WO2022224528A1 - ポンプ制御装置及びポンプシステム - Google Patents

ポンプ制御装置及びポンプシステム Download PDF

Info

Publication number
WO2022224528A1
WO2022224528A1 PCT/JP2022/003504 JP2022003504W WO2022224528A1 WO 2022224528 A1 WO2022224528 A1 WO 2022224528A1 JP 2022003504 W JP2022003504 W JP 2022003504W WO 2022224528 A1 WO2022224528 A1 WO 2022224528A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
motor
fluid
control
control device
Prior art date
Application number
PCT/JP2022/003504
Other languages
English (en)
French (fr)
Inventor
潤 地崎
Original Assignee
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二越 filed Critical 株式会社不二越
Publication of WO2022224528A1 publication Critical patent/WO2022224528A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations

Definitions

  • the present invention relates to a pump control device and a pump system.
  • a positive displacement pump including a vane pump is used as a metering pump that supplies high-viscosity fluid at a constant flow rate.
  • a typical vane pump includes a plurality of vanes slidably protruding from a rotating rotor, a concentric cylindrical cam ring forming a pump chamber by bringing the outer peripheral ends of the vanes into sliding contact, and a rotor, vanes, and cam ring as an axis. and a side plate that sandwiches from the direction (see Patent Document 1).
  • the present invention has been made in view of such problems, and its object is to provide a pump control device and a pump system capable of smoothly starting a vane pump even at low temperatures by devising rotation control of a motor. to provide.
  • the pump control device sucks fluid into a pump chamber through a suction port, compresses the volume of the pump chamber through the rotational motion of a rotor, and discharges the fluid in the pump chamber through a discharge port.
  • a motor connected to a rotor of the vane pump, and a controller for controlling the rotation of the motor, wherein the controller controls the
  • a first control is performed to drive the motor so that the rotation speed of the motor is greater than a target value, and if a termination condition is satisfied during execution of the first control, the rotation speed of the motor is increased to the target value.
  • a second control is performed to drive the motor to keep it lowered.
  • the termination condition is that the estimated value or the measured value of the drive torque acting on the motor exceeds a threshold value.
  • the termination condition is that a predetermined execution period has elapsed from a reference time point that is a time point after the start time of the vane pump.
  • the controller when the control variable is the rotation speed of the motor, the controller sets the command value to a value larger than the target value during execution of the first control, When the end condition is satisfied, the command value is changed to the target value.
  • a pump system sucks fluid into a pump chamber through a suction port, compresses the capacity of the pump chamber through the rotational motion of a rotor, and discharges the fluid in the pump chamber through a discharge port. and the pump control device according to any one of the first to fourth aspects described above.
  • the pump system according to the sixth aspect of the present invention further includes a tank that is connected to the suction port of the vane pump and stores the fluid, and the tank is provided at a height position higher than the vane pump.
  • the vane pump by devising the rotation control of the motor, the vane pump can be started smoothly even at low temperatures.
  • FIG. 1 is an overall configuration diagram of a pump system incorporating a pump control device according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the vane pump shown in FIG. 1
  • FIG. 4 is a first time chart showing the operation of the pump control device
  • 4 is a second time chart showing the operation of the pump control device
  • It is a time chart in rotation control of a modification.
  • FIG. 1 is an overall configuration diagram of a pump system 10 incorporating a pump control device 20 according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the vane pump 18 shown in FIG.
  • the pump system 10 of FIG. 1 is mounted on, for example, an AT (Automatic Transmission) vehicle or a CVT (Continuously Variable Transmission) vehicle, and is configured to allow the fluid 14 to circulate through the circulation flow path 12.
  • the fluid 14 is a "hydraulic oil” for operating a hydraulic system or a “lubricating oil” for reducing friction in mechanical contacts.
  • the pump system 10 includes a tank 16, a vane pump 18 that is one aspect of a positive displacement pump, and a pump controller 20 in addition to the circulation flow path 12 and the fluid 14. .
  • the tank 16 is a container that is provided on the circulation flow path 12 and stores the fluid 14 .
  • the vane pump 18 is a device that is provided downstream of the tank 16 and pumps the fluid 14 supplied from the tank 16 . Although the arrangement relationship between the tank 16 and the vane pump 18 varies, for example, the tank 16 is provided at a height position lower than the vane pump 18 .
  • the vane pump 18 has a structure in which a rotor 34 rotatable integrally with a shaft 32 is arranged inside a cam ring 30 having an approximately elliptical inner peripheral surface.
  • Two pump chambers 36 a and 36 b are thereby formed between the cam ring 30 and the rotor 34 .
  • a plurality of vanes 40 (ten vanes in the example of this drawing) are inserted through the grooves 38 of the rotor 34 along the radial direction so as to advance and retreat.
  • the cam ring 30 is formed with two suction ports 42a and 42b and two discharge ports 44a and 44b at angular positions facing each other. Thereby, the suction port 42a(b), the pump chamber 36a(b) and the discharge port 44a(b) constitute a part of the circulation flow path 12. As shown in FIG.
  • the pump control device 20 is configured to be able to drive and control the vane pump 18, and specifically includes a motor 22, a sensor 24, and a controller 26. Motor 22 and sensor 24 are each connected to controller 26 .
  • the motor 22 is a rotary actuator such as a stepping motor, AC motor, or DC motor.
  • the motor 22 is configured to rotate its output shaft according to a control signal supplied from the controller 26 .
  • An output shaft of the motor 22 is connected to a shaft 32 (FIG. 2) of the vane pump 18. As shown in FIG.
  • the sensor 24 generates an electric signal (hereinafter referred to as detection signal) indicating the state of the motor 22 or the vane pump 18 and outputs the obtained detection signal to the controller 26 .
  • the sensor 24 may be [1] a current sensor that detects the current flowing through the motor 22, [2] a rotation sensor that detects the amount of rotation of the motor 22, or [3] a torque sensor that detects the drive torque acting on the vane pump 18. be.
  • the controller 26 is, for example, a control circuit board including a processor and memory, and controls rotation of the motor 22 based on detection signals from the sensor 24 .
  • the controller 26 performs rotation control (hereinafter also referred to as “first control”) to drive the motor 22 so that the rotation speed of the motor 22 becomes greater than a target value, and executes the first control.
  • rotation control hereinafter also referred to as “second control” is performed to drive the motor 22 so that the rotation speed of the motor 22 is lowered to the target value and maintained.
  • the controller 26 sets the command value to a value larger than the target value during the execution of the first control, and issues the command when the termination condition is satisfied. Change the value to the target value.
  • the termination condition is, for example, satisfying at least one of the following first condition and second condition.
  • the first condition is that the drive torque acting on the motor 22 exceeds the threshold.
  • This drive torque may be an estimated value estimated from the value of the current flowing through the motor 22, or may be a measured value measured using a torque sensor.
  • the threshold value may be a predetermined fixed value, or [1] the temperature of the vane pump 18 or the fluid 14, or [2] a variable value dynamically set according to the type of the vane pump 18 or the motor 22. can be a value.
  • the second condition is that a predetermined execution period has elapsed from the reference time, which is the time after the start of the vane pump 18 .
  • This reference time may be, for example, the time at which the vane pump 18 is started, or the time at which the rotation speed of the motor 22 approaches the command value and reaches a steady state.
  • the execution period may be a predetermined fixed value, or may be dynamically set according to [1] the temperature of the vane pump 18 or the fluid 14 and [2] the type of the vane pump 18 or the motor 22. It may be a variable value.
  • the controller 26 performs a threshold determination of the drive torque when the execution time has elapsed, and if the threshold is less than the threshold (that is, if the first condition is not satisfied), the first control may be exceptionally continued. good.
  • This threshold value corresponds to, for example, a typical value of the drive torque acting on the motor 22 when the fluid 14 is filled in the pump chambers 36a and 36b.
  • the fluid 14 stored in the tank 16 is sucked into the pump chamber 36a(b) through the circulation flow path 12 and the suction port 42a(b). be done.
  • the fluid 14 in the pump chamber 36a(b) is compressed, thereby increasing the fluid pressure.
  • the fluid 14 is then discharged or pressure-fed to the outside of the vane pump 18 in a compressed state through the pump chamber 36a(b) and the discharge port 44a(b).
  • the vane pump 18 may not start smoothly at low temperatures due to various phenomena. In response to this, it is conceivable to increase the size of the motor 22, but the structure of the pump control device 20 is restricted accordingly. Therefore, the pump control device 20 smoothly starts the vane pump 18 by devising the rotation control of the motor 22 .
  • FIG. 3 is a first time chart showing the operation of the pump control device 20.
  • FIG. 1 rotation speed command value (unit: rpm) of motor 22, [2] rotation speed actual measurement value (unit: rpm), and [3] driving torque (unit: N m) are shown. showing.
  • the controller 26 sets the rotational speed command value to N2 (>N1) as the starting mode starts. Then, the rotational speed actual value gradually increases as time elapses. In addition, the drive torque gradually increases as time elapses, similarly to the measured rotation speed.
  • the vane pump 18 continues the suction operation of the fluid 14 by maintaining the rotational speed actual measurement value substantially constant. Since the temperature of the fluid 14 is low immediately after the start of the vane pump 18, the viscous resistance of the fluid 14 increases, which tends to make it difficult to suck the fluid 14 into the pump chamber 36a(b). Therefore, when the starting mode is executed, the intake of the fluid 14 is promoted by rotating the motor 22 at a rotational speed (N2) higher than the rotational speed (N1) during normal operation.
  • the fluid 14 is drawn into the pump chamber 36a(b) through the intake port 42a(b) of the vane pump 18.
  • the driving torque of the motor 22 may suddenly increase.
  • the driving torque reaches the threshold value Tq3, satisfying the end condition of the starting mode.
  • the controller 26 switches and sets the rotational speed command value from N1 to N1 as the start mode shifts to the normal mode. Then, the rotational speed actual value gradually approaches N1 while decreasing as time passes. Further, the drive torque gradually decreases with a peak value near Tq3 so as to follow the decrease in the rotation speed.
  • the vane pump 18 functions as a metering pump by maintaining the rotational speed actual measured value substantially constant.
  • FIG. 4 is a second time chart showing the operation of the pump control device 20.
  • FIG. In this figure, [1] the drive torque of the motor 22 (unit: N ⁇ m) and [2] rotation speed command value (unit: rpm) are shown, respectively. Note that the actual measurement value of the rotation speed of the motor 22 exhibits the same behavior as in FIG. 3, so the chart is omitted.
  • the controller 26 sets the rotational speed command value to N2 (>N1) as the starting mode starts. Then, the drive torque gradually increases as time passes.
  • the vane pump 18 continues the suction operation of the fluid 14 by maintaining the rotational speed actual measurement value substantially constant.
  • the controller 26 switches and sets the rotational speed command value from N2 to N1 as the starting mode shifts to the normal mode. Then, the rotational speed actual value gradually approaches N1 while decreasing as time passes. In addition, the drive torque gradually decreases so as to follow the decrease in rotation speed.
  • the vane pump 18 functions as a metering pump by maintaining the rotational speed actual measured value substantially constant.
  • FIG. 5 is a time chart in rotation control of a modified example. This figure shows the change over time of the rotation speed command value (unit: rpm) of the motor 22 .
  • the controller 26 sets the rotational speed command value to N1 as the starting mode starts. Then, the controller 26 changes the rotational speed command value so that the value increases in proportion to the elapsed time from N1 to N2.
  • the controller 26 changes the rotation speed command value so that the value decreases in proportion to the elapsed time from N2 to N1 as the start mode shifts to the normal mode.
  • the controller 26 maintains the rotation speed command value changed to N1.
  • controller 26 may change the rotational speed command value continuously or stepwise during execution of the starting mode or normal mode. This control method also allows the vane pump 18 to start smoothly.
  • the pump system 10 includes the vane pump 18 and the pump control device 20 that controls the driving of the vane pump 18 .
  • the vane pump 18 sucks the fluid 14 from the suction ports 42a, 42b into the pump chambers 36a, 36b, and compresses the capacity of the pump chambers 36a, 36b through the rotational movement of the rotor 34, thereby causing the fluid 14 in the pump chambers 36a, 36b to be pumped. can be discharged from the discharge ports 44a and 44b.
  • the pump control device 20 includes a motor 22 connected to the rotor 34 of the vane pump 18 and a controller 26 that controls rotation of the motor 22 .
  • the controller 26 performs first control to drive the motor 22 so that the rotation speed (N) of the motor 22 becomes greater than the target value (N1), and during the execution of the first control, the end condition is established, the second control is performed to drive the motor 22 so that the rotation speed of the motor 22 is lowered to the target value (N1) and maintained.
  • the controller 26 sets the command value to be greater than the target value (N1) during execution of the first control. value, and change the command value to the target value (N2) when the termination condition is satisfied.
  • the end condition may be that the estimated value or the measured value of the drive torque acting on the motor 22 exceeds a threshold. This makes it possible to determine an appropriate termination condition based on the drive torque.
  • the termination condition may be that a predetermined execution period has elapsed from a reference point in time after the start of the vane pump 18 . This makes it possible to determine an appropriate termination condition based on the elapsed time from the reference time without using drive torque.
  • the pump system 10 further includes a tank 16 that is connected to the suction ports 42 a and 42 b of the vane pump 18 and stores the fluid 14
  • the tank 16 may be provided at a height position higher than the vane pump 18 .
  • a larger attraction force is required due to the gravitational action of the fluid 14, so the effect of temporarily increasing the rotational speed is more pronounced.
  • the so-called balanced vane pump 18 (Fig. 2) was taken as an example, but the type of electromagnetic pump is not limited to this.
  • the vane pump may be "unbalanced" in which the radial pressures acting on the rotor 34 are unbalanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

本発明は、ポンプ制御装置及びポンプシステムに関する。ポンプ制御装置20が有するコントローラ26は、ベーンポンプ18の始動時に、モータ22の回転速度(N)が目標値(N1)よりも大きくなるようにモータ22を駆動する第一制御を行い、第一制御の実行中に終了条件が成立した場合に、モータ22の回転速度を目標値(N1)まで下げて維持するようにモータ22を駆動する第二制御を行う。

Description

ポンプ制御装置及びポンプシステム
 本発明は、ポンプ制御装置及びポンプシステムに関する。
 例えば、高粘度の流体を一定の流量で供給する定量ポンプとして、ベーンポンプを含む容積式ポンプが用いられる。典型的なベーンポンプは、回転するロータから摺動可能に突出する複数のベーンと、ベーンの外周端部を摺接させてポンプ室を形成する同心円筒形状のカムリングと、ロータ、ベーン及びカムリングを軸方向から挟持するサイドプレートと、を有する(特許文献1参照)。
特開2008-002304号公報
 ところで、低温になるにつれて粘度が上昇する流体を圧送する場合、低温時にベーンポンプが円滑に始動できない場合がある。その理由として、[1]粘性抵抗力の作用によって吸入口を介して流体をポンプ室に吸入しにくくなること、[2]高速回転中のベーンに流体圧力が作用することで駆動トルクが急激に上昇し得ること、などが挙げられる。上記した不都合を解消するための対策として、モータのサイズを大きくすることが考えられるが、その分だけポンプ制御装置の構造上の制約を受けてしまう。
 本発明はこのような問題に鑑みてなされたものであり、その目的は、モータの回転制御を工夫することで、低温時であってもベーンポンプを円滑に始動可能なポンプ制御装置及びポンプシステムを提供することにある。
 本発明の第一態様におけるポンプ制御装置は、流体を吸入口からポンプ室に吸入し、ロータの回転運動を通じて前記ポンプ室の容量を圧縮することで、前記ポンプ室内の流体を吐出口から吐出可能に構成されるベーンポンプの駆動制御を行う装置であって、前記ベーンポンプのロータに接続されるモータと、前記モータの回転制御を行うコントローラと、を備え、前記コントローラは、前記ベーンポンプの始動時に、前記モータの回転速度が目標値よりも大きくなるように前記モータを駆動する第一制御を行い、前記第一制御の実行中に終了条件が成立した場合に、前記モータの回転速度を前記目標値まで下げて維持するように前記モータを駆動する第二制御を行う。
 本発明の第二態様におけるポンプ制御装置では、前記終了条件は、前記モータに作用する駆動トルクの推定値又は測定値が、閾値を上回ったことである。
 本発明の第三態様におけるポンプ制御装置では、前記終了条件は、前記ベーンポンプの始動時点以後の時点である基準時点から所定の実行期間が経過したことである。
 本発明の第四態様におけるポンプ制御装置では、前記コントローラは、制御変数が前記モータの回転速度である場合、前記第一制御の実行中に指令値を前記目標値よりも大きい値に設定し、前記終了条件が成立した場合に指令値を前記目標値に変更する。
 本発明の第五態様におけるポンプシステムは、流体を吸入口からポンプ室に吸入し、ロータの回転運動を通じて前記ポンプ室の容量を圧縮することで、前記ポンプ室内の流体を吐出口から吐出可能に構成されるベーンポンプと、上記した第一態様から第四態様までのいずれかに記載のポンプ制御装置と、を備える。
 本発明の第六態様におけるポンプシステムは、前記ベーンポンプの吸入口に接続されて前記流体を貯留するタンクをさらに備え、前記タンクは、前記ベーンポンプよりも上方の高さ位置に設けられる。
 本発明によれば、モータの回転制御を工夫することで、低温時であってもベーンポンプを円滑に始動させることができる。
本発明の一実施形態におけるポンプ制御装置が組み込まれたポンプシステムの全体構成図である。 図1に示すベーンポンプの概略断面図である。 ポンプ制御装置の動作を示す第一のタイムチャートである。 ポンプ制御装置の動作を示す第二のタイムチャートである。 変形例の回転制御におけるタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明を省略する。
[ポンプシステム10の構成]
 図1は、本発明の一実施形態におけるポンプ制御装置20が組み込まれたポンプシステム10の全体構成図である。図2は、図1に示すベーンポンプ18の概略断面図である。
 図1のポンプシステム10は、例えば、AT(Automatic Transmission)車、CVT(Continuously Variable Transmission)車に搭載され、循環流路12を通じて流体14を循環可能に構成される。この場合、流体14は、油圧装置を作動させるための「作動油」又は機械の接触部の摩擦を少なくするための「潤滑油」である。このポンプシステム10は、具体的には、循環流路12及び流体14の他に、タンク16と、容積式ポンプの一態様であるベーンポンプ18と、ポンプ制御装置20と、を含んで構成される。
 タンク16は、循環流路12上に設けられるとともに、流体14を貯留する容器である。ベーンポンプ18は、タンク16の下流側に設けられるとともに、タンク16から供給された流体14を圧送する機器である。タンク16とベーンポンプ18の間の配置関係は様々であるが、例えば、タンク16は、ベーンポンプ18よりも下方の高さ位置に設けられる。
 図2に示すように、ベーンポンプ18は、概略楕円形状の内周面を有するカムリング30の内部に、シャフト32と一体的に回転可能なロータ34が配置された構造を有する。これにより、カムリング30とロータ34との間に2つのポンプ室36a,36bが形成される。また、ロータ34の溝38には、複数枚のベーン40(本図の例では、十枚)が径方向に沿って進退可能に挿通される。カムリング30には、それぞれ対向する角度位置に、二つの吸入口42a,42bと、二つの吐出口44a,44bと、が形成される。これにより、吸入口42a(b)、ポンプ室36a(b)及び吐出口44a(b)は、循環流路12の一部を構成する。
 図1に戻って、ポンプ制御装置20は、ベーンポンプ18の駆動制御を実行可能に構成され、具体的には、モータ22と、センサ24と、コントローラ26と、を備える。モータ22及びセンサ24は、それぞれコントローラ26に接続される。
 モータ22は、ステッピングモータ、ACモータ、DCモータなどの回転アクチュエータである。モータ22は、コントローラ26から供給される制御信号に従って出力軸を回転可能に構成される。なお、モータ22の出力軸は、ベーンポンプ18が有するシャフト32(図2)に接続される。
 センサ24は、モータ22又はベーンポンプ18の状態を示す電気信号(以下、検出信号という)を生成し、得られた検出信号をコントローラ26に向けて出力する。このセンサ24は、[1]モータ22に流れる電流を検出する電流センサ、[2]モータ22の回転量を検出する回転センサ、又は[3]ベーンポンプ18に作用する駆動トルクを検出するトルクセンサである。
 コントローラ26は、例えば、プロセッサやメモリを含む制御回路基板であり、センサ24からの検出信号に基づいてモータ22の回転制御を行う。コントローラ26は、ベーンポンプ18の始動時に、モータ22の回転速度が目標値よりも大きくなるようにモータ22を駆動する回転制御(以下、「第一制御」ともいう)を行い、第一制御の実行中に終了条件が成立した場合に、モータ22の回転速度を目標値まで下げて維持するようにモータ22を駆動する回転制御(以下、「第二制御」ともいう)を行う。より具体的には、制御変数がモータ22の回転速度である場合、コントローラ26は、第一制御の実行中に指令値を目標値よりも大きい値に設定し、終了条件が成立した場合に指令値を目標値に変更する。終了条件は、例えば、以下の第一条件及び第二条件の少なくとも一方を満たすことである。
 第一条件は、モータ22に作用する駆動トルクが、閾値を上回ったことである。この駆動トルクは、モータ22に流れる電流値から推定された推定値であってもよいし、トルクセンサを用いて測定された測定値であってもよい。また、閾値は、予め定められた固定値であってもよいし、[1]ベーンポンプ18又は流体14の温度や、[2]ベーンポンプ18又はモータ22の種類に応じて動的に設定される可変値であってもよい。
 第二条件は、ベーンポンプ18の始動時点以後の時点である基準時点から所定の実行期間が経過したことである。この基準時点は、例えば、ベーンポンプ18の始動時点であってもよいし、モータ22の回転速度が指令値に近づいて定常状態に達した時点であってもよい。また、実行期間は、予め定められた固定値であってもよいし、[1]ベーンポンプ18又は流体14の温度や、[2]ベーンポンプ18又はモータ22の種類に応じて動的に設定される可変値であってもよい。
 なお、上記した実行時間が小さい値に設定される場合、ベーンポンプ18に流体14が吸入される前に第二条件が成立する可能性がある。そこで、コントローラ26は、実行時間が経過した時点で駆動トルクの閾値判定を行い、当該閾値を下回る場合(つまり、第一条件が成立しない場合)に、例外的に第一制御を継続してもよい。この閾値は、例えば、ポンプ室36a,36b内に流体14が充満する状態にて、モータ22に作用する駆動トルクの典型値に相当する。
[ポンプシステム10の動作]
 この実施形態におけるポンプシステム10は、以上のように構成される。続いて、ポンプシステム10の動作(特に、ポンプ制御装置20の動作)について、図1~図5を参照しながら説明する。
<基本動作>
 図2に示すベーンポンプ18は、流体14を吸入口42a(b)からポンプ室36a(b)に吸入し、ロータ34の回転運動を通じてポンプ室36a(b)の容量を圧縮することで、ポンプ室36a(b)内の流体14を吐出口44a(b)から吐出可能に構成される。
 まず、ポンプ制御装置20による回転制御に従ってロータ34が回転することで、タンク16内に貯留された流体14は、循環流路12及び吸入口42a(b)を通じて、ポンプ室36a(b)に吸入される。そして、ポンプ室36a(b)内の流体14は、ロータ34の回転に伴って圧縮されることで流体圧力が上昇する。そして、流体14は、ポンプ室36a(b)及び吐出口44a(b)を通じて、圧縮された状態でベーンポンプ18の外側に吐出あるいは圧送される。
 ところで、低温になるにつれて粘度が上昇する流体14を圧送する場合、様々な現象によって低温時にベーンポンプ18が円滑に始動できない場合がある。これに対して、モータ22のサイズを大きくすることが考えられるが、その分だけポンプ制御装置20の構造上の制約を受けてしまう。そこで、ポンプ制御装置20は、モータ22の回転制御を工夫することで、ベーンポンプ18を円滑に始動させる。
<始動時の回転制御>
 図1のコントローラ26は、ベーンポンプ18の始動時に、モータ22の回転数が目標値よりも大きくなるようにモータ22を駆動する「始動モード」(つまり、第一制御)を実行し、始動モードの実行中に終了条件が成立した場合に、モータ22の回転数を目標値まで下げて維持するようにモータ22を駆動する「通常モード」(つまり、第二制御)を実行する。
 図3は、ポンプ制御装置20の動作を示す第一のタイムチャートである。本図では、[1]モータ22の回転数指令値(単位:rpm)、[2]回転数実測値(単位:rpm)及び[3]駆動トルク(単位:N・m)の時間変化をそれぞれ示している。
 ベーンポンプ18の始動時点をt=0とすると、t≦0では、モータ22が停止した状態(N=0)である。ここで、定流量に対応する回転数(つまり、回転数の目標値)は、N1であるとする。
 時間t=0において、コントローラ26は、始動モードの開始に伴い、回転数指令値をN2(>N1)に設定する。そうすると、回転数実測値は、時間が経過するにつれて徐々に増加する。また、駆動トルクは、回転数実測値と同様に、時間が経過するにつれて徐々に増加する。
 時間t=t1において、回転数実測値が指令値N2に達するとともに、駆動トルクがTq2に達する。そして、回転数実測値が略一定に維持されることで、ベーンポンプ18は、流体14の吸入動作を継続する。ベーンポンプ18の始動直後には流体14の温度が低いため、流体14の粘性抵抗力が高くなり、その分だけ流体14をポンプ室36a(b)に吸入しにくい傾向がある。そこで、始動モードの実行時には、通常動作時の回転数(N1)よりも大きい回転数(N2)でモータ22を回転駆動させることで、流体14の吸入が促進される。
 時間t=t2において、流体14が、ベーンポンプ18の吸入口42a(b)を介してポンプ室36a(b)に吸入される。高速回転中のベーン40に流体圧力が作用することで、モータ22の駆動トルクが急激に増加する場合がある。例えば、時間t=t3にて駆動トルクが閾値Tq3に達し、始動モードの終了条件を満たすようになる。
 時間t=t3において、コントローラ26は、始動モードから通常モードへの移行に伴って、回転数指令値をN1からN1に切り替えて設定する。そうすると、回転数実測値は、時間が経過するにつれて減少しながらN1に徐々に近づく。また、駆動トルクは、回転数の低下に追従するように、Tq3の近傍値をピークとして徐々に減少する。
 時間t=t4において、回転数実測値が目標値N1に達するとともに、駆動トルクがTq1に達する。その後、回転数実測値が略一定に維持されることで、ベーンポンプ18は、定量ポンプとしての機能を発揮する。
 図4は、ポンプ制御装置20の動作を示す第二のタイムチャートである。本図では、[1]モータ22の駆動トルク(単位:N・m)及び[2]回転数指令値(単位:rpm)の時間変化をそれぞれ示している。なお、モータ22の回転数実測値については、図3と同様の挙動を示すため、チャートの表記を省略する。
 時間t=0において、コントローラ26は、始動モードの開始に伴い、回転数指令値をN2(>N1)に設定する。そうすると、駆動トルクは、時間が経過するにつれて徐々に増加する。
 時間t=t1において、回転数実測値が指令値N2に達するとともに、駆動トルクがTq2に達する。そして、回転数実測値が略一定に維持されることで、ベーンポンプ18は、流体14の吸入動作を継続する。
 時間t=t2において、流体14が、ベーンポンプ18の吸入口42a(b)を介してポンプ室36a(b)に吸入される。その後、流体圧力の作用によってモータ22の駆動トルクが増加するが、図3の場合とは異なり、駆動トルクがTq3に達しない場合を想定する。この場合、基準時点(ここでは、始動時点t=0)から実行時間ΔTだけ経過することで、始動モードの終了条件を満たすようになる。
 時間t=t5において、コントローラ26は、始動モードから通常モードへの移行に伴って、回転数指令値をN2からN1に切り替えて設定する。そうすると、回転数実測値は、時間が経過するにつれて減少しながらN1に徐々に近づく。また、駆動トルクは、回転数の低下に追従するように徐々に減少する。
 時間t=t6において、回転数実測値が目標値N1に達するとともに、駆動トルクがTq1に達する。その後、回転数実測値が略一定に維持されることで、ベーンポンプ18は、定量ポンプとしての機能を発揮する。
<回転制御の変形例>
 続いて、コントローラ26による回転制御の変形例について、図5を参照しながら説明する。
 図5は、変形例の回転制御におけるタイムチャートである。本図では、モータ22の回転数指令値(単位:rpm)の時間変化を示している。時間t=0において、コントローラ26は、始動モードの開始に伴い、回転数指令値をN1に設定する。そして、コントローラ26は、N1からN2に達するまで、経過時間に比例して値が大きくなるように回転数指令値を変更する。時間t=t7において、コントローラ26は、始動モードから通常モードへの移行に伴い、N2からN1に達するまで、経過時間に比例して値が小さくなるように回転数指令値を変更する。時間t≧t8において、コントローラ26は、N1に変更された回転数指令値をそのまま維持する。
 このように、コントローラ26は、始動モード又は通常モードの実行中に、回転数指令値を連続的又は段階的に変更してもよい。この制御方法によっても、ベーンポンプ18を円滑に始動させることができる。
[ポンプ制御装置20による効果]
 以上のように、ポンプシステム10は、ベーンポンプ18と、ベーンポンプ18に対する駆動制御を行うポンプ制御装置20と、を含んで構成される。ベーンポンプ18は、流体14を吸入口42a,42bからポンプ室36a,36bに吸入し、ロータ34の回転運動を通じてポンプ室36a,36bの容量を圧縮することで、ポンプ室36a,36b内の流体14を吐出口44a,44bから吐出可能に構成される。
 そして、ポンプ制御装置20は、ベーンポンプ18のロータ34に接続されるモータ22と、モータ22の回転制御を行うコントローラ26と、を備える。コントローラ26は、ベーンポンプ18の始動時に、モータ22の回転速度(N)が目標値(N1)よりも大きくなるようにモータ22を駆動する第一制御を行い、第一制御の実行中に終了条件が成立した場合に、モータ22の回転速度を目標値(N1)まで下げて維持するようにモータ22を駆動する第二制御を行う。
 また、上記した回転制御を実現するため、具体的には、コントローラ26は、制御変数がモータ22の回転速度である場合、第一制御の実行中に指令値を目標値(N1)よりも大きい値に設定し、終了条件が成立した場合に指令値を目標値(N2)に変更する。
 このように、通常動作時の回転速度(N1)よりも大きい回転速度(N2)でモータ22を回転駆動させることで、流体14の吸入が促進される。そして、ポンプ室36a,36b内に流体14が吸入されたタイミングを見越して終了条件を設定することで、モータ22が過剰なトルク負荷を受ける前に、モータ22の回転速度が下がる。つまり、モータ22の回転制御を工夫することで、低温時であってもベーンポンプ18を円滑に始動させることができる。
 また、終了条件は、モータ22に作用する駆動トルクの推定値又は測定値が、閾値を上回ったことであってもよい。これにより、駆動トルクに基づく適切な終了条件を定めることができる。
 また、終了条件は、ベーンポンプ18の始動時点以後の時点である基準時点から所定の実行期間が経過したことであってもよい。これにより、駆動トルクを用いることなく、基準時点からの経過時間に基づく適切な終了条件を定めることができる。
 また、ポンプシステム10が、ベーンポンプ18の吸入口42a,42bに接続されて流体14を貯留するタンク16をさらに備える場合、タンク16は、ベーンポンプ18よりも上方の高さ位置に設けられてもよい。この配置関係下では、流体14の重力作用によってより大きな吸引力が必要とされるため、回転速度を一時的に高くする効果がより顕著に現われる。
[変形例]
 なお、本発明は、上記した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。あるいは、技術的に矛盾が生じない範囲で各々の構成を任意に組み合わせてもよい。
 上記した実施形態では、いわゆる平衡型のベーンポンプ18(図2)を例に挙げて説明したが、電磁ポンプの種類はこれに限られない。例えば、ベーンポンプは、ロータ34に作用する半径方向の圧力が釣り合っていない「非平衡型」であってもよい。
[符号の説明]
 10…ポンプシステム、14…流体、16…タンク、18…ベーンポンプ、20…ポンプ制御装置、22…モータ、24…センサ、26…コントローラ、34…ロータ、36a,36b…ポンプ室、42a,42b…吸入口、44a,44b…吐出口

Claims (6)

  1.  流体を吸入口からポンプ室に吸入し、ロータの回転運動を通じて前記ポンプ室の容量を圧縮することで、前記ポンプ室内の流体を吐出口から吐出可能に構成されるベーンポンプの駆動制御を行うポンプ制御装置であって、
     前記ベーンポンプのロータに接続されるモータと、
     前記モータの回転制御を行うコントローラと、
     を備え、
     前記コントローラは、
     前記ベーンポンプの始動時に、前記モータの回転速度が目標値よりも大きくなるように前記モータを駆動する第一制御を行い、
     前記第一制御の実行中に終了条件が成立した場合に、前記モータの回転速度を前記目標値まで下げて維持するように前記モータを駆動する第二制御を行う、ポンプ制御装置。
  2.  前記終了条件は、前記モータに作用する駆動トルクの推定値又は測定値が、閾値を上回ったことである、
     請求項1に記載のポンプ制御装置。
  3.  前記終了条件は、前記ベーンポンプの始動時点以後の時点である基準時点から所定の実行期間が経過したことである、
     請求項1に記載のポンプ制御装置。
  4.  前記コントローラは、制御変数が前記モータの回転速度である場合、前記第一制御の実行中に指令値を前記目標値よりも大きい値に設定し、前記終了条件が成立した場合に指令値を前記目標値に変更する、
     請求項1~3のいずれか1項に記載のポンプ制御装置。
  5.  吸入口から流体をポンプ室に吸入し、ロータの回転運動を通じて前記ポンプ室の容量を圧縮することで、前記ポンプ室内の流体を吐出口から吐出可能に構成されるベーンポンプと、
     請求項1~4のいずれか1項に記載のポンプ制御装置と、
     を備える、ポンプシステム。
  6.  前記ベーンポンプの吸入口に接続されて前記流体を貯留するタンクをさらに備え、
     前記タンクは、前記ベーンポンプよりも下方の高さ位置に設けられる、
     請求項5に記載のポンプシステム。
PCT/JP2022/003504 2021-04-22 2022-01-31 ポンプ制御装置及びポンプシステム WO2022224528A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072306 2021-04-22
JP2021-072306 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022224528A1 true WO2022224528A1 (ja) 2022-10-27

Family

ID=83722245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003504 WO2022224528A1 (ja) 2021-04-22 2022-01-31 ポンプ制御装置及びポンプシステム

Country Status (1)

Country Link
WO (1) WO2022224528A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213594A (ja) * 2001-01-17 2002-07-31 Toyota Motor Corp 車両用自動変速機の油圧制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213594A (ja) * 2001-01-17 2002-07-31 Toyota Motor Corp 車両用自動変速機の油圧制御装置

Similar Documents

Publication Publication Date Title
US8690544B2 (en) Oil pump
CA2790422C (en) Method and arrangement for controlling the lubrication of a gear system
EP1705378A2 (en) Electric pump with pressure control
JP2005511959A (ja) 自吸式のハイブリッドポンプ
KR100202121B1 (ko) 냉동사이클용 압축기의 제어장치
JP2012207637A (ja) 電動オイルポンプ
JP2002310077A (ja) 低圧縮比及び圧力変動対応のスクリュー圧縮装置及びその運転方法
CN110520624A (zh) 旋转式压缩机
WO2022224528A1 (ja) ポンプ制御装置及びポンプシステム
WO2021229797A1 (ja) スクリュー圧縮機
US10648468B2 (en) Adjustable vane pump
JP2012097645A (ja) 圧縮機
KR101136717B1 (ko) 오일펌프
JP7381886B2 (ja) 電動ベーンポンプシステム
JP2016133035A (ja) ポンプの制御装置
JP6618663B1 (ja) すべり軸受構造及びスクロール圧縮機
JP2010248978A (ja) 一軸偏心ねじポンプシステム、ステータ劣化状態判定装置およびステータ劣化状態判定方法
JP2010031729A (ja) スクロール圧縮機
KR101451660B1 (ko) 밀폐형 압축기의 마찰 저감 장치
JP2867825B2 (ja) 容積ポンプの制御装置
CN113574279B (zh) 螺杆压缩机
KR102154115B1 (ko) 가변 오일펌프
CN111033043B (zh) 叶片泵
JP2022093844A (ja) ポンプ制御装置及びポンプ制御方法
JP2003027912A (ja) 複合ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791313

Country of ref document: EP

Kind code of ref document: A1