WO2022224379A1 - Impeller and centrifugal blower - Google Patents

Impeller and centrifugal blower Download PDF

Info

Publication number
WO2022224379A1
WO2022224379A1 PCT/JP2021/016185 JP2021016185W WO2022224379A1 WO 2022224379 A1 WO2022224379 A1 WO 2022224379A1 JP 2021016185 W JP2021016185 W JP 2021016185W WO 2022224379 A1 WO2022224379 A1 WO 2022224379A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
outer diameter
main plate
motor
projecting portion
Prior art date
Application number
PCT/JP2021/016185
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 蓮池
一輝 岡本
千景 門井
勇児 秋場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/016185 priority Critical patent/WO2022224379A1/en
Priority to JP2023515952A priority patent/JP7486667B2/en
Publication of WO2022224379A1 publication Critical patent/WO2022224379A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Definitions

  • the present disclosure relates to impellers and centrifugal fans.
  • a centrifugal fan has a scroll casing that houses an impeller.
  • the scroll casing has an air inlet and an air outlet, and constitutes a flow path for airflow generated by the rotation of the impeller.
  • Noise generated inside the scroll casing due to the rotation of the impeller is emitted outside the scroll casing through the suction port or the blowout port.
  • the flow velocity inside the centrifugal fan is highest immediately after the air flows out from the impeller.
  • the distance between the impeller and the wall surface of the scroll casing increases as the direction of rotation advances, the airflow tends to fluctuate.
  • the airflow flowing out of the impeller is roughly divided into the main flow and the secondary flow.
  • a secondary flow is an air current that flows in a direction perpendicular to the main stream. It is known that this secondary flow causes a secondary loss in the vicinity of the area where the motor exists, which is the rear surface of the impeller, and deteriorates the air blowing performance.
  • Patent Document 1 discloses that a cylindrical wall is formed on the back surface of the main plate of the impeller, and the outer diameter of the cylindrical wall is the same as the outer diameter of the blades of the impeller. This prevents the secondary flow formed by the rotation of the impeller from flowing into the back surface of the main plate, reduces the secondary loss, and improves the air blowing performance.
  • the present disclosure has been made in view of the above, and aims to obtain an impeller and a centrifugal fan that suppress pressure fluctuations caused by interference between the secondary flow and the impeller and reduce noise.
  • the impeller in the present disclosure is an impeller that is fixed to the motor shaft of the motor and rotates around the motor shaft.
  • the impeller includes a disk-shaped main plate, a plurality of blades annularly erected on the outer peripheral portion of the surface of the main plate, and a cylindrical protruding portion protruding from the back surface of the main plate.
  • the motor is accommodated radially inside the protrusion, and the protrusion is installed radially inside from the outer diameter of the impeller over the entire circumference.
  • the impeller according to the present disclosure has the effect of suppressing pressure fluctuations caused by the interference between the secondary flow and the impeller, thereby reducing noise.
  • FIG. 1 is a perspective view of a centrifugal fan according to Embodiment 1
  • Sectional view of the centrifugal blower according to Embodiment 1 1 is a top view of a centrifugal fan according to Embodiment 1
  • Cross-sectional view of a centrifugal blower of a comparative example Image diagram showing flow velocity distribution when fluid analysis is performed on the centrifugal fan of the comparative example
  • FIG. 2 is an image diagram showing a flow velocity distribution when fluid analysis is performed on the centrifugal fan of Embodiment 1.
  • FIG. 2 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis is performed on the centrifugal fan of Embodiment 1.
  • FIG. Graph showing the results of an actual machine test of the air volume-specific noise characteristics of the centrifugal fan of the first embodiment and the centrifugal fan of the comparative example.
  • Cross-sectional view of a centrifugal fan according to Embodiment 2 Perspective view of a centrifugal fan according to Embodiment 3
  • FIG. 1 is a perspective view of a centrifugal fan 1 according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of centrifugal fan 1 according to Embodiment 1.
  • FIG. 3 is a top view of the centrifugal fan 1 according to Embodiment 1.
  • FIG. 2 schematically shows a cross section along line II-II in FIG.
  • the centrifugal fan 1 As shown in FIGS. 1 to 3, the centrifugal fan 1 according to Embodiment 1 has a motor 3, an impeller 4 rotationally driven by the motor 3, and a scroll casing 11 housing the impeller 4. Centrifugal blower 1 generates airflow by rotating impeller 4 .
  • the scroll casing 11 has an air inlet 8 and an air outlet 10 . Inside the scroll casing 11 , an airflow is generated from the suction port 8 toward the blowout port 10 .
  • the scroll casing 11 configures a flow path for airflow generated by the rotation of the impeller 4 . By rotating the impeller 4 , air outside the scroll casing 11 is sucked into the scroll casing 11 through the suction port 8 . By rotating the impeller 4 , the air inside the scroll casing 11 is blown out of the scroll casing 11 through the blowout port 10 . As shown in FIG.
  • an air flow Y1 directed from the outside of the scroll casing 11 to the suction port 8 and an air flow Y2 directed to the outside of the scroll casing 11 from the outlet 10 are generated outside the scroll casing 11, as shown in FIG.
  • a main flow Y3 which is an air flow that flows from the suction port 8 through the impeller 4 and between the impeller 4 and the scroll casing 11, is generated.
  • the scroll casing 11 has a first wall 11a, a second wall 11b and a third wall 11c.
  • the first wall 11 a and the second wall 11 b face each other in the axial direction of the scroll casing 11 .
  • the third wall 11c connects the first wall 11a and the second wall 11b.
  • the suction port 8 is formed in the first wall 11a.
  • the first wall 11a is formed with a bell mouth 8a whose diameter increases from the suction port 8 toward the outer diameter side.
  • the material of the scroll casing 11 is resin, for example.
  • the scroll casing 11 has a scroll portion 6, a diffuse portion 7, and a tongue portion 9.
  • the scroll portion 6 is a portion forming a spiral flow path whose width in the radial direction increases toward the downstream side of the air flow.
  • the spiral channel is, for example, an Archimedean spiral. That is, the distance from the rotating shaft 2 of the impeller 4 to the scroll portion 6 increases in the direction of rotation of the impeller 4, as shown in FIG.
  • the diffuse portion 7 is a portion on the downstream side of the scroll portion 6 and constitutes a flow path between the scroll portion 6 and the outlet 10 .
  • the diffuser 7 has the role of efficiently converting the dynamic pressure of the airflow flowing out of the impeller 4 into static pressure and guiding the airflow to the outlet 10 .
  • the tongue portion 9 is a portion that connects the scroll portion 6 and the blowout port 10 so as to enlarge the opening area of the blowout port 10 .
  • the tongue portion 9 guides the air flow swirling inside the scroll casing 11 to the outlet 10 .
  • the impeller 4 is a multi-blade impeller.
  • the impeller 4 is fixed to the shaft 3 a of the motor 3 .
  • the impeller 4 rotates about the shaft 3a.
  • the impeller 4 includes a disk-shaped main plate 4a, a plurality of blades 4b annularly erected on the outer peripheral side of the front surface of the main plate 4a, and a boss portion 4c fixed to the shaft 3a of the motor 3. Further, the impeller 4 is provided with ribs 4d as blade reinforcing members on the outer diameter edge on the upstream side of the blades 4b.
  • the rear surface of the main plate 4a of the impeller 4 is provided with a projecting portion 5 for straightening the airflow.
  • the impeller 4 has a shape such that the projecting portion 5 branches off from the middle of the main plate 4a.
  • the projecting portion 5 preferably has a shape rotationally symmetrical or axially symmetrical with respect to the rotating shaft 2 of the centrifugal fan 1 from the viewpoints of preventing leakage flow generated on the back surface of the main plate 4a and reducing noise.
  • the protrusion 5 presents a cylindrical wall shape that is axially symmetrical. A part of the motor 3 is accommodated in the space surrounded by the cylindrical wall of the projecting portion 5 . The reason for this is to minimize the distance between the motor 3 and the back surface of the impeller 4 in order to reduce the size of the centrifugal fan 1 as a whole.
  • the main plate 4a of the impeller 4 is provided with a plurality of ventilation holes 4e.
  • the reason for providing the ventilation holes 4e is to suppress the temperature rise of the motor 3.
  • FIG. In short, it is provided to promote the air-cooling effect of the motor 3 .
  • the ventilation holes 4e can be eliminated if necessary, and there is no need to provide six as shown in FIG.
  • the number of ventilation holes 4e is not limited.
  • the positional relationship and shape of the impeller 4 and the scroll casing 11, the presence or absence of the ventilation holes 4e, and the shape of the ventilation holes 4e are not limited to those shown in FIGS. In short, the positional relationship and shape of various parts may be appropriately determined at the time of design.
  • a dashed-dotted line connecting the outer diameter side ends of the plurality of ventilation holes 4e is denoted as 4f
  • a dashed line circle connecting the outer diameter side ends of the plurality of blades 4b of the impeller 4 is denoted by 4f.
  • a dashed-dotted line connecting the inner diameter side ends of the plurality of blades 4b of the impeller 4 is shown as 4h. 2 and 3
  • the inner diameter of the impeller 4 is defined as D1, the outer diameter of the impeller 4 as D2, the outer diameter of the motor 3 as Dc, and the outer diameter of the protrusion 5 as Da.
  • the inner diameter D1 of the impeller 4 is defined as the diameter of the circle that corresponds to the dashed-dotted circle 4h and connects the inner diameter side ends of the plurality of blades 4b of the impeller 4 .
  • the outer diameter D2 of the impeller 4 is defined as the diameter of a circle that corresponds to the dashed line circle 4g and connects the outer diameter side ends of the plurality of blades 4b of the impeller 4 .
  • Db is the diameter of a circle 4f of a dashed-dotted line connecting the outer peripheral side ends of a plurality of ventilation holes 4e with the rotating shaft 2 as the central axis, that is, the outer diameter of the ventilation holes 4e. Define.
  • the outer diameter Da of the projecting portion 5 that defines the mounting position of the projecting portion 5 satisfies D2>Da>Dc.
  • the reason for this is that, as will be described later with reference to FIGS. 4 to 7, the distance between the projecting portion 5 and the scroll casing 11 is increased to increase the effect of suppressing mutual interference.
  • the outer diameter Da of the projecting portion 5 is made smaller than the inner diameter D1 of the impeller 4 .
  • the reason for this, which will also be described in detail in FIG. is.
  • it is desirable that the outer diameter Da of the projecting portion 5 is larger than the outer diameter Db of the ventilation hole 4e. Therefore, by installing the protruding portion 5 so as to satisfy the condition of D1>Da>Db, it is possible to suppress the secondary flow from colliding with the protruding portion 5 and suppress the generation of noise due to the secondary flow.
  • the peripheral length of the projecting portion 5 is small. Therefore, it is better to provide the projecting portion 5 so as to satisfy the condition D1 ⁇ Da>Db.
  • the gap Hb between the projecting portion 5 and the scroll casing 11 in the direction along the rotating shaft 2 is preferably as close to 0 as possible from the viewpoint of preventing leakage of the secondary flow.
  • the impellers 4 may collide with each other during rotation. Therefore, it is necessary to balance leakage prevention and collision avoidance, and in practice it is appropriate to provide a gap of about 3 to 7 mm.
  • the area from the outer peripheral portion of the main plate 4a to the portion where the projecting portion 5 is provided is a flat surface. The reason for this is to suppress abrupt turning of the airflow flowing out of the impeller 4 and to allow the main flow Y3 to reach the outlet 10 with as little loss as possible. This effect will be described in detail in FIG.
  • FIG. 4 is a cross-sectional view of a centrifugal blower of a comparative example.
  • a projecting portion 20 is provided at the same position as the outer diameter D2 of the impeller 4 on the back surface of the main plate 4a.
  • the projecting portion 20 has a cylindrical wall as in the first embodiment.
  • the structure and shape of the constituent elements other than the projecting portion 20 are the same as those of the first embodiment. Therefore, in the comparative example, the outer diameter Da of the projecting portion 20 is equal to the outer diameter D2 of the impeller 4 .
  • FIG. 5 is an image diagram showing the flow velocity distribution when fluid analysis was performed on the centrifugal fan of the comparative example.
  • FIG. 5 shows the flow velocity distribution in the AA cross section of FIG. 3 in the comparative example shown in FIG.
  • the motor 3, the impeller 4, and the scroll casing 11 are indicated by white lines for convenience.
  • the black area is the area of the main flow Y3 flowing out from the impeller 4.
  • a secondary flow Y4 is formed that flows in a direction perpendicular to the main flow Y3.
  • the outer diameter Da of the protrusion 20 is the same as the outer diameter D2 of the impeller 4, the distance to the secondary flow Y4 will inevitably become short, and the protrusion 20 and the secondary flow Y4 will inevitably become closer. becomes more susceptible to interference.
  • FIG. 6 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis was performed on the centrifugal fan of the comparative example.
  • the distribution of effective values of pressure fluctuations is shown so that the larger the pressure fluctuation (35 Pa), the blacker, and the smaller the pressure fluctuation (20 Pa), the whiter.
  • the pressure fluctuation on the surface of the projecting portion 20 provided on the impeller 4 is about 30 to 40 Pq or more.
  • the cause of the pressure fluctuation is considered to be that the secondary flow Y4 interfered with the protrusion 20, the airflow around the protrusion 20 was disturbed, and the pressure fluctuation occurred.
  • FIG. 7 is an image diagram showing the flow velocity distribution when fluid analysis is performed on the centrifugal fan 1 of Embodiment 1.
  • FIG. 8 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis is performed on the centrifugal fan 1 of Embodiment 1.
  • the outer diameter Da of the projecting portion 5 is not the same as the outer diameter D2 of the impeller 4, and the entire circumference of the cylindrical wall is provided on the inner diameter side of the outer diameter D2 of the impeller 4.
  • the motor 3, the impeller 4, and the scroll casing 11 are indicated by white lines for the sake of convenience.
  • the secondary flow Y4 is generated in the same way as in the case of the comparative example.
  • the distance between the secondary flow Y4 and the projecting portion 5 can be increased, and the secondary flow Y4 projects by that amount. It can be seen that the interference of the portion 5 is suppressed.
  • the secondary flow Y4 is conspicuous, it was found that it is most conspicuous between the inner diameter D1 and the outer diameter D2 of the impeller 4 . Therefore, by installing the projecting portion 5 inside the inner diameter D1 of the impeller 4, it is possible to suppress the collision of the secondary flow Y4 with the projecting portion 5 and suppress the generation of noise due to the secondary flow Y4. .
  • the main plate 4a of the impeller 4 has a horizontal surface from the outer peripheral portion of the main plate 4a where the plurality of blades 4b are arranged to the portion where the protrusion 5 is provided, the main flow Y3 is directed to the main plate 4a of the impeller 4. It can be seen that the water flows almost horizontally. Since the main flow Y3 flows out substantially horizontally with respect to the main plate 4a, it can reach the outlet 10 with little loss without causing a sudden change in direction of the airflow. Furthermore, there is an effect of effectively separating the secondary flow Y4 and the main flow Y3, and interference between the main flow Y3 and the secondary flow Y4 can be effectively suppressed.
  • FIG. 9 is a diagram showing the results of an actual machine test of the air volume-specific noise characteristics of the centrifugal fan 1 of Embodiment 1 and the centrifugal fan of the comparative example.
  • the horizontal axis indicates air volume, and the vertical axis indicates specific noise.
  • Black circles are plots for the centrifugal fan of the comparative example, and white circles are plots for the centrifugal fan 1 of the first embodiment.
  • the noise value in the minimum specific noise which is the operating air volume band of the centrifugal fan, is 12.8 dB in the comparative example and 12.2 dB in the first embodiment, which is a noise reduction of 0.6 dB.
  • the reason why such a noise reduction could be confirmed is that by offsetting the protrusion 5 to the inner diameter side of the impeller 4, interference between the protrusion 5 and the secondary flow Y4 can be suppressed, and the surface of the protrusion 5 It is considered that this is because the pressure fluctuation of
  • FIG. 10 is a cross-sectional view of a centrifugal fan according to Embodiment 2.
  • FIG. 10 is a cross-sectional view of a centrifugal fan according to Embodiment 2.
  • the projecting portion 5 of the first embodiment is replaced with a projecting portion 30 .
  • the configuration of the second embodiment other than the protruding portion 30 is the same as that of the first embodiment, and redundant description will be omitted.
  • the projecting portion 30 is not branched from the main plate 4a, but is bent from the main plate 4a to have a V-shaped cross section.
  • the impeller 4 of Embodiment 2 is designed in consideration of resin molding. Since it is not branched from the main plate 4a like the projecting portion 5 of the first embodiment, it is preferable from the viewpoint of mass production of resin-molded blades.
  • the projecting portion 30 is within a range that satisfies D2>Da>Dc and D1 ⁇ Da>Db.
  • the projecting portion 30 since the projecting portion 30 has a V-shaped cross section, in addition to the effects of the first embodiment, it is possible to mass-produce the impeller 4 by resin molding.
  • Embodiment 3. 11 is a perspective view of a centrifugal fan according to Embodiment 3.
  • the configuration of Embodiment 3 other than the protrusion 40 is the same as that of Embodiment 1, and redundant description will be omitted.
  • the projecting portion 40 has a rotationally symmetrical shape, for example, an elliptical shape.
  • the elliptical protrusion 40 has a center aligned with the rotating shaft 2 of the motor 3, a major axis of the ellipse equal to or smaller than the outer diameter D2 of the impeller 4, and a minor axis of the ellipse equal to or larger than the outer diameter Db of the ventilation hole 4e. do.
  • the major axis of the ellipse and the minor axis of the ellipse are measured by the outer diameter of the projecting portion 40, for example.
  • the elliptical protruding portion 40 is installed on the entire circumference of the protruding portion 40 in the range from the outer diameter D2 of the impeller 4 to the outer diameter Db of the ventilation hole 4e.
  • the impeller 4 may have no ventilation holes 4e.
  • the projecting portion 40 is installed in a region radially inward from the outer diameter of the impeller 4 over the entire circumference, and at least part of the entire circumference of the projecting portion 40 is outside the impeller 4. It is installed with an offset radially inward from the diameter.
  • the longer diameter portion of the projecting portion 40 is installed on the outer diameter portion of the impeller 4 , and the portions other than the longer diameter portion are offset radially inward from the outer diameter of the impeller 4 .
  • the difference between the major axis and the minor axis is large.
  • the difference between the major diameter and the minor diameter is at least half the difference between the outer diameter D2 of the impeller 4 and the outer diameter Db of the ventilation holes 4e. That is, it is desirable that (Dx ⁇ Dn)>(D2 ⁇ Db)/2, where Dx is the major axis and Dn is the minor axis.
  • the projecting portion 40 of Embodiment 3 has an elliptical shape instead of a perfect circular shape.
  • the distance from the central axis to the wall surface of the protrusion 40 differs depending on the location, so that the sound wave existing inside the protrusion 40 and the sound wave having the same frequency and propagating in the opposite direction are less likely to overlap each other. Therefore, standing waves are less likely to occur, and resonance can be effectively suppressed.
  • the projecting portion 40 is formed in an elliptical shape, standing waves are less likely to occur, resonance can be effectively suppressed, and noise can be further reduced.
  • the protruding portion 40 is installed in a region radially inward from the outer diameter of the impeller 4 over the entire circumference, and at least part of the entire circumference of the protruding portion 40 is the outer diameter of the impeller 4. Any shape other than an ellipse may be used as long as it satisfies the condition of being offset further inward in the radial direction.
  • the configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technology. It is also possible to omit or change the part.

Abstract

An impeller (4) which is fixed to a shaft (3a) of a motor (3) and which is rotated about the shaft (3a) comprises: a disc-shaped main plate (4a); a plurality of blades (4b) provided upright and annularly on the outer peripheral portion of the front surface of the main plate (4a); and a cylindrical protruding portion (5) protruding from the back surface of the main plate (4a). The motor (3) is received on the radially inner side of the protruding portion (5). The protruding portion (5) is provided on the radially inner side relative to the outer diameter of the impeller (4) over the entire perimeter.

Description

羽根車および遠心送風機impeller and centrifugal blower
 本開示は羽根車および遠心送風機に関する。 The present disclosure relates to impellers and centrifugal fans.
 遠心送風機は、羽根車を収容するスクロールケーシングを有する。スクロールケーシングは、空気の吸込口と空気の吹出口とを有し、羽根車の回転によって発生する空気流の流路を構成する。羽根車の回転によってスクロールケーシングの内部で発生した騒音は、吸込口または吹出口からスクロールケーシングの外へ放出される。特に、遠心送風機の内部の流速は、羽根車から流出した直後が最も大きい。さらに、羽根車とスクロールケーシングの壁面との距離は回転方向が進むに従い大きくなるため、気流の変動が生じやすい。 A centrifugal fan has a scroll casing that houses an impeller. The scroll casing has an air inlet and an air outlet, and constitutes a flow path for airflow generated by the rotation of the impeller. Noise generated inside the scroll casing due to the rotation of the impeller is emitted outside the scroll casing through the suction port or the blowout port. In particular, the flow velocity inside the centrifugal fan is highest immediately after the air flows out from the impeller. Furthermore, since the distance between the impeller and the wall surface of the scroll casing increases as the direction of rotation advances, the airflow tends to fluctuate.
 羽根車から流出する気流を主流と二次流れに大別する。二次流れとは、主流に対して直角な方向に流れる気流である。この二次流れは羽根車の背面である、モータが存在する領域付近にて、二次損失を引き起こし、送風性能を悪化させることが知られている。 The airflow flowing out of the impeller is roughly divided into the main flow and the secondary flow. A secondary flow is an air current that flows in a direction perpendicular to the main stream. It is known that this secondary flow causes a secondary loss in the vicinity of the area where the motor exists, which is the rear surface of the impeller, and deteriorates the air blowing performance.
 特許文献1には、羽根車の主板の裏面に、円筒壁を形成し、円筒壁の外径を羽根車のブレードの外径と同一とすることが示されている。これにより、羽根車が回転することにより形成される二次流れが主板の裏面に流れ込むことを防ぎ、二次損失を緩和し、送風性能の向上を図っている。 Patent Document 1 discloses that a cylindrical wall is formed on the back surface of the main plate of the impeller, and the outer diameter of the cylindrical wall is the same as the outer diameter of the blades of the impeller. This prevents the secondary flow formed by the rotation of the impeller from flowing into the back surface of the main plate, reduces the secondary loss, and improves the air blowing performance.
特開2008-169826号公報JP 2008-169826 A
 しかし、特許文献1に開示される遠心送風機を基に設計した遠心送風機に対して、運動方程式と連続の式に基づいた流体解析を実施したところ、主板背面に流れる漏れ流れは確かに抑制できているが、円筒壁と羽根車から生じる二次流れとの干渉が生じ、円筒壁面上の圧力変動が大きくなりやすいことが判明した。この理由は、主板の裏面に設けた円筒壁の外径が羽根車の外径と全周において同一であるため、必然的に円筒壁と二次流れとの干渉を誘発してしまうためであると考えられる。圧力変動と騒音には密接な関係があり、圧力変動が大きい箇所は騒音源になっている可能性が極めて高く、騒音悪化を招く問題がある。 However, when a centrifugal fan designed based on the centrifugal fan disclosed in Patent Document 1 was subjected to a fluid analysis based on the equation of motion and the equation of continuity, it was found that the leakage flow flowing on the back surface of the main plate was indeed suppressed. However, it was found that interference between the cylindrical wall and the secondary flow generated from the impeller tends to increase the pressure fluctuation on the cylindrical wall. The reason for this is that the outer diameter of the cylindrical wall provided on the back surface of the main plate is the same as the outer diameter of the impeller over the entire circumference, which inevitably induces interference between the cylindrical wall and the secondary flow. it is conceivable that. There is a close relationship between pressure fluctuations and noise, and there is an extremely high possibility that a location with large pressure fluctuations is a source of noise, leading to the problem of worsening noise.
 本開示は、上記に鑑みてなされたものであって、二次流れと羽根車との干渉によって生じる圧力変動を抑制し、低騒音化を図る羽根車および遠心送風機を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain an impeller and a centrifugal fan that suppress pressure fluctuations caused by interference between the secondary flow and the impeller and reduce noise.
 上述した課題を解決し、目的を達成するために、本開示における羽根車は、モータのモータシャフトに固定され、モータシャフトを中心に回転する羽根車である。羽根車は、円盤状の主板と、主板の表面の外周部に環状に立設される複数のブレードと、主板の裏面から突出する筒形状の突出部と、を備える。突出部の径方向の内側にモータが収容され、突出部は全周に亘って羽根車の外径から径方向の内側に設置されることを特徴とする。 In order to solve the above-described problems and achieve the purpose, the impeller in the present disclosure is an impeller that is fixed to the motor shaft of the motor and rotates around the motor shaft. The impeller includes a disk-shaped main plate, a plurality of blades annularly erected on the outer peripheral portion of the surface of the main plate, and a cylindrical protruding portion protruding from the back surface of the main plate. The motor is accommodated radially inside the protrusion, and the protrusion is installed radially inside from the outer diameter of the impeller over the entire circumference.
 本開示に係る羽根車は、二次流れと羽根車との干渉によって生じる圧力変動を抑制し、低騒音化を図ることができるという効果を奏する。 The impeller according to the present disclosure has the effect of suppressing pressure fluctuations caused by the interference between the secondary flow and the impeller, thereby reducing noise.
実施の形態1に係る遠心送風機の斜視図1 is a perspective view of a centrifugal fan according to Embodiment 1 実施の形態1に係る遠心送風機の断面図Sectional view of the centrifugal blower according to Embodiment 1 実施の形態1に係る遠心送風機の上面図1 is a top view of a centrifugal fan according to Embodiment 1 比較例の遠心送風機の断面図Cross-sectional view of a centrifugal blower of a comparative example 比較例の遠心送風機に流体解析を行ったときの流速分布を示すイメージ図Image diagram showing flow velocity distribution when fluid analysis is performed on the centrifugal fan of the comparative example 比較例の遠心送風機に流体解析を行ったときの圧力変動の実効値の分布を示すイメージ図An image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis was performed on the centrifugal fan of the comparative example. 実施の形態1の遠心送風機に流体解析を行ったときの流速分布を示すイメージ図FIG. 2 is an image diagram showing a flow velocity distribution when fluid analysis is performed on the centrifugal fan of Embodiment 1. FIG. 実施の形態1の遠心送風機に流体解析を行ったときの圧力変動の実効値の分布を示すイメージ図FIG. 2 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis is performed on the centrifugal fan of Embodiment 1. FIG. 実施の形態1の遠心送風機と比較例の遠心送風機との風量―比騒音特性の実機試験の結果を示す図Graph showing the results of an actual machine test of the air volume-specific noise characteristics of the centrifugal fan of the first embodiment and the centrifugal fan of the comparative example. 実施の形態2に係る遠心送風機の断面図Cross-sectional view of a centrifugal fan according to Embodiment 2 実施の形態3に係る遠心送風機の斜視図Perspective view of a centrifugal fan according to Embodiment 3
 以下に、実施の形態に係る羽根車および遠心送風機を図面に基づいて詳細に説明する。 The impeller and centrifugal fan according to the embodiment will be described in detail below based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る遠心送風機1の斜視図である。図2は、実施の形態1に係る遠心送風機1の断面図である。図3は実施の形態1に係る遠心送風機1の上面図である。図2は、図1中のII-II線に沿った断面を模式的に示している。
Embodiment 1.
FIG. 1 is a perspective view of a centrifugal fan 1 according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view of centrifugal fan 1 according to Embodiment 1. As shown in FIG. FIG. 3 is a top view of the centrifugal fan 1 according to Embodiment 1. FIG. FIG. 2 schematically shows a cross section along line II-II in FIG.
 図1~図3に示すように、実施の形態1に係る遠心送風機1は、モータ3と、モータ3によって回転駆動される羽根車4と、羽根車4を収容するスクロールケーシング11とを有する。遠心送風機1は、羽根車4を回転させることによって空気流を発生させる。 As shown in FIGS. 1 to 3, the centrifugal fan 1 according to Embodiment 1 has a motor 3, an impeller 4 rotationally driven by the motor 3, and a scroll casing 11 housing the impeller 4. Centrifugal blower 1 generates airflow by rotating impeller 4 .
 スクロールケーシング11は、空気の吸込口8と空気の吹出口10とを有する。スクロールケーシング11の内部には、吸込口8から吹出口10へ向かう空気流が発生する。スクロールケーシング11は、羽根車4の回転によって発生する空気流の流路を構成する。羽根車4を回転させることによって、スクロールケーシング11の外の空気は、吸込口8を通ってスクロールケーシング11の内部へ吸い込まれる。羽根車4を回転させることによって、スクロールケーシング11の内部の空気は、吹出口10を通ってスクロールケーシング11の外へ吹き出される。図1に示すように、スクロールケーシング11の外には、スクロールケーシング11の外から吸込口8へ向かう空気流Y1と、吹出口10からスクロールケーシング11の外へ向かう空気流Y2とが発生する。図2に示すように、スクロールケーシング11の内部には、吸込口8から羽根車4を通り、羽根車4とスクロールケーシング11との間へ流れる空気流である主流Y3が発生する。 The scroll casing 11 has an air inlet 8 and an air outlet 10 . Inside the scroll casing 11 , an airflow is generated from the suction port 8 toward the blowout port 10 . The scroll casing 11 configures a flow path for airflow generated by the rotation of the impeller 4 . By rotating the impeller 4 , air outside the scroll casing 11 is sucked into the scroll casing 11 through the suction port 8 . By rotating the impeller 4 , the air inside the scroll casing 11 is blown out of the scroll casing 11 through the blowout port 10 . As shown in FIG. 1, an air flow Y1 directed from the outside of the scroll casing 11 to the suction port 8 and an air flow Y2 directed to the outside of the scroll casing 11 from the outlet 10 are generated outside the scroll casing 11, as shown in FIG. As shown in FIG. 2, inside the scroll casing 11, a main flow Y3, which is an air flow that flows from the suction port 8 through the impeller 4 and between the impeller 4 and the scroll casing 11, is generated.
 スクロールケーシング11は、第1壁11aと、第2壁11bと、第3壁11cとを有する。第1壁11aと第2壁11bとは、スクロールケーシング11の軸方向に互いに向き合う。第3壁11cは、第1壁11aと第2壁11bとを繋ぐ。吸込口8は、第1壁11aに形成されている。第1壁11aには、吸込口8から外径側へ向かうに従って径が拡大されるベルマウス8aが形成されている。スクロールケーシング11の材料は、例えば樹脂である。 The scroll casing 11 has a first wall 11a, a second wall 11b and a third wall 11c. The first wall 11 a and the second wall 11 b face each other in the axial direction of the scroll casing 11 . The third wall 11c connects the first wall 11a and the second wall 11b. The suction port 8 is formed in the first wall 11a. The first wall 11a is formed with a bell mouth 8a whose diameter increases from the suction port 8 toward the outer diameter side. The material of the scroll casing 11 is resin, for example.
 スクロールケーシング11は、スクロール部6とディフューズ部7と、舌部9とを有する。スクロール部6は、空気流の下流側へ向かうに従い径方向における幅が拡大している螺旋状の流路を構成する部分である。螺旋状の流路は、例えば、アルキメデス螺旋状である。すなわち、羽根車4の回転軸2からスクロール部6までの距離は、図3に示されるように、羽根車4の回転方向に進むに従って大きくなる。ディフューズ部7は、スクロール部6よりも下流側の部分であって、スクロール部6と吹出口10との間の流路を構成する部分である。ディフューズ部7は、羽根車4から流出した気流の動圧を効率よく静圧に変換しつつ、気流を吹出口10まで導く役割を有する。舌部9は、吹出口10の開口面積を拡大するようにスクロール部6と吹出口10を繋ぐ部分である。舌部9は、スクロールケーシング11の内部を旋回する空気流を吹出口10へ導く。 The scroll casing 11 has a scroll portion 6, a diffuse portion 7, and a tongue portion 9. The scroll portion 6 is a portion forming a spiral flow path whose width in the radial direction increases toward the downstream side of the air flow. The spiral channel is, for example, an Archimedean spiral. That is, the distance from the rotating shaft 2 of the impeller 4 to the scroll portion 6 increases in the direction of rotation of the impeller 4, as shown in FIG. The diffuse portion 7 is a portion on the downstream side of the scroll portion 6 and constitutes a flow path between the scroll portion 6 and the outlet 10 . The diffuser 7 has the role of efficiently converting the dynamic pressure of the airflow flowing out of the impeller 4 into static pressure and guiding the airflow to the outlet 10 . The tongue portion 9 is a portion that connects the scroll portion 6 and the blowout port 10 so as to enlarge the opening area of the blowout port 10 . The tongue portion 9 guides the air flow swirling inside the scroll casing 11 to the outlet 10 .
 羽根車4は、多翼羽根車である。羽根車4は、モータ3のシャフト3aに固定されている。羽根車4は、シャフト3aを中心に回転する。羽根車4は、円盤状の主板4aと、主板4aの表側面の外周側に環状に立設された複数のブレード4bと、モータ3のシャフト3aに固定されたボス部4cとを備える。また、羽根車4は、ブレード4bの上流側の外径縁に翼補強部材としてのリブ4dを備える。羽根車4の主板4aの裏表面には、気流を整流するための突出部5が設けられている。 The impeller 4 is a multi-blade impeller. The impeller 4 is fixed to the shaft 3 a of the motor 3 . The impeller 4 rotates about the shaft 3a. The impeller 4 includes a disk-shaped main plate 4a, a plurality of blades 4b annularly erected on the outer peripheral side of the front surface of the main plate 4a, and a boss portion 4c fixed to the shaft 3a of the motor 3. Further, the impeller 4 is provided with ribs 4d as blade reinforcing members on the outer diameter edge on the upstream side of the blades 4b. The rear surface of the main plate 4a of the impeller 4 is provided with a projecting portion 5 for straightening the airflow.
 羽根車4は、主板4aの途中から突出部5が分岐するような形状になっている。突出部5は、主板4aの裏面で生じる漏れ流れの防止と低騒音の観点から遠心送風機1の回転軸2に対して回転対称もしくは軸対称の形状であることが好ましい。図2では、突出部5は、軸対称である円筒壁形状を呈している。突出部5の円筒壁で囲まれた空間にモータ3の一部が収容されている。この理由は、遠心送風機1の全体の小型化を図るため、モータ3と羽根車4の背面の距離を極力小さくするためである。 The impeller 4 has a shape such that the projecting portion 5 branches off from the middle of the main plate 4a. The projecting portion 5 preferably has a shape rotationally symmetrical or axially symmetrical with respect to the rotating shaft 2 of the centrifugal fan 1 from the viewpoints of preventing leakage flow generated on the back surface of the main plate 4a and reducing noise. In FIG. 2, the protrusion 5 presents a cylindrical wall shape that is axially symmetrical. A part of the motor 3 is accommodated in the space surrounded by the cylindrical wall of the projecting portion 5 . The reason for this is to minimize the distance between the motor 3 and the back surface of the impeller 4 in order to reduce the size of the centrifugal fan 1 as a whole.
 また、図3に示されるように、羽根車4の主板4aには、複数の通風穴4eが設けられている。通風穴4eを設けた理由はモータ3の温度上昇を抑制するためである。要するにモータ3の空冷効果を促進するために設けている。なお、通風穴4eは必要に応じて無くすこともできるし、図3に示すように6つ設ける必要もない。通風穴4eの数は限定しない。 Further, as shown in FIG. 3, the main plate 4a of the impeller 4 is provided with a plurality of ventilation holes 4e. The reason for providing the ventilation holes 4e is to suppress the temperature rise of the motor 3. FIG. In short, it is provided to promote the air-cooling effect of the motor 3 . Incidentally, the ventilation holes 4e can be eliminated if necessary, and there is no need to provide six as shown in FIG. The number of ventilation holes 4e is not limited.
 羽根車4とスクロールケーシング11の位置関係および形状、通風穴4eの有無、通風穴4eの形状は図1~図3に示されたものに限定されるものではない。要するに、種々の部品の位置関係と形状は設計時に適宜決定すれば良い。 The positional relationship and shape of the impeller 4 and the scroll casing 11, the presence or absence of the ventilation holes 4e, and the shape of the ventilation holes 4e are not limited to those shown in FIGS. In short, the positional relationship and shape of various parts may be appropriately determined at the time of design.
 ここで、図3には、複数の通風穴4eの外径側端部を結ぶ一点鎖線の円を4fとし、羽根車4の複数のブレード4bの外径側端部を結ぶ一点鎖線の円を4gとし、羽根車4の複数のブレード4bの内径側端部を結ぶ一点鎖線の円を4hとして、図示している。また、図2および図3に示すように、羽根車4の内径をD1、羽根車4の外径をD2、モータ3の外径をDc、突出部5の外径をDaと定義する。羽根車4の内径D1は、一点鎖線の円4hに対応し、羽根車4の複数のブレード4bの内径側端部を結ぶ円の径であると定義する。羽根車4の外径D2は、一点鎖線の円4gに対応し、羽根車4の複数のブレード4bの外径側端部を結ぶ円の径であると定義する。また、図2および図3に示すように、回転軸2を中心軸とした複数の通風穴4eの外周側端部を結ぶ一点鎖線の円4fの径、すなわち通風穴4eの外径をDbと定義する。 Here, in FIG. 3, a dashed-dotted line connecting the outer diameter side ends of the plurality of ventilation holes 4e is denoted as 4f, and a dashed line circle connecting the outer diameter side ends of the plurality of blades 4b of the impeller 4 is denoted by 4f. 4g, and a dashed-dotted line connecting the inner diameter side ends of the plurality of blades 4b of the impeller 4 is shown as 4h. 2 and 3, the inner diameter of the impeller 4 is defined as D1, the outer diameter of the impeller 4 as D2, the outer diameter of the motor 3 as Dc, and the outer diameter of the protrusion 5 as Da. The inner diameter D1 of the impeller 4 is defined as the diameter of the circle that corresponds to the dashed-dotted circle 4h and connects the inner diameter side ends of the plurality of blades 4b of the impeller 4 . The outer diameter D2 of the impeller 4 is defined as the diameter of a circle that corresponds to the dashed line circle 4g and connects the outer diameter side ends of the plurality of blades 4b of the impeller 4 . Also, as shown in FIGS. 2 and 3, Db is the diameter of a circle 4f of a dashed-dotted line connecting the outer peripheral side ends of a plurality of ventilation holes 4e with the rotating shaft 2 as the central axis, that is, the outer diameter of the ventilation holes 4e. Define.
 実施の形態1では、突出部5の取り付け位置を規定する突出部5の外径Daは、D2>Da>Dcを満たすようにしている。この理由は、図4~図7でも後述するが、突出部5とスクロールケーシング11との距離を稼ぎ、お互いの干渉を抑制できる効果が増すためである。 In Embodiment 1, the outer diameter Da of the projecting portion 5 that defines the mounting position of the projecting portion 5 satisfies D2>Da>Dc. The reason for this is that, as will be described later with reference to FIGS. 4 to 7, the distance between the projecting portion 5 and the scroll casing 11 is increased to increase the effect of suppressing mutual interference.
 また、実施の形態1では、突出部5の外径Daを羽根車4の内径D1より小さくしている。この理由は、図7でも詳述するが、羽根車4の背面で生じる二次流れが、羽根車4の外径D2と羽根車4の内径D1との間で最も生じやすいことが判明したからである。また、突出部5の外径Daは、通風穴4eの外径Dbよりも大きいことが望ましい。したがって、D1>Da>Dbの条件を満たすように突出部5を設置することにより、突出部5への二次流れの衝突を抑制し、二次流れによる騒音の発生を抑制することができる。 Further, in Embodiment 1, the outer diameter Da of the projecting portion 5 is made smaller than the inner diameter D1 of the impeller 4 . The reason for this, which will also be described in detail in FIG. is. Moreover, it is desirable that the outer diameter Da of the projecting portion 5 is larger than the outer diameter Db of the ventilation hole 4e. Therefore, by installing the protruding portion 5 so as to satisfy the condition of D1>Da>Db, it is possible to suppress the secondary flow from colliding with the protruding portion 5 and suppress the generation of noise due to the secondary flow.
 また、突出部5に使用する材料のコスト抑制の観点からも、突出部5の周長は小さい方が好ましい。このため、D1≧Da>Dbの条件を満たすように突出部5を設けたほうが良い。 Also, from the viewpoint of reducing the cost of the material used for the projecting portion 5, it is preferable that the peripheral length of the projecting portion 5 is small. Therefore, it is better to provide the projecting portion 5 so as to satisfy the condition D1≧Da>Db.
 また、図2に示すように、突出部5とスクロールケーシング11との回転軸2に沿った方向についてのギャップHbについては、二次流れの漏れ防止の観点からは、極力0に近いほうが望ましい。しかし、0に近いと羽根車4が回転中にお互いに衝突してしまう恐れがある。そのため、漏れ防止と衝突回避の兼ね合いが必要であり、実際には3~7mm程度のギャップを設けるのが適切である。 Also, as shown in FIG. 2, the gap Hb between the projecting portion 5 and the scroll casing 11 in the direction along the rotating shaft 2 is preferably as close to 0 as possible from the viewpoint of preventing leakage of the secondary flow. However, if it is close to 0, the impellers 4 may collide with each other during rotation. Therefore, it is necessary to balance leakage prevention and collision avoidance, and in practice it is appropriate to provide a gap of about 3 to 7 mm.
 また、羽根車4の主板4aにおいて、主板4aの外周部から突出部5を設けた部分までの領域は平らな面としている。この理由は、羽根車4から流出する気流の急激な転向を抑制し、極力少ない損失で吹出口10まで主流Y3を到達させるためである。この効果に関しては、図7で詳述する。 In addition, in the main plate 4a of the impeller 4, the area from the outer peripheral portion of the main plate 4a to the portion where the projecting portion 5 is provided is a flat surface. The reason for this is to suppress abrupt turning of the airflow flowing out of the impeller 4 and to allow the main flow Y3 to reach the outlet 10 with as little loss as possible. This effect will be described in detail in FIG.
 図4は比較例の遠心送風機の断面図である。図4の比較例では、特許文献1と同様にして、主板4aの背面における羽根車4の外径D2と同じ位置に突出部20を設けた。突出部20は、実施の形態1と同様、円筒壁とした。図4において、突出部20以外の構成要件の構造、形状に関しては、実施の形態1と同一とした。したがって、比較例では、突出部20の外径Da=羽根車4の外径D2となる。 FIG. 4 is a cross-sectional view of a centrifugal blower of a comparative example. In the comparative example shown in FIG. 4, similarly to Patent Document 1, a projecting portion 20 is provided at the same position as the outer diameter D2 of the impeller 4 on the back surface of the main plate 4a. The projecting portion 20 has a cylindrical wall as in the first embodiment. In FIG. 4, the structure and shape of the constituent elements other than the projecting portion 20 are the same as those of the first embodiment. Therefore, in the comparative example, the outer diameter Da of the projecting portion 20 is equal to the outer diameter D2 of the impeller 4 .
 図5は、比較例の遠心送風機に流体解析を行ったときの流速分布を示すイメージ図である。図5は、図4に示す比較例における図3のA-A断面での流速分布を示している。モータ3と、羽根車4と、スクロールケーシング11は、便宜上白線で示している。図5の流速分布は、流速が大きい程(25m/s)黒色で示し、流速が小さい程(15m/s)白色になるように示している。 FIG. 5 is an image diagram showing the flow velocity distribution when fluid analysis was performed on the centrifugal fan of the comparative example. FIG. 5 shows the flow velocity distribution in the AA cross section of FIG. 3 in the comparative example shown in FIG. The motor 3, the impeller 4, and the scroll casing 11 are indicated by white lines for convenience. In the flow velocity distribution in FIG. 5 , the higher the flow velocity (25 m/s), the blacker the figure, and the lower the flow velocity (15 m/s), the whiter the figure.
 図5において、黒色の領域は羽根車4から流出する主流Y3の領域である。主流Y3に対して、垂直方向に流れる二次流れY4が形成されている。比較例のように、突出部20の外径Daを羽根車4の外径D2と同一にすると、二次流れY4との距離が必然的に近くなってしまい、突出部20と二次流れY4は干渉しやすくなってしまう。  In FIG. 5, the black area is the area of the main flow Y3 flowing out from the impeller 4. A secondary flow Y4 is formed that flows in a direction perpendicular to the main flow Y3. As in the comparative example, if the outer diameter Da of the protrusion 20 is the same as the outer diameter D2 of the impeller 4, the distance to the secondary flow Y4 will inevitably become short, and the protrusion 20 and the secondary flow Y4 will inevitably become closer. becomes more susceptible to interference.
 図6は、比較例の遠心送風機に流体解析を行ったときの圧力変動の実効値の分布を示すイメージ図である。図6において、圧力変動の実効値の分布は、圧力の変動が大きい程(35Pa)黒色で示し、圧力の変動が小さい程(20Pa)白色になるように示している。 FIG. 6 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis was performed on the centrifugal fan of the comparative example. In FIG. 6, the distribution of effective values of pressure fluctuations is shown so that the larger the pressure fluctuation (35 Pa), the blacker, and the smaller the pressure fluctuation (20 Pa), the whiter.
 図6によれば、羽根車4に設けた突出部20の面上の圧力変動は約30~40Pq以上であることがわかる。圧力変動が生じる原因は図5で示した、二次流れY4が突出部20に干渉し、突出部20の周辺の気流が乱れ、圧力変動が生じたと考えられる。 According to FIG. 6, it can be seen that the pressure fluctuation on the surface of the projecting portion 20 provided on the impeller 4 is about 30 to 40 Pq or more. The cause of the pressure fluctuation is considered to be that the secondary flow Y4 interfered with the protrusion 20, the airflow around the protrusion 20 was disturbed, and the pressure fluctuation occurred.
 図7は、実施の形態1の遠心送風機1に流体解析を行ったときの流速分布を示すイメージ図である。図8は、実施の形態1の遠心送風機1に流体解析を行ったときの圧力変動の実効値の分布を示すイメージ図である。実施の形態1では、突出部5の外径Daは羽根車4の外径D2と同一ではなく、円筒壁の全周が羽根車4の外径D2より内径側に設けられている。図7においても、モータ3と、羽根車4と、スクロールケーシング11は、便宜上、白線で示している。図7の流速分布は、図5と同様、流速が大きい程(25m/s)黒色で示し、流速が小さい程(15m/s)白色になるように示している。図8に示す圧力変動の実効値の分布は、図6と同様、圧力の変動が大きい程(35Pa)黒色で示し、圧力の変動が小さい程(20Pa)白色になるように示している。 FIG. 7 is an image diagram showing the flow velocity distribution when fluid analysis is performed on the centrifugal fan 1 of Embodiment 1. FIG. FIG. 8 is an image diagram showing the distribution of effective values of pressure fluctuations when fluid analysis is performed on the centrifugal fan 1 of Embodiment 1. FIG. In Embodiment 1, the outer diameter Da of the projecting portion 5 is not the same as the outer diameter D2 of the impeller 4, and the entire circumference of the cylindrical wall is provided on the inner diameter side of the outer diameter D2 of the impeller 4. Also in FIG. 7, the motor 3, the impeller 4, and the scroll casing 11 are indicated by white lines for the sake of convenience. In the flow velocity distribution of FIG. 7, as in FIG. 5, the higher the flow velocity (25 m/s), the blacker the figure, and the lower the flow velocity (15 m/s), the whiter the figure. As in FIG. 6, the distribution of effective values of pressure fluctuations shown in FIG. 8 is shown so that the larger the pressure fluctuation (35 Pa), the blacker, and the smaller the pressure fluctuation (20 Pa), the whiter.
 図7によれば、二次流れY4は、比較例の場合と同様に生じることがわかる。しかし、実施の形態1では、突出部5を羽根車4の内径側に設けたため、二次流れY4と突出部5との距離を稼ぐことができており、その分だけ二次流れY4と突出部5の干渉が抑制されることがわかる。ちなみに、二次流れY4がどの程度の領域まで顕著になっているのか調査した結果、羽根車4の内径D1と外径D2との間で最も顕著になっていることが判明した。したがって、羽根車4の内径D1よりも内側に突出部5を設置することにより、突出部5への二次流れY4の衝突を抑制し、二次流れY4による騒音の発生を抑制することができる。 According to FIG. 7, it can be seen that the secondary flow Y4 is generated in the same way as in the case of the comparative example. However, in Embodiment 1, since the projecting portion 5 is provided on the inner diameter side of the impeller 4, the distance between the secondary flow Y4 and the projecting portion 5 can be increased, and the secondary flow Y4 projects by that amount. It can be seen that the interference of the portion 5 is suppressed. Incidentally, as a result of investigating to what extent the secondary flow Y4 is conspicuous, it was found that it is most conspicuous between the inner diameter D1 and the outer diameter D2 of the impeller 4 . Therefore, by installing the projecting portion 5 inside the inner diameter D1 of the impeller 4, it is possible to suppress the collision of the secondary flow Y4 with the projecting portion 5 and suppress the generation of noise due to the secondary flow Y4. .
 さらに、羽根車4の主板4aにおいて複数のブレード4bを配設した主板4aの外周部から突出部5を設けた部分までを水平面としているため、主流Y3が羽根車4の主板4aに対して、ほぼ水平に流出していることがわかる。主流Y3が主板4aに対してほぼ水平に流出することによって、急激な気流の転向が生じることなく、少ない損失で吹出口10に到達することができる。さらに、二次流れY4と主流Y3を効果的に切り離す効果も有り、主流Y3と二次流れY4との干渉も効果的に抑制できる。 Furthermore, since the main plate 4a of the impeller 4 has a horizontal surface from the outer peripheral portion of the main plate 4a where the plurality of blades 4b are arranged to the portion where the protrusion 5 is provided, the main flow Y3 is directed to the main plate 4a of the impeller 4. It can be seen that the water flows almost horizontally. Since the main flow Y3 flows out substantially horizontally with respect to the main plate 4a, it can reach the outlet 10 with little loss without causing a sudden change in direction of the airflow. Furthermore, there is an effect of effectively separating the secondary flow Y4 and the main flow Y3, and interference between the main flow Y3 and the secondary flow Y4 can be effectively suppressed.
 図8によれば、実施の形態1では、突出部5の圧力変動の大きさは、15~30Paと大幅に減少していることがわかる。この理由は、図7で説明したように、二次流れY4と突出部5との干渉を効果的に抑制したためと考えられる。 According to FIG. 8, it can be seen that the magnitude of the pressure fluctuation of the projecting portion 5 is greatly reduced to 15 to 30 Pa in the first embodiment. The reason for this is considered to be that the interference between the secondary flow Y4 and the projecting portion 5 is effectively suppressed, as described with reference to FIG.
 騒音と圧力変動には密接な関係があり、圧力変動値が大きい箇所は騒音発生源になっている。そのため、突出部5の面上での圧力変動が減少することは低騒音化に繋がることは言うまでもない。要するに、図8で示したように、突出部5を羽根車4の内径側に設置することは、低騒音化を達成するために効果的である。  There is a close relationship between noise and pressure fluctuations, and locations with large pressure fluctuations are sources of noise. Therefore, it goes without saying that reducing the pressure fluctuation on the surface of the projecting portion 5 leads to a reduction in noise. In short, as shown in FIG. 8, installing the projecting portion 5 on the inner diameter side of the impeller 4 is effective for achieving low noise.
 図9は、実施の形態1の遠心送風機1と比較例の遠心送風機との風量―比騒音特性の実機試験の結果を示す図である。横軸は風量を、縦軸は比騒音を示している。黒丸が比較例の遠心送風機のプロットであり、白丸が実施の形態1の遠心送風機1のプロットを示している。 FIG. 9 is a diagram showing the results of an actual machine test of the air volume-specific noise characteristics of the centrifugal fan 1 of Embodiment 1 and the centrifugal fan of the comparative example. The horizontal axis indicates air volume, and the vertical axis indicates specific noise. Black circles are plots for the centrifugal fan of the comparative example, and white circles are plots for the centrifugal fan 1 of the first embodiment.
 図9によれば、遠心送風機の動作風量帯域である最小比騒音における騒音値が、比較例では12.8dBに対して、実施の形態1では12.2dBであり、0.6dBの低騒音化を確認することができる。このような低騒音化を確認できた理由は、突出部5を羽根車4の内径側にオフセットしたことで、突出部5と二次流れY4との干渉を抑制でき、突出部5の面上の圧力変動を効果的に低減できたためと考えられる。 According to FIG. 9, the noise value in the minimum specific noise, which is the operating air volume band of the centrifugal fan, is 12.8 dB in the comparative example and 12.2 dB in the first embodiment, which is a noise reduction of 0.6 dB. can be confirmed. The reason why such a noise reduction could be confirmed is that by offsetting the protrusion 5 to the inner diameter side of the impeller 4, interference between the protrusion 5 and the secondary flow Y4 can be suppressed, and the surface of the protrusion 5 It is considered that this is because the pressure fluctuation of
 このように実施の形態1によれば、突出部5の全周を羽根車4の複数のブレード4bより径方向の内側にオフセットして設置しているので、突出部5と二次流れY4との干渉を抑制でき、突出部5の面上の圧力変動を効果的に低減でき、低騒音化を図ることができる。 As described above, according to Embodiment 1, since the entire circumference of the projecting portion 5 is offset radially inward from the plurality of blades 4b of the impeller 4, the projecting portion 5 and the secondary flow Y4 can be suppressed, pressure fluctuations on the surface of the projecting portion 5 can be effectively reduced, and noise reduction can be achieved.
実施の形態2.
 図10は、実施の形態2に係る遠心送風機の断面図である。実施の形態2では、実施の形態1の突出部5を突出部30に置換している。実施の形態2の突出部30以外の構成は、実施の形態1と同様であり、重複する説明は省略する。突出部30は、主板4aから枝分かれしておらず、主板4aから断面V字状に屈曲されている。この実施の形態2の羽根車4は、樹脂成型されることを考慮して設計されている。実施の形態1の突出部5のように主板4aから枝分かれしていないので、樹脂成型の羽根の量産の観点から好ましい。また、実施の形態1と同様、羽根車4の外径をD2、羽根車4の内径をD1、モータ3の外径をDc、通風穴4eの外径をDbと定義したとき、突出部30の取り付け位置は、D2>Da>Dcと、D1≧Da>Dbを満たす範囲内とする。
Embodiment 2.
FIG. 10 is a cross-sectional view of a centrifugal fan according to Embodiment 2. FIG. In the second embodiment, the projecting portion 5 of the first embodiment is replaced with a projecting portion 30 . The configuration of the second embodiment other than the protruding portion 30 is the same as that of the first embodiment, and redundant description will be omitted. The projecting portion 30 is not branched from the main plate 4a, but is bent from the main plate 4a to have a V-shaped cross section. The impeller 4 of Embodiment 2 is designed in consideration of resin molding. Since it is not branched from the main plate 4a like the projecting portion 5 of the first embodiment, it is preferable from the viewpoint of mass production of resin-molded blades. Further, as in the first embodiment, when the outer diameter of the impeller 4 is defined as D2, the inner diameter of the impeller 4 as D1, the outer diameter of the motor 3 as Dc, and the outer diameter of the ventilation hole 4e as Db, the projecting portion 30 The mounting position of is within a range that satisfies D2>Da>Dc and D1≧Da>Db.
 このように実施の形態2によれば、突出部30を断面V字状にしているので、実施の形態1の効果に加え、羽根車4を樹脂成型で量産することが可能となる。 As described above, according to the second embodiment, since the projecting portion 30 has a V-shaped cross section, in addition to the effects of the first embodiment, it is possible to mass-produce the impeller 4 by resin molding.
実施の形態3.
 図11は、実施の形態3に係る遠心送風機の斜視図である。実施の形態3では、実施の形態1の突出部5を突出部40に置換している。実施の形態3の突出部40以外の構成は、実施の形態1と同様であり、重複する説明は省略する。
Embodiment 3.
11 is a perspective view of a centrifugal fan according to Embodiment 3. FIG. In the third embodiment, the projecting portion 5 of the first embodiment is replaced with a projecting portion 40 . The configuration of Embodiment 3 other than the protrusion 40 is the same as that of Embodiment 1, and redundant description will be omitted.
 突出部40は、回転対象の形状であり、例えば楕円型である。楕円形の突出部40は、中心がモータ3の回転軸2と一致し、楕円の長径が羽根車4の外径D2以下とし、楕円の短径が通風穴4eの外径Db以上であるとする。楕円の長径および楕円の短径は、例えば、突出部40の外径をもって測定する。このように、楕円形の突出部40は、羽根車4の外径D2から通風穴4eの外径Dbまでの範囲に突出部40の全周を設置する。 The projecting portion 40 has a rotationally symmetrical shape, for example, an elliptical shape. The elliptical protrusion 40 has a center aligned with the rotating shaft 2 of the motor 3, a major axis of the ellipse equal to or smaller than the outer diameter D2 of the impeller 4, and a minor axis of the ellipse equal to or larger than the outer diameter Db of the ventilation hole 4e. do. The major axis of the ellipse and the minor axis of the ellipse are measured by the outer diameter of the projecting portion 40, for example. Thus, the elliptical protruding portion 40 is installed on the entire circumference of the protruding portion 40 in the range from the outer diameter D2 of the impeller 4 to the outer diameter Db of the ventilation hole 4e.
 実施の形態3において、羽根車4から通風穴4eを無くすようにしてもよい。その場合、突出部40は、全周に亘って羽根車4の外径から径方向の内側の領域に設置され、かつ突出部40の全周のうちの少なくとも一部は、羽根車4の外径より径方向の内側にオフセットして設置される。図11の場合は、突出部40の長径部が羽根車4の外径部に設置され、長径部以外が羽根車4の外径より径方向の内側にオフセットして設置されている。 In Embodiment 3, the impeller 4 may have no ventilation holes 4e. In that case, the projecting portion 40 is installed in a region radially inward from the outer diameter of the impeller 4 over the entire circumference, and at least part of the entire circumference of the projecting portion 40 is outside the impeller 4. It is installed with an offset radially inward from the diameter. In the case of FIG. 11 , the longer diameter portion of the projecting portion 40 is installed on the outer diameter portion of the impeller 4 , and the portions other than the longer diameter portion are offset radially inward from the outer diameter of the impeller 4 .
 突出部40の形状としては、長径と短径の差は大きいほうが望ましい。例えば、長径と短径との差が、羽根車4の外径D2と通風穴4eの外径Dbとの差の半分以上であることが望ましい。すなわち、長径をDxとし、短径をDnとすると、(Dx-Dn)>(D2-Db)/2であることが望ましい。 As for the shape of the projecting portion 40, it is desirable that the difference between the major axis and the minor axis is large. For example, it is desirable that the difference between the major diameter and the minor diameter is at least half the difference between the outer diameter D2 of the impeller 4 and the outer diameter Db of the ventilation holes 4e. That is, it is desirable that (Dx−Dn)>(D2−Db)/2, where Dx is the major axis and Dn is the minor axis.
 実施の形態3の突出部40は、真円形状ではなく楕円形状としている。楕円形状の場合は、中心軸から突出部40の壁面までの距離が場所によって異なるため、突出部40の内部に存在する音波と同一周波数の逆方向に伝搬する音波が重なりにくくなる。このため、定在波が生じにくくなり、共鳴音を効果的に抑制できる。 The projecting portion 40 of Embodiment 3 has an elliptical shape instead of a perfect circular shape. In the case of an elliptical shape, the distance from the central axis to the wall surface of the protrusion 40 differs depending on the location, so that the sound wave existing inside the protrusion 40 and the sound wave having the same frequency and propagating in the opposite direction are less likely to overlap each other. Therefore, standing waves are less likely to occur, and resonance can be effectively suppressed.
 このように実施の形態3によれば、突出部40を楕円形状としているため、定在波が生じにくくなり、共鳴音を効果的に抑制でき、低騒音化をより図ることができる。なお、突出部40は、全周に亘って羽根車4の外径から径方向の内側の領域に設置され、かつ突出部40の全周のうちの少なくとも一部が、羽根車4の外径より径方向の内側にオフセットして設置される条件を満たせば、楕円に限らず任意の形状としてもよい。 As described above, according to Embodiment 3, since the projecting portion 40 is formed in an elliptical shape, standing waves are less likely to occur, resonance can be effectively suppressed, and noise can be further reduced. The protruding portion 40 is installed in a region radially inward from the outer diameter of the impeller 4 over the entire circumference, and at least part of the entire circumference of the protruding portion 40 is the outer diameter of the impeller 4. Any shape other than an ellipse may be used as long as it satisfies the condition of being offset further inward in the radial direction.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technology. It is also possible to omit or change the part.
 1 遠心送風機、2 回転軸、3 モータ、3a シャフト、4 羽根車、4a 主板、4b ブレード、4c ボス部、4d リブ、4e 通風穴、4f,4g,4h 円、5,20,30,40 突出部、6 スクロール部、7 ディフューズ部、8 吸込口、8a ベルマウス、9 舌部、10 吹出口、11 スクロールケーシング、11a 第1壁、11b 第2壁、11c 第3壁、Y1 空気流、Y2 空気流、Y3 主流、Y4 二次流れ。 1 Centrifugal blower, 2 Rotating shaft, 3 Motor, 3a Shaft, 4 Impeller, 4a Main plate, 4b Blade, 4c Boss, 4d Rib, 4e Ventilation hole, 4f, 4g, 4h Circle, 5, 20, 30, 40 Projection Part, 6 Scroll Part, 7 Diffuse Part, 8 Suction Port, 8a Bell Mouth, 9 Tongue Portion, 10 Blowout Port, 11 Scroll Casing, 11a First Wall, 11b Second Wall, 11c Third Wall, Y1 Air Flow, Y2: air flow, Y3: main flow, Y4: secondary flow.

Claims (10)

  1.  モータのモータシャフトに固定され、前記モータシャフトを中心に回転する羽根車であって、
     円盤状の主板と、
     前記主板の表面の外周部に環状に立設される複数のブレードと、
     前記主板の裏面から突出する筒形状の突出部と、
     を備え、
     前記突出部の径方向の内側に前記モータが収容され、
     前記突出部は全周に亘って前記羽根車の外径から径方向の内側に設置されていることを特徴とする羽根車。
    An impeller fixed to a motor shaft of a motor and rotating around the motor shaft,
    a disk-shaped main plate;
    a plurality of blades annularly erected on the outer peripheral portion of the surface of the main plate;
    a cylindrical protruding portion protruding from the back surface of the main plate;
    with
    The motor is housed inside the protrusion in the radial direction,
    An impeller according to claim 1, wherein the projecting portion is arranged radially inward from an outer diameter of the impeller over the entire circumference.
  2.  前記主板は、円周方向に配置される複数の通風穴を備えることを特徴とする請求項1に記載の羽根車。 The impeller according to claim 1, wherein the main plate has a plurality of ventilation holes arranged in a circumferential direction.
  3.  前記突出部は、前記モータシャフトの回転軸に対して回転対称の形状であることを特徴とする請求項1に記載の羽根車。 The impeller according to claim 1, wherein the protrusion has a shape that is rotationally symmetrical with respect to the rotation axis of the motor shaft.
  4.  前記突出部は円筒形状であることを特徴とする請求項3に記載の羽根車。 The impeller according to claim 3, wherein the protruding portion is cylindrical.
  5.  前記突出部の外径をDaとし、前記羽根車の外径をD2とし、前記モータの外径をDcとしたとき、D2>Da>Dcを満たすことを特徴とする請求項4に記載の羽根車。 5. The blade according to claim 4, wherein D2>Da>Dc is satisfied, where Da is the outer diameter of the protrusion, D2 is the outer diameter of the impeller, and Dc is the outer diameter of the motor. car.
  6.  前記主板は、円周方向に配置される複数の通風穴を備え、
     前記突出部は円筒形状であり、
     前記突出部の外径をDaとし、前記羽根車の内径をD1とし、前記通風穴の外径をDbとしたとき、D1≧Da>Dbを満たすことを特徴とする請求項1に記載の羽根車。
    The main plate has a plurality of ventilation holes arranged in a circumferential direction,
    The protruding portion has a cylindrical shape,
    2. The blade according to claim 1, wherein D1≧Da>Db, where Da is the outer diameter of the protrusion, D1 is the inner diameter of the impeller, and Db is the outer diameter of the ventilation hole. car.
  7.  前記突出部の全周のうちの少なくとも一部は、前記羽根車の外径より径方向の内側にオフセットして設置されることを特徴とする請求項1または2に記載の羽根車。 3. The impeller according to claim 1 or 2, wherein at least a portion of the entire circumference of the protruding portion is offset radially inward from the outer diameter of the impeller.
  8.  前記突出部は前記モータシャフトの回転軸を中心とする楕円形状であることを特徴とする請求項7に記載の羽根車。 The impeller according to claim 7, wherein the projection has an elliptical shape centered on the rotation axis of the motor shaft.
  9.  前記主板における外周部から前記突出部までの部分は平らな面であることを特徴とする請求項1から8の何れか一つに記載の羽根車。 The impeller according to any one of claims 1 to 8, wherein a portion of the main plate from the outer peripheral portion to the projecting portion is a flat surface.
  10.  請求項1から9の何れか一つに記載の羽根車と、
     前記モータと、
     前記羽根車を収容し、空気の吸込口と空気の吹出口とを有し、前記羽根車の回転によって発生する空気流の流路を構成するスクロールケーシングと、
     を備えることを特徴とする遠心送風機。
    an impeller according to any one of claims 1 to 9;
    the motor;
    a scroll casing housing the impeller, having an air inlet and an air outlet, and forming a flow path for an air flow generated by rotation of the impeller;
    A centrifugal blower comprising:
PCT/JP2021/016185 2021-04-21 2021-04-21 Impeller and centrifugal blower WO2022224379A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/016185 WO2022224379A1 (en) 2021-04-21 2021-04-21 Impeller and centrifugal blower
JP2023515952A JP7486667B2 (en) 2021-04-21 Impellers and centrifugal fans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016185 WO2022224379A1 (en) 2021-04-21 2021-04-21 Impeller and centrifugal blower

Publications (1)

Publication Number Publication Date
WO2022224379A1 true WO2022224379A1 (en) 2022-10-27

Family

ID=83722135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016185 WO2022224379A1 (en) 2021-04-21 2021-04-21 Impeller and centrifugal blower

Country Status (1)

Country Link
WO (1) WO2022224379A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161890A (en) * 2000-11-24 2002-06-07 Calsonic Kansei Corp Centrifugal multiblade fan
JP2006090297A (en) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd Multiblade fan and air conditioner provided with it
JP2008169826A (en) * 2006-12-14 2008-07-24 Matsushita Electric Ind Co Ltd Centrifugal impeller and centrifugal blower
WO2018083783A1 (en) * 2016-11-04 2018-05-11 三菱電機株式会社 Electrically operated air blower, electric vacuum cleaner, and hand dryer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161890A (en) * 2000-11-24 2002-06-07 Calsonic Kansei Corp Centrifugal multiblade fan
JP2006090297A (en) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd Multiblade fan and air conditioner provided with it
JP2008169826A (en) * 2006-12-14 2008-07-24 Matsushita Electric Ind Co Ltd Centrifugal impeller and centrifugal blower
WO2018083783A1 (en) * 2016-11-04 2018-05-11 三菱電機株式会社 Electrically operated air blower, electric vacuum cleaner, and hand dryer

Also Published As

Publication number Publication date
JPWO2022224379A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5566663B2 (en) Multiblade centrifugal fan and air conditioner using the same
US10060440B2 (en) Centrifugal fan
US7207774B2 (en) Centrifugal fan and casing thereof
JP3698150B2 (en) Centrifugal blower
CN107850083B (en) Blower and air conditioner equipped with same
US9039361B2 (en) Centrifugal fan
US20130084173A1 (en) Centrifugal fan
JP2012092680A (en) Multi-blade centrifugal fan and air conditioner using the same
US20180258959A1 (en) Vaned Diffuser and Blower, Fluid Machine, or Electric Blower Provided with Same
JP2013113128A (en) Axial flow fan
JPH09126193A (en) Centrifugal blower
JP2012207600A (en) Centrifugal fan
EP0467557A1 (en) Blower assembly with impeller for vacuum cleaner
US8834112B2 (en) Centrifugal fan
US20180283395A1 (en) Turbo fan and air conditioner including same
WO2022224379A1 (en) Impeller and centrifugal blower
JP2011149328A (en) Multiblade centrifugal fan and air conditioner using the same
JP5675298B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP2012140881A (en) Multiblade blower
JP7486667B2 (en) Impellers and centrifugal fans
JPH06213198A (en) Outdoor unit for air-conditioner
JP5291382B2 (en) Multi-blade centrifugal fan
WO2023199406A1 (en) Centrifugal blower
JP2005163598A (en) Pipe fan
JP2002202093A (en) Centrifugal blower and vehicle air-conditioner equipped with it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937873

Country of ref document: EP

Kind code of ref document: A1