WO2022224819A1 - Urethane prepolymer and cured urethane obtained therefrom - Google Patents

Urethane prepolymer and cured urethane obtained therefrom Download PDF

Info

Publication number
WO2022224819A1
WO2022224819A1 PCT/JP2022/017117 JP2022017117W WO2022224819A1 WO 2022224819 A1 WO2022224819 A1 WO 2022224819A1 JP 2022017117 W JP2022017117 W JP 2022017117W WO 2022224819 A1 WO2022224819 A1 WO 2022224819A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
urethane
urethane prepolymer
aromatic amine
residues
Prior art date
Application number
PCT/JP2022/017117
Other languages
French (fr)
Japanese (ja)
Inventor
清水義久
山本敏秀
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2022224819A1 publication Critical patent/WO2022224819A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present disclosure relates to urethane prepolymers.
  • a polyalkylene oxide containing a large amount of a by-product monool having an unsaturated group at one end (hereinafter referred to as an unsaturated monool) is used as a raw material for polyurethane.
  • an unsaturated monool A polyalkylene oxide containing a large amount of a by-product monool having an unsaturated group at one end
  • the polyurethane obtained from the polyalkylene oxide containing a large amount of unsaturated monool is difficult to have a high molecular weight, has a low tensile elongation at break, and a low tensile strength at break.
  • a polyalkylene oxide containing a large amount of unsaturated monool can be reacted with an isocyanate compound having a large average number of isocyanate functional groups to obtain a high molecular weight polyurethane.
  • the polyurethane does not have a linearly high molecular weight, but becomes a crosslinked body having a densely crosslinked structure, so that the obtained polyurethane has a low tensile elongation at break and a low tensile strength at break.
  • compositions containing conventional polyalkylene oxides containing large amounts of unsaturated monools have low viscosities, and coating machines are used to obtain polyurethanes from these compositions. etc., there is an advantage that it is easy to apply.
  • Patent Document 1 discloses a urethane-forming composition containing a polyalkylene oxide having less unsaturated monools, a polyalkylene oxide having an aromatic amine residue, a polyalkylene oxide having one hydroxyl group and an ethylene oxide residue, and It discloses that a polyurethane having good coatability and productivity and high tensile strength can be obtained by using a urethane-forming composition containing a urethane prepolymer using the same.
  • these polyurethane-forming compositions described in Patent Document 1 and urethane prepolymers using the same contain as an essential component a polyalkylene oxide containing a small amount of low-molecular-weight unsaturated monools that tend to act as a compatibilizer, and a catalyst. Since active and rigid aromatic amine polyols are used, transparency tends to deteriorate depending on reaction conditions such as stirring conditions, reactor, and solvent amount due to poor compatibility with polyalkylene oxides, which have particularly low unsaturated monools. In addition, particulate deposits and gel-like substances may adhere, and the obtained urethane cured product may become hard and difficult to wet, resulting in poor handleability.
  • the urethane prepolymer has good coatability and productivity regardless of the use of polyalkylene oxide with less unsaturated monools, and contributes to the formation of a highly transparent polyurethane containing a rigid aromatic amine polyol structure and having high strength. It is a urethane prepolymer that stably has no precipitates or gels regardless of conditions such as the amount of solvent and has good curability and transparency, and a highly transparent, high-strength urethane prepolymer obtained using it. Polyurethane with less tack was desired.
  • a highly transparent urethane prepolymer that contributes to the formation of polyurethane with excellent curability and high strength, and a cured urethane product that is highly transparent, has high strength, and has little surface tack.
  • Each aspect of the present invention is [1] to [11] shown below.
  • Active hydrogen having a polyalkylene oxide structure having an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and having an aromatic amine residue locally at the molecular end
  • NCO-terminated prepolymer (D) which is a reaction product of polyalkylene oxide (A) and polyisocyanate (C), and polyalkylene oxide (B) having an aromatic amine residue and two or more hydroxyl groups
  • the urethane prepolymer (E) according to [1], which is a reactant.
  • the urethane prepolymer (E) according to [1] or [2], containing 5 to 70% by weight of a polyalkylene oxide structure having an aromatic amine residue or a residue thereof.
  • aromatic amine residues one or more residues selected from the group consisting of 4,4′-diphenylmethanediamine residues, 2,4-tolylenediamine residues and 2,6-tolylenediamine residues;
  • the urethane prepolymer (E) according to any one of [1] to [3], containing a group.
  • the polyisocyanate residue includes an aliphatic isocyanate residue, an alicyclic isocyanate residue, a modified residue thereof, or two or more of these residues [1] to [ 4], the urethane prepolymer (E) according to any one of the above.
  • the urethane prepolymer (E) according to any one of [1] to [5], containing a group.
  • a urethane-forming composition comprising the urethane prepolymer (E) according to any one of [1] to [6] and an isocyanate compound (F).
  • the urethane prepolymer which is one aspect of the present invention, is a rigid aromatic amine polyol necessary to develop high strength regardless of the presence or absence of the use of polyalkylene oxide with less unsaturated monools, reaction conditions, solvent amount, etc. Provide a urethane prepolymer that has excellent storage stability without deposits or gels even when used, and has good compatibility, transparency, and curability, and a highly transparent and high-strength urethane cured product using the same. can do.
  • a urethane prepolymer according to one aspect of the present invention has an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and has an aromatic amine residue locally at the end of the molecule. It is an active hydrogen group-terminated urethane prepolymer (E) having a polyol structure.
  • the urethane prepolymer (E) which is one aspect of the present invention, has an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and localized aromatic amine residues at the molecular ends. It is an active hydrogen group-terminated urethane prepolymer having a polyalkylene oxide structure having a group.
  • the urethane prepolymer (E) contains an alkylene oxide residue having 3 or more carbon atoms as an essential component.
  • the alkylene oxide residue having 3 or more carbon atoms is not contained, the strength of the resulting urethane cured product tends to be increased, but the flexibility is significantly deteriorated, and the storage stability and handling properties are deteriorated, making it difficult to use.
  • the alkylene oxide residue containing only alkylene oxide residues having 2 carbon atoms and not containing alkylene oxide residues having 3 or more carbon atoms is used, the crystallinity is increased, and the transparency of the urethane prepolymer (E) and the obtained urethane cured product is deteriorated.
  • the storage stability and handleability of the urethane prepolymer (E) deteriorate, making it difficult to use.
  • the alkylene oxide residue having 3 or more carbon atoms is not particularly limited, and examples thereof include alkylene oxide residues having 3 to 20 carbon atoms. Specifically, propylene oxide residue, 1,2-butylene oxide residue, 2,3-butylene oxide residue, isobutylene oxide residue, butadiene monoxide residue, pentene oxide residue, styrene oxide residue, cyclohexene Examples include oxide residues and the like. Among these alkylene oxide residues, polyalkylene oxide as a raw material is easily available, and it is easy to produce a liquid urethane prepolymer (E) with low crystallinity and moderate viscosity, and has high industrial value. Oxide residues are preferred.
  • the alkylene oxide residue having 3 or more carbon atoms may contain only a single alkylene oxide residue, or may contain two or more types of alkylene oxide residues.
  • two or more kinds of alkylene oxide residues are included, for example, one kind of alkylene oxide residue is linked in a chain, and another alkylene oxide residue is linked in a chain. or two or more alkylene oxide residues randomly linked together.
  • the alkylene oxide residue with 3 or more carbon atoms and carbon The weight ratio of the ethylene oxide residue of number 2 (alkylene oxide residue having 3 or more carbon atoms/ethylene oxide residue having 2 carbon atoms) is preferably in the range of 10/90 to 99.9/0.1, more preferably is in the range 30/70 to 99.7/0.3, most preferably in the range 50/50 to 99.5/0.5.
  • ethylene oxide residue with 2 carbon atoms it is not particularly limited, but it has a chain structure of ethylene oxide residues with 2 carbon atoms such as polyoxyethylene glycol monoalkyl ether residues because it tends to improve coatability. preferably.
  • the content of the alkylene oxide residue having 3 or more carbon atoms contained in the urethane prepolymer (E) is not particularly limited, but it is 30% by weight or more and 99% by weight because it tends to exhibit good coatability and high transparency. It is preferably below, more preferably in the range of 50% by weight or more and 95% by weight or less, most preferably in the range of 70% by weight or more and 90% by weight or less because it is easy to achieve both higher transparency and high strength. is.
  • the content can be calculated by the NMR method or the analysis by Corish decomposition, but if the raw material is known, it may be calculated from the addition amount.
  • the urethane prepolymer (E) contains an aromatic amine residue as an essential component.
  • the aromatic amine residue is not contained, the transparency of the urethane prepolymer (E) and the obtained urethane cured product tends to be improved, but the strength of the urethane cured product is insufficient, and the strength such as easy peelability and durability is affected. It is difficult to use because the physical properties are significantly deteriorated, and the curability of the urethane prepolymer is insufficient, resulting in poor productivity and difficulty in use. That is, by having an aromatic amine residue having a rigid skeleton and moderate catalytic activity, the curability of the urethane prepolymer and the strength of the resulting urethane cured product are improved.
  • the urethane prepolymer (E) is characterized by having a polyalkylene oxide structure (hereinafter referred to as an aromatic amine polyol structure) having an aromatic amine residue locally at the molecular end. Localization in this specification refers to ⁇ being in a certain limited place. It suffices that the polyol structure is contained excessively from the inside of the molecule so as to be biased, and it may also be contained inside the molecule.
  • the aromatic amine polyol structure in the molecular end is locally contained around the molecular end
  • the aromatic amine polyol structure in the molecular end relative to the content of the aromatic amine polyol structure in the whole is high, that is, the molar ratio of the aromatic amine polyol structure at the molecular end is high with respect to the molar ratio of the aromatic amine polyol structure in the entire polyol constituting the urethane prepolymer (E). is preferred.
  • Aromatic amine residues generally have catalytic activity for urethanization and often have a structure similar to that of a cross-linking agent. Because of deterioration of compatibility and reactivity of urethane, stable formation of highly transparent and high strength urethane cured product regardless of the use of polyalkylene oxide with less unsaturated monol, reaction conditions, solvent amount, etc. It is difficult to Further, depending on the reaction conditions, the urethane prepolymer (E) may deteriorate in transparency or generate particulate precipitates or gels, and the obtained urethane cured product also deteriorates in transparency, making it difficult to use.
  • the content ratio of the aromatic amine polyol structure at the molecular end to the content of the aromatic amine polyol structure in the entire polyol is Although it is preferable if it exceeds 1.0, it is not particularly limited. Among them, it is preferably more than 1.01 and less than 10, more preferably more than 1.03 and less than 2.5, because it is likely to exhibit remarkably high transparency regardless of the reaction conditions, solid content, etc. Most preferably, it is more than 1.10 and less than 1.7.
  • the urethane prepolymer (E) is obtained by adding an aromatic amine polyol to the terminal.
  • the proportion of groups may decrease according to the amount added. For example, 90 mol% of a polyol having an aromatic amine residue and 10 mol% of another polyol having no aromatic amine residue are added to the end in combination, and if there is no difference in reactivity, approximately at the molecular end
  • the proportion of aromatic amine polyol structures contained is 90%.
  • Monools often seal the ends of molecules regardless of the timing of the reaction, but since they do not have reactive hydroxyl groups after the reaction, they are not included in the polyol structural residues at the ends of the molecules.
  • the ratio of the aromatic amine polyol structure contained at the molecular terminal is not particularly limited, but if the ratio of the aromatic amine polyol structure contained at the molecular terminal decreases, compatibility with the cross-linking agent may deteriorate and reactivity may decrease. It is easy to form a highly transparent and strong urethane cured product regardless of the use of polyalkylene oxide with low unsaturated monools, reaction conditions, solvent amount, etc., so the aromatic amine polyol structure ratio at the molecular end is It is preferably 30% or more.
  • the aromatic amine polyol structure ratio at the molecular terminal is 60% or more, more preferably the urethane prepolymer (E) contains 20% by weight or more of the aromatic amine polyol structure, and
  • the structural ratio of the aromatic amine polyol is 80% or more and 100% or less, and most preferably, the structural ratio of the aromatic amine polyol at the molecular terminal is 90% or more and 99.99% or less.
  • polyols having a molecular weight of less than 2000 and having aromatic amine residues usually exhibit significantly higher reactivity than polyols having a molecular weight of more than 2000 and not having aromatic amine residues.
  • the molecular The aromatic amine polyol structure ratio at the terminal is less than 50%, and a polyol having a molecular weight of more than 2000 containing no aromatic amine residue and a polyol having a molecular weight of less than 2000 having an aromatic amine residue were used at a molar ratio of 1:9.
  • the aromatic amine polyol structure ratio at the molecular end is less than 90%. Therefore, the content ratio of the aromatic amine polyol structure at the molecular end is lower than the content ratio of the aromatic amine polyol structure as a whole.
  • the polyol structural ratio at the end of the molecule may be obtained from the analysis of the primary ratio of terminal hydroxyl groups, the analysis of residues such as alkylene oxides adjacent to hydroxyl groups, and the analysis of various decomposition products.
  • residues such as alkylene oxides adjacent to hydroxyl groups
  • various decomposition products such as alkylene oxides adjacent to hydroxyl groups
  • isocyanate-terminated prepolymer when adding only a polyol having an aromatic amine residue at the terminal until the NCO group disappears, theoretically almost all the molecular terminals are aromatic amine polyol structures, and the molecular terminals was determined to have an aromatic amine polyol structure ratio of 100%.
  • the aromatic amine polyol structure having a molecular terminal is not particularly limited, but since it is more compatible and tends to be highly transparent, the polyalkylene oxide residue includes a polypropylene oxide residue, a polypropylene oxide/polyethylene oxide residue, and a polyethylene oxide residue. More preferably, it contains one or more types of residues selected from the group consisting of residues, and includes any of block structures, random structures, gradient structures, and the like. Among them, it is preferable to have a propylene oxide residue as an alkylene oxide residue, and most preferably 40% by weight or more of the alkylene oxide residue is propylene oxide because it is difficult to crystallize from low temperature to high temperature and is particularly easy to have excellent fluidity. A residue is preferred. The content can be calculated by the NMR method or the analysis by Corish decomposition, but if the raw material is known, it may be calculated from the structure of the raw material.
  • the structure of the aromatic amine residue contained in the urethane prepolymer (E) is not particularly limited. It is an aromatic amine residue having 1 or more and 3 or less rings.
  • the content of the aromatic amine residue contained in the urethane prepolymer (E) is not particularly limited, it is preferably 0.5% by weight or more and 25% by weight or less, more preferably more than 0.5% by weight, in order to easily develop high strength. It is in the range of 1% by weight or more and 15% by weight or less, and most preferably in the range of 3% by weight or more and 10% by weight or less, because it is easy to achieve both high strength and handleability of the cured product.
  • the content can be calculated by the NMR method or analysis by Corish decomposition, but if the raw material is known, it may be calculated from the molecular weight of the polyalkylene oxide calculated from the hydroxyl value, the nominal initiator structure, and the amount added.
  • aromatic amine residues examples include aniline residues, 2,4-tolylenediamine residues, 2,6-tolylenediamine residues, 2,2′-diphenylmethanediamine residues, 2,4 '-diphenylmethanediamine residue, 4,4'-diphenylmethanediamine residue, polyphenylenepolyamine residue, 1,5-naphthalenediamine residue, tolidinediamine residue, xylylenediamine residue, 1,3-phenylenediamine residue , 1,4-phenylenediamine residues, and residues of two or more of these, preferably 2,4-triamine, which is easy to obtain raw materials and tends to exhibit good curability and high strength. diamine residues, 2,6-tolylene diamine residues, and two or more of these residues.
  • the structure of aromatic amine residues can be analyzed by MALDI-TOF-MS or the like.
  • the aromatic amine residue contained in the urethane prepolymer (E) is usually obtained by adding an aromatic amine or an aromatic amine polyol to the terminal or inside the molecule, but it tends to have excellent compatibility and high transparency. Therefore, it preferably contains a polyol structure having an aromatic amine residue or a residue thereof.
  • the content of the polyol structure having an aromatic amine residue or the residue thereof is preferably 5 to 70% by weight, more preferably 5 to 70% by weight, because it tends to exhibit remarkably high strength and easily improve coatability. is in the range of 10-55% by weight, most preferably in the range of 20-50% by weight.
  • the polyol structure having an aromatic amine residue or the content of the residue thereof can be calculated by analysis using alkali decomposition, Kolish decomposition, or the like, but if the raw material is known, it may be calculated from the added amount.
  • the urethane prepolymer (E) contains a polyisocyanate residue as an essential component. If the urethane prepolymer (E) does not contain a polyisocyanate residue, the urethane prepolymer (E) does not contain any urethane groups with cohesive strength and curability is lowered, making it difficult to use. The wettability to the surface is lowered, making it difficult to use. Moreover, it is difficult to form a polyol structure selectively having an aromatic amine residue at the terminal.
  • the polyisocyanate residue contained in the urethane prepolymer (E) is not particularly limited as long as the average number of functional groups of the isocyanate residue is 2.0 or more.
  • the structure of the polyisocyanate residue is not particularly limited. 4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, lysine diisocyanate, triphenylmethane triisocyanate , tetramethylxylene diisocyanate, 1,6-hexamethylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, norbornane diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate , 1,8-diisocyanate-4-isocyanato
  • these isocyanates contain modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups, uretdione groups or oxazolidone groups, and polymethylene polyphenylene polyisocyanates. Condensate residues such as (polymeric MDI) can be mentioned.
  • aliphatic isocyanate residues, alicyclic isocyanate residues and modified residues thereof are used as polyisocyanate residues in order to easily obtain a urethane-forming composition with excellent productivity and high transparency and little coloration. It preferably contains one or more residues selected from the group consisting of
  • the residue of such a polyisocyanate (C) is not particularly limited. isocyanate-containing prepolymers, alicyclic isocyanate-containing prepolymers, or urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups of these isocyanates, Modified residues containing uretdione groups or oxazolidone groups are more preferred. These isocyanate residues may contain one type alone, or two or more types of residues.
  • 1,6-hexamethylene diisocyanate and residues of modified products thereof because the increase in viscosity of the urethane prepolymer with time is small and the storage stability is excellent.
  • having a primary NCO group and a secondary NCO group with different reactivity it is easy to suppress the increase in molecular weight due to chain reaction, and it is easy to suppress the deterioration of coating properties and the increase in viscosity.
  • the content of the polyisocyanate residue contained in the urethane prepolymer (E) is not particularly limited, it is preferably 0.5% by weight or more and 30% by weight or less, more preferably higher, because high strength is likely to be expressed. Since it is easy to achieve both transparency and high strength, it is in the range of 2% by weight or more and 20% by weight or less, and most preferably in the range of 4% by weight or more and 12% by weight or less.
  • the content can be calculated by the NMR method or analysis by Corish decomposition, but if the raw material is known, it may be calculated from the added amount.
  • the urethane prepolymer (E) contains, as essential components, an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue, a polyisocyanate residue, and the exemplified ethylene oxide residue having 2 carbon atoms, as well as other It may contain residues. Examples include, but are not limited to, carbonate residues, oxytetramethylene residues, sugar residues, ester residues, oxetane residues, caprolactone residues, isobutylene residues, butadiene residues, alkyl ether residues, Mannich polyol residues.
  • the urethane prepolymer (E) expresses higher curability and coatability, making it easier to obtain a high-strength urethane cured product. It preferably contains residues, carbonate residues, aliphatic amine residues.
  • the content of the exemplified residue is not particularly limited, but it is preferably in the range of 0.01% to 70% by weight, more preferably in the range of 0.01% by weight to 70% by weight because it is easy to achieve both high curability and coatability. is in the range of 0.1% to 50% by weight, most preferably in the range of 0.5% to 20% by weight.
  • the urethane prepolymer (E) may contain a monool structure having an unsaturated group in the polyalkylene oxide used, and may contain an unsaturated group which is the residue thereof.
  • the urethane prepolymer (E) is not particularly limited because it exhibits high curability regardless of the use or non-use of polyalkylene oxide with a small amount of unsaturated monools.
  • the unsaturated group content is preferably in the range of 0.0001 meq/g to 100 meq/g. If it does not have a highly reactive unsaturated group such as a urethane acrylate group or a urethane methacrylate group that can substantially act as a reactive group, it tends to exhibit higher curability.
  • the ratio of primary hydroxyl groups in the urethane prepolymer (E) is not particularly limited as it varies depending on the ratio of primary hydroxyl groups in each raw material polyol. .
  • the ratio of primary hydroxyl groups in the urethane prepolymer (E) can be calculated from the peak shift of 1H NMR by reacting trifluoroacetic anhydride with hydroxyl groups using trifluoroacetic anhydride, similar to the calculation of the ratio of primary hydroxyl groups in polyalkylene oxide.
  • the residual amount of the aromatic amine polyol and the polyol itself used in combination is preferably small, and is not particularly limited, but is within 20% by weight because remarkably high transparency tends to be exhibited. More preferably, it is in the range of 10% by weight or less.
  • the residual amount of polyalkylene oxide having no aromatic amine polyol residue is preferably in the range of 5% by weight or less, more preferably in the range of 2% by weight or less, because it tends to achieve higher transparency. is.
  • the residual amount of the aromatic amine polyol and the polyol used in combination in the urethane prepolymer (E) may be determined by a peak integration ratio (aromatic amine polyol and polyol used in combination/main peak ⁇ 100) such as by GPC method.
  • the urethane prepolymer (E) is not particularly limited. Such a urethane prepolymer (E) can be produced efficiently and easily.
  • the preferred properties are that additives can be easily mixed in the post-process, the handling of the cross-linking agent and coating is excellent, and the urethane cured product tends to be stably highly transparent. Therefore, the viscosity is in the range of 3 to 50 Pa ⁇ s, more preferably in the range of 5 to 30 Pa ⁇ s. When the viscosity is high, a solvent or additive may be added to reduce the viscosity, and when the viscosity is low, the viscosity may be increased by concentration or the like.
  • the transparency of the urethane prepolymer (E) is not particularly limited. % or less.
  • the molecular weight of the urethane prepolymer (E) is not particularly limited, but the weight average molecular weight measured by gel permeation chromatography is preferably in the range of 2500 or more and 500000 or less, since the handleability tends to be better, and 5000 It is more preferably in the range of 200,000 or more, and more preferably in the range of 10,000 or more and 100,000 or less.
  • the active hydrogen group-terminated urethane prepolymer (E) is characterized by containing a polyol structure having an aromatic amine residue locally around the molecular end.
  • the production method is not particularly limited as long as it can be introduced excessively.
  • a method of adding a polyol having an aromatic amine residue at the end or end of the process to add it to the end, a polyol having an aromatic amine residue by adjusting the reactivity of the raw material used is added at the end or end to introduce it at the end, which can be suitably applied.
  • Examples of adjusting the reactivity of the raw material used include reducing the reactivity of polyols having aromatic amine residues and/or improving the reactivity of polyols used in combination, and forming block structures by protecting reactive groups.
  • reducing the reactivity of a polyol having an aromatic amine residue with a solid content of 70% or more includes increasing the molecular weight of the polyol having an aromatic amine residue (for example, 500 or more) or increasing the number of secondary hydroxyl groups.
  • addition of an acid compound, and improvement of the reactivity of the polyol used in combination include lowering the molecular weight of the polyol used in combination (for example, 6000 or less), ethylene oxide residue, tetrahydrofuran residue, and propylene oxide residue having a primary hydroxyl group at the end. (for example, ethylene oxide residue 16% by weight or more, primary conversion rate 75% or more), etc., but the structure of the polyol used in combination and the structure of the aromatic amine polyol , the reactivity of each material differs depending on the solid content, etc., and the terminal structure ratio changes, so there is no particular limitation.
  • the most preferred method for producing the active hydrogen group-terminated urethane prepolymer (E) is not particularly limited.
  • a polyalkylene oxide having a hydroxyl group as described above, a polyol structure having an aromatic amine residue at the end can be stably formed regardless of the reactivity of the raw material, and significantly regardless of the reaction conditions. It is preferable because it stably exhibits high transparency. That is, an NCO-terminated urethane prepolymer (D) which is a reaction product of at least a polyalkylene oxide (A) and a polyisocyanate (C), and a polyalkylene oxide (B) having an aromatic amine residue and two or more hydroxyl groups.
  • the number average molecular weight of the polyalkylene oxide (A), which is preferably used for the urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D), is not particularly limited. In addition, it is preferably 2,000 or more because the coatability and wettability tend to be good.
  • the polyalkylene oxide (A) preferably has a number average molecular weight of 2,500 or more and less than 30,000, more preferably 3,000 or more and less than 13,000, and most preferably 3,500 or more and less than 9,000.
  • the number average molecular weight of the polyalkylene oxide (A) is the hydroxyl value of the polyalkylene oxide (A) calculated by the method described in JIS K-1557-1, and the number of hydroxyl groups in one molecule of the polyalkylene oxide (A). , can be calculated from
  • the hydroxyl value (mgKOH/g) of the polyalkylene oxide (A) is not particularly limited, but is preferably 3 or more and 250 or less, more preferably 5 or more and 180 or less, and most preferably 8 or more and 70 or less. .
  • the viscosity of the polyalkylene oxide (A) at 25° C. is not particularly limited and is appropriately selected depending on the application, but is preferably 100 mPa ⁇ s or more and 200000 mPa ⁇ s or less, more preferably 200 mPa ⁇ s or more and 10000 mPa ⁇ s or less. is. If the viscosity of the polyalkylene oxide (A) at 25° C. is 100 mPa ⁇ s or more and 200000 mPa ⁇ s or less, it is preferable because it is easy to apply with a coating machine or the like to obtain a polyurethane product.
  • the "viscosity" at 25°C is measured at a shear rate of 0.1 (1/s) using a cone/plate rotational viscometer in accordance with JIS K1557-5 Section 6.2.3. value.
  • the polyalkylene oxide (A) preferably contains an alkylene oxide residue having 3 or more carbon atoms because it has excellent fluidity from low to high temperatures.
  • the alkylene oxide residue having 3 or more carbon atoms is not particularly limited, and examples thereof include alkylene oxide residues having 3 to 20 carbon atoms.
  • propylene oxide residue, 1,2-butylene oxide residue, 2,3-butylene oxide residue, isobutylene oxide residue, butadiene monoxide residue, pentene oxide residue, styrene oxide residue, cyclohexene Examples include oxide residues and the like.
  • a propylene oxide residue is preferred because the starting material for obtaining the polyalkylene oxide (A) is readily available and the resulting polyalkylene oxide (A) has a high industrial value.
  • the polyalkylene oxide (A) may contain only a single alkylene oxide residue as the alkylene oxide residue having 3 or more carbon atoms, or may contain two or more types of alkylene oxide residues. good. When two or more kinds of alkylene oxide residues are included, for example, one kind of alkylene oxide residue is linked in a chain, and another alkylene oxide residue is linked in a chain. or two or more alkylene oxide residues randomly linked together. Furthermore, the polyalkylene oxide (A) may contain an ethylene oxide residue with 2 carbon atoms in addition to the alkylene oxide residue with 3 or more carbon atoms.
  • the number of hydroxyl groups in the polyalkylene oxide (A) is not particularly limited, but it preferably has two or more hydroxyl groups in one molecule, more preferably two or more and six or less, and most preferably one.
  • the number of hydroxyl groups in the molecule is 2 or more and 3 or less.
  • the primary ratio of hydroxyl groups in the polyalkylene oxide (A) is not particularly limited, it is preferably in the range of 0 to 90%.
  • a cationic polymerization system such as trifluoroborane or trispentafluorophenylborane
  • the primary ratio tends to increase, and a basic catalyst such as potassium hydroxide is used.
  • a metal-based catalyst such as a double metal cyanide (DMC) catalyst
  • DMC double metal cyanide
  • the polyalkylene oxide (A) is preferably liquid at room temperature because it facilitates the production of the urethane prepolymer.
  • the degree of unsaturation of the polyalkylene oxide (A) is not particularly limited because it is easy to make the prepolymer or urethane cured product highly transparent regardless of whether or not a polyalkylene oxide with less unsaturated monools is used. It is preferable that it is 0.010 meq / g or less, more preferably 0.010 meq / g or less because it is likely to require an increase in the amount of polyfunctional polyol such as polyalkylene oxide (B) having a bifunctional polyol having a more rigid skeleton than polypropylene oxide.
  • Such polyalkylene oxide (A) having a low degree of unsaturation is not particularly limited, but can be produced by adding an alkylene oxide to an active hydrogen compound using an iminophosphazenium salt and a Lewis acid catalyst. .
  • the molecular weight distribution (Mw/Mn) of the polyalkylene oxide (A) is not particularly limited because it is easy to make the prepolymer or urethane cured product highly transparent regardless of whether a polyalkylene oxide having a narrow molecular weight distribution is used, but the molecular weight of the prepolymer Since the distribution tends to be narrow and the handleability tends to be excellent, it is preferably 1.059 or less, more preferably 1.039 or less, and most preferably 1.004 to 1.029 or less.
  • the polyalkylene oxide (A) preferably has a water content of 2,000 ppm or less.
  • the polyisocyanate (C) preferably used for the urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D) preferably has an average functional group number of isocyanate groups of 2.0 or more, but is particularly limited. is not.
  • Examples of the polyisocyanate (C) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, and tolidine.
  • these isocyanates contain modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups, uretdione groups or oxazolidone groups, and polymethylene polyphenylene polyisocyanates.
  • Condensates such as (polymeric MDI) can be mentioned.
  • aliphatic isocyanate aliphatic isocyanate, alicyclic isocyanate, Alternatively, modified forms thereof are preferred. 1,6-hexamethylene diisocyanate, isophorone diisocyanate, aliphatic isocyanate-containing prepolymers, alicyclic isocyanate-containing prepolymers, or urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups of these isocyanates, Modified products containing an isocyanurate group, an amide group, an imide group, a uretonimine group, a uretdione group or an oxazolidone group are more preferred. These isocyanates may be used singly or in combination of two or more.
  • 1,6-hexamethylene diisocyanate and modified products thereof are used because of high reactivity, good productivity, and excellent storage stability with little increase in viscosity of the urethane prepolymer (E) over time. It is preferable to use In addition, having a primary NCO group and a secondary NCO group with different reactivity, it is easy to suppress the increase in molecular weight due to chain reaction, and it is easy to be excellent in coatability and viscosity. It is also preferred to use isophorone diisocyanate, since the transparency of the product tends to be significantly better. Therefore, it is preferable to contain at least one selected from 1,6-hexamethylene diisocyanate, modified products thereof, and isophorone diisocyanate.
  • a polyalkylene oxide (B) preferably used in the urethane prepolymer (E) is a polyol having an aromatic amine residue.
  • the hardness and tensile strength of the obtained polyurethane tend to be remarkably increased. Among them, it exhibits good fluidity and is easy to mold, and it has high hardness and tensile strength and is easy to have excellent urethane physical properties.
  • Polyols having two or more hydrogen groups are preferred, and those in which one type of alkylene oxide is linked to an aromatic amine in a chain, those in which a plurality of alkylene oxides are linked to an aromatic amine in a chain or randomly, Anything is fine.
  • alkylene oxides are easily available industrially and the synthesis tends to be simple, those in which only propylene oxide is linked to an aromatic amine in a chain, those in which only ethylene oxide is linked to an aromatic amine in a chain, It is preferable that propylene oxide and ethylene oxide are linked in a chain or randomly linked to an aromatic amine, and more preferably, the propylene oxide residue is not easily crystallized from low temperature to high temperature and tends to be particularly excellent in fluidity. More preferably, 40% by weight or more of the alkylene oxide residues contained in the polyalkylene oxide (B) are propylene oxide residues.
  • the polyalkylene oxide (B) preferably has 2 or more hydroxyl groups per molecule, more preferably 3 or more and less than 15 hydroxyl groups, and most preferably 4 or more and less than 6 hydroxyl groups.
  • the crosslinked structure of the resulting urethane cured product tends to be uniform, and tensile rupture occurs. It is preferable because the strength is further increased.
  • the number average molecular weight of polyalkylene oxide (B) is preferably less than 2,000.
  • the number average molecular weight is less than 2000, the content of the aromatic amine residue tends to increase, the strength tends to be further improved, and the reactivity is improved, so that a large amount of unreacted polyalkylene oxide (B) is less likely to remain, making it more stable. easily exhibit high transparency.
  • the number average molecular weight of the polyalkylene oxide (B) is the hydroxyl value of the polyalkylene oxide (B) calculated by the method described in JIS K-1557-1, the number of hydroxyl groups in one molecule of the polyol (A2), can be calculated from In the case of commercial products, the nominal number of functional groups and hydroxyl value can be used.
  • the structure of the aromatic amine residue of the polyalkylene oxide (B) is not particularly limited, it is preferably an aromatic amine residue having 1 or more and 20 or less aromatic rings in one molecule, more preferably an aromatic ring. It is an aromatic amine residue having a number of 1 or more and 3 or less. If the polyalkylene oxide (B) does not contain an aromatic amine residue, the tensile strength at break tends to be insufficient, and the aromatic amine itself is used to improve the strength, or a polyol containing a cyclic sugar residue having 6 or more carbon atoms. , polyester polyols, polyoxytetramethylene glycol, and other polyalkylene oxides (A) require relatively rigid polyols. and tack tends to be high.
  • the content of the aromatic amine residue in the polyalkylene oxide (B) is not particularly limited, but it is preferably 7% by weight or more, more preferably 7% by weight or more, because it tends to develop high strength, more preferably higher transparency and strength. Since compatibility is easily achieved, the range is 10% by weight or more and 50% by weight or less, and most preferably the range is 13% by weight or more and 30% by weight or less.
  • the content can be calculated by the NMR method or the analysis by Corish decomposition, or it may be calculated from the molecular weight of the polyalkylene oxide calculated from the hydroxyl value and the nominal initiator structure.
  • aromatic amine residues include aniline residues, 2,4-tolylenediamine residues, 2,6-tolylenediamine residues, 2,2′-diphenylmethanediamine residues, 2,4 '-diphenylmethanediamine residue, 4,4'-diphenylmethanediamine residue, polyphenylenepolyamine residue, 1,5-naphthalenediamine residue, tolidinediamine residue, xylylenediamine residue, 1,3-phenylenediamine residue , 1,4-phenylenediamine residues, and residues of two or more of these, preferably 4,4' which is easy to obtain raw materials and exhibits good curability and tensile strength at break.
  • - is one or more residues selected from the group consisting of diphenylmethanediamine residues, 2,4-tolylenediamine residues and 2,6-tolylenediamine residues.
  • Polyalkylene oxide (B) is generally obtained by ring-opening polymerization of an alkylene oxide using an aromatic amine such as tolylenediamine or diphenylmethanediamine as an initiator.
  • an aromatic amine such as tolylenediamine or diphenylmethanediamine
  • a low-viscosity active hydrogen compound containing no aromatic amine residue, such as glycol is used in combination with the initiator for synthesis, and may contain a component having the residue described above.
  • tolylenediamine-initiated polyol usually has 4 hydroxyl groups and aniline-initiated polyol has 2 hydroxyl groups.
  • the number of hydroxyl groups may decrease due to residual amino groups.
  • Examples of commercially available polyalkylene oxides (B) containing aromatic amine residues include Huntsman JEFFOLAD-310 (nominal functionality 3.2, hydroxyl value 310), JEFFOLAD-500 (nominal functionality 3.2, hydroxyl value 360 ), Toho Polyol AB-250 manufactured by Toho Chemical Industry Co., Ltd. (nominal functional group number 2.0, hydroxyl value 440), AR-2589 manufactured by Toho Chemical Industry Co., Ltd. (nominal functional group number 4.0, hydroxyl value 360), manufactured by Toho Chemical Industry Co., Ltd. AR-750 (nominal functional group number: 4.0, hydroxyl value: 300) and the like can be preferably used.
  • polyalkylene oxide (B) In addition to the polyalkylene oxide (B), other rigid polyols may be used in combination of two or more, and are not particularly limited. Examples thereof include a combination of a polyol containing a sugar residue with 6 or more carbon atoms and a polyol containing an aromatic amine residue.
  • the polyalkylene oxide (B) preferably has a water content of 2,000 ppm or less. ⁇ Other polyols and monools>
  • the urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D), which is preferably used, are not particularly limited.
  • the NCO group ratio of the polyisocyanate (C) with respect to the total amount of active hydrogen groups of the polyol, etc. the exemplified polyalkylene oxide (A), polyalkylene oxide (B), and polyisocyanate (C)
  • other polyols and monools (AC) may be used.
  • polyols and monools can be appropriately selected from those that do not impair the transparency and physical properties of the prepolymer, and are not particularly limited.
  • examples include polycarbonate polyols, polytetramethylene glycol, polyolefin polyols, acrylic Commercially available polyols such as polyols, polyester polyols, Mannich polyols, sucrose polyols, aliphatic diamine polyols, polyethylene glycols, polycaprolactone polyols, fluorinated polyols, silicone-containing polyols, phosphorus-based polyols, polyoxyalkylene glycol monoalkyl Ethers, polyoxyalkylene glycol monoalkenyl ethers, polyoxyalkylene glycol monophenyl ethers, monools such as silicone-containing monools, low molecular weight organic compounds such as cyclohexanedimethanol, tetraethylene glycol, tripropylene glycol,
  • polyoxyalkylene glycol monoalkyl ethers it is selected from the group consisting of polyoxyalkylene glycol monoalkyl ethers, polyoxyalkylene glycol monoalkenyl ethers, and polyoxyalkylene glycol monophenyl ethers because of its particularly excellent coatability when applied with a coating machine or the like.
  • the active hydrogen group-terminated urethane prepolymer (E) is not particularly limited, but it is preferable to use an NCO-terminated urethane prepolymer (D) comprising at least polyalkylene oxide (A) and polyisocyanate (C).
  • the NCO-terminated urethane prepolymer (D) has a ratio of NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the polyol containing the polyalkylene oxide (A) (NCO/OH ratio) of 1.30 to 5.00. It is preferable to mix at a quantity ratio that is the ratio of By mixing in an amount ratio that gives an NCO/OH ratio of 1.30 to 5.00, the urethane prepolymer (D) and the obtained urethane cured product have an appropriate viscosity and tend to have good handleability. transparency is easier to improve.
  • the ratio of the NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the polyol containing the polyalkylene oxide (A) is in the range of 1.60 to 4.40. and more preferably in the range of 1.90 to 3.60.
  • the NCO/OH ratio is in the range of 2.20 to 3.60.
  • isophorone diisocyanate is used as the polyisocyanate (C)
  • polyoxyalkylene glycol monoalkyl ethers polyoxyalkylene glycol monoalkenyl ethers, and polyoxyalkylene glycol monophenyl ethers for particularly excellent coatability when coated with a coating machine or the like.
  • a urethane prepolymer (D) by adding one or more of them.
  • the urethane prepolymer (D) tends to be excellent in coatability, and while maintaining high transparency, the resulting urethane tends to have low staining resistance and low tackiness. Therefore, it is preferable to add polyoxyethylene glycol monomethyl ether having a molecular weight of 250 or more and 1300 or less.
  • silicone component monool, polyol, polyamine
  • fluorine component having a reactive group
  • the polyalkylene oxide (B) and other polyols and monools (AC) when forming the urethane prepolymer (D), in addition to the polyalkylene oxide (A), when adding the polyalkylene oxide (B) and other polyols and monools (AC), if too much, the amount of hydroxyl groups in the system When the NCO/OH ratio becomes too low, it becomes difficult to form an NCO-terminated prepolymer, or gelation or thickening tends to occur, resulting in poor moldability and poor transparency of the resulting prepolymer or urethane cured product. Therefore, it is preferable to add the polyalkylene oxide (B) and other polyols and monools (AC) in a total amount of 30 parts by weight or less to 100 parts by weight of the polyalkylene oxide (A). Among them, the handling property is good, it is easy to express higher transparency, and it is easy to express higher strength. Adding in ranges is most preferred.
  • a urethanization catalyst, a solvent, a plasticizer, a leveling agent, and other additives may be added as necessary to form the urethane prepolymer (D).
  • the polyalkylene oxide (A) and the polyisocyanate ( Based on the total amount of the polyol and polyisocyanate containing C), it is preferable that the urethanization catalyst containing the metal component is contained in the range of 0.001 to 0.2% by weight, and more preferably the urethanization catalyst containing the metal component is 0. 0.003 to 0.1 weight percent, most preferably 0.005 to 0.05 weight percent.
  • the urethanization catalyst containing a metal component is not particularly limited as long as it is a compound containing a metal component and exhibiting urethanization activity.
  • An organometallic compound containing one or more metals selected from Fe, Sn, Zr, Ti, and Al. is preferably Among them, one of Sn catalysts that are easily available and have low temperature dependence of catalytic activity, and metal chelate catalysts such as Fe chelate catalysts, Zr chelate catalysts, Ti chelate catalysts, and Al chelate catalysts that are easy to adjust reactivity, or
  • the use of two or more catalysts is more preferable because the NCO-terminated urethane prepolymer can be efficiently formed, and the use of the Fe chelate catalyst alone is most preferable.
  • the Sn catalyst is not particularly limited, examples thereof include dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diversate, dibutyltin bis(acetylacetonate), and the like.
  • the Fe chelate catalyst is not particularly limited.
  • Al chelate catalysts such as acetate include aluminum trisacetylacetonate and the like.
  • the urethane prepolymer (D) is formed in advance, it is not particularly limited, but it is preferable to mix the organic solvent in an amount ratio such that the solid content concentration is in the range of 60 to 99% by weight, more preferably 70 to 97% by weight. %, most preferably in the range of 85-95% by weight.
  • solvents examples include methyl ethyl ketone, ethyl acetate, toluene, xylene, acetone, benzene, dioxane, acetonitrile, tetrahydrofuran, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide, glycol ether solvents, and the like.
  • solvents include methyl ethyl ketone, ethyl acetate, toluene, xylene, acetone, benzene, dioxane, acetonitrile, tetrahydrofuran, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide, glycol ether solvents, and the like.
  • solvents include methyl ethyl ketone, ethyl acetate, toluene, xylene, acetone, benzene, dioxane, acetonitrile
  • urethane that stays in the system during drying and curing for a long period of time to maintain compatibility and stably suppresses curing shrinkage that tends to occur during reaction curing, and has good moldability and a good appearance without wrinkles.
  • glycol ether solvent with an sp value of 8.0 or more, such as diethylene glycol diethyl ether (sp value 8.2, boiling point 189 ° C.), triethylene glycol dimethyl ether (sp value 8.4, boiling point 216°C), diethylene glycol ethyl methyl ether (sp value 8.1, boiling point 176°C), diethylene glycol dimethyl ether (sp value 8.1, boiling point 162°C), tetraethylene glycol dimethyl ether (sp value 8.5, boiling point 275°C) , propylene glycol monomethyl ether acetate (sp value 8.7, boiling point 146 ° C.), ethylene glycol monomethyl ether acetate (sp value 9.0, boiling point 145 ° C.), ethylene glycol monobutyl ether acetate (sp value 8.9, boiling point 188° C.), methoxybutyl acetate (sp value 8.7,
  • the preparation of the urethane prepolymer (D) is not particularly limited as long as it is a method capable of uniformly dispersing and reacting the raw materials.
  • a method of stirring using a machine can be mentioned.
  • the stirrer include a general-purpose stirrer, a rotation-revolution mixer, a disper disperser, a dissolver, a kneader, a mixer, a laboplastomill, a planetary mixer, and the like.
  • the molecular weight of the NCO-terminated urethane prepolymer (D) is not particularly limited, but the weight-average molecular weight measured by gel permeation chromatography is preferably in the range of 2,500 to 500,000, since the handling property tends to be better. , more preferably in the range of 5,000 to 200,000, and more preferably in the range of 10,000 to 100,000.
  • the active hydrogen group-terminated urethane prepolymer (E), which is one aspect of the present invention, is not particularly limited, but is preferably a reaction product of an NCO-terminated urethane prepolymer (D) and a polyalkylene oxide (B).
  • Urethane prepolymer (D) preferably comprises at least polyalkylene oxide (A) and polyisocyanate (C).
  • the method for producing the urethane prepolymer (E) is not particularly limited, but the total amount of NCO groups of the polyisocyanate (C) with respect to the total amount of active hydrogen groups containing the polyalkylene oxide (A) and the polyalkylene oxide (B). (NCO/OH molar ratio) of 0.10 to 0.70 to produce an active hydrogen group-terminated urethane prepolymer (E). That is, the molar ratio of the total amount of polyisocyanate groups of all raw materials to the total amount of active hydrogen groups of all raw materials including the raw materials of the urethane prepolymer (D) (total NCO/total OH molar ratio) is 0.10 to 0.70. It is preferable to mix each raw material containing the polyalkylene oxide (B) so that the ratio is the same.
  • a urethane prepolymer ( E) and it is easy to stably form a more highly transparent urethane cured product.
  • the final NCO/OH ratio is mixed at a ratio of 0.15 to 0.60. is preferred, and more preferably in the range of 0.20 to 0.50.
  • the final NCO/OH ratio is 0.20 to 0.40.
  • isophorone diisocyanate is used as the polyisocyanate (C)
  • transparency tends to be good while suppressing gelation and high viscosity. therefore most preferred.
  • the weight ratio of polyalkylene oxide (A) to polyalkylene oxide (B) of all raw materials is preferably in the range of 10/90 to 90/10, More preferably, it is in the range of 25/75 to 80/20, and most preferably in the range of 40/60 to 75/25, because it tends to exhibit higher strength while stably expressing transparency.
  • the average number of functional groups of the polyol which is a combination of polyalkylene oxide (A), polyalkylene oxide (B), other polyols, and monool (AC), is not particularly limited. It is preferably in the range of 5-4.5 functionality, more preferably in the range of 2.8-3.9 functionality, most preferably in the range of 3.1-3.8.
  • the average functional group number of polyol refers to the value obtained from the molar fraction and content of each raw material.
  • the polyalkylene oxide (B) used to form the active hydrogen group-terminated urethane prepolymer (E) is the NCO-terminated urethane prepolymer (D).
  • the weight ratio ((E)-forming polyalkylene oxide (B)/(D)-forming polyalkylene oxide (B)) to the added amount of the polyalkylene oxide (B) used for the formation is 70/30 to 99.9. /0.1, more preferably 80/10 to 99/1, and most preferably 90/10 to 97/3.
  • urethane prepolymer (E) For the formation of the urethane prepolymer (E), other additives such as polyols, monools, urethanization catalysts, solvents, plasticizers, leveling agents, reaction retarders and other additives may be added as necessary. Moreover, when forming the urethane prepolymer (D), the added additives may remain as they are.
  • the other raw materials that are preferably included when forming the urethane prepolymer (E) are not particularly limited, but the same raw materials and amounts used as the other raw materials that are preferably included when forming the urethane prepolymer (D). and can be suitably applied.
  • the urethane prepolymer (E) is easy to suppress the increase in viscosity over time, has excellent storage stability, and is easy to improve handleability and curability while adjusting the viscosity to an appropriate level. may be added and is preferred.
  • the solid content concentration of the urethane prepolymer (E) is not particularly limited, but it is likely to exhibit good viscosity and good handling properties, so it should be contained in an amount ratio in the range of 60 to 99% by weight. is preferred, more preferably in the range of 80-97% by weight, most preferably in the range of 85-95% by weight.
  • the urethanization catalyst containing a metal component is preferably contained in the urethane prepolymer (E) in an amount of 0.001 to 0.2% by weight, more preferably 0.003 to 0.003%. 0.1% by weight, most preferably 0.005-0.05% by weight.
  • the method for preparing the urethane prepolymer (E) is not particularly limited as long as the method can uniformly disperse and react the raw materials. Suitable reaction conditions can be employed.
  • the ratio of the NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the final polyol can be adjusted, desired tensile strength, coatability, solution
  • a small amount of other polyols and monools (BC) may be added for adjusting the composition to obtain viscosity.
  • polys and monools can be appropriately selected from those that do not impair the transparency and physical properties of the prepolymer, and are not particularly limited.
  • examples include polycarbonate polyols, polytetramethylene glycol, polyolefin polyols, acrylic Commercially available polyols such as polyols, polyester polyols, Mannich polyols, sucrose polyols, aliphatic diamine polyols, polyethylene glycols, polycaprolactone polyols, fluorinated polyols, silicone-containing polyols, phosphorus-based polyols, polyoxyalkylene glycol monoalkyl Ethers, polyoxyalkylene glycol monoalkenyl ethers, polyoxyalkylene glycol monophenyl ethers, monools such as silicone-containing monools, low molecular weight organic compounds such as cyclohexanedimethanol, tetraethylene glycol, tripropylene glycol,
  • sucrose polyol or polytetramethylene glycol when added, it is preferable to contain sucrose polyol or polytetramethylene glycol because it has relatively good compatibility, tends to exhibit high transparency, and tends to increase strength, and in that case, it is difficult to increase the viscosity. It is preferably added in the range of 0.1 to 13 parts by weight, more preferably in the range of 0.5 to 10 parts by weight, because of its excellent handleability. Most preferably, the sucrose polyol is added in the range of 1 to 10 parts by weight, since it facilitates development of higher strength.
  • silicone components (monools, polyols, polyamines) having reactive groups and fluorine components having reactive groups because they tend to remain and contaminate, but are not particularly limited.
  • the urethane prepolymer (E) composition is not particularly limited, but if necessary, the viscosity is adjusted by concentration or solvent addition, and additives such as chain extenders, antistatic agents, plasticizers, reaction retarders, leveling agents, and other Additives may be added and mixed to prepare the urethane prepolymer composition.
  • the chain extender is not particularly limited, and examples thereof include ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, pentaerythritol, and low molecular weights with a molecular weight of 1000 or less.
  • Glycols such as polyalkylene glycol; and polyvalent amines such as ethylenediamine, N-aminoethylethanolamine, piperazine, isophoronediamine and xylylenediamine.
  • polyvalent amines are preferable because they form urethane urea and easily obtain urethane having good physical properties.
  • antistatic agent examples include, but are not particularly limited to, alkali metal salts and ionic liquids. salts, pyridinium salts and the like.
  • plasticizers include, but are not limited to, fatty acid esters, alicyclic esters, and polyether esters. Examples include epoxidized fatty acid esters, myristate esters, polyalkylene glycol terminal ester-modified compounds, and the like. mentioned.
  • the reaction retarder is not particularly limited. Inhibitors, etc.), additives that reduce the reactivity of isocyanates and polyol prepolymers (acid retarders, stabilizers, etc.) can be used, and such retarders can be used in combination. preferable.
  • reaction retarder it is preferable to use one or more of an acid retardant, a chelate compound, a thickening inhibitor, and a stabilizer, more preferably an acid retardant, a chelate compound, and a thickening inhibitor. It is preferable to use 2 to 4 of any one of the agent and the stabilizer, and most preferably, 3 to 4 types including one or more of each of the acid retarder, chelate compound, and anti-thickening agent are used in combination. . Moreover, each of the acid retarder, chelate compound, and thickening inhibitor is not limited to one type, and two or more types can be used in combination, which is preferable.
  • it preferably contains an acid retardant because it suppresses wrinkles and tends to improve moldability, and although it is not particularly limited, it preferably contains an acid with a pKa of 5.0 or less.
  • Examples of such acids with a pKa of 5.0 or less include phosphoric acid retarders such as hydrochloric acid, nitric acid, phosphoric acid, and acidic phosphoric acid esters having 2 to 20 carbon atoms such as ethyl acid phosphate and 2-ethylhexyl acid phosphate.
  • phosphoric acid retarders such as hydrochloric acid, nitric acid, phosphoric acid, and acidic phosphoric acid esters having 2 to 20 carbon atoms such as ethyl acid phosphate and 2-ethylhexyl acid phosphate.
  • a phosphorus-based acid retardant because it tends to achieve a good balance between reactivity and physical properties.
  • the content of the acid retarder when used is preferably in the range of 0.001 to 1 part by weight, more preferably 0.005 to 0.1 part by weight, relative to 100 parts by weight of the prepolymer (E).
  • the pH of the urethane prepolymer (E) when using an acid retarder is preferably in the range of pH 4 to 9 because the curability tends to be high and the liquid property tends to be low corrosive.
  • the pH of the urethane prepolymer (E) refers to the value measured with a pH meter after dispersing it in a liquid mixture of water and IPA at a weight ratio of 5:3 at a solid content of 7% by mass.
  • one or more of a keto-enol tautomer compound and a triazole derivative are included because it is easy to adjust the catalytic activity to suppress thickening after mixing with the cross-linking agent and to improve moldability. is preferred, and it is more preferred to use one or more (total of two or more) each of a ketoenol tautomeric compound and a triazole derivative as the chelate compound.
  • the keto-enol tautomer compound is not particularly limited, it is preferably one or more of ethyl acetoacetate and acetylacetone, since it is easy to adjust the catalytic activity and improve moldability.
  • a ketoenol tautomer compound When such a ketoenol tautomer compound is included, its content is such that the moldability tends to be better, so the molar ratio (ketoenol tautomer compound/metal catalyst) with respect to the urethanization catalyst containing the metal component is 10 times or more. preferably in the range of 50 to 5,000 times, preferably in the range of 0.01 to 20 parts by weight, more preferably 0 .5 to 10 parts by weight.
  • the triazole derivative is not particularly limited, but is preferably a benzotriazole derivative having a phenolic hydroxyl group, more preferably a urethane derivative, because it has a high effect of suppressing curing shrinkage and easily forms a urethane with a good coating film appearance.
  • a benzotriazole derivative having a phenolic hydroxyl group in which an aryl group containing a phenolic hydroxyl group is directly linked to benzotriazole is preferable, since it is liquid at room temperature and has a molecular weight in the range of 300 to 700, since the transparency tends to be high.
  • Examples include, but are not limited to, 2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methylphenol (BASF Tinuvin 571), 3-(2H-benzotriazol-2-yl)-5 -(1,1-dimethylethyl)-4-hydroxy-benzenepropionic acid having 7 to 9 carbon atoms (tinuvin 99-2, tinuvin 384-2 manufactured by BASF) and the like.
  • the content is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E). is more preferably in the range of 0.2 to 2 parts by weight, and most preferably in the range of 0.3 to 1.5 parts by weight.
  • the ratio of the mixed weight should be the weight of the ketoenol tautomer compound relative to the triazole derivative, since wrinkles in the resulting urethane are likely to be suppressed and moldability is likely to be good.
  • the ratio (ketoenol tautomeric compound/triazole derivative) is preferably 0.5 or more and 50 or less, more preferably 2 or more and 20 or less.
  • thickening inhibitors include, but are not limited to, compounds that delay the increase in molecular weight and degree of cross-linking associated with thickening during reaction, and compounds that suppress thickening even when molecular weight increases due to reaction.
  • a compound that has reactivity with an isocyanate cross-linking agent and retards the increase in molecular weight by proceeding with the reaction of the main prepolymer (E) and the isocyanate cross-linking agent (F) in parallel/or preferentially the molecular weight increase compounds that suppress/or reduce the degree of increase in the viscosity of the system by improving the affinity or changing the structure associated with this.
  • the thickening inhibitor is preferably a compound having a lower molecular weight than the prepolymer (E) and having an active hydrogen group reactive with the isocyanate cross-linking agent (F).
  • the reaction of the main prepolymer (E) and the isocyanate cross-linking agent (F) proceeds in parallel / or preferentially, and the cross-linking between the prepolymers is suppressed, making it easy to suppress thickening.
  • Such a thickening inhibitor has a molecular weight of 1,000, which tends to increase the reactivity of active hydrogen groups, because the reaction tends to proceed preferentially over the main agent, and it is easy to suppress cross-linking between prepolymers to suppress thickening.
  • the following compounds are preferred. Among them, if the molecular weight is too low, the reactivity of the active hydrogen group becomes too high, and the reaction is consumed at an early stage, the period during which thickening can be suppressed is shortened, and the reaction retardation effect is reduced. If the molecular weight is too high, the viscosity tends to increase during the reaction, and the reactivity of the active hydrogen groups also decreases, making it easier for the base resin to react with each other.
  • the molecular weight is in the range of 60-700, more preferably in the range of 90-300, and most preferably in the range of 100-160.
  • the degree of cross-linking is less likely to decrease during the reaction and the tensile strength is less likely to decrease. preferable. Among them, if there are too many active hydrogen groups, the degree of cross-linking tends to increase during the reaction between the anti-thickening agent and the isocyanate cross-linking agent, and the anti-thickening effect tends to decrease.
  • the content is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E).
  • urethane is easily formed, it is more preferably in the range of 0.2 to 2 parts by weight, most preferably 0.3 to 1.5 parts by weight, relative to 100 parts by weight of the urethane prepolymer (E).
  • the thickening inhibitor has an active hydrogen group, the thickening inhibitory effect tends to be high while maintaining the physical properties of the urethane. It is preferable to add an anti-thickening agent within the range, more preferably within the range of 5 to 20 mol %.
  • stabilizers include, but are not limited to, compounds that suppress the reactivity of isocyanates and polyol prepolymers, such as phenolic antioxidants.
  • this embodiment does not contain a triazole derivative as a stabilizer.
  • the isocyanate or polyol prepolymer is stabilized to reduce reactivity and increase viscosity. It is preferable because it is easy to suppress.
  • BHT which is easily available and has good compatibility with urethane, or a hindered phenol-based antioxidant having a molecular weight of 1,000 or less
  • Irganox series, etc. a hindered phenol-based antioxidant having a molecular weight of 1,000 or less
  • Irganox 1135, Irganox 1726, and the like are preferable because the transparency of the resulting urethane tends to be high if they are liquid at room temperature, but if they have a highly compatible structure such as BHT, Irganox 1076, and Irganox 1010, prepolymers can be used. It is suitable for use because it is dispersed uniformly in a liquid and does not easily deteriorate transparency during urethane formation.
  • the content of the stabilizer when used is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E).
  • the content of the stabilizer is more preferably in the range of 0.2 to 2.5 parts by weight, most preferably in the range of 0.5 to 2 parts by weight, because urethane is easily formed.
  • the mixing process of these additives may be carried out at room temperature, since there is little change in weight due to volatilization, or may be carried out with heating to improve solubility and mixability.
  • the mixing method is not particularly limited.
  • concentration step which is performed as necessary, there is no particular limitation as long as the method can adjust the concentration to a predetermined level, such as bubbling with nitrogen or the like, heating, or pressure reduction.
  • a urethane prepolymer composition solution containing a urethane prepolymer (E), an organic solvent, and an additive, which is one aspect of the present invention, has excellent handling properties and is easy to handle. It is preferable to mix them in the same amount ratio, more preferably in the range of 70 to 97% by weight, and most preferably in the range of 85 to 95% by weight. In addition, it is more preferable that the viscosity is in the range of 3 to 50 Pa s at 25 ° C., because the urethane cured product tends to be stably highly transparent due to excellent handling properties such as mixing and coating of the cross-linking agent. is in the range of 5 to 30 Pa ⁇ s.
  • the transparency of the urethane prepolymer composition solution is not particularly limited, it is preferably transparent, and such a property can be easily obtained by containing the urethane prepolymer (E) of the present invention.
  • the haze at a thickness of 1 cm is preferably 15% or less, more preferably 5% or less.
  • It can be produced by carrying out a urethanization reaction, a urea formation reaction, and, if necessary, drying at room temperature or at a high temperature of 150° C. or lower in the presence of a stabilizer, a chain extender, a cross-linking agent, other additives, and the like.
  • an isocyanate compound (F) as a cross-linking agent because it is easy to exhibit high curability and high transparency more stably, and the urethane prepolymer (E) and the isocyanate compound (F) are included. It preferably contains a urethane-forming composition or a urethane-forming composition solution containing the aforementioned urethane prepolymer composition solution and the isocyanate compound (F).
  • the isocyanate compound (F) used as the cross-linking agent is not particularly limited, but the same polyisocyanate as the above-mentioned polyisocyanate (C) can be exemplified and can be preferably used.
  • the isocyanate compound (F) and the isocyanate compound (C) may be the same or different.
  • the urethane prepolymer (E) has excellent curability and tends to be highly transparent.
  • the ratio (M NCO /M OH ) of the amount (M NCO ) of isocyanate groups derived from the isocyanate compound (F) to the total amount (M OH ) of derived hydroxyl groups and hydroxyl groups derived from other active hydrogen compounds is 0. It is preferably 0.5 or more and less than 4.0, more preferably 0.7 or more and less than 2.5 in terms of molar ratio.
  • the weight ratio of the urethane prepolymer (E) to the isocyanate compound (F) is 99, since higher transparency, higher curability, and higher strength are likely to occur. /1 to 50/50, more preferably 90/10 to 70/30.
  • the viscosity of the urethane-forming composition and the urethane-forming composition solution at 25°C is not particularly limited, it is usually 0.001 Pa s or more and 100 Pa s or less. Therefore, it is 0.2 Pa ⁇ s or more and 30 Pa ⁇ s or less, more preferably 0.5 Pa ⁇ s or more and 10 Pa ⁇ s or less.
  • the coatability is remarkably excellent when coated with a coating machine or the like, it is possible to obtain a urethane coating film with a uniform thickness, so it is not particularly limited, but it is preferable to form and cure the coating film. .
  • a coating film of the cured urethane is formed on a base substrate such as a PET film or COP film by various methods, and if necessary, bonding or molding with another substrate such as release PET or release paper is performed. can form a polyurethane sheet having the urethane coating on the substrate.
  • a urethane coating film with high transparency and low tackiness can be produced with high productivity, which is preferable. More preferably, it is excellent in curability, and it is easy to obtain a highly transparent coating film with a uniform thickness from a thin film to a high thickness. It is preferable to include the step of coating.
  • the urethane prepolymer (E) since the urethane prepolymer (E) has an aromatic amine residue around the molecular end, it has remarkably high initial curability, does not easily flow even at high temperatures, and is rapidly cured with little unevenness in thickness. It is preferable to dry and cure in the range of 1 minute to 8 minutes, and more preferably dry and cure in the range of 2 minutes to 6 minutes at 120 to 145 ° C. because the productivity of the urethane coating film is more likely to be excellent. .
  • Cured urethane products and urethane coatings are not particularly limited in their uses, and can be used in any application where ordinary polyurethanes are used, but they are particularly suitable for applications requiring mechanical properties, viscous/adhesive properties, etc. It can be used preferably.
  • sealing materials for construction and civil engineering adhesives such as elastic adhesives for construction, packing tapes and surface protection films, various adhesives represented by optics, paints, elastomers, waterproof coating materials, flooring materials, Applications such as plasticizers, flexible polyurethane foams, semi-rigid polyurethane foams, and rigid polyurethane foams are exemplified and can be preferably used.
  • the number average molecular weight of the polyalkylene oxide was calculated from the hydroxyl value of the polyalkylene oxide and the number of hydroxyl groups in one molecule of the polyalkylene oxide.
  • Mw/Mn molecular weight distribution of polyalkylene oxide
  • the molecular weight distribution (Mw/Mn) of polyalkylene oxide was measured by the following procedure using gel permeation chromatography (GPC).
  • THF is used as a developing solvent
  • measurement is performed at a column temperature of 40 ° C.
  • a cubic approximate curve using 8 standard polystyrenes manufactured by Tosoh Corporation with a known molecular weight is used as a calibration curve to determine the molecular weight distribution (Mw / Mn).
  • Mw / Mn molecular weight distribution
  • HLC-8320GPC manufactured by Tosoh Corporation was used as a measurement apparatus, and HLC-8320GPC-ECOSEC-WorkStation manufactured by Tosoh Corporation was used for analysis.
  • the polyalkylene oxide (A2) uses an IPZ catalyst and triisopropoxyaluminum in combination in the same manner as in (A1), adds a propylene oxide group as an alkylene oxide group, removes the propylene oxide remaining in the system, and then blocks ethylene oxide. and is a diol with a low degree of unsaturation containing primary hydroxyl groups.
  • Polyalkylene oxide (A4) uses a trifunctional polyoxypropylene triol having a molecular weight of 600 as an initiator, uses an IPZ catalyst and triisopropoxyaluminum in combination in the same manner as in (A2), and adds a propylene oxide group as an alkylene oxide group. After removing the propylene oxide remaining in the system, ethylene oxide is added in blocks, and the triol contains a primary hydroxyl group and has a low degree of unsaturation.
  • polyalkylene oxide (A3) Sannics PP-3000 manufactured by Sanyo Chemical Industries, Ltd., which is a polypropylene glycol synthesized by adding only propylene oxide by a conventional method, was used.
  • (A1) to (A4) are shown in Table 1.
  • (A1), (A2), and (A4) have an extremely small amount of unsaturated monol (extremely low degree of unsaturation) and a narrow molecular weight distribution.
  • (A3) is a polyalkylene oxide having a general degree of unsaturation and molecular weight distribution. All of the polyalkylene oxides (A1) to (A4) used in the examples were used after heating and vacuum dehydration. Moreover, the polyalkylene oxide produced using the IPZ catalyst was used after removing the catalyst including aluminum.
  • Monool (AC1) is a bifunctional polyoxytetramethylene glycol having a molecular weight of 2,100 and having a molecular weight of 2,000 or more and having no alkylene oxide residue.
  • Polyalkylene oxide (B) (Raw materials 2-1) Polyalkylene oxides (B1), (B2), and (B3) used in the examples Polyalkylene oxide (B1) is a commercially available tolylenediamine-based polypropylene glycol, which has a nominal functionality of 4.0, a hydroxyl value of 356 mgKOH/g, and a viscosity of 9500 mPa s at 25°C. AR-2589 was used. The molecular weight calculated from this property is 630, and the aromatic amine residue content is 19%.
  • Polyalkylene oxide (B2) is a commercially available tolylenediamine-based polypropylene glycol/polyethylene glycol copolymer having a nominal functional group number of 4.0, a hydroxyl value of 413 mgKOH/g, and a viscosity of 15000 mPa s at 25°C.
  • Sannics HM-551 manufactured by Sanyo Chemical Industries was used. The molecular weight calculated from this property is 540, and the aromatic amine residue content is 22%.
  • Polyalkylene oxide (B3) is a commercially available tolylenediamine/glycol combined initiation system polyalkylene oxide, which has a nominal functionality of 3.2, a hydroxyl value of 310 mgKOH/g, and a viscosity of 2200 mPa s at 25°C.
  • BC1 Active hydrogen compounds (BC1), Sannics GP600 manufactured by Sanyo Chemical Industries, Ltd., which is a commercially available trifunctional polypropylene triol with a molecular weight of 600, was used.
  • active hydrogen compound (BC2) O-855W manufactured by Toho Chemical Industry Co., Ltd., which is a sucrose-based polyol having a nominal number of functional groups of 8.0 and a molecular weight of 1,190, was used.
  • the active hydrogen compound (BC1) is a polyalkylene oxide having a molecular weight equivalent to that of the polyalkylene oxide (B1) having an aromatic amine residue and having no aromatic amine residue, and the active hydrogen compound (BC2) is an aromatic amine. It is a polyalkylene oxide containing a sucrose residue that has no residue but has a rigid cyclic sugar structure with a high number of functional groups. is a compound that does not have (Raw material 3) Isocyanate compounds (C) and (F) used in Examples and Comparative Examples In Examples and Comparative Examples, the following three types were used as the isocyanate compounds (C) and (F).
  • Isocyanate compound (C1) isophorone diisocyanate (IPDI).
  • (C1) is a diisocyanate having a primary NCO group and a secondary NCO group as isocyanate groups.
  • Isocyanate compound (C2) 1,6-hexamethylene diisocyanate (HDI).
  • C2 is a diisocyanate having only primary NCO groups as isocyanate groups.
  • Isocyanate compound (F1) Coronate HXLV manufactured by Tosoh Corporation, which is a modified isocyanate of 1,6-hexamethylene diisocyanate (HDI), and the average functionality of the isocyanate group in (F1) is 3.2.
  • Raw Material 4 Urethane Catalyst In Examples and Comparative Examples, a urethanization catalyst was added as an additive.
  • a urethanization catalyst Nasem iron manufactured by Nippon Kagaku Sangyo Co., Ltd., which is iron trisacetylacetonate (abbreviation: Fe(acac)3), was used. This catalyst was added as a masterbatch of 5% solution in order to improve workability.
  • Vacuum dehydration was performed for more than 1 hour to remove water. Then, in the system using a solvent after cooling to 50° C. or less, after adding the solvent, isocyanate, and catalyst masterbatch, the temperature was raised to a predetermined temperature, and the reaction was started when the predetermined temperature was reached. After the reaction for 3 hours, it was confirmed by FT-IR that NCO groups remained and no change was observed in liquid properties or no change was observed in the amount thereof, and an NCO group-terminated urethane prepolymer (D ).
  • a release PET Purex A31 of 20 cm ⁇ 20 cm was attached to the urethane cured product obtained by the above curability evaluation, and the handleability of the urethane cured product was evaluated according to the following criteria.
  • Example 1 60 parts by weight of polyalkylene oxide (A1) is added according to the composition ratios described in Production Example 1 of Urethane Prepolymer (D) and Urethane Prepolymer (E) and Synthesis Example 1 in Table 2 for dehydration to give an isocyanate compound.
  • the active hydrogen group-terminated urethane prepolymer (E1) is obtained by adding only the aromatic amine polyol after synthesizing the NCO group-terminated urethane prepolymer (D).
  • % is the aromatic amine polyol structure, and the aromatic amine polyol content ratio in the total polyol is higher than 85.1 mol %.
  • Table 3 shows the results of Example 1.
  • the urethane prepolymer (E1) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. Cured urethane products also have good wettability and flexibility. It was excellent in handleability and had high transparency.
  • Examples 2 to 13 Manufactured by using various solvents according to the composition ratios described in Synthesis Examples 2 to 13 in Table 2 with respect to Example 1, and changing the types of polyalkylene oxides (A) and (B) and the ratio of the amount charged. It is.
  • An NCO group-terminated urethane prepolymer (D) was produced in the same manner as in Example 1, and the reaction was completed by mixing with a polyalkylene oxide (B) having an aromatic amine residue to obtain an active hydrogen group-terminated urethane prepolymer. Since the polymer (E) was produced, theoretically, 100% of the molecular terminals having active hydrogen groups have an aromatic amine polyol structure, which is higher than the aromatic amine polyol content ratio in the total polyol. .
  • Table 3 shows the results of Examples 2-13.
  • the content and content ratio of the polyol structure having a rigid aromatic amine residue is high, and the urethane prepolymer (E) is slightly cloudy and has slightly low wettability.
  • the content and content ratio of the polyol structure with rigid aromatic amine residues was low, slight tack was observed, but both were highly transparent with no gels or precipitates, and the initial curability was remarkable. Good and remarkably high strength can be expected, and all of the urethane cured products were highly transparent.
  • Examples 14-16 After synthesizing an NCO group-terminated urethane prepolymer (D) according to Synthesis Examples 14 to 16 shown in Table 4, a polyalkylene oxide (B3) containing glycol was added as a polyol having an aromatic amine residue. .
  • the molar ratio of the tetrafunctional aromatic amine and the bifunctional glycol is 6/4, and the polyol having the tetrafunctional aromatic amine residue has a higher number of functional groups and has an amine structure with catalytic activity to react. Therefore, 60% or more of the molecular ends having active hydrogen groups are aromatic amine polyol structures, which is higher than the aromatic amine polyol content ratio in all polyols.
  • Table 5 shows the results of Examples 14-16.
  • the urethane prepolymer (E) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength.
  • the cured urethane product also has good wettability and flexibility. It was excellent in handleability and had high transparency.
  • Examples 17-22 After synthesizing an NCO group-terminated urethane prepolymer (D) according to Synthesis Examples 17 to 22 shown in Table 4, in addition to a polyol having an aromatic amine residue, a small amount of polyol not containing an aromatic amine residue is used in combination.
  • the urethane prepolymer (E) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength.
  • the cured urethane product also has good wettability and flexibility. It was excellent in handleability and had high transparency.
  • Example 23 According to Synthesis Example 23 described in Table 4, a polyalkylene oxide (A3) having a general degree of unsaturation and molecular weight distribution is used instead of a polyalkylene oxide (A1) having a low degree of unsaturation to produce a urethane prepolymer (E). It is manufactured. Table 5 shows the results. Even when polyalkylene oxide (A3), which has a general degree of unsaturation and molecular weight distribution, is used, it has a high polyalkylene oxide structure with an aromatic amine residue at the molecular end, so there are no gels or precipitates.
  • urethane prepolymer (E) that can be expected to have transparency, high curability, and strength of a cured urethane product.
  • Example 24 According to Synthesis Example 24 described in Table 4, in addition to polyalkyne oxide (B) having a rigid aromatic amine residue, a rigid cyclic sucrose structure with a high functional group is added to Example 23.
  • a urethane prepolymer (E) that can be expected to have a higher degree of curability while maintaining a high degree of transparency, and that the urethane cured product will have a higher strength.
  • Example 25 After synthesizing an NCO group-terminated urethane prepolymer (D) using polyalkyloxide (A2) having an ethylene oxide residue at the molecular end and a high ratio of primary hydroxyl groups according to Synthesis Example 25 described in Table 4. , which is a urethane prepolymer (E25) synthesized by adding only a polyalkyloxide (B1) having only a propylene oxide residue and an aromatic amine residue with almost no primary hydroxyl groups.
  • the urethane prepolymer (E25) Since the urethane prepolymer (E25) has almost no primary hydroxyl groups derived from the polyalkylene oxide (A2), it is shown that the polyalkyl oxide (B1) having aromatic amine residues is unevenly distributed at the molecular ends. It was shown to be higher than the aromatic amine polyol content ratio in all polyols. Table 5 shows the results of Example 25.
  • the urethane prepolymer (E25) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. Cured urethane products also have good wettability and flexibility. It was excellent in handleability and had high transparency.
  • urethane prepolymers (E) obtained in this example are highly transparent regardless of the reaction conditions such as the amount of solvent, and almost no gel-like matter, deposits on the flask wall, sedimented components, etc. are observed. Viscosity was also in the range of 1 to 100 Pa ⁇ s, and good fluidity was exhibited. Moreover, all of the urethane cured products obtained by the curability evaluation had no shrinkage and were visually highly transparent, and had a haze of 5% or less.
  • the localization and maldistribution of the aromatic amine polyol around the ends of the molecules makes the urethane prepolymer (E) highly transparent and exhibits remarkably good initial curability. It was shown by the appearance that a significantly higher strength can be expected.
  • ⁇ Comparative example> (Comparative example 1) A urethane prepolymer (EC1) having no polyalkylene oxide structure and having aromatic amine residues unevenly distributed at the molecular ends, synthesized according to the composition ratio shown in Synthesis Example 26 in Table 6 (EC1). A polyalkylene oxide (B2) having an ethylene oxide residue was used to form the urethane prepolymer (EC1). is shown to be a polyol structure derived from a polyalkylene oxide (A1) having no aromatic amine residue, and the content of the polyalkylene oxide structure having an aromatic amine residue in the entire molecular terminal It has a low content of polyalkylene oxide structures having aromatic amine residues. Table 7 shows the results of Comparative Example 1.
  • Comparative Example 6 After synthesizing an NCO group-terminated urethane prepolymer (DC6) having a polyalkylene oxide structure having an aromatic amine residue according to the composition ratio described in Synthesis Example 31 in Table 6, it does not have an aromatic amine residue.
  • a urethane prepolymer (EC6) obtained by adding only an active hydrogen compound (BC1) to the terminal and having a polyalkylene oxide structure having an aromatic amine residue only inside the molecule and not at the terminal.
  • Table 7 shows the results of Comparative Example 6. Curability is poor because it does not have a polyalkylene oxide structure with an aromatic amine residue at the molecular end, compatibility is poor, opacity makes it difficult to use, and transparency of the cured urethane obtained cannot be expected. Met. (Comparative Example 7) After synthesizing an NCO group-terminated urethane prepolymer (DC7) having a polyalkylene oxide structure having an aromatic amine residue according to the composition ratio described in Synthesis Example 32 in Table 6, it does not have an aromatic amine residue.
  • DC7 NCO group-terminated urethane prepolymer
  • Table 7 shows the results of Comparative Example 7. Since it does not have a polyalkylene oxide structure having an aromatic amine residue at the molecular end, the compatibility is remarkably poor and it is opaque and difficult to use.
  • Comparative Example 8 According to the composition ratio described in Synthesis Example 33 in Table 6, after synthesizing an NCO group-terminated urethane prepolymer (DC8) having a polyalkylene oxide structure having an aromatic amine residue, it does not have a polyalkylene oxide residue.
  • Table 7 shows the results of Comparative Example 8. Since it does not have a polyalkylene oxide structure at the molecular end, compatibility is remarkably poor, and it is opaque and difficult to use, and the obtained urethane cured product cannot be expected to have transparency.
  • urethane cured product Per 100 parts by weight of the solid content of the urethane prepolymers (E) of Examples 2, 12, 18, and 25, 5 parts by weight of acetylacetone as a reaction retarder and 600 ppm of an acidic phosphoric acid ester (JP508 manufactured by Johoku Kagaku Kogyo Co., Ltd.), triazole stable 0.8 parts by weight of the agent Tinuvin 99-2, 0.2 parts by weight of diethylene glycol, 10 parts by weight of hexadecyl 2-ethylhexanoate as a plasticizer, 1-ethyl-3-methylimidazolium bis(fluoromethanesulfonyl) as an antistatic agent ) 1.5 parts by weight of imide and 0.05 parts by weight of F-571 manufactured by DIC as a leveling agent are mixed and dispersed.
  • JP508 manufactured by Johoku Kagaku Kogyo Co., Ltd. triazole stable 0.8 parts by weight of the agent Tinu
  • a urethane coating film was prepared by coating a PET substrate with a thickness of 80 ⁇ m or less and drying at 130° C. for 5 minutes.
  • the viscosity of the composition containing the urethane prepolymer (E) of any example was in the range of 1 to 100 Pa ⁇ s, and the residual liquid of the composition after sheet preparation showed good fluidity even after 24 hours. .
  • the resulting urethane cured product had good wettability, high strength, and high transparency, and could be suitably used for sealants, paints, pressure-sensitive adhesives, adhesives, and the like.
  • the urethane prepolymer (E) in the present invention is a highly transparent urethane prepolymer that does not contain gels or precipitates and has excellent curability. By using it, it is possible to stably form a highly transparent, high-strength, light-releasable urethane coating film with less surface tack.
  • the polyurethane obtained using the urethane prepolymer (E) can be suitably used for sealants, paints, adhesives, adhesives, etc.

Abstract

Provided are: a highly transparent urethane prepolymer having excellent curability and contributing to formation of polyurethanes having high strength; and a cured urethane which is highly transparent and has high strength and little surface tack. The urethane prepolymer is a urethane prepolymer (E) terminated by an active-hydrogen group, the urethane polymer (E) having a C3 or higher, alkylene oxide residue, an aromatic amine residue, and a polyisocyanate residue and a polyol structure locally having an aromatic amine residue at a molecular end.

Description

ウレタンプレポリマー、およびそれを用いたウレタン硬化物Urethane prepolymer and urethane cured product using the same
 本開示は、ウレタンプレポリマーに関する。 The present disclosure relates to urethane prepolymers.
 片末端に不飽和基を有する副生モノオール(以下、不飽和モノオールと記す)を多量に含むポリアルキレンオキシドが、ポリウレタンの原料として用いられている。しかしながら、このポリアルキレンオキシドを用いてポリウレタンを得ようとすると、イソシアネート化合物との反応に伴う硬化(固化)に時間を要して生産性が損なわれるという問題が生じる。 A polyalkylene oxide containing a large amount of a by-product monool having an unsaturated group at one end (hereinafter referred to as an unsaturated monool) is used as a raw material for polyurethane. However, when an attempt is made to obtain a polyurethane using this polyalkylene oxide, there arises a problem that the curing (solidification) associated with the reaction with the isocyanate compound takes a long time, impairing the productivity.
 更に、このような不飽和モノオールを多量に含むポリアルキレンオキシドから得られるポリウレタンは、高分子量になりづらく、引張破断伸びが小さく、引張破断強度も小さい。これに対して、不飽和モノオールを多量に含むポリアルキレンオキシドでも、イソシアネート基の平均官能基数が多いイソシアネート化合物と反応させることで高分子量のポリウレタンを得ることができる。しかしながら、この場合、ポリウレタンは直鎖状に高分子量化するのではなく、密な架橋構造を有する架橋体となるので、得られるポリウレタンは引張破断伸びが小さく、引張破断強度が小さくなってしまう。 Furthermore, the polyurethane obtained from the polyalkylene oxide containing a large amount of unsaturated monool is difficult to have a high molecular weight, has a low tensile elongation at break, and a low tensile strength at break. On the other hand, even a polyalkylene oxide containing a large amount of unsaturated monool can be reacted with an isocyanate compound having a large average number of isocyanate functional groups to obtain a high molecular weight polyurethane. However, in this case, the polyurethane does not have a linearly high molecular weight, but becomes a crosslinked body having a densely crosslinked structure, so that the obtained polyurethane has a low tensile elongation at break and a low tensile strength at break.
 一方、不飽和モノオールは比較的低分子量なので、不飽和モノオールが多量に含まれた従来のポリアルキレンオキシドを含む組成物は粘度が低く、それらの組成物からポリウレタンを得るために塗工機などで塗工した際には、塗工しやすいという利点がある。 On the other hand, since unsaturated monools have relatively low molecular weights, compositions containing conventional polyalkylene oxides containing large amounts of unsaturated monools have low viscosities, and coating machines are used to obtain polyurethanes from these compositions. etc., there is an advantage that it is easy to apply.
 ここで、特許文献1は、不飽和モノオールが少ないポリアルキレンオキシドと芳香族アミン残基を有するポリアルキレンオキシド、1つの水酸基とエチレンオキシド残基を有するポリアルキレンオキシドを含むウレタン形成性組成物、およびそれを用いたウレタンプレポリマーを含むウレタン形成組成物を用いることで、塗工性と生産性が良好で、引張強度の高いポリウレタンが得られることを開示している。 Here, Patent Document 1 discloses a urethane-forming composition containing a polyalkylene oxide having less unsaturated monools, a polyalkylene oxide having an aromatic amine residue, a polyalkylene oxide having one hydroxyl group and an ethylene oxide residue, and It discloses that a polyurethane having good coatability and productivity and high tensile strength can be obtained by using a urethane-forming composition containing a urethane prepolymer using the same.
 しかしながら、特許文献1に記載のこれらのポリウレタン形成性組成物、およびそれを用いたウレタンプレポリマーは、相溶化剤として働きやすい低分子量の不飽和モノオールが少ないポリアルキレンオキシドを必須成分とし、触媒活性を有する剛直な芳香族アミンポリオールを用いるため、特に不飽和モノオールが少ないポリアルキレンオキシドとの相溶性の悪化等により撹拌条件や反応器、溶剤量等の反応条件で透明性が悪化しやすく、また粒子状の析出物やゲル状物の付着等が発生する場合があり、得られるウレタン硬化物も硬くなって濡れにくくハンドリング性に劣る場合があった。 However, these polyurethane-forming compositions described in Patent Document 1 and urethane prepolymers using the same contain as an essential component a polyalkylene oxide containing a small amount of low-molecular-weight unsaturated monools that tend to act as a compatibilizer, and a catalyst. Since active and rigid aromatic amine polyols are used, transparency tends to deteriorate depending on reaction conditions such as stirring conditions, reactor, and solvent amount due to poor compatibility with polyalkylene oxides, which have particularly low unsaturated monools. In addition, particulate deposits and gel-like substances may adhere, and the obtained urethane cured product may become hard and difficult to wet, resulting in poor handleability.
 そのため、不飽和モノオールが少ないポリアルキレンオキシドの使用有無によらず塗工性と生産性が良好で、剛直な芳香族アミンポリオール構造を含み強度が高い高透明のポリウレタンの形成に資するウレタンプレポリマーであって、溶剤量等の条件によらず安定的に析出物やゲル状物がなく、硬化性や透明性が良好なウレタンプレポリマー、およびそれを用いて得られる高透明で強度が高く表面タックが少ないポリウレタンが求められていた。 Therefore, the urethane prepolymer has good coatability and productivity regardless of the use of polyalkylene oxide with less unsaturated monools, and contributes to the formation of a highly transparent polyurethane containing a rigid aromatic amine polyol structure and having high strength. It is a urethane prepolymer that stably has no precipitates or gels regardless of conditions such as the amount of solvent and has good curability and transparency, and a highly transparent, high-strength urethane prepolymer obtained using it. Polyurethane with less tack was desired.
日本国特開2020-158551号公報Japanese Patent Application Laid-Open No. 2020-158551
 硬化性に優れ強度が高いポリウレタンの形成に資する高透明なウレタンプレポリマー、および高透明で強度が高く表面タックが少ないウレタン硬化物を提供する。 Provide a highly transparent urethane prepolymer that contributes to the formation of polyurethane with excellent curability and high strength, and a cured urethane product that is highly transparent, has high strength, and has little surface tack.
 本発明の各態様は以下に示す[1]~[11]である。
[1]炭素数3以上のアルキレンオキシド残基、芳香族アミン残基及びポリイソシアネート残基を有し、分子末端に局在的に芳香族アミン残基を有するポリアルキレンオキシド構造を有する、活性水素基末端のウレタンプレポリマー(E)。
[2]ポリアルキレンオキシド(A)及びポリイソシアネート(C)の反応物であるNCO末端プレポリマー(D)と、芳香族アミン残基と2つ以上の水酸基を有するポリアルキレンオキシド(B)との反応物である、[1]に記載のウレタンプレポリマー(E)。
[3]芳香族アミン残基を有するポリアルキレンオキシド構造またはその残基を5~70重量%含む、[1]または[2]に記載のウレタンプレポリマー(E)。
[4]芳香族アミン残基として、4,4’-ジフェニルメタンジアミン残基、2,4-トリレンジアミン残基及び2,6-トリレンジアミン残基からなる群より選ばれる1種類以上の残基を含む、[1]乃至[3]のいずれかに記載のウレタンプレポリマー(E)。
[5]ポリイソシアネート残基として、脂肪族イソシアネート残基、脂環式イソシアネート残基若しくはこれらの変性体残基、又はこれらの2種類以上の残基を含むことを特徴とする[1]乃至[4]のいずれかに記載のウレタンプレポリマー(E)。
[6]分子末端に局在的に有する芳香族アミン残基を有するポリアルキレンオキシド構造として、ポリプロピレンオキシド残基、ポリプロピレン・エチレンオキシド残基及びポリエチレンオキシド残基からなる群より選ばれる1種類以上の残基を含む、[1]乃至[5]のいずれかに記載のウレタンプレポリマー(E)。
[7][1]乃至[6]のいずれかに記載のウレタンプレポリマー(E)、有機溶媒及び添加剤を含むウレタンプレポリマー組成物溶液であって、
該ウレタンプレポリマー組成物溶液中のウレタンプレポリマーの濃度が60重量%以上99重量%以下である、ウレタンプレポリマー組成物溶液。
[8][1]乃至[6]のいずれかに記載のウレタンプレポリマー(E)とイソシアネート化合物(F)とを含むウレタン形成性組成物。
[9][7]に記載のウレタンプレポリマー組成物溶液とイソシアネート化合物(F)とを含むウレタン形成性組成物溶液。
[10][8]に記載のウレタン形成組成物、又は[9]に記載のウレタン形成性組成物溶液中のウレタン形成性組成物の反応物を含むウレタン硬化物。
[11][10]に記載のウレタン硬化物からなるポリウレタンシート。
Each aspect of the present invention is [1] to [11] shown below.
[1] Active hydrogen having a polyalkylene oxide structure having an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and having an aromatic amine residue locally at the molecular end A terminal urethane prepolymer (E).
[2] NCO-terminated prepolymer (D) which is a reaction product of polyalkylene oxide (A) and polyisocyanate (C), and polyalkylene oxide (B) having an aromatic amine residue and two or more hydroxyl groups The urethane prepolymer (E) according to [1], which is a reactant.
[3] The urethane prepolymer (E) according to [1] or [2], containing 5 to 70% by weight of a polyalkylene oxide structure having an aromatic amine residue or a residue thereof.
[4] as aromatic amine residues, one or more residues selected from the group consisting of 4,4′-diphenylmethanediamine residues, 2,4-tolylenediamine residues and 2,6-tolylenediamine residues; The urethane prepolymer (E) according to any one of [1] to [3], containing a group.
[5] The polyisocyanate residue includes an aliphatic isocyanate residue, an alicyclic isocyanate residue, a modified residue thereof, or two or more of these residues [1] to [ 4], the urethane prepolymer (E) according to any one of the above.
[6] One or more residues selected from the group consisting of polypropylene oxide residues, polypropylene/ethylene oxide residues and polyethylene oxide residues as the polyalkylene oxide structure having an aromatic amine residue localized at the molecular end. The urethane prepolymer (E) according to any one of [1] to [5], containing a group.
[7] A urethane prepolymer composition solution containing the urethane prepolymer (E) according to any one of [1] to [6], an organic solvent and an additive,
A urethane prepolymer composition solution, wherein the urethane prepolymer concentration in the urethane prepolymer composition solution is 60% by weight or more and 99% by weight or less.
[8] A urethane-forming composition comprising the urethane prepolymer (E) according to any one of [1] to [6] and an isocyanate compound (F).
[9] A urethane-forming composition solution containing the urethane prepolymer composition solution described in [7] and an isocyanate compound (F).
[10] A cured urethane product containing the urethane-forming composition according to [8] or a reaction product of the urethane-forming composition in the urethane-forming composition solution according to [9].
[11] A polyurethane sheet made of the cured urethane product of [10].
 本発明の一態様であるウレタンプレポリマーは、不飽和モノオールが少ないポリアルキレンオキシドの使用有無や反応条件、溶剤量等によらず、高い強度を発現するために必要な剛直な芳香族アミンポリオールを用いても、析出物やゲル状物がなく貯蔵安定性に優れ、相溶性や透明性、硬化性が良好なウレタンプレポリマー、およびそれを用いた高透明で高強度のウレタン硬化物を提供することができる。 The urethane prepolymer, which is one aspect of the present invention, is a rigid aromatic amine polyol necessary to develop high strength regardless of the presence or absence of the use of polyalkylene oxide with less unsaturated monools, reaction conditions, solvent amount, etc. Provide a urethane prepolymer that has excellent storage stability without deposits or gels even when used, and has good compatibility, transparency, and curability, and a highly transparent and high-strength urethane cured product using the same. can do.
 以下に本発明を実施するための例示的な態様を詳細に説明する。 Exemplary embodiments for carrying out the present invention are described in detail below.
 本発明の一態様にかかるウレタンプレポリマーは、炭素数3以上のアルキレンオキシド残基、芳香族アミン残基及びポリイソシアネート残基を有し、分子末端に局在的に芳香族アミン残基を有するポリオール構造を有する、活性水素基末端のウレタンプレポリマー(E)である。
<ウレタンプレポリマー(E)>
 本発明の一態様であるウレタンプレポリマー(E)は、炭素数3以上のアルキレンオキシド残基、芳香族アミン残基及びポリイソシアネート残基を有し、分子末端に局在的に芳香族アミン残基を有するポリアルキレンオキシド構造を有する、活性水素基末端のウレタンプレポリマーである。
A urethane prepolymer according to one aspect of the present invention has an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and has an aromatic amine residue locally at the end of the molecule. It is an active hydrogen group-terminated urethane prepolymer (E) having a polyol structure.
<Urethane prepolymer (E)>
The urethane prepolymer (E), which is one aspect of the present invention, has an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and localized aromatic amine residues at the molecular ends. It is an active hydrogen group-terminated urethane prepolymer having a polyalkylene oxide structure having a group.
 ウレタンプレポリマー(E)は、炭素数3以上のアルキレンオキシド残基を必須成分として含有する。炭素数3以上のアルキレンオキシド残基を含まない場合、得られるウレタン硬化物の強度は上昇しやすいが、柔軟性が顕著に悪化するため貯蔵安定性およびハンドリング性が悪化し使用が困難である。また炭素数2のアルキレンオキシド残基のみを含み炭素数3以上のアルキレンオキシド残基を含まない場合、結晶性が上昇し、ウレタンプレポリマー(E)および得られるウレタン硬化物の透明性の悪化やウレタンプレポリマー(E)の貯蔵安定性、ハンドリング性が悪化し使用が困難である。 The urethane prepolymer (E) contains an alkylene oxide residue having 3 or more carbon atoms as an essential component. When the alkylene oxide residue having 3 or more carbon atoms is not contained, the strength of the resulting urethane cured product tends to be increased, but the flexibility is significantly deteriorated, and the storage stability and handling properties are deteriorated, making it difficult to use. When the alkylene oxide residue containing only alkylene oxide residues having 2 carbon atoms and not containing alkylene oxide residues having 3 or more carbon atoms is used, the crystallinity is increased, and the transparency of the urethane prepolymer (E) and the obtained urethane cured product is deteriorated. The storage stability and handleability of the urethane prepolymer (E) deteriorate, making it difficult to use.
 炭素数が3以上のアルキレンオキシド残基として特に限定されず、例えば、炭素数3~20のアルキレンオキシド残基を挙げることができる。具体的には、プロピレンオキシド残基、1,2-ブチレンオキシド残基、2,3-ブチレンオキシド残基、イソブチレンオキシド残基、ブタジエンモノオキシド残基、ペンテンオキシド残基、スチレンオキシド残基、シクロヘキセンオキシド残基等が挙げられる。これらのアルキレンオキシド残基の中でも、原料のポリアルキレンオキシドの入手が容易で、且つ結晶性が低く適度な粘度で液状のウレタンプレポリマー(E)を製造しやすく工業的価値も高いことから、プロピレンオキシド残基が好ましい。 The alkylene oxide residue having 3 or more carbon atoms is not particularly limited, and examples thereof include alkylene oxide residues having 3 to 20 carbon atoms. Specifically, propylene oxide residue, 1,2-butylene oxide residue, 2,3-butylene oxide residue, isobutylene oxide residue, butadiene monoxide residue, pentene oxide residue, styrene oxide residue, cyclohexene Examples include oxide residues and the like. Among these alkylene oxide residues, polyalkylene oxide as a raw material is easily available, and it is easy to produce a liquid urethane prepolymer (E) with low crystallinity and moderate viscosity, and has high industrial value. Oxide residues are preferred.
 また、炭素数が3以上のアルキレンオキシド残基として、単一のアルキレンオキシド残基のみを含んでいてもよく、2種類以上のアルキレンオキシド残基を含んでいてもよい。なお、2種以上をアルキレンオキシド残基が含まれる場合は、例えば、1種のアルキレンオキシド残基が連鎖的に繋がったものに、それ以外のアルキレンオキシド残基が連鎖的に繋がったものであってもよく、2種以上のアルキレンオキシド残基がランダムに繋がったものでもよい。さらに、炭素数が3以上のアルキレンオキシド残基を含んでいればよく、これに加えて、炭素数2のエチレンオキシド残基を含んでいてもよい。炭素数2のエチレンオキシド残基を含んでいる場合のその含有量は特に限定されないが、液の流動性が優れやすく且つ高い塗工性を発現しやすいため炭素数3以上のアルキレンオキシド残基と炭素数2のエチレンオキシド残基の重量比(炭素数3以上のアルキレンオキシド残基/炭素数2のエチレンオキシド残基)が10/90~99.9/0.1の範囲であることが好ましく、さらに好ましくは30/70~99.7/0.3の範囲であり、最も好ましくは50/50~99.5/0.5の範囲である。炭素数2のエチレンオキシド残基を含んでいる場合、特に限定されないが、塗工性が良くなりやすいためポリオキシエチレングリコールモノアルキルエーテル残基等の炭素数2のエチレンオキシド残基の連鎖構造を有していることが好ましい。 In addition, the alkylene oxide residue having 3 or more carbon atoms may contain only a single alkylene oxide residue, or may contain two or more types of alkylene oxide residues. When two or more kinds of alkylene oxide residues are included, for example, one kind of alkylene oxide residue is linked in a chain, and another alkylene oxide residue is linked in a chain. or two or more alkylene oxide residues randomly linked together. Furthermore, it is sufficient that it contains an alkylene oxide residue with 3 or more carbon atoms, and in addition, it may contain an ethylene oxide residue with 2 carbon atoms. When it contains an ethylene oxide residue with 2 carbon atoms, its content is not particularly limited, but since the fluidity of the liquid is likely to be excellent and high coatability is likely to be expressed, the alkylene oxide residue with 3 or more carbon atoms and carbon The weight ratio of the ethylene oxide residue of number 2 (alkylene oxide residue having 3 or more carbon atoms/ethylene oxide residue having 2 carbon atoms) is preferably in the range of 10/90 to 99.9/0.1, more preferably is in the range 30/70 to 99.7/0.3, most preferably in the range 50/50 to 99.5/0.5. If it contains an ethylene oxide residue with 2 carbon atoms, it is not particularly limited, but it has a chain structure of ethylene oxide residues with 2 carbon atoms such as polyoxyethylene glycol monoalkyl ether residues because it tends to improve coatability. preferably.
 ウレタンプレポリマー(E)に含まれる炭素数3以上のアルキレンオキシド残基の含有量としては、特に限定されないが、良好な塗工性と高い透明性を発現しやすいため30重量%以上99重量%以下であることが好ましく、更に好ましくはより高い透明性と高い強度を両立しやすいことから、50重量%以上95重量%以下の範囲であり、最も好ましくは70重量%以上90重量%以下の範囲である。当該含有量はNMR法またはコリッシュ分解による解析等により算出できるが、原料が分かっている場合、添加量より計算してもよい。 The content of the alkylene oxide residue having 3 or more carbon atoms contained in the urethane prepolymer (E) is not particularly limited, but it is 30% by weight or more and 99% by weight because it tends to exhibit good coatability and high transparency. It is preferably below, more preferably in the range of 50% by weight or more and 95% by weight or less, most preferably in the range of 70% by weight or more and 90% by weight or less because it is easy to achieve both higher transparency and high strength. is. The content can be calculated by the NMR method or the analysis by Corish decomposition, but if the raw material is known, it may be calculated from the addition amount.
 ウレタンプレポリマー(E)は、芳香族アミン残基を必須成分として含有する。芳香族アミン残基を含まない場合、ウレタンプレポリマー(E)および得られるウレタン硬化物の透明性は向上しやすいが、ウレタン硬化物の強度が不足し、軽剥離性や耐久性など強度に係る物性が顕著に悪化するため使用が困難であり、ウレタンプレポリマーの硬化性も不十分となって、生産性が悪く使用が困難である。即ち剛直な骨格で且つ適度な触媒活性を有する芳香族アミン残基を有することで、ウレタンプレポリマーの硬化性、得られるウレタン硬化物の強度が向上する。 The urethane prepolymer (E) contains an aromatic amine residue as an essential component. When the aromatic amine residue is not contained, the transparency of the urethane prepolymer (E) and the obtained urethane cured product tends to be improved, but the strength of the urethane cured product is insufficient, and the strength such as easy peelability and durability is affected. It is difficult to use because the physical properties are significantly deteriorated, and the curability of the urethane prepolymer is insufficient, resulting in poor productivity and difficulty in use. That is, by having an aromatic amine residue having a rigid skeleton and moderate catalytic activity, the curability of the urethane prepolymer and the strength of the resulting urethane cured product are improved.
 なかでも、ウレタンプレポリマー(E)は分子末端に局在的に芳香族アミン残基を有するポリアルキレンオキシド構造(以下、芳香族アミンポリオール構造と称する)を有することを特徴とする。本明細書での局在とは、「ある限られた場所にいる事。かたよったところにあること。」(精選版 日本国語大辞典、小学館出版参照)を指し、分子末端周辺に芳香族アミンポリオール構造を分子内部より過剰に含んで、かたよっていればよく、分子内部にも含んでいてもよい。 Among them, the urethane prepolymer (E) is characterized by having a polyalkylene oxide structure (hereinafter referred to as an aromatic amine polyol structure) having an aromatic amine residue locally at the molecular end. Localization in this specification refers to ``being in a certain limited place. It suffices that the polyol structure is contained excessively from the inside of the molecule so as to be biased, and it may also be contained inside the molecule.
 分子末端周辺に芳香族アミンポリオール構造が局在して含まれていれば特に限定されないが、好ましくは、全体中の芳香族アミンポリオール構造の含有率に対して分子末端中の芳香族アミンポリオール構造の含有比率が高いことであり、即ちウレタンプレポリマー(E)を構成するポリオール全体中の芳香族アミンポリオール構造のモル比率に対して、分子末端の芳香族アミンポリオール構造の含有モル比率が高いことが好ましい。 Although it is not particularly limited as long as the aromatic amine polyol structure is locally contained around the molecular end, preferably, the aromatic amine polyol structure in the molecular end relative to the content of the aromatic amine polyol structure in the whole is high, that is, the molar ratio of the aromatic amine polyol structure at the molecular end is high with respect to the molar ratio of the aromatic amine polyol structure in the entire polyol constituting the urethane prepolymer (E). is preferred.
 芳香族アミン残基は一般にウレタン化に触媒活性を有し、架橋剤と類似構造を有する場合が多いため、分子末端に芳香族アミンポリオール構造を分子内部より過剰に有さない場合、架橋剤との相溶性の悪化や反応性が低下するため、不飽和モノオールが少ないポリアルキレンオキシドの使用有無や反応条件、溶剤量等によらず、安定的に高透明で高強度のウレタン硬化物の形成することが困難である。またウレタンプレポリマー(E)が反応条件によって透明性の悪化や粒子状の析出物、ゲル状物が発生することがあり、得られるウレタン硬化物の透明性も悪化するため使用が困難となる。即ち芳香族アミン残基を有するポリオール構造を分子末端に過剰に含むことで、相溶性と硬化性が向上し、高透明で硬化性に優れるウレタンプレポリマー(E)、およびそれを用いて得られるウレタン硬化物が安定的に高透明で高強度となる。 Aromatic amine residues generally have catalytic activity for urethanization and often have a structure similar to that of a cross-linking agent. Because of deterioration of compatibility and reactivity of urethane, stable formation of highly transparent and high strength urethane cured product regardless of the use of polyalkylene oxide with less unsaturated monol, reaction conditions, solvent amount, etc. It is difficult to Further, depending on the reaction conditions, the urethane prepolymer (E) may deteriorate in transparency or generate particulate precipitates or gels, and the obtained urethane cured product also deteriorates in transparency, making it difficult to use. That is, by including an excess polyol structure having an aromatic amine residue at the molecular end, compatibility and curability are improved, highly transparent and excellent curability urethane prepolymer (E), and obtained using it The urethane cured product stably becomes highly transparent and has high strength.
 ポリオール全体中の芳香族アミンポリオール構造の含有率に対する分子末端の芳香族アミンポリオール構造の含有比率(分子末端の芳香族アミンポリオールのモル比率/ポリオール全体の芳香族アミンポリオールのモル比率)としては、1.0超であれば好ましいが、特に限定されない。なかでも、反応条件や固形分等によらずより顕著に高い透明性を発現しやすいことから、好ましくは1.01超10未満であり、更に好ましくは1.03超2.5未満であり、最も好ましくは1.10超1.7未満である。 The content ratio of the aromatic amine polyol structure at the molecular end to the content of the aromatic amine polyol structure in the entire polyol (molar ratio of the aromatic amine polyol at the molecular end/molar ratio of the aromatic amine polyol in the entire polyol) is Although it is preferable if it exceeds 1.0, it is not particularly limited. Among them, it is preferably more than 1.01 and less than 10, more preferably more than 1.03 and less than 2.5, because it is likely to exhibit remarkably high transparency regardless of the reaction conditions, solid content, etc. Most preferably, it is more than 1.10 and less than 1.7.
 ウレタンプレポリマー(E)は、末端に芳香族アミンポリオールを付加することで得られるが、その際に、その他ポリオール(BC)を併用することができ、分子末端に含まれる芳香族アミンポリオール構造残基の比率がその付加量にしたがって低下する場合がある。たとえば、芳香族アミン残基を有するポリオール90モル%と芳香族アミン残基を有さないその他ポリオール10モル%を併用して末端に付加し、反応性に差がない場合、おおよその分子末端に含まれる芳香族アミンポリオール構造の比率は90%である。モノオールは反応タイミングによらず分子末端を封止する場合が多いが、反応後に反応性の水酸基を持たないため、分子末端のポリオール構造残基には含まない。 The urethane prepolymer (E) is obtained by adding an aromatic amine polyol to the terminal. The proportion of groups may decrease according to the amount added. For example, 90 mol% of a polyol having an aromatic amine residue and 10 mol% of another polyol having no aromatic amine residue are added to the end in combination, and if there is no difference in reactivity, approximately at the molecular end The proportion of aromatic amine polyol structures contained is 90%. Monools often seal the ends of molecules regardless of the timing of the reaction, but since they do not have reactive hydroxyl groups after the reaction, they are not included in the polyol structural residues at the ends of the molecules.
 分子末端に含まれる芳香族アミンポリオール構造の比率は特に限定されないが、分子末端に含まれる芳香族アミンポリオール構造の比率が低下すると架橋剤との相溶性の悪化や反応性が低下する場合があり、不飽和モノオールが少ないポリアルキレンオキシドの使用有無や反応条件、溶剤量等によらず、高透明で高強度のウレタン硬化物の形成がしやすいため、分子末端の芳香族アミンポリオール構造比率が30%以上であることが好ましい。なかでも、分子末端の芳香族アミンポリオール構造比率が60%以上であることが好ましく、更に好ましくはウレタンプレポリマー(E)中に芳香族アミンポリオール構造を20重量%以上含み、かつ、分子末端の芳香族アミンポリオールの構造比率が80%以上100%以下であり、最も好ましくは、分子末端の芳香族アミンポリオールの構造比率が90%以上99.99%以下である。 The ratio of the aromatic amine polyol structure contained at the molecular terminal is not particularly limited, but if the ratio of the aromatic amine polyol structure contained at the molecular terminal decreases, compatibility with the cross-linking agent may deteriorate and reactivity may decrease. It is easy to form a highly transparent and strong urethane cured product regardless of the use of polyalkylene oxide with low unsaturated monools, reaction conditions, solvent amount, etc., so the aromatic amine polyol structure ratio at the molecular end is It is preferably 30% or more. Among them, it is preferable that the aromatic amine polyol structure ratio at the molecular terminal is 60% or more, more preferably the urethane prepolymer (E) contains 20% by weight or more of the aromatic amine polyol structure, and The structural ratio of the aromatic amine polyol is 80% or more and 100% or less, and most preferably, the structural ratio of the aromatic amine polyol at the molecular terminal is 90% or more and 99.99% or less.
 なお、たとえば、通常、芳香族アミン残基を有する分子量2000未満のポリオールは芳香族アミン残基を有さない分子量2000超のポリオールより顕著に高い反応性を示すため、使用する原料比や分子量等により多少前後するが、常法により芳香族アミン残基を含まない分子量2000超のポリオールと芳香族アミン残基を有する分子量2000未満のポリオールを同モル比率(1:1)で用いた場合、分子末端の芳香族アミンポリオール構造比率は50%未満であり、芳香族アミン残基を含まない分子量2000超のポリオールと芳香族アミン残基有する分子量2000未満のポリオールを1:9のモル比率で用いた場合、分子末端の芳香族アミンポリオール構造比率は90%未満である。そのため、全体の芳香族アミンポリオール構造の含有率より分子末端の芳香族アミンポリオール構造の含有比率が低くなる。 In addition, for example, polyols having a molecular weight of less than 2000 and having aromatic amine residues usually exhibit significantly higher reactivity than polyols having a molecular weight of more than 2000 and not having aromatic amine residues. Although it varies somewhat depending on the method, when a polyol having a molecular weight of more than 2000 and a polyol having a molecular weight of less than 2000 having an aromatic amine residue are used in the same molar ratio (1:1) by a conventional method, the molecular The aromatic amine polyol structure ratio at the terminal is less than 50%, and a polyol having a molecular weight of more than 2000 containing no aromatic amine residue and a polyol having a molecular weight of less than 2000 having an aromatic amine residue were used at a molar ratio of 1:9. In this case, the aromatic amine polyol structure ratio at the molecular end is less than 90%. Therefore, the content ratio of the aromatic amine polyol structure at the molecular end is lower than the content ratio of the aromatic amine polyol structure as a whole.
 分子末端のポリオール構造比率は、末端水酸基の1級比率や水酸基に隣接したアルキレンオキシド等の残基の解析、各種分解物の解析等で求められる場合がある。また、イソシアネート末端のプレポリマーを形成後、NCO基が消失するまで末端に芳香族アミン残基を有するポリオールのみを付加する場合、理論上分子末端はほぼすべて芳香族アミンポリオール構造であり、分子末端の芳香族アミンポリオール構造比率は100%と判断した。 The polyol structural ratio at the end of the molecule may be obtained from the analysis of the primary ratio of terminal hydroxyl groups, the analysis of residues such as alkylene oxides adjacent to hydroxyl groups, and the analysis of various decomposition products. In addition, after forming an isocyanate-terminated prepolymer, when adding only a polyol having an aromatic amine residue at the terminal until the NCO group disappears, theoretically almost all the molecular terminals are aromatic amine polyol structures, and the molecular terminals was determined to have an aromatic amine polyol structure ratio of 100%.
 芳香族アミン残基を有するポリオールと芳香族アミン残基を有さないその他ポリオールを併用して末端に付加した場合、同程度以上の分子量で同一のアルキレンオキシド残基を末端に有するときは通常、芳香族アミン残基を有するポリオールの方が反応性が高く、また末端の構造比率は併用比率と相関するため、反応性や官能基数、不純物等の影響を踏まえて併用したその他ポリオール量を下限として算出し、芳香族アミン残基を有するポリオール90モル%と芳香族アミン残基を有さないその他ポリオール10モル%を併用して末端に付加した場合、分子末端の芳香族アミンポリオール構造比率は90%以上と判断した。 When a polyol having an aromatic amine residue and another polyol not having an aromatic amine residue are used in combination and added to the terminal, when the terminal has the same alkylene oxide residue with a molecular weight of at least the same level, usually, Polyols with aromatic amine residues have higher reactivity, and the structural ratio of the terminals correlates with the ratio of combined use. Calculated, when 90 mol% of a polyol having an aromatic amine residue and 10 mol% of another polyol having no aromatic amine residue are used in combination to add to the end, the aromatic amine polyol structural ratio at the molecular end is 90. % or more.
 分子末端に有する芳香族アミンポリオール構造としては、特に限定されないが、より相溶性が高く高透明となりやすいため、ポリアルキレンオキシド残基として、ポリプロピレンオキシド残基、ポリプロピレンオキシド・ポリエチレンオキシド残基及びポリエチレンオキシド残基からなる群より選ばれる1種類以上の残基を含むことがより好ましく、ブロック構造、ランダム構造、グラジエート構造等何れも含まれる。なかでも、低温から高温まで結晶化しにくく流動性に特に優れやすいことから、アルキレンオキシド残基としてプロピレンオキシド残基を有することが好ましく、最も好ましくはアルキレンオキシド残基のうち40重量%以上がプロピレンオキシド残基であることが好ましい。当該含有量はNMR法またはコリッシュ分解による解析により算出できるが、原料が分かっている場合、原料構造より計算してもよい。 The aromatic amine polyol structure having a molecular terminal is not particularly limited, but since it is more compatible and tends to be highly transparent, the polyalkylene oxide residue includes a polypropylene oxide residue, a polypropylene oxide/polyethylene oxide residue, and a polyethylene oxide residue. More preferably, it contains one or more types of residues selected from the group consisting of residues, and includes any of block structures, random structures, gradient structures, and the like. Among them, it is preferable to have a propylene oxide residue as an alkylene oxide residue, and most preferably 40% by weight or more of the alkylene oxide residue is propylene oxide because it is difficult to crystallize from low temperature to high temperature and is particularly easy to have excellent fluidity. A residue is preferred. The content can be calculated by the NMR method or the analysis by Corish decomposition, but if the raw material is known, it may be calculated from the structure of the raw material.
 ウレタンプレポリマー(E)に含まれる芳香族アミン残基の構造は特には限定されないが、好ましくは1分子中の芳香環数が1以上20以下の芳香族アミン残基であり、さらに好ましくは芳香環数が1以上3以下の芳香族アミン残基である。 The structure of the aromatic amine residue contained in the urethane prepolymer (E) is not particularly limited. It is an aromatic amine residue having 1 or more and 3 or less rings.
 ウレタンプレポリマー(E)に含まれる芳香族アミン残基の含有量は特に限定されないが、高い強度を発現しやすいため0.5重量%以上25重量%以下であることが好ましく、更に好ましくはより高い強度と硬化物のハンドリング性を両立しやすいことから、1重量%以上15重量%以下の範囲であり、最も好ましくは3重量%以上10重量%以下の範囲である。当該含有量はNMR法またはコリッシュ分解による解析等により算出できるが、原料が分かっている場合、水酸基価より算出したポリアルキレンオキシドの分子量と公称の開始剤構造、添加量より計算してもよい。 Although the content of the aromatic amine residue contained in the urethane prepolymer (E) is not particularly limited, it is preferably 0.5% by weight or more and 25% by weight or less, more preferably more than 0.5% by weight, in order to easily develop high strength. It is in the range of 1% by weight or more and 15% by weight or less, and most preferably in the range of 3% by weight or more and 10% by weight or less, because it is easy to achieve both high strength and handleability of the cured product. The content can be calculated by the NMR method or analysis by Corish decomposition, but if the raw material is known, it may be calculated from the molecular weight of the polyalkylene oxide calculated from the hydroxyl value, the nominal initiator structure, and the amount added.
 このような芳香族アミン残基としては、例えば、アニリン残基、2,4-トリレンジアミン残基、2,6-トリレンジアミン残基、2,2’-ジフェニルメタンジアミン残基、2,4’-ジフェニルメタンジアミン残基、4,4’-ジフェニルメタンジアミン残基、ポリフェニレンポリアミン残基、1,5-ナフタレンジアミン残基、トリジンジアミン残基、キシリレンジアミン残基、1,3-フェニレンジアミン残基、1,4-フェニレンジアミン残基、ならびに、これらの2種以上の残基などが挙げられ、好ましくは原料の入手が容易であり良好な硬化性、高い強度を発現しやすい2,4-トリレンジアミン残基、2,6-トリレンジアミン残基、ならびにこれらの2種以上の残基である。芳香族アミン残基の構造はMALDI-TOF-MS等により解析することができる。 Examples of such aromatic amine residues include aniline residues, 2,4-tolylenediamine residues, 2,6-tolylenediamine residues, 2,2′-diphenylmethanediamine residues, 2,4 '-diphenylmethanediamine residue, 4,4'-diphenylmethanediamine residue, polyphenylenepolyamine residue, 1,5-naphthalenediamine residue, tolidinediamine residue, xylylenediamine residue, 1,3-phenylenediamine residue , 1,4-phenylenediamine residues, and residues of two or more of these, preferably 2,4-triamine, which is easy to obtain raw materials and tends to exhibit good curability and high strength. diamine residues, 2,6-tolylene diamine residues, and two or more of these residues. The structure of aromatic amine residues can be analyzed by MALDI-TOF-MS or the like.
 ウレタンプレポリマー(E)に含まれる芳香族アミン残基は、通常、末端や分子内部に芳香族アミンや芳香族アミンポリオールを付加することで得られるが、相溶性に優れやすくより高透明となりやすいことから芳香族アミン残基を有するポリオール構造またはその残基を含んでいることが好ましい。芳香族アミン残基を有するポリオール構造またはその残基の含有量としては、顕著に高い強度を発現しやすく、塗工性も高くなりやすいことから、5~70重量%含むことが好ましく、さらに好ましくは10~55重量%の範囲であり、最も好ましくは20~50重量%の範囲である。芳香族アミン残基を有するポリオール構造またはその残基の含有量は、アルカリ分解やコリッシュ分解等による解析により算出することができるが、原料が分かっている場合、添加量より計算してもよい。 The aromatic amine residue contained in the urethane prepolymer (E) is usually obtained by adding an aromatic amine or an aromatic amine polyol to the terminal or inside the molecule, but it tends to have excellent compatibility and high transparency. Therefore, it preferably contains a polyol structure having an aromatic amine residue or a residue thereof. The content of the polyol structure having an aromatic amine residue or the residue thereof is preferably 5 to 70% by weight, more preferably 5 to 70% by weight, because it tends to exhibit remarkably high strength and easily improve coatability. is in the range of 10-55% by weight, most preferably in the range of 20-50% by weight. The polyol structure having an aromatic amine residue or the content of the residue thereof can be calculated by analysis using alkali decomposition, Kolish decomposition, or the like, but if the raw material is known, it may be calculated from the added amount.
 ウレタンプレポリマー(E)は、ポリイソシアネート残基を必須成分として含有する。ポリイソシアネート残基を含まない場合、ウレタンプレポリマー(E)が凝集力のあるウレタン基を含まず硬化性が低下するため使用が困難であり、得られるウレタン硬化物の強度が低くなるとともに基材への濡れ性が低下して使用が困難となる。また、末端に選択的に芳香族アミン残基を有するポリオール構造を形成することが困難である。 The urethane prepolymer (E) contains a polyisocyanate residue as an essential component. If the urethane prepolymer (E) does not contain a polyisocyanate residue, the urethane prepolymer (E) does not contain any urethane groups with cohesive strength and curability is lowered, making it difficult to use. The wettability to the surface is lowered, making it difficult to use. Moreover, it is difficult to form a polyol structure selectively having an aromatic amine residue at the terminal.
 ウレタンプレポリマー(E)に含まれるポリイソシアネート残基としては、イソシアネート残基の平均官能基数が2.0以上であれば特に限定されるものではない。 The polyisocyanate residue contained in the urethane prepolymer (E) is not particularly limited as long as the average number of functional groups of the isocyanate residue is 2.0 or more.
 ポリイソシアネート残基の構造としては、特に限定されないが、例えば、以下の例示したポリイソシアネート(C)の残基が挙げられ、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、リジンジイソシアネート、トリフェニルメタントリイソシアネート、テトラメチルキシレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、ノルボルナンジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチルヘキサメチレンジイソシアネート、および、これらとポリアルキレンオキシドとが反応することで得られる変性イソシアネート、ならびに、これらの2種以上の混合物の残基が挙げられる。更に、これらのイソシアネートにウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基、アミド基、イミド基、ウレトンイミン基、ウレトジオン基又はオキサゾリドン基を含む変性物やポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)等の縮合体の残基が挙げられる。 The structure of the polyisocyanate residue is not particularly limited. 4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, lysine diisocyanate, triphenylmethane triisocyanate , tetramethylxylene diisocyanate, 1,6-hexamethylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, norbornane diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate , 1,8-diisocyanate-4-isocyanatomethyloctane, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, trimethylhexamethylene diisocyanate, and modifications obtained by reacting these with polyalkylene oxide Isocyanates, as well as residues of mixtures of two or more of these, are included. Furthermore, these isocyanates contain modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups, uretdione groups or oxazolidone groups, and polymethylene polyphenylene polyisocyanates. Condensate residues such as (polymeric MDI) can be mentioned.
 これらの中でも、生産性に優れ、高透明で着色の少ないウレタン形成性組成物を得やすいために、ポリイソシアネート残基として脂肪族イソシアネート残基、脂環式イソシアネート残基及びこれらの変性体残基からなる群より選ばれる1種類以上の残基を含むことが好ましい。 Among these, aliphatic isocyanate residues, alicyclic isocyanate residues and modified residues thereof are used as polyisocyanate residues in order to easily obtain a urethane-forming composition with excellent productivity and high transparency and little coloration. It preferably contains one or more residues selected from the group consisting of
 このようなポリイソシアネート(C)の残基としては、特に限定されないが、例えば、以下の例示したポリイソシアネート(C)の残基が挙げられ、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、脂肪族イソシアネート含有のプレポリマー、脂環式イソシアネートの含有プレポリマー、または、これらのイソシアネートのウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基、アミド基、イミド基、ウレトンイミン基、ウレトジオン基もしくはオキサゾリドン基含有変性物の残基がより好ましい。これらのイソシアネートの残基は、1種を単独で含んでいてもよく、2種以上の残基でもよい。 The residue of such a polyisocyanate (C) is not particularly limited. isocyanate-containing prepolymers, alicyclic isocyanate-containing prepolymers, or urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups of these isocyanates, Modified residues containing uretdione groups or oxazolidone groups are more preferred. These isocyanate residues may contain one type alone, or two or more types of residues.
 なかでも、ウレタンプレポリマーの粘度の経時での上昇が少なく貯蔵安定性に優れるため、1,6-ヘキサメチレンジイソシアネートやこれらの変性体の残基を含むことが好ましい。また、反応性が異なる1級NCO基と2級NCO基を有し、連鎖反応による高分子量化を抑制しやすく塗工性の悪化や高粘調化の抑制が容易でありウレタンプレポリマーおよびそれを用いて得られるウレタン硬化物の透明性がより顕著に良好となりやすいため、イソホロンジイソシアネートの残基を含むことも好ましい。したがって、1,6-ヘキサメチレンジイソシアネートやこれらの変性体、イソホロンジイソシアネートから選ばれるいずれか1種以上の残基を含むことが好ましい。 Above all, it is preferable to contain 1,6-hexamethylene diisocyanate and residues of modified products thereof because the increase in viscosity of the urethane prepolymer with time is small and the storage stability is excellent. In addition, having a primary NCO group and a secondary NCO group with different reactivity, it is easy to suppress the increase in molecular weight due to chain reaction, and it is easy to suppress the deterioration of coating properties and the increase in viscosity. It is also preferable to contain a residue of isophorone diisocyanate because the transparency of the urethane cured product obtained using is likely to be remarkably improved. Therefore, it preferably contains at least one residue selected from 1,6-hexamethylene diisocyanate, modified products thereof, and isophorone diisocyanate.
 ウレタンプレポリマー(E)に含まれるポリイソシアネート残基の含有量は特に限定されないが、高い強度を発現しやすいため0.5重量%以上30重量%以下であることが好ましく、更に好ましくはより高い透明性と高い強度を両立しやすいことから、2重量%以上20重量%以下の範囲であり、最も好ましくは4重量%以上12重量%以下の範囲である。 Although the content of the polyisocyanate residue contained in the urethane prepolymer (E) is not particularly limited, it is preferably 0.5% by weight or more and 30% by weight or less, more preferably higher, because high strength is likely to be expressed. Since it is easy to achieve both transparency and high strength, it is in the range of 2% by weight or more and 20% by weight or less, and most preferably in the range of 4% by weight or more and 12% by weight or less.
 当該含有量はNMR法またはコリッシュ分解による解析等により算出できるが、原料が分かっている場合、添加量より計算してもよい。 The content can be calculated by the NMR method or analysis by Corish decomposition, but if the raw material is known, it may be calculated from the added amount.
 ウレタンプレポリマー(E)は、必須成分として含有する、炭素数3以上のアルキレンオキシド残基、芳香族アミン残基、ポリイソシアネート残基、並びに例示した炭素数2のエチレンオキシド残基に加えてその他の残基を含有してもよい。たとえば、特に限定されないが、カーボネート残基、オキシテトラメチレン残基、糖残基、エステル残基、オキセタン残基、カプロラクトン残基、イソブチレン残基、ブタジエン残基、アルキルエーテル残基、マンニッヒポリオール残基、アクリル残基、シリコーン残基、フッ素残基、リン酸エステル残基、脂肪族アミン残基、イミン残基、4級アンモニウム残基、イソシアヌレート残基等が挙げられ、好適に含むことができる。なかでも、ウレタンプレポリマー(E)がより高い硬化性と塗工性を発現して高強度のウレタン硬化物を得やすいことから、オキシテトラメチレン残基、糖残基、アルキルエーテル残基、エステル残基、カーボネート残基、脂肪族アミン残基を含むことが好ましい。例示した残基を含む場合のその含有量は、特に限定されないが、高い硬化性と塗工性を両立しやすいことから0.01重量%~70重量%の範囲であることが好ましく、更に好ましくは0.1重量%~50重量%の範囲であり、最も好ましくは0.5重量%~20重量%の範囲である。 The urethane prepolymer (E) contains, as essential components, an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue, a polyisocyanate residue, and the exemplified ethylene oxide residue having 2 carbon atoms, as well as other It may contain residues. Examples include, but are not limited to, carbonate residues, oxytetramethylene residues, sugar residues, ester residues, oxetane residues, caprolactone residues, isobutylene residues, butadiene residues, alkyl ether residues, Mannich polyol residues. , an acrylic residue, a silicone residue, a fluorine residue, a phosphate residue, an aliphatic amine residue, an imine residue, a quaternary ammonium residue, an isocyanurate residue, etc., and can be suitably included. . Among them, the urethane prepolymer (E) expresses higher curability and coatability, making it easier to obtain a high-strength urethane cured product. It preferably contains residues, carbonate residues, aliphatic amine residues. The content of the exemplified residue is not particularly limited, but it is preferably in the range of 0.01% to 70% by weight, more preferably in the range of 0.01% by weight to 70% by weight because it is easy to achieve both high curability and coatability. is in the range of 0.1% to 50% by weight, most preferably in the range of 0.5% to 20% by weight.
 また、ウレタンプレポリマー(E)は、使用するポリアルキレンオキシド中に不飽和基を有するモノオール構造を含む場合があり、その残基である不飽和基を含む場合がある。 In addition, the urethane prepolymer (E) may contain a monool structure having an unsaturated group in the polyalkylene oxide used, and may contain an unsaturated group which is the residue thereof.
 ウレタンプレポリマー(E)は、不飽和モノオールが少ないポリアルキレンオキシドの使用有無によらず高い硬化性を示すため、特に限定されず使用する原料により異なるが、より高い硬化性を示しやすいことから不飽和基の含有量は、0.0001meq/g~100meq/gの範囲であることが好ましい。実質的に反応性基として作用可能なウレタンアクリレート基やウレタンメタクリレート基などの高反応性の不飽和基を有さない場合、より高い硬化性を示しやすいことから不飽和基の含有量は0.0003meq/g~0.050meq/gの範囲であることが好ましく、更に好ましくは0.0005meq/g~0.010meq/gの範囲であり、最も好ましくは0.0007meq/g~0.002meq/gの範囲である。不飽和基の含有量はNMR法等種々の解析方法で解析することができる。 The urethane prepolymer (E) is not particularly limited because it exhibits high curability regardless of the use or non-use of polyalkylene oxide with a small amount of unsaturated monools. The unsaturated group content is preferably in the range of 0.0001 meq/g to 100 meq/g. If it does not have a highly reactive unsaturated group such as a urethane acrylate group or a urethane methacrylate group that can substantially act as a reactive group, it tends to exhibit higher curability. 0003 meq/g to 0.050 meq/g, more preferably 0.0005 meq/g to 0.010 meq/g, most preferably 0.0007 meq/g to 0.002 meq/g is in the range of The content of unsaturated groups can be analyzed by various analytical methods such as NMR.
 ウレタンプレポリマー(E)の1級水酸基の比率は、各々の原料ポリオールの1級水酸基比率によって異なり特に限定されないが、高すぎると塗工性が悪化しやすいため、85%以下であることが好ましい。ウレタンプレポリマー(E)の1級水酸基の比率は、ポリアルキレンオキシドの1級水酸基の比率の算出と同様の無水トリフルオロ酢酸を用いて水酸基と反応させ1HNMRのピークシフトより算出する方法やテトラフルオロフタル酸無水物を用いて水酸基と反応させ1HNMRのピークシフトより算出する方法が挙げられ、本発明では上記手法を適応して概算比率を算出した。 The ratio of primary hydroxyl groups in the urethane prepolymer (E) is not particularly limited as it varies depending on the ratio of primary hydroxyl groups in each raw material polyol. . The ratio of primary hydroxyl groups in the urethane prepolymer (E) can be calculated from the peak shift of 1H NMR by reacting trifluoroacetic anhydride with hydroxyl groups using trifluoroacetic anhydride, similar to the calculation of the ratio of primary hydroxyl groups in polyalkylene oxide. There is a method of reacting phthalic anhydride with a hydroxyl group and calculating from the peak shift of 1H NMR, and in the present invention, the approximate ratio was calculated by applying the above method.
 ウレタンプレポリマー(E)中には、芳香族アミンポリオール及び併用するポリオールそのものの残存量が少ないことが好ましく、特に限定されないが、顕著に高い透明性を発現しやすいため20重量%以内であり、更に好ましくは10重量%以下の範囲である。なかでも、より高透明性に優れやすいことから芳香族アミンポリオール残基を有さないポリアルキレンオキシドの残存量が5重量%以下の範囲であることが好ましく、さらに好ましくは2重量%以下の範囲である。ウレタンプレポリマー(E)中の芳香族アミンポリオール及び併用するポリオールの残存量は、GPC法等のピーク積分比(芳香族アミンポリオール及び併用するポリオールピーク/メインピーク×100)により求めてもよい。 In the urethane prepolymer (E), the residual amount of the aromatic amine polyol and the polyol itself used in combination is preferably small, and is not particularly limited, but is within 20% by weight because remarkably high transparency tends to be exhibited. More preferably, it is in the range of 10% by weight or less. Among them, the residual amount of polyalkylene oxide having no aromatic amine polyol residue is preferably in the range of 5% by weight or less, more preferably in the range of 2% by weight or less, because it tends to achieve higher transparency. is. The residual amount of the aromatic amine polyol and the polyol used in combination in the urethane prepolymer (E) may be determined by a peak integration ratio (aromatic amine polyol and polyol used in combination/main peak×100) such as by GPC method.
 ウレタンプレポリマー(E)は、特に限定されないが、25℃条件にて、粘度が1~100Pa・s、且つ液外観が透明(1cm厚みでのHazeが15%以下)であることが好ましく、このようなウレタンプレポリマー(E)を効率的に容易に製造できるものである。 The urethane prepolymer (E) is not particularly limited. Such a urethane prepolymer (E) can be produced efficiently and easily.
 なかでも、好ましい性状としては、後工程で添加剤を混合しやすく、架橋剤の混合や塗工などのハンドリング性により優れウレタン硬化物が安定的に高透明になりやすいことから、25℃条件にて、粘度が3~50Pa・sの範囲であり、さらに好ましくは5~30Pa・sの範囲である。粘度が高い場合、溶剤や添加剤を加えて粘度を低減調整してもよく、また粘度が低い場合、濃縮等により増粘調整してもよい。 Among them, the preferred properties are that additives can be easily mixed in the post-process, the handling of the cross-linking agent and coating is excellent, and the urethane cured product tends to be stably highly transparent. Therefore, the viscosity is in the range of 3 to 50 Pa·s, more preferably in the range of 5 to 30 Pa·s. When the viscosity is high, a solvent or additive may be added to reduce the viscosity, and when the viscosity is low, the viscosity may be increased by concentration or the like.
 ウレタンプレポリマー(E)の透明性は特に限定されないが、より視認性が良好となりやすいことから目視上透明であることが好ましく、1cm厚みでのHazeが15%以下であることが更に好ましく、5%以下であることが最も好ましい。 The transparency of the urethane prepolymer (E) is not particularly limited. % or less.
 ウレタンプレポリマー(E)の分子量は、特に限定されないが、ハンドリング性がより良好となりやすいことからゲルパーミエーションクロマトグラフィー法により測定した重量平均分子量が2500以上500000以下の範囲であることが好ましく、5000以上200000以下の範囲であることが更に好ましく、10000以上100000以下の範囲であることが好ましい。 The molecular weight of the urethane prepolymer (E) is not particularly limited, but the weight average molecular weight measured by gel permeation chromatography is preferably in the range of 2500 or more and 500000 or less, since the handleability tends to be better, and 5000 It is more preferably in the range of 200,000 or more, and more preferably in the range of 10,000 or more and 100,000 or less.
 活性水素基末端のウレタンプレポリマー(E)は、分子末端周辺に局在的に芳香族アミン残基を有するポリオール構造を含むことが特徴であり、分子末端に芳香族アミン残基を有するポリオールを過剰に導入できれば、製造方法は特に限定されない。たとえば、特に限定されないが、芳香族アミン残基を有するポリオールを工程的に最後又は終盤に添加して末端に付加する方法、使用する原料の反応性を調整して芳香族アミン残基を有するポリオールが最後又は終盤に付加することで末端に導入する方法などが挙げられ、好適に適応することができる。 The active hydrogen group-terminated urethane prepolymer (E) is characterized by containing a polyol structure having an aromatic amine residue locally around the molecular end. The production method is not particularly limited as long as it can be introduced excessively. For example, although not particularly limited, a method of adding a polyol having an aromatic amine residue at the end or end of the process to add it to the end, a polyol having an aromatic amine residue by adjusting the reactivity of the raw material used is added at the end or end to introduce it at the end, which can be suitably applied.
 使用する原料の反応性の調整としては、芳香族アミン残基を有するポリオールの反応性の低減及び/または併用するポリオールの反応性の向上、反応性基の保護等によるブロック構造の形成などが挙げられ、たとえば、固形分が70%以上で、芳香族アミン残基を有するポリオールの反応性の低減としては、芳香族アミン残基を有するポリオールの高分子量化(たとえば500以上)や2級水酸基の導入、酸化合物の添加、併用するポリオールの反応性の向上としては、併用するポリオールの低分子量化(たとえば6000以下)、末端へエチレンオキシド残基やテトラヒドロフラン残基、1級水酸基を有するプロピレンオキシド残基等を多く導入した高1級化率のポリオールの適応(たとえばエチレンオキシド残基16重量%以上、1級化率75%以上)等が挙げられるが、併用するポリオールの構造や芳香族アミンポリオールの構造、固形分等により各々の反応性が異なって末端構造比率が変わるため特に限定されない。 Examples of adjusting the reactivity of the raw material used include reducing the reactivity of polyols having aromatic amine residues and/or improving the reactivity of polyols used in combination, and forming block structures by protecting reactive groups. For example, reducing the reactivity of a polyol having an aromatic amine residue with a solid content of 70% or more includes increasing the molecular weight of the polyol having an aromatic amine residue (for example, 500 or more) or increasing the number of secondary hydroxyl groups. Introduction, addition of an acid compound, and improvement of the reactivity of the polyol used in combination include lowering the molecular weight of the polyol used in combination (for example, 6000 or less), ethylene oxide residue, tetrahydrofuran residue, and propylene oxide residue having a primary hydroxyl group at the end. (for example, ethylene oxide residue 16% by weight or more, primary conversion rate 75% or more), etc., but the structure of the polyol used in combination and the structure of the aromatic amine polyol , the reactivity of each material differs depending on the solid content, etc., and the terminal structure ratio changes, so there is no particular limitation.
 最も好ましい活性水素基末端のウレタンプレポリマー(E)の製造方法としては、特に限定されないが、アルキレンオキシド残基とイソシアネート残基を有するNCO末端プレポリマーを形成後、芳香族アミン残基と2つ以上の水酸基を有するポリアルキレンオキシドを付加することであり、末端に芳香族アミン残基を有するポリオール構造を原料の反応性によらず安定的に形成することができ反応条件等によらず顕著に高い透明性を安定的に発現するため好ましい。即ち、少なくともポリアルキレンオキシド(A)及びポリイソシアネート(C)の反応物であるNCO末端ウレタンプレポリマー(D)と、芳香族アミン残基と2つ以上の水酸基を有するポリアルキレンオキシド(B)との反応物であることが好ましい。
<ポリアルキレンオキシド(A)>
 ウレタンプレポリマー(E)ならびにNCO末端ウレタンプレポリマー(D)に用いることが好ましい、ポリアルキレンオキシド(A)の数平均分子量は、特に限定されないが、適度な粘度を有してハンドリング性に優れ、かつ塗工性や濡れ性が良好となりやすいため、2000以上であることが好ましい。なかでも、ポリアルキレンオキシド(A)の好ましい数平均分子量としては、2500以上30000未満であり、更に好ましくは3000以上13000未満であり、最も好ましくは3500以上9000未満である。なお、ポリアルキレンオキシド(A)の数平均分子量は、JIS K-1557-1に記載の方法により算出したポリアルキレンオキシド(A)の水酸基価と、ポリアルキレンオキシド(A)1分子中の水酸基数、から算出することができる。ポリアルキレンオキシド(A)の水酸基価(mgKOH/g)としては、特に限定されないが、好ましくは3以上250以下であり、更に好ましくは5以上180以下であり、最も好ましくは8以上70以下である。
The most preferred method for producing the active hydrogen group-terminated urethane prepolymer (E) is not particularly limited. By adding a polyalkylene oxide having a hydroxyl group as described above, a polyol structure having an aromatic amine residue at the end can be stably formed regardless of the reactivity of the raw material, and significantly regardless of the reaction conditions. It is preferable because it stably exhibits high transparency. That is, an NCO-terminated urethane prepolymer (D) which is a reaction product of at least a polyalkylene oxide (A) and a polyisocyanate (C), and a polyalkylene oxide (B) having an aromatic amine residue and two or more hydroxyl groups. is preferably a reactant of
<Polyalkylene oxide (A)>
The number average molecular weight of the polyalkylene oxide (A), which is preferably used for the urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D), is not particularly limited. In addition, it is preferably 2,000 or more because the coatability and wettability tend to be good. Among them, the polyalkylene oxide (A) preferably has a number average molecular weight of 2,500 or more and less than 30,000, more preferably 3,000 or more and less than 13,000, and most preferably 3,500 or more and less than 9,000. The number average molecular weight of the polyalkylene oxide (A) is the hydroxyl value of the polyalkylene oxide (A) calculated by the method described in JIS K-1557-1, and the number of hydroxyl groups in one molecule of the polyalkylene oxide (A). , can be calculated from The hydroxyl value (mgKOH/g) of the polyalkylene oxide (A) is not particularly limited, but is preferably 3 or more and 250 or less, more preferably 5 or more and 180 or less, and most preferably 8 or more and 70 or less. .
 ポリアルキレンオキシド(A)の25℃における粘度は、特に限定されず、用途により適宜選択されるが、好ましくは100mPa・s以上200000mPa・s以下であり、更に好ましくは200mPa・s以上10000mPa・s以下である。ポリアルキレンオキシド(A)の25℃における粘度が100mPa・s以上200000mPa・s以下であれば、ポリウレタン製品を得るために塗工機などで塗工する際に、塗工しやすくなるので好ましい。ここで、25℃での「粘度」とは、JIS K1557-5 6.2.3項に準拠し、コーン・プレート回転粘度計を用いて、せん断速度0.1(1/s)で測定した値である。 The viscosity of the polyalkylene oxide (A) at 25° C. is not particularly limited and is appropriately selected depending on the application, but is preferably 100 mPa·s or more and 200000 mPa·s or less, more preferably 200 mPa·s or more and 10000 mPa·s or less. is. If the viscosity of the polyalkylene oxide (A) at 25° C. is 100 mPa·s or more and 200000 mPa·s or less, it is preferable because it is easy to apply with a coating machine or the like to obtain a polyurethane product. Here, the "viscosity" at 25°C is measured at a shear rate of 0.1 (1/s) using a cone/plate rotational viscometer in accordance with JIS K1557-5 Section 6.2.3. value.
 ポリアルキレンオキシド(A)は、低温から高温まで流動性に優れることから炭素数が3以上のアルキレンオキシド残基を含むことが好ましい。炭素数が3以上のアルキレンオキシド残基として特に限定されず、例えば、炭素数3~20のアルキレンオキシド残基を挙げることができる。具体的には、プロピレンオキシド残基、1,2-ブチレンオキシド残基、2,3-ブチレンオキシド残基、イソブチレンオキシド残基、ブタジエンモノオキシド残基、ペンテンオキシド残基、スチレンオキシド残基、シクロヘキセンオキシド残基等が挙げられる。これらのアルキレンオキシド残基の中でも、ポリアルキレンオキシド(A)を得るための原料の入手が容易で、得られるポリアルキレンオキシド(A)の工業的価値が高いことから、プロピレンオキシド残基が好ましい。 The polyalkylene oxide (A) preferably contains an alkylene oxide residue having 3 or more carbon atoms because it has excellent fluidity from low to high temperatures. The alkylene oxide residue having 3 or more carbon atoms is not particularly limited, and examples thereof include alkylene oxide residues having 3 to 20 carbon atoms. Specifically, propylene oxide residue, 1,2-butylene oxide residue, 2,3-butylene oxide residue, isobutylene oxide residue, butadiene monoxide residue, pentene oxide residue, styrene oxide residue, cyclohexene Examples include oxide residues and the like. Among these alkylene oxide residues, a propylene oxide residue is preferred because the starting material for obtaining the polyalkylene oxide (A) is readily available and the resulting polyalkylene oxide (A) has a high industrial value.
 また、ポリアルキレンオキシド(A)は、炭素数が3以上のアルキレンオキシド残基として、単一のアルキレンオキシド残基のみを含んでいてもよく、2種類以上のアルキレンオキシド残基を含んでいてもよい。なお、2種以上をアルキレンオキシド残基が含まれる場合は、例えば、1種のアルキレンオキシド残基が連鎖的に繋がったものに、それ以外のアルキレンオキシド残基が連鎖的に繋がったものであってもよく、2種以上のアルキレンオキシド残基がランダムに繋がったものでもよい。さらに、ポリアルキレンオキシド(A)は、炭素数が3以上のアルキレンオキシド残基に加えて、炭素数2のエチレンオキシド残基を含んでいてもよい。 Further, the polyalkylene oxide (A) may contain only a single alkylene oxide residue as the alkylene oxide residue having 3 or more carbon atoms, or may contain two or more types of alkylene oxide residues. good. When two or more kinds of alkylene oxide residues are included, for example, one kind of alkylene oxide residue is linked in a chain, and another alkylene oxide residue is linked in a chain. or two or more alkylene oxide residues randomly linked together. Furthermore, the polyalkylene oxide (A) may contain an ethylene oxide residue with 2 carbon atoms in addition to the alkylene oxide residue with 3 or more carbon atoms.
 また、ポリアルキレンオキシド(A)の水酸基数は特には限定されないが、1分子中に2つ以上の水酸基を有することが好ましく、2つ以上6つ以下であることが更に好ましく、最も好ましくは1分子中の水酸基数が2つ以上3つ以下である。ポリアルキレンオキシド(A)の1分子中の水酸基数が6以下であると、得られるウレタン硬化物の架橋構造が密になり難く、引張破断伸びと強度が更に大きくなるため、好ましい。 In addition, the number of hydroxyl groups in the polyalkylene oxide (A) is not particularly limited, but it preferably has two or more hydroxyl groups in one molecule, more preferably two or more and six or less, and most preferably one. The number of hydroxyl groups in the molecule is 2 or more and 3 or less. When the number of hydroxyl groups in one molecule of the polyalkylene oxide (A) is 6 or less, the crosslinked structure of the resulting urethane cured product is difficult to be dense, and the tensile elongation at break and strength are further increased, which is preferable.
 ポリアルキレンオキシド(A)の水酸基の1級比率は、特に限定されないが、0~90%の範囲であることが好ましい。触媒としてトリフルオロボランやトリスペンタフルオロフェニルボラン等のカチオン重合系で合成する場合、アルキレンオキシドとしてエチレンオキシド以外のプロピレンオキシド等を用いても1級比率は高くなりやすく、水酸化カリウム等の塩基系触媒や複合金属シアン化物(DMC)触媒等の金属系触媒を用いる場合、1級比率は低くなりやすいが、末端構造を含め特に限定されず、いずれも好適に使用することができる。 Although the primary ratio of hydroxyl groups in the polyalkylene oxide (A) is not particularly limited, it is preferably in the range of 0 to 90%. When synthesizing with a cationic polymerization system such as trifluoroborane or trispentafluorophenylborane as a catalyst, even if propylene oxide or the like other than ethylene oxide is used as the alkylene oxide, the primary ratio tends to increase, and a basic catalyst such as potassium hydroxide is used. When using a metal-based catalyst such as a double metal cyanide (DMC) catalyst, the primary ratio tends to be low, but there are no particular limitations including the terminal structure, and any of them can be suitably used.
 また、ポリアルキレンオキシド(A)は、ウレタンプレポリマーの製造が容易になることから、常温で液状であることが好ましい。
ポリアルキレンオキシド(A)の不飽和度は、不飽和モノオールが少ないポリアルキレンオキシドの使用有無によらずプレポリマーやウレタン硬化物を高透明化しやすいため特に限定されないが、芳香族アミン残基を有するポリアルキレンオキシド(B)等の多官能のポリオールの増量や2官能でもポリプロピレンオキシドより剛直な骨格を有するポリオールが多く必要となりやすいため、0.010meq/g以下であることが好ましく、更に好ましくは0.007meq/g以下であり、最も好ましくは0.004meq/g以下である。このような不飽和度の低いポリアルキレンオキシド(A)は、特に限定されないが、イミノフォスファゼニウム塩とルイス酸触媒を用いて活性水素化合物にアルキレンオキシドを付加することで製造することができる。
ポリアルキレンオキシド(A)の分子量分布(Mw/Mn)は、分子量分布の狭いポリアルキレンオキシドの使用有無によらずプレポリマーやウレタン硬化物を高透明化しやすいため特に限定されないが、プレポリマーの分子量分布が狭くなりやすくハンドリング性に優れやすいため、1.059以下であることが好ましく、更に好ましくは1.039以下であり、最も好ましくは1.004~1.029以下である。
ポリアルキレンオキシド(A)は、水分値が2000ppm以下であることが好ましいが、脱水操作等で操作が煩雑となるため、用途等に応じて選択することができる。
In addition, the polyalkylene oxide (A) is preferably liquid at room temperature because it facilitates the production of the urethane prepolymer.
The degree of unsaturation of the polyalkylene oxide (A) is not particularly limited because it is easy to make the prepolymer or urethane cured product highly transparent regardless of whether or not a polyalkylene oxide with less unsaturated monools is used. It is preferable that it is 0.010 meq / g or less, more preferably 0.010 meq / g or less because it is likely to require an increase in the amount of polyfunctional polyol such as polyalkylene oxide (B) having a bifunctional polyol having a more rigid skeleton than polypropylene oxide. It is 0.007 meq/g or less, most preferably 0.004 meq/g or less. Such polyalkylene oxide (A) having a low degree of unsaturation is not particularly limited, but can be produced by adding an alkylene oxide to an active hydrogen compound using an iminophosphazenium salt and a Lewis acid catalyst. .
The molecular weight distribution (Mw/Mn) of the polyalkylene oxide (A) is not particularly limited because it is easy to make the prepolymer or urethane cured product highly transparent regardless of whether a polyalkylene oxide having a narrow molecular weight distribution is used, but the molecular weight of the prepolymer Since the distribution tends to be narrow and the handleability tends to be excellent, it is preferably 1.059 or less, more preferably 1.039 or less, and most preferably 1.004 to 1.029 or less.
The polyalkylene oxide (A) preferably has a water content of 2,000 ppm or less.
 <ポリイソシアネート(C)>
 ウレタンプレポリマー(E)ならびにNCO末端ウレタンプレポリマー(D)に用いることが好ましいポリイソシアネート(C)は、イソシアネート基の平均官能基数が2.0以上であることが好ましいが、特に限定されるものではない。ポリイソシアネート(C)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、リジンジイソシアネート、トリフェニルメタントリイソシアネート、テトラメチルキシレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、ノルボルナンジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチルヘキサメチレンジイソシアネート、および、これらとポリアルキレンオキシドとが反応することで得られる変性イソシアネート、ならびに、これらの2種以上の混合物が挙げられる。更に、これらのイソシアネートにウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基、アミド基、イミド基、ウレトンイミン基、ウレトジオン基又はオキサゾリドン基を含む変性物やポリメチレンポリフェニレンポリイソシアネート(ポリメリックMDI)等の縮合体が挙げられる。
<Polyisocyanate (C)>
The polyisocyanate (C) preferably used for the urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D) preferably has an average functional group number of isocyanate groups of 2.0 or more, but is particularly limited. is not. Examples of the polyisocyanate (C) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, and tolidine. Diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, lysine diisocyanate, triphenylmethane triisocyanate, tetramethylxylene diisocyanate, 1,6-hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate , isophorone diisocyanate, 1,4-cyclohexane diisocyanate, norbornane diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 1,3,6-hexamethylenetri Examples include isocyanate, bicycloheptane triisocyanate, trimethylhexamethylene diisocyanate, modified isocyanate obtained by reacting these with polyalkylene oxide, and mixtures of two or more thereof. Furthermore, these isocyanates contain modified products containing urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups, isocyanurate groups, amide groups, imide groups, uretonimine groups, uretdione groups or oxazolidone groups, and polymethylene polyphenylene polyisocyanates. Condensates such as (polymeric MDI) can be mentioned.
 これらの中でも、生産性に優れ、高透明で着色の少ないウレタンプレポリマー(E)およびそれを用いた高透明で着色の少ないウレタン硬化物を得やすいために、脂肪族イソシアネート、脂環式イソシアネート、または、これらの変性体が好ましい。1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、脂肪族イソシアネート含有のプレポリマー、脂環式イソシアネートの含有プレポリマー、または、これらのイソシアネートのウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基、アミド基、イミド基、ウレトンイミン基、ウレトジオン基もしくはオキサゾリドン基含有変性物がより好ましい。これらのイソシアネートは、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Among these, aliphatic isocyanate, alicyclic isocyanate, Alternatively, modified forms thereof are preferred. 1,6-hexamethylene diisocyanate, isophorone diisocyanate, aliphatic isocyanate-containing prepolymers, alicyclic isocyanate-containing prepolymers, or urethane groups, carbodiimide groups, allophanate groups, urea groups, biuret groups of these isocyanates, Modified products containing an isocyanurate group, an amide group, an imide group, a uretonimine group, a uretdione group or an oxazolidone group are more preferred. These isocyanates may be used singly or in combination of two or more.
 なかでも、反応性が高く、生産性が良好であり、ウレタンプレポリマー(E)の粘度の経時での上昇が少なく貯蔵安定性に優れるため、1,6-ヘキサメチレンジイソシアネートやこれらの変性体を用いることが好ましい。また、反応性が異なる1級NCO基と2級NCO基を有し、連鎖反応による高分子量化を抑制しやすく塗工性、粘度に優れやすく、ウレタンプレポリマーおよびそれを用いて得られるウレタン硬化物の透明性がより顕著に良好となりやすいため、イソホロンジイソシアネートを用いることも好ましい。したがって、1,6-ヘキサメチレンジイソシアネートやこれらの変性体、イソホロンジイソシアネートから選ばれるいずれか1種以上を含むことが好ましい。
<ポリアルキレンオキシド(B)>
 ウレタンプレポリマー(E)に用いることが好ましいポリアルキレンオキシド(B)は、芳香族アミン残基を有するポリオールである。ポリアルキレンオキシド(B)に、芳香族アミン残基を有することで、得られるポリウレタンの硬度や引張強度が顕著に高くなりやすい。なかでも良好な流動性を発現して成形性に優れやすく、また硬度や引張強度が高くなってウレタン物性に優れやすいため炭素数2~10のアルキレンオキシド残基を有し、1分子中に活性水素基を2つ以上有するポリオールが好ましく、芳香族アミンに1種のアルキレンオキシドが連鎖的に繋がったもの、芳香族アミンに複数のアルキレンオキシドが連鎖的に繋がったものやランダムで繋がったもの、何れでもよい。
Among them, 1,6-hexamethylene diisocyanate and modified products thereof are used because of high reactivity, good productivity, and excellent storage stability with little increase in viscosity of the urethane prepolymer (E) over time. It is preferable to use In addition, having a primary NCO group and a secondary NCO group with different reactivity, it is easy to suppress the increase in molecular weight due to chain reaction, and it is easy to be excellent in coatability and viscosity. It is also preferred to use isophorone diisocyanate, since the transparency of the product tends to be significantly better. Therefore, it is preferable to contain at least one selected from 1,6-hexamethylene diisocyanate, modified products thereof, and isophorone diisocyanate.
<Polyalkylene oxide (B)>
A polyalkylene oxide (B) preferably used in the urethane prepolymer (E) is a polyol having an aromatic amine residue. By having an aromatic amine residue in the polyalkylene oxide (B), the hardness and tensile strength of the obtained polyurethane tend to be remarkably increased. Among them, it exhibits good fluidity and is easy to mold, and it has high hardness and tensile strength and is easy to have excellent urethane physical properties. Polyols having two or more hydrogen groups are preferred, and those in which one type of alkylene oxide is linked to an aromatic amine in a chain, those in which a plurality of alkylene oxides are linked to an aromatic amine in a chain or randomly, Anything is fine.
 なかでも、工業的にアルキレンオキシドの入手がしやすく、合成が簡便となりやすいため、芳香族アミンにプロピレンオキシドのみが連鎖的に繋がったもの、芳香族アミンにエチレンオキシドのみが連鎖的に繋がったもの、芳香族アミンにプロピレンオキシドとエチレンオキシドが連鎖的に繋がったものまたはランダムで繋がったものであることが好ましく、更に好ましくは低温から高温まで結晶化しにくく流動性に特に優れやすいことからプロピレンオキシド残基を有することが好ましく、最も好ましくはポリアルキレンオキシド(B)に含まれるアルキレンオキシド残基のうち40重量%以上がプロピレンオキシド残基であることが好ましい。 Among them, since alkylene oxides are easily available industrially and the synthesis tends to be simple, those in which only propylene oxide is linked to an aromatic amine in a chain, those in which only ethylene oxide is linked to an aromatic amine in a chain, It is preferable that propylene oxide and ethylene oxide are linked in a chain or randomly linked to an aromatic amine, and more preferably, the propylene oxide residue is not easily crystallized from low temperature to high temperature and tends to be particularly excellent in fluidity. More preferably, 40% by weight or more of the alkylene oxide residues contained in the polyalkylene oxide (B) are propylene oxide residues.
 ポリアルキレンオキシド(B)は1分子中に2つ以上の水酸基を有することが好ましく、更に好ましくは1分子中の水酸基数が3以上15未満であり、最も好ましくは4以上6未満である。 The polyalkylene oxide (B) preferably has 2 or more hydroxyl groups per molecule, more preferably 3 or more and less than 15 hydroxyl groups, and most preferably 4 or more and less than 6 hydroxyl groups.
 1分子中に芳香族アミン残基を含有するポリアルキレンオキシド(B)の1分子中の水酸基数が3以上15未満であると、得られるウレタン硬化物の架橋構造が均一になり易く、引張破断強度が更に大きくなるため、好ましい。 When the number of hydroxyl groups in one molecule of the polyalkylene oxide (B) containing an aromatic amine residue in one molecule is 3 or more and less than 15, the crosslinked structure of the resulting urethane cured product tends to be uniform, and tensile rupture occurs. It is preferable because the strength is further increased.
 ポリアルキレンオキシド(B)の数平均分子量は2000未満であることが好ましい。数平均分子量2000未満であると芳香族アミン残基の含有量が高くなりやすく強度がさらに向上しやすく、反応性が向上して未反応ポリアルキレンオキシド(B)が多く残存しにくいため、より安定的に高い透明性を発現しやすい。 The number average molecular weight of polyalkylene oxide (B) is preferably less than 2,000. When the number average molecular weight is less than 2000, the content of the aromatic amine residue tends to increase, the strength tends to be further improved, and the reactivity is improved, so that a large amount of unreacted polyalkylene oxide (B) is less likely to remain, making it more stable. easily exhibit high transparency.
 なかでも、特に限定されず、用途により適宜選択されるが、揮発等による組成の不安定化が起こりにくく、かつ芳香族アミン残基の含有量が高く安定的に高い強度を発現しやすいため、200以上1800未満であることが好ましく、さらに好ましくは400以上1300未満であり、最も好ましくは450以上1000未満である。 Among them, it is not particularly limited and is appropriately selected depending on the application. It is preferably 200 or more and less than 1,800, more preferably 400 or more and less than 1,300, and most preferably 450 or more and less than 1,000.
 なお、ポリアルキレンオキシド(B)の数平均分子量は、JIS K-1557-1に記載の方法により算出したポリアルキレンオキシド(B)の水酸基価と、ポリオール(A2)1分子中の水酸基数と、から算出することができる。また市販品の場合、公称の官能基数、水酸基価を用いることができる。 The number average molecular weight of the polyalkylene oxide (B) is the hydroxyl value of the polyalkylene oxide (B) calculated by the method described in JIS K-1557-1, the number of hydroxyl groups in one molecule of the polyol (A2), can be calculated from In the case of commercial products, the nominal number of functional groups and hydroxyl value can be used.
 ポリアルキレンオキシド(B)の、芳香族アミン残基の構造は特には限定されないが、好ましくは1分子中の芳香環数が1以上20以下の芳香族アミン残基であり、さらに好ましくは芳香環数が1以上3以下の芳香族アミン残基である。ポリアルキレンオキシド(B)に芳香族アミン残基を含まない場合、引張破断強度が不足しやすく、強度の向上に芳香族アミンそのものを用いたり、炭素数6以上の環状の糖残基を含むポリオールやポリエステルポリオール、ポリオキシテトラメチレングリコール等のポリアルキレンオキシド(A)より比較的剛直なポリオールが必要となるが、これらは塗工性の悪化や白濁を抑制しにくく、得られるウレタン硬化物の脆性やタックが高いものとなりやすい。 Although the structure of the aromatic amine residue of the polyalkylene oxide (B) is not particularly limited, it is preferably an aromatic amine residue having 1 or more and 20 or less aromatic rings in one molecule, more preferably an aromatic ring. It is an aromatic amine residue having a number of 1 or more and 3 or less. If the polyalkylene oxide (B) does not contain an aromatic amine residue, the tensile strength at break tends to be insufficient, and the aromatic amine itself is used to improve the strength, or a polyol containing a cyclic sugar residue having 6 or more carbon atoms. , polyester polyols, polyoxytetramethylene glycol, and other polyalkylene oxides (A) require relatively rigid polyols. and tack tends to be high.
 ポリアルキレンオキシド(B)中の芳香族アミン残基の含有量は特に限定されないが、高い強度を発現しやすいため7重量%以上であることが好ましく、更に好ましくはより高い透明性と高い強度を両立しやすいことから、10重量%以上50重量%以下の範囲であり、最も好ましくは13重量%以上30重量%以下の範囲である。当該含有量はNMR法またはコリッシュ分解による解析等により算出できるが、水酸基価より算出したポリアルキレンオキシドの分子量と公称の開始剤構造より計算してもよい。 The content of the aromatic amine residue in the polyalkylene oxide (B) is not particularly limited, but it is preferably 7% by weight or more, more preferably 7% by weight or more, because it tends to develop high strength, more preferably higher transparency and strength. Since compatibility is easily achieved, the range is 10% by weight or more and 50% by weight or less, and most preferably the range is 13% by weight or more and 30% by weight or less. The content can be calculated by the NMR method or the analysis by Corish decomposition, or it may be calculated from the molecular weight of the polyalkylene oxide calculated from the hydroxyl value and the nominal initiator structure.
 このような芳香族アミン残基としては、例えば、アニリン残基、2,4-トリレンジアミン残基、2,6-トリレンジアミン残基、2,2’-ジフェニルメタンジアミン残基、2,4’-ジフェニルメタンジアミン残基、4,4’-ジフェニルメタンジアミン残基、ポリフェニレンポリアミン残基、1,5-ナフタレンジアミン残基、トリジンジアミン残基、キシリレンジアミン残基、1,3-フェニレンジアミン残基、1,4-フェニレンジアミン残基、ならびに、これらの2種以上の残基などが挙げられ、好ましくは原料の入手が容易であり良好な硬化性、引張破断強度を発現しやすい4,4’-ジフェニルメタンジアミン残基、2,4-トリレンジアミン残基及び2,6-トリレンジアミン残基からなる群より選ばれる1種以上の残基である。 Examples of such aromatic amine residues include aniline residues, 2,4-tolylenediamine residues, 2,6-tolylenediamine residues, 2,2′-diphenylmethanediamine residues, 2,4 '-diphenylmethanediamine residue, 4,4'-diphenylmethanediamine residue, polyphenylenepolyamine residue, 1,5-naphthalenediamine residue, tolidinediamine residue, xylylenediamine residue, 1,3-phenylenediamine residue , 1,4-phenylenediamine residues, and residues of two or more of these, preferably 4,4' which is easy to obtain raw materials and exhibits good curability and tensile strength at break. - is one or more residues selected from the group consisting of diphenylmethanediamine residues, 2,4-tolylenediamine residues and 2,6-tolylenediamine residues.
 ポリアルキレンオキシド(B)は、一般にトリレンジアミンやジフェニルメタンジアミンなどの芳香族アミンを開始剤としてアルキレンオキシドを開環重合することにより得られるが、エチレンジアミン、ジエチレントリアミン、トリエタノールアミン、ジエチレングリコール、グリセリン、プロピレングリコール等の芳香族アミン残基を含まない低粘度の活性水素化合物を開始剤に併用して合成されることがあり、上記残基を有する成分を含んでいてもよい。 Polyalkylene oxide (B) is generally obtained by ring-opening polymerization of an alkylene oxide using an aromatic amine such as tolylenediamine or diphenylmethanediamine as an initiator. In some cases, a low-viscosity active hydrogen compound containing no aromatic amine residue, such as glycol, is used in combination with the initiator for synthesis, and may contain a component having the residue described above.
 例えば、通常、トリレンジアミン開始ポリオールの水酸基数は4、アニリン開始ポリオールの水酸基数は2であるが、トリレンジアミン残基又はアニリン残基を含まない開始剤の併用やアルキレンオキシドが付加しなかったアミノ基の残存等により水酸基数が低下することがある。 For example, tolylenediamine-initiated polyol usually has 4 hydroxyl groups and aniline-initiated polyol has 2 hydroxyl groups. The number of hydroxyl groups may decrease due to residual amino groups.
 市販の芳香族アミン残基を含むポリアルキレンオキシド(B)としては、ハンツマン製JEFFOLAD-310(公称官能基数3.2、水酸基価310)、JEFFOLAD-500(公称官能基数3.2、水酸基価360)、東邦化学工業製トーホーポリオールAB-250(公称官能基数2.0、水酸基価440)、東邦化学工業社製AR-2589(公称官能基数4.0、水酸基価360)、東邦化学工業社製AR-750(公称官能基数4.0、水酸基価300)などが挙げられ、好適に使用できる。 Examples of commercially available polyalkylene oxides (B) containing aromatic amine residues include Huntsman JEFFOLAD-310 (nominal functionality 3.2, hydroxyl value 310), JEFFOLAD-500 (nominal functionality 3.2, hydroxyl value 360 ), Toho Polyol AB-250 manufactured by Toho Chemical Industry Co., Ltd. (nominal functional group number 2.0, hydroxyl value 440), AR-2589 manufactured by Toho Chemical Industry Co., Ltd. (nominal functional group number 4.0, hydroxyl value 360), manufactured by Toho Chemical Industry Co., Ltd. AR-750 (nominal functional group number: 4.0, hydroxyl value: 300) and the like can be preferably used.
 ポリアルキレンオキシド(B)に加えて、その他剛直なポリオールを2種類以上組み合わせて用いてもよく、特に限定されない。例えば、炭素数6以上の糖残基を含有するポリオールと芳香族アミン残基を有するポリオールの組み合わせなどが挙げられる。
ポリアルキレンオキシド(B)は、水分値が2000ppm以下となっていることが好ましいが、脱水操作等で操作が煩雑となるため、用途等に応じて選択することができる。
<その他ポリオール、モノオール>
 ウレタンプレポリマー(E)、および用いることが望ましいNCO末端ウレタンプレポリマー(D)には、特に限定されないが、ウレタンプレポリマー(E)の硬化性や塗工性の向上、得られるウレタン硬化物の所望の特性向上、ポリオールの活性水素基の総量に対するポリイソシアネート(C)のNCO基比率の調整等のため、例示したポリアルキレンオキシド(A)、ポリアルキレンオキシド(B)、ポリイソシアネート(C)に加えて、その他ポリオール、モノオール(AC)を用いてもよい。
In addition to the polyalkylene oxide (B), other rigid polyols may be used in combination of two or more, and are not particularly limited. Examples thereof include a combination of a polyol containing a sugar residue with 6 or more carbon atoms and a polyol containing an aromatic amine residue.
The polyalkylene oxide (B) preferably has a water content of 2,000 ppm or less.
<Other polyols and monools>
The urethane prepolymer (E) and the NCO-terminated urethane prepolymer (D), which is preferably used, are not particularly limited. In order to improve the desired properties, adjust the NCO group ratio of the polyisocyanate (C) with respect to the total amount of active hydrogen groups of the polyol, etc., the exemplified polyalkylene oxide (A), polyalkylene oxide (B), and polyisocyanate (C) In addition, other polyols and monools (AC) may be used.
 その他ポリオール、モノオール(AC)としては、プレポリマーの透明性や諸物性を損なわないものを適宜選択することができ、特に限定されないが、例えば、ポリカーボネートポリオール、ポリテトラメチレングリコール、ポリオレフィンポリオール、アクリルポリオール、ポリエステルポリオール、マンニッヒポリオール、シュークローズポリオール、脂肪族ジアミンポリオール、ポリエチレングリコール、ポリカプロラクトンポリオール、フッ素化ポリオール、シリコーン含有ポリオール、リン系ポリオール等の市販されているポリオール類、ポリオキシアルキレングリコールモノアルキルエーテル、ポリオキシアルキレングリコールモノアルケニルエーテル、ポリオキシアルキレングリコールモノフェニルエーテル、シリコーン含有モノオール等のモノオール類、シクロヘキサンジメタノール、テトラエチレングリコール、トリプロピレングリコール、トリプロピレングリコールモノブチルエーテル等の低分子量有機化合物等が挙げられる。 Other polyols and monools (AC) can be appropriately selected from those that do not impair the transparency and physical properties of the prepolymer, and are not particularly limited. Examples include polycarbonate polyols, polytetramethylene glycol, polyolefin polyols, acrylic Commercially available polyols such as polyols, polyester polyols, Mannich polyols, sucrose polyols, aliphatic diamine polyols, polyethylene glycols, polycaprolactone polyols, fluorinated polyols, silicone-containing polyols, phosphorus-based polyols, polyoxyalkylene glycol monoalkyl Ethers, polyoxyalkylene glycol monoalkenyl ethers, polyoxyalkylene glycol monophenyl ethers, monools such as silicone-containing monools, low molecular weight organic compounds such as cyclohexanedimethanol, tetraethylene glycol, tripropylene glycol, tripropylene glycol monobutyl ether compounds and the like.
 なかでも、塗工機などで塗工する際の塗工性が特に優れるために、ポリオキシアルキレングリコールモノアルキルエーテル、ポリオキシアルキレングリコールモノアルケニルエーテル、ポリオキシアルキレングリコールモノフェニルエーテルからなる群から選ばれる1種以上であることが好ましく、なかでも塗工性に優れやすく、高い透明性を維持しつつ、得られるウレタンの汚染性が低くタック性が低くなりやすいことから、分子量250以上1300以下のポリオキシエチレングリコールモノメチルエーテルを加えることが好ましい。 Among them, it is selected from the group consisting of polyoxyalkylene glycol monoalkyl ethers, polyoxyalkylene glycol monoalkenyl ethers, and polyoxyalkylene glycol monophenyl ethers because of its particularly excellent coatability when applied with a coating machine or the like. Among them, it is preferable to use one or more kinds of urethanes having a molecular weight of 250 or more and 1300 or less. It is preferred to add polyoxyethylene glycol monomethyl ether.
 反応性基を有するシリコーン成分(モノオールやポリオール、ポリアミン)や反応性基を有するフッ素成分等は用いないことが好ましいが、用いる場合は中間体のNCO末端ウレタンプレポリマー(D)の形成に用いることで分子鎖に取り込まれやすく汚染性の悪化が少なくなりやすいことから好ましい。
<NCO末端ウレタンプレポリマー(D)>
 活性水素基末端のウレタンプレポリマー(E)は、特に限定されないが、少なくともポリアルキレンオキシド(A)、ポリイソシアネート(C)からなるNCO末端ウレタンプレポリマー(D)を用いることが好ましい。
It is preferable not to use a silicone component (monool, polyol, polyamine) having a reactive group or a fluorine component having a reactive group. This is preferable because it is easily incorporated into the molecular chain and the deterioration of the staining property is easily reduced.
<NCO-Terminated Urethane Prepolymer (D)>
The active hydrogen group-terminated urethane prepolymer (E) is not particularly limited, but it is preferable to use an NCO-terminated urethane prepolymer (D) comprising at least polyalkylene oxide (A) and polyisocyanate (C).
 NCO末端ウレタンプレポリマー(D)は、ポリアルキレンオキシド(A)を含むポリオールの活性水素基の総量に対するポリイソシアネート(C)のNCO基の比率(NCO/OH比)が1.30~5.00の割合となる量比で混合することが好ましい。NCO/OH比が1.30~5.00の割合となる量比で混合することで、適度な粘度を有してハンドリング性が良好となりやすく、ウレタンプレポリマー(D)および得られるウレタン硬化物の透明性がより向上しやすい。 The NCO-terminated urethane prepolymer (D) has a ratio of NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the polyol containing the polyalkylene oxide (A) (NCO/OH ratio) of 1.30 to 5.00. It is preferable to mix at a quantity ratio that is the ratio of By mixing in an amount ratio that gives an NCO/OH ratio of 1.30 to 5.00, the urethane prepolymer (D) and the obtained urethane cured product have an appropriate viscosity and tend to have good handleability. transparency is easier to improve.
 なかでも、ポリアルキレンオキシド(A)とポリイソシアネート(C)がモル比で1:2で反応した構造を主となって、NCO末端ウレタンプレポリマー(D)中に連鎖的に反応した高分子量体や遊離(未反応)のポリイソシアネート(C)を含みにくく、多官能の芳香族アミン残基を有するポリアルキレンオキシド(B)を用いてもウレタンプレポリマー(E)およびそのウレタン硬化物の透明性が顕著に良好となりやすいため、ポリアルキレンオキシド(A)を含むポリオールの活性水素基の総量に対するポリイソシアネート(C)のNCO基の比率(NCO/OH比)が1.60~4.40の範囲であることが好ましく、更に好ましくは1.90~3.60の範囲である。 Among them, a high-molecular-weight substance chain-reacted in the NCO-terminated urethane prepolymer (D), mainly having a structure in which the polyalkylene oxide (A) and the polyisocyanate (C) reacted at a molar ratio of 1:2. or free (unreacted) polyisocyanate (C), and the transparency of the urethane prepolymer (E) and its urethane cured product even when using a polyalkylene oxide (B) having a polyfunctional aromatic amine residue is likely to be remarkably good, the ratio of the NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the polyol containing the polyalkylene oxide (A) (NCO/OH ratio) is in the range of 1.60 to 4.40. and more preferably in the range of 1.90 to 3.60.
 なかでも、ポリイソシアネート(C)としてヘキサメチレンジイソシアネートやその誘導体などのNCO基の反応性に差がないポリイソシアネート(C)を用いる場合、NCO/OH比が2.20~3.60の範囲、ポリイソシアネート(C)としてイソホロンジイソシアネートを用いる場合、NCO/OH比が2.00~3.10の範囲でウレタンプレポリマー(D)を形成することが、ゲル化や高粘度化を抑制しつつ透明性が良好となりやすいため最も好ましい。 Among them, when a polyisocyanate (C) such as hexamethylene diisocyanate or a derivative thereof having no difference in NCO group reactivity is used as the polyisocyanate (C), the NCO/OH ratio is in the range of 2.20 to 3.60. When isophorone diisocyanate is used as the polyisocyanate (C), forming the urethane prepolymer (D) with an NCO/OH ratio in the range of 2.00 to 3.10 suppresses gelation and high viscosity while maintaining transparency. It is most preferable because it tends to have good properties.
 更に、少量のポリアルキレンオキシド(B)を用いることで、遊離(未反応)のポリイソシアネート(C)を低減でき、ウレタンプレポリマー(E)を形成する際にポリアルキレンオキシド(B)とポリイソシアネート(C)の連鎖的な反応を抑制しやすく、得られるウレタンプレポリマー(E)の塗工性が向上するとともにウレタン硬化物が高い透明性を発現しやすいため好ましい。 Furthermore, by using a small amount of polyalkylene oxide (B), free (unreacted) polyisocyanate (C) can be reduced, and when forming urethane prepolymer (E), polyalkylene oxide (B) and polyisocyanate It is preferable because the chain reaction of (C) can be easily suppressed, the coatability of the resulting urethane prepolymer (E) can be improved, and the cured urethane product can easily exhibit high transparency.
 また、塗工機などで塗工する際の塗工性が特に優れるために、ポリオキシアルキレングリコールモノアルキルエーテル、ポリオキシアルキレングリコールモノアルケニルエーテル、ポリオキシアルキレングリコールモノフェニルエーテルからなる群から選ばれる1種以上を加えてウレタンプレポリマー(D)を形成することが好ましく、なかでも塗工性に優れやすく、高い透明性を維持しつつ、得られるウレタンの汚染性が低くタック性が低くなりやすいことから、分子量250以上1300以下のポリオキシエチレングリコールモノメチルエーテルを加えることが好ましい。 In addition, it is selected from the group consisting of polyoxyalkylene glycol monoalkyl ethers, polyoxyalkylene glycol monoalkenyl ethers, and polyoxyalkylene glycol monophenyl ethers for particularly excellent coatability when coated with a coating machine or the like. It is preferable to form a urethane prepolymer (D) by adding one or more of them. Among them, the urethane prepolymer (D) tends to be excellent in coatability, and while maintaining high transparency, the resulting urethane tends to have low staining resistance and low tackiness. Therefore, it is preferable to add polyoxyethylene glycol monomethyl ether having a molecular weight of 250 or more and 1300 or less.
 反応性基を有するシリコーン成分(モノオールやポリオール、ポリアミン)や反応性基を有するフッ素成分等は用いないことが好ましいが、用いる場合は中間体のNCO末端ウレタンプレポリマー(D)の形成に用いることで分子鎖に取り込まれやすく汚染性の悪化が少なくなりやすいことから好ましい。 It is preferable not to use a silicone component (monool, polyol, polyamine) having a reactive group or a fluorine component having a reactive group. This is preferable because it is easily incorporated into the molecular chain and the deterioration of the staining property is easily reduced.
 ウレタンプレポリマー(D)を形成する際に、ポリアルキレンオキシド(A)に加えて、ポリアルキレンオキシド(B)やその他ポリオール、モノオール(AC)を加える場合、多すぎると系中の水酸基量が増加しNCO/OH比が低くなりすぎてNCO末端のプレポリマーの形成が困難となる場合やゲル化や増粘しやすく成形性の悪化や得られるプレポリマーやウレタン硬化物の透明性が悪化する場合があるため、ポリアルキレンオキシド(A)100重量部に対してポリアルキレンオキシド(B)やその他ポリオール、モノオール(AC)の総量が30重量部以下の範囲で加えることが好ましい。なかでも、ハンドリング性が良好で、より高い透明性を発現しやすく更に高い強度を発現しやすいため、0.1~20重量部以下の範囲で加えることが好ましく、0.5~15重量部の範囲で加えることが最も好ましい。 When forming the urethane prepolymer (D), in addition to the polyalkylene oxide (A), when adding the polyalkylene oxide (B) and other polyols and monools (AC), if too much, the amount of hydroxyl groups in the system When the NCO/OH ratio becomes too low, it becomes difficult to form an NCO-terminated prepolymer, or gelation or thickening tends to occur, resulting in poor moldability and poor transparency of the resulting prepolymer or urethane cured product. Therefore, it is preferable to add the polyalkylene oxide (B) and other polyols and monools (AC) in a total amount of 30 parts by weight or less to 100 parts by weight of the polyalkylene oxide (A). Among them, the handling property is good, it is easy to express higher transparency, and it is easy to express higher strength. Adding in ranges is most preferred.
 また、ウレタンプレポリマー(D)の形成には、必要に応じてウレタン化触媒、溶剤、可塑剤、レベリング剤、その他の添加剤を加えてもよい。なかでも、効率的にNCO末端のウレタンプレポリマーを形成しやすく、かつ副反応が少なく、より高透明のウレタンプレポリマーおよびウレタン硬化物を得られやすいため、ポリアルキレンオキシド(A)とポリイソシアネート(C)を含むポリオールとポリイソシアネートの総量に対して、金属成分を含むウレタン化触媒0.001~0.2重量%の範囲で含むことが好ましく、さらに好ましくは金属成分を含むウレタン化触媒が0.003~0.1重量%の範囲であり、最も好ましくは0.005~0.05重量%の範囲である。 In addition, a urethanization catalyst, a solvent, a plasticizer, a leveling agent, and other additives may be added as necessary to form the urethane prepolymer (D). Among them, the polyalkylene oxide (A) and the polyisocyanate ( Based on the total amount of the polyol and polyisocyanate containing C), it is preferable that the urethanization catalyst containing the metal component is contained in the range of 0.001 to 0.2% by weight, and more preferably the urethanization catalyst containing the metal component is 0. 0.003 to 0.1 weight percent, most preferably 0.005 to 0.05 weight percent.
 金属成分を含むウレタン化触媒としては、金属成分を含みウレタン化活性を示す化合物であれば特に限定されないが、Fe、Sn、Zr、Ti、Alのいずれか一つ以上の金属を含む有機金属化合物であることが好ましい。なかでも、入手が容易であり触媒活性の温度依存性が低いSn触媒、ならびに反応性を調整しやすいFeキレート触媒、Zrキレート触媒、Tiキレート触媒、Alキレート触媒等の金属キレート触媒の1種または2種以上であると、効率的にNCO末端のウレタンプレポリマーを形成しやすいため更に好ましく、最も好ましくはFeキレート触媒を単独で使用することである。 The urethanization catalyst containing a metal component is not particularly limited as long as it is a compound containing a metal component and exhibiting urethanization activity. An organometallic compound containing one or more metals selected from Fe, Sn, Zr, Ti, and Al. is preferably Among them, one of Sn catalysts that are easily available and have low temperature dependence of catalytic activity, and metal chelate catalysts such as Fe chelate catalysts, Zr chelate catalysts, Ti chelate catalysts, and Al chelate catalysts that are easy to adjust reactivity, or The use of two or more catalysts is more preferable because the NCO-terminated urethane prepolymer can be efficiently formed, and the use of the Fe chelate catalyst alone is most preferable.
 Sn触媒としては特に限定されないが、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジバーサテート、ジブチルスズビス(アセチルアセトネート)等が挙げられる。 Although the Sn catalyst is not particularly limited, examples thereof include dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diversate, dibutyltin bis(acetylacetonate), and the like.
 Feキレート触媒としては特に限定されないが、例えば、トリスアセチルアセトネート鉄等、Zrキレート触媒としてはジルコニウムテトラアセチルアセトネート、ジルコニウムエチルアセトアセテート等、Tiキレート触媒としては、チタンアセチルアセトネート、チタンエチルアセトアセテート等、Alキレート触媒としてはアルミニウムトリスアセチルアセトネート等が挙げられる。 The Fe chelate catalyst is not particularly limited. Al chelate catalysts such as acetate include aluminum trisacetylacetonate and the like.
 ウレタンプレポリマー(D)を事前に形成する場合、特に限定されないが、有機溶剤を固形分濃度が60~99重量%の範囲となる量比で混合することが好ましく、更に好ましくは70~97重量%の範囲であり、最も好ましくは85~95重量%の範囲である。 When the urethane prepolymer (D) is formed in advance, it is not particularly limited, but it is preferable to mix the organic solvent in an amount ratio such that the solid content concentration is in the range of 60 to 99% by weight, more preferably 70 to 97% by weight. %, most preferably in the range of 85-95% by weight.
 溶剤としては、例えば、メチルエチルケトン、酢酸エチル、トルエン、キシレン、アセトン、ベンゼン、ジオキサン、アセトニトリル、テトラヒドロフラン、ジメトルスルホキシド、N-メチルピロリドン、ジメチルホルミアミド、グリコールエーテル系溶剤等が挙げられる。なかでも溶解性、有機溶媒の沸点といった扱いやすさの点に加えて得られるウレタン硬化物がより高い透明性を発現しやすいため、グリコールエーテル系溶剤、酢酸エチル、トルエン、メチルエチルケトン、またはこれらの混合溶媒が好ましい。 Examples of solvents include methyl ethyl ketone, ethyl acetate, toluene, xylene, acetone, benzene, dioxane, acetonitrile, tetrahydrofuran, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide, glycol ether solvents, and the like. In addition to ease of handling such as solubility and the boiling point of organic solvents, the resulting urethane cured product tends to exhibit higher transparency. Solvents are preferred.
 なかでも、乾燥硬化時に系中に留まり相溶性を保持する期間が長くなって反応硬化させる際に発生しやすい硬化収縮を安定的に抑制し良好な成形性でシワのない良好な外観のウレタンを形成しやすいため、sp値が8.0以上のグリコールエーテル系溶媒を含むことが好ましく、例えばジエチレングリコールジエチルエーテル(sp値8.2、沸点189℃)、トリエチレングリコールジメチルエーテル(sp値8.4、沸点216℃)、ジエチレングリコールエチルメチルエーテル(sp値8.1、沸点176℃)、ジエチレングリコールジメチルエーテル(sp値8.1、沸点162℃)、テトラエチレングリコールジメチルエーテル(sp値8.5、沸点275℃)、プロピレングリコールモノメチルエーテルアセタート(sp値8.7、沸点146℃)、エチレングリコールモノメチルエーテルアセタート(sp値9.0、沸点145℃)、エチレングリコールモノブチルエーテルアセタート(sp値8.9、沸点188℃)、メトキシブチルアセタート(sp値8.7、沸点171℃)、トリアセチン(sp値10.2、沸点260℃)、等が挙げられ、なかでもジエチレングリコールジエチルエーテル(sp値8.2、沸点189℃)、トリエチレングリコールジメチルエーテル(sp値8.4、沸点216℃)、エチレングリコールモノブチルエーテルアセタート(sp値8.9、沸点188℃)の何れか1種以上を含むことが最も好ましい。更には酢酸エチル、トルエン、メチルエチルケトンを併用することで成形性を調整しやすい。 Among them, urethane that stays in the system during drying and curing for a long period of time to maintain compatibility and stably suppresses curing shrinkage that tends to occur during reaction curing, and has good moldability and a good appearance without wrinkles. Since it is easy to form, it is preferable to contain a glycol ether solvent with an sp value of 8.0 or more, such as diethylene glycol diethyl ether (sp value 8.2, boiling point 189 ° C.), triethylene glycol dimethyl ether (sp value 8.4, boiling point 216°C), diethylene glycol ethyl methyl ether (sp value 8.1, boiling point 176°C), diethylene glycol dimethyl ether (sp value 8.1, boiling point 162°C), tetraethylene glycol dimethyl ether (sp value 8.5, boiling point 275°C) , propylene glycol monomethyl ether acetate (sp value 8.7, boiling point 146 ° C.), ethylene glycol monomethyl ether acetate (sp value 9.0, boiling point 145 ° C.), ethylene glycol monobutyl ether acetate (sp value 8.9, boiling point 188° C.), methoxybutyl acetate (sp value 8.7, boiling point 171° C.), triacetin (sp value 10.2, boiling point 260° C.), among others diethylene glycol diethyl ether (sp value 8.2 , boiling point 189 ° C.), triethylene glycol dimethyl ether (sp value 8.4, boiling point 216 ° C.), ethylene glycol monobutyl ether acetate (sp value 8.9, boiling point 188 ° C.). preferable. Furthermore, by using ethyl acetate, toluene, and methyl ethyl ketone in combination, the moldability can be easily adjusted.
 ウレタンプレポリマー(D)の調製には、原料を均一に分散、反応することができる方法であれば特に限定されるものではなく、従来公知の様々な撹拌方法を用いることができ、例えば、撹拌機を用いて撹拌する方法が挙げられる。撹拌機としては、例えば、汎用撹拌機、自転公転ミキサー、ディスパー分散機、ディゾルバー、ニーダー、ミキサー、ラボプラストミル、プラネタリーミキサー等を挙げることができる。 The preparation of the urethane prepolymer (D) is not particularly limited as long as it is a method capable of uniformly dispersing and reacting the raw materials. A method of stirring using a machine can be mentioned. Examples of the stirrer include a general-purpose stirrer, a rotation-revolution mixer, a disper disperser, a dissolver, a kneader, a mixer, a laboplastomill, a planetary mixer, and the like.
 NCO末端ウレタンプレポリマー(D)の分子量は、特に限定されないが、ハンドリング性がより良好となりやすいことからゲルパーミエーションクロマトグラフィー法により測定した重量平均分子量が2500以上500000以下の範囲であることが好ましく、5000以上200000以下の範囲であることが更に好ましく、10000以上100000以下の範囲であることが好ましい。
<ウレタンプレポリマー(E)の製造方法>
 本発明の一態様である活性水素基末端のウレタンプレポリマー(E)は、特に限定されないが、NCO末端ウレタンプレポリマー(D)とポリアルキレンオキシド(B)との反応物であることが好ましく、ウレタンプレポリマー(D)は少なくともポリアルキレンオキシド(A)、ポリイソシアネート(C)からなることが好ましい。
The molecular weight of the NCO-terminated urethane prepolymer (D) is not particularly limited, but the weight-average molecular weight measured by gel permeation chromatography is preferably in the range of 2,500 to 500,000, since the handling property tends to be better. , more preferably in the range of 5,000 to 200,000, and more preferably in the range of 10,000 to 100,000.
<Method for producing urethane prepolymer (E)>
The active hydrogen group-terminated urethane prepolymer (E), which is one aspect of the present invention, is not particularly limited, but is preferably a reaction product of an NCO-terminated urethane prepolymer (D) and a polyalkylene oxide (B). Urethane prepolymer (D) preferably comprises at least polyalkylene oxide (A) and polyisocyanate (C).
 ウレタンプレポリマー(E)の製造方法としては、特に限定されないが、前記ポリアルキレンオキシド(A)とポリアルキレンオキシド(B)を含む活性水素基の総量に対する前記ポリイソシアネート(C)のNCO基の総量のモル比率(NCO/OHモル比)が0.10~0.70の割合となる量比で混合し、活性水素基末端のウレタンプレポリマー(E)を製造することをが好ましい。即ち、ウレタンプレポリマー(D)の原料を含む全原料の活性水素基の総量に対する全原料のポリイソシアネート基の総量のモル比率(全NCO/全OHモル比)が0.10~0.70の割合となるようにポリアルキレンオキシド(B)を含む各原料を混合することが好ましい。 The method for producing the urethane prepolymer (E) is not particularly limited, but the total amount of NCO groups of the polyisocyanate (C) with respect to the total amount of active hydrogen groups containing the polyalkylene oxide (A) and the polyalkylene oxide (B). (NCO/OH molar ratio) of 0.10 to 0.70 to produce an active hydrogen group-terminated urethane prepolymer (E). That is, the molar ratio of the total amount of polyisocyanate groups of all raw materials to the total amount of active hydrogen groups of all raw materials including the raw materials of the urethane prepolymer (D) (total NCO/total OH molar ratio) is 0.10 to 0.70. It is preferable to mix each raw material containing the polyalkylene oxide (B) so that the ratio is the same.
 全原料のNCO/OH比が0.10~0.70の割合となる量比で混合することで、水酸基末端となり、かつ適度な粘度を有し、より良好な塗工性のウレタンプレポリマー(E)およびより高透明のウレタン硬化物を安定的に形成しやすい。 A urethane prepolymer ( E) and it is easy to stably form a more highly transparent urethane cured product.
 なかでも、適度な粘度を有し、ウレタンプレポリマー(E)中に未反応のポリアルキレンオキシド(B)の残存量が少なくなってウレタンプレポリマー(E)およびウレタン硬化物をより高透明となり、ポリアルキレンオキシド(B)を多く導入可能となって強度や低タック性をより顕著に発現しやすいため、最終のNCO/OH比が0.15~0.60の割合となる量比で混合することが好ましく、更に好ましくは0.20~0.50の範囲である。 Above all, it has an appropriate viscosity, and the residual amount of unreacted polyalkylene oxide (B) in the urethane prepolymer (E) is reduced, so that the urethane prepolymer (E) and the urethane cured product become more transparent, Since a large amount of polyalkylene oxide (B) can be introduced and strength and low tackiness are likely to be exhibited more remarkably, the final NCO/OH ratio is mixed at a ratio of 0.15 to 0.60. is preferred, and more preferably in the range of 0.20 to 0.50.
 なかでも、ポリイソシアネート(C)としてヘキサメチレンジイソシアネートやその誘導体などのNCO基の反応性に差がないポリイソシアネート(C)を用いる場合、最終のNCO/OH比が0.20~0.40の範囲、ポリイソシアネート(C)としてイソホロンジイソシアネートを用いる場合、最終のNCO/OH比が0.20~0.49の範囲であると、ゲル化や高粘度化を抑制しつつ透明性が良好となりやすいため最も好ましい。 Among them, when using a polyisocyanate (C) such as hexamethylene diisocyanate or a derivative thereof having no difference in reactivity of NCO groups as the polyisocyanate (C), the final NCO/OH ratio is 0.20 to 0.40. When isophorone diisocyanate is used as the polyisocyanate (C), if the final NCO/OH ratio is in the range of 0.20 to 0.49, transparency tends to be good while suppressing gelation and high viscosity. therefore most preferred.
 全原料のポリアルキレンオキシド(B)に対するポリアルキレンオキシド(A)の重量比率(ポリアルキレンオキシド(A)/ポリアルキレンオキシド(B))が10/90~90/10の範囲であることが好ましく、更に好ましくは安定的に透明性を発現しつつより高強度となりやすいため25/75~80/20の範囲であり、最も好ましくは40/60~75/25の範囲である。 The weight ratio of polyalkylene oxide (A) to polyalkylene oxide (B) of all raw materials (polyalkylene oxide (A)/polyalkylene oxide (B)) is preferably in the range of 10/90 to 90/10, More preferably, it is in the range of 25/75 to 80/20, and most preferably in the range of 40/60 to 75/25, because it tends to exhibit higher strength while stably expressing transparency.
 ポリアルキレンオキシド(A)とポリアルキレンオキシド(B)その他ポリオール、モノオール(AC)を合わせたポリオールの平均官能基数は、特に限定されないが、より高い透明性と強度を発現しやすいことから2.5~4.5官能の範囲であることが好ましく、さらに好ましくは2.8~3.9官能の範囲であり、最も好ましくは3.1~3.8の範囲である。ポリオールの平均官能基数は各原料のモル分率と含有量より求めた値を指す。 The average number of functional groups of the polyol, which is a combination of polyalkylene oxide (A), polyalkylene oxide (B), other polyols, and monool (AC), is not particularly limited. It is preferably in the range of 5-4.5 functionality, more preferably in the range of 2.8-3.9 functionality, most preferably in the range of 3.1-3.8. The average functional group number of polyol refers to the value obtained from the molar fraction and content of each raw material.
 ウレタンプレポリマー(D)の形成にポリアルキレンオキシド(B)を用いる場合、活性水素基末端のウレタンプレポリマー(E)の形成に用いるポリアルキレンオキシド(B)は、NCO末端ウレタンプレポリマー(D)の形成に用いたポリアルキレンオキシド(B)の添加量に対する重量比率((E)形成用ポリアルキレンオキシド(B)/(D)形成用ポリアルキレンオキシド(B))が70/30~99.9/0.1の範囲であることが好ましく、更に好ましくは80/10~99/1の範囲であり、最も好ましくは90/10~97/3の範囲である。 When the polyalkylene oxide (B) is used to form the urethane prepolymer (D), the polyalkylene oxide (B) used to form the active hydrogen group-terminated urethane prepolymer (E) is the NCO-terminated urethane prepolymer (D). The weight ratio ((E)-forming polyalkylene oxide (B)/(D)-forming polyalkylene oxide (B)) to the added amount of the polyalkylene oxide (B) used for the formation is 70/30 to 99.9. /0.1, more preferably 80/10 to 99/1, and most preferably 90/10 to 97/3.
 ウレタンプレポリマー(E)の形成には、必要に応じてその他ポリオールやモノオール、ウレタン化触媒、溶剤、可塑剤、レベリング剤、反応遅延剤、その他の添加剤等を加えて製造してもよい。またウレタンプレポリマー(D)形成する場合に、加えた添加剤等がそのまま残存し含んでいてもよい。 For the formation of the urethane prepolymer (E), other additives such as polyols, monools, urethanization catalysts, solvents, plasticizers, leveling agents, reaction retarders and other additives may be added as necessary. . Moreover, when forming the urethane prepolymer (D), the added additives may remain as they are.
 ウレタンプレポリマー(E)の形成の際に、含むことが好ましいその他原料としては、特に限定されないが、ウレタンプレポリマー(D)の形成の際に含むことが好ましいその他原料と同様の原料や使用量が挙げられ、好適に適用することができる。 The other raw materials that are preferably included when forming the urethane prepolymer (E) are not particularly limited, but the same raw materials and amounts used as the other raw materials that are preferably included when forming the urethane prepolymer (D). and can be suitably applied.
 なかでも、ウレタンプレポリマー(E)の経時での粘度の上昇を抑制しやすく貯蔵安定性に優れ、適度な粘度に調整しつつハンドリング性や硬化性を向上しやすくなることからウレタン化触媒や溶剤を追加してもよく、好ましい。 Among them, the urethane prepolymer (E) is easy to suppress the increase in viscosity over time, has excellent storage stability, and is easy to improve handleability and curability while adjusting the viscosity to an appropriate level. may be added and is preferred.
 有機溶剤を用いる場合、ウレタンプレポリマー(E)の固形分濃度は特に限定されないが良好な粘度を発現しやすくハンドリング性が良好となりやすいことから60~99重量%の範囲となる量比で含むことが好ましく、更に好ましくは80~97重量%の範囲であり、最も好ましくは85~95重量%の範囲である。金属成分を含むウレタン化触媒は、ウレタンプレポリマー(E)中に0.001~0.2重量%の範囲で含むことが好ましく、さらに好ましくは金属成分を含むウレタン化触媒が0.003~0.1重量%の範囲であり、最も好ましくは0.005~0.05重量%の範囲である。 When an organic solvent is used, the solid content concentration of the urethane prepolymer (E) is not particularly limited, but it is likely to exhibit good viscosity and good handling properties, so it should be contained in an amount ratio in the range of 60 to 99% by weight. is preferred, more preferably in the range of 80-97% by weight, most preferably in the range of 85-95% by weight. The urethanization catalyst containing a metal component is preferably contained in the urethane prepolymer (E) in an amount of 0.001 to 0.2% by weight, more preferably 0.003 to 0.003%. 0.1% by weight, most preferably 0.005-0.05% by weight.
 ウレタンプレポリマー(E)の調製には、原料を均一に分散、反応することができる方法であれば特に限定されるものではなく、ウレタンプレポリマー(D)の調製と同様の好ましい撹拌方法等の反応条件を好適に採用することができる。 The method for preparing the urethane prepolymer (E) is not particularly limited as long as the method can uniformly disperse and react the raw materials. Suitable reaction conditions can be employed.
 ウレタンプレポリマー(E)の調製の際、特に限定されないが、最終的なポリオールの活性水素基の総量に対するポリイソシアネート(C)のNCO基の比率を調整や所望の引張強度や塗工性、溶液粘度を得るための組成に調整する等のため、ウレタンプレポリマー(D)とポリアルキレンオキシド(B)に加えて少量のその他ポリオール、モノオール(BC)を加えてもよい。 When preparing the urethane prepolymer (E), although not particularly limited, the ratio of the NCO groups of the polyisocyanate (C) to the total amount of active hydrogen groups of the final polyol can be adjusted, desired tensile strength, coatability, solution In addition to the urethane prepolymer (D) and the polyalkylene oxide (B), a small amount of other polyols and monools (BC) may be added for adjusting the composition to obtain viscosity.
 ウレタンプレポリマー(E)の調製にポリアルキレンオキシド(B)に加えて、その他ポリオール、モノオール(BC)を加える場合、多すぎると未反応成分の残存量増加による成形性や汚染性の悪化、得られるプレポリマーやウレタン硬化物の透明性が悪化する場合があるため、ポリアルキレンオキシド(B)100重量部に対してその他ポリオール、モノオールの総量が15重量部以下の範囲で加えることが好ましく、高分子量であると相溶性が悪くなってより透明性を悪化しやすいため分子量は2000未満であることが好ましい。 When adding other polyols and monools (BC) to the preparation of the urethane prepolymer (E) in addition to the polyalkylene oxide (B), if it is too much, the residual amount of unreacted components increases, resulting in deterioration of moldability and contamination resistance. Since the transparency of the resulting prepolymer and urethane cured product may deteriorate, it is preferable to add other polyols and monools in a total amount of 15 parts by weight or less per 100 parts by weight of the polyalkylene oxide (B). A molecular weight of less than 2,000 is preferable because a high molecular weight tends to result in poor compatibility and poor transparency.
 その他ポリオール、モノオール(BC)としては、プレポリマーの透明性や諸物性を損なわないものを適宜選択することができ、特に限定されないが、例えば、ポリカーボネートポリオール、ポリテトラメチレングリコール、ポリオレフィンポリオール、アクリルポリオール、ポリエステルポリオール、マンニッヒポリオール、シュークローズポリオール、脂肪族ジアミンポリオール、ポリエチレングリコール、ポリカプロラクトンポリオール、フッ素化ポリオール、シリコーン含有ポリオール、リン系ポリオール等の市販されているポリオール類、ポリオキシアルキレングリコールモノアルキルエーテル、ポリオキシアルキレングリコールモノアルケニルエーテル、ポリオキシアルキレングリコールモノフェニルエーテル、シリコーン含有モノオール等のモノオール類、シクロヘキサンジメタノール、テトラエチレングリコール、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル等の低分子量有機化合物等が挙げられる。 Other polyols and monools (BC) can be appropriately selected from those that do not impair the transparency and physical properties of the prepolymer, and are not particularly limited. Examples include polycarbonate polyols, polytetramethylene glycol, polyolefin polyols, acrylic Commercially available polyols such as polyols, polyester polyols, Mannich polyols, sucrose polyols, aliphatic diamine polyols, polyethylene glycols, polycaprolactone polyols, fluorinated polyols, silicone-containing polyols, phosphorus-based polyols, polyoxyalkylene glycol monoalkyl Ethers, polyoxyalkylene glycol monoalkenyl ethers, polyoxyalkylene glycol monophenyl ethers, monools such as silicone-containing monools, low molecular weight organic compounds such as cyclohexanedimethanol, tetraethylene glycol, tripropylene glycol, tripropylene glycol monomethyl ether compounds and the like.
 なかでも、加える場合、比較的相溶性が良好で高い透明性を発現しやすく、強度が高くなりやすいことから、シュークローズポリオールまたはポリテトラメチレングリコールを含むことが好ましく、その場合、高粘度化しにくくハンドリング性に優れることから、0.1~13重量部以下の範囲で加えることが好ましく、0.5~10重量部の範囲で加えることが更に好ましい。最も好ましくは、より高い強度を発現しやすくなるため、シュークローズポリオールを1~10重量部の範囲で加えることである。 Among them, when added, it is preferable to contain sucrose polyol or polytetramethylene glycol because it has relatively good compatibility, tends to exhibit high transparency, and tends to increase strength, and in that case, it is difficult to increase the viscosity. It is preferably added in the range of 0.1 to 13 parts by weight, more preferably in the range of 0.5 to 10 parts by weight, because of its excellent handleability. Most preferably, the sucrose polyol is added in the range of 1 to 10 parts by weight, since it facilitates development of higher strength.
 また、反応性基を有するシリコーン成分(モノオールやポリオール、ポリアミン)や反応性基を有するフッ素成分等は残存し汚染しやすいことから用いないことが好ましいが、特に限定されない。
<ウレタンプレポリマー(E)組成物>
 ウレタンプレポリマー(E)は、特に限定されないが、必要に応じて濃縮や溶剤添加による粘度調整を行い、添加剤として鎖延長剤、帯電防止剤、可塑剤、反応遅延剤、レベリング剤、その他の添加剤を添加し混合して、ウレタンプレポリマー組成物を調製してもよい。
In addition, it is preferable not to use silicone components (monools, polyols, polyamines) having reactive groups and fluorine components having reactive groups because they tend to remain and contaminate, but are not particularly limited.
<Urethane prepolymer (E) composition>
The urethane prepolymer (E) is not particularly limited, but if necessary, the viscosity is adjusted by concentration or solvent addition, and additives such as chain extenders, antistatic agents, plasticizers, reaction retarders, leveling agents, and other Additives may be added and mixed to prepare the urethane prepolymer composition.
 鎖延長剤としては、特に限定されるものではなく、例えば、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、分子量1000以下の低分子量ポリアルキレングリコール等のグリコール類;エチレンジアミン、N-アミノエチルエタノールアミン、ピペラジン、イソホロンジアミン、キシリレンジアミン等の多価アミンが挙げられる。なかでも、ウレタンウレアを形成し、良好な物性のウレタンを得やすいため多価アミンが好ましい。 The chain extender is not particularly limited, and examples thereof include ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, pentaerythritol, and low molecular weights with a molecular weight of 1000 or less. Glycols such as polyalkylene glycol; and polyvalent amines such as ethylenediamine, N-aminoethylethanolamine, piperazine, isophoronediamine and xylylenediamine. Among them, polyvalent amines are preferable because they form urethane urea and easily obtain urethane having good physical properties.
 帯電防止剤としては、特に限定されるものではないが、アルカリ金属塩やイオン液体等が挙げられ、例えば、リチウムビス(トリフルオロメタンスルホニルイミド等のリチウム塩や4級アンモニウム塩、イミダゾリウム塩、ホスホニウム塩、ピリジニウム塩等が挙げられる。 Examples of the antistatic agent include, but are not particularly limited to, alkali metal salts and ionic liquids. salts, pyridinium salts and the like.
 可塑剤としては、特に限定されるものではないが、脂肪酸エステルや脂環式エステル、ポリエーテルエステル等が挙げられ、例えばエポキシ化脂肪酸エステル、ミリスチン酸エステル、ポリアルキレングリコールの末端エステル変性化合物等が挙げられる。 Examples of plasticizers include, but are not limited to, fatty acid esters, alicyclic esters, and polyether esters. Examples include epoxidized fatty acid esters, myristate esters, polyalkylene glycol terminal ester-modified compounds, and the like. mentioned.
 反応遅延剤としては、特に限定されず、例えば、ウレタン化触媒の活性を抑制する効果のある添加剤(酸遅延剤、キレート化合物等)、反応時に主剤分子量が高くなりにくくなる添加剤(増粘抑制剤等)、イソシアネートやポリオール・プレポリマーの反応性を低減する添加剤(酸遅延剤、安定剤等)等種々の遅延剤を用いることができ、そのような遅延剤を組み合わせて用いることが好ましい。 The reaction retarder is not particularly limited. Inhibitors, etc.), additives that reduce the reactivity of isocyanates and polyol prepolymers (acid retarders, stabilizers, etc.) can be used, and such retarders can be used in combination. preferable.
 なかでも、反応遅延剤として、酸遅延剤、キレート化合物、増粘抑制剤、安定剤のいずれか1種または2種以上を用いることが好ましく、更に好ましくは酸遅延剤、キレート化合物、増粘抑制剤、安定剤のいずれか2~4種を併用する事が好ましく、最も好ましくは酸遅延剤、キレート化合物、増粘抑制剤のそれぞれ1種以上を含む3~4種を全て併用する事である。また上記酸遅延剤、キレート化合物、増粘抑制剤のそれぞれは1種に限らず、それぞれ2種以上を併用することができ好ましい。 Among them, as a reaction retarder, it is preferable to use one or more of an acid retardant, a chelate compound, a thickening inhibitor, and a stabilizer, more preferably an acid retardant, a chelate compound, and a thickening inhibitor. It is preferable to use 2 to 4 of any one of the agent and the stabilizer, and most preferably, 3 to 4 types including one or more of each of the acid retarder, chelate compound, and anti-thickening agent are used in combination. . Moreover, each of the acid retarder, chelate compound, and thickening inhibitor is not limited to one type, and two or more types can be used in combination, which is preferable.
 なかでも、ポリアルキレンオキシド(B)のアミン構造に由来する触媒活性を抑制しやすくなり、可使時間が延長するとともに乾燥、エージング、塗工時の急激なゲル化を抑制しやすくなり、安定的にシワを抑制して成形性が良くなりやすいため酸遅延剤を含むことが好ましく、特に限定されないがpKa5.0以下の酸を含むことが好ましい。 Among them, it becomes easier to suppress the catalytic activity derived from the amine structure of the polyalkylene oxide (B), which extends the pot life and makes it easier to suppress rapid gelation during drying, aging, and coating. In addition, it preferably contains an acid retardant because it suppresses wrinkles and tends to improve moldability, and although it is not particularly limited, it preferably contains an acid with a pKa of 5.0 or less.
 そのようなpKa5.0以下の酸としては、塩酸、硝酸、リン酸やエチルアシッドホスフェートや2-エチルヘキシルアシッドホスフェート等の炭素数2~20の酸性リン酸エステル等のリン系酸遅延剤などが挙げられ、なかでも、反応性と物性のバランスが良好となりやすいためリン系酸遅延剤を用いることが好ましい。酸遅延剤を用いるときの含有量としては、プレポリマー(E)100重量部に対して0.001~1重量部の範囲であることが好ましく、さらに好ましくは0.005~0.1重量部の範囲である。また、酸遅延剤を用いるときのウレタンプレポリマー(E)のpHとしては硬化性が高くなりやすく低腐食性の良好な液性となりやすいためpH4~9の範囲となる量であることが好ましい。ウレタンプレポリマー(E)のpHは、水とIPAを重量比5:3で混合した液に固形分7質量%で分散し、pH計にて測定した値を指す。 Examples of such acids with a pKa of 5.0 or less include phosphoric acid retarders such as hydrochloric acid, nitric acid, phosphoric acid, and acidic phosphoric acid esters having 2 to 20 carbon atoms such as ethyl acid phosphate and 2-ethylhexyl acid phosphate. Among them, it is preferable to use a phosphorus-based acid retardant because it tends to achieve a good balance between reactivity and physical properties. The content of the acid retarder when used is preferably in the range of 0.001 to 1 part by weight, more preferably 0.005 to 0.1 part by weight, relative to 100 parts by weight of the prepolymer (E). is in the range of In addition, the pH of the urethane prepolymer (E) when using an acid retarder is preferably in the range of pH 4 to 9 because the curability tends to be high and the liquid property tends to be low corrosive. The pH of the urethane prepolymer (E) refers to the value measured with a pH meter after dispersing it in a liquid mixture of water and IPA at a weight ratio of 5:3 at a solid content of 7% by mass.
 キレート化合物としては、触媒活性を調整して架橋剤混合後の増粘を抑制しやすく、また成形性も良好となりやすいため、ケトエノール互変異性化合物、トリアゾール誘導体の1種また2種以上を含むことが好ましく、さらに好ましくはキレート化合物としてケトエノール互変異性化合物、トリアゾール誘導体のそれぞれを1種以上(計2種以上)用いることが好ましい。 As the chelate compound, one or more of a keto-enol tautomer compound and a triazole derivative are included because it is easy to adjust the catalytic activity to suppress thickening after mixing with the cross-linking agent and to improve moldability. is preferred, and it is more preferred to use one or more (total of two or more) each of a ketoenol tautomeric compound and a triazole derivative as the chelate compound.
 ケトエノール互変異性化合物としては、特に限定されないが、より触媒活性を調整して成形性が良好となりやすいため、アセト酢酸エチル又はアセチルアセトンのいずれか1種以上であることが好ましい。そのようなケトエノール互変異性化合物を含む場合、その含有量は、より成形性が良くなりやすいため金属成分を含むウレタン化触媒に対するモル比率(ケトエノール互変異性化合物/金属触媒)が10倍以上であることが好ましく、更に好ましくは50倍~5000倍の範囲であり、ウレタンプレポリマー(E)100重量部に対して、0.01~20重量部の範囲であることが好ましく、さらに好ましくは0.5~10重量部の範囲である。 Although the keto-enol tautomer compound is not particularly limited, it is preferably one or more of ethyl acetoacetate and acetylacetone, since it is easy to adjust the catalytic activity and improve moldability. When such a ketoenol tautomer compound is included, its content is such that the moldability tends to be better, so the molar ratio (ketoenol tautomer compound/metal catalyst) with respect to the urethanization catalyst containing the metal component is 10 times or more. preferably in the range of 50 to 5,000 times, preferably in the range of 0.01 to 20 parts by weight, more preferably 0 .5 to 10 parts by weight.
 トリアゾール誘導体としては、特に限定されないが、硬化収縮の抑制効果が高く、良好な塗膜外観のウレタンを形成しやすいため、フェノール性水酸基を有するベンゾトリアゾール誘導体であることが好ましく、更に好ましくはウレタンの透明性が高くなりやすいため室温液状で分子量300~700の範囲であってフェノール性水酸基を含むアリール基がベンゾトリアゾールに直結しているフェノール性水酸基を有するベンゾトリアゾール誘導体であることが好ましく、上記化合物としては、特に限定されないが、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール(BASF製チヌビン571)、3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロピオン酸の炭素数7~9のアルキルエステル)(BASF製チヌビン99-2、チヌビン384-2)などが挙げられる。トリアゾール誘導体を用いる場合の含有量としてはウレタンプレポリマー(E)100重量部に対して、0.1~3重量部の範囲であることが好ましく、なかでも、より高透明で良好な塗膜外観を形成しやすいため、0.2~2重量部の範囲であることが更に好ましく、最も好ましくは0.3~1.5重量部の範囲である。 The triazole derivative is not particularly limited, but is preferably a benzotriazole derivative having a phenolic hydroxyl group, more preferably a urethane derivative, because it has a high effect of suppressing curing shrinkage and easily forms a urethane with a good coating film appearance. A benzotriazole derivative having a phenolic hydroxyl group in which an aryl group containing a phenolic hydroxyl group is directly linked to benzotriazole is preferable, since it is liquid at room temperature and has a molecular weight in the range of 300 to 700, since the transparency tends to be high. Examples include, but are not limited to, 2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methylphenol (BASF Tinuvin 571), 3-(2H-benzotriazol-2-yl)-5 -(1,1-dimethylethyl)-4-hydroxy-benzenepropionic acid having 7 to 9 carbon atoms (tinuvin 99-2, tinuvin 384-2 manufactured by BASF) and the like. When the triazole derivative is used, the content is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E). is more preferably in the range of 0.2 to 2 parts by weight, and most preferably in the range of 0.3 to 1.5 parts by weight.
 キレート化合物として、ケトエノール互変異性化合物とトリアゾール誘導体を併用する場合の混合重量の比率としては、得られるウレタンのシワを抑制しかつ成形性が良好となりやすいためトリアゾール誘導体に対するケトエノール互変異性化合物の重量比率(ケトエノール互変異性化合物/トリアゾール誘導体)が0.5以上50以下であることが好ましく、2以上20以下であることが更に好ましい。 When a ketoenol tautomer compound and a triazole derivative are used in combination as a chelate compound, the ratio of the mixed weight should be the weight of the ketoenol tautomer compound relative to the triazole derivative, since wrinkles in the resulting urethane are likely to be suppressed and moldability is likely to be good. The ratio (ketoenol tautomeric compound/triazole derivative) is preferably 0.5 or more and 50 or less, more preferably 2 or more and 20 or less.
 増粘抑制剤としては、欲に限定されないが、反応時に増粘に係る分子量や架橋度の増加を遅延する化合物や反応に伴う分子量増大時にも増粘を抑制する化合物等が挙げられる。 Examples of thickening inhibitors include, but are not limited to, compounds that delay the increase in molecular weight and degree of cross-linking associated with thickening during reaction, and compounds that suppress thickening even when molecular weight increases due to reaction.
 例えばイソシアネート架橋剤と反応性を有して主剤プレポリマー(E)とイソシアネート架橋剤(F)との反応と併行/または優先して反応が進行することで分子量の増大を遅延する化合物、分子量増大に伴う親和性の向上や構造変化等で系の粘度の増加度を抑制/または低減する化合物などが挙げられる。 For example, a compound that has reactivity with an isocyanate cross-linking agent and retards the increase in molecular weight by proceeding with the reaction of the main prepolymer (E) and the isocyanate cross-linking agent (F) in parallel/or preferentially, the molecular weight increase compounds that suppress/or reduce the degree of increase in the viscosity of the system by improving the affinity or changing the structure associated with this.
 なかでも、増粘抑制剤はプレポリマー(E)より低分子量であって、イソシアネート架橋剤(F)と反応性を有する活性水素基を有する化合物であることが好ましく、このような増粘抑制剤を含むことで主剤プレポリマー(E)とイソシアネート架橋剤(F)との反応と併行/または優先して反応が進行して、プレポリマー同士の架橋を抑制して増粘を抑制しやすい。 Among them, the thickening inhibitor is preferably a compound having a lower molecular weight than the prepolymer (E) and having an active hydrogen group reactive with the isocyanate cross-linking agent (F). By including, the reaction of the main prepolymer (E) and the isocyanate cross-linking agent (F) proceeds in parallel / or preferentially, and the cross-linking between the prepolymers is suppressed, making it easy to suppress thickening.
 このような増粘抑制剤としては、主剤より優先して反応が進行しやすく、プレポリマー同士の架橋を抑制して増粘を抑制しやすいため、活性水素基の反応性が高くなりやすい分子量1000以下の化合物であることが好ましい。なかでも、分子量が低すぎると活性水素基の反応性が高くなりすぎて早期に反応消費し増粘抑制できる期間が短くなって反応遅延効果が低くなる場合や乾燥工程で一部/または全部除去され物性が安定しない場合があり、分子量が高すぎると反応時に増粘しやすく活性水素基の反応性も低下して主剤同士の反応がしやすくなり増粘抑制効果が小さくなる場合があるため、分子量が60~700の範囲であることが好ましく、更に好ましくは90~300の範囲であり、最も好ましくは100~160の範囲である。またこのような増粘抑制剤としては反応時に架橋度が低下しにくく引張強度が低下しにくいため1分子内に2~8個の水酸基やアミノ基、チオール基等の活性水素基を有することが好ましい。なかでも、活性水素基が多すぎると増粘抑制剤とイソシアネート架橋剤の反応時に架橋度が上昇しやすく、増粘抑制効果が小さくなりやすいため、1分子内に2~4個の水酸基やアミノ基、チオール基等の活性水素基を有することが好ましく、更に好ましくは1分子内に2~3個の水酸基を有することであり、最も好ましくは適度な反応性を有し増粘抑制効果が顕著に高くなりやすいため1分子内に2個の1級水酸基を有するジオールである。増粘抑制剤を用いる場合の含有量としては、ウレタンプレポリマー(E)100重量部に対して0.1~3重量部の範囲であることが好ましく、なかでも、より高透明で良好な物性のウレタンを形成しやすいため、ウレタンプレポリマー(E)100重量部に対して、0.2~2重量部の範囲であることが更に好ましく、最も好ましくは0.3~1.5重量部の範囲である。また増粘抑制剤に活性水素基を有する場合、ウレタン物性を維持しつつ増粘抑制効果が高くなりやすいためウレタンプレポリマー(E)の活性水素基100モル%に対して3~30モル%の範囲となる用増粘抑制剤を添加することが好ましく、更に好ましくは5~20モル%の範囲で添加することが好ましい。 Such a thickening inhibitor has a molecular weight of 1,000, which tends to increase the reactivity of active hydrogen groups, because the reaction tends to proceed preferentially over the main agent, and it is easy to suppress cross-linking between prepolymers to suppress thickening. The following compounds are preferred. Among them, if the molecular weight is too low, the reactivity of the active hydrogen group becomes too high, and the reaction is consumed at an early stage, the period during which thickening can be suppressed is shortened, and the reaction retardation effect is reduced. If the molecular weight is too high, the viscosity tends to increase during the reaction, and the reactivity of the active hydrogen groups also decreases, making it easier for the base resin to react with each other. Preferably, the molecular weight is in the range of 60-700, more preferably in the range of 90-300, and most preferably in the range of 100-160. In addition, as such a thickening inhibitor, the degree of cross-linking is less likely to decrease during the reaction and the tensile strength is less likely to decrease. preferable. Among them, if there are too many active hydrogen groups, the degree of cross-linking tends to increase during the reaction between the anti-thickening agent and the isocyanate cross-linking agent, and the anti-thickening effect tends to decrease. It preferably has an active hydrogen group such as a group, a thiol group, more preferably has 2 to 3 hydroxyl groups in one molecule, and most preferably has moderate reactivity and a remarkable effect of suppressing thickening. It is a diol having two primary hydroxyl groups in one molecule because it tends to have a high molecular weight. When using a thickening inhibitor, the content is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E). urethane is easily formed, it is more preferably in the range of 0.2 to 2 parts by weight, most preferably 0.3 to 1.5 parts by weight, relative to 100 parts by weight of the urethane prepolymer (E). Range. In addition, when the thickening inhibitor has an active hydrogen group, the thickening inhibitory effect tends to be high while maintaining the physical properties of the urethane. It is preferable to add an anti-thickening agent within the range, more preferably within the range of 5 to 20 mol %.
 安定剤としては、特に限定されないが、イソシアネートやポリオール・プレポリマーの反応性を抑制する化合物が挙げられ、例えばフェノール系酸化防止剤などが挙げられる。また本態様では安定剤としてトリアゾール誘導体は含まない。このような酸化防止剤を1000ppm以上、好ましくは3000ppm以上、最も好ましくは5000ppm~20000ppmの範囲に増量して用いることで、イソシアネートやポリオール・プレポリマーを安定化して反応性を低減し、増粘を抑制しやすいため好ましい。なかでも、入手が容易でありウレタンとの相溶性が良好なBHTや分子量1000以下のヒンダードフェノール系酸化防止剤(イルガノックスシリーズ等)を用いることが好ましい。またイルガノックス1135、イルガノックス1726など、室温液状であれば得られるウレタンの透明性が高くなりやすいため好ましいが、BHTやイルガノックス1076、イルガノックス1010など相溶性が高い構造であれば、プレポリマーに均一に分散・ウレタン形成時に透明性を悪化しにくいため好適に使用できる。 Examples of stabilizers include, but are not limited to, compounds that suppress the reactivity of isocyanates and polyol prepolymers, such as phenolic antioxidants. In addition, this embodiment does not contain a triazole derivative as a stabilizer. By increasing the amount of such an antioxidant to 1000 ppm or more, preferably 3000 ppm or more, and most preferably 5000 ppm to 20000 ppm, the isocyanate or polyol prepolymer is stabilized to reduce reactivity and increase viscosity. It is preferable because it is easy to suppress. Among them, it is preferable to use BHT, which is easily available and has good compatibility with urethane, or a hindered phenol-based antioxidant having a molecular weight of 1,000 or less (Irganox series, etc.). Irganox 1135, Irganox 1726, and the like are preferable because the transparency of the resulting urethane tends to be high if they are liquid at room temperature, but if they have a highly compatible structure such as BHT, Irganox 1076, and Irganox 1010, prepolymers can be used. It is suitable for use because it is dispersed uniformly in a liquid and does not easily deteriorate transparency during urethane formation.
 安定剤を用いる場合の含有量としては、ウレタンプレポリマー(E)100重量部に対して、0.1~3重量部の範囲であることが好ましく、なかでも、より高透明で良好な物性のウレタンを形成しやすいため、安定剤の含有量は0.2~2.5重量部の範囲であることが更に好ましく、最も好ましくは0.5~2重量部の範囲である。 The content of the stabilizer when used is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the urethane prepolymer (E). The content of the stabilizer is more preferably in the range of 0.2 to 2.5 parts by weight, most preferably in the range of 0.5 to 2 parts by weight, because urethane is easily formed.
 これらの添加剤の混合工程は、揮発による重量の増減が少ないため室温で行ってもよく、また溶解性・混合性を高めるため加温して行ってもよい。また混合の方法も特に限定されない。また必要に応じて行う濃縮工程では、窒素等でのバブリングや加温、減圧など、所定の濃度に調整できる方法であれば特に限定されない。 The mixing process of these additives may be carried out at room temperature, since there is little change in weight due to volatilization, or may be carried out with heating to improve solubility and mixability. Also, the mixing method is not particularly limited. In the concentration step, which is performed as necessary, there is no particular limitation as long as the method can adjust the concentration to a predetermined level, such as bubbling with nitrogen or the like, heating, or pressure reduction.
 本発明の一態様であるウレタンプレポリマー(E)と有機溶媒、添加剤を含むウレタンプレポリマー組成物溶液は、ハンドリング性に優れやすくなることから、固形分濃度が60~99重量%の範囲となる量比で混合することが好ましく、更に好ましくは70~97重量%の範囲であり、最も好ましくは85~95重量%の範囲である。また、架橋剤の混合や塗工などのハンドリング性により優れウレタン硬化物が安定的に高透明になりやすいことから、25℃条件にて、粘度が3~50Pa・sの範囲であり、さらに好ましくは5~30Pa・sの範囲である。 A urethane prepolymer composition solution containing a urethane prepolymer (E), an organic solvent, and an additive, which is one aspect of the present invention, has excellent handling properties and is easy to handle. It is preferable to mix them in the same amount ratio, more preferably in the range of 70 to 97% by weight, and most preferably in the range of 85 to 95% by weight. In addition, it is more preferable that the viscosity is in the range of 3 to 50 Pa s at 25 ° C., because the urethane cured product tends to be stably highly transparent due to excellent handling properties such as mixing and coating of the cross-linking agent. is in the range of 5 to 30 Pa·s.
 ウレタンプレポリマー組成物溶液の透明性は特に限定されないが、透明であることが好ましく、本発明のウレタンプレポリマー(E)を含むことでそのような性状で得られやすい。なかでも1cm厚みでのHazeが15%以下であることが好ましく、5%以下であることが更に好ましい。
<ウレタン硬化物、ウレタン塗膜の製造方法>
 ウレタンプレポリマー(E)、ならびにそれを用いたウレタンプレポリマー組成物は、種々の方法によって反応させ、硬化(固化)することでウレタン硬化物を製造することができる。ウレタン硬化物の製造方法としては特に限定されないが、例えば、ウレタンプレポリマー(E)またはウレタンプレポリマー(E)を含む組成物を、必要に応じて、ウレタン化触媒、溶剤、酸化防止剤、光安定化剤、鎖延長剤、架橋剤、その他添加剤等の存在下、常温または150℃以下の高温でウレタン化反応、ウレア化反応、必要に応じて乾燥を進めることによって製造することができる。
Although the transparency of the urethane prepolymer composition solution is not particularly limited, it is preferably transparent, and such a property can be easily obtained by containing the urethane prepolymer (E) of the present invention. In particular, the haze at a thickness of 1 cm is preferably 15% or less, more preferably 5% or less.
<Method for producing cured urethane and urethane coating>
The urethane prepolymer (E) and the urethane prepolymer composition using it can be reacted and cured (solidified) by various methods to produce a cured urethane product. The method for producing a cured urethane product is not particularly limited. It can be produced by carrying out a urethanization reaction, a urea formation reaction, and, if necessary, drying at room temperature or at a high temperature of 150° C. or lower in the presence of a stabilizer, a chain extender, a cross-linking agent, other additives, and the like.
 なかでも、より安定的に高い硬化性、高い透明性を発現しやすいことから、架橋剤としてイソシアネート化合物(F)を含むことが好ましく、ウレタンプレポリマー(E)とイソシアネート化合物(F)とを含むウレタン形成性組成物、または前述のウレタンプレポリマー組成物溶液とイソシアネート化合物(F)を含むウレタン形成性組成物溶液を含むことが好ましい。 Among them, it is preferable to contain an isocyanate compound (F) as a cross-linking agent because it is easy to exhibit high curability and high transparency more stably, and the urethane prepolymer (E) and the isocyanate compound (F) are included. It preferably contains a urethane-forming composition or a urethane-forming composition solution containing the aforementioned urethane prepolymer composition solution and the isocyanate compound (F).
 架橋剤に用いるイソシアネート化合物(F)としては、特に限定されないが、前述のポリイソシアネート(C)と同様のポリイソシアネートを例示することができ、好適に使用することができる。イソシアネート化合物(F)と、イソシアネート化合物(C)とは、同一であってもよく、異なっていてもよい。 The isocyanate compound (F) used as the cross-linking agent is not particularly limited, but the same polyisocyanate as the above-mentioned polyisocyanate (C) can be exemplified and can be preferably used. The isocyanate compound (F) and the isocyanate compound (C) may be the same or different.
 ウレタン形成性組成物、及びウレタン形成性組成物溶液中のイソシアネート化合物(F)の含有率については特に限定されないが、より硬化性に優れ、高透明になりやすいことからウレタンプレポリマー(E)に由来する水酸基とその他活性水素化合物に由来する水酸基の総量(MOH)に対するイソシアネート化合物(F)に由来するイソシアネート基の量(MNCO)の比(MNCO/MOH)が、モル比率で0.5以上、4.0未満であることが好ましく、更に好ましくはモル比率で0.7以上、2.5未満である。またウレタンプレポリマー(E)とイソシアネート化合物(F)の重量比((E)の重量/(F)の重量)は、より高い透明性と高い硬化性、高い強度を発現しやすいことから、99/1~50/50の範囲であることが好ましく、更に好ましくは、90/10~70/30の範囲である。 Although the content of the isocyanate compound (F) in the urethane-forming composition and the urethane-forming composition solution is not particularly limited, the urethane prepolymer (E) has excellent curability and tends to be highly transparent. The ratio (M NCO /M OH ) of the amount (M NCO ) of isocyanate groups derived from the isocyanate compound (F) to the total amount (M OH ) of derived hydroxyl groups and hydroxyl groups derived from other active hydrogen compounds is 0. It is preferably 0.5 or more and less than 4.0, more preferably 0.7 or more and less than 2.5 in terms of molar ratio. In addition, the weight ratio of the urethane prepolymer (E) to the isocyanate compound (F) (weight of (E)/weight of (F)) is 99, since higher transparency, higher curability, and higher strength are likely to occur. /1 to 50/50, more preferably 90/10 to 70/30.
 なお、ウレタン形成性組成物、ウレタン形成性組成物溶液の25℃における粘度は特に限定されないが、通常は0.001Pa・s以上100Pa・s以下であり、好ましくはより顕著に塗工性に優れることから0.2Pa・s以上30Pa・s以下であり、更に好ましくは0.5Pa・s以上10Pa・s以下である。 ここで、塗工機等で塗工する際の塗工性が顕著に優れることから、均一な厚みのウレタン塗膜を得られるため、特に限定されないが、塗膜を形成し硬化することが好ましい。また、PETフィルムやCOPフィルム等のベース基材に前記ウレタン硬化物の塗膜を種々の方法により形成、必要に応じて離型PETや離型紙等の別基材との貼り合わせや成形することで当該ウレタン塗膜を基材上に有するポリウレタンシートを形成できる。 Although the viscosity of the urethane-forming composition and the urethane-forming composition solution at 25°C is not particularly limited, it is usually 0.001 Pa s or more and 100 Pa s or less. Therefore, it is 0.2 Pa·s or more and 30 Pa·s or less, more preferably 0.5 Pa·s or more and 10 Pa·s or less. Here, since the coatability is remarkably excellent when coated with a coating machine or the like, it is possible to obtain a urethane coating film with a uniform thickness, so it is not particularly limited, but it is preferable to form and cure the coating film. . In addition, a coating film of the cured urethane is formed on a base substrate such as a PET film or COP film by various methods, and if necessary, bonding or molding with another substrate such as release PET or release paper is performed. can form a polyurethane sheet having the urethane coating on the substrate.
 なかでも、本発明により得られるウレタンプレポリマー(E)と添加剤、イソシアネート架橋剤(F)を混合する工程、10~500μmの厚みで基材へ塗工する工程、70~160℃で30秒~10分の条件で乾燥・硬化する工程、を経ることで、高透明でタックの少ないウレタン塗膜を高い生産性で製造することができるため好ましい。さらに好ましくは、硬化性に優れ、薄膜から高厚みまで均一な厚みで高透明の塗膜が得られやすいことから30μm以上の厚みで塗工する工程を含むことが好ましく、30~200μmの範囲で塗工する工程を含むことが好ましい。 Among them, a step of mixing the urethane prepolymer (E) obtained by the present invention with an additive and an isocyanate cross-linking agent (F), a step of coating a substrate with a thickness of 10 to 500 μm, and a temperature of 70 to 160° C. for 30 seconds. By passing through the step of drying and curing under conditions of up to 10 minutes, a urethane coating film with high transparency and low tackiness can be produced with high productivity, which is preferable. More preferably, it is excellent in curability, and it is easy to obtain a highly transparent coating film with a uniform thickness from a thin film to a high thickness. It is preferable to include the step of coating.
 また、ウレタンプレポリマー(E)は芳香族アミン残基を分子末端周辺に有することから顕著に初期硬化性が高く、高温でも流動しにくく厚みムラが少なく迅速に硬化することから100~150℃で1分~8分の範囲で乾燥・硬化することが好ましく、さらに好ましくはよりウレタン塗膜の生産性に優れやすいため120~145℃で2分~6分の範囲で乾燥・硬化することである。 In addition, since the urethane prepolymer (E) has an aromatic amine residue around the molecular end, it has remarkably high initial curability, does not easily flow even at high temperatures, and is rapidly cured with little unevenness in thickness. It is preferable to dry and cure in the range of 1 minute to 8 minutes, and more preferably dry and cure in the range of 2 minutes to 6 minutes at 120 to 145 ° C. because the productivity of the urethane coating film is more likely to be excellent. .
 ウレタン硬化物、ウレタン塗膜の用途は、特に限定されるものでなく、通常のポリウレタンが使用される何れの用途にも使用できるが、機械物性や粘・接着特性などが要求される用途に特に好適に使用できる。具体的には、建築・土木用シーリング材、建築用弾性接着剤等の接着剤、ガムテープや表面保護フィルム、光学用に代表される各種粘着剤、塗料、エラストマー、塗膜防水材、床材、可塑剤、軟質ポリウレタンフォーム、半硬質ポリウレタンフォーム、硬質ポリウレタンフォーム等の用途が例示され、好適に使用できる。 Cured urethane products and urethane coatings are not particularly limited in their uses, and can be used in any application where ordinary polyurethanes are used, but they are particularly suitable for applications requiring mechanical properties, viscous/adhesive properties, etc. It can be used preferably. Specifically, sealing materials for construction and civil engineering, adhesives such as elastic adhesives for construction, packing tapes and surface protection films, various adhesives represented by optics, paints, elastomers, waterproof coating materials, flooring materials, Applications such as plasticizers, flexible polyurethane foams, semi-rigid polyurethane foams, and rigid polyurethane foams are exemplified and can be preferably used.
 その中でも、ポリウレタンに対して、機械物性や粘・接着特性の要求が強く、施工性や塗工性が求められることから、シーリング材、塗料、粘着剤、接着剤として用いることが特に好ましい。 Among them, there are strong demands for mechanical properties and adhesion/adhesive properties for polyurethane, and workability and coatability are required, so it is particularly preferable to use it as a sealant, paint, pressure sensitive adhesive, or adhesive.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例により限定して解釈されるものではない。なお、以下の実施例及び比較例で使用した原料、及び評価方法は以下に示すとおりである。
(原料1)実施例及び比較例に用いたポリアルキレンオキシド(A)、またはその他ポリオール、モノオール(AC)
 実施例及び比較例に用いたポリアルキレンオキシド、またはその他ポリオール、モノオール(AC)の性状は、以下の方法で求めた。
<ポリアルキレンオキシドの不飽和度>
 ポリアルキレンオキシドの不飽和度は、高分子論文集1993,50,2,121-126に記載のNMR法に準拠し、スキャン回数800回で測定した。 
NMR測定については重クロロホルムを重溶媒に用い、測定装置はJEOL400MHzNMR ECZSを用いて行った。
<ポリアルキレンオキシドの水酸基価と数平均分子量>
 ポリアルキレンオキシドの水酸基価は、JIS-K1557-1に記載の方法に準拠して測定した。また、ポリアルキレンオキシドの水酸基価とポリアルキレンオキシド1分子中の水酸基数から、ポリアルキレンオキシドの数平均分子量を算出した。
<ポリアルキレンオキシドの分子量分布(Mw/Mn)>
 ポリアルキレンオキシドの分子量分布(Mw/Mn)については、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、以下の手順で測定した。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention should not be construed as being limited to the following examples as long as the gist thereof is not exceeded. The raw materials and evaluation methods used in the following examples and comparative examples are as follows.
(Raw material 1) Polyalkylene oxide (A) used in Examples and Comparative Examples, or other polyols and monools (AC)
The properties of polyalkylene oxides, other polyols, and monools (AC) used in Examples and Comparative Examples were obtained by the following methods.
<Unsaturation of polyalkylene oxide>
The degree of unsaturation of the polyalkylene oxide was measured by scanning 800 times according to the NMR method described in Kobunshi Ronbunshu 1993, 50, 2, 121-126.
The NMR measurement was performed using deuterated chloroform as a heavy solvent and using a JEOL 400 MHz NMR ECZS as a measuring device.
<Hydroxyl value and number average molecular weight of polyalkylene oxide>
The hydroxyl value of the polyalkylene oxide was measured according to the method described in JIS-K1557-1. Also, the number average molecular weight of the polyalkylene oxide was calculated from the hydroxyl value of the polyalkylene oxide and the number of hydroxyl groups in one molecule of the polyalkylene oxide.
<Molecular weight distribution (Mw/Mn) of polyalkylene oxide>
The molecular weight distribution (Mw/Mn) of polyalkylene oxide was measured by the following procedure using gel permeation chromatography (GPC).
 ポリアルキレンオキシド10mgとテトラヒドロフラン(THF)10mlをサンプル瓶に入れ、1日静置することでポリアルキレンオキシドをTHFに溶解させ、PTFEカードリッジフィルター(0.5μm)でろ過することで、GPC測定用のサンプルを作製した。 10 mg of polyalkylene oxide and 10 ml of tetrahydrofuran (THF) are placed in a sample bottle, left to stand for one day to dissolve the polyalkylene oxide in THF, and filtered through a PTFE cartridge filter (0.5 μm) to obtain a sample for GPC measurement. A sample of
 GPC測定については、展開溶媒にTHFを用い、カラム温度40℃で測定し、分子量既知の東ソー社製標準ポリスチレン8点を用いた3次近似曲線を検量線として、分子量分布(Mw/Mn)の解析を行った。測定装置には東ソー製HLC-8320GPC、解析には東ソー製HLC-8320GPC-ECOSEC-WorkStationを用いた。
<ポリアルキレンオキシドの粘度>
 ポリアルキレンオキシドの粘度は、JIS K-1557-5に記載の方法に準拠して求めた。具体的には、コーン・プレート回転粘度計を用いて、温度25℃、せん断速度0.1(1/s)で測定し、測定装置には、Anton-Paar社製MCR-300を用いた。
(原料1-1)実施例、比較例に用いたポリアルキレンオキシド(A)
 ポリアルキレンオキシド(A1)は、イミノ基含有ホスファゼニウム塩(以下、IPZ触媒と記す)とトリイソプロポキシアルミニウムを併用し、脱水・脱溶媒を十分に行い、2官能で、分子量が400のポリオキシプロピレングリコールに、十分に脱水を施したプロピレンオキシドを付加することで得た。(A1)は、アルキレンオキシド基としてプロピレンオキシド基のみを有し、1分子中に2つの水酸基を有するポリオキシプロピレングリコール(ジオール)である。
For GPC measurement, THF is used as a developing solvent, measurement is performed at a column temperature of 40 ° C., and a cubic approximate curve using 8 standard polystyrenes manufactured by Tosoh Corporation with a known molecular weight is used as a calibration curve to determine the molecular weight distribution (Mw / Mn). I did the analysis. HLC-8320GPC manufactured by Tosoh Corporation was used as a measurement apparatus, and HLC-8320GPC-ECOSEC-WorkStation manufactured by Tosoh Corporation was used for analysis.
<Viscosity of polyalkylene oxide>
The viscosity of polyalkylene oxide was determined according to the method described in JIS K-1557-5. Specifically, it was measured using a cone/plate rotational viscometer at a temperature of 25° C. and a shear rate of 0.1 (1/s).
(Raw Material 1-1) Polyalkylene oxide (A) used in Examples and Comparative Examples
The polyalkylene oxide (A1) uses an imino group-containing phosphazenium salt (hereinafter referred to as an IPZ catalyst) and triisopropoxyaluminum in combination to sufficiently dehydrate and remove the solvent, and is bifunctional polyoxypropylene having a molecular weight of 400. It was obtained by adding sufficiently dehydrated propylene oxide to glycol. (A1) is a polyoxypropylene glycol (diol) having only a propylene oxide group as an alkylene oxide group and two hydroxyl groups in one molecule.
 ポリアルキレンオキシド(A2)は、(A1)と同様にIPZ触媒とトリイソプロポキシアルミニウムを併用し、アルキレンオキシド基としてプロピレンオキシド基を付加後、系中の残ったプロピレンオキシドを除去後にブロック的にエチレンオキシドを付加したものであり、1級の水酸基を含む不飽和度の低いジオールである。 The polyalkylene oxide (A2) uses an IPZ catalyst and triisopropoxyaluminum in combination in the same manner as in (A1), adds a propylene oxide group as an alkylene oxide group, removes the propylene oxide remaining in the system, and then blocks ethylene oxide. and is a diol with a low degree of unsaturation containing primary hydroxyl groups.
 ポリアルキレンオキシド(A4)は、開始剤として3官能で分子量600のポリオキシプロピレントリオールを用い、(A2)と同様にIPZ触媒とトリイソプロポキシアルミニウムを併用し、アルキレンオキシド基としてプロピレンオキシド基を付加後、系中の残ったプロピレンオキシドを除去後ブロック的にエチレンオキシドを付加したものであり、1級の水酸基を含み不飽和度の低いトリオールである。 Polyalkylene oxide (A4) uses a trifunctional polyoxypropylene triol having a molecular weight of 600 as an initiator, uses an IPZ catalyst and triisopropoxyaluminum in combination in the same manner as in (A2), and adds a propylene oxide group as an alkylene oxide group. After removing the propylene oxide remaining in the system, ethylene oxide is added in blocks, and the triol contains a primary hydroxyl group and has a low degree of unsaturation.
 ポリアルキレンオキシド(A3)は、常法によりプロピレンオキシドのみを付加して合成したポリプロピレングリコールである、三洋化成工業社製サンニックスPP-3000を使用した。 For the polyalkylene oxide (A3), Sannics PP-3000 manufactured by Sanyo Chemical Industries, Ltd., which is a polypropylene glycol synthesized by adding only propylene oxide by a conventional method, was used.
 (A1)~(A4)の性状を表1に示すが、(A1)、(A2)、(A4)は、不飽和モノオール量が極めて少なく(不飽和度が極めて低く)、分子量分布が狭いものであり、(A3)は不飽和度や分子量分布が一般的なポリアルキレンオキシドである。
なお、実施例に用いたポリアルキレンオキシド(A1)から(A4)は、いずれも、加熱・真空脱水した後に使用した。また、IPZ触媒を用いて作製したポリアルキレンオキシドについては、アルミを含め触媒を除去した上で使用した。
(原料1-2)実施例、比較例に用いたその他ポリオール、モノオール(AC)
 モノオール(AC1)は、分子量が2100の2官能ポリオキシテトラメチレングリコールであって、アルキレンオキシド残基を有さない分子量2000以上のポリオールである。
The properties of (A1) to (A4) are shown in Table 1. (A1), (A2), and (A4) have an extremely small amount of unsaturated monol (extremely low degree of unsaturation) and a narrow molecular weight distribution. (A3) is a polyalkylene oxide having a general degree of unsaturation and molecular weight distribution.
All of the polyalkylene oxides (A1) to (A4) used in the examples were used after heating and vacuum dehydration. Moreover, the polyalkylene oxide produced using the IPZ catalyst was used after removing the catalyst including aluminum.
(Raw materials 1-2) Other polyols and monools (AC) used in Examples and Comparative Examples
Monool (AC1) is a bifunctional polyoxytetramethylene glycol having a molecular weight of 2,100 and having a molecular weight of 2,000 or more and having no alkylene oxide residue.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(原料2)ポリアルキレンオキシド(B)
(原料2-1)実施例に用いたポリアルキレンオキシド(B1)、(B2)、(B3)
 ポリアルキレンオキシド(B1)は、市販されているトリレンジアミン系ポリプロピレングリコールであり、公称官能基数は4.0、水酸基価356mgKOH/g、25℃での粘度9500mPa・sの東邦化学工業製トーホーポリオールAR-2589を使用した。本性状より計算される分子量は630であり、芳香族アミン残基含有率は19%である。
(Raw material 2) Polyalkylene oxide (B)
(Raw materials 2-1) Polyalkylene oxides (B1), (B2), and (B3) used in the examples
Polyalkylene oxide (B1) is a commercially available tolylenediamine-based polypropylene glycol, which has a nominal functionality of 4.0, a hydroxyl value of 356 mgKOH/g, and a viscosity of 9500 mPa s at 25°C. AR-2589 was used. The molecular weight calculated from this property is 630, and the aromatic amine residue content is 19%.
 ポリアルキレンオキシド(B2)は、市販されているトリレンジアミン系ポリプロピレングリコール/ポリエチレングリコール共重合体であり、公称官能基数は4.0、水酸基価413mgKOH/g、25℃での粘度15000mPa・sの三洋化成工業製サンニックスHM-551を使用した。本性状より計算される分子量は540であり、芳香族アミン残基含有率は22%である。 Polyalkylene oxide (B2) is a commercially available tolylenediamine-based polypropylene glycol/polyethylene glycol copolymer having a nominal functional group number of 4.0, a hydroxyl value of 413 mgKOH/g, and a viscosity of 15000 mPa s at 25°C. Sannics HM-551 manufactured by Sanyo Chemical Industries was used. The molecular weight calculated from this property is 540, and the aromatic amine residue content is 22%.
 ポリアルキレンオキシド(B3)は、市販されているトリレンジアミン/グリコール併用開始系ポリアルキレンオキシドであり、公称官能基数は3.2、水酸基価310mgKOH/g、25℃での粘度2200mPa・sのハンツマン製JEFFOLAD-310を使用した。本性状より計算される、開始剤モル比は芳香族アミン/グリコール=6/4、分子量は580であり、芳香族アミン残基含有率は12%である。
(原料2-1)実施例、比較例に用いた活性水素化合物(BC1)、(BC2)、(BC3)
 活性水素化合物(BC1)は、市販されている分子量600の3官能のポリプロピレントリオールである、三洋化成工業社製サンニックスGP600を使用した。
活性水素化合物(BC2)は、公称官能基数8.0、分子量1190ののシュークローズ系ポリオールである、東邦化学工業社製O-855Wを使用した。
活性水素化合物(BC3)は、官能基数4の芳香族アミンである、2,4-トリレンジアミンを使用した。
Polyalkylene oxide (B3) is a commercially available tolylenediamine/glycol combined initiation system polyalkylene oxide, which has a nominal functionality of 3.2, a hydroxyl value of 310 mgKOH/g, and a viscosity of 2200 mPa s at 25°C. JEFFOLAD-310 manufactured by the company was used. Calculated from this property, the initiator molar ratio is aromatic amine/glycol=6/4, the molecular weight is 580, and the aromatic amine residue content is 12%.
(Raw materials 2-1) Active hydrogen compounds (BC1), (BC2), and (BC3) used in Examples and Comparative Examples
As the active hydrogen compound (BC1), Sannics GP600 manufactured by Sanyo Chemical Industries, Ltd., which is a commercially available trifunctional polypropylene triol with a molecular weight of 600, was used.
As the active hydrogen compound (BC2), O-855W manufactured by Toho Chemical Industry Co., Ltd., which is a sucrose-based polyol having a nominal number of functional groups of 8.0 and a molecular weight of 1,190, was used.
2,4-tolylenediamine, which is an aromatic amine having 4 functional groups, was used as the active hydrogen compound (BC3).
 活性水素化合物(BC1)は、芳香族アミン残基を有するポリアルキレンオキシド(B1)と同等分子量で芳香族アミン残基を有さないポリアルキレンオキシドであり、活性水素化合物(BC2)は芳香族アミン残基を有さないが高官能基数で剛直な環状の糖構造を有するシュークローズ残基を含むポリアルキレンオキシドであり、活性水素化合物(BC3)は芳香族アミンのみからなりポリアルキレンオキシド構造および水酸基を有さない化合物である。
(原料3)実施例及び比較例に用いたイソシアネート化合物(C)、(F)
 実施例及び比較例では、イソシアネート化合物(C)、(F)として、以下の3種類を用いた。
The active hydrogen compound (BC1) is a polyalkylene oxide having a molecular weight equivalent to that of the polyalkylene oxide (B1) having an aromatic amine residue and having no aromatic amine residue, and the active hydrogen compound (BC2) is an aromatic amine. It is a polyalkylene oxide containing a sucrose residue that has no residue but has a rigid cyclic sugar structure with a high number of functional groups. is a compound that does not have
(Raw material 3) Isocyanate compounds (C) and (F) used in Examples and Comparative Examples
In Examples and Comparative Examples, the following three types were used as the isocyanate compounds (C) and (F).
 イソシアネート化合物(C1):イソホロンジイソシアネート(IPDI)である。(C1)はイソシアネート基として1級NCO基と2級NCO基を有するジイソシアネートである。 Isocyanate compound (C1): isophorone diisocyanate (IPDI). (C1) is a diisocyanate having a primary NCO group and a secondary NCO group as isocyanate groups.
 イソシアネート化合物(C2):1,6-ヘキサメチレンジイソシアネート(HDI)である。(C2)はイソシアネート基として1級NCO基のみを有するジイソシアネートである。 Isocyanate compound (C2): 1,6-hexamethylene diisocyanate (HDI). (C2) is a diisocyanate having only primary NCO groups as isocyanate groups.
 イソシアネート化合物(F1):1,6-ヘキサメチレンジイソシアネート(HDI)系の変性イソシアネートである東ソー(株)製のコロネートHXLVで、(F1)におけるイソシアネート基の平均官能基数は3.2である。
(原料4)ウレタン化触媒
 実施例及び比較例では、添加剤として、ウレタン化触媒を添加した。ウレタン化触媒は、トリスアセチルアセトナト鉄(略称:Fe(acac)3)である、日本化学産業製ナーセム鉄を用いた。本触媒は作業性を良好とするため5%溶液のマスターバッチとして添加した。表中では溶剤を含まない添加量を記載した。
(原料5)溶剤
 実施例及び比較例において、溶剤には、富士フイルム和光純薬(株)製のメチルエチルケトン(略称MEK)、東邦化学工業製トリエチレングリコールジメチルエーテル(略称TEGDM)を用いた。
(ウレタンプレポリマー(D)、ウレタンプレポリマー(E)の製造例)
 4つ口ナスフラスコに、ウレタンプレポリマー(D)の原料であるポリアルキレンオキシド(A)、必要に応じて加えるポリアルキレンオキシド(B)やモノオール(AC)を投入して、100℃で1時間以上真空脱水を行い、水分を除去した。
その後、50℃以下に冷却して溶剤を用いる系は、溶剤、イソシアネート、触媒マスターバッチを添加したのち、所定温度へ昇温し、所定温度に到達した時点で反応開始とした。3時間反応後、FT-IRによりNCO基が残存し、且つ液性状に変化がみられなくなったまたはその量に変化が見られなくなったことを確認して、NCO基末端のウレタンプレポリマー(D)を得た。
Isocyanate compound (F1): Coronate HXLV manufactured by Tosoh Corporation, which is a modified isocyanate of 1,6-hexamethylene diisocyanate (HDI), and the average functionality of the isocyanate group in (F1) is 3.2.
(Raw Material 4) Urethane Catalyst In Examples and Comparative Examples, a urethanization catalyst was added as an additive. As the urethanization catalyst, Nasem iron manufactured by Nippon Kagaku Sangyo Co., Ltd., which is iron trisacetylacetonate (abbreviation: Fe(acac)3), was used. This catalyst was added as a masterbatch of 5% solution in order to improve workability. In the table, the added amount without solvent is described.
(Raw Material 5) Solvent In Examples and Comparative Examples, methyl ethyl ketone (abbreviation MEK) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. and triethylene glycol dimethyl ether (abbreviation TEGDM) manufactured by Toho Chemical Industry Co., Ltd. were used as solvents.
(Production example of urethane prepolymer (D) and urethane prepolymer (E))
Polyalkylene oxide (A), which is a raw material for urethane prepolymer (D), polyalkylene oxide (B) and monool (AC) added as necessary are added to a four-neck eggplant flask and heated at 100 ° C. for 1 Vacuum dehydration was performed for more than 1 hour to remove water.
Then, in the system using a solvent after cooling to 50° C. or less, after adding the solvent, isocyanate, and catalyst masterbatch, the temperature was raised to a predetermined temperature, and the reaction was started when the predetermined temperature was reached. After the reaction for 3 hours, it was confirmed by FT-IR that NCO groups remained and no change was observed in liquid properties or no change was observed in the amount thereof, and an NCO group-terminated urethane prepolymer (D ).
 60℃以下に冷却後、ウレタンプレポリマー(D)へポリアルキレンオキシド(B)を所定量加えた、目視上均一に撹拌できていることおよび顕著な発熱がないことを確認後、所定温度まで昇温し、反応開始とした。3時間反応後、FT-IRによりNCO基が消失し、且つ液性状に変化がみられなくなったことを確認して、活性水素基末端のウレタンプレポリマー(E)を得た。必要に応じて濃縮を行って粘度を調整した。
内温を50℃以下に冷却し、必要に応じて各種添加剤を混合・均一に分散し、SUS金網を通して不溶物を除去してウレタンプレポリマー(E)組成物を得た。
(ウレタンプレポリマーの評価項目)
<液の透明性>
ウレタンプレポリマーの透明性を以下の基準で評価した。
After cooling to 60°C or less, a predetermined amount of polyalkylene oxide (B) was added to the urethane prepolymer (D). It was allowed to warm to initiate the reaction. After reacting for 3 hours, it was confirmed by FT-IR that the NCO groups had disappeared and that the liquid properties had not changed, to obtain an active hydrogen group-terminated urethane prepolymer (E). Concentration was performed as necessary to adjust the viscosity.
The internal temperature was cooled to 50° C. or less, various additives were mixed and uniformly dispersed as necessary, and insoluble matter was removed through a SUS wire mesh to obtain a urethane prepolymer (E) composition.
(Evaluation items of urethane prepolymer)
<Liquid Transparency>
The transparency of the urethane prepolymer was evaluated according to the following criteria.
 ◎(合格):目視上透明である場合(液のHazeが5%以下)
 ○(合格):目視上わずかに濁りは見えるが、液のHazeが15%以下である場合(ほぼ透明)。
◎ (pass): when visually transparent (liquid haze is 5% or less)
Good (acceptable): Slight turbidity is visually observed, but the haze of the liquid is 15% or less (substantially transparent).
 ×(不合格):目視上明らかな強い濁りが見える場合、または液のHazeが15%超の場合。
<硬化性>
活性水素基末端のウレタンプレポリマーの水酸基に対して1.1等量のHDIイソシアヌレート架橋剤コロネートHXLVを加えて、80μm以下でPET基材に塗工して、130℃5分で乾燥直後のウレタン硬化物を指触で以下の基準で評価した。
x (failed): when visually clear strong turbidity is observed, or when the haze of the liquid exceeds 15%.
<Curability>
Add 1.1 equivalents of HDI isocyanurate cross-linking agent Coronate HXLV to the hydroxyl group of the active hydrogen group-terminated urethane prepolymer, apply it to the PET substrate at 80 μm or less, and dry at 130 ° C. for 5 minutes. The cured urethane product was evaluated by finger touch according to the following criteria.
 ◎(合格):タックが消失しており、より顕著に高い強度、軽剥離性が期待できる場合。 ◎ (Pass): Tack disappeared, and significantly higher strength and easy peelability can be expected.
 ○(合格):タックはわずかであり、顕著に高い強度、軽剥離性が期待できる場合。 ○ (Pass): When tack is slight and remarkably high strength and easy peelability can be expected.
 ×(不合格):タックが大きく硬化不足であり、顕著に高い強度、軽剥離性が期待できない場合。 × (failed): When tackiness is large and curing is insufficient, and remarkably high strength and easy peelability cannot be expected.
 また、上記硬化性の評価により得られたウレタン硬化物へ20cm×20cmの離型PETピューレックスA31を張り合わせ、ウレタン硬化物のハンドリング性を以下の基準で評価した。
<ハンドリング性>
 ◎:約30°内に折り曲げても浮きや剥がれ、割れがなかった場合。
In addition, a release PET Purex A31 of 20 cm×20 cm was attached to the urethane cured product obtained by the above curability evaluation, and the handleability of the urethane cured product was evaluated according to the following criteria.
<Handleability>
⊚: No lifting, peeling, or cracking even after bending within about 30°.
 ○:約30°内に折り曲げた際に浮きはみられるが、割れがなく剥がれなかった場合。 ◯: When bent within about 30°, lift was observed, but there was no crack and no peeling.
 △:約30°内に折り曲げた際に剥がれた場合や割れが見られた場合。巻きずれや張り合わせ時の位置ずれ、脆性破壊がしやすいと判断。 △: When it is peeled off or cracked when it is bent within about 30°. Judged that winding misalignment, position misalignment during bonding, and brittle fracture are likely to occur.
 上記透明性と硬化性がともに合格のものを、高透明でタックが少なく、顕著に高い強度、軽剥離性が期待できる活性水素基末端のウレタンプレポリマーであり合格と判断した。更にウレタン硬化物のハンドリング性が◎、○のものは、ウレタン硬化物のハンドリング性にも優れるものと判断した。
<実施例>
(実施例1)
 ウレタンプレポリマー(D)、ウレタンプレポリマー(E)の製造例1、ならびに表2の合成例1に記載の組成比にしたがって、ポリアルキレンオキシド(A1)を60重量部加えて脱水し、イソシアネート化合物(C1)とウレタン化触媒としてトリスアセチルアセトナト鉄0.02重量部を、(A1)に由来する水酸基の量(MOH)と(C1)に由来するイソシアネート基の量(MNCO)が、モル比率で、(C1)のMNCO/(A1)のMOH=1.86の混合比となるように仕込み、70℃一定で3時間反応することでNCO基末端のウレタンプレポリマー(D)を得た。その後冷却して、ウレタンプレポリマー(D)へポリアルキレンオキシド(B1)40重量部を加えて、ウレタンプレポリマー(D)の製造と同一の反応条件で反応を完結させ、最終的なイソシアネート化合物(C)のMNCO/(A1)と(B1)のMOHが0.15となる活性水素基末端のウレタンプレポリマー(E1)を得た。
Those that passed both the transparency and the curability were judged to pass because they were urethane prepolymers with active hydrogen group ends that could be expected to have high transparency, low tackiness, remarkably high strength, and easy peelability. In addition, it was judged that the cured urethane products with excellent handleability of ⊚ and ◯ were also excellent in handleability of the cured urethane products.
<Example>
(Example 1)
60 parts by weight of polyalkylene oxide (A1) is added according to the composition ratios described in Production Example 1 of Urethane Prepolymer (D) and Urethane Prepolymer (E) and Synthesis Example 1 in Table 2 for dehydration to give an isocyanate compound. (C1) and 0.02 parts by weight of iron trisacetylacetonato as a urethanization catalyst, the amount of hydroxyl groups derived from (A1) (M OH ) and the amount of isocyanate groups derived from (C1) (M NCO ) are The mixture was prepared so that the molar ratio of M NCO of (C1)/M OH of (A1) was 1.86, and reacted at a constant temperature of 70° C. for 3 hours to obtain an NCO group-terminated urethane prepolymer (D). got After cooling, 40 parts by weight of the polyalkylene oxide (B1) is added to the urethane prepolymer (D), the reaction is completed under the same reaction conditions as in the production of the urethane prepolymer (D), and the final isocyanate compound ( An active hydrogen group-terminated urethane prepolymer (E1) having an MNCO of C)/MOH of (A1) and (B1) of 0.15 was obtained.
 活性水素基末端のウレタンプレポリマー(E1)は、NCO基末端のウレタンプレポリマー(D)を合成後、芳香族アミンポリオールのみを付加しているため、理論上活性水素基を有する分子末端の100%が芳香族アミンポリオール構造であり、全ポリオール中の芳香族アミンポリオール含有比率85.1モル%より高いものである。表3に実施例1の結果を示す。ウレタンプレポリマー(E1)はゲル状物や析出物がなく高透明で、初期硬化性が顕著に良好でより顕著に高い強度が期待できるものであり、ウレタン硬化物も濡れ性、柔軟性も良好でハンドリング性に優れ、高透明であった。
(実施例2~13)
 実施例1に対して表2の合成例2~13に記載の組成比にしたがって種々の溶剤を用い、ポリアルキレンオキシド(A)、(B)の種類、仕込み量の比率を変更して製造したものである。実施例1と同様にNCO基末端のウレタンプレポリマー(D)を製造し、芳香族アミン残基を有するポリアルキレンオキシド(B)とを混合して反応を完結し、活性水素基末端のウレタンプレポリマー(E)を製造したものであるため、理論上活性水素基を有する分子末端の100%が芳香族アミンポリオール構造であり、全ポリオール中の芳香族アミンポリオール含有比率より何れも高いものである。
The active hydrogen group-terminated urethane prepolymer (E1) is obtained by adding only the aromatic amine polyol after synthesizing the NCO group-terminated urethane prepolymer (D). % is the aromatic amine polyol structure, and the aromatic amine polyol content ratio in the total polyol is higher than 85.1 mol %. Table 3 shows the results of Example 1. The urethane prepolymer (E1) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. Cured urethane products also have good wettability and flexibility. It was excellent in handleability and had high transparency.
(Examples 2 to 13)
Manufactured by using various solvents according to the composition ratios described in Synthesis Examples 2 to 13 in Table 2 with respect to Example 1, and changing the types of polyalkylene oxides (A) and (B) and the ratio of the amount charged. It is. An NCO group-terminated urethane prepolymer (D) was produced in the same manner as in Example 1, and the reaction was completed by mixing with a polyalkylene oxide (B) having an aromatic amine residue to obtain an active hydrogen group-terminated urethane prepolymer. Since the polymer (E) was produced, theoretically, 100% of the molecular terminals having active hydrogen groups have an aromatic amine polyol structure, which is higher than the aromatic amine polyol content ratio in the total polyol. .
 表3に実施例2~13の結果を示す。実施例5、13は剛直な芳香族アミン残基を有するポリオール構造の含有量、含有比率が高めでウレタンプレポリマー(E)は僅かに濁りがあって濡れ性がやや低めであり、実施例8は剛直な芳香族アミン残基を有するポリオール構造の含有量、含有比率が低めで僅かにタックが見られたが、いずれもゲル状物や析出物がなく高透明で、初期硬化性が顕著に良好でより顕著に高い強度が期待できるものであり、ウレタン硬化物はいずれも高透明であった。 Table 3 shows the results of Examples 2-13. In Examples 5 and 13, the content and content ratio of the polyol structure having a rigid aromatic amine residue is high, and the urethane prepolymer (E) is slightly cloudy and has slightly low wettability. Although the content and content ratio of the polyol structure with rigid aromatic amine residues was low, slight tack was observed, but both were highly transparent with no gels or precipitates, and the initial curability was remarkable. Good and remarkably high strength can be expected, and all of the urethane cured products were highly transparent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例14~16)
 表4に記載の合成例14~16にしたがってNCO基末端のウレタンプレポリマー(D)を合成後、芳香族アミン残基を有するポリオールとしてグリコールを含むポリアルキレンオキシド(B3)を付加したものである。4官能の芳香族アミンと2官能グリコールのモル比率は6/4であり、4官能の芳香族アミン残基を有するポリオールの方が高い官能基数で、触媒活性を有するアミン構造を有して反応性も同等以上と推定できるため、活性水素基を有する分子末端の60%以上が芳香族アミンポリオール構造であり、全ポリオール中の芳香族アミンポリオール含有比率より何れも高いものである。表5に実施例14~16の結果を示す。ウレタンプレポリマー(E)はゲル状物や析出物がなく高透明で、初期硬化性が顕著に良好でより顕著に高い強度が期待できるものであり、ウレタン硬化物も濡れ性、柔軟性も良好でハンドリング性に優れ、高透明であった。
(実施例17~22)
 表4に記載の合成例17~22にしたがってNCO基末端のウレタンプレポリマー(D)を合成後、芳香族アミン残基を有するポリオールに加えて少量の芳香族アミン残基を含まないポリオールを併用して付加したものである。併用したポリオールはいずれも触媒活性を有するアミン構造を有さず、分子量も同等以上で反応性が低いと推定される。活性水素基を有する分子末端の多くが芳香族アミンポリオール構造であり、全ポリオール中の芳香族アミンポリオール含有比率より何れも高いものである。表5に実施例17~22の結果を示す。ウレタンプレポリマー(E)はゲル状物や析出物がなく高透明で、初期硬化性が顕著に良好でより顕著に高い強度が期待できるものであり、ウレタン硬化物も濡れ性、柔軟性も良好でハンドリング性に優れ、高透明であった。
(実施例23)
 表4に記載の合成例23にしたがって不飽和度の低いポリアルキレンオキシド(A1)の代わりに不飽和度や分子量分布が一般的なポリアルキレンオキシド(A3)を用いてウレタンプレポリマー(E)を製造したものである。表5に結果を示す。不飽和度や分子量分布が一般的なポリアルキレンオキシド(A3)を用いても、分子末端に芳香族アミン残基を有するポリアルキレンオキシド構造を多く有することで、ゲル状物や析出物がなく高い透明性、高い硬化性でウレタン硬化物の強度に期待できるウレタンプレポリマー(E)であり、ウレタン硬化物も濡れ性、柔軟性も良好でハンドリング性に優れ、高透明であった。
(実施例24)
 表4に記載の合成例24にしたがって、実施例23に対して、剛直な芳香族アミン残基を有するポリアルキンオキシド(B)に加えて、更に高官能基数で剛直な環状のシュークローズ構造を有するポリアルキレンオキシド(BC1)を少量用いることで、高い透明性を維持しつつより高い硬化性で、ウレタン硬化物が更に高い強度が期待できるウレタンプレポリマー(E)が得られた。
(実施例25)
 表4に記載の合成例25にしたがって、分子末端にエチレンオキシド残基を有し、高い1級水酸基比率のポリアルキレオキシド(A2)を用いてNCO基末端のウレタンプレポリマー(D)を合成後、プロピレンオキシド残基のみを有し、1級水酸基をほとんど持たない芳香族アミン残基を有するポリアルキレオキシド(B1)のみを付加して合成したウレタンプレポリマー(E25)である。
(Examples 14-16)
After synthesizing an NCO group-terminated urethane prepolymer (D) according to Synthesis Examples 14 to 16 shown in Table 4, a polyalkylene oxide (B3) containing glycol was added as a polyol having an aromatic amine residue. . The molar ratio of the tetrafunctional aromatic amine and the bifunctional glycol is 6/4, and the polyol having the tetrafunctional aromatic amine residue has a higher number of functional groups and has an amine structure with catalytic activity to react. Therefore, 60% or more of the molecular ends having active hydrogen groups are aromatic amine polyol structures, which is higher than the aromatic amine polyol content ratio in all polyols. Table 5 shows the results of Examples 14-16. The urethane prepolymer (E) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. The cured urethane product also has good wettability and flexibility. It was excellent in handleability and had high transparency.
(Examples 17-22)
After synthesizing an NCO group-terminated urethane prepolymer (D) according to Synthesis Examples 17 to 22 shown in Table 4, in addition to a polyol having an aromatic amine residue, a small amount of polyol not containing an aromatic amine residue is used in combination. It is added by None of the polyols used in combination has an amine structure with catalytic activity, and is presumed to have the same molecular weight or higher and low reactivity. Most of the molecular terminals having active hydrogen groups are aromatic amine polyol structures, and the aromatic amine polyol content ratio in all polyols is higher than that of all polyols. Table 5 shows the results of Examples 17-22. The urethane prepolymer (E) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. The cured urethane product also has good wettability and flexibility. It was excellent in handleability and had high transparency.
(Example 23)
According to Synthesis Example 23 described in Table 4, a polyalkylene oxide (A3) having a general degree of unsaturation and molecular weight distribution is used instead of a polyalkylene oxide (A1) having a low degree of unsaturation to produce a urethane prepolymer (E). It is manufactured. Table 5 shows the results. Even when polyalkylene oxide (A3), which has a general degree of unsaturation and molecular weight distribution, is used, it has a high polyalkylene oxide structure with an aromatic amine residue at the molecular end, so there are no gels or precipitates. It is a urethane prepolymer (E) that can be expected to have transparency, high curability, and strength of a cured urethane product.
(Example 24)
According to Synthesis Example 24 described in Table 4, in addition to polyalkyne oxide (B) having a rigid aromatic amine residue, a rigid cyclic sucrose structure with a high functional group is added to Example 23. By using a small amount of the polyalkylene oxide (BC1) having the polyalkylene oxide (BC1), it is possible to obtain a urethane prepolymer (E) that can be expected to have a higher degree of curability while maintaining a high degree of transparency, and that the urethane cured product will have a higher strength.
(Example 25)
After synthesizing an NCO group-terminated urethane prepolymer (D) using polyalkyloxide (A2) having an ethylene oxide residue at the molecular end and a high ratio of primary hydroxyl groups according to Synthesis Example 25 described in Table 4. , which is a urethane prepolymer (E25) synthesized by adding only a polyalkyloxide (B1) having only a propylene oxide residue and an aromatic amine residue with almost no primary hydroxyl groups.
 ウレタンプレポリマー(E25)は、ポリアルキレンオキシド(A2)に由来する1級水酸基をほとんど持たないことから、芳香族アミン残基を有するポリアルキレオキシド(B1)が分子末端に偏在することが示され、全ポリオール中の芳香族アミンポリオール含有比率より高いものであることが示された。表5に実施例25の結果を示す。ウレタンプレポリマー(E25)はゲル状物や析出物がなく高透明で、初期硬化性が顕著に良好でより顕著に高い強度が期待できるものであり、ウレタン硬化物も濡れ性、柔軟性も良好でハンドリング性に優れ、高透明であった。 Since the urethane prepolymer (E25) has almost no primary hydroxyl groups derived from the polyalkylene oxide (A2), it is shown that the polyalkyl oxide (B1) having aromatic amine residues is unevenly distributed at the molecular ends. It was shown to be higher than the aromatic amine polyol content ratio in all polyols. Table 5 shows the results of Example 25. The urethane prepolymer (E25) is highly transparent with no gels or precipitates, has remarkably good initial curability, and can be expected to have remarkably high strength. Cured urethane products also have good wettability and flexibility. It was excellent in handleability and had high transparency.
 本実施例により得られたウレタンプレポリマー(E)はいずれも溶剤量等の反応条件によらず高透明でゲル状物やフラスコ壁への付着物、沈降成分等が殆ど見られず、いずれの粘度も1~100Pa・sの範囲であり、かつ良好な流動性を示した。また、硬化性評価により得られたウレタン硬化物はいずれも収縮もなく目視上高い透明性で、Hazeが5%以下であった。 All of the urethane prepolymers (E) obtained in this example are highly transparent regardless of the reaction conditions such as the amount of solvent, and almost no gel-like matter, deposits on the flask wall, sedimented components, etc. are observed. Viscosity was also in the range of 1 to 100 Pa·s, and good fluidity was exhibited. Moreover, all of the urethane cured products obtained by the curability evaluation had no shrinkage and were visually highly transparent, and had a haze of 5% or less.
 以上より、分子末端周辺に芳香族アミンポリオールが局在化、偏在化することで、ウレタンプレポリマー(E)が高透明で初期硬化性が顕著に良好となり、ウレタン硬化物が高透明性、良外観で、かつより顕著に高い強度が期待できることが示された。 As described above, the localization and maldistribution of the aromatic amine polyol around the ends of the molecules makes the urethane prepolymer (E) highly transparent and exhibits remarkably good initial curability. It was shown by the appearance that a significantly higher strength can be expected.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<比較例>
(比較例1)
 表6の合成例26に記載の組成比にしたがって、常法により合成した、分子末端に偏在的に芳香族アミン残基を有するポリアルキレンオキシド構造を有さないウレタンプレポリマー(EC1)である。ウレタンプレポリマー(EC1)の形成にエチレンオキシド残基を有するポリアルキレンオキシド(B2)を用いているが、1級の水酸基がほとんど確認されず、ほとんどが2級水酸基を有することから、分子末端の多くは芳香族アミン残基を有さないポリアルキレンオキシド(A1)に由来するポリオール構造であることが示され、全体中の芳香族アミン残基を有するポリアルキレンオキシド構造の含有率より分子末端中の芳香族アミン残基を有するポリアルキレンオキシド構造の含有率が低いものである。表7に比較例1の結果を示す。本合成例26の組成比、固形分では相溶性の悪化による顕著な白濁が見られ、活性水素基末端のウレタンプレポリマーが不透明であり使用が困難であるとともに安定的に高透明のウレタン硬化物の製造が困難なウレタンプレポリマーであった。
(比較例2)
 表6の合成例27に記載の組成比にしたがって、NCO基末端のウレタンプレポリマー(DC2)を合成後、同等分子量で芳香族アミン残基を有さない活性水素化合物(BC1)のみを末端に付加して得た芳香族アミン残基を有さないウレタンプレポリマー(EC2)である。表7に比較例2の結果を示す。剛直な芳香族アミン残基を有さないため、硬化性に劣り使用が困難であるとともに得られるウレタン硬化物の強度に期待できないものであった。
(比較例3)
 表6の合成例28に記載の組成比にしたがって、NCO基末端のウレタンプレポリマー(DC3)を合成後、芳香族アミン残基を有さない代わりに剛直な環状構造であるシュークローズ残基を有する活性水素化合物(BC2)のみを末端に付加して得た芳香族アミン残基を有さないウレタンプレポリマー(EC3)である。表7に比較例3の結果を示す。芳香族アミン残基を有さず剛直なシュークローズ残基を多く有するため透明性が悪く使用が困難であるとともに得られるウレタン硬化物の透明性に期待できないものであった。
(比較例4)
 表6の合成例29に記載の組成比にしたがって、炭素数3以上のアルキレンオキシド残基を有さないポリテトラメチレングリコールを用いてNCO基末端のウレタンプレポリマー(DC4)を合成後、炭素数3以上のアルキレンオキシド残基を有さない芳香族アミンである活性水素化合物(BC3)を末端に付加して得た炭素数3以上のアルキレンオキシド残基を有さず、分子末端に芳香族アミン残基を有するポリアルキレンオキシド構造を有さないウレタンプレポリマー(EC4)である。表7に比較例4の結果を示す。炭素数3以上のアルキレンオキシド残基を含まず、芳香族アミンにアルキレンオキシド残基を有さないため相溶性が悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
(比較例5)
 表6の合成例30に記載の組成比にしたがって、NCO基末端のウレタンプレポリマー(DC5)を合成後、炭素数3以上のアルキレンオキシド残基を有さない芳香族アミンである活性水素化合物(BC3)を末端に付加して得た、分子末端に芳香族アミン残基を有するポリアルキレンオキシド構造を有さないウレタンプレポリマー(EC5)である。表7に比較例5の結果を示す。分子末端にポリアルキレンオキシド構造を有さないため相溶性が悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
(比較例6)
 表6の合成例31に記載の組成比にしたがって、芳香族アミン残基を有するポリアルキレンオキシド構造を有するNCO基末端のウレタンプレポリマー(DC6)を合成後、芳香族アミン残基を有さない活性水素化合物(BC1)のみを末端に付加して得た、芳香族アミン残基を有するポリアルキレンオキシド構造を分子内部のみに有し分子末端に有さないウレタンプレポリマー(EC6)である。表7に比較例6の結果を示す。分子末端に芳香族アミン残基を有するポリアルキレンオキシド構造を有さないため硬化性に劣り、かつ相溶性も悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
(比較例7)
 表6の合成例32に記載の組成比にしたがって、芳香族アミン残基を有するポリアルキレンオキシド構造を有するNCO基末端のウレタンプレポリマー(DC7)を合成後、芳香族アミン残基を有さない活性水素化合物(BC2)のみを末端に付加して得た、芳香族アミン残基を有するポリアルキレンオキシド構造を分子内部のみに有し分子末端に有さないウレタンプレポリマー(EC7)である。表7に比較例7の結果を示す。分子末端に芳香族アミン残基を有するポリアルキレンオキシド構造を有さないため相溶性が顕著に悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
(比較例8)
 表6の合成例33に記載の組成比にしたがって、芳香族アミン残基を有するポリアルキレンオキシド構造を有するNCO基末端のウレタンプレポリマー(DC8)を合成後、ポリアルキレンオキシド残基を有さない活性水素化合物(BC3)のみを末端に付加して得た、芳香族アミン残基を有するポリアルキレンオキシド構造を分子内部のみに有し分子末端に有さないウレタンプレポリマー(EC8)である。表7に比較例8の結果を示す。分子末端にポリアルキレンオキシド構造を有さないため相溶性が顕著に悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
(比較例9~11)
 表6の合成例34~36に記載の組成比にしたがって、芳香族アミン残基を有するポリアルキレンオキシド構造を有するNCO基末端のウレタンプレポリマー(DC)を合成後、少量の芳香族アミン残基を有するポリオールと過剰の芳香族アミン残基を含まないポリオール(BC1)を併用して付加したものであり、分子末端の多くが芳香族アミン残基を含まないポリオール構造を有するものである。表7に比較例9~11の結果を示す。芳香族アミン残基を含むポリオール構造の含有量が多少変わっても、分子末端の多くが芳香族アミン残基を含まないポリオール構造であるため、硬化性が不十分で使用が困難であるとともに、得られるウレタン硬化物の強度に期待できないものであった。
(比較例12)
 表6の合成例37に記載の組成比にしたがって、芳香族アミン残基を有するポリアルキレンオキシド構造を有するNCO基末端のウレタンプレポリマー(DC12)を合成後、少量の芳香族アミン残基を有するポリオールと過剰の芳香族アミン残基を含まずシュークローズ残基を含むポリオール(BC2)を併用して付加したものであり、分子末端の多くがシュークローズ残基を含むポリオール構造を有するものである。表7に比較例12の結果を示す。分子末端の多くが芳香族アミン残基を含まない剛直なシュークローズ残基を含むポリオール構造であるため相溶性が顕著に悪く不透明で使用が困難であるとともに、得られるウレタン硬化物の透明性に期待できないものであった。
<Comparative example>
(Comparative example 1)
A urethane prepolymer (EC1) having no polyalkylene oxide structure and having aromatic amine residues unevenly distributed at the molecular ends, synthesized according to the composition ratio shown in Synthesis Example 26 in Table 6 (EC1). A polyalkylene oxide (B2) having an ethylene oxide residue was used to form the urethane prepolymer (EC1). is shown to be a polyol structure derived from a polyalkylene oxide (A1) having no aromatic amine residue, and the content of the polyalkylene oxide structure having an aromatic amine residue in the entire molecular terminal It has a low content of polyalkylene oxide structures having aromatic amine residues. Table 7 shows the results of Comparative Example 1. In the composition ratio and solid content of Synthesis Example 26, significant cloudiness was observed due to deterioration of compatibility, and the urethane prepolymer with active hydrogen group ends was opaque and difficult to use, and the urethane cured product was stably highly transparent. was a urethane prepolymer that was difficult to produce.
(Comparative example 2)
After synthesizing an NCO group-terminated urethane prepolymer (DC2) according to the composition ratio described in Synthesis Example 27 in Table 6, only an active hydrogen compound (BC1) having an equivalent molecular weight and no aromatic amine residue was terminated. A urethane prepolymer (EC2) having no aromatic amine residue obtained by addition. Table 7 shows the results of Comparative Example 2. Since it does not have a rigid aromatic amine residue, it is poor in curability and difficult to use, and the strength of the cured urethane obtained cannot be expected.
(Comparative Example 3)
After synthesizing an NCO group-terminated urethane prepolymer (DC3) according to the composition ratio described in Synthesis Example 28 in Table 6, a sucrose residue having a rigid cyclic structure instead of having no aromatic amine residue was added. It is a urethane prepolymer (EC3) having no aromatic amine residue obtained by adding only an active hydrogen compound (BC2) having to the terminal. Table 7 shows the results of Comparative Example 3. Since it does not have aromatic amine residues and has many rigid sucrose residues, it has poor transparency and is difficult to use.
(Comparative Example 4)
According to the composition ratio described in Synthesis Example 29 in Table 6, after synthesizing an NCO group-terminated urethane prepolymer (DC4) using polytetramethylene glycol that does not have an alkylene oxide residue having 3 or more carbon atoms, An aromatic amine having no alkylene oxide residue having 3 or more carbon atoms obtained by adding an active hydrogen compound (BC3), which is an aromatic amine having no 3 or more alkylene oxide residues, to the terminal and having an aromatic amine at the molecular end A urethane prepolymer (EC4) that does not have a polyalkylene oxide structure with residues. Table 7 shows the results of Comparative Example 4. Since it does not contain alkylene oxide residues having 3 or more carbon atoms and does not have alkylene oxide residues in the aromatic amine, it has poor compatibility and is opaque and difficult to use, and the resulting urethane cured product cannot be expected to have transparency. It was something.
(Comparative Example 5)
After synthesizing an NCO group-terminated urethane prepolymer (DC5) according to the composition ratio described in Synthesis Example 30 in Table 6, an active hydrogen compound that is an aromatic amine having no alkylene oxide residue having 3 or more carbon atoms ( A urethane prepolymer (EC5) having no polyalkylene oxide structure and having an aromatic amine residue at the molecular terminal, obtained by adding BC3) to the terminal. Table 7 shows the results of Comparative Example 5. Since it does not have a polyalkylene oxide structure at the molecular terminal, it has poor compatibility, is opaque, and is difficult to use, and the obtained urethane cured product cannot be expected to have transparency.
(Comparative Example 6)
After synthesizing an NCO group-terminated urethane prepolymer (DC6) having a polyalkylene oxide structure having an aromatic amine residue according to the composition ratio described in Synthesis Example 31 in Table 6, it does not have an aromatic amine residue. A urethane prepolymer (EC6) obtained by adding only an active hydrogen compound (BC1) to the terminal and having a polyalkylene oxide structure having an aromatic amine residue only inside the molecule and not at the terminal. Table 7 shows the results of Comparative Example 6. Curability is poor because it does not have a polyalkylene oxide structure with an aromatic amine residue at the molecular end, compatibility is poor, opacity makes it difficult to use, and transparency of the cured urethane obtained cannot be expected. Met.
(Comparative Example 7)
After synthesizing an NCO group-terminated urethane prepolymer (DC7) having a polyalkylene oxide structure having an aromatic amine residue according to the composition ratio described in Synthesis Example 32 in Table 6, it does not have an aromatic amine residue. A urethane prepolymer (EC7) obtained by adding only an active hydrogen compound (BC2) to the terminal and having a polyalkylene oxide structure having an aromatic amine residue only inside the molecule and not at the terminal. Table 7 shows the results of Comparative Example 7. Since it does not have a polyalkylene oxide structure having an aromatic amine residue at the molecular end, the compatibility is remarkably poor and it is opaque and difficult to use.
(Comparative Example 8)
According to the composition ratio described in Synthesis Example 33 in Table 6, after synthesizing an NCO group-terminated urethane prepolymer (DC8) having a polyalkylene oxide structure having an aromatic amine residue, it does not have a polyalkylene oxide residue. A urethane prepolymer (EC8) obtained by adding only an active hydrogen compound (BC3) to the terminal and having a polyalkylene oxide structure having an aromatic amine residue only inside the molecule and not at the terminal. Table 7 shows the results of Comparative Example 8. Since it does not have a polyalkylene oxide structure at the molecular end, compatibility is remarkably poor, and it is opaque and difficult to use, and the obtained urethane cured product cannot be expected to have transparency.
(Comparative Examples 9-11)
According to the composition ratios described in Synthesis Examples 34 to 36 in Table 6, after synthesizing an NCO group-terminated urethane prepolymer (DC) having a polyalkylene oxide structure having an aromatic amine residue, a small amount of aromatic amine residue and a polyol (BC1) that does not contain excessive aromatic amine residues, and many of the molecular ends have a polyol structure that does not contain aromatic amine residues. Table 7 shows the results of Comparative Examples 9-11. Even if the content of the polyol structure containing the aromatic amine residue is slightly changed, since most of the molecular ends are polyol structures that do not contain the aromatic amine residue, the curability is insufficient and it is difficult to use. The strength of the obtained urethane cured product could not be expected.
(Comparative Example 12)
After synthesizing an NCO group-terminated urethane prepolymer (DC12) having a polyalkylene oxide structure having an aromatic amine residue according to the composition ratio described in Synthesis Example 37 in Table 6, it has a small amount of aromatic amine residue. A polyol and a polyol (BC2) containing a sucrose residue but not containing an excess aromatic amine residue are added in combination, and most of the molecular ends have a polyol structure containing a sucrose residue. . Table 7 shows the results of Comparative Example 12. Many of the molecular ends have a polyol structure containing a rigid sucrose residue that does not contain an aromatic amine residue. It was unexpected.
 以上、比較例で示したように、分子末端周辺に局在、偏在的に芳香族アミン残基を有するポリオール構造を含まない場合、溶剤量や反応条件の影響で透明性や硬化性を安定的に発現する事が困難であるため使用が困難であり、安定的に高透明で高強度のウレタン硬化物の形成が困難であった。 As shown in the comparative examples above, when the polyol structure having aromatic amine residues localized and unevenly distributed around the molecular end is not included, transparency and curability are stably affected by the amount of solvent and reaction conditions. However, it is difficult to use it because it is difficult to express it in the urethane, and it is difficult to stably form a highly transparent and high strength urethane cured product.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<ウレタン硬化物の製造例>
 実施例2、12、18、25のウレタンプレポリマー(E)の固形分100重量部に対して、反応遅延剤としてアセチルアセトン5重量部と酸性リン酸エステル(城北化学工業製JP508)600ppm、トリアゾール安定剤チヌビン99-2を0.8重量部、ジエチレングリコール0.2重量部、可塑剤として2-エチルヘキサン酸ヘキサデシル10重量部、帯電防止剤として1-エチル-3-メチルイミダゾリウムビス(フルオロメタンスルホニル)イミド1.5重量部、レベリング剤としてDIC製F-571を0.05重量部混合・分散し、架橋剤としてイソシアネート化合物(F1)であるコロネートHXLVを水酸基に対して1.1当量混合して80μm以下でPET基材に塗工して、130℃5分で乾燥することでウレタン塗膜を作製した。いずれの実施例のウレタンプレポリマー(E)を含む組成物の粘度も1~100Pa・sの範囲で、かつシート作成後の組成物の残液は24時間経過後も良好な流動性を示した。得られたウレタン硬化物は濡れ性が良好でかつ高強度、高透明であり、シーリング材、塗料、粘着剤、接着剤等に好適に使用できるものであった。
<Production example of urethane cured product>
Per 100 parts by weight of the solid content of the urethane prepolymers (E) of Examples 2, 12, 18, and 25, 5 parts by weight of acetylacetone as a reaction retarder and 600 ppm of an acidic phosphoric acid ester (JP508 manufactured by Johoku Kagaku Kogyo Co., Ltd.), triazole stable 0.8 parts by weight of the agent Tinuvin 99-2, 0.2 parts by weight of diethylene glycol, 10 parts by weight of hexadecyl 2-ethylhexanoate as a plasticizer, 1-ethyl-3-methylimidazolium bis(fluoromethanesulfonyl) as an antistatic agent ) 1.5 parts by weight of imide and 0.05 parts by weight of F-571 manufactured by DIC as a leveling agent are mixed and dispersed. A urethane coating film was prepared by coating a PET substrate with a thickness of 80 μm or less and drying at 130° C. for 5 minutes. The viscosity of the composition containing the urethane prepolymer (E) of any example was in the range of 1 to 100 Pa·s, and the residual liquid of the composition after sheet preparation showed good fluidity even after 24 hours. . The resulting urethane cured product had good wettability, high strength, and high transparency, and could be suitably used for sealants, paints, pressure-sensitive adhesives, adhesives, and the like.
 以上、実施例で示したように、本発明におけるウレタンプレポリマー(E)は、ゲル状物や析出物がなく、硬化性に優れる高透明なウレタンプレポリマーであり、ウレタンプレポリマー(E)を用いることで高透明で強度が高く表面タックが少ない軽剥離性のウレタン塗膜を安定的に形成できる。 As described above in the Examples, the urethane prepolymer (E) in the present invention is a highly transparent urethane prepolymer that does not contain gels or precipitates and has excellent curability. By using it, it is possible to stably form a highly transparent, high-strength, light-releasable urethane coating film with less surface tack.
 その特徴を活かすことにより、ウレタンプレポリマー(E)を用いて得られるポリウレタンは、シーリング材、塗料、粘着剤、接着剤等に好適に使用できることが示された。 By taking advantage of its characteristics, it was shown that the polyurethane obtained using the urethane prepolymer (E) can be suitably used for sealants, paints, adhesives, adhesives, etc.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく、様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2021年4月22日に出願された日本特許出願2021-072434号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2021-072434 filed on April 22, 2021 are cited here and incorporated as disclosure of the specification of the present invention. It is a thing.

Claims (11)

  1.  炭素数3以上のアルキレンオキシド残基、芳香族アミン残基及びポリイソシアネート残基を有し、分子末端に局在的に芳香族アミン残基を有するポリアルキレンオキシド構造を有する、活性水素基末端のウレタンプレポリマー(E)。 Having an alkylene oxide residue having 3 or more carbon atoms, an aromatic amine residue and a polyisocyanate residue, and having a polyalkylene oxide structure having an aromatic amine residue locally at the molecular end, an active hydrogen group-terminated Urethane prepolymer (E).
  2.  ポリアルキレンオキシド(A)とポリイソシアネート(C)の反応物であるNCO末端プレポリマー(D)と、芳香族アミン残基と2つ以上の水酸基を有するポリアルキレンオキシド(B)との反応物である、請求項1に記載のウレタンプレポリマー(E)。 A reaction product of an NCO-terminated prepolymer (D), which is a reaction product of a polyalkylene oxide (A) and a polyisocyanate (C), and a polyalkylene oxide (B) having an aromatic amine residue and two or more hydroxyl groups The urethane prepolymer (E) according to claim 1, wherein
  3.  芳香族アミン残基を有するポリオール構造またはその残基を5~70重量%含む、請求項1または請求項2に記載のウレタンプレポリマー(E)。 The urethane prepolymer (E) according to claim 1 or claim 2, containing 5 to 70% by weight of polyol structures having aromatic amine residues or residues thereof.
  4.  芳香族アミン残基として、4,4’-ジフェニルメタンジアミン残基、2,4-トリレンジアミン残基及び2,6-トリレンジアミン残基からなる群より選ばれる、1種類以上の残基を含む、請求項1乃至請求項3のいずれかに記載のウレタンプレポリマー(E)。 As aromatic amine residues, one or more residues selected from the group consisting of 4,4′-diphenylmethanediamine residues, 2,4-tolylenediamine residues and 2,6-tolylenediamine residues. The urethane prepolymer (E) according to any one of claims 1 to 3, comprising:
  5.  ポリイソシアネート残基として、脂肪族イソシアネート残基、脂環式イソシアネート残基及びこれらの変性体残基からなる群より選ばれる1種類以上の残基を含む、請求項1乃至請求項4のいずれかに記載のウレタンプレポリマー(E)。 Any one of claims 1 to 4, wherein the polyisocyanate residue contains one or more residues selected from the group consisting of aliphatic isocyanate residues, alicyclic isocyanate residues and modified residues thereof. The urethane prepolymer (E) described in .
  6.  分子末端に有する芳香族アミン残基を有するポリオール構造として、ポリアルキレンオキシド残基を含み、当該ポリアルキレンオキシド残基がポリプロピレンオキシド残基、ポリプロピレン・エチレンオキシド残基及びポリエチレンオキシド残基からなる群より選ばれる1種類以上の残基を含む、請求項1乃至請求項5のいずれかに記載のウレタンプレポリマー(E)。 The polyol structure having an aromatic amine residue at the molecular end contains a polyalkylene oxide residue, and the polyalkylene oxide residue is selected from the group consisting of a polypropylene oxide residue, a polypropylene-ethylene oxide residue and a polyethylene oxide residue. 6. The urethane prepolymer (E) according to any one of claims 1 to 5, comprising one or more types of residues.
  7.  請求項1乃至請求項6のいずれかに記載のウレタンプレポリマー(E)、有機溶媒及び添加剤を含むウレタンプレポリマー組成物溶液であって、
    該ウレタンプレポリマー組成物溶液中のウレタンプレポリマー(E)の濃度が60重量%以上99重量%以下である、ウレタンプレポリマー組成物溶液。
    A urethane prepolymer composition solution containing the urethane prepolymer (E) according to any one of claims 1 to 6, an organic solvent and an additive,
    A urethane prepolymer composition solution, wherein the concentration of the urethane prepolymer (E) in the urethane prepolymer composition solution is 60% by weight or more and 99% by weight or less.
  8.  請求項1乃至請求項6のいずれかに記載のウレタンプレポリマー(E)とイソシアネート化合物(F)とを含むウレタン形成性組成物。 A urethane-forming composition comprising the urethane prepolymer (E) according to any one of claims 1 to 6 and an isocyanate compound (F).
  9.  請求項7に記載のウレタンプレポリマー組成物溶液とイソシアネート化合物(F)とを含むウレタン形成性組成物溶液。 A urethane-forming composition solution containing the urethane prepolymer composition solution according to claim 7 and an isocyanate compound (F).
  10.  請求項8に記載のウレタン形成組成物又は請求項9に記載のウレタン形成性組成物溶液中のウレタン形成性組成物の反応物を含むウレタン硬化物。 A cured urethane product containing the urethane-forming composition according to claim 8 or a reaction product of the urethane-forming composition in the urethane-forming composition solution according to claim 9.
  11.  請求項10に記載のウレタン硬化物からなるポリウレタンシート。 A polyurethane sheet made of the cured urethane material according to claim 10.
PCT/JP2022/017117 2021-04-22 2022-04-05 Urethane prepolymer and cured urethane obtained therefrom WO2022224819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072434A JP2022166968A (en) 2021-04-22 2021-04-22 Urethane prepolymer and cured urethane obtained therefrom
JP2021-072434 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022224819A1 true WO2022224819A1 (en) 2022-10-27

Family

ID=83722258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017117 WO2022224819A1 (en) 2021-04-22 2022-04-05 Urethane prepolymer and cured urethane obtained therefrom

Country Status (2)

Country Link
JP (1) JP2022166968A (en)
WO (1) WO2022224819A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269422A (en) * 1998-03-19 1999-10-05 Mitsubishi Gas Chem Co Inc Binder for printing ink
JP2006273973A (en) * 2005-03-29 2006-10-12 Nippon Polyurethane Ind Co Ltd Method for producing rigid polyurethane slab foam and heat insulating material for piping
JP2020158551A (en) * 2019-03-25 2020-10-01 東ソー株式会社 Urethane forming composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269422A (en) * 1998-03-19 1999-10-05 Mitsubishi Gas Chem Co Inc Binder for printing ink
JP2006273973A (en) * 2005-03-29 2006-10-12 Nippon Polyurethane Ind Co Ltd Method for producing rigid polyurethane slab foam and heat insulating material for piping
JP2020158551A (en) * 2019-03-25 2020-10-01 東ソー株式会社 Urethane forming composition

Also Published As

Publication number Publication date
JP2022166968A (en) 2022-11-04

Similar Documents

Publication Publication Date Title
JP6891412B2 (en) Urethane-forming composition and urethane adhesive using it
WO2007091643A1 (en) Process for production of urethane resin and adhesive agent
US7166649B2 (en) Polyester-polyether hybrid urethane acrylate oligomer for UV curing pressure sensitive adhesives
JP7127372B2 (en) Urethane-forming composition
US20160264708A1 (en) Synthesis and Use of Metallized Polyhedral Oligomeric Silsesquioxane Catalyst Compositions
JP2016204466A (en) Urethane prepolymer and two-liquid type urethane adhesive using the same
JP2009096996A (en) Main agent for adhesives and production method thereof, composition for preparing urethane resin-based adhesive, and method for production of urethane resin-based adhesives
WO2022224819A1 (en) Urethane prepolymer and cured urethane obtained therefrom
JP7293779B2 (en) Urethane-forming composition
JP7283052B2 (en) Urethane-forming composition
JP7318256B2 (en) Urethane prepolymer composition
JP2020083973A (en) Urethane prepolymer, 2-liquid cure type polyurethane and adhesive using the same
JP2022166967A (en) Method for producing urethane prepolymer
JP7287795B2 (en) Block polyisocyanate composition, water-based coating composition and coating film
JP7413927B2 (en) Urethane prepolymer composition
JP7469611B2 (en) Urethane prepolymer composition
JP7419968B2 (en) Urethane prepolymer composition solution
JP2023056741A (en) Polyurethane-forming composition
JP2020189833A (en) Method for producing unsaturated urethane compound
JP2009057451A (en) Acrylic-urethane block copolymer aqueous emulsion, method for producing the same, and aqueous coating material
CN111732702B (en) Urethane-forming composition
JP7379816B2 (en) Urethane-forming composition
JP2022166969A (en) Urethane prepolymer composition solution
JP2024024542A (en) Urethane prepolymer and its manufacturing method
JP7432818B2 (en) Urethane-forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791594

Country of ref document: EP

Kind code of ref document: A1