WO2022224491A1 - Supercharger - Google Patents

Supercharger Download PDF

Info

Publication number
WO2022224491A1
WO2022224491A1 PCT/JP2021/046602 JP2021046602W WO2022224491A1 WO 2022224491 A1 WO2022224491 A1 WO 2022224491A1 JP 2021046602 W JP2021046602 W JP 2021046602W WO 2022224491 A1 WO2022224491 A1 WO 2022224491A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
bearing
oil
oil groove
central axis
Prior art date
Application number
PCT/JP2021/046602
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 田中
朗弘 上田
英之 小島
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022224491A1 publication Critical patent/WO2022224491A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls

Definitions

  • the supercharger may have rolling bearings that support the shaft.
  • the turbocharger of Patent Document 1 includes a pair of rolling bearings.
  • the side surface of the outer ring of one rolling bearing faces the side wall of the housing.
  • a side wall of the housing has an oil supply groove.
  • the oil groove extends radially of the shaft and is inclined with respect to a vertical axis extending upward from the shaft.
  • the turbocharger of Patent Document 2 includes a pair of rolling bearings.
  • the side surface of the outer ring of one rolling bearing faces the damper retainer.
  • the damper stop has a generally toroidal shape.
  • the lower portion of the damper stop has a notch and is circumferentially discontinuous.
  • the damper restrainer has an oil supply groove.
  • the lubricating groove includes a generally arcuate groove. The arcuate groove is spaced from the inner peripheral edge of the damper stop by a projection.
  • An object of the present disclosure is to provide a turbocharger that can efficiently guide oil in the discharge direction in consideration of the above problems.
  • a turbocharger includes a rolling bearing having a shaft, an inner ring attached to the shaft, and an outer ring arranged around the inner ring;
  • a regulating member including opposing end faces, the end faces including guide oil grooves extending inwardly from the outside of the side surface of the outer ring when viewed from the direction of the central axis of the shaft, the entire guide oil grooves extending along the central axis of the shaft.
  • a regulating member positioned within a range of more than 0 degrees and less than 90 degrees in the rotational direction of the shaft with respect to a vertical axis extending upward from the shaft.
  • the turbocharger may further include a housing including a bearing hole that accommodates the rolling bearing, and a compressor impeller provided on the shaft outside the bearing hole, and the restricting member is positioned between the bearing hole and the compressor impeller. may be placed.
  • a groove which is a circumferential oil groove extending along the circumferential direction of the shaft, and a projection located inside the circumferential oil groove in the radial direction of the shaft and protruding in the direction of the central axis of the shaft. may contain.
  • the turbocharger may further include a housing including a bearing hole that accommodates the rolling bearing, and a turbine impeller that is provided on the shaft outside the bearing hole, and the regulating member is positioned between the bearing hole and the turbine impeller. may be placed.
  • the guide oil groove may have a central axis extending along the radial direction of the shaft, and the central axis of the guide oil groove may be positioned at 45 degrees to the vertical axis in the direction of rotation of the shaft. good.
  • oil can be efficiently guided in the discharge direction.
  • FIG. 1 is a schematic cross-sectional view showing a turbocharger according to an embodiment.
  • FIG. 2 is a schematic enlarged cross-sectional view of part A in FIG.
  • FIG. 3 is a schematic plan view showing a bearing retainer plate.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a schematic plan view showing a bearing retainer plate according to another embodiment.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a graph showing evaluation results of oil leakage.
  • FIG. 1 is a schematic cross-sectional view showing the turbocharger TC according to the embodiment.
  • the supercharger TC is applied to an engine.
  • the supercharger TC includes a housing 1 , a shaft 7 , a turbine impeller 8 and a compressor impeller 9 .
  • central axial, radial and circumferential directions of the shaft 7 are simply referred to as “central axial”, “radial” and “circumferential” respectively, unless otherwise indicated. may be referred to as “direction”.
  • the housing 1 includes a bearing housing 2, a turbine housing 3 and a compressor housing 4.
  • One end of the bearing housing 2 is connected to the turbine housing 3 in the central axis direction by a fastening mechanism 21a such as a G coupling.
  • a fastening mechanism 21a such as a G coupling.
  • the other end of the bearing housing 2 is connected to the compressor housing 4 by a fastening mechanism 21b such as a fastening bolt.
  • the bearing housing 2 includes bearing holes 22 .
  • the bearing hole 22 extends in the center axis direction inside the bearing housing 2 .
  • One end of the bearing hole 22 is defined by a side wall 30 of the bearing housing 2 in the central axis direction.
  • the side wall 30 is positioned between the turbine impeller 8 and the bearing hole 22 in the central axis direction.
  • the other end of the bearing hole 22 is defined by a bearing retainer plate 40 in the central axis direction.
  • the bearing retainer plate 40 is positioned between the compressor impeller 9 and the bearing hole 22 in the central axis direction.
  • the side wall 30 protrudes radially inward with respect to the inner peripheral surface of the bearing hole 22 .
  • Side wall 30 is integral with bearing housing 2 .
  • sidewall 30 may be separate from bearing housing 2 or attached to bearing housing 2 .
  • Sidewall 30 includes an end surface 31 .
  • the end face 31 defines one end of the bearing hole 22 in the central axis direction. Details of the side wall 30 will be described later.
  • the bearing retainer plate 40 is separate from the bearing housing 2 and attached to the surface 24 of the bearing housing 2 .
  • Surface 24 extends perpendicular to the inner peripheral surface of bearing hole 22 .
  • the bearing retainer plate 40 is fitted to the bearing housing 2 .
  • Bearing retainer plate 40 includes a first end surface 41 .
  • the first end surface 41 defines the other end of the bearing hole 22 in the center axis direction. The details of the bearing retainer plate 40 will be described later.
  • the bearing hole 22 accommodates a pair of rolling bearings 50,60.
  • Rolling bearings 50 and 60 rotatably support shaft 7 .
  • the pair of rolling bearings 50, 60 are separated from each other in the central axis direction.
  • the rolling bearing adjacent sidewall 30 may be referred to as primary bearing 50 .
  • the rolling bearing adjacent bearing retainer plate 40 may be referred to as secondary bearing 60 .
  • a turbine impeller 8 is provided at a first end of the shaft 7 in the central axis direction.
  • the turbine impeller 8 is positioned outside the bearing hole 22 in the central axis direction.
  • a turbine impeller 8 is rotatably housed in the turbine housing 3 .
  • a compressor impeller 9 is provided at a second end of the shaft 7 opposite to the first end in the central axis direction.
  • the compressor impeller 9 is positioned outside the bearing hole 22 in the central axis direction.
  • a compressor impeller 9 is rotatably housed in the compressor housing 4 .
  • the compressor housing 4 includes an air intake 10 at the end opposite to the bearing housing 2 in the central axis direction.
  • the intake port 10 is connected to an air cleaner (not shown).
  • Bearing housing 2 and compressor housing 4 define a diffuser flow path 11 therebetween.
  • the diffuser flow path 11 expands from the inner side to the outer side in the radial direction.
  • the diffuser channel 11 has an annular shape.
  • the diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 .
  • the compressor housing 4 includes a compressor scroll flow path 12.
  • the compressor scroll passage 12 is located radially outside the compressor impeller 9 .
  • the compressor scroll channel 12 communicates with the diffuser channel 11 .
  • the compressor scroll flow path 12 communicates with an intake port of an engine (not shown).
  • an engine not shown.
  • the intake air is accelerated by centrifugal force while passing through the spaces between the blades of the compressor impeller 9 .
  • the accelerated air is pressurized in diffuser passage 11 and compressor scroll passage 12 .
  • the pressurized air flows out from a discharge port (not shown) and is led to the intake port of the engine.
  • the turbine housing 3 includes a discharge port 13 at the end opposite to the bearing housing 2 in the center axis direction.
  • the discharge port 13 is connected to an exhaust gas purification device (not shown).
  • Turbine housing 3 includes flowpath 14 and turbine scroll flowpath 15 .
  • the turbine scroll passage 15 is located radially outside the turbine impeller 8 .
  • the flowpath 14 is located between the turbine impeller 8 and the turbine scroll flowpath 15 .
  • the turbine scroll passage 15 communicates with a gas inlet (not shown).
  • the gas inlet receives exhaust gas discharged from an exhaust manifold of an engine (not shown).
  • Turbine scroll channel 15 communicates with channel 14 .
  • the flow path 14 communicates with the discharge port 13 via the turbine impeller 8 .
  • Exhaust gas is led from the gas inlet to the turbine scroll passage 15 and then to the discharge port 13 via the passage 14 and the turbine impeller 8 .
  • the exhaust gases rotate the turbine impeller 8 while passing through the spaces between the blades of the turbine impeller 8 .
  • the rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As the compressor impeller 9 rotates, the air is pressurized as described above. Thus, pressurized air is directed to the intake of the engine.
  • FIG. 2 is a schematic enlarged cross-sectional view of part A in FIG.
  • Bearing housing 2 includes a main oil passage 23 .
  • the main oil passage 23 extends in the central axis direction.
  • the main oil passage 23 extends parallel to the bearing hole 22 .
  • the main oil passage 23 is positioned above the bearing hole 22 .
  • the bearing hole 22 and the main oil passage 23 open onto the surface 24 of the bearing housing 2 .
  • the surface 24 is fitted with a bearing retainer plate 40 .
  • the bearing restraining plate 40 closes the opening of the main oil passage 23 .
  • the main oil passage 23 communicates with the through hole 25 .
  • a through hole 25 is formed in the bearing housing 2 .
  • the through hole 25 extends from the outer wall of the bearing housing 2 to the main oil passage 23 .
  • Oil is supplied to the main oil passage 23 from an oil pump (not shown) through a through hole 25 .
  • the bearing housing 2 includes a first oil passage 26 and a second oil passage 27.
  • Each of first oil passage 26 and second oil passage 27 opens into main oil passage 23 .
  • each of the first oil passage 26 and the second oil passage 27 opens into the bearing hole 22 .
  • Each of first oil passage 26 and second oil passage 27 connects main oil passage 23 and bearing hole 22 .
  • the first oil passage 26 is provided at a position corresponding to the first bearing 50 in the central axis direction and opens toward the first bearing 50 .
  • the second oil passage 27 is provided at a position corresponding to the second bearing 60 in the central axis direction and opens toward the second bearing 60 .
  • the bearing housing 2 includes a lower wall 29.
  • the lower wall 29 defines the lower portion of the bearing hole 22 in the radial direction.
  • the lower wall 29 includes an oil drain hole 29a.
  • the oil drain hole 29a penetrates the lower wall 29 in the vertical direction.
  • the oil drain hole 29a is positioned between the first oil passage 26 and the second oil passage 27 in the central axis direction. That is, the oil drain hole 29a is located between the first bearing 50 and the second bearing 60 in the center axis direction.
  • the shaft 7 includes a large diameter portion 7a, a medium diameter portion 7b and a small diameter portion 7c.
  • the medium-diameter portion 7b is located between the side wall 30 and the bearing retainer plate 40 in the central axis direction.
  • the large-diameter portion 7a is positioned between the first end portion of the shaft 7 and the medium-diameter portion 7b in the central axis direction.
  • the small diameter portion 7c is located between the second end of the shaft 7 and the medium diameter portion 7b in the central axis direction.
  • the outer diameter of the medium diameter portion 7b is smaller than the outer diameter of the large diameter portion 7a.
  • the outer diameter of the small diameter portion 7c is smaller than the outer diameter of the medium diameter portion 7b.
  • the shaft 7 includes a first step surface 7d and a second step surface 7e.
  • the first stepped surface 7d is located between the large diameter portion 7a and the medium diameter portion 7b in the central axis direction.
  • the first step surface 7d radially extends from the outer peripheral surface of the large diameter portion 7a to the outer peripheral surface of the intermediate diameter portion 7b.
  • the second stepped surface 7e is positioned between the medium diameter portion 7b and the small diameter portion 7c in the central axis direction.
  • the second step surface 7e radially extends from the outer peripheral surface of the medium diameter portion 7b to the outer peripheral surface of the small diameter portion 7c.
  • the first bearing 50 includes an inner ring 51, an outer ring 52, multiple rolling elements 53, and a retainer 54.
  • the inner ring 51 is attached to the outer peripheral surface of the medium diameter portion 7 b of the shaft 7 .
  • the inner ring 51 rotates together with the shaft 7 .
  • the outer ring 52 is provided radially outside the inner ring 51 .
  • the outer ring 52 faces the inner peripheral surface of the bearing hole 22 .
  • a plurality of rolling elements 53 are arranged between the inner ring 51 and the outer ring 52 .
  • the retainer 54 retains the plurality of rolling elements 53 .
  • the second bearing 60 includes an inner ring 61, an outer ring 62, multiple rolling elements 63, and a retainer 64.
  • the inner ring 61 is attached to the outer peripheral surface of the medium diameter portion 7 b of the shaft 7 .
  • the inner ring 61 rotates together with the shaft 7 .
  • the outer ring 62 is provided radially outside the inner ring 61 .
  • the outer ring 62 faces the inner peripheral surface of the bearing hole 22 .
  • a plurality of rolling elements 63 are arranged between the inner ring 61 and the outer ring 62 .
  • a retainer 64 retains a plurality of rolling elements 63 .
  • the side surfaces 51a, 51b, 61a, 61b of the inner ring 51 of the first bearing 50 and the inner ring 61 of the second bearing 60 the side surfaces facing each other in the direction of the central axis are referred to as “inner side surfaces” 51b, 61b. and the side opposite the inner side 51b, 61b may be referred to as the “outer side” 51a, 61a.
  • the side surfaces 52a, 52b, 62a, and 62b of the outer ring 52 of the first bearing 50 and the outer ring 62 of the second bearing 60 the side surfaces facing each other in the direction of the central axis are referred to as the “inner side surface” 52b, 62b, and the side opposite the inner surface 52b, 62b may be referred to as the “outer surface” 52a, 62a.
  • the outer side surface 51a of the inner ring 51 of the first bearing 50 contacts the first stepped surface 7d of the shaft 7 in the central axis direction. Further, the outer surface 52a of the outer ring 52 of the first bearing 50 faces the end surface 31 of the side wall 30 in the center axis direction.
  • a spacer 70 is provided between the inner ring 51 and the inner ring 61 in the middle diameter portion 7 b of the shaft 7 .
  • Spacer 70 has a generally cylindrical shape.
  • the shaft 7 is inserted into the spacer 70 .
  • a spring and spring receiver may be provided instead of spacer 70.
  • the inner side surface 51b of the inner ring 51 of the first bearing 50 contacts one end of the spacer 70 in the center axis direction.
  • the inner side surface 61b of the inner ring 61 of the second bearing 60 contacts the other end of the spacer 70 in the center axis direction.
  • An oil slinger 80 is attached to the small diameter portion 7c of the shaft 7.
  • the oil slinger 80 scatters the oil radially outward.
  • the oil slinger member 80 is provided radially inside the bearing retainer plate 40 .
  • the oil slinger member 80 and the bearing retainer plate 40 are spaced apart in the radial direction.
  • the outer side surface 61a of the inner ring 61 of the second bearing 60 contacts the oil slinger member 80 in the central axis direction. Further, the outer side surface 62a of the outer ring 62 of the second bearing 60 faces the bearing restraining plate 40 in the center axis direction.
  • the first bearing 50, the spacer 70, the second bearing 60, the oil slinger member 80, and the compressor impeller 9 are attached to the shaft 7 in this order from the end of the shaft 7 on the compressor impeller 9 side.
  • a tightening bolt attached to the second end of the shaft 7 applies a compressive stress to these members in the central axis direction, thereby applying an axial force to the shaft 7 .
  • the inner ring 51 of the first bearing 50 , the spacer 70 , the inner ring 61 of the second bearing 60 , the oil slinger member 80 and the compressor impeller 9 rotate integrally with the shaft 7 .
  • the outer peripheral surface 52c of the outer ring 52 of the first bearing 50 includes a notch 55.
  • the notch 55 has an annular shape.
  • the notch 55 adjoins the outer surface 52a.
  • the outer diameter of the outer surface 52a is smaller than the diameter of the outer peripheral surface 52c by the length of the notch 55 in the radial direction.
  • the outer peripheral surface 62c of the outer ring 62 of the second bearing 60 includes a notch 65.
  • the notch 65 has an annular shape.
  • the notch 65 is adjacent to the outer surface 62a.
  • the outer diameter of the outer surface 62a is smaller than the diameter of the outer peripheral surface 62c by the length of the notch 65 in the radial direction.
  • the outer ring 52 of the first bearing 50 presses the side wall 30 . Therefore, the side wall 30 functions as a restricting member that restricts axial movement of the outer ring 52 . Further, when a thrust load directed toward the compressor impeller 9 acts on the shaft 7 , the outer ring 62 of the second bearing 60 presses the bearing restraining plate 40 . Therefore, the bearing retainer plate 40 functions as a restricting member that restricts axial movement of the outer ring 62 . According to the configuration as described above, the movement of the shaft 7 due to the thrust load is stopped by the side wall 30 and the bearing restraining plate 40 .
  • the supercharger TC does not have rotation stoppers for the outer rings 52 and 62 .
  • the outer ring 52 is circumferentially rotatable with respect to the bearing housing 2 when not pressing against the side wall 30 .
  • the outer ring 62 is circumferentially rotatable with respect to the bearing housing 2 when the bearing retaining plate 40 is not pressed.
  • the inner rings 51 and 61 rotate together with the shaft 7 .
  • the rolling elements 53 and 63 rotate as the inner rings 51 and 61 rotate.
  • the rolling elements 53, 63 move in the circumferential direction.
  • the outer rings 52, 62 rotate in the circumferential direction as the rolling elements 53, 63 rotate and move, or as the oil flows.
  • the rotation speed of the outer ring 52 is slower than the rotation speed of the inner ring 51 .
  • the pair of rolling bearings 50 and 60 are face-to-face. Therefore, no spacer is required between the outer ring 52 and the outer ring 62 . Therefore, no preload is applied to the outer rings 52,62. Therefore, the outer rings 52 and 62 are easily rotated with respect to the bearing housing 2 .
  • FIG. 3 is a schematic plan view showing the bearing retainer plate 40, and the bearing retainer plate 40 is viewed from the bearing hole 22 in the central axis direction. That is, FIG. 3 is obtained along line III-III in FIG.
  • the inner diameter of bearing hole 22 is indicated by a dashed line.
  • the outer diameter of the outer side surface 62a of the second bearing 60 is indicated by a dashed line.
  • Arrow R indicates the direction of rotation of shaft 7 .
  • a symbol Z indicates a vertical axis extending upward from the center axis of the shaft 7 .
  • the bearing retainer plate 40 has a generally annular shape or disk shape.
  • the bearing retainer plate 40 includes an inner peripheral edge 43 and an outer peripheral edge 44 .
  • the diameter of the inner peripheral edge 43 is smaller than the innermost diameter of the outer ring 62 of the second bearing 60 and larger than the outer diameter of the oil slinger member 80 .
  • the diameter of the outer peripheral edge 44 is larger than the inner diameter of the bearing hole 22 .
  • the bearing retainer plate 40 includes a first end surface 41 and a second end surface 42 in the center axis direction. As described above, the first end face 41 defines the end of the bearing hole 22 in the central axis direction. The first end surface 41 faces the outer side surface 62a of the outer ring 62 in the central axis direction. The second end face 42 is located on the opposite side of the first end face 41 .
  • the first end surface 41 includes a guide oil groove 45, a circumferential oil groove 46, and an oil drain surface 47.
  • the guide oil groove 45 connects the gap between the outer ring 62 and the bearing hole 22 and the circumferential oil groove 46 and guides the oil in this gap to the circumferential oil groove 46 .
  • the guide oil groove 45 extends radially inward from the outside of the outer surface 62a of the outer ring 62 when viewed from the center axis direction.
  • the guide oil groove 45 has a generally linear shape along the radial direction.
  • the guide oil groove 45 has a central axis 45a extending in the radial direction.
  • the guide oil groove 45 does not have to extend radially as long as it extends inward from the outside of the side surface 62a. That is, in other embodiments, the central axis 45a may not extend toward the central axis of the shaft 7.
  • the guide oil groove 45 extends to the circumferential oil groove 46 and is connected to the circumferential oil groove 46 .
  • the guide oil groove 45 including the radially outermost portion and the innermost portion, is positioned in a range Ar1 of greater than 0 degrees and less than 90 degrees in the rotational direction R with respect to the vertical axis Z. .
  • the cross-hatched area indicates range Ar1.
  • the central axis 45a is positioned at 45 degrees in the rotation direction R with respect to the vertical axis Z.
  • the angle ⁇ between the central axis 45a and the vertical axis Z is 45 degrees.
  • the angle ⁇ can be greater than 0 degrees and less than 90 degrees as long as the entire guide oil groove 45 is positioned within the range Ar1.
  • the guide oil groove 45 may have various cross-sectional shapes such as a semicircular shape, a triangular shape, or a square shape. Dimensions such as the width and depth of the guide oil groove 45 are determined according to factors such as the flow rate of the oil supplied to the second bearing 60, for example.
  • the circumferential oil groove 46 receives oil from the guide oil groove 45 and guides the received oil in the circumferential direction.
  • the circumferential oil groove 46 is positioned inside the guide oil groove 45 in the radial direction.
  • the circumferential oil groove 46 is connected to the guide oil groove 45 .
  • the circumferential oil groove 46 extends along the circumferential direction.
  • the circumferential oil groove 46 is continuous in the entire circumferential direction and has an annular shape.
  • the circumferential oil groove 46 is formed continuously with respect to the inner peripheral edge 43 .
  • the circumferential oil groove 46 is integrally formed with the oil drain surface 47 at the lower portion.
  • the outer diameter of the circumferential oil groove 46 is the same as or substantially the same as the inner diameter of the outer surface 62a of the outer ring 62. In other embodiments, the outer diameter of the circumferential oil groove 46 may be smaller or larger than the inner diameter of the outer surface 62a.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • the depth d1 of the circumferential oil groove 46 is deeper than the depth d2 of the guide oil groove 45.
  • the depth d1 of the circumferential oil groove 46 may be the same as the depth d2 of the guide oil groove 45.
  • the circumferential oil groove 46 may have various cross-sectional shapes such as a generally rectangular shape. Dimensions such as the width and depth of the circumferential oil groove 46 are determined according to factors such as the flow rate of oil supplied to the second bearing 60, for example.
  • the oil drain surface 47 is provided in the area below the first end surface 41 .
  • the oil drain surface 47 guides oil below the shaft 7 toward the lower wall 29 .
  • the oil drain surface 47 is formed continuously in the circumferential oil groove 46 . Therefore, the depth of the oil drain surface 47 is the same as the depth d2 of the circumferential oil groove 46 .
  • the oil drain surface 47 has a sector shape coaxial with the shaft 7 when viewed from the central axis direction.
  • the oil drain surface 47 may be provided only within a range of 90 degrees or more and 270 degrees or less with respect to the vertical axis Z in the rotational direction. That is, the oil drain surface 47 can be provided only on the lower half of the bearing retainer plate 40 .
  • FIG. 5 is a schematic cross-sectional view taken along line V-V in FIG. 2, looking at the side wall 30 of the bearing housing 2 from the bearing hole 22 in the direction of the central axis. In FIG. 5 only the bearing housing 2 is shown for better understanding.
  • the outer diameter of the outer side surface 52a of the first bearing 50 is indicated by a dashed line.
  • Arrow R indicates the direction of rotation of shaft 7 .
  • a symbol Z indicates a vertical axis extending upward from the center axis of the shaft 7 .
  • the side wall 30 includes an end surface 31 .
  • the end surface 31 is continuously formed in the circumferential direction and has a generally annular shape. In other embodiments, part of the end surface 31 may be cut out.
  • the end surface 31 faces the outer side surface 52a of the outer ring 52 in the central axis direction.
  • the inner diameter of the end surface 31 is smaller than the inner diameter of the outer surface 52 a and larger than the diameter of the large diameter portion 7 a of the shaft 7 .
  • the end surface 31 includes a guide oil groove 32.
  • the guide oil groove 32 connects the gap between the outer ring 52 and the bearing hole 22 and the space around the shaft 7 and guides the oil in this gap to the space around the shaft 7 .
  • the guide oil groove 32 extends radially inward from the outside of the outer surface 52a of the outer ring 52 when viewed from the center axis direction.
  • the guide oil groove 32 has a central axis 32a extending in the radial direction.
  • the guide oil groove 32 does not have to extend radially as long as it extends inward from the outside of the side surface 52a. That is, in other embodiments, the central axis 32a may not extend toward the central axis of the shaft 7.
  • the guide oil groove 32 including the radially outermost portion and the innermost portion, is positioned in a range Ar2 of greater than 0 degrees and less than 90 degrees in the rotational direction R with respect to the vertical axis Z. .
  • the cross-hatched area indicates range Ar2.
  • the center axis 32a is positioned at 45 degrees in the rotation direction R with respect to the vertical axis Z.
  • the angle ⁇ between the central axis 32a and the vertical axis Z is 45 degrees.
  • the angle ⁇ can be greater than 0 degrees and less than 90 degrees as long as the entire guide oil groove 32 is positioned within the range Ar2.
  • the guide oil groove 32 may have various cross-sectional shapes such as a generally rectangular shape or an arc shape. Dimensions such as the width and depth of the guide oil groove 32 are determined according to factors such as the flow rate of the oil supplied to the first bearing 50, for example.
  • the turbine impeller 8 receives high-temperature exhaust gas, so components around the first bearing 50 are exposed to high temperatures. Therefore, the size of the guide oil groove 32 is larger than the size of the guide oil groove 45 of the bearing retainer plate 40 to provide a higher oil flow rate.
  • the oil passes through the guide oil groove 45 of the bearing retainer plate 40 and flows around the shaft 7 . supplied to the space.
  • the guide oil groove 45 is generally positioned in the range Ar1 of greater than 0 degrees and less than 90 degrees with respect to the vertical axis Z in the rotational direction R. Oil is therefore supplied to the space around the shaft 7 in the range Ar1. In this case, both gravity and rotational forces from shaft 7 act downward on the oil. Therefore, the oil quickly flows downward toward the lower wall 29 including the oil drain hole 29a. Therefore, the oil can be efficiently guided in the discharge direction.
  • the gap between the bearing retainer plate 40 near the compressor impeller 9 and the oil slinger member 80 is the space between the side wall 30 near the turbine impeller 8 and the large diameter portion 7 a of the shaft 7 . smaller than Around such a small gap between the bearing restraining plate 40 and the oil slinger member 80, the oil is efficiently guided in the discharge direction, so oil leakage into the gap is reduced. For example, when the distance between the bearing hole 22 and the compressor impeller 9 is shortened for size reduction, oil leakage from the bearing hole 22 to the accommodation space of the compressor impeller 9 may become a problem. According to the configuration as described above, such oil leakage can be reduced.
  • the guide oil groove 32 is positioned in the range Ar2, which is greater than 0 degrees and less than 90 degrees with respect to the vertical axis Z, in the rotational direction R as a whole. Oil is therefore supplied to the space around the shaft 7 in the range Ar2. In this case, both gravity and rotational forces from shaft 7 act downward on the oil. Therefore, the oil quickly flows downward toward the lower wall 29 including the oil drain hole 29a. Therefore, the oil can be efficiently guided in the discharge direction.
  • the turbocharger TC as described above includes a second bearing 60 having a shaft 7, an inner ring 61 attached to the shaft 7, and an outer ring 62 arranged around the inner ring 61, and an outer surface 62a of the outer ring 62.
  • a bearing retainer plate 40 including first end faces 41 facing each other, the first end faces 41 forming guide oil grooves 45 extending inwardly from the outside of the outer surface 62 a of the outer ring 62 when viewed from the direction of the central axis of the shaft 7 . and the entire guide oil groove 45 is positioned within a range Ar1 greater than 0 degrees and less than 90 degrees in the rotational direction R of the shaft 7 with respect to the vertical axis Z extending upward from the central axis of the shaft 7.
  • both gravitational force and rotational force act downward on the oil supplied to the space around the shaft 7 through the guide oil groove 45 . Therefore, the oil quickly flows downward.
  • the oil drain hole 29a is provided in the lower part of the supercharger TC. Therefore, the oil can be efficiently guided in the discharge direction.
  • the supercharger TC includes a bearing housing 2 including a bearing hole 22 that accommodates the second bearing 60, and a compressor impeller 9 that is provided on the shaft 7 outside the bearing hole 22. It is arranged between the bearing hole 22 and the compressor impeller 9 .
  • a bearing housing 2 including a bearing hole 22 that accommodates the second bearing 60, and a compressor impeller 9 that is provided on the shaft 7 outside the bearing hole 22. It is arranged between the bearing hole 22 and the compressor impeller 9 .
  • oil leakage from the bearing hole 22 to the accommodation space of the compressor impeller 9 may become a problem.
  • the configuration as described above since the oil is efficiently guided in the discharge direction in the vicinity of the gap between the bearing restraining plate 40 and the oil slinger member 80, oil leakage from the bearing hole 22 into the gap is reduced. be. Therefore, oil leakage can be reduced.
  • the guide oil groove 45 has a central axis 45a extending along the radial direction of the shaft 7, and the central axis 45a extends in the rotational direction R of the shaft 7 with respect to the vertical axis Z. is located at 45 degrees to .
  • the oil is preferably supplied to a lower position within the range Ar1.
  • the oil is supplied around the shaft 7 from the intermediate position of 45 degrees in the range Ar1.
  • the turbocharger TC includes a first bearing 50 having a shaft 7, an inner ring 51 attached to the shaft 7, and an outer ring 52 arranged around the inner ring 51, and an outer side surface 52a of the outer ring 52.
  • the end surface 31 includes a guide oil groove 32 extending inwardly from the outside of the outer surface 52a of the outer ring 52 when viewed from the center axis direction of the shaft 7. and a side wall 30 located within a range Ar1 larger than 0 degrees and smaller than 90 degrees in the rotational direction R of the shaft 7 with respect to the vertical axis Z extending upward from the center axis of the shaft 7 .
  • both gravitational force and rotational force act downward on the oil supplied to the space around the shaft 7 through the guide oil groove 45 . Therefore, the oil quickly flows downward.
  • the oil drain hole 29a is provided in the lower part of the supercharger TC. Therefore, the oil can be efficiently guided in the discharge direction.
  • the turbocharger TC includes a bearing housing 2 including a bearing hole 22 that accommodates the first bearing 50, and a turbine impeller 8 that is provided on the shaft 7 outside the bearing hole 22.
  • Said side wall 30 including the grooved guide oil groove 32 is arranged between the bearing bore 22 and the turbine impeller 8 .
  • the turbine impeller 8 is exposed to hot exhaust gases. According to the above-described configuration including the guide oil groove 32 inclined with respect to the vertical direction in the side wall 30, as described above, the oil can be efficiently guided in the discharge direction, so that the heat-absorbed oil can be quickly discharged into the turbine. It can be discharged from the space near the impeller 8. Therefore, cooling efficiency can be improved.
  • the guide oil groove 32 has a central axis 32a extending along the radial direction of the shaft 7, and the central axis 32a extends in the rotational direction R of the shaft 7 with respect to the vertical axis Z. is located at 45 degrees to . Therefore, for the same reasons as above, a better balance can be struck between directing the oil downwards quickly and supplying the oil uniformly in the circumferential direction.
  • FIG. 6 is a schematic plan view showing a bearing retainer plate 90 according to another embodiment.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG.
  • bearing restraining plate 90 differs from bearing restraining plate 40 described above in that projections 48 are included.
  • the bearing retainer plate 90 may be the same as the bearing retainer plate 40 .
  • the projection 48 is located inside the circumferential oil groove 46 in the radial direction. That is, in this embodiment, the circumferential oil groove 46 is separated from the inner peripheral edge 43 by the protrusion 48 .
  • the protrusions 48 extend continuously along the entire circumference. That is, in this embodiment, the projection 48 has an annular shape.
  • the protrusion 48 may be provided only within a range of -90 degrees or more and 90 degrees or less in the rotation direction R with respect to the vertical axis Z. That is, in other embodiments, the projections 48 may be provided only on the upper half of the bearing retainer plate 40 .
  • the protrusion 48 protrudes from the circumferential oil groove 46 toward the second bearing 60 in the central axis direction.
  • the protrusion 48 may be flush with the first end surface 41 .
  • the turbocharger TC including the bearing restraining plate 90 as described above can achieve substantially the same effects as the turbocharger TC including the bearing restraining plate 40.
  • the first end surface 41 of the bearing retainer plate 90 is a circumferential oil groove 46 located inside the guide oil groove 45 in the radial direction and connected to the guide oil groove 45, and extends along the circumferential direction. , a circumferential oil groove 46, and a projection 48 positioned radially inside the circumferential oil groove 46 and projecting in the central axis direction.
  • the projection 48 can reduce oil leakage into the gap between the bearing restraining plate 90 and the oil slinger member 80 . Therefore, oil leakage can be reduced.
  • the projections 48 can efficiently guide the oil to the space between the inner ring 61 and the outer ring 62 . Therefore, the lubrication of the second bearing 60 can be improved.
  • FIG. 8 is a graph showing the evaluation results of oil leakage.
  • the following four types of bearing restraining plates were used in the supercharger TC.
  • Comparative Example 1 The guide oil groove 45 is positioned at 0 degrees in the rotation direction R with respect to the vertical axis Z. That is, the guide oil groove 45 is positioned on the vertical axis Z. Other points are the same as those of the bearing restraining plate 40 . No protrusion is provided.
  • Comparative Example 2 The guide oil groove 45 is positioned at 0 degrees in the rotation direction R with respect to the vertical axis Z. That is, the guide oil groove 45 is positioned on the vertical axis Z. Other points are the same as those of the bearing restraining plate 90 . A protrusion is provided.
  • Example 1 The guide oil groove 45 is located at 60 degrees in the rotation direction R with respect to the vertical axis Z. A protrusion is provided.
  • Example 2 The guide oil groove 45 is positioned at 45 degrees to the vertical axis Z in the rotational direction R. A protrusion is provided.
  • the shaft 7 was rotated at multiple rotation speeds. Oil was supplied from the oil pump to the supercharger TC at a plurality of flow rates at each of a plurality of rotational speeds. The flow rate was measured when oil leakage from the gap between the bearing retainer plate and the oil slinger was confirmed. Regarding the flow rate when oil leakage was confirmed at each rotational speed, the ratio of the flow rate of each of the four types of bearing restraining plates to the flow rate of Comparative Example 1 was calculated. The calculated value is indicated as "improvement rate" on the vertical axis of FIG. When the improvement rate is greater than 1, oil leakage is reduced relative to Comparative Example 1. In contrast, when the improvement rate is less than 1, oil leakage increases relative to Comparative Example 1.
  • the solid line indicates the percent improvement of Comparative Example 1 over Comparative Example 1 and therefore always indicates 1.
  • a two-dot chain line indicates the improvement rate of Comparative Example 2 with respect to Comparative Example 1.
  • the dashed line indicates the improvement rate of Example 1 with respect to Comparative Example 1.
  • a dashed-dotted line indicates the improvement rate of Example 2 with respect to Comparative Example 1.
  • Lubrication can be a problem in the high rpm range, so oil leakage can also be a problem in the high rpm range. Therefore, attention is paid to the improvement rate in the high rotational speed region.
  • Comparative Examples 1 and 2 By comparing Comparative Examples 1 and 2, it can be seen whether or not the projections contribute to the reduction of oil leakage. As can be clearly seen from FIG. 8, the improvement rate of Comparative Example 2 is greater than one. Therefore, it can be seen that the projection contributes to the reduction of oil leakage.
  • Example 1 By comparing Comparative Example 2, Example 1, and Example 2, it can be seen whether or not inclining the guide oil groove 45 in the rotational direction contributes to reducing oil leakage.
  • the improvement rate of Example 1 is higher than the improvement rate of Comparative Example 2.
  • the improvement rate of Example 2 is higher than the improvement rate of Comparative Example 2. Therefore, it can be seen that inclining the guide oil groove 45 in the rotational direction contributes to the reduction of oil leakage.
  • the improvement rate of Example 2 is substantially the same as the improvement rate of Example 1. Therefore, even if the guide oil groove 45 is inclined by more than 45 degrees, the improvement rate is substantially the same as when the guide oil groove 45 is inclined by 45 degrees. Therefore, it can be seen that the oil leakage can be sufficiently reduced by inclining the guide oil groove 45 by 45 degrees.
  • the turbocharger TC includes two rolling bearings 50, 60 in the bearing hole 22, spaced apart in the central axis direction.
  • the supercharger TC may comprise more than two rolling bearings.
  • the outer rings 52, 62 are rotatable with respect to the bearing housing 2.
  • the outer rings 52 , 62 may be rotationally fixed with respect to the bearing housing 2 .
  • the pair of rolling bearings 50, 60 are angular bearings and face-to-face.
  • the rolling bearings may be rolling bearings other than angular bearings (eg, deep groove ball bearings or self-aligning ball bearings).
  • the pair of rolling bearings 50 and 60 may be a back-to-back combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

A supercharger comprising: a shaft; a rolling bearing having an inner ring mounted on the shaft and an outer ring disposed around the inner ring; and a restriction member 40 including an end surface 41 facing a side surface 62a of the outer ring. When viewed from the center axis direction of the shaft, the end surface 41 includes an oil guide groove 45 extending inward from the outer side of the side surface 62a of the outer ring, and the entire oil guide groove 45 is positioned within a range Ar1 larger than 0 degrees and smaller than 90 degrees in a rotation direction R of the shaft with respect to a vertical axis Z extending upward from the center axis of the shaft.

Description

過給機supercharger
 本開示は、過給機に関する。本出願は2021年4月23日に提出された日本特許出願第2021-73664号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 This disclosure relates to turbochargers. This application claims the benefit of priority based on Japanese Patent Application No. 2021-73664 filed on April 23, 2021, the content of which is incorporated herein by reference.
 過給機は、シャフトを支持する転がり軸受を備え得る。例えば、特許文献1の過給機は、一対の転がり軸受を備える。一方の転がり軸受の外輪の側面は、ハウジングの側壁と対向する。ハウジングの側壁は、給油溝を有する。給油溝は、シャフトの径方向に沿って延び、シャフトから上方に延びる鉛直軸に対して傾いている。 The supercharger may have rolling bearings that support the shaft. For example, the turbocharger of Patent Document 1 includes a pair of rolling bearings. The side surface of the outer ring of one rolling bearing faces the side wall of the housing. A side wall of the housing has an oil supply groove. The oil groove extends radially of the shaft and is inclined with respect to a vertical axis extending upward from the shaft.
 また、例えば、特許文献2の過給機は、一対の転がり軸受を備える。一方の転がり軸受の外輪の側面は、ダンパ抑えと対向する。ダンパ抑えは、概ね円環形状を有する。ただし、ダンパ抑えの下部分は、切り欠きを有し、円周方向に不連続である。ダンパ抑えは、給油溝を有する。給油溝は、概ね円弧状の溝を含む。円弧状の溝は、突起によって、ダンパ抑えの内周縁から離間されている。 Also, for example, the turbocharger of Patent Document 2 includes a pair of rolling bearings. The side surface of the outer ring of one rolling bearing faces the damper retainer. The damper stop has a generally toroidal shape. However, the lower portion of the damper stop has a notch and is circumferentially discontinuous. The damper restrainer has an oil supply groove. The lubricating groove includes a generally arcuate groove. The arcuate groove is spaced from the inner peripheral edge of the damper stop by a projection.
国際公開第2020/021908号WO2020/021908 実開昭60-43137号公報Japanese Utility Model Laid-Open No. 60-43137
 過給機では、オイルを効率よく排出方向に導くことが望ましい。 In a turbocharger, it is desirable to efficiently guide the oil in the discharge direction.
 本開示は、上記のような課題を考慮して、オイルを効率よく排出方向に導くことができる過給機を提供することを目的とする。 An object of the present disclosure is to provide a turbocharger that can efficiently guide oil in the discharge direction in consideration of the above problems.
 上記課題を解決するために、本開示の一態様に係る過給機は、シャフトと、シャフトに取り付けられる内輪と、内輪の周りに配置される外輪と、を有する転がり軸受と、外輪の側面に対向する端面を含む規制部材であって、端面は、シャフトの中心軸線方向から見て、外輪の側面の外側から内向きに延びる案内油溝を含み、案内油溝の全体が、シャフトの中心軸線から上方に延びる鉛直軸に対して、シャフトの回転方向に0度より大きく90度未満の範囲に位置する、規制部材と、を備える。 In order to solve the above problems, a turbocharger according to one aspect of the present disclosure includes a rolling bearing having a shaft, an inner ring attached to the shaft, and an outer ring arranged around the inner ring; A regulating member including opposing end faces, the end faces including guide oil grooves extending inwardly from the outside of the side surface of the outer ring when viewed from the direction of the central axis of the shaft, the entire guide oil grooves extending along the central axis of the shaft. a regulating member positioned within a range of more than 0 degrees and less than 90 degrees in the rotational direction of the shaft with respect to a vertical axis extending upward from the shaft.
 過給機は、転がり軸受を収容する軸受孔を含むハウジングと、軸受孔の外側においてシャフトに設けられるコンプレッサインペラと、を更に備えてもよく、規制部材は、軸受孔とコンプレッサインペラとの間に配置されてもよい。 The turbocharger may further include a housing including a bearing hole that accommodates the rolling bearing, and a compressor impeller provided on the shaft outside the bearing hole, and the restricting member is positioned between the bearing hole and the compressor impeller. may be placed.
 規制部材が軸受孔とコンプレッサインペラとの間に配置される場合に、規制部材の端面は、シャフトの径方向において案内油溝の内側に位置し、かつ、案内油溝に連結される円周油溝であって、シャフトの円周方向に沿って延びる、円周油溝と、シャフトの径方向において円周油溝の内側に位置し、かつ、シャフトの中心軸線方向に突出する突起と、を含んでもよい。 When the regulating member is arranged between the bearing hole and the compressor impeller, the end face of the regulating member is located inside the guide oil groove in the radial direction of the shaft and is connected to the guide oil groove. A groove, which is a circumferential oil groove extending along the circumferential direction of the shaft, and a projection located inside the circumferential oil groove in the radial direction of the shaft and protruding in the direction of the central axis of the shaft. may contain.
 過給機は、転がり軸受を収容する軸受孔を含むハウジングと、軸受孔の外側においてシャフトに設けられるタービンインペラと、を更に備えてもよく、規制部材は、軸受孔とタービンインペラとの間に配置されてもよい。 The turbocharger may further include a housing including a bearing hole that accommodates the rolling bearing, and a turbine impeller that is provided on the shaft outside the bearing hole, and the regulating member is positioned between the bearing hole and the turbine impeller. may be placed.
 案内油溝は、シャフトの径方向に沿って延在する中心軸線を有してもよく、案内油溝の中心軸線は、鉛直軸に対して、シャフトの回転方向に45度に位置してもよい。 The guide oil groove may have a central axis extending along the radial direction of the shaft, and the central axis of the guide oil groove may be positioned at 45 degrees to the vertical axis in the direction of rotation of the shaft. good.
 本開示によれば、オイルを効率よく排出方向に導くことができる。 According to the present disclosure, oil can be efficiently guided in the discharge direction.
図1は、実施形態に係る過給機を示す概略的な断面図である。FIG. 1 is a schematic cross-sectional view showing a turbocharger according to an embodiment. 図2は、図1中のA部の概略的な拡大断面図である。FIG. 2 is a schematic enlarged cross-sectional view of part A in FIG. 図3は、軸受抑え板を示す概略的な平面図である。FIG. 3 is a schematic plan view showing a bearing retainer plate. 図4は、図3中のIV-IV線に沿って得られる概略的な断面図である。FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 図5は、図2中のV-V線に沿って得られる概略的な断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 図6は、他の実施形態に係る軸受抑え板を示す概略的な平面図である。FIG. 6 is a schematic plan view showing a bearing retainer plate according to another embodiment. 図7は、図6中のVII-VII線に沿って得られる概略的な断面図である。FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. 図8は、オイル漏れの評価結果を示すグラフである。FIG. 8 is a graph showing evaluation results of oil leakage.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す具体的な寸法、材料および数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Specific dimensions, materials, numerical values, and the like shown in such embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are given the same reference numerals to omit redundant description, and elements that are not directly related to the present disclosure are omitted from the drawings. do.
 図1は、実施形態に係る過給機TCを示す概略的な断面図である。例えば、過給機TCは、エンジンに適用される。過給機TCは、ハウジング1と、シャフト7と、タービンインペラ8と、コンプレッサインペラ9と、を備える。 FIG. 1 is a schematic cross-sectional view showing the turbocharger TC according to the embodiment. For example, the supercharger TC is applied to an engine. The supercharger TC includes a housing 1 , a shaft 7 , a turbine impeller 8 and a compressor impeller 9 .
 過給機TCの方向に関して、本開示では、シャフト7の中心軸線方向、径方向および円周方向が、他に指示が無い限り、それぞれ単に「中心軸線方向」、「径方向」および「円周方向」と称され得る。 With respect to the orientation of the turbocharger TC, in this disclosure the central axial, radial and circumferential directions of the shaft 7 are simply referred to as "central axial", "radial" and "circumferential" respectively, unless otherwise indicated. may be referred to as "direction".
 ハウジング1は、ベアリングハウジング2と、タービンハウジング3と、コンプレッサハウジング4と、を含む。中心軸線方向において、ベアリングハウジング2の一方の端部は、Gカップリング等の締結機構21aによってタービンハウジング3に連結される。中心軸線方向において、ベアリングハウジング2の他方の端部は、締結ボルト等の締結機構21bによってコンプレッサハウジング4に連結される。 The housing 1 includes a bearing housing 2, a turbine housing 3 and a compressor housing 4. One end of the bearing housing 2 is connected to the turbine housing 3 in the central axis direction by a fastening mechanism 21a such as a G coupling. In the central axis direction, the other end of the bearing housing 2 is connected to the compressor housing 4 by a fastening mechanism 21b such as a fastening bolt.
 ベアリングハウジング2は、軸受孔22を含む。軸受孔22は、ベアリングハウジング2内を中心軸線方向に延在する。中心軸線方向において、軸受孔22の一方の端部は、ベアリングハウジング2の側壁30によって規定される。側壁30は、中心軸線方向において、タービンインペラ8と軸受孔22との間に位置する。中心軸線方向において、軸受孔22の他方の端部は、軸受抑え板40によって規定される。軸受抑え板40は、中心軸線方向において、コンプレッサインペラ9と軸受孔22との間に位置する。 The bearing housing 2 includes bearing holes 22 . The bearing hole 22 extends in the center axis direction inside the bearing housing 2 . One end of the bearing hole 22 is defined by a side wall 30 of the bearing housing 2 in the central axis direction. The side wall 30 is positioned between the turbine impeller 8 and the bearing hole 22 in the central axis direction. The other end of the bearing hole 22 is defined by a bearing retainer plate 40 in the central axis direction. The bearing retainer plate 40 is positioned between the compressor impeller 9 and the bearing hole 22 in the central axis direction.
 側壁30は、軸受孔22の内周面に対して、径方向の内側に突出する。側壁30は、ベアリングハウジング2と一体である。しかしながら、他の実施形態では、側壁30は、ベアリングハウジング2と別体であってもよく、ベアリングハウジング2に取り付けられてもよい。側壁30は、端面31を含む。端面31は、中心軸線方向において、軸受孔22の一方の端部を規定する。側壁30については、詳しくは後述する。 The side wall 30 protrudes radially inward with respect to the inner peripheral surface of the bearing hole 22 . Side wall 30 is integral with bearing housing 2 . However, in other embodiments, sidewall 30 may be separate from bearing housing 2 or attached to bearing housing 2 . Sidewall 30 includes an end surface 31 . The end face 31 defines one end of the bearing hole 22 in the central axis direction. Details of the side wall 30 will be described later.
 軸受抑え板40は、ベアリングハウジング2とは別体であり、ベアリングハウジング2の表面24に取り付けられる。表面24は、軸受孔22の内周面に対して垂直に拡がる。例えば、軸受抑え板40は、ベアリングハウジング2に嵌合される。軸受抑え板40は、第1端面41を含む。第1端面41は、中心軸線方向において、軸受孔22の他方の端部を規定する。軸受抑え板40については、詳しくは後述する。 The bearing retainer plate 40 is separate from the bearing housing 2 and attached to the surface 24 of the bearing housing 2 . Surface 24 extends perpendicular to the inner peripheral surface of bearing hole 22 . For example, the bearing retainer plate 40 is fitted to the bearing housing 2 . Bearing retainer plate 40 includes a first end surface 41 . The first end surface 41 defines the other end of the bearing hole 22 in the center axis direction. The details of the bearing retainer plate 40 will be described later.
 軸受孔22は、一対の転がり軸受50,60を収容する。転がり軸受50,60は、シャフト7を回転可能に支持する。一対の転がり軸受50,60は、中心軸線方向に互いに離隔している。本開示において、側壁30に隣接する転がり軸受は、第1軸受50と称され得る。本開示において、軸受抑え板40に隣接する転がり軸受は、第2軸受60と称され得る。 The bearing hole 22 accommodates a pair of rolling bearings 50,60. Rolling bearings 50 and 60 rotatably support shaft 7 . The pair of rolling bearings 50, 60 are separated from each other in the central axis direction. In this disclosure, the rolling bearing adjacent sidewall 30 may be referred to as primary bearing 50 . In the present disclosure, the rolling bearing adjacent bearing retainer plate 40 may be referred to as secondary bearing 60 .
 中心軸線方向において、シャフト7の第1の端部には、タービンインペラ8が設けられる。タービンインペラ8は、中心軸線方向において、軸受孔22の外側に位置する。タービンインペラ8は、タービンハウジング3に回転可能に収容される。中心軸線方向において、第1の端部とは反対側のシャフト7の第2の端部には、コンプレッサインペラ9が設けられる。コンプレッサインペラ9は、中心軸線方向において、軸受孔22の外側に位置する。コンプレッサインペラ9は、コンプレッサハウジング4に回転可能に収容される。 A turbine impeller 8 is provided at a first end of the shaft 7 in the central axis direction. The turbine impeller 8 is positioned outside the bearing hole 22 in the central axis direction. A turbine impeller 8 is rotatably housed in the turbine housing 3 . A compressor impeller 9 is provided at a second end of the shaft 7 opposite to the first end in the central axis direction. The compressor impeller 9 is positioned outside the bearing hole 22 in the central axis direction. A compressor impeller 9 is rotatably housed in the compressor housing 4 .
 コンプレッサハウジング4は、中心軸線方向においてベアリングハウジング2と反対側の端部に、吸気口10を含む。吸気口10は、不図示のエアクリーナに接続される。ベアリングハウジング2およびコンプレッサハウジング4は、それらの間にディフューザ流路11を規定する。ディフューザ流路11は、径方向の内側から外側に向けて拡がる。ディフューザ流路11は、環状形状を有する。ディフューザ流路11は、コンプレッサインペラ9を介して吸気口10に連通する。 The compressor housing 4 includes an air intake 10 at the end opposite to the bearing housing 2 in the central axis direction. The intake port 10 is connected to an air cleaner (not shown). Bearing housing 2 and compressor housing 4 define a diffuser flow path 11 therebetween. The diffuser flow path 11 expands from the inner side to the outer side in the radial direction. The diffuser channel 11 has an annular shape. The diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 .
 コンプレッサハウジング4は、コンプレッサスクロール流路12を含む。コンプレッサスクロール流路12は、コンプレッサインペラ9に対して径方向の外側に位置する。コンプレッサスクロール流路12は、ディフューザ流路11と連通する。また、コンプレッサスクロール流路12は、不図示のエンジンの吸気口と連通する。コンプレッサインペラ9が回転すると、吸気口10からコンプレッサハウジング4内に空気が吸気される。吸気は、コンプレッサインペラ9の翼の間の空間を通る間に、遠心力によって増速される。増速された空気は、ディフューザ流路11およびコンプレッサスクロール流路12で加圧される。加圧された空気は、不図示の吐出口から流出し、エンジンの吸気口に導かれる。 The compressor housing 4 includes a compressor scroll flow path 12. The compressor scroll passage 12 is located radially outside the compressor impeller 9 . The compressor scroll channel 12 communicates with the diffuser channel 11 . Further, the compressor scroll flow path 12 communicates with an intake port of an engine (not shown). When the compressor impeller 9 rotates, air is drawn into the compressor housing 4 through the intake port 10 . The intake air is accelerated by centrifugal force while passing through the spaces between the blades of the compressor impeller 9 . The accelerated air is pressurized in diffuser passage 11 and compressor scroll passage 12 . The pressurized air flows out from a discharge port (not shown) and is led to the intake port of the engine.
 タービンハウジング3は、中心軸線方向においてベアリングハウジング2と反対側の端部に、吐出口13を含む。吐出口13は、不図示の排気ガス浄化装置に接続される。タービンハウジング3は、流路14と、タービンスクロール流路15とを含む。タービンスクロール流路15は、タービンインペラ8に対して径方向の外側に位置する。流路14は、タービンインペラ8とタービンスクロール流路15との間に位置する。 The turbine housing 3 includes a discharge port 13 at the end opposite to the bearing housing 2 in the center axis direction. The discharge port 13 is connected to an exhaust gas purification device (not shown). Turbine housing 3 includes flowpath 14 and turbine scroll flowpath 15 . The turbine scroll passage 15 is located radially outside the turbine impeller 8 . The flowpath 14 is located between the turbine impeller 8 and the turbine scroll flowpath 15 .
 タービンスクロール流路15は、不図示のガス流入口と連通する。ガス流入口は、不図示のエンジンの排気マニホールドから排出される排気ガスを受け入れる。タービンスクロール流路15は、流路14と連通する。流路14は、タービンインペラ8を介して吐出口13に連通する。排気ガスは、ガス流入口からタービンスクロール流路15に導かれ、さらに、流路14およびタービンインペラ8を介して吐出口13に導かれる。排気ガスは、タービンインペラ8の翼の間の空間を通る間に、タービンインペラ8を回転させる。 The turbine scroll passage 15 communicates with a gas inlet (not shown). The gas inlet receives exhaust gas discharged from an exhaust manifold of an engine (not shown). Turbine scroll channel 15 communicates with channel 14 . The flow path 14 communicates with the discharge port 13 via the turbine impeller 8 . Exhaust gas is led from the gas inlet to the turbine scroll passage 15 and then to the discharge port 13 via the passage 14 and the turbine impeller 8 . The exhaust gases rotate the turbine impeller 8 while passing through the spaces between the blades of the turbine impeller 8 .
 タービンインペラ8の回転力は、シャフト7を介してコンプレッサインペラ9に伝達される。コンプレッサインペラ9が回転すると、上記のとおりに空気が加圧される。こうして、加圧された空気がエンジンの吸気口に導かれる。 The rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As the compressor impeller 9 rotates, the air is pressurized as described above. Thus, pressurized air is directed to the intake of the engine.
 図2は、図1中のA部の概略的な拡大断面図である。ベアリングハウジング2は、メイン油路23を含む。メイン油路23は、中心軸線方向に延在する。メイン油路23は、軸受孔22と平行に延在する。メイン油路23は、軸受孔22の上方に位置する。 FIG. 2 is a schematic enlarged cross-sectional view of part A in FIG. Bearing housing 2 includes a main oil passage 23 . The main oil passage 23 extends in the central axis direction. The main oil passage 23 extends parallel to the bearing hole 22 . The main oil passage 23 is positioned above the bearing hole 22 .
 軸受孔22およびメイン油路23は、ベアリングハウジング2の表面24に開口する。上記のように、表面24には、軸受抑え板40が取り付けられる。軸受抑え板40は、メイン油路23の開口を閉じる。 The bearing hole 22 and the main oil passage 23 open onto the surface 24 of the bearing housing 2 . As noted above, the surface 24 is fitted with a bearing retainer plate 40 . The bearing restraining plate 40 closes the opening of the main oil passage 23 .
 メイン油路23は、貫通孔25と連通する。貫通孔25は、ベアリングハウジング2に形成される。貫通孔25は、ベアリングハウジング2の外壁からメイン油路23まで延在する。オイルが、不図示のオイルポンプから貫通孔25を介してメイン油路23に供給される。 The main oil passage 23 communicates with the through hole 25 . A through hole 25 is formed in the bearing housing 2 . The through hole 25 extends from the outer wall of the bearing housing 2 to the main oil passage 23 . Oil is supplied to the main oil passage 23 from an oil pump (not shown) through a through hole 25 .
 ベアリングハウジング2は、第1油路26および第2油路27を含む。第1油路26および第2油路27の各々は、メイン油路23に開口する。また、第1油路26および第2油路27の各々は、軸受孔22に開口する。第1油路26および第2油路27の各々は、メイン油路23と軸受孔22とを接続する。第1油路26は、中心軸線方向において、第1軸受50に対応する位置に設けられ、第1軸受50に向かって開口する。第2油路27は、中心軸線方向において、第2軸受60に対応する位置に設けられ、第2軸受60に向かって開口する。 The bearing housing 2 includes a first oil passage 26 and a second oil passage 27. Each of first oil passage 26 and second oil passage 27 opens into main oil passage 23 . Also, each of the first oil passage 26 and the second oil passage 27 opens into the bearing hole 22 . Each of first oil passage 26 and second oil passage 27 connects main oil passage 23 and bearing hole 22 . The first oil passage 26 is provided at a position corresponding to the first bearing 50 in the central axis direction and opens toward the first bearing 50 . The second oil passage 27 is provided at a position corresponding to the second bearing 60 in the central axis direction and opens toward the second bearing 60 .
 ベアリングハウジング2は、下壁29を含む。下壁29は、径方向において、軸受孔22の下部を規定する。下壁29は、排油孔29aを含む。排油孔29aは、下壁29を鉛直方向に貫通する。例えば、中心軸線方向において、排油孔29aは、第1油路26と第2油路27との間に位置する。すなわち、排油孔29aは、中心軸線方向において、第1軸受50と第2軸受60との間に位置する。 The bearing housing 2 includes a lower wall 29. The lower wall 29 defines the lower portion of the bearing hole 22 in the radial direction. The lower wall 29 includes an oil drain hole 29a. The oil drain hole 29a penetrates the lower wall 29 in the vertical direction. For example, the oil drain hole 29a is positioned between the first oil passage 26 and the second oil passage 27 in the central axis direction. That is, the oil drain hole 29a is located between the first bearing 50 and the second bearing 60 in the center axis direction.
 軸受孔22は、シャフト7の一部を収容する。シャフト7は、大径部7a、中径部7bおよび小径部7cを含む。中心軸線方向において、中径部7bは、側壁30と軸受抑え板40との間に位置する。中心軸線方向において、大径部7aは、シャフト7の第1の端部と中径部7bとの間に位置する。中心軸線方向において、小径部7cは、シャフト7の第2の端部と中径部7bとの間に位置する。中径部7bの外径は、大径部7aの外径よりも小さい。小径部7cの外径は、中径部7bの外径よりも小さい。 A part of the shaft 7 is accommodated in the bearing hole 22 . The shaft 7 includes a large diameter portion 7a, a medium diameter portion 7b and a small diameter portion 7c. The medium-diameter portion 7b is located between the side wall 30 and the bearing retainer plate 40 in the central axis direction. The large-diameter portion 7a is positioned between the first end portion of the shaft 7 and the medium-diameter portion 7b in the central axis direction. The small diameter portion 7c is located between the second end of the shaft 7 and the medium diameter portion 7b in the central axis direction. The outer diameter of the medium diameter portion 7b is smaller than the outer diameter of the large diameter portion 7a. The outer diameter of the small diameter portion 7c is smaller than the outer diameter of the medium diameter portion 7b.
 シャフト7は、第1段差面7dおよび第2段差面7eを含む。中心軸線方向において、第1段差面7dは、大径部7aと中径部7bとの間に位置する。第1段差面7dは、大径部7aの外周面から中径部7bの外周面まで径方向に延在する。中心軸線方向において、第2段差面7eは、中径部7bと小径部7cとの間に位置する。第2段差面7eは、中径部7bの外周面から小径部7cの外周面まで径方向に延在する。 The shaft 7 includes a first step surface 7d and a second step surface 7e. The first stepped surface 7d is located between the large diameter portion 7a and the medium diameter portion 7b in the central axis direction. The first step surface 7d radially extends from the outer peripheral surface of the large diameter portion 7a to the outer peripheral surface of the intermediate diameter portion 7b. The second stepped surface 7e is positioned between the medium diameter portion 7b and the small diameter portion 7c in the central axis direction. The second step surface 7e radially extends from the outer peripheral surface of the medium diameter portion 7b to the outer peripheral surface of the small diameter portion 7c.
 第1軸受50は、内輪51と、外輪52と、複数の転動体53と、保持器54と、を含む。内輪51は、シャフト7の中径部7bの外周面に取り付けられる。内輪51は、シャフト7と一体回転する。外輪52は、内輪51に対して径方向の外側に設けられる。外輪52は、軸受孔22の内周面と対向する。内輪51と外輪52との間には、複数の転動体53が配置される。保持器54は、複数の転動体53を保持する。 The first bearing 50 includes an inner ring 51, an outer ring 52, multiple rolling elements 53, and a retainer 54. The inner ring 51 is attached to the outer peripheral surface of the medium diameter portion 7 b of the shaft 7 . The inner ring 51 rotates together with the shaft 7 . The outer ring 52 is provided radially outside the inner ring 51 . The outer ring 52 faces the inner peripheral surface of the bearing hole 22 . A plurality of rolling elements 53 are arranged between the inner ring 51 and the outer ring 52 . The retainer 54 retains the plurality of rolling elements 53 .
 第2軸受60は、内輪61と、外輪62と、複数の転動体63と、保持器64と、を含む。内輪61は、シャフト7の中径部7bの外周面に取り付けられる。内輪61は、シャフト7と一体回転する。外輪62は、内輪61に対して径方向の外側に設けられる。外輪62は、軸受孔22の内周面と対向する。内輪61と外輪62との間には、複数の転動体63が配される。保持器64は、複数の転動体63を保持する。 The second bearing 60 includes an inner ring 61, an outer ring 62, multiple rolling elements 63, and a retainer 64. The inner ring 61 is attached to the outer peripheral surface of the medium diameter portion 7 b of the shaft 7 . The inner ring 61 rotates together with the shaft 7 . The outer ring 62 is provided radially outside the inner ring 61 . The outer ring 62 faces the inner peripheral surface of the bearing hole 22 . A plurality of rolling elements 63 are arranged between the inner ring 61 and the outer ring 62 . A retainer 64 retains a plurality of rolling elements 63 .
 本開示において、第1軸受50の内輪51および第2軸受60の内輪61の側面51a,51b、61a,61bのうち、中心軸線方向において互いに対向する側面は、「内側面」51b、61bと称され得、内側面51b、61bと反対側の側面は、「外側面」51a,61aと称され得る。 In the present disclosure, of the side surfaces 51a, 51b, 61a, 61b of the inner ring 51 of the first bearing 50 and the inner ring 61 of the second bearing 60, the side surfaces facing each other in the direction of the central axis are referred to as "inner side surfaces" 51b, 61b. and the side opposite the inner side 51b, 61b may be referred to as the "outer side" 51a, 61a.
 同様に、本開示において、第1軸受50の外輪52および第2軸受60の外輪62の側面52a,52b、62a,62bのうち、中心軸線方向において互いに対向する側面は、「内側面」52b、62bと称され得、内側面52b、62bと反対側の側面は、「外側面」52a,62aと称され得る。 Similarly, in the present disclosure, of the side surfaces 52a, 52b, 62a, and 62b of the outer ring 52 of the first bearing 50 and the outer ring 62 of the second bearing 60, the side surfaces facing each other in the direction of the central axis are referred to as the "inner side surface" 52b, 62b, and the side opposite the inner surface 52b, 62b may be referred to as the "outer surface" 52a, 62a.
 第1軸受50の内輪51の外側面51aは、中心軸線方向において、シャフト7の第1段差面7dに接触する。また、第1軸受50の外輪52の外側面52aは、中心軸線方向において、側壁30の端面31に対向する。 The outer side surface 51a of the inner ring 51 of the first bearing 50 contacts the first stepped surface 7d of the shaft 7 in the central axis direction. Further, the outer surface 52a of the outer ring 52 of the first bearing 50 faces the end surface 31 of the side wall 30 in the center axis direction.
 シャフト7の中径部7bには、内輪51および内輪61の間にスペーサ70が設けられる。スペーサ70は概ね円筒形状を有する。スペーサ70には、シャフト7が挿入される。他の実施形態では、スペーサ70の代わりに、スプリングおよびスプリング受けが設けられてもよい。 A spacer 70 is provided between the inner ring 51 and the inner ring 61 in the middle diameter portion 7 b of the shaft 7 . Spacer 70 has a generally cylindrical shape. The shaft 7 is inserted into the spacer 70 . In other embodiments, instead of spacer 70, a spring and spring receiver may be provided.
 第1軸受50の内輪51の内側面51bは、中心軸線方向において、スペーサ70の一方の端部に接触する。第2軸受60の内輪61の内側面61bは、中心軸線方向において、スペーサ70の他方の端部に接触する。 The inner side surface 51b of the inner ring 51 of the first bearing 50 contacts one end of the spacer 70 in the center axis direction. The inner side surface 61b of the inner ring 61 of the second bearing 60 contacts the other end of the spacer 70 in the center axis direction.
 シャフト7の小径部7cには、油切り部材80が取り付けられる。油切り部材80は、オイルを径方向の外側に飛散させる。油切り部材80は、軸受抑え板40の径方向の内側に設けられる。油切り部材80および軸受抑え板40は、径方向に離間する。 An oil slinger 80 is attached to the small diameter portion 7c of the shaft 7. The oil slinger 80 scatters the oil radially outward. The oil slinger member 80 is provided radially inside the bearing retainer plate 40 . The oil slinger member 80 and the bearing retainer plate 40 are spaced apart in the radial direction.
 第2軸受60の内輪61の外側面61aは、中心軸線方向において、油切り部材80に接触する。また、第2軸受60の外輪62の外側面62aは、中心軸線方向において、軸受抑え板40に対向する。 The outer side surface 61a of the inner ring 61 of the second bearing 60 contacts the oil slinger member 80 in the central axis direction. Further, the outer side surface 62a of the outer ring 62 of the second bearing 60 faces the bearing restraining plate 40 in the center axis direction.
 第1軸受50、スペーサ70、第2軸受60、油切り部材80およびコンプレッサインペラ9は、シャフト7のコンプレッサインペラ9側の端部から、この順にシャフト7に取り付けられる。シャフト7の第2端部に取り付けられる締結ボルトによって、これらの部材に中心軸線方向に圧縮応力が作用し、これによってシャフト7に軸力が加わる。第1軸受50の内輪51、スペーサ70、第2軸受60の内輪61、油切り部材80およびコンプレッサインペラ9は、シャフト7と一体回転する。 The first bearing 50, the spacer 70, the second bearing 60, the oil slinger member 80, and the compressor impeller 9 are attached to the shaft 7 in this order from the end of the shaft 7 on the compressor impeller 9 side. A tightening bolt attached to the second end of the shaft 7 applies a compressive stress to these members in the central axis direction, thereby applying an axial force to the shaft 7 . The inner ring 51 of the first bearing 50 , the spacer 70 , the inner ring 61 of the second bearing 60 , the oil slinger member 80 and the compressor impeller 9 rotate integrally with the shaft 7 .
 第1軸受50の外輪52の外周面52cは、切り欠き55を含む。切り欠き55は、環状形状を有する。切り欠き55は、外側面52aに隣接する。外側面52aの外径は、切り欠き55の径方向の長さの分だけ、外周面52cの直径よりも小さい。 The outer peripheral surface 52c of the outer ring 52 of the first bearing 50 includes a notch 55. The notch 55 has an annular shape. The notch 55 adjoins the outer surface 52a. The outer diameter of the outer surface 52a is smaller than the diameter of the outer peripheral surface 52c by the length of the notch 55 in the radial direction.
 第2軸受60の外輪62の外周面62cは、切り欠き65を含む。切り欠き65は、環状形状を有する。切り欠き65は、外側面62aに隣接する。外側面62aの外径は、切り欠き65の径方向の長さの分だけ、外周面62cの直径よりも小さい。 The outer peripheral surface 62c of the outer ring 62 of the second bearing 60 includes a notch 65. The notch 65 has an annular shape. The notch 65 is adjacent to the outer surface 62a. The outer diameter of the outer surface 62a is smaller than the diameter of the outer peripheral surface 62c by the length of the notch 65 in the radial direction.
 シャフト7に対して、タービンインペラ8に向かうスラスト荷重が作用すると、第1軸受50の外輪52が側壁30を押圧する。したがって、側壁30は、外輪52の軸方向の移動を規制する規制部材として機能する。また、シャフト7に対して、コンプレッサインペラ9に向かうスラスト荷重が作用すると、第2軸受60の外輪62が軸受抑え板40を押圧する。したがって、軸受抑え板40は、外輪62の軸方向の移動を規制する規制部材として機能する。以上のような構成によれば、スラスト荷重によるシャフト7の移動は、側壁30および軸受抑え板40によって止められる。 When a thrust load directed toward the turbine impeller 8 acts on the shaft 7 , the outer ring 52 of the first bearing 50 presses the side wall 30 . Therefore, the side wall 30 functions as a restricting member that restricts axial movement of the outer ring 52 . Further, when a thrust load directed toward the compressor impeller 9 acts on the shaft 7 , the outer ring 62 of the second bearing 60 presses the bearing restraining plate 40 . Therefore, the bearing retainer plate 40 functions as a restricting member that restricts axial movement of the outer ring 62 . According to the configuration as described above, the movement of the shaft 7 due to the thrust load is stopped by the side wall 30 and the bearing restraining plate 40 .
 本実施形態では、過給機TCは、外輪52、62の回転止めを備えない。外輪52は、側壁30を押圧しないとき、ベアリングハウジング2に対して周方向に回転可能である。同様に、外輪62は、軸受抑え板40を押圧しないとき、ベアリングハウジング2に対して周方向に回転可能である。シャフト7が回転すると、内輪51、61は、シャフト7と一体回転する。転動体53、63は、内輪51、61の回転に伴って回転する。転動体53、63は、周方向に移動する。外輪52、62は、転動体53、63の回転および移動に伴って、または、オイルの流れに伴って、周方向に回転する。外輪52の回転速度は、内輪51の回転速度よりも遅い。また、本実施形態では、一対の転がり軸受50,60は、正面組合せである。そのため、外輪52と外輪62との間にスペーサが不要である。したがって、外輪52、62には予圧がかけられない。そのため、外輪52、62はベアリングハウジング2に対して回転し易い。 In the present embodiment, the supercharger TC does not have rotation stoppers for the outer rings 52 and 62 . The outer ring 52 is circumferentially rotatable with respect to the bearing housing 2 when not pressing against the side wall 30 . Similarly, the outer ring 62 is circumferentially rotatable with respect to the bearing housing 2 when the bearing retaining plate 40 is not pressed. When the shaft 7 rotates, the inner rings 51 and 61 rotate together with the shaft 7 . The rolling elements 53 and 63 rotate as the inner rings 51 and 61 rotate. The rolling elements 53, 63 move in the circumferential direction. The outer rings 52, 62 rotate in the circumferential direction as the rolling elements 53, 63 rotate and move, or as the oil flows. The rotation speed of the outer ring 52 is slower than the rotation speed of the inner ring 51 . Moreover, in this embodiment, the pair of rolling bearings 50 and 60 are face-to-face. Therefore, no spacer is required between the outer ring 52 and the outer ring 62 . Therefore, no preload is applied to the outer rings 52,62. Therefore, the outer rings 52 and 62 are easily rotated with respect to the bearing housing 2 .
 続いて、軸受抑え板40について詳細に説明する。 Next, the bearing retainer plate 40 will be described in detail.
 図3は、軸受抑え板40を示す概略的な平面図であり、軸受抑え板40を軸受孔22から中心軸線方向に見る。すなわち、図3は、図2中のIII-III線に沿って得られる。図3において、軸受孔22の内径が、破線で示される。また、第2軸受60の外側面62aの外径が、破線で示される。矢印Rは、シャフト7の回転方向を示す。符号Zは、シャフト7の中心軸線から上方に延びる鉛直軸を示す。 FIG. 3 is a schematic plan view showing the bearing retainer plate 40, and the bearing retainer plate 40 is viewed from the bearing hole 22 in the central axis direction. That is, FIG. 3 is obtained along line III-III in FIG. In FIG. 3, the inner diameter of bearing hole 22 is indicated by a dashed line. Also, the outer diameter of the outer side surface 62a of the second bearing 60 is indicated by a dashed line. Arrow R indicates the direction of rotation of shaft 7 . A symbol Z indicates a vertical axis extending upward from the center axis of the shaft 7 .
 軸受抑え板40は、概ね円環形状またはディスク形状を有する。軸受抑え板40は、内周縁43と、外周縁44と、を含む。 The bearing retainer plate 40 has a generally annular shape or disk shape. The bearing retainer plate 40 includes an inner peripheral edge 43 and an outer peripheral edge 44 .
 図2を参照して、例えば、内周縁43の直径は、第2軸受60の外輪62の最内径よりも小さく、かつ、油切り部材80の外径よりも大きい。また、例えば、外周縁44の直径は、軸受孔22の内径よりも大きい。軸受抑え板40は、中心軸線方向において、第1端面41と、第2端面42と、を含む。上記のように、第1端面41は、中心軸線方向において、軸受孔22の端部を規定する。第1端面41は、中心軸線方向において、外輪62の外側面62aに対向する。第2端面42は、第1端面41の反対側に位置する。 With reference to FIG. 2, for example, the diameter of the inner peripheral edge 43 is smaller than the innermost diameter of the outer ring 62 of the second bearing 60 and larger than the outer diameter of the oil slinger member 80 . Also, for example, the diameter of the outer peripheral edge 44 is larger than the inner diameter of the bearing hole 22 . The bearing retainer plate 40 includes a first end surface 41 and a second end surface 42 in the center axis direction. As described above, the first end face 41 defines the end of the bearing hole 22 in the central axis direction. The first end surface 41 faces the outer side surface 62a of the outer ring 62 in the central axis direction. The second end face 42 is located on the opposite side of the first end face 41 .
 図3を参照して、第1端面41は、案内油溝45と、円周油溝46と、排油面47と、を含む。 Referring to FIG. 3, the first end surface 41 includes a guide oil groove 45, a circumferential oil groove 46, and an oil drain surface 47.
 案内油溝45は、外輪62と軸受孔22との間の隙間と、円周油溝46とを接続し、この隙間のオイルを、円周油溝46に導く。案内油溝45は、中心軸線方向から見て、外輪62の外側面62aの外側から、径方向に沿って内向きに延在する。本実施形態では、案内油溝45は、径方向に沿って概ね直線形状を有する。本実施形態では、案内油溝45は、径方向に沿って延びる中心軸線45aを有する。他の実施形態では、案内油溝45は、側面62aの外側から内向きに延在する限りにおいて、径方向に沿わなくてもよい。すなわち、他の実施形態では、中心軸線45aが、シャフト7の中心軸線に向かって延在しなくてもよい。案内油溝45は、円周油溝46まで延在し、円周油溝46に連結される。 The guide oil groove 45 connects the gap between the outer ring 62 and the bearing hole 22 and the circumferential oil groove 46 and guides the oil in this gap to the circumferential oil groove 46 . The guide oil groove 45 extends radially inward from the outside of the outer surface 62a of the outer ring 62 when viewed from the center axis direction. In this embodiment, the guide oil groove 45 has a generally linear shape along the radial direction. In this embodiment, the guide oil groove 45 has a central axis 45a extending in the radial direction. In other embodiments, the guide oil groove 45 does not have to extend radially as long as it extends inward from the outside of the side surface 62a. That is, in other embodiments, the central axis 45a may not extend toward the central axis of the shaft 7. FIG. The guide oil groove 45 extends to the circumferential oil groove 46 and is connected to the circumferential oil groove 46 .
 案内油溝45は、径方向の最も外側の部分および最も内側の部分を含めて、全体的に、鉛直軸Zに対して、回転方向Rに0度より大きく90度未満の範囲Ar1に位置する。図3において、クロスハッチングされた領域は、範囲Ar1を示す。本実施形態では、中心軸線45aが、鉛直軸Zに対して、回転方向Rに45度に位置する。すなわち、中心軸線45aと鉛直軸Zとの間の角度αは45度である。他の実施形態では、案内油溝45の全体が範囲Ar1に位置する限りにおいて、角度αは、0度より大きく90度未満であり得る。 The guide oil groove 45, including the radially outermost portion and the innermost portion, is positioned in a range Ar1 of greater than 0 degrees and less than 90 degrees in the rotational direction R with respect to the vertical axis Z. . In FIG. 3, the cross-hatched area indicates range Ar1. In this embodiment, the central axis 45a is positioned at 45 degrees in the rotation direction R with respect to the vertical axis Z. As shown in FIG. That is, the angle α between the central axis 45a and the vertical axis Z is 45 degrees. In other embodiments, the angle α can be greater than 0 degrees and less than 90 degrees as long as the entire guide oil groove 45 is positioned within the range Ar1.
 径方向に垂直な断面において、案内油溝45は、半円形状、三角形状または四角形状等の様々な断面形状を有してよい。案内油溝45の幅および深さ等の寸法は、例えば、第2軸受60に供給されるオイルの流量等の因子に応じて決定される。 In a cross section perpendicular to the radial direction, the guide oil groove 45 may have various cross-sectional shapes such as a semicircular shape, a triangular shape, or a square shape. Dimensions such as the width and depth of the guide oil groove 45 are determined according to factors such as the flow rate of the oil supplied to the second bearing 60, for example.
 円周油溝46は、案内油溝45からオイルを受け入れ、受け入れたオイルを円周方向に導く。円周油溝46は、径方向において案内油溝45の内側に位置する。円周油溝46は、案内油溝45に連結される。円周油溝46は、円周方向に沿って延びる。本実施形態では、円周油溝46は、円周方向全体に連続しており、円環形状を有する。本実施形態では、円周油溝46は、内周縁43に対して連続的に形成される。円周油溝46は、下部では、排油面47と一体的に形成される。 The circumferential oil groove 46 receives oil from the guide oil groove 45 and guides the received oil in the circumferential direction. The circumferential oil groove 46 is positioned inside the guide oil groove 45 in the radial direction. The circumferential oil groove 46 is connected to the guide oil groove 45 . The circumferential oil groove 46 extends along the circumferential direction. In this embodiment, the circumferential oil groove 46 is continuous in the entire circumferential direction and has an annular shape. In this embodiment, the circumferential oil groove 46 is formed continuously with respect to the inner peripheral edge 43 . The circumferential oil groove 46 is integrally formed with the oil drain surface 47 at the lower portion.
 図2を参照して、本実施形態では、円周油溝46の外径は、外輪62の外側面62aの内径と同じまたは概ね同じである。他の実施形態では、円周油溝46の外径は、外側面62aの内径よりも小さくてもよく、または、大きくてもよい。 Referring to FIG. 2, in this embodiment, the outer diameter of the circumferential oil groove 46 is the same as or substantially the same as the inner diameter of the outer surface 62a of the outer ring 62. In other embodiments, the outer diameter of the circumferential oil groove 46 may be smaller or larger than the inner diameter of the outer surface 62a.
 図4は、図3中のIV-IV線に沿って得られる概略的な断面図である。本実施形態では、円周油溝46の深さd1は、案内油溝45の深さd2よりも深い。他の実施形態では、円周油溝46の深さd1は、案内油溝45の深さd2と同じであってもよい。円周方向に垂直な断面において、円周油溝46は、概ね長方形状等の様々な断面形状を有してよい。円周油溝46の幅および深さ等の寸法は、例えば、第2軸受60に供給されるオイルの流量等の因子に応じて決定される。 FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. In this embodiment, the depth d1 of the circumferential oil groove 46 is deeper than the depth d2 of the guide oil groove 45. As shown in FIG. In other embodiments, the depth d1 of the circumferential oil groove 46 may be the same as the depth d2 of the guide oil groove 45. In a cross section perpendicular to the circumferential direction, the circumferential oil groove 46 may have various cross-sectional shapes such as a generally rectangular shape. Dimensions such as the width and depth of the circumferential oil groove 46 are determined according to factors such as the flow rate of oil supplied to the second bearing 60, for example.
 排油面47は、第1端面41の下部の領域に設けられる。排油面47は、シャフト7よりも下方のオイルを下壁29に向けて導く。排油面47は、円周油溝46に連続的に形成される。したがって、排油面47の深さは、円周油溝46の深さd2と同じである。 The oil drain surface 47 is provided in the area below the first end surface 41 . The oil drain surface 47 guides oil below the shaft 7 toward the lower wall 29 . The oil drain surface 47 is formed continuously in the circumferential oil groove 46 . Therefore, the depth of the oil drain surface 47 is the same as the depth d2 of the circumferential oil groove 46 .
 図3を参照して、排油面47は、中心軸線方向から見て、シャフト7に同軸の扇型形状を有する。例えば、排油面47は、鉛直軸Zに対して、回転方向に90度以上270度以下の範囲内のみに設けられ得る。つまり、排油面47は、軸受抑え板40の下半分のみに設けられ得る。 Referring to FIG. 3, the oil drain surface 47 has a sector shape coaxial with the shaft 7 when viewed from the central axis direction. For example, the oil drain surface 47 may be provided only within a range of 90 degrees or more and 270 degrees or less with respect to the vertical axis Z in the rotational direction. That is, the oil drain surface 47 can be provided only on the lower half of the bearing retainer plate 40 .
 続いて、側壁30について詳細に説明する。 Next, the sidewall 30 will be described in detail.
 図5は、図2中のV-V線に沿って得られる概略的な断面図であり、ベアリングハウジング2の側壁30を軸受孔22から中心軸線方向に見る。図5では、より良い理解のために、ベアリングハウジング2のみを示す。図5において、第1軸受50の外側面52aの外径が、破線で示される。矢印Rは、シャフト7の回転方向を示す。符号Zは、シャフト7の中心軸線から上方に延びる鉛直軸を示す。 FIG. 5 is a schematic cross-sectional view taken along line V-V in FIG. 2, looking at the side wall 30 of the bearing housing 2 from the bearing hole 22 in the direction of the central axis. In FIG. 5 only the bearing housing 2 is shown for better understanding. In FIG. 5, the outer diameter of the outer side surface 52a of the first bearing 50 is indicated by a dashed line. Arrow R indicates the direction of rotation of shaft 7 . A symbol Z indicates a vertical axis extending upward from the center axis of the shaft 7 .
 上記のように、側壁30は、端面31を含む。本実施形態では、端面31は、円周方向に連続的に形成されており、概ね円環形状を有する。他の実施形態では、端面31の一部が切り欠かれていてもよい。 As mentioned above, the side wall 30 includes an end surface 31 . In this embodiment, the end surface 31 is continuously formed in the circumferential direction and has a generally annular shape. In other embodiments, part of the end surface 31 may be cut out.
 図2を参照して、端面31は、中心軸線方向において、外輪52の外側面52aに対向する。端面31の内径は、外側面52aの内径よりも小さく、かつ、シャフト7の大径部7aの直径よりも大きい。 Referring to FIG. 2, the end surface 31 faces the outer side surface 52a of the outer ring 52 in the central axis direction. The inner diameter of the end surface 31 is smaller than the inner diameter of the outer surface 52 a and larger than the diameter of the large diameter portion 7 a of the shaft 7 .
 図5を参照して、端面31は、案内油溝32を含む。案内油溝32は、外輪52と軸受孔22との間の隙間と、シャフト7周りの空間とを接続し、この隙間のオイルを、シャフト7周りの空間に導く。案内油溝32は、中心軸線方向から見て、外輪52の外側面52aの外側から、径方向に沿って内向きに延在する。本実施形態では、案内油溝32は、径方向に沿って延びる中心軸線32aを有する。他の実施形態では、案内油溝32は、側面52aの外側から内向きに延在する限りにおいて、径方向に沿わなくてもよい。すなわち、他の実施形態では、中心軸線32aは、シャフト7の中心軸線に向かって延在しなくてもよい。 With reference to FIG. 5, the end surface 31 includes a guide oil groove 32. The guide oil groove 32 connects the gap between the outer ring 52 and the bearing hole 22 and the space around the shaft 7 and guides the oil in this gap to the space around the shaft 7 . The guide oil groove 32 extends radially inward from the outside of the outer surface 52a of the outer ring 52 when viewed from the center axis direction. In this embodiment, the guide oil groove 32 has a central axis 32a extending in the radial direction. In other embodiments, the guide oil groove 32 does not have to extend radially as long as it extends inward from the outside of the side surface 52a. That is, in other embodiments, the central axis 32a may not extend toward the central axis of the shaft 7.
 案内油溝32は、径方向の最も外側の部分および最も内側の部分を含めて、全体的に、鉛直軸Zに対して、回転方向Rに0度より大きく90度未満の範囲Ar2に位置する。図5において、クロスハッチングされた領域は、範囲Ar2を示す。本実施形態では、中心軸線32aが、鉛直軸Zに対して、回転方向Rに45度に位置する。すなわち、中心軸線32aと鉛直軸Zとの間の角度βは45度である。他の実施形態では、案内油溝32の全体が範囲Ar2に位置する限りにおいて、角度αは、0度より大きく90度未満であり得る。 The guide oil groove 32, including the radially outermost portion and the innermost portion, is positioned in a range Ar2 of greater than 0 degrees and less than 90 degrees in the rotational direction R with respect to the vertical axis Z. . In FIG. 5, the cross-hatched area indicates range Ar2. In this embodiment, the center axis 32a is positioned at 45 degrees in the rotation direction R with respect to the vertical axis Z. As shown in FIG. That is, the angle β between the central axis 32a and the vertical axis Z is 45 degrees. In other embodiments, the angle α can be greater than 0 degrees and less than 90 degrees as long as the entire guide oil groove 32 is positioned within the range Ar2.
 径方向に垂直な断面において、案内油溝32は、概ね四角形状または円弧形状等の様々な断面形状を有してよい。案内油溝32の幅および深さ等の寸法は、例えば、第1軸受50に供給されるオイルの流量等の因子に応じて決定される。例えば、タービンインペラ8は、高温の排ガスを受けるため、第1軸受50の周辺の構成要素は、高温に晒される。したがって、より高流量のオイルを提供するべく、案内油溝32のサイズは、軸受抑え板40の案内油溝45のサイズよりも大きい。 In a cross-section perpendicular to the radial direction, the guide oil groove 32 may have various cross-sectional shapes such as a generally rectangular shape or an arc shape. Dimensions such as the width and depth of the guide oil groove 32 are determined according to factors such as the flow rate of the oil supplied to the first bearing 50, for example. For example, the turbine impeller 8 receives high-temperature exhaust gas, so components around the first bearing 50 are exposed to high temperatures. Therefore, the size of the guide oil groove 32 is larger than the size of the guide oil groove 45 of the bearing retainer plate 40 to provide a higher oil flow rate.
 図2を参照して、上記のような過給機TCでは、オイルが貫通孔25からメイン油路23に供給されると、オイルは、第2油路27から、第2軸受60の外輪62の外周面62cと、軸受孔22との間の隙間に流れる。オイルは、この隙間から、外側面62aおよび内側面62bを経由して、シャフト7周りの空間に供給される。このような構成によって、オイルが内輪61と外輪62との間の空間に供給される。 Referring to FIG. 2 , in the turbocharger TC as described above, when oil is supplied from the through hole 25 to the main oil passage 23 , the oil flows from the second oil passage 27 to the outer ring 62 of the second bearing 60 . and the bearing hole 22. Oil is supplied to the space around the shaft 7 from this gap via the outer surface 62a and the inner surface 62b. With such a configuration, oil is supplied to the space between the inner ring 61 and the outer ring 62 .
 図3を参照して、特に、外輪62の外側面62aが軸受抑え板40の第1端面41に接触する場合、オイルは、軸受抑え板40の案内油溝45を通って、シャフト7周りの空間に供給される。上記のように、案内油溝45は、全体的に、鉛直軸Zに対して、回転方向Rに0度より大きく90度未満の範囲Ar1に位置する。したがって、オイルは、範囲Ar1において、シャフト7周りの空間に供給される。この場合、重力およびシャフト7からの回転力の双方が、オイルに下向きに作用する。よって、オイルは、排油孔29aを含む下壁29に向かって、下方に素早く流れる。したがって、オイルを効率よく排出方向に導くことができる。 Referring to FIG. 3 , particularly when the outer surface 62 a of the outer ring 62 contacts the first end surface 41 of the bearing retainer plate 40 , the oil passes through the guide oil groove 45 of the bearing retainer plate 40 and flows around the shaft 7 . supplied to the space. As described above, the guide oil groove 45 is generally positioned in the range Ar1 of greater than 0 degrees and less than 90 degrees with respect to the vertical axis Z in the rotational direction R. Oil is therefore supplied to the space around the shaft 7 in the range Ar1. In this case, both gravity and rotational forces from shaft 7 act downward on the oil. Therefore, the oil quickly flows downward toward the lower wall 29 including the oil drain hole 29a. Therefore, the oil can be efficiently guided in the discharge direction.
 また、図2を参照して、コンプレッサインペラ9に近い軸受抑え板40と油切り部材80との間の隙間は、タービンインペラ8に近い側壁30とシャフト7の大径部7aとの間の空間に比べて、より小さい。軸受抑え板40と油切り部材80との間のこのような小さい隙間の周りにおいて、オイルが効率よく排出方向に導かれるため、隙間へのオイル漏れが低減される。例えば、小型化のために軸受孔22とコンプレッサインペラ9との間の距離が短縮化される場合、軸受孔22からコンプレッサインペラ9の収容空間へのオイル漏れが問題になり得る。上記のような構成によれば、このようなオイル漏れを低減することができる。 Further, referring to FIG. 2 , the gap between the bearing retainer plate 40 near the compressor impeller 9 and the oil slinger member 80 is the space between the side wall 30 near the turbine impeller 8 and the large diameter portion 7 a of the shaft 7 . smaller than Around such a small gap between the bearing restraining plate 40 and the oil slinger member 80, the oil is efficiently guided in the discharge direction, so oil leakage into the gap is reduced. For example, when the distance between the bearing hole 22 and the compressor impeller 9 is shortened for size reduction, oil leakage from the bearing hole 22 to the accommodation space of the compressor impeller 9 may become a problem. According to the configuration as described above, such oil leakage can be reduced.
 また、オイルが貫通孔25からメイン油路23に供給されると、オイルは、第1油路26から、第1軸受50の外輪52の外周面52cと、軸受孔22との間の隙間に流れる。オイルは、この隙間から、外側面52aおよび内側面52bを経由して、シャフト7周りの空間に流れる。このような構成によって、オイルが内輪51と外輪52との間の空間、および、側壁30とシャフト7の大径部7aとの間の空間に供給される。 Further, when oil is supplied from the through hole 25 to the main oil passage 23, the oil flows from the first oil passage 26 into the gap between the outer peripheral surface 52c of the outer ring 52 of the first bearing 50 and the bearing hole 22. flow. From this gap, the oil flows into the space around the shaft 7 via the outer surface 52a and the inner surface 52b. With such a configuration, oil is supplied to the space between the inner ring 51 and the outer ring 52 and the space between the side wall 30 and the large diameter portion 7 a of the shaft 7 .
 図5を参照して、特に、外輪52の外側面52aが側壁30の端面31に接触する場合、オイルは、側壁30の案内油溝32を通って、シャフト7周りの空間に供給される。上記のように、案内油溝32は、全体的に、鉛直軸Zに対して、回転方向Rに0度より大きく90度未満の範囲Ar2に位置する。したがって、オイルは、範囲Ar2においてシャフト7周りの空間に供給される。この場合、重力およびシャフト7からの回転力の双方が、オイルに下向きに作用する。よって、オイルは、排油孔29aを含む下壁29に向かって、下方に素早く流れる。したがって、オイルを効率よく排出方向に導くことができる。 Referring to FIG. 5 , particularly when the outer surface 52 a of the outer ring 52 contacts the end surface 31 of the side wall 30 , oil is supplied to the space around the shaft 7 through the guide oil groove 32 of the side wall 30 . As described above, the guide oil groove 32 is positioned in the range Ar2, which is greater than 0 degrees and less than 90 degrees with respect to the vertical axis Z, in the rotational direction R as a whole. Oil is therefore supplied to the space around the shaft 7 in the range Ar2. In this case, both gravity and rotational forces from shaft 7 act downward on the oil. Therefore, the oil quickly flows downward toward the lower wall 29 including the oil drain hole 29a. Therefore, the oil can be efficiently guided in the discharge direction.
 以上のような過給機TCは、シャフト7と、シャフト7に取り付けられる内輪61と、内輪61の周りに配置される外輪62と、を有する第2軸受60と、外輪62の外側面62aに対向する第1端面41を含む軸受抑え板40であって、第1端面41は、シャフト7の中心軸線方向から見て、外輪62の外側面62aの外側から内向きに延びる案内油溝45を含み、案内油溝45の全体が、シャフト7の中心軸線から上方に延びる鉛直軸Zに対して、シャフト7の回転方向Rに0度より大きく90度未満の範囲Ar1内に位置する、軸受抑え板40と、を備える。このような構成によれば、上記のように、案内油溝45を通してシャフト7周りの空間に供給されるオイルに対して、重力および回転力の双方が下向きに作用する。したがって、オイルは、下方に向かって素早く流れる。通常、オイルの排油孔29aは、過給機TCの下部に設けられる。よって、オイルを効率よく排出方向に導くことができる。 The turbocharger TC as described above includes a second bearing 60 having a shaft 7, an inner ring 61 attached to the shaft 7, and an outer ring 62 arranged around the inner ring 61, and an outer surface 62a of the outer ring 62. A bearing retainer plate 40 including first end faces 41 facing each other, the first end faces 41 forming guide oil grooves 45 extending inwardly from the outside of the outer surface 62 a of the outer ring 62 when viewed from the direction of the central axis of the shaft 7 . and the entire guide oil groove 45 is positioned within a range Ar1 greater than 0 degrees and less than 90 degrees in the rotational direction R of the shaft 7 with respect to the vertical axis Z extending upward from the central axis of the shaft 7. a plate 40; According to such a configuration, as described above, both gravitational force and rotational force act downward on the oil supplied to the space around the shaft 7 through the guide oil groove 45 . Therefore, the oil quickly flows downward. Normally, the oil drain hole 29a is provided in the lower part of the supercharger TC. Therefore, the oil can be efficiently guided in the discharge direction.
 また、過給機TCは、第2軸受60を収容する軸受孔22を含むベアリングハウジング2と、軸受孔22の外側においてシャフト7に設けられるコンプレッサインペラ9と、を備え、軸受抑え板40は、軸受孔22とコンプレッサインペラ9との間に配置される。上記のように、例えば、小型化のために軸受孔22とコンプレッサインペラ9との間の距離が短縮化される場合、軸受孔22からコンプレッサインペラ9の収容空間へのオイル漏れが問題になり得る。上記のような構成によれば、軸受抑え板40と油切り部材80との間の隙間の周辺において、オイルが効率よく排出方向に導かれるため、軸受孔22から隙間へのオイル漏れが低減される。よって、オイル漏れを低減することができる。 In addition, the supercharger TC includes a bearing housing 2 including a bearing hole 22 that accommodates the second bearing 60, and a compressor impeller 9 that is provided on the shaft 7 outside the bearing hole 22. It is arranged between the bearing hole 22 and the compressor impeller 9 . As described above, for example, when the distance between the bearing hole 22 and the compressor impeller 9 is shortened for size reduction, oil leakage from the bearing hole 22 to the accommodation space of the compressor impeller 9 may become a problem. . According to the configuration as described above, since the oil is efficiently guided in the discharge direction in the vicinity of the gap between the bearing restraining plate 40 and the oil slinger member 80, oil leakage from the bearing hole 22 into the gap is reduced. be. Therefore, oil leakage can be reduced.
 また、過給機TCでは、案内油溝45は、シャフト7の径方向に沿って延在する中心軸線45aを有し、中心軸線45aは、鉛直軸Zに対して、シャフト7の回転方向Rに45度に位置する。オイルをより素早く下方に導くためには、オイルは、範囲Ar1内において、より下方の位置に供給されることが好ましい。しかしながら、内輪61と外輪62との間に円周方向に均一にオイルを供給するためには、オイルは、範囲Ar1内において、より上方の位置から供給されることが望ましい。上記の構成によれば、オイルは、範囲Ar1の中間位置の45度からシャフト7周りに供給される。したがって、オイルを下方に素早く導くことと、円周方向に均一にオイルを供給することとの間のより良いバランスを取ることができる。 Further, in the turbocharger TC, the guide oil groove 45 has a central axis 45a extending along the radial direction of the shaft 7, and the central axis 45a extends in the rotational direction R of the shaft 7 with respect to the vertical axis Z. is located at 45 degrees to . In order to lead the oil downward more quickly, the oil is preferably supplied to a lower position within the range Ar1. However, in order to uniformly supply oil between the inner ring 61 and the outer ring 62 in the circumferential direction, it is desirable that the oil be supplied from a higher position within the range Ar1. According to the above configuration, the oil is supplied around the shaft 7 from the intermediate position of 45 degrees in the range Ar1. Thus, a better balance can be struck between directing the oil downwards quickly and supplying the oil evenly in the circumferential direction.
 同様に、過給機TCは、シャフト7と、シャフト7に取り付けられる内輪51と、内輪51の周りに配置される外輪52と、を有する第1軸受50と、外輪52の外側面52aに対向する端面31を含む側壁30であって、端面31は、シャフト7の中心軸線方向から見て、外輪52の外側面52aの外側から内向きに延びる案内油溝32を含み、案内油溝32の全体が、シャフト7の中心軸線から上方に延びる鉛直軸Zに対して、シャフト7の回転方向Rに0度より大きく90度未満の範囲Ar1内に位置する、側壁30と、を備える。このような構成によれば、上記のように、案内油溝45を通してシャフト7周りの空間に供給されるオイルに対して、重力および回転力の双方が下向きに作用する。したがって、オイルは、下方に向かって素早く流れる。通常、オイルの排油孔29aは、過給機TCの下部に設けられる。よって、オイルを効率よく排出方向に導くことができる。 Similarly, the turbocharger TC includes a first bearing 50 having a shaft 7, an inner ring 51 attached to the shaft 7, and an outer ring 52 arranged around the inner ring 51, and an outer side surface 52a of the outer ring 52. The end surface 31 includes a guide oil groove 32 extending inwardly from the outside of the outer surface 52a of the outer ring 52 when viewed from the center axis direction of the shaft 7. and a side wall 30 located within a range Ar1 larger than 0 degrees and smaller than 90 degrees in the rotational direction R of the shaft 7 with respect to the vertical axis Z extending upward from the center axis of the shaft 7 . According to such a configuration, as described above, both gravitational force and rotational force act downward on the oil supplied to the space around the shaft 7 through the guide oil groove 45 . Therefore, the oil quickly flows downward. Normally, the oil drain hole 29a is provided in the lower part of the supercharger TC. Therefore, the oil can be efficiently guided in the discharge direction.
 また、過給機TCは、第1軸受50を収容する軸受孔22を含むベアリングハウジング2と、軸受孔22の外側においてシャフト7に設けられるタービンインペラ8と、を備え、鉛直方向に対して傾けられた案内油溝32を含む上記の側壁30は、軸受孔22とタービンインペラ8との間に配置される。タービンインペラ8は、高温の排気ガスに晒される。鉛直方向に対して傾けられた案内油溝32を側壁30に含む上記の構成によれば、上述のように、オイルを効率よく排出方向に導くことができるため、熱を吸収したオイルを素早くタービンインペラ8近くの空間から排出することができる。したがって、冷却効率を向上することができる。 Further, the turbocharger TC includes a bearing housing 2 including a bearing hole 22 that accommodates the first bearing 50, and a turbine impeller 8 that is provided on the shaft 7 outside the bearing hole 22. Said side wall 30 including the grooved guide oil groove 32 is arranged between the bearing bore 22 and the turbine impeller 8 . The turbine impeller 8 is exposed to hot exhaust gases. According to the above-described configuration including the guide oil groove 32 inclined with respect to the vertical direction in the side wall 30, as described above, the oil can be efficiently guided in the discharge direction, so that the heat-absorbed oil can be quickly discharged into the turbine. It can be discharged from the space near the impeller 8. Therefore, cooling efficiency can be improved.
 また、過給機TCでは、案内油溝32は、シャフト7の径方向に沿って延在する中心軸線32aを有し、中心軸線32aは、鉛直軸Zに対して、シャフト7の回転方向Rに45度に位置する。したがって、上記と同様な理由によって、オイルを下方に素早く導くことと、円周方向に均一にオイルを供給することとの間のより良いバランスを取ることができる。 Further, in the turbocharger TC, the guide oil groove 32 has a central axis 32a extending along the radial direction of the shaft 7, and the central axis 32a extends in the rotational direction R of the shaft 7 with respect to the vertical axis Z. is located at 45 degrees to . Therefore, for the same reasons as above, a better balance can be struck between directing the oil downwards quickly and supplying the oil uniformly in the circumferential direction.
 続いて、他の実施形態に係る軸受抑え板について説明する。 Next, a bearing retainer plate according to another embodiment will be described.
 図6は、他の実施形態に係る軸受抑え板90を示す概略的な平面図である。図7は、図6中のVII-VII線に沿って得られる概略的な断面図である。図6を参照して、軸受抑え板90は、突起48を含む点で、上記の軸受抑え板40と異なる。他の点については、軸受抑え板90は、軸受抑え板40と同じであってもよい。 FIG. 6 is a schematic plan view showing a bearing retainer plate 90 according to another embodiment. FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. Referring to FIG. 6, bearing restraining plate 90 differs from bearing restraining plate 40 described above in that projections 48 are included. In other respects, the bearing retainer plate 90 may be the same as the bearing retainer plate 40 .
 突起48は、径方向において円周油溝46の内側に位置する。すなわち、本実施形態では、円周油溝46は、突起48によって内周縁43から離間される。本実施形態では、突起48は、円周方向全体に沿って連続的に延びる。すなわち、本実施形態では、突起48は、円環形状を有する。他の実施形態では、例えば、突起48は、鉛直軸Zに対して、回転方向Rに-90度以上90度以下の範囲内のみに設けられてもよい。すなわち、他の実施形態では、突起48は、軸受抑え板40の上半分のみに設けられてもよい。 The projection 48 is located inside the circumferential oil groove 46 in the radial direction. That is, in this embodiment, the circumferential oil groove 46 is separated from the inner peripheral edge 43 by the protrusion 48 . In this embodiment, the protrusions 48 extend continuously along the entire circumference. That is, in this embodiment, the projection 48 has an annular shape. In another embodiment, for example, the protrusion 48 may be provided only within a range of -90 degrees or more and 90 degrees or less in the rotation direction R with respect to the vertical axis Z. That is, in other embodiments, the projections 48 may be provided only on the upper half of the bearing retainer plate 40 .
 図7を参照して、突起48は、円周油溝46から第2軸受60に向かって、中心軸線方向に突出する。突起48の高さに関して、例えば、突起48は、第1端面41と面一であってもよい。 With reference to FIG. 7, the protrusion 48 protrudes from the circumferential oil groove 46 toward the second bearing 60 in the central axis direction. Regarding the height of the protrusion 48 , for example, the protrusion 48 may be flush with the first end surface 41 .
 上記のような軸受抑え板90を備える過給機TCは、軸受抑え板40を備える過給機TCと概ね同じ効果を奏し得る。 The turbocharger TC including the bearing restraining plate 90 as described above can achieve substantially the same effects as the turbocharger TC including the bearing restraining plate 40.
 特に、軸受抑え板90の第1端面41は、径方向において案内油溝45の内側に位置しかつ案内油溝45に連結される円周油溝46であって、円周方向に沿って延びる、円周油溝46と、径方向において円周油溝46の内側に位置しかつ中心軸線方向に突出する突起48と、を含む。このような構成によれば、軸受抑え板90と油切り部材80との間の隙間へのオイル漏れを、突起48によって低減することができる。したがって、オイル漏れを低減することができる。また、突起48によって、オイルを内輪61と外輪62との間の空間に効率よく導くことができる。したがって第2軸受60の潤滑を向上することができる。 In particular, the first end surface 41 of the bearing retainer plate 90 is a circumferential oil groove 46 located inside the guide oil groove 45 in the radial direction and connected to the guide oil groove 45, and extends along the circumferential direction. , a circumferential oil groove 46, and a projection 48 positioned radially inside the circumferential oil groove 46 and projecting in the central axis direction. With such a configuration, the projection 48 can reduce oil leakage into the gap between the bearing restraining plate 90 and the oil slinger member 80 . Therefore, oil leakage can be reduced. Moreover, the projections 48 can efficiently guide the oil to the space between the inner ring 61 and the outer ring 62 . Therefore, the lubrication of the second bearing 60 can be improved.
 続いて、オイル漏れの評価について説明する。 Next, we will explain the evaluation of oil leakage.
 図8は、オイル漏れの評価結果を示すグラフである。図8の評価では、過給機TCにおいて、以下の4種類の軸受抑え板を使用した。 FIG. 8 is a graph showing the evaluation results of oil leakage. In the evaluation of FIG. 8, the following four types of bearing restraining plates were used in the supercharger TC.
 比較例1:案内油溝45が鉛直軸Zに対して回転方向Rに0度に位置する。
      すなわち、案内油溝45が鉛直軸Z上に位置する。
      その他の点については、軸受抑え板40と同じである。
      突起は設けられていない。
Comparative Example 1: The guide oil groove 45 is positioned at 0 degrees in the rotation direction R with respect to the vertical axis Z.
That is, the guide oil groove 45 is positioned on the vertical axis Z.
Other points are the same as those of the bearing restraining plate 40 .
No protrusion is provided.
 比較例2:案内油溝45が鉛直軸Zに対して回転方向Rに0度に位置する。
      すなわち、案内油溝45が鉛直軸Z上に位置する。
      その他の点については、軸受抑え板90と同じである。
      突起が設けられている。
Comparative Example 2: The guide oil groove 45 is positioned at 0 degrees in the rotation direction R with respect to the vertical axis Z.
That is, the guide oil groove 45 is positioned on the vertical axis Z.
Other points are the same as those of the bearing restraining plate 90 .
A protrusion is provided.
 実施例1:案内油溝45が鉛直軸Zに対して回転方向Rに60度に位置する。
      突起が設けられている。
Example 1: The guide oil groove 45 is located at 60 degrees in the rotation direction R with respect to the vertical axis Z.
A protrusion is provided.
 実施例2:案内油溝45が鉛直軸Zに対して回転方向Rに45度に位置する。
      突起が設けられている。
Example 2: The guide oil groove 45 is positioned at 45 degrees to the vertical axis Z in the rotational direction R.
A protrusion is provided.
 4種類の軸受抑え板の各々を使用して、以下のような評価を実施した。 The following evaluations were carried out using each of the four types of bearing retainer plates.
 シャフト7を、複数の回転数で回転させた。複数の回転数の各々において、オイルポンプから過給機TCに、オイルを複数の流量で供給した。軸受抑え板と油切り部材との間の隙間からのオイル漏れが確認されたときの流量を測定した。各回転数におけるオイル漏れが確認されたときの流量について、比較例1の流量に対する、4種類の軸受抑え板の各々の流量の割合を算出した。算出された値が、図8の縦軸の「改善率」として示される。改善率が1より大きい場合、比較例1に対して、オイル漏れは低減される。対照的に、改善率が1より小さい場合、比較例1に対して、オイル漏れは増大する。実線は、比較例1に対する比較例1の改善率を示し、したがって、常に1を示す。二点鎖線は、比較例1に対する比較例2の改善率を示す。破線は、比較例1に対する実施例1の改善率を示す。一点鎖線は比較例1に対する、実施例2の改善率を示す。 The shaft 7 was rotated at multiple rotation speeds. Oil was supplied from the oil pump to the supercharger TC at a plurality of flow rates at each of a plurality of rotational speeds. The flow rate was measured when oil leakage from the gap between the bearing retainer plate and the oil slinger was confirmed. Regarding the flow rate when oil leakage was confirmed at each rotational speed, the ratio of the flow rate of each of the four types of bearing restraining plates to the flow rate of Comparative Example 1 was calculated. The calculated value is indicated as "improvement rate" on the vertical axis of FIG. When the improvement rate is greater than 1, oil leakage is reduced relative to Comparative Example 1. In contrast, when the improvement rate is less than 1, oil leakage increases relative to Comparative Example 1. The solid line indicates the percent improvement of Comparative Example 1 over Comparative Example 1 and therefore always indicates 1. A two-dot chain line indicates the improvement rate of Comparative Example 2 with respect to Comparative Example 1. The dashed line indicates the improvement rate of Example 1 with respect to Comparative Example 1. A dashed-dotted line indicates the improvement rate of Example 2 with respect to Comparative Example 1.
 潤滑は、高回転数領域において問題となり得るため、オイル漏れも高回転数領域において問題となり得る。このため、高回転数領域における改善率について着目する。  Lubrication can be a problem in the high rpm range, so oil leakage can also be a problem in the high rpm range. Therefore, attention is paid to the improvement rate in the high rotational speed region.
 比較例1および比較例2を比較することによって、突起がオイル漏れの低減に貢献するか否かがわかる。図8から明確にわかるように、比較例2の改善率は、1よりも大きい。したがって、突起がオイル漏れの低減に貢献することがわかる。 By comparing Comparative Examples 1 and 2, it can be seen whether or not the projections contribute to the reduction of oil leakage. As can be clearly seen from FIG. 8, the improvement rate of Comparative Example 2 is greater than one. Therefore, it can be seen that the projection contributes to the reduction of oil leakage.
 比較例2、実施例1および実施例2を比較することによって、案内油溝45を回転方向に傾けることが、オイル漏れの低減に貢献するか否かがわかる。図8から明確にわかるように、実施例1の改善率は、比較例2の改善率よりも高い。また、実施例2の改善率は、比較例2の改善率よりも高い。したがって、案内油溝45を回転方向に傾けることが、オイル漏れの低減に貢献することがわかる。また、実施例2の改善率は、実施例1の改善率と略同じである。したがって、案内油溝45を45度より大きく傾けても、改善率は、案内油溝45を45度傾ける場合と略同じであることがわかる。よって、案内油溝45を45度傾ければ、オイル漏れを充分に低減し得ることがわかる。 By comparing Comparative Example 2, Example 1, and Example 2, it can be seen whether or not inclining the guide oil groove 45 in the rotational direction contributes to reducing oil leakage. As can be clearly seen from FIG. 8, the improvement rate of Example 1 is higher than the improvement rate of Comparative Example 2. Moreover, the improvement rate of Example 2 is higher than the improvement rate of Comparative Example 2. Therefore, it can be seen that inclining the guide oil groove 45 in the rotational direction contributes to the reduction of oil leakage. Further, the improvement rate of Example 2 is substantially the same as the improvement rate of Example 1. Therefore, even if the guide oil groove 45 is inclined by more than 45 degrees, the improvement rate is substantially the same as when the guide oil groove 45 is inclined by 45 degrees. Therefore, it can be seen that the oil leakage can be sufficiently reduced by inclining the guide oil groove 45 by 45 degrees.
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments have been described above with reference to the accompanying drawings, the present disclosure is not limited to the above embodiments. It is clear that a person skilled in the art can conceive of various modifications or modifications within the scope of the claims, and it is understood that these also belong to the technical scope of the present disclosure. be done.
 例えば、上記の実施形態では、過給機TCは、軸受孔22に、中心軸線方向に離隔して2つの転がり軸受50,60を備える。しかしながら、他の実施形態では、過給機TCは、3つ以上の転がり軸受を備えてもよい。 For example, in the above embodiment, the turbocharger TC includes two rolling bearings 50, 60 in the bearing hole 22, spaced apart in the central axis direction. However, in other embodiments the supercharger TC may comprise more than two rolling bearings.
 上記の実施形態では、外輪52、62は、ベアリングハウジング2に対して回転可能である。しかしながら、他の実施形態では、外輪52、62は、ベアリングハウジング2に対して回転方向に固定されてもよい。 In the above embodiment, the outer rings 52, 62 are rotatable with respect to the bearing housing 2. However, in other embodiments the outer rings 52 , 62 may be rotationally fixed with respect to the bearing housing 2 .
 上記の実施形態では、一対の転がり軸受50,60は、アンギュラベアリングであって、正面組み合わせである。しかしながら、他の実施形態では、転がり軸受は、アンギュラベアリング以外の転がり軸受(例えば、深溝玉軸受または自動調心玉軸受)であってもよい。また、一対の転がり軸受50,60は、背面組み合わせであってもよい。 In the above embodiment, the pair of rolling bearings 50, 60 are angular bearings and face-to-face. However, in other embodiments, the rolling bearings may be rolling bearings other than angular bearings (eg, deep groove ball bearings or self-aligning ball bearings). Also, the pair of rolling bearings 50 and 60 may be a back-to-back combination.
 本開示は、吸気へのオイル漏れを低減して、排気ガスの清浄化を促進することができるので、国際連合が主導する持続可能な開発目標(SDGs)の目標13「気候変動とその影響に立ち向かうため、緊急対策を取る」に貢献することが可能となる。 Since the present disclosure can reduce oil leakage into the intake and promote cleaner exhaust gas, the United Nations Sustainable Development Goals (SDGs) Goal 13 "Climate change and its impacts It will be possible to contribute to "taking emergency measures to confront".
 2    ベアリングハウジング
 7    シャフト
 8    タービンインペラ
 9    コンプレッサインペラ
 22   軸受孔
 30   側壁(規制部材)
 31   端面
 32   案内油溝
 32a  中心軸線
 40   軸受抑え板(規制部材)
 41   第1端面
 45   案内油溝
 45a  中心軸線
 46   円周油溝
 48   突起
 50   第1軸受(転がり軸受)
 51   内輪
 52   外輪
 52a  外側面(側面)
 60   第2軸受(転がり軸受)
 61   内輪
 62   外輪
 62a  外側面(側面)
 90   軸受抑え板(規制部材)
 R    回転方向
 TC   過給機
 Z    鉛直軸
2 bearing housing 7 shaft 8 turbine impeller 9 compressor impeller 22 bearing hole 30 side wall (restricting member)
31 end face 32 guide oil groove 32a central axis 40 bearing restraining plate (restricting member)
41 First end surface 45 Guide oil groove 45a Center axis 46 Circumferential oil groove 48 Protrusion 50 First bearing (rolling bearing)
51 inner ring 52 outer ring 52a outer surface (side surface)
60 Second bearing (rolling bearing)
61 inner ring 62 outer ring 62a outer surface (side surface)
90 bearing restraining plate (restricting member)
R Direction of rotation TC Turbocharger Z Vertical axis

Claims (5)

  1.  シャフトと、
     前記シャフトに取り付けられる内輪と、前記内輪の周りに配置される外輪と、を有する転がり軸受と、
     前記外輪の側面に対向する端面を含む規制部材であって、前記端面は、前記シャフトの中心軸線方向から見て、前記外輪の前記側面の外側から内向きに延びる案内油溝を含み、前記案内油溝の全体が、前記シャフトの中心軸線から上方に延びる鉛直軸に対して、前記シャフトの回転方向に0度より大きく90度未満の範囲に位置する、規制部材と、
     を備える、過給機。
    a shaft;
    a rolling bearing having an inner ring attached to the shaft and an outer ring arranged around the inner ring;
    A regulating member including an end surface facing a side surface of the outer ring, the end surface including a guide oil groove extending inwardly from the outside of the side surface of the outer ring when viewed from the axial direction of the shaft. a regulating member in which the entire oil groove is positioned in a range of greater than 0 degrees and less than 90 degrees in the rotational direction of the shaft with respect to a vertical axis extending upward from the central axis of the shaft;
    A supercharger.
  2.  前記転がり軸受を収容する軸受孔を含むハウジングと、
     前記軸受孔の外側において前記シャフトに設けられるコンプレッサインペラと、
     を更に備え、
     前記規制部材は、前記軸受孔と前記コンプレッサインペラとの間に配置される、請求項1に記載の過給機。
    a housing including a bearing hole that accommodates the rolling bearing;
    a compressor impeller provided on the shaft outside the bearing hole;
    further comprising
    2. The turbocharger according to claim 1, wherein said restricting member is arranged between said bearing hole and said compressor impeller.
  3.  前記規制部材の前記端面は、
     前記シャフトの径方向において前記案内油溝の内側に位置し、かつ、前記案内油溝に連結される円周油溝であって、前記シャフトの円周方向に沿って延びる、円周油溝と、
     前記シャフトの径方向において前記円周油溝の内側に位置し、かつ、前記シャフトの中心軸線方向に突出する突起と、
     を含む、請求項2に記載の過給機。
    The end surface of the regulating member is
    a circumferential oil groove located inside the guide oil groove in the radial direction of the shaft and connected to the guide oil groove, the oil groove extending along the circumferential direction of the shaft; ,
    a projection located inside the circumferential oil groove in the radial direction of the shaft and protruding in the direction of the central axis of the shaft;
    3. A supercharger according to claim 2, comprising:
  4.  前記転がり軸受を収容する軸受孔を含むハウジングと、
     前記軸受孔の外側において前記シャフトに設けられるタービンインペラと、
     を更に備え、
     前記規制部材は、前記軸受孔と前記タービンインペラとの間に配置される、請求項1に記載の過給機。
    a housing including a bearing hole that accommodates the rolling bearing;
    a turbine impeller mounted on the shaft outside the bearing hole;
    further comprising
    The turbocharger according to claim 1, wherein said regulating member is arranged between said bearing hole and said turbine impeller.
  5.  前記案内油溝は、前記シャフトの径方向に沿って延在する中心軸線を有し、
     前記案内油溝の前記中心軸線は、前記鉛直軸に対して、前記シャフトの回転方向に45度に位置する、請求項1から4のいずれか一項に記載の過給機。
    The guide oil groove has a central axis extending along the radial direction of the shaft,
    The supercharger according to any one of claims 1 to 4, wherein the central axis of the guide oil groove is positioned at 45 degrees with respect to the vertical axis in the direction of rotation of the shaft.
PCT/JP2021/046602 2021-04-23 2021-12-16 Supercharger WO2022224491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021073664 2021-04-23
JP2021-073664 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022224491A1 true WO2022224491A1 (en) 2022-10-27

Family

ID=83722262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046602 WO2022224491A1 (en) 2021-04-23 2021-12-16 Supercharger

Country Status (1)

Country Link
WO (1) WO2022224491A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043137U (en) * 1983-09-01 1985-03-27 石川島播磨重工業株式会社 Lubricating device for turbocharger bearings
JPH0571537A (en) * 1991-09-12 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Floating bushing
US20170328273A1 (en) * 2016-05-13 2017-11-16 Honeywell International Inc. Turbocharger assembly
WO2020021908A1 (en) * 2018-07-27 2020-01-30 株式会社Ihi Bearing structure and turbocharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043137U (en) * 1983-09-01 1985-03-27 石川島播磨重工業株式会社 Lubricating device for turbocharger bearings
JPH0571537A (en) * 1991-09-12 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Floating bushing
US20170328273A1 (en) * 2016-05-13 2017-11-16 Honeywell International Inc. Turbocharger assembly
WO2020021908A1 (en) * 2018-07-27 2020-01-30 株式会社Ihi Bearing structure and turbocharger

Similar Documents

Publication Publication Date Title
US8016554B2 (en) Combination hydrodynamic and rolling bearing system
US7351042B2 (en) Structure of scroll of variable-throat exhaust turbocharger and method for manufacturing the turbocharger
US4358253A (en) Turbocharger for use in an internal combustion engine
US11608833B2 (en) Centrifugal compressor and air conditioning equipment
US9074687B2 (en) Sealing device for turbocharger
US10677287B2 (en) Bearing structure and turbocharger
US11441602B2 (en) Bearing structure and turbocharger
WO2012090724A1 (en) Turbine scroll structure
US5967762A (en) Turbocharger for high performance internal combustion engines
US5639096A (en) Oil film cooled face seal
US10408260B2 (en) Bearing structure and turbocharger
KR100297572B1 (en) Positioning drive mechanism for variable pipe diffuser with backlash adjustment mechanism
WO2017203880A1 (en) Bearing and supercharger
JPWO2017082166A1 (en) Bearing structure and turbocharger
KR102594426B1 (en) Turbocharger with gas and liquid flow paths
WO2022224491A1 (en) Supercharger
WO2022224492A1 (en) Supercharger
JP7315019B2 (en) Cooling structure and supercharger
CN117006045A (en) Anti-rotation mechanism for scroll compressor and scroll compressor
KR20200122496A (en) Thrust Support Apparatus
JP2019178756A (en) Bearing structure and supercharger
US12018714B2 (en) Multilobe bearing
US20230193812A1 (en) Radial turbine with vtg guide grid
US11187267B2 (en) Bearing structure
WO2024038492A1 (en) Supercharger seal structure and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937981

Country of ref document: EP

Kind code of ref document: A1