釈剤は、トリアジン環含有重合体の架橋基、及び架橋剤の少なくともいずれかと反応する反応性基を1つ有する低分子化合物であり、特に常温で液状・低粘度のものは粘度調整機能も有するため有機溶剤の代わりに用いることができる。
(4). Reactive Diluent The solventless compositions of the present invention preferably contain a reactive diluent.
The reactive diluent is a low-molecular-weight compound having one reactive group that reacts with at least one of the cross-linking group of the triazine ring-containing polymer and the cross-linking agent. can be used instead of organic solvents.
 このような反応性希釈剤としては、ラジカル重合性基を1つ有する化合物や、エポキシ基、オキセタニル基、ビニルエーテル基のようなカチオン重合性基を1つ有する化合物が、一般に用いられる。 As such reactive diluents, compounds having one radically polymerizable group and compounds having one cationic polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group are generally used.
 反応性希釈剤の分子量としては、特に限定されず、例えば、200以下などが挙げられる。 The molecular weight of the reactive diluent is not particularly limited, and examples thereof include 200 or less.
 反応性希釈剤としては、ラジカル重合性基を1つ有する化合物が好ましく、トリアジン環含有重合体の溶解性に優れる点で、下記式(A)および(B)の少なくともいずれかの化合物がより好ましい。 As the reactive diluent, a compound having one radically polymerizable group is preferable, and at least one compound represented by the following formulas (A) and (B) is more preferable in terms of excellent solubility of the triazine ring-containing polymer. .
Figure JPOXMLDOC01-appb-C000063
 式(A)中、R201およびR203は、互いに独立して、水素原子、炭素数1~10のアルキル基、または重合性炭素-炭素二重結合含有基を表し、R202は、水素原子、または炭素数1~10のアルキル基を表す。ただし、R201およびR203のいずれか一方は、重合性炭素-炭素二重結合含有基であり、かつ、R201およびR203の両者が同時に重合性炭素-炭素二重結合含有基となることはない。また、R201が重合性炭素-炭素二重結合含有基であるとき、R202およびR203は、Nと一緒になって環構造を形成してもよい。
 上記アルキル基の構造は、特に限定されず、例えば、直鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 式(B)中、R204は、水素原子またはメチル基を表す。nは、1~2の整数を表す。
Figure JPOXMLDOC01-appb-C000063
In formula (A), R 201 and R 203 independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a polymerizable carbon-carbon double bond-containing group, and R 202 is a hydrogen atom. , or an alkyl group having 1 to 10 carbon atoms. provided that either one of R 201 and R 203 is a polymerizable carbon-carbon double bond-containing group, and both R 201 and R 203 are polymerizable carbon-carbon double bond-containing groups at the same time; no. Also, when R 201 is a polymerizable carbon-carbon double bond-containing group, R 202 and R 203 may together with N form a ring structure.
The structure of the alkyl group is not particularly limited, and may be linear, branched, cyclic, or a combination of two or more thereof.
In formula (B), R 204 represents a hydrogen atom or a methyl group. n represents an integer of 1-2.
 炭素数1~10のアルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、1,2-ジメチル-n-プロピル、2,2-ジメチル-n-プロピル、1-エチル-n-プロピル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、3-メチル-n-ペンチル、4-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1,2-ジメチル-n-ブチル、1,3-ジメチル-n-ブチル、2,2-ジメチル-n-ブチル、2,3-ジメチル-n-ブチル、3,3-ジメチル-n-ブチル、1-エチル-n-ブチル、2-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、1,2,2-トリメチル-n-プロピル、1-エチル-1-メチル-n-プロピル、1-エチル-2-メチル-n-プロピル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル基等が挙げられる。
 好ましくは、炭素数1~5のアルキル基である。
Specific examples of alkyl groups having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl- n-propyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-n-butyl, 2,3-dimethyl-n-butyl, 3,3-dimethyl-n-butyl, 1-ethyl-n-butyl, 2-ethyl-n-butyl, 1,1,2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 1-ethyl-1-methyl-n- Examples include propyl, 1-ethyl-2-methyl-n-propyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl and n-decyl groups.
An alkyl group having 1 to 5 carbon atoms is preferred.
 重合性炭素-炭素二重結合含有基としては、特に限定されるものではないが、炭素数2~10、好ましくは炭素数2~5の炭素-炭素二重結合含有炭化水素基(アルケニル基)が好ましく、例えば、エテニル(ビニル)、n-1-プロペニル、n-2-プロペニル(アリル基)、1-メチルエテニル、n-1-ブテニル、n-2-ブテニル、n-3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-エチルエテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、n-1-ペンテニル、n-2-ペンテニル、n-3-ペンテニル、n-4-ペンテニル、1-n-プロピルエテニル、1-メチル-1-ブテニル、1-メチル-2-ブテニル、1-メチル-3-ブテニル、2-エチル-2-プロペニル、2-メチル-1-ブテニル、2-メチル-2-ブテニル、2-メチル-3-ブテニル、3-メチル-1-ブテニル、3-メチル-2-ブテニル、3-メチル-3-ブテニル、1,1-ジメチル-2-プロペニル、1-イソプロピルエテニル、1,2-ジメチル-1-プロペニル、1,2-ジメチル-2-プロペニル、n-1-ヘキセニル、n-2-ヘキセニル、n-3-ヘキセニル、n-4-ヘキセニル、n-5-ヘキセニル、n-ヘプテニル、n-オクテニル、n-ノネニル、n-デセニル基等が挙げられる。 The polymerizable carbon-carbon double bond-containing group is not particularly limited, but is a hydrocarbon group having 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms-carbon double bond-containing hydrocarbon group (alkenyl group). are preferred, for example, ethenyl (vinyl), n-1-propenyl, n-2-propenyl (allyl group), 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2- methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-2-pentenyl, n-3- Pentenyl, n-4-pentenyl, 1-n-propylethenyl, 1-methyl-1-butenyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 2-ethyl-2-propenyl, 2- methyl-1-butenyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methyl-1-butenyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1,1- dimethyl-2-propenyl, 1-isopropylethenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, n-1-hexenyl, n-2-hexenyl, n-3-hexenyl, Examples include n-4-hexenyl, n-5-hexenyl, n-heptenyl, n-octenyl, n-nonenyl and n-decenyl groups.
 式(A)で示される化合物の具体例としては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-アリルホルムアミド、N-アリルアセトアミド、4-アクリロイルモルホリン、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド等が挙げられるが、N-ビニルホルムアミド、4-アクリロイルモルホリン、N,N-ジメチルアクリルアミド、N,N-ジエチル(メタ)アクリルアミドが好ましい。
 式(B)で示される化合物の具体例としては、アクリル酸テトラヒドロフラン-2-イルメチル、メタクリル酸テトラヒドロフラン-2-イルメチル、アクリル酸テトラヒドロフラン-2-イルエチル、メタクリル酸テトラヒドロフラン-2-イルエチルが挙げられる。
 なお、上述した反応性希釈剤は単独で使用しても、2種以上組み合わせて使用してもよい。
Specific examples of the compound represented by formula (A) include N-vinylformamide, N-vinylacetamide, N-allylformamide, N-allylacetamide, 4-acryloylmorpholine, (meth)acrylamide, N-methyl(meth) acrylamide, N,N-dimethyl(meth)acrylamide, N-ethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-diisopropyl(meth)acrylamide, etc. but N-vinylformamide, 4-acryloylmorpholine, N,N-dimethylacrylamide and N,N-diethyl(meth)acrylamide are preferred.
Specific examples of the compound represented by formula (B) include tetrahydrofuran-2-ylmethyl acrylate, tetrahydrofuran-2-ylmethyl methacrylate, tetrahydrofuran-2-ylethyl acrylate, and tetrahydrofuran-2-ylethyl methacrylate.
The reactive diluents described above may be used alone or in combination of two or more.
 無溶剤型組成物における反応性希釈剤の含有量は、特に限定されるものではなく、トリアジン環含有重合体100質量部に対して、1~2000質量部が好ましいが、得られる膜の屈折率向上の程度、溶剤耐性及び粘度を考慮すると、好ましくは500~1800質量部、より好ましくは1000~1500質量部である。 The content of the reactive diluent in the solvent-free composition is not particularly limited, and is preferably 1 to 2000 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. Considering the degree of improvement, solvent resistance and viscosity, it is preferably 500 to 1800 parts by mass, more preferably 1000 to 1500 parts by mass.
 本発明の無溶剤型組成物には、それぞれの架橋剤および反応性希釈剤に応じた開始剤を配合することもできる。なお、上述のとおり、架橋剤として多官能エポキシ化合物および/または多官能(メタ)アクリル化合物を用いる場合、開始剤を使用せずとも光硬化が進行して硬化膜を与えるものであるが、その場合に開始剤を使用しても差し支えない。 The solvent-free composition of the present invention can also contain an initiator suitable for each cross-linking agent and reactive diluent. As described above, when a polyfunctional epoxy compound and/or a polyfunctional (meth)acrylic compound is used as a cross-linking agent, photocuring proceeds to give a cured film without using an initiator. In some cases, an initiator may be used.
 多官能エポキシ化合物を架橋剤として用いる場合には、光酸発生剤や光塩基発生剤を用いることができる。
 光酸発生剤としては、公知のものから適宜選択して用いればよく、例えば、ジアゾニウム塩、スルホニウム塩やヨードニウム塩などのオニウム塩誘導体を用いることができる。
 その具体例としては、フェニルジアゾニウムヘキサフルオロホスフェート、4-メトキシフェニルジアゾニウムヘキサフルオロアンチモネート、4-メチルフェニルジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩;ジフェニルヨードニウムヘキサフルオロアンチモネート、ビス(4-メチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート等のジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフルオロアンチモネート、トリス(4-メトキシフェニル)スルホニウムヘキサフルオロホスフェート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート、4,4’-ビス(ジフェニルスルフォニオ)フェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス(ジフェニルスルフォニオ)フェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]フェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]フェニルスルフィド-ビス-ヘキサフルオロホスフェート、4-[4’-(ベンゾイル)フェニルチオ]フェニル-ジ(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、4-[4’-(ベンゾイル)フェニルチオ]フェニル-ビス(4-フルオロフェニル)スルホニウムヘキサフルオロホスフェート等のトリアリールスルホニウム塩等が挙げられる。
When using a polyfunctional epoxy compound as a crosslinking agent, a photoacid generator or a photobase generator can be used.
The photoacid generator may be appropriately selected from known ones and used. For example, onium salt derivatives such as diazonium salts, sulfonium salts and iodonium salts can be used.
Specific examples include aryldiazonium salts such as phenyldiazonium hexafluorophosphate, 4-methoxyphenyldiazonium hexafluoroantimonate, and 4-methylphenyldiazonium hexafluorophosphate; diphenyliodonium hexafluoroantimonate, bis(4-methylphenyl) diaryliodonium salts such as iodonium hexafluorophosphate, bis(4-tert-butylphenyl)iodonium hexafluorophosphate; triphenylsulfonium hexafluoroantimonate, tris(4-methoxyphenyl)sulfonium hexafluorophosphate, diphenyl-4-thiophenoxy phenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, 4,4′-bis(diphenylsulfonio)phenylsulfide-bishexafluoroantimonate, 4,4′-bis(diphenylsulfonate e) phenylsulfide-bishexafluorophosphate, 4,4′-bis[di(β-hydroxyethoxy)phenylsulfonio]phenylsulfide-bishexafluoroantimonate, 4,4′-bis[di(β-hydroxyethoxy) ) phenylsulfonio]phenylsulfide-bis-hexafluorophosphate, 4-[4′-(benzoyl)phenylthio]phenyl-di(4-fluorophenyl)sulfonium hexafluoroantimonate, 4-[4′-(benzoyl)phenylthio ] and triarylsulfonium salts such as phenyl-bis(4-fluorophenyl)sulfonium hexafluorophosphate.
 これらのオニウム塩は市販品を用いてもよく、その具体例としては、サンエイドSI-60、SI-80、SI-100、SI-60L、SI-80L、SI-100L、SI-L145、SI-L150、SI-L160、SI-L110、SI-L147(以上、三新化学工業(株)製)、UVI-6950、UVI-6970、UVI-6974、UVI-6990、UVI-6992(以上、ユニオンカーバイド社製)、CPI-100P、CPI-100A、CPI-200K、CPI-200S(以上、サンアプロ(株)製)、アデカオプトマーSP-150、SP-151、SP-170、SP-171(以上、旭電化工業(株)製)、イルガキュア 261(BASF社製)、CI-2481、CI-2624、CI-2639、CI-2064(以上、日本曹達(株)製)、CD-1010、CD-1011、CD-1012(以上、サートマー社製)、DS-100、DS-101、DAM-101、DAM-102、DAM-105、DAM-201、DSM-301、NAI-100、NAI-101、NAI-105、NAI-106、SI-100、SI-101、SI-105、SI-106、PI-105、NDI-105、BENZOIN TOSYLATE、MBZ-101、MBZ-301、PYR-100、PYR-200、DNB-101、NB-101、NB-201、BBI-101、BBI-102、BBI-103、BBI-109(以上、みどり化学(株)製)、PCI-061T、PCI-062T、PCI-020T、PCI-022T(以上、日本化薬(株)製)、IBPF、IBCF(三和ケミカル(株)製)等を挙げることができる。 These onium salts may be commercially available products, and specific examples include San-Aid SI-60, SI-80, SI-100, SI-60L, SI-80L, SI-100L, SI-L145, SI- L150, SI-L160, SI-L110, SI-L147 (manufactured by Sanshin Chemical Industry Co., Ltd.), UVI-6950, UVI-6970, UVI-6974, UVI-6990, UVI-6992 (manufactured by Union Carbide company), CPI-100P, CPI-100A, CPI-200K, CPI-200S (manufactured by San-Apro Co., Ltd.), Adeka Optomer SP-150, SP-151, SP-170, SP-171 (manufactured by San-Apro Co., Ltd.) Asahi Denka Kogyo Co., Ltd.), Irgacure 261 (BASF), CI-2481, CI-2624, CI-2639, CI-2064 (manufactured by Nippon Soda Co., Ltd.), CD-1010, CD-1011 , CD-1012 (manufactured by Sartomer), DS-100, DS-101, DAM-101, DAM-102, DAM-105, DAM-201, DSM-301, NAI-100, NAI-101, NAI- 105, NAI-106, SI-100, SI-101, SI-105, SI-106, PI-105, NDI-105, BENZOIN TOSYLATE, MBZ-101, MBZ-301, PYR-100, PYR-200, DNB -101, NB-101, NB-201, BBI-101, BBI-102, BBI-103, BBI-109 (manufactured by Midori Chemical Co., Ltd.), PCI-061T, PCI-062T, PCI-020T, PCI -022T (manufactured by Nippon Kayaku Co., Ltd.), IBPF, IBCF (manufactured by Sanwa Chemical Co., Ltd.), and the like.
 一方、光塩基発生剤としても、公知のものから適宜選択して用いればよく、例えば、Co-アミン錯体系、オキシムカルボン酸エステル系、カルバミン酸エステル系、第四級アンモニウム塩系光塩基発生剤などを用いることができる。
 その具体例としては、2-ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2’-ニトロフェニル)-1,4-ジヒドロピリジン、2,6-ジメチル-3,5-ジアセチル-4-(2’,4’-ジニトロフェニル)-1,4-ジヒドロピリジン等が挙げられる。
 また、光塩基発生剤は市販品を用いてもよく、その具体例としては、TPS-OH、NBC-101、ANC-101(いずれも製品名、みどり化学(株)製)等が挙げられる。
On the other hand, as the photobase generator, it may be appropriately selected from known ones and used. etc. can be used.
Specific examples include 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl)oxy]carbonyl]cyclohexylamine, bis[[(2 -nitrobenzyl)oxy]carbonyl]hexane 1,6-diamine, 4-(methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, N- (2-nitrobenzyloxycarbonyl)pyrrolidine, hexaamminecobalt (III) tris(triphenylmethylborate), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2,6-dimethyl- 3,5-diacetyl-4-(2'-nitrophenyl)-1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4-(2',4'-dinitrophenyl)-1,4 - dihydropyridine and the like.
Commercially available photobase generators may also be used, and specific examples thereof include TPS-OH, NBC-101 and ANC-101 (all product names, manufactured by Midori Kagaku Co., Ltd.).
 光酸または塩基発生剤を用いる場合、多官能エポキシ化合物100質量部に対して、0.1~15質量部の範囲で使用することが好ましく、より好ましくは1~10質量部の範囲である。
 なお、必要に応じてエポキシ樹脂硬化剤を、多官能エポキシ化合物100質量部に対して、1~100質量部の量で配合してもよい。
When a photoacid or base generator is used, it is preferably used in the range of 0.1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass, per 100 parts by mass of the polyfunctional epoxy compound.
If necessary, an epoxy resin curing agent may be blended in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the polyfunctional epoxy compound.
 一方、多官能(メタ)アクリル化合物を用いる場合には、光ラジカル重合開始剤を用いることができる。
 光ラジカル重合開始剤としても、公知のものから適宜選択して用いればよく、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのベンゾイルベンゾエート、アミロキシムエステル、オキシムエステル類、テトラメチルチウラムモノサルファイドおよびチオキサントン類等が挙げられる。
 特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されている。
 市販の光ラジカル重合開始剤としては、例えば、BASF社製 商品名:イルガキュア 127、184、369、379、379EG、651、500、754、819、903、907、784、2959、CGI1700、CGI1750、CGI1850、CG24-61、OXE01、OXE02、ダロキュア 1116、1173、MBF、BASF社製 商品名:ルシリン TPO、UCB社製 商品名:エベクリル P36、フラテツリ・ランベルティ社製 商品名:エザキュアー KIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等が挙げられる。
 光ラジカル重合開始剤を用いる場合、多官能(メタ)アクリレート化合物100質量部に対して、0.1~200質量部の範囲で使用することが好ましく、1~150質量部の範囲で使用することがより好ましい。
On the other hand, when using a polyfunctional (meth)acrylic compound, a photoradical polymerization initiator can be used.
As the radical photopolymerization initiator, it may be appropriately selected and used from known ones. is mentioned.
In particular, a photocleavable photoradical polymerization initiator is preferred. The photo-cleavable photoradical polymerization initiator is described in Latest UV Curing Techniques (page 159, published by: Kazuhiro Takasusu, published by: Technical Information Institute, 1991).
Commercially available radical photopolymerization initiators include, for example, BASF trade name: Irgacure 127, 184, 369, 379, 379EG, 651, 500, 754, 819, 903, 907, 784, 2959, CGI1700, CGI1750, CGI1850 , CG24-61, OXE01, OXE02, Darocure 1116, 1173, MBF, manufactured by BASF Product name: Lucilin TPO, manufactured by UCB Product name: Ebecryl P36, manufactured by Fratetzuri Lamberti Product name: Ezacure KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46, KIP75/B and the like.
When using a photoradical polymerization initiator, it is preferable to use it in the range of 0.1 to 200 parts by weight with respect to 100 parts by weight of the polyfunctional (meth) acrylate compound, and to use it in the range of 1 to 150 parts by weight. is more preferred.
 さらに、本発明の無溶剤型組成物には、トリアジン環含有重合体と架橋剤との反応を促進させることなどを目的として、分子内に2個以上のメルカプト基を有する多官能チオール化合物を添加してもよい。
 具体的には、下記式で示される多官能チオール化合物が好ましい。
Furthermore, to the solvent-free composition of the present invention, a polyfunctional thiol compound having two or more mercapto groups in the molecule is added for the purpose of promoting the reaction between the triazine ring-containing polymer and the cross-linking agent. You may
Specifically, a polyfunctional thiol compound represented by the following formula is preferred.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 上記Lは、2~4価の有機基を表すが、2~4価の炭素数2~12の脂肪族基または2~4価のヘテロ環含有基が好ましく、2~4価の炭素数2~8の脂肪族基、または下記式で示されるイソシアヌル酸骨格(1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン環)を有する3価の基がより好ましい。
 上記nは、Lの価数に対応して2~4の整数を表す。
The above L represents a divalent to tetravalent organic group, preferably a divalent to tetravalent aliphatic group having 2 to 12 carbon atoms or a divalent to tetravalent heterocyclic ring-containing group, and a divalent to tetravalent carbon number of 2 An aliphatic group of ~8 or a trivalent group having an isocyanuric acid skeleton (1,3,5-triazine-2,4,6(1H,3H,5H)-trione ring) represented by the following formula is more preferable. .
The above n represents an integer of 2 to 4 corresponding to the valence of L.
Figure JPOXMLDOC01-appb-C000065
(式中、「・」は、酸素原子との結合部を示す。)
Figure JPOXMLDOC01-appb-C000065
(In the formula, "·" indicates a bond with an oxygen atom.)
 具体的な化合物としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)等が挙げられる。
 これらの多官能チオール化合物は、市販品として入手することもでき、例えば、カレンズMT-BD1、カレンズMT NR1、カレンズMT PE1、TPMB、TEMB(以上、昭和電工(株)製)等が挙げられる。
 これらの多官能チオール化合物は、1種単独で用いても、2種以上組み合わせて用いてもよい。
Specific compounds include 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4 , 6-(1H,3H,5H)-trione, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate) and the like. be done.
These polyfunctional thiol compounds are also commercially available, and examples thereof include Karenz MT-BD1, Karenz MT NR1, Karenz MT PE1, TPMB, and TEMB (manufactured by Showa Denko KK).
These polyfunctional thiol compounds may be used singly or in combination of two or more.
 多官能チオール化合物を用いる場合、その添加量としては、得られる膜に悪影響を及ぼさない限り特に限定されるものではないが、本発明では、固形分100質量%中に、0.01~10質量%が好ましく、0.03~6質量%がより好ましい。 When using a polyfunctional thiol compound, the amount added is not particularly limited as long as it does not adversely affect the resulting film, but in the present invention, the solid content of 100% by mass, 0.01 to 10 mass % is preferable, and 0.03 to 6% by mass is more preferable.
 本発明の無溶剤型組成物には、本発明の効果を損なわない限りにおいて、トリアジン環含有重合体、および架橋剤以外のその他の成分、例えば、レベリング剤、界面活性剤、シランカップリング剤などの添加剤が含まれていてもよい。
 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類;ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352(三菱マテリアル電子化成(株)製(旧(株)ジェムコ製))、商品名メガファックF171、F173、R-08、R-30、R-40、F-553、F-554、RS-75、RS-72-K(DIC(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、BYK-302、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-370、BYK-375、BYK-378(ビックケミー・ジャパン(株)製)等が挙げられる。
The solvent-free composition of the present invention may contain other components other than the triazine ring-containing polymer and the cross-linking agent, such as leveling agents, surfactants and silane coupling agents, as long as they do not impair the effects of the present invention. may contain additives.
Examples of surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol; Polyoxyethylene alkylallyl ethers such as ethers; polyoxyethylene/polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate sorbitan fatty acid esters such as; Nonionic surfactants such as sorbitan fatty acid esters, trade names Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd. (former Jemco Co., Ltd.)), trade names Megafac F171, F173, R- 08, R-30, R-40, F-553, F-554, RS-75, RS-72-K (manufactured by DIC Corporation), Florard FC430, FC431 (manufactured by Sumitomo 3M Ltd.), trade names Fluorine-based surfactants such as Asahiguard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK -302, BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-370, BYK-375, BYK-378 (manufactured by BYK-Chemie Japan Co., Ltd.) and the like.
 これらの界面活性剤は、単独で使用しても、2種以上組み合わせて使用してもよい。界面活性剤の使用量は、トリアジン環含有重合体100質量部に対して0.0001~5質量部が好ましく、0.001~1質量部がより好ましく、0.01~0.5質量部がより一層好ましい。 These surfactants may be used alone or in combination of two or more. The amount of the surfactant used is preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 1 part by mass, and 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. Even more preferable.
 本発明の無溶剤型組成物は、基材に塗布し、その後、加熱または光照射して所望の硬化膜とすることができる。
 無溶剤型組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、ジェットディスペンサー法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を採用できる。
The solvent-free composition of the present invention can be applied to a substrate and then heated or irradiated with light to form a desired cured film.
Any method can be used for applying the solventless composition, and examples thereof include spin coating, dipping, flow coating, inkjet, jet dispenser, spraying, bar coating, gravure coating, slit coating, and roll coating. method, transfer printing method, brush coating method, blade coating method, air knife coating method and the like can be used.
 また、基材としては、シリコン、インジウム錫酸化物(ITO)が成膜されたガラス、インジウム亜鉛酸化物(IZO)が成膜されたガラス、金属ナノワイヤ、ポリエチレンテレフタレート(PET)、プラスチック、ガラス、石英、セラミックス等からなる基材等が挙げられ、可撓性を有するフレキシブル基材を用いることもできる。
 焼成温度は、溶媒を蒸発させる目的では特に限定されず、例えば110~400℃で行うことができる。
 焼成方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で蒸発させればよい。
 焼成温度および焼成時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような焼成条件を選択すればよい。
 光照射する場合の条件も特に限定されるものではなく、用いるトリアジン環含有重合体および架橋剤に応じて、適宜な照射エネルギーおよび時間を採用すればよい。
In addition, as the base material, silicon, glass on which indium tin oxide (ITO) is formed, glass on which indium zinc oxide (IZO) is formed, metal nanowires, polyethylene terephthalate (PET), plastic, glass, A base material made of quartz, ceramics, or the like can be mentioned, and a flexible base material having flexibility can also be used.
The calcination temperature is not particularly limited for the purpose of evaporating the solvent, and can be performed at, for example, 110 to 400°C.
The baking method is not particularly limited. For example, a hot plate or an oven may be used to evaporate under an appropriate atmosphere such as air, an inert gas such as nitrogen, or vacuum.
The sintering temperature and sintering time may be selected in accordance with the process steps of the intended electronic device, and the sintering conditions may be selected such that the physical properties of the obtained film are suitable for the required characteristics of the electronic device.
The conditions for light irradiation are not particularly limited either, and suitable irradiation energy and time may be adopted according to the triazine ring-containing polymer and cross-linking agent used.
 以上のようにして得られた本発明の膜や硬化膜は、高耐熱性、高屈折率、および低体積収縮を達成できるため、液晶ディスプレイ、有機EL素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)、レンズ、プリズムカメラ、双眼鏡、顕微鏡、半導体露光装置などを作製する際の一部材など、電子デバイスや光学材料分野に好適に利用できる。
 特に、本発明の無溶剤型組成物から作製された膜や硬化膜は、透明性が高く、屈折率も高いため、有機EL照明の平坦化膜、光散乱層、封止材として用いた場合に、その光取出し効率(光拡散効率)を改善することができるとともに、その耐久性を改善することができる。
The film and cured film of the present invention obtained as described above can achieve high heat resistance, high refractive index, and low volume shrinkage. A component used in manufacturing touch panels, optical semiconductor (LED) elements, solid-state imaging elements, organic thin-film solar cells, dye-sensitized solar cells, organic thin-film transistors (TFT), lenses, prism cameras, binoculars, microscopes, semiconductor exposure devices, etc. etc., can be suitably used in the fields of electronic devices and optical materials.
In particular, the film and cured film produced from the solvent-free composition of the present invention have high transparency and a high refractive index, so when used as a planarizing film, a light scattering layer, and a sealing material for organic EL lighting. In addition, the light extraction efficiency (light diffusion efficiency) can be improved, and the durability can be improved.
 なお、本発明の無溶剤型組成物を有機EL照明の光散乱層に用いる場合、光拡散剤としては公知の有機無機複合光拡散剤、有機光拡散剤、無機光拡散剤を用いることができ、特に限定されるものではない。これらはそれぞれ単独で用いても、同種の2種以上を組み合わせて用いても、異種の2種以上を組み合わせて用いてもよい。 When the solvent-free composition of the present invention is used for the light scattering layer of organic EL lighting, as the light diffusing agent, a known organic-inorganic composite light diffusing agent, organic light diffusing agent, or inorganic light diffusing agent can be used. , is not particularly limited. These may be used alone, may be used in combination of two or more of the same type, or may be used in combination of two or more of different types.
 有機無機複合光拡散剤としては、メラミン樹脂・シリカ複合粒子等が挙げられる。
 有機光拡散剤としては、架橋ポリメチルメタクリレート(PMMA)粒子、架橋ポリメチルアクリレート粒子、架橋ポリスチレン粒子、架橋スチレンアクリル共重合粒子、メラミン-ホルムアルデヒド粒子、シリコーン樹脂粒子、シリカ・アクリル複合粒子、ナイロン粒子、ベンゾグアナミン-ホルムアルデヒド粒子、ベンゾグアナミン・メラミン・ホルムアルデヒド粒子、フッ素樹脂粒子、エポキシ樹脂粒子、ポリフェニレンスルフィド樹脂粒子、ポリエーテルスルホン樹脂粒子、ポリアクリロニトリル粒子、ポリウレタン粒子等が挙げられる。
 無機光拡散剤としては、炭酸カルシウム(CaCO)、酸化チタン(TiO)、硫酸バリウム(BaSO)、水酸化アルミニウム(Al(OH))、シリカ(SiO)、タルク等が挙げられるが、得られる硬化膜の光拡散性をより高めるという観点から、酸化チタン(TiO)や凝集シリカ粒子が好ましく、非凝集性の酸化チタン(TiO)がより好ましい。
 これらの光拡散剤は、適宜な表面修飾剤により表面処理したものを用いてもよい。
Examples of the organic-inorganic composite light diffusing agent include melamine resin/silica composite particles.
Examples of organic light diffusing agents include crosslinked polymethylmethacrylate (PMMA) particles, crosslinked polymethylacrylate particles, crosslinked polystyrene particles, crosslinked styrene-acrylic copolymer particles, melamine-formaldehyde particles, silicone resin particles, silica-acrylic composite particles, and nylon particles. , benzoguanamine-formaldehyde particles, benzoguanamine/melamine/formaldehyde particles, fluorine resin particles, epoxy resin particles, polyphenylene sulfide resin particles, polyethersulfone resin particles, polyacrylonitrile particles, polyurethane particles, and the like.
Examples of inorganic light diffusing agents include calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), barium sulfate (BaSO 4 ), aluminum hydroxide (Al(OH) 3 ), silica (SiO 2 ), talc, and the like. However, titanium oxide (TiO 2 ) and aggregated silica particles are preferred, and non-aggregated titanium oxide (TiO 2 ) is more preferred, from the viewpoint of further enhancing the light diffusibility of the resulting cured film.
These light diffusing agents may be used after being surface-treated with an appropriate surface modifier.
 以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置は以下のとおりである。 The present invention will be described in more detail below with reference to Synthesis Examples and Examples, but the present invention is not limited to the following Examples. In addition, each measuring apparatus used in the examples is as follows.
H-NMR]
 装置:Bruker NMR System AVANCE III HD 500(500MHz)
 測定溶媒:重水素化ジメチルスルホキシド(DMSO-d
 基準物質:テトラメチルシラン(TMS)(δ0.0ppm)
[GPC]
 装置:東ソー(株)製 HLC-8200 GPC
 カラム:東ソーTSKgel α-3000 +東ソーTSKgel α-4000
 カラム温度:40℃
 溶媒:ジメチルホルムアミド(DMF)
 検出器:UV(271nm)
 検量線:標準ポリスチレン
[粘度]
 装置:京都電子(株)製EMS粘度計 EMS-1000
[エリプソメーター]
 装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE
[分光測色計]
 装置:コニカミノルタ製 CM-3700A
[光学顕微鏡]
 装置:オリンパス光学工業株式会社製 OLYMPUS BX51
[露光]
 装置:ナイトライド・セミコンダクター(株)製 コンパクト紫外線LED照射器 NS395-CLT-100W3020
[ 1 H-NMR]
Apparatus: Bruker NMR System AVANCE III HD 500 (500 MHz)
Measurement solvent: deuterated dimethyl sulfoxide (DMSO-d 6 )
Reference substance: tetramethylsilane (TMS) (δ0.0 ppm)
[GPC]
Apparatus: HLC-8200 GPC manufactured by Tosoh Corporation
Column: Tosoh TSKgel α-3000 + Tosoh TSKgel α-4000
Column temperature: 40°C
Solvent: dimethylformamide (DMF)
Detector: UV (271 nm)
Calibration curve: standard polystyrene [viscosity]
Apparatus: EMS viscometer EMS-1000 manufactured by Kyoto Electronics Co., Ltd.
[Ellipsometer]
Equipment: JA Woollam Japan multi-incidence angle spectroscopic ellipsometer VASE
[Spectrophotometer]
Equipment: CM-3700A manufactured by Konica Minolta
[Optical microscope]
Apparatus: OLYMPUS BX51 manufactured by Olympus Optical Co., Ltd.
[exposure]
Device: Compact UV LED irradiator NS395-CLT-100W3020 manufactured by Nitride Semiconductor Co., Ltd.
[1]トリアジン環含有重合体の合成
[合成例1]高分子化合物[5]の合成
Figure JPOXMLDOC01-appb-C000066
[1] Synthesis of triazine ring-containing polymer [Synthesis Example 1] Synthesis of polymer compound [5]
Figure JPOXMLDOC01-appb-C000066
 3,000mL四口フラスコに、1,3-フェニレンジアミン[2](52.78g、0.488mol、Amino-Chem社製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル[3](82.05g、0.244mol、Wuhan Sunshine社製)、およびN-メチル-2-ピロリドン(NMP、1822.89g、関東化学(株)製)を加え、窒素置換した後、撹拌して1,3-フェニレンジアミン[2]及び2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル[3]をNMPに溶解させた。その後、エタノール-ドライアイス浴により-5℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](150.00g、0.813mol、東京化成工業(株)製)を内温が5℃以上にならないよう確認しながら投入し、最後にNMP(227.86g)にて洗い流した。30分間撹拌後、内温が85℃±5℃となるまで反応溶液を昇温させた。1時間撹拌後、NMP(227.86)gに溶解させた2-(4-アミノフェニル)エタノール[4](156.22g、1.139mol、Oakwood社製)を滴下し、3時間撹拌した。その後、2-アミノエタノール(149.05g、東京化成工業(株)製)を滴下し、30分撹拌後、撹拌を停止した。反応溶液に、テトラヒドロフラン(THF、1147g)、酢酸アンモニウム(1,291g)およびイオン交換水(1291g)を加え、30分撹拌した。撹拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(2,869g)およびイオン交換水(4,303g)に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で150℃、8時間乾燥し、目的とする高分子化合物[5](以下、P-1という)280.3gを得た。
 化合物P-1のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,495、多分散度Mw/Mnは3.5であった。化合物P-1のH-NMRスペクトルの測定結果を図1に示す。
1,3-phenylenediamine [2] (52.78 g, 0.488 mol, manufactured by Amino-Chem), 2,2'-bis(trifluoromethyl)-4,4'- Diaminodiphenyl ether [3] (82.05 g, 0.244 mol, manufactured by Wuhan Sunshine) and N-methyl-2-pyrrolidone (NMP, 1822.89 g, manufactured by Kanto Chemical Co., Ltd.) were added, and after nitrogen substitution, 1,3-phenylenediamine [2] and 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether [3] were dissolved in NMP with stirring. Then, it is cooled to −5° C. in an ethanol-dry ice bath, and 2,4,6-trichloro-1,3,5-triazine [1] (150.00 g, 0.813 mol, manufactured by Tokyo Chemical Industry Co., Ltd.). was added while making sure that the internal temperature did not exceed 5°C, and finally washed away with NMP (227.86 g). After stirring for 30 minutes, the reaction solution was heated until the internal temperature reached 85°C ± 5°C. After stirring for 1 hour, 2-(4-aminophenyl)ethanol [4] (156.22 g, 1.139 mol, manufactured by Oakwood) dissolved in NMP (227.86) g was added dropwise and stirred for 3 hours. After that, 2-aminoethanol (149.05 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added dropwise, and after stirring for 30 minutes, stirring was stopped. Tetrahydrofuran (THF, 1147 g), ammonium acetate (1,291 g) and ion-exchanged water (1291 g) were added to the reaction solution and stirred for 30 minutes. After stirring was stopped, the solution was transferred to a separating funnel, separated into an organic layer and an aqueous layer, and the organic layer was recovered. The recovered organic layer was added dropwise to methanol (2,869 g) and ion-exchanged water (4,303 g) for reprecipitation. The resulting precipitate was filtered and dried in a vacuum dryer at 150° C. for 8 hours to obtain 280.3 g of the target polymer compound [5] (hereinafter referred to as P-1).
Compound P-1 had a weight average molecular weight Mw of 6,495 and a polydispersity Mw/Mn of 3.5 as measured by GPC in terms of polystyrene. FIG. 1 shows the measurement results of the 1 H-NMR spectrum of compound P-1.
[合成例2]高分子化合物[6]の合成
Figure JPOXMLDOC01-appb-C000067
[Synthesis Example 2] Synthesis of polymer compound [6]
Figure JPOXMLDOC01-appb-C000067
 300mL四口フラスコに、合成例1で得られたP-1[5](40.00g)、およびテトラヒドロフラン135.08g(THF、純正化学(株)製)を加え、窒素置換した後、撹拌して溶解させた。その後、内温を65℃となるまで溶液を昇温させ、N-ニトロソフェニルヒドロキシアミン アルミニウム塩0.0040g(Q-1301、富士フィルム和光純薬(株)製)及び2-イソシアナトエチルアクリラート17.89g(AOI-VM、昭和電工(株)製)を滴下し、内温を65℃に保ち1時間撹拌した。1時間撹拌後、テトラヒドロフルフリルアクリレート(THFA、東京化成工業(株)製)を135.08g添加し、エバポレーターにてTHFを完全に留去し、30質量%のTHFA溶液を得た(以下、P-1溶液という) P-1[5] (40.00 g) obtained in Synthesis Example 1 and 135.08 g of tetrahydrofuran (THF, manufactured by Junsei Chemical Co., Ltd.) were added to a 300 mL four-necked flask, and the mixture was purged with nitrogen and then stirred. to dissolve. Thereafter, the solution was heated until the internal temperature reached 65° C., and 0.0040 g of N-nitrosophenylhydroxyamine aluminum salt (Q-1301, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 2-isocyanatoethyl acrylate were added. 17.89 g (AOI-VM, manufactured by Showa Denko KK) was added dropwise, and the mixture was stirred for 1 hour while maintaining the internal temperature at 65°C. After stirring for 1 hour, 135.08 g of tetrahydrofurfuryl acrylate (THFA, manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and THF was completely distilled off with an evaporator to obtain a 30% by mass THFA solution (hereinafter referred to as called P-1 solution)
[合成例3]高分子化合物[7]の合成
Figure JPOXMLDOC01-appb-C000068
[Synthesis Example 3] Synthesis of polymer compound [7]
Figure JPOXMLDOC01-appb-C000068
 3,000mL四口フラスコに、1,3-フェニレンジアミン[2](47.5g、0.439mol、Amino-Chem社製)、及び3-メトキシ-N,N-ジメチルプロパンアミド799.2g(KJCMPA-100、KJケミカルズ(株)製)を加え、窒素置換した後、攪拌して1,3-フェニレンジアミン[2]をKJCMPA-100に溶解させた。その後、エタノール-ドライアイス浴により-5℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](900.00g、0.488mol、東京化成工業(株)製)を内温5℃以上にならないように確認しながら投入し、最後にKJCMPA-100(192.6g)にて洗い流した。30分間攪拌後、内温が85℃±5℃となるまで反応溶液を昇温させ、N-エチルジエタノールアミン(78.0g、関東化学(株)製)を内温90℃以上にならないように確認しながら投入した。4時間攪拌後、KJCMPA-100(180.0g)に溶解させた2-(4-アミノフェニル)エタノール[4](93.7g、0.683mol、Oakwood社製)を滴下し、KJCMPA-100(20.7g)にて洗い流し、さらにN-エチルジエタノールアミン(52.0g)を滴下し、3時間攪拌した。その後、2-アミノエタノール(29.8g、東京化成工業(株)製)を滴下し、30分間攪拌後、攪拌を停止した。反応溶液にテトラヒドロフラン(THF、360g、純正化学(株)製)、酢酸アンモニウム(900.0g)およびイオン交換水(900.0g)を加え、30分間攪拌した。攪拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(1260g)およびイオン交換水(2160g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で150℃、8時間乾燥し、目的とする高分子化合物[7](以下、P-2という)122.2gを得た。
 化合物P-2のGPCによるポリスチレン換算で測定される重量平均分子量Mwは3,816、多分散度Mw/Mnは2.9であった。化合物P-2のH-NMRスペクトルの測定結果を図2に示す。
In a 3,000 mL four-necked flask, 1,3-phenylenediamine [2] (47.5 g, 0.439 mol, manufactured by Amino-Chem) and 3-methoxy-N, N-dimethylpropanamide 799.2 g (KJCMPA -100, manufactured by KJ Chemicals Co., Ltd.) was added, and after purging with nitrogen, 1,3-phenylenediamine [2] was dissolved in KJCMPA-100 by stirring. Then, it is cooled to −5° C. in an ethanol-dry ice bath, and 2,4,6-trichloro-1,3,5-triazine [1] (900.00 g, 0.488 mol, manufactured by Tokyo Chemical Industry Co., Ltd.). was added while making sure that the internal temperature did not exceed 5° C., and finally washed away with KJCMPA-100 (192.6 g). After stirring for 30 minutes, the reaction solution was heated until the internal temperature reached 85°C ± 5°C, and N-ethyldiethanolamine (78.0 g, manufactured by Kanto Kagaku Co., Ltd.) was added so that the internal temperature did not exceed 90°C. I put it in while After stirring for 4 hours, 2-(4-aminophenyl)ethanol [4] (93.7 g, 0.683 mol, manufactured by Oakwood) dissolved in KJCMPA-100 (180.0 g) was added dropwise, and KJCMPA-100 ( 20.7 g), N-ethyldiethanolamine (52.0 g) was added dropwise, and the mixture was stirred for 3 hours. After that, 2-aminoethanol (29.8 g, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added dropwise, and after stirring for 30 minutes, stirring was stopped. Tetrahydrofuran (THF, 360 g, manufactured by Junsei Chemical Co., Ltd.), ammonium acetate (900.0 g) and ion-exchanged water (900.0 g) were added to the reaction solution and stirred for 30 minutes. After stirring was stopped, the solution was transferred to a separating funnel, separated into an organic layer and an aqueous layer, and the organic layer was recovered. The recovered organic layer was added dropwise to a mixture of methanol (1260 g) and ion-exchanged water (2160 g) for reprecipitation. The resulting precipitate was filtered and dried in a vacuum dryer at 150° C. for 8 hours to obtain 122.2 g of the objective polymer compound [7] (hereinafter referred to as P-2).
Compound P-2 had a weight-average molecular weight Mw of 3,816 and a polydispersity Mw/Mn of 2.9 as measured by GPC in terms of polystyrene. FIG. 2 shows the measurement results of the 1 H-NMR spectrum of compound P-2.
[合成例4]高分子化合物[8]の合成
Figure JPOXMLDOC01-appb-C000069
[Synthesis Example 4] Synthesis of polymer compound [8]
Figure JPOXMLDOC01-appb-C000069
 1000mL四口フラスコに、合成例3で得られたP-2[7](80.0g)、およびTHF(289.09g)を加え、窒素置換した後、攪拌して溶解させた。その後、内温65℃となるまで溶液を昇温させ、N-ニトロソフェニルヒドロキシアミン アルミニウム塩0.0080g(Q-1301、富士フィルム和光純薬(株)製)および2-イソシアナトエチルアクリラート43.90g(AOI-VM、昭和電工(株)製)を滴下し、内温65℃に保ち3時間攪拌した。3時間攪拌後、テトラヒドロフルフリルアクリレート(THFA、東京化成工業(株)製)を289.09g添加し、エバポレーターにてTHFを完全に留去し、30質量%のTHFA溶液を得た(以下、P-2溶液という)。 P-2[7] (80.0 g) obtained in Synthesis Example 3 and THF (289.09 g) were added to a 1000 mL four-necked flask, purged with nitrogen, and dissolved by stirring. After that, the solution is heated until the internal temperature reaches 65° C., and 0.0080 g of N-nitrosophenylhydroxyamine aluminum salt (Q-1301, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 2-isocyanatoethyl acrylate 43 are added. .90 g (AOI-VM, manufactured by Showa Denko KK) was added dropwise, and the mixture was stirred for 3 hours while maintaining the internal temperature at 65°C. After stirring for 3 hours, 289.09 g of tetrahydrofurfuryl acrylate (THFA, manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and THF was completely distilled off with an evaporator to obtain a 30% by mass THFA solution (hereinafter referred to as called P-2 solution).
[2]表面処理無機微粒子の調製
 以下の製造例1~4で実施した物性測定の方法および測定装置を以下に示す。
(1)水分量:カールフィッシャー滴定法にて求めた。
(2)一次粒子径:分散液を銅メッシュ上で乾燥させ、透過型電子顕微鏡にて観察し、100個の粒子径を測定し、その平均値を一次粒子径として求めた。
(3)比重:浮き秤法にて求めた(20℃)。
(4)粘度:オストワルド粘度計にて求めた(20℃)。
(5)動的光散乱法による粒子径:Malvern製、Zetasizer Nanoで測定して求めた。
(6)固形分濃度:500℃で焼成した際の残存固形物より求めた。
(7)有機シラン化合物の結合量:変性金属酸化物コロイド粒子に結合した有機シラン化合物の量は、元素分析により求めた。
 装置:PerkinElmer製、SeriesII CHNS/O Analyzer 2400
[2] Preparation of Surface-Treated Inorganic Fine Particles Methods and apparatus for measuring physical properties carried out in Production Examples 1 to 4 below are shown below.
(1) Moisture content: determined by Karl Fischer titration.
(2) Primary particle size: The dispersion was dried on a copper mesh and observed with a transmission electron microscope to measure the particle size of 100 particles, and the average value was determined as the primary particle size.
(3) Specific gravity: Determined by floating balance method (20°C).
(4) Viscosity: Determined with an Ostwald viscometer (20°C).
(5) Particle size by dynamic light scattering method: Measured with Zetasizer Nano manufactured by Malvern.
(6) Solid content concentration: It was obtained from the remaining solid content when fired at 500°C.
(7) Bonded amount of organic silane compound: The amount of the organic silane compound bound to the modified metal oxide colloidal particles was determined by elemental analysis.
Apparatus: Series II CHNS/O Analyzer 2400 manufactured by PerkinElmer
[製造例1]:核粒子(A)及び核粒子(A1)の製造
 1リットルの容器に純水126.2gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液438g(セイケムジャパン製)、メタスズ酸17.8g(SnO換算で15g含有、昭和化工(株)製)、チタンテトライソプロポキシド284g(TiO換算で80g含有、日本曹達(株)製A-1)、及びシュウ酸二水和物98(シュウ酸換算で70g含有、宇部興産(株)製)を撹拌下で添加した。得られた混合溶液は、シュウ酸/チタン原子のモル比0.78、及び水酸化テトラエチルアンモニウム/チタン原子のモル比1.04であった。該混合溶液950gを、80℃で2時間保持し、さらに580Torrまで減圧して2時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpHは4.7、電導度は27.2mS/cm、金属酸化物濃度10.0質量%であった。3リットルのガラスライニングされたオートクレーブ容器に上記チタン混合溶液950g、及び純水950gを投入し、140℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は淡い乳白色の酸化チタン含有コロイド粒子の水分散液であった。得られた分散液は、pH3.9、電導度19.7mS/cm、TiO濃度4.2質量%、水酸化テトラエチルアンモニウム濃度8.0質量%、シュウ酸濃度3.7質量%、動的光散乱法粒子径16nm、透過型電子顕微鏡観察では、一次粒子径4~10nmの楕円粒子が観察された。得られた分散液を110℃で乾燥させた粉末のX線回折分析を行い、ルチル型結晶であることが確認された。得られた酸化チタン含有コロイド粒子を核粒子(A)とした。次いで、オキシ塩化ジルコニウム(ZrOとして21.19質量%含有、第一稀元素化学工業(株)製)70.8gを純水429.2gで希釈してオキシ塩化ジルコニウム水溶液500g(ZrOとして3.0質量%含有)を別途調製し、これに限外濾過膜で脱塩した核粒子(A)の分散液(水分散ゾル)1,000gを撹拌下で添加した。次いで、95℃に加熱して加水分解を行って、表面に酸化ジルコニウムの薄膜層が形成された酸化チタン含有核粒子(A1)(以下、核粒子(A1))の水分散ゾルが得られた。得られた水分散ゾルは、pH1.2、全金属酸化物濃度20質量%であり、透過型電子顕微鏡観察では、一次粒子径4~10nmのコロイド粒子が観察された。
[Production Example 1]: Production of core particles (A) and core particles (A1) Put 126.2 g of pure water in a 1-liter container, add 438 g of a 35% by mass tetraethylammonium hydroxide aqueous solution (manufactured by Seichem Japan), and metastannic acid. 17.8 g (containing 15 g in terms of SnO2, manufactured by Showa Kako Co., Ltd.), 284 g of titanium tetraisopropoxide (containing 80 g in terms of TiO2 , manufactured by Nippon Soda Co., Ltd. A-1), and oxalic acid dihydrate Substance 98 (contains 70 g in terms of oxalic acid, manufactured by Ube Industries, Ltd.) was added with stirring. The resulting mixed solution had a molar ratio of oxalic acid/titanium atoms of 0.78 and a molar ratio of tetraethylammonium hydroxide/titanium atoms of 1.04. 950 g of the mixed solution was held at 80° C. for 2 hours, and further reduced to 580 Torr and held for 2 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 4.7, an electrical conductivity of 27.2 mS/cm, and a metal oxide concentration of 10.0% by mass. 950 g of the titanium mixed solution and 950 g of pure water were charged into a 3-liter glass-lined autoclave container, and hydrothermally treated at 140° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of pale milky white titanium oxide-containing colloidal particles. The resulting dispersion had a pH of 3.9, a conductivity of 19.7 mS/cm, a TiO2 concentration of 4.2 wt%, a tetraethylammonium hydroxide concentration of 8.0 wt%, an oxalic acid concentration of 3.7 wt%, a dynamic Oval particles with a primary particle diameter of 4 to 10 nm were observed by light scattering method particle diameter 16 nm and transmission electron microscope observation. The obtained dispersion was dried at 110° C. and the powder was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal. The obtained colloidal particles containing titanium oxide were used as core particles (A). Next, 70.8 g of zirconium oxychloride ( containing 21.19% by mass as ZrO2, manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was diluted with 429.2 g of pure water to obtain 500 g of an aqueous zirconium oxychloride solution ( 3 as ZrO2). 0% by mass) was separately prepared, and 1,000 g of a dispersion (aqueous dispersion sol) of the core particles (A) desalted with an ultrafiltration membrane was added thereto with stirring. Then, the mixture was heated to 95° C. for hydrolysis to obtain a water-dispersed sol of titanium oxide-containing core particles (A1) (hereinafter referred to as core particles (A1)) having a zirconium oxide thin film layer formed on the surface thereof. . The resulting water-dispersed sol had a pH of 1.2 and a total metal oxide concentration of 20% by mass, and colloidal particles having a primary particle diameter of 4 to 10 nm were observed by transmission electron microscope observation.
[製造例2]:被覆用粒子(B)の製造
 JIS3号珪酸ナトリウム(SiOとして29.8質量%含有、富士化学(株)製)77.2gを純水1,282gに溶解し、次いで、スズ酸ナトリウムNaSnO・HO(SnOとして55.1質量%含有、昭和化工(株)製)20.9gを溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通すことにより、酸性の二酸化珪素-酸化第二スズ複合コロイド粒子(B1)の水分散ゾル(pH2.4、SnOとして0.44質量%、SiOとして0.87質量%を含有、SiO/SnO質量比2.0)2,634gを得た。次いで、得られた水分散ゾルにジイソプロピルアミンを6.9g添加した。得られたゾルは、アルカリ性の二酸化珪素-酸化第二スズ複合コロイド粒子(B1)(以下、被覆用粒子(B1))の水分散ゾルであり、pH8.0であった。該水分散ゾルでは、透過型電子顕微鏡により4nm以下の一次粒子径のコロイド粒子が観察された。
[Production Example 2]: Production of Coating Particles (B) 77.2 g of JIS No. 3 sodium silicate (containing 29.8% by mass of SiO2 , manufactured by Fuji Chemical Co., Ltd.) was dissolved in 1,282 g of pure water, followed by , and 20.9 g of sodium stannate NaSnO 3 .H 2 O (containing 55.1% by mass as SnO 2 , manufactured by Showa Kako Co., Ltd.) were dissolved. The obtained aqueous solution is passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to obtain a water-dispersed sol of acidic silicon dioxide-stannic oxide composite colloidal particles (B1). 2,634 g (pH 2.4, containing 0.44 mass % as SnO 2 , 0.87 mass % as SiO 2 , SiO 2 /SnO 2 mass ratio 2.0). Then, 6.9 g of diisopropylamine was added to the obtained water-dispersed sol. The obtained sol was a water-dispersed sol of alkaline silicon dioxide-stannic oxide composite colloidal particles (B1) (hereinafter referred to as coating particles (B1)) and had a pH of 8.0. In the water-dispersed sol, colloidal particles having a primary particle diameter of 4 nm or less were observed with a transmission electron microscope.
[製造例3]:変性コロイド粒子(C1)の製造
 製造例1で得られた核粒子(A1)の水分散ゾル1,455gを製造例2で調製した被覆用粒子(B1)の水分散ゾル2,634gに撹拌下で添加した。次いで、アニオン交換樹脂(アンバーライト(登録商標)IRA-410、オルガノ(株)製)500ミリリットルを詰めたカラムに通液した。次いで、通液後の水分散ゾルを95℃で3時間加熱した後、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通液し、トリ-n-ペンチルアミンで安定化させ、限外ろ過膜法で濃縮し、核粒子(A1)と被覆用粒子(B1)との間に酸化ジルコニウムからなる中間薄膜層が形成されている二酸化珪素-酸化第二スズ複合酸化物被覆酸化チタン含有コロイド粒子(C1)(以下、変性コロイド粒子(C1))の水分散ゾルを得た。得られた水分散ゾルの全金属酸化物濃度は20質量%であり、このゾルの透過型電子顕微鏡観察による一次粒子径は4~10nmであった。次いで、得られた水分散ゾルの分散媒をロータリーエバポレーターを用いてメタノールに置換して、変性コロイド粒子(C1)のメタノール分散ゾルを得た。このメタノール分散ゾルは、全金属酸化物濃度30質量%、粘度1.5mPa・s、動的光散乱法による粒子径18nm、水分1.0質量%であった。
[Production Example 3]: Production of modified colloidal particles (C1) 1,455 g of the water-dispersed sol of the core particles (A1) obtained in Production Example 1 was added to the water-dispersed sol of the coating particles (B1) prepared in Production Example 2. 2,634 g was added under stirring. Then, the liquid was passed through a column packed with 500 ml of an anion exchange resin (Amberlite (registered trademark) IRA-410, manufactured by Organo Corporation). Next, after heating the water-dispersed sol after passing the liquid at 95 ° C. for 3 hours, the liquid was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and tri-n-pentyl Silicon dioxide-stannic oxide stabilized with amine and concentrated by ultrafiltration membrane method to form an intermediate thin film layer composed of zirconium oxide between the core particles (A1) and the coating particles (B1) A water-dispersed sol of composite oxide-coated titanium oxide-containing colloidal particles (C1) (hereinafter referred to as modified colloidal particles (C1)) was obtained. The resulting water-dispersed sol had a total metal oxide concentration of 20 mass %, and the primary particle diameter of this sol was 4 to 10 nm as determined by transmission electron microscope observation. Then, the dispersion medium of the resulting water-dispersed sol was replaced with methanol using a rotary evaporator to obtain a methanol-dispersed sol of modified colloidal particles (C1). This methanol-dispersed sol had a total metal oxide concentration of 30% by mass, a viscosity of 1.5 mPa·s, a particle diameter of 18 nm as determined by the dynamic light scattering method, and a water content of 1.0% by mass.
[製造例4]:表面修飾コロイド粒子(D1)の製造
 製造例3で得られた変性コロイド粒子(C1)のメタノール分散ゾル533gにポリエーテル変性シラン(信越化学工業(株)製、商品名:X-12-641)を8.0g添加し、70℃で還流加熱を5時間行った。次いで、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名:KBM-503)を6.4g添加し、70℃で還流加熱を5時間行ない、ポリエーテル変性シランおよびメタクリロキシプロピルシランが表面に結合した表面修飾コロイド粒子(D1)(以下、表面修飾コロイド粒子(D1))のメタノール分散液を得た。次いで、エバポレーターを用いて80Torrでプロピレングリコールモノメチルエーテルを添加しながらメタノールを留去することによりメタノールをプロピレングリコールモノメチルエーテルに置換して、表面修飾コロイド粒子(D1)のプロピレングリコールモノメチルエーテル分散液を530g得た。得られた分散液は、比重1.209、粘度3.6mPa・s、全金属酸化物濃度30.0質量%、透過型電子顕微鏡観察による一次粒子径は4~10nm、動的光散乱法粒子径は11nmであった。得られた表面修飾コロイド粒子(D1)において、変性コロイド粒子(C1)の表面に結合したポリエーテル変性シランは、変性コロイド粒子(C1)の全金属酸化物に対して4.0質量%であり、粒子表面に結合したメタクリロキシプロピルシランは変性コロイド粒子(C1)の全金属酸化物に対し、2.5質量%であった。
[Production Example 4]: Production of surface-modified colloidal particles (D1) Polyether-modified silane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: 8.0 g of X-12-641) was added and heated under reflux at 70° C. for 5 hours. Next, 6.4 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-503) was added and heated under reflux at 70° C. for 5 hours to obtain polyether-modified silane and methacryloxy. A methanol dispersion of surface-modified colloidal particles (D1) having surfaces bound to propylsilane (hereinafter referred to as surface-modified colloidal particles (D1)) was obtained. Next, using an evaporator, methanol is distilled off while adding propylene glycol monomethyl ether at 80 Torr to replace methanol with propylene glycol monomethyl ether, and 530 g of the propylene glycol monomethyl ether dispersion of the surface-modified colloidal particles (D1) is obtained. Obtained. The resulting dispersion has a specific gravity of 1.209, a viscosity of 3.6 mPa s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 11 nm. In the resulting surface-modified colloidal particles (D1), the polyether-modified silane bound to the surfaces of the modified colloidal particles (C1) was 4.0% by mass with respect to the total metal oxides of the modified colloidal particles (C1). , methacryloxypropylsilane bound to the particle surface was 2.5% by mass with respect to the total metal oxides of the modified colloidal particles (C1).
[製造例5]
 1Lナスフラスコに、製造例4にて得られた表面修飾コロイド粒子(D1)のプロピレングリコールモノメチルエーテル分散液(全金属酸化物濃度30.0質量%)310.83g及びアクロイルモルフォリン217.73g(ACMO、東京化成工業(株)製)を加え、エバポレーターにてプロピレングリコールモノメチルエーテルを完全に留去し、30質量%のACMO溶液を得た(以下、T-1溶液という)。
[Production Example 5]
310.83 g of the propylene glycol monomethyl ether dispersion (total metal oxide concentration: 30.0% by mass) of the surface-modified colloidal particles (D1) obtained in Production Example 4 and 217.73 g of acryloylmorpholine were placed in a 1 L eggplant flask. (ACMO, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added, and propylene glycol monomethyl ether was completely distilled off with an evaporator to obtain a 30% by mass ACMO solution (hereinafter referred to as T-1 solution).
[製造例6]:核粒子(A2)の製造
 1リットルの容器に純水255.2gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液438g(セイケムジャパン製)、メタスズ酸10.1g(SnO換算で8.6g含有、昭和化工(株)製)、チタンテトライソプロポキシド325.2g(TiO換算で91.4g含有、日本曹達(株)製A-1)、及びシュウ酸二水和物75.0g(シュウ酸換算で53.6g含有、宇部興産(株)製)を撹拌下で添加した。得られた混合溶液は、シュウ酸/チタン原子のモル比0.52、及び水酸化テトラエチルアンモニウム/チタン原子のモル比0.70であった。該混合溶液1000gを、80℃で2時間保持し、さらに580Torrまで減圧してイソプロパノールを留去し、チタン混合溶液を調製した。調製後のチタン混合溶液のpHは5.2、電導度は25.2mS/cm、金属酸化物濃度10.0質量%であった。3リットルのガラスライニングされたオートクレーブ容器に上記チタン混合溶液1000g、及び純水1000gを投入し、140℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は淡い乳白色の酸化チタン含有コロイド粒子の水分散液であった。得られた分散液は、pH3.9、電導度19.2mS/cm、TiO濃度5.0質量%、水酸化テトラエチルアンモニウム濃度7.7質量%、シュウ酸濃度2.7質量%、動的光散乱法粒子径15nm、透過型電子顕微鏡観察では、一次粒子径4~10nmの楕円粒子が観察された。得られた分散液を110℃で乾燥させた粉末のX線回折分析を行い、ルチル型結晶であることが確認された。得られた酸化チタン含有コロイド粒子を核粒子(A2)とした。
[Production Example 6]: Production of core particles (A2) Put 255.2 g of pure water in a 1-liter container, add 438 g of a 35% by mass tetraethylammonium hydroxide aqueous solution (manufactured by Seichem Japan), 10.1 g of metastannic acid (SnO 2 8.6 g in terms of conversion, manufactured by Showa Kako Co., Ltd.), 325.2 g of titanium tetraisopropoxide (containing 91.4 g in terms of TiO 2 , manufactured by Nippon Soda Co., Ltd. A-1), and oxalic acid dihydrate 75.0 g (contains 53.6 g of oxalic acid, manufactured by Ube Industries, Ltd.) was added with stirring. The resulting mixed solution had a molar ratio of oxalic acid/titanium atoms of 0.52 and a molar ratio of tetraethylammonium hydroxide/titanium atoms of 0.70. 1000 g of the mixed solution was kept at 80° C. for 2 hours, and the pressure was further reduced to 580 Torr to distill off isopropanol to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 5.2, an electrical conductivity of 25.2 mS/cm, and a metal oxide concentration of 10.0% by mass. 1,000 g of the titanium mixed solution and 1,000 g of pure water were put into a 3-liter glass-lined autoclave container, and hydrothermally treated at 140° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of pale milky white titanium oxide-containing colloidal particles. The resulting dispersion has a pH of 3.9, a conductivity of 19.2 mS/cm, a TiO2 concentration of 5.0 wt%, a tetraethylammonium hydroxide concentration of 7.7 wt%, an oxalic acid concentration of 2.7 wt%, a dynamic Oval particles with a primary particle diameter of 4 to 10 nm were observed by light scattering method particle diameter 15 nm and transmission electron microscope observation. The obtained dispersion was dried at 110° C. and the powder was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal. The obtained colloidal particles containing titanium oxide were used as core particles (A2).
[製造例7]:変性コロイド粒子(C2)の製造
 製造例2で得た被覆粒子(B1)の分散ゾル1145gに、限外濾過で脱塩した核粒子(A2)を含有する分散ゾル2000gを撹拌下で徐々に添加し、95℃、2時間保持した。その後、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通液し、トリ-n-ペンチルアミンで安定化させ、限外ろ過膜法で濃縮し、二酸化珪素-酸化第二スズ複合酸化物被覆酸化チタン含有コロイド粒子(C2)(以下、変性コロイド粒子(C2))の水分散ゾルを得た。得られた水分散ゾルの全金属酸化物濃度は18質量%であり、このゾルの透過型電子顕微鏡観察による一次粒子径は4~10nmであった。次いで、得られた水分散ゾルの分散媒をロータリーエバポレーターを用いてメタノールに置換して、変性コロイド粒子(C2)のメタノール分散ゾルを得た。このメタノール分散ゾルは、全金属酸化物濃度30質量%、粘度1.3mPa・s、動的光散乱法による粒子径15nm、水分1.2質量%であった。
[Production Example 7]: Production of modified colloidal particles (C2) To 1145 g of the dispersed sol of the coated particles (B1) obtained in Production Example 2, 2000 g of the dispersed sol containing the core particles (A2) desalted by ultrafiltration was added. It was gradually added under stirring and kept at 95° C. for 2 hours. After that, the liquid was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), stabilized with tri-n-pentylamine, concentrated by an ultrafiltration membrane method, and silicon dioxide. - A water-dispersed sol of stannic oxide composite oxide-coated titanium oxide-containing colloidal particles (C2) (hereinafter referred to as modified colloidal particles (C2)) was obtained. The resulting water-dispersed sol had a total metal oxide concentration of 18% by mass, and a primary particle size of this sol was 4 to 10 nm when observed with a transmission electron microscope. Then, the dispersion medium of the resulting water-dispersed sol was replaced with methanol using a rotary evaporator to obtain a methanol-dispersed sol of modified colloidal particles (C2). This methanol-dispersed sol had a total metal oxide concentration of 30% by mass, a viscosity of 1.3 mPa·s, a particle diameter of 15 nm as determined by the dynamic light scattering method, and a water content of 1.2% by mass.
[製造例8]:表面修飾コロイド粒子(D2)の製造
 製造例7で得られた変性コロイド粒子(C2)のメタノール分散ゾル383gにポリエーテル変性シラン(信越化学工業(株)製、商品名:X-12-641)を5.8g添加し、70℃で還流加熱を5時間行った。次いで、エバポレーターを用いて80Torrでプロピレングリコールモノメチルエーテルを添加しながらメタノールを留去することによりメタノールをプロピレングリコールモノメチルエーテルに置換して、表面修飾コロイド粒子(D2)のプロピレングリコールモノメチルエーテル分散液を288g得た。得られた分散液は、比重1.365、粘度5.3mPa・s、全金属酸化物濃度40.5質量%、透過型電子顕微鏡観察による一次粒子径は4~10nm、動的光散乱法粒子径は11nmであった。得られた表面修飾コロイド粒子(D2)において、変性コロイド粒子(C2)の表面に結合したポリエーテル変性シランは、変性コロイド粒子(C2)の全金属酸化物に対して4.0質量%であった。
[Production Example 8]: Production of surface-modified colloidal particles (D2) Polyether-modified silane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: 5.8 g of X-12-641) was added and heated under reflux at 70° C. for 5 hours. Next, using an evaporator, methanol was distilled off while adding propylene glycol monomethyl ether at 80 Torr to replace methanol with propylene glycol monomethyl ether, and 288 g of the propylene glycol monomethyl ether dispersion of the surface-modified colloidal particles (D2) was obtained. Obtained. The resulting dispersion has a specific gravity of 1.365, a viscosity of 5.3 mPa s, a total metal oxide concentration of 40.5% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 11 nm. In the resulting surface-modified colloidal particles (D2), the polyether-modified silane bonded to the surfaces of the modified colloidal particles (C2) was 4.0% by mass with respect to the total metal oxides of the modified colloidal particles (C2). rice field.
[製造例9]
 1Lナスフラスコに、製造例8にて得られた表面修飾コロイド粒子(D2)のプロピレングリコールモノメチルエーテル分散液(全金属酸化物濃度40.5質量%)246.9g及びアクロイルモルフォリン233.3g(ACMO、東京化成工業(株)製)を加え、エバポレーターにてプロピレングリコールモノメチルエーテルを完全に留去し、30質量%のACMO溶液を得た(以下、T-2溶液という)。
[Production Example 9]
246.9 g of the propylene glycol monomethyl ether dispersion (total metal oxide concentration: 40.5% by mass) of the surface-modified colloidal particles (D2) obtained in Production Example 8 and 233.3 g of acryloylmorpholine were placed in a 1 L eggplant flask. (ACMO, manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and propylene glycol monomethyl ether was completely distilled off with an evaporator to obtain a 30% by mass ACMO solution (hereinafter referred to as T-2 solution).
[製造例10]:表面修飾コロイド粒子(D3)の製造
 製造例3で得られた変性コロイド粒子(C1)のメタノール分散ゾル533gにポリエーテル変性シラン(信越化学工業(株)製、商品名:X-12-641)を8.0g添加し、70℃で還流加熱を5時間行った。ポリエーテル変性シランが表面に結合した表面修飾コロイド粒子(D3)(以下、表面修飾コロイド粒子(D3))のメタノール分散液を得た。次いで、エバポレーターを用いて80Torrでプロピレングリコールモノメチルエーテルを添加しながらメタノールを留去することによりメタノールをプロピレングリコールモノメチルエーテルに置換して、表面修飾コロイド粒子(D3)のプロピレングリコールモノメチルエーテル分散液を530g得た。得られた分散液は、比重1.212、粘度3.2mPa・s、全金属酸化物濃度30.3質量%、透過型電子顕微鏡観察による一次粒子径は4~10nm、動的光散乱法粒子径は10nmであった。得られた表面修飾コロイド粒子(D3)において、変性コロイド粒子(C1)の表面に結合したポリエーテル変性シランは、変性コロイド粒子(C1)の全金属酸化物に対して3.9質量%であった。
[Production Example 10]: Production of surface-modified colloidal particles (D3) Polyether-modified silane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: 8.0 g of X-12-641) was added and heated under reflux at 70° C. for 5 hours. A methanol dispersion of surface-modified colloidal particles (D3) (hereinafter referred to as surface-modified colloidal particles (D3)) having surfaces bound to polyether-modified silane was obtained. Next, using an evaporator, methanol is distilled off while adding propylene glycol monomethyl ether at 80 Torr to replace methanol with propylene glycol monomethyl ether, and 530 g of the propylene glycol monomethyl ether dispersion of the surface-modified colloidal particles (D3) is obtained. Obtained. The resulting dispersion has a specific gravity of 1.212, a viscosity of 3.2 mPa s, a total metal oxide concentration of 30.3% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 10 nm. In the resulting surface-modified colloidal particles (D3), the polyether-modified silane bonded to the surfaces of the modified colloidal particles (C1) was 3.9% by mass with respect to the total metal oxides of the modified colloidal particles (C1). rice field.
[製造例11]
 1Lナスフラスコに、製造例10にて得られた表面修飾コロイド粒子(D3)のプロピレングリコールモノメチルエーテル分散液(全金属酸化物濃度30.3質量%)300g及びアクロイルモルフォリン212.1g(ACMO、東京化成工業(株)製)を加え、エバポレーターにてプロピレングリコールモノメチルエーテルを完全に留去し、30質量%のACMO溶液を得た(以下、T-3溶液という)。
[Production Example 11]
300 g of the propylene glycol monomethyl ether dispersion (total metal oxide concentration: 30.3% by mass) of the surface-modified colloidal particles (D3) obtained in Production Example 10 and 212.1 g of acryloylmorpholine (ACMO , manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and propylene glycol monomethyl ether was completely distilled off by an evaporator to obtain a 30% by mass ACMO solution (hereinafter referred to as T-3 solution).
[製造例12]:表面修飾コロイド粒子(D4)の製造
 製造例7で得られた変性コロイド粒子(C2)のメタノール分散ゾル298gに3-アクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名:KBM-5103)を6.7g添加し、70℃で還流加熱を5時間行い、表面修飾コロイド粒子(D4)のメタノール分散液を得た。得られた分散液は、比重1.063、粘度1.8mPa・s、全金属酸化物濃度29.9質量%、透過型電子顕微鏡観察による一次粒子径は4~10nm、動的光散乱法粒子径は18nmであった。得られた表面修飾コロイド粒子(D4)において、変性コロイド粒子(C2)の表面に結合した3-アクリロキシプロピルトリメトキシシランは、変性コロイド粒子(C2)の全金属酸化物に対して2.0質量%であった。
[Production Example 12]: Production of surface-modified colloidal particles (D4) 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) , trade name: KBM-5103) was added and heated under reflux at 70°C for 5 hours to obtain a methanol dispersion of surface-modified colloidal particles (D4). The resulting dispersion has a specific gravity of 1.063, a viscosity of 1.8 mPa s, a total metal oxide concentration of 29.9% by mass, a primary particle diameter of 4 to 10 nm as observed by a transmission electron microscope, and dynamic light scattering particles. The diameter was 18 nm. In the resulting surface-modified colloidal particles (D4), the 3-acryloxypropyltrimethoxysilane bound to the surface of the modified colloidal particles (C2) was 2.0 with respect to the total metal oxides of the modified colloidal particles (C2). % by mass.
[製造例13]
 1Lのナスフラスコに、製造例12にて得られた表面修飾コロイド粒子(D4)のメタノール分散液(全金属酸化物濃度29.9質量%)100gおよびアクロイルモルフォリン70.0g(ACMO、東京化成工業(株)製)を加え、エバポレーターにてメタノールを完全に留去し、30質量%のACMO溶液を得た(以下、T-4溶液という)。
[Production Example 13]
In a 1 L eggplant flask, 100 g of the methanol dispersion of the surface-modified colloidal particles (D4) obtained in Production Example 12 (total metal oxide concentration: 29.9% by mass) and 70.0 g of acryloylmorpholine (ACMO, Tokyo Kasei Kogyo Co., Ltd.) was added, and methanol was completely distilled off by an evaporator to obtain a 30% by mass ACMO solution (hereinafter referred to as T-4 solution).
[3]架橋剤添加膜形成組成物の調製および硬化膜の作製
[実施例1-1]
 合成例2で合成したP-1溶液(4.913g)に、製造例5で得られたT-1溶液(14.740g)、架橋剤としてDN-0075(日本化薬(株)製)1.769g)、UVラジカル硬化助剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート(カレンズMT PE1、昭和電工(株)製)0.884g、UVラジカル発生剤としてOXE-02(BASF社製)3.519g、界面活性剤として10質量%THFA溶液のメガファックR-40(DIC(株)製)0.442g、並びに追加の希釈モノマーとしてTHFA3.626gを加えて目視で溶解したことを確認し、無溶剤の溶液を調製した(以下、NP-1溶液という)。
 このNP-1溶液を50mm×50mm×0.7mmの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、次いで、1,480rpmで30秒間スピンコートし、ホットプレートを用いて100℃で3分間仮乾燥後、UV-LED照射装置にて395nmの波長の光にて、900mJ/cmの露光量を照射して硬化膜(以下、NP-1膜という)を得た。
[3] Preparation of cross-linking agent-added film-forming composition and production of cured film [Example 1-1]
P-1 solution synthesized in Synthesis Example 2 (4.913 g), T-1 solution obtained in Production Example 5 (14.740 g), DN-0075 as a cross-linking agent (manufactured by Nippon Kayaku Co., Ltd.) 1 .769 g), 0.884 g of pentaerythritol tetrakis (3-mercaptobutyrate (Kalenz MT PE1, manufactured by Showa Denko KK) as a UV radical curing aid, and OXE-02 (manufactured by BASF) as a UV radical generator. 519 g, 0.442 g of Megafac R-40 (manufactured by DIC Corporation) in a 10% by mass THFA solution as a surfactant, and 3.626 g of THFA as an additional diluted monomer were added and visually confirmed to be dissolved. A solvent solution was prepared (hereinafter referred to as NP-1 solution).
This NP-1 solution was spin-coated on a 50 mm × 50 mm × 0.7 mm alkali-free glass substrate with a spin coater at 200 rpm for 5 seconds and then at 1,480 rpm for 30 seconds. After pre-drying for 3 minutes, a cured film (hereinafter referred to as NP-1 film) was obtained by irradiating light with a wavelength of 395 nm and an exposure amount of 900 mJ/cm 2 with a UV-LED irradiation device.
[実施例1-2]
 使用する無機微粒子溶液を製造例9で得られたT-2溶液(14.740g)へ変更した以外は、実施例1-1と同様にして、無溶剤溶液を調製した(以下、NP-2溶液という)。
 このNP-2溶液を用いて実施例1-1と同様の条件にて硬化膜(以下、NP-2膜という)を得た。
[Example 1-2]
A solvent-free solution was prepared in the same manner as in Example 1-1, except that the inorganic fine particle solution used was changed to the T-2 solution (14.740 g) obtained in Production Example 9 (hereinafter referred to as NP-2 solution).
Using this NP-2 solution, a cured film (hereinafter referred to as NP-2 film) was obtained under the same conditions as in Example 1-1.
[実施例1-3]
 使用する無機微粒子溶液を製造例11で得られたT-3溶液(14.740g)へ変更した以外は、実施例1-1と同様にして、無溶剤溶液を調製した(以下、NP-3溶液という)。
 このNP-3溶液を用いて実施例1-1と同様の条件にて硬化膜(以下、NP-3膜という)を得た。
[Example 1-3]
A solvent-free solution was prepared (hereinafter referred to as NP-3 solution).
Using this NP-3 solution, a cured film (hereinafter referred to as NP-3 film) was obtained under the same conditions as in Example 1-1.
[実施例1-4]
 合成例4で合成したP-2溶液(3.682g)に、製造例13で得られたT-4溶液(19.330g)、架橋剤としてDN-0075(日本化薬(株)製、0.663g)、UVラジカル硬化助剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート、カレンズMT PE1、昭和電工(株)製)0.663g、UVラジカル発生剤としてOXE-02(BASF社製)0.331g、界面活性剤として10質量%THFA溶液のメガファックR-40(DIC(株)製)0.066g、並びに追加の希釈モノマーとしてTHFA(5.265g)を加えて目視で溶解したことを確認し、無溶剤の溶液を調製した(以下、NP-4溶液という)。
 このNP-4溶液を50mm×50mm×0.7mmの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、500rpmで30秒間スピンコートし、ホットプレートを用いて100℃で3分間仮乾燥後、UV-LED照射装置にて395nmの波長にて、900mJ/cmの露光量を窒素下で照射して硬化膜(以下、NP-4膜という)を得た。
[Example 1-4]
The P-2 solution (3.682 g) synthesized in Synthesis Example 4, the T-4 solution (19.330 g) obtained in Production Example 13, DN-0075 as a cross-linking agent (manufactured by Nippon Kayaku Co., Ltd., 0 0.663 g), pentaerythritol tetrakis (3-mercaptobutyrate, Karenz MT PE1, manufactured by Showa Denko KK) as a UV radical curing aid, 0.663 g, and OXE-02 (manufactured by BASF) as a UV radical generator. 331 g, 0.066 g of Megafac R-40 (manufactured by DIC Corporation) in a 10% by mass THFA solution as a surfactant, and THFA (5.265 g) as an additional dilution monomer were added and dissolved visually. Then, a solvent-free solution was prepared (hereinafter referred to as NP-4 solution).
This NP-4 solution was spin-coated on a non-alkali glass substrate of 50 mm × 50 mm × 0.7 mm with a spin coater at 200 rpm for 5 seconds and 500 rpm for 30 seconds, and temporarily dried at 100 ° C. for 3 minutes using a hot plate. After that, a cured film (hereinafter referred to as NP-4 film) was obtained by irradiating with a UV-LED irradiation device at a wavelength of 395 nm and an exposure amount of 900 mJ/cm 2 under nitrogen.
[実施例1-5]
 UVラジカル硬化助剤を除いた以外は、実施例1-4と同様にして、無溶剤溶液を調製した(以下、NP-5溶液という)。
 このNP-5溶液を用いて実施例1-4と同様の条件にて硬化膜(以下、NP-5膜という)を得た。
[Example 1-5]
A solvent-free solution was prepared in the same manner as in Example 1-4, except that the UV radical curing aid was omitted (hereinafter referred to as NP-5 solution).
Using this NP-5 solution, a cured film (hereinafter referred to as NP-5 film) was obtained under the same conditions as in Example 1-4.
[実施例1-6]
 UVラジカル硬化助剤を使用せず、かつ使用するUVラジカル発生剤をOXE-02(BASF社製)0.331gからOmnirad 819(BASF社製)0.331gに変更した以外は、実施例1-4と同様にして、無溶剤溶液を調製した(以下、NP-6溶液という)。
 このNP-6溶液を用いて実施例1-4と同様の条件にて硬化膜(以下、NP-6膜という)を得た。
[Example 1-6]
Example 1- except that no UV radical curing aid was used and the UV radical generator used was changed from OXE-02 (manufactured by BASF) 0.331 g to Omnirad 819 (manufactured by BASF) 0.331 g A solvent-free solution was prepared in the same manner as in 4 (hereinafter referred to as NP-6 solution).
Using this NP-6 solution, a cured film (hereinafter referred to as NP-6 film) was obtained under the same conditions as in Example 1-4.
 上記で得られた硬化膜については、屈折率、膜厚、b、400~800nmの透過率、HAZEを測定した。結果を表1-1及び表1-2示す。透過率については400~800nmの平均透過率を算出し、表1-1及び表1-2に示した。 For the cured film obtained above, the refractive index, film thickness, b * , transmittance at 400 to 800 nm, and HAZE were measured. The results are shown in Tables 1-1 and 1-2. Regarding the transmittance, the average transmittance of 400 to 800 nm was calculated and shown in Tables 1-1 and 1-2.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 これらの結果より、実施例1-1~1-6で得られた無溶剤型組成物を用いて作製した硬化膜は、高い屈折率、高い透過率を維持しつつ、低いHAZEを維持するという優れた効果を有することがわかる。 From these results, the cured film prepared using the solvent-free compositions obtained in Examples 1-1 to 1-6 maintains a high refractive index and high transmittance while maintaining a low HAZE. It turns out that it has the outstanding effect.
[粘度測定]
[実施例2-1]
 実施例1-1にて得られたNP-1溶液を用い、EMS粘度計を用いて、25℃から45℃における粘度を測定した。
[Viscosity measurement]
[Example 2-1]
Using the NP-1 solution obtained in Example 1-1, the viscosity at 25° C. to 45° C. was measured using an EMS viscometer.
[実施例2-2]
 実施例2-1と同様に、実施例1-2にて得られたNP-2溶液の粘度を測定した。
[Example 2-2]
The viscosity of the NP-2 solution obtained in Example 1-2 was measured in the same manner as in Example 2-1.
[実施例2-3]
 実施例2-1と同様に、実施例1-3にて得られたNP-3溶液の粘度を測定した。
[Example 2-3]
The viscosity of the NP-3 solution obtained in Example 1-3 was measured in the same manner as in Example 2-1.
[実施例2-4]
 実施例2-1と同様に、実施例1-4にて得られたNP-4溶液の粘度を測定した。
[Example 2-4]
The viscosity of the NP-4 solution obtained in Example 1-4 was measured in the same manner as in Example 2-1.
[実施例2-5]
 実施例2-1と同様に、実施例1-5にて得られたNP-5溶液の粘度を測定した。
[Example 2-5]
The viscosity of the NP-5 solution obtained in Example 1-5 was measured in the same manner as in Example 2-1.
[実施例2-6]
 実施例2-1と同様に、実施例1-6にて得られたNP-6溶液の粘度を測定した。
[Example 2-6]
The viscosity of the NP-6 solution obtained in Example 1-6 was measured in the same manner as in Example 2-1.
 測定した各温度における粘度を表2-1及び表2-2に示した。 The measured viscosity at each temperature is shown in Tables 2-1 and 2-2.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 これらの結果より、温度を35℃以上に上げると約20mPa・s以下の低粘度となることがわかり、インクジェット塗布等への適用も十分に可能であることがわかる。 From these results, it can be seen that when the temperature is raised to 35°C or higher, the viscosity is reduced to about 20 mPa·s or less, and it can be seen that application to inkjet coating and the like is sufficiently possible.
[厚膜(10μm以上)での溶剤耐性(耐クラック性)及び透過率、HAZE測定]
[実施例3-1-1]
 実施例1-1にて得られたNP-1溶液を50mm×50mm×0.7mmの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、200rpmで30秒間スピンコートし、ホットプレートを用いて100℃で3分間仮乾燥後、UV―LED照射装置にて395nmの波長の光にて、900mJ/cmの露光量を照射して硬化膜(以下、NP-1膜という)を得た。
 上記で作製した硬化膜付きの基板をスピンコーターにセットし、プロピレングリコールモノメチルエーテル(PGME)1mlを塗布した。次に、基板から液が飛散しないように、50rpmで60秒間回転させて硬化膜を溶剤に暴露させた。その後、1,000rpmで30秒間回転させて溶剤を基板上から除去した。最後に、ホットプレートを用いて120℃で10秒間乾燥させた後、屈折率および膜厚の測定、残膜率の算出および光学顕微鏡による膜表面の観察を行った。
 残膜率は、以下の式により算出した。
   残膜率(%)=〔(溶剤暴露後の膜厚)÷(溶剤暴露前の膜厚)〕×100
 また、溶剤暴露前には透過率及びHAZEも測定した。
[Thick film (10 μm or more) solvent resistance (crack resistance) and transmittance, HAZE measurement]
[Example 3-1-1]
The NP-1 solution obtained in Example 1-1 was applied onto a non-alkali glass substrate of 50 mm × 50 mm × 0.7 mm with a spin coater at 200 rpm for 5 seconds and 200 rpm for 30 seconds. After temporary drying at 100 ° C. for 3 minutes, a cured film (hereinafter referred to as NP-1 film) is obtained by irradiating light with a wavelength of 395 nm and an exposure amount of 900 mJ / cm 2 with a UV-LED irradiation device. rice field.
The substrate with the cured film prepared above was set in a spin coater, and 1 ml of propylene glycol monomethyl ether (PGME) was applied. Next, the cured film was exposed to the solvent by rotating at 50 rpm for 60 seconds so as not to splash the liquid from the substrate. After that, the substrate was rotated at 1,000 rpm for 30 seconds to remove the solvent from the substrate. Finally, after drying at 120° C. for 10 seconds using a hot plate, the refractive index and film thickness were measured, the residual film ratio was calculated, and the film surface was observed with an optical microscope.
The residual film ratio was calculated by the following formula.
Remaining film rate (%) = [(film thickness after solvent exposure) ÷ (film thickness before solvent exposure)] × 100
Transmittance and HAZE were also measured before solvent exposure.
[実施例3-1-2]
 塗布する溶剤をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に変更した以外は、実施例2-1と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-1-2]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 2-1, except that the solvent to be applied was changed to propylene glycol monomethyl ether acetate (PGMEA).
[実施例3-1-3]
 塗布する溶剤をシクロペンタノン(CPN)に変更した以外は、実施例2-1と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-1-3]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 2-1, except that the solvent to be applied was changed to cyclopentanone (CPN).
[実施例3-2-1]
 使用した溶液をNP-2溶液に変更した以外は、実施例3-1-1と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-2-1]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-1, except that the solution used was changed to the NP-2 solution.
[実施例3-2-2]
 使用した溶液をNP-2溶液に変更した以外は、実施例3-1-2と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-2-2]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-2, except that the solution used was changed to the NP-2 solution.
[実施例3-2-3]
 使用した溶液をNP-2溶液に変更した以外は、実施例3-1-3と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-2-3]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-3, except that the solution used was changed to the NP-2 solution.
[実施例3-3-1]
 使用した溶液をNP-3溶液に変更した以外は、実施例3-1-1と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-3-1]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-1, except that the solution used was changed to the NP-3 solution.
[実施例3-3-2]
 使用した溶液をNP-3溶液に変更した以外は、実施例3-1-2と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-3-2]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-2, except that the solution used was changed to the NP-3 solution.
[実施例3-3-3]
 使用した溶液をNP-3溶液に変更した以外は、実施例3-1-3と同様にして硬化膜作製及び溶剤耐性試験を行った。
[Example 3-3-3]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-1-3, except that the solution used was changed to the NP-3 solution.
 実施例3-1-1~実施例3-1-3の膜厚測定、残膜率、400~800nmの平均透過率及びHAZEの結果は表3に、実施例3-2-1~実施例3-2-3の結果は表4に、実施例3-3-1~実施例3-3-3の結果は表5に、実施例3-1-1~実施例3-1-3の硬化膜の溶剤暴露後における表面の顕微鏡写真は図3~図5に、実施例3-2-1~実施例3-2-3の硬化膜の溶剤暴露後における表面の顕微鏡写真は図6~図8に、実施例3-3-1~の実施例3-3-3硬化膜の溶剤暴露後における表面の顕微鏡写真は図9~図11に、それぞれ示した。 The results of film thickness measurement, residual film ratio, 400 to 800 nm average transmittance and HAZE of Examples 3-1-1 to 3-1-3 are shown in Table 3, Example 3-2-1 to Example The results of 3-2-3 are shown in Table 4, the results of Examples 3-3-1 to 3-3-3 are shown in Table 5, and the results of Examples 3-1-1 to 3-1-3 Micrographs of the surface of the cured film after solvent exposure are shown in FIGS. Microscopic photographs of the surfaces of the cured films of Examples 3-3-1 to 3-3-3 after solvent exposure are shown in FIG. 8 and FIGS. 9 to 11, respectively.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
[溶剤耐性(耐クラック性)]
[実施例3-4-1]
 実施例1-4にて得られたNP-4膜をスピンコーターにセットし、プロポレングリコールモノメチルエーテル(PGME)1mLを塗布した。次に、基板から液が飛散しないように、50rpmで60秒間回転させて硬化膜を溶剤に曝露させた。その後、1,000rpmで30秒間回転させて溶剤を基板上から除去した。最後にホットプレートを用いて100℃で10秒間乾燥させた後、屈折率および膜厚の測定、残膜率の算出および光学顕微鏡による膜表面の観察を行った。
 残膜率は、以下の式により算出した。
   残膜率(%)=〔(溶剤曝露前の膜厚)÷(溶剤曝露後の膜厚)〕×100
[Solvent resistance (crack resistance)]
[Example 3-4-1]
The NP-4 film obtained in Example 1-4 was set on a spin coater and coated with 1 mL of propylene glycol monomethyl ether (PGME). Next, the cured film was exposed to the solvent by rotating at 50 rpm for 60 seconds so as not to splash the liquid from the substrate. After that, the substrate was rotated at 1,000 rpm for 30 seconds to remove the solvent from the substrate. Finally, after drying at 100° C. for 10 seconds using a hot plate, the refractive index and film thickness were measured, the residual film ratio was calculated, and the film surface was observed with an optical microscope.
The residual film ratio was calculated by the following formula.
Remaining film rate (%) = [(film thickness before solvent exposure) ÷ (film thickness after solvent exposure)] × 100
[実施例3-4-2]
 塗布する溶剤をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に変更した以外は、実施例3-4-1と同様にして硬化膜作製および溶剤耐性試験を行った。
[Example 3-4-2]
A cured film was prepared and a solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the solvent to be applied was changed to propylene glycol monomethyl ether acetate (PGMEA).
[実施例3-4-3]
 塗布する溶剤をシクロペンタノン(CPN)に変更した以外は、実施例3-4-1と同様にして硬化膜作製および溶剤耐性試験を行った。
[Example 3-4-3]
A cured film was prepared and a solvent resistance test was performed in the same manner as in Example 3-4-1, except that the solvent to be applied was changed to cyclopentanone (CPN).
[実施例3-5-1]
 使用した膜をNP-5膜に変更した以外は、実施例3-4-1と同様にして溶剤耐性試験を行った。
[Example 3-5-1]
A solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the membrane used was changed to NP-5 membrane.
[実施例3-5-2]
 使用した膜をNP-5膜に変更した以外は、実施例3-4-2と同様にして溶剤耐性試験を行った。
[Example 3-5-2]
A solvent resistance test was conducted in the same manner as in Example 3-4-2, except that the membrane used was changed to NP-5 membrane.
[実施例3-5-3]
 使用した膜をNP-5膜に変更した以外は、実施例3-4-3と同様にして溶剤耐性試験を行った。
[Example 3-5-3]
A solvent resistance test was conducted in the same manner as in Example 3-4-3 except that the membrane used was changed to NP-5 membrane.
[実施例3-6-1]
 使用した膜をNP-6膜に変更した以外は、実施例3-4-1と同様にして溶剤耐性試験を行った。
[Example 3-6-1]
A solvent resistance test was conducted in the same manner as in Example 3-4-1, except that the membrane used was changed to NP-6 membrane.
[実施例3-6-2]
 使用した膜をNP-6膜に変更した以外は、実施例3-4-2と同様にして溶剤耐性試験を行った。
[Example 3-6-2]
A solvent resistance test was conducted in the same manner as in Example 3-4-2, except that the membrane used was changed to NP-6 membrane.
[実施例3-6-3]
 使用した膜をNP-6膜に変更した以外は、実施例3-4-3と同様にして溶剤耐性試験を行った。
[Example 3-6-3]
A solvent resistance test was conducted in the same manner as in Example 3-4-3, except that the membrane used was changed to NP-6 membrane.
 実施例3-4-1~実施例3-4-3、実施例3-5-1~実施例3-5-3、実施例3-6-1~実施例3-6-3の膜厚測定、及び残膜率の結果は表6に、硬化膜の溶媒曝露後における顕微鏡写真は図12~図20にそれぞれ示した。 Film thickness of Examples 3-4-1 to 3-4-3, Examples 3-5-1 to 3-5-3, and Examples 3-6-1 to 3-6-3 The results of measurement and residual film ratio are shown in Table 6, and the micrographs of the cured film after solvent exposure are shown in FIGS. 12 to 20, respectively.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
 これらの結果より、NP-1~NP-6溶液から得られた硬化膜は、膜厚が厚くても高い溶剤耐性を維持しつつ、高い透過率及び低いHAZEを維持するという優れた効果を有することがわかる。また、無機微粒子に架橋部位を持たせていなくても高い溶剤耐性を維持していることがわかる。 From these results, the cured films obtained from the NP-1 to NP-6 solutions have an excellent effect of maintaining high transmittance and low HAZE while maintaining high solvent resistance even if the film thickness is thick. I understand. In addition, it can be seen that high solvent resistance is maintained even if the inorganic fine particles are not provided with crosslinked sites.

Claims (21)

  1.  下記式(1)で表される繰り返し単位構造を含み、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアミノ基で封止されているトリアジン環含有重合体と、
     架橋剤と、
     無機微粒子と、
    を含み、
     有機溶剤を含まない、
    ことを特徴とする無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、Qは、環構造を有する炭素数3~30の2価の基を表す。*は結合手を表す。)
    A triazine ring-containing triazine ring containing a repeating unit structure represented by the following formula (1), having at least one triazine ring terminal, and at least part of the triazine ring terminal being blocked with an amino group having a bridging group a polymer;
    a cross-linking agent;
    inorganic fine particles;
    including
    does not contain organic solvents,
    A solvent-free composition characterized by:
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R and R′ independently represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group; Q is a ring structure having 3 to 30 carbon atoms; represents a valence group.* represents a bond.)
  2.  前記式(1)中のQが、式(2)~(13)及び式(102)~(115)で示される群から選ばれる少なくとも1種を表す、請求項1に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)~式(13)中、R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
     R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、
     WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子、炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)、または炭素数1~10のハロゲン化アルキル基を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表し、
     XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)
    Figure JPOXMLDOC01-appb-C000003
    (式(14)中、R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシ基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
     YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。)で示される基を表す。
     *は結合手を表す。〕
    Figure JPOXMLDOC01-appb-C000004
    (式(102)~式(115)中、RおよびRは、互いに独立して、分岐構造を有していてもよい炭素数1~5のアルキレン基を表す。*は結合手を表す。)
    The solvent-free composition according to claim 1, wherein Q in formula (1) represents at least one selected from the group represented by formulas (2) to (13) and formulas (102) to (115). thing.
    Figure JPOXMLDOC01-appb-C000002
    [In the formulas (2) to (13), R 1 to R 92 are each independently a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, represents a halogenated alkyl group or an alkoxy group having 1 to 10 carbon atoms,
    R 93 and R 94 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms,
    W 1 and W 2 are each independently a single bond, CR 95 R 96 (R 95 and R 96 are each independently a hydrogen atom, a C 1-10 alkyl group (provided that these may form a ring), or represents a halogenated alkyl group having 1 to 10 carbon atoms.), C═O, O, S, SO, SO 2 , or NR 97 (R 97 is represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group.),
    X 1 and X 2 are each independently a single bond, an alkylene group having 1 to 10 carbon atoms, or formula (14)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (14), R 98 to R 101 are each independently a hydrogen atom, a halogen atom, a carboxy group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, or a halogenated alkyl group having 1 to 10 carbon atoms. , or represents an alkoxy group having 1 to 10 carbon atoms,
    Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms. ) represents a group represented by
    * represents a bond. ]
    Figure JPOXMLDOC01-appb-C000004
    (In formulas (102) to (115), R 1 and R 2 each independently represent an alkylene group having 1 to 5 carbon atoms which may have a branched structure. * represents a bond. .)
  3.  前記式(2)~(13)における前記R~R92およびR98~R101が、互いに独立して、水素原子、ハロゲン原子または炭素数1~10のハロゲン化アルキル基である請求項1に記載の無溶剤型組成物。 1. wherein R 1 to R 92 and R 98 to R 101 in the formulas (2) to (13) are each independently a hydrogen atom, a halogen atom or a halogenated alkyl group having 1 to 10 carbon atoms; The solvent-free composition according to .
  4.  前記架橋基を有するアリールアミノ基が、式(15)で示される請求項1に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(15)中、R102は、架橋基を表す。*は結合手を表す。)
    2. The solventless composition according to claim 1, wherein the arylamino group having a cross-linking group is represented by formula (15).
    Figure JPOXMLDOC01-appb-C000005
    (In formula (15), R 102 represents a cross-linking group. * represents a bond.)
  5.  前記架橋基を有するアミノ基が、式(16)で示される請求項4に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(16)中、R102は、上記と同じ意味を表す。*は結合手を表す。)
    5. The solventless composition according to claim 4, wherein the amino group having the cross-linking group is represented by formula (16).
    Figure JPOXMLDOC01-appb-C000006
    (In formula (16), R 102 has the same meaning as above. * represents a bond.)
  6.  前記R102が、ヒドロキシ含有基または(メタ)アクリロイル含有基である請求項4に記載の無溶剤型組成物。 5. The solventless composition of Claim 4, wherein said R102 is a hydroxy-containing group or a (meth)acryloyl-containing group.
  7.  前記R102が、ヒドロキシアルキル基、(メタ)アクリロイルオキシアルキル基または下記式(i)で表される基である請求項6に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(i)中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
    Figure JPOXMLDOC01-appb-C000008
    で表される基を表し、Aは、ヒドロキシ基で置換されてもよい(a+1)価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
    7. The solvent-free composition according to claim 6, wherein said R102 is a hydroxyalkyl group, a (meth)acryloyloxyalkyl group or a group represented by the following formula (i).
    Figure JPOXMLDOC01-appb-C000007
    (In formula (i), A 1 represents an alkylene group having 1 to 10 carbon atoms, and A 2 is a single bond or the following formula (j)
    Figure JPOXMLDOC01-appb-C000008
    A3 represents an (a+1) -valent aliphatic hydrocarbon group which may be substituted with a hydroxy group , A4 represents a hydrogen atom or a methyl group, a represents 1 or 2 and * represents a bond. )
  8.  前記R102が、ヒドロキシメチル基、2-ヒドロキシエチル基、(メタ)アクリロイルオキシメチル基、(メタ)アクリロイルオキシエチル基、および下記式(i-2)~式(i-5)で表される基から選ばれる基である請求項7に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式(i-2)~式(i-5)中、*は結合手を表す。)
    The R 102 is represented by a hydroxymethyl group, a 2-hydroxyethyl group, a (meth)acryloyloxymethyl group, a (meth)acryloyloxyethyl group, and formulas (i-2) to (i-5) below. 8. The solventless composition according to claim 7, which is a group selected from the group:
    Figure JPOXMLDOC01-appb-C000009
    (In formulas (i-2) to (i-5), * represents a bond.)
  9.  前記式(1)中のQ中の少なくとも1つの芳香族環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有する、請求項2に記載の無溶剤型組成物。 The solvent-free composition according to claim 2, wherein at least one halogen atom or halogenated alkyl group having 1 to 10 carbon atoms is contained in at least one aromatic ring in Q in formula (1).
  10.  さらに、トリアジン環末端の一部が、無置換アリールアミノ基で封止されている請求項1に記載の無溶剤型組成物。 Further, the solvent-free composition according to claim 1, wherein a portion of the triazine ring terminal is capped with an unsubstituted arylamino group.
  11.  前記無置換アリールアミノ基が、式(33)で示される請求項1に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000010
    (式(33)中、*は結合手を表す。)
    2. The solventless composition according to claim 1, wherein said unsubstituted arylamino group is represented by formula (33).
    Figure JPOXMLDOC01-appb-C000010
    (In formula (33), * represents a bond.)
  12.  前記式(1)中のQが、式(17)で示される請求項1に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式(17)中、*は結合手を表す。)
    The solvent-free composition according to claim 1, wherein Q in formula (1) is represented by formula (17).
    Figure JPOXMLDOC01-appb-C000011
    (In formula (17), * represents a bond.)
  13.  前記式(1)中のQが、式(20)で示される請求項1に記載の無溶剤型組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式(20)中、*は結合手を表す。)
    2. The solventless composition according to claim 1, wherein Q in formula (1) is represented by formula (20).
    Figure JPOXMLDOC01-appb-C000012
    (In formula (20), * represents a bond.)
  14.  前記架橋剤が、多官能(メタ)アクリル化合物である請求項1に記載の無溶剤型組成物。 The solventless composition according to claim 1, wherein the cross-linking agent is a polyfunctional (meth)acrylic compound.
  15.  前記無機微粒子が、金属酸化物、金属硫黄物または金属窒化物を含む請求項1に記載の無溶剤型組成物。 The solvent-free composition according to claim 1, wherein the inorganic fine particles contain metal oxides, metal sulfurs or metal nitrides.
  16.  さらに反応性希釈剤を含む請求項1に記載の無溶剤型組成物。 The solvent-free composition according to claim 1, further comprising a reactive diluent.
  17.  前記反応性希釈剤が、ラジカル重合性基を一つ有する化合物である請求項16に記載の無溶剤型組成物。 The solvent-free composition according to claim 16, wherein the reactive diluent is a compound having one radically polymerizable group.
  18.  光硬化性である、請求項1に記載の無溶剤型組成物。 The solventless composition according to claim 1, which is photocurable.
  19.  請求項1~18のいずれかに記載の無溶剤型組成物から得られる膜。 A film obtained from the solventless composition according to any one of claims 1 to 18.
  20.  基材と、前記基材上に形成された請求項19に記載の膜とを備える電子デバイス。 An electronic device comprising a substrate and the film according to claim 19 formed on the substrate.
  21.  基材と、前記基材上に形成された請求項19に記載の膜とを備える光学部材。 An optical member comprising a substrate and the film according to claim 19 formed on the substrate.
PCT/JP2022/018436 2021-04-23 2022-04-21 Solventless composition WO2022225017A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280030290.7A CN117321141A (en) 2021-04-23 2022-04-21 Solvent-free composition
JP2023515517A JPWO2022225017A1 (en) 2021-04-23 2022-04-21
KR1020237039802A KR20230174249A (en) 2021-04-23 2022-04-21 Solvent-free composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021073428 2021-04-23
JP2021-073428 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022225017A1 true WO2022225017A1 (en) 2022-10-27

Family

ID=83722398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018436 WO2022225017A1 (en) 2021-04-23 2022-04-21 Solventless composition

Country Status (5)

Country Link
JP (1) JPWO2022225017A1 (en)
KR (1) KR20230174249A (en)
CN (1) CN117321141A (en)
TW (1) TW202311330A (en)
WO (1) WO2022225017A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168787A1 (en) * 2012-05-11 2013-11-14 日産化学工業株式会社 Film-forming composition and embedding material
WO2018235549A1 (en) * 2017-06-20 2018-12-27 富士フイルム株式会社 Composition, film, lens, solid state image sensor, and compound
WO2019167681A1 (en) * 2018-02-28 2019-09-06 富士フイルム株式会社 Composition, coating film, cured film, lens, solid-state imaging device, resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128661A1 (en) 2009-05-07 2010-11-11 日産化学工業株式会社 Triazine ring-containing polymer and film-forming composition comprising same
JP6928314B2 (en) 2015-06-02 2021-09-01 日産化学株式会社 Solvent-free photocurable adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168787A1 (en) * 2012-05-11 2013-11-14 日産化学工業株式会社 Film-forming composition and embedding material
WO2018235549A1 (en) * 2017-06-20 2018-12-27 富士フイルム株式会社 Composition, film, lens, solid state image sensor, and compound
WO2019167681A1 (en) * 2018-02-28 2019-09-06 富士フイルム株式会社 Composition, coating film, cured film, lens, solid-state imaging device, resin

Also Published As

Publication number Publication date
TW202311330A (en) 2023-03-16
KR20230174249A (en) 2023-12-27
CN117321141A (en) 2023-12-29
JPWO2022225017A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
TWI620790B (en) Composition for film formation
KR102577065B1 (en) Triazine ring-containing polymer and composition for forming a film containing the same
WO2021079977A1 (en) Triazine ring-containing polymer and film-forming composition containing same
JP7077622B2 (en) Triazine ring-containing polymer and a film-forming composition containing the same
WO2021079991A1 (en) Triazine ring-containing polymer and film-forming composition containing same
WO2022225020A1 (en) Triazine ring-containing polymer and pattern-forming composition
WO2022225017A1 (en) Solventless composition
JP6693116B2 (en) Light-scattering film forming composition and light-scattering film
WO2022225012A1 (en) Film-forming composition
WO2022225003A1 (en) Film-forming composition
JP2020164868A (en) Triazine ring-containing polymer and film-forming composition containing the same
WO2022225014A1 (en) Composition for pattern formation
WO2022225002A1 (en) Triazine ring-containing polymer and film-forming composition containing same
WO2022225005A1 (en) Solvent-free composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515517

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280030290.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237039802

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039802

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791788

Country of ref document: EP

Kind code of ref document: A1