WO2022224351A1 - Elevator apparatus - Google Patents

Elevator apparatus Download PDF

Info

Publication number
WO2022224351A1
WO2022224351A1 PCT/JP2021/016048 JP2021016048W WO2022224351A1 WO 2022224351 A1 WO2022224351 A1 WO 2022224351A1 JP 2021016048 W JP2021016048 W JP 2021016048W WO 2022224351 A1 WO2022224351 A1 WO 2022224351A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable member
electromagnet
electric actuator
guide
elevator
Prior art date
Application number
PCT/JP2021/016048
Other languages
French (fr)
Japanese (ja)
Inventor
康司 伊藤
秀隆 座間
洋輔 久保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP21937848.6A priority Critical patent/EP4328166A1/en
Priority to JP2023515930A priority patent/JP7505119B2/en
Priority to CN202180097306.1A priority patent/CN117177932A/en
Priority to PCT/JP2021/016048 priority patent/WO2022224351A1/en
Publication of WO2022224351A1 publication Critical patent/WO2022224351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces

Definitions

  • the present invention relates to an elevator system equipped with a safety device operated by an electric actuator.
  • the elevator system is equipped with a governor and an emergency stop device to constantly monitor the ascending and descending speed of the car and to emergency stop the car that has fallen into a predetermined overspeed condition.
  • the car and the governor are connected by a governor rope, and when an overspeed condition is detected, the governor restrains the governor rope and activates the emergency stop device on the car side to bring the car to an emergency stop.
  • Patent Document 1 The technology described in Patent Document 1 is known as a conventional technology related to a safety device that does not use a governor rope.
  • a drive shaft that drives the safety device and an operating mechanism that operates the drive shaft are provided on the car.
  • the operating mechanism includes a movable iron core mechanically connected to the drive shaft via a connecting piece, and an electromagnetic core that attracts the movable iron core.
  • the drive shaft is urged by the drive spring, but normally the movement of the drive shaft is restrained by the operating mechanism because the electromagnet is energized and the movable iron core is attracted.
  • the electromagnetic core is demagnetized and the restraint on the drive shaft is released, and the drive shaft is driven by the biasing force of the drive spring.
  • the safety device operates to bring the car to an emergency stop.
  • a mechanism for moving the electromagnetic core includes a feed screw, a motor for rotating the feed screw, and a feed nut provided on the electromagnetic core and screwed with the feed screw. As the motor rotates, the lead screw and lead nut move the electromagnetic core. When the electromagnetic core contacts the movable core, the electromagnetic core is energized to attract the movable core to the electromagnetic core. Further, the electromagnetic core is driven while the movable iron core is attracted to the electromagnetic core, and the movable iron core and the electromagnetic core are returned to the normal standby position.
  • the present invention provides an elevator apparatus equipped with a safety device operated by an electric actuator capable of reducing the load on the motor.
  • an elevator apparatus includes a car, a safety device provided in the car, a drive mechanism provided in the car for driving the safety device, and a safety device provided in the car. and an electric actuator for operating the drive mechanism, the electric actuator comprising: an operation lever connected to the drive mechanism; a movable member rotatably connected to the operation lever; In the standby state of , the electromagnet that attracts the movable member, the feed screw that is screwed into the electromagnet, the motor that drives the feed screw, and the motor that drives the feed screw in the return operation of the electric actuator, a guide portion for following movement of the movable member so as to align the movable member with respect to the electromagnet portion when the electromagnet portion moves toward and contacts the movable member.
  • the load applied to the motor can be reduced during the return operation of the electric actuator.
  • FIG. 1 is a schematic configuration diagram of an elevator apparatus that is Embodiment 1.
  • FIG. Fig. 2 is a front view showing the mechanical portion of the electric actuator in Example 1 (standby state);
  • Fig. 2 is a front view showing the mechanical portion of the electric actuator in Example 1 (in an operating state);
  • FIG. 3 is a side view showing arrangement of a movable member, an electromagnet portion, a guide portion, and a feed screw in FIG. 2;
  • 4 is a top view showing the mechanical portion of the electric actuator in Example 1 (operating state);
  • FIG. 4 is a top view showing the mechanical portion of the electric actuator in Example 1 (during return operation);
  • FIG. 4 is a top view showing the mechanism of the electric actuator in Example 1 (standby state);
  • FIG. 10 is a front view showing the mechanical portion of the electric actuator in Example 2 (standby state);
  • FIG. 11 is a front view showing the mechanical portion of the electric actuator in Example 2 (in an operating state);
  • FIG. 9 is a side view showing arrangement of a movable member, an electromagnet portion, a guide portion and a feed screw in FIG. 8;
  • FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (operating state);
  • FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (during return operation);
  • FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (standby state);
  • FIG. 1 is a schematic configuration diagram of an elevator apparatus that is Embodiment 1 of the present invention.
  • the elevator system includes a car 1, an electric actuator 10, a drive mechanism (12-20), a lifting rod 21, and a safety device 2.
  • a car 1 is suspended by a main rope (not shown) in a hoistway provided in a building, and is slidably engaged with a guide rail 4 via a guide device (not shown).
  • a driving device hoisting machine: not shown
  • the car 1 ascends and descends in the hoistway.
  • a speed detection device (not shown) is provided in the car 1 and constantly detects the ascending/descending speed of the car 1 in the hoistway. Therefore, the speed detector can detect that the elevator car 1 has exceeded a predetermined overspeed.
  • the speed detection device is provided with an image sensor, and detects the speed of the car 1 based on the image information of the surface condition of the guide rail 4 acquired by the image sensor. For example, the speed detection device calculates the speed from the moving distance of the image feature amount in a predetermined time.
  • the speed detection device may calculate the speed of the car based on the output signal of a rotary encoder that rotates as the car moves.
  • the electric actuator 10 is an electromagnetic operator in the first embodiment, and is arranged above the car 1 .
  • the electromagnetic operator has, for example, a movable piece or a movable rod that is operated by a solenoid or electromagnet section.
  • the electric actuator 10 is activated when the speed detector detects a predetermined overspeed condition of the car 1 .
  • the drive mechanism (12-20) connected to the operating lever 11 pulls up the pull-up rod 21.
  • the safety device 2 is brought into a braking state.
  • the drive mechanisms (12-20) will be described later.
  • the safety devices 2 are arranged one by one on the left and right sides of the car 1.
  • a pair of brakes (not shown) included in each safety device 2 are movable between a braking position and a non-braking position, sandwich the guide rail 4 at the braking position, and rise relatively as the car 1 descends. Then, a braking force is generated by the frictional force acting between the brake shoe and the guide rail 4 .
  • the safety device 2 is actuated when the car 1 is in an overspeed condition to bring the car 1 to an emergency stop.
  • the elevator system of the present embodiment 1 is provided with a so-called ropeless governor system that does not use a governor rope. speed not more than doubled), power to the drive (hoisting machine) and to the control device controlling this drive is cut off. Further, when the descending speed of the car 1 reaches a second overspeed (for example, a speed not exceeding 1.4 times the rated speed), the electric actuator 10 provided in the car 1 operates the safety device 2. Then, the car 1 is brought to an emergency stop.
  • the ropeless governor system is composed of the aforementioned speed detection device and a safety control device that determines the overspeed state of the car 1 based on the output signal of the speed detection device.
  • This safety control device measures the speed of the car 1 based on the output signal of the speed detection device, and when it is determined that the measured speed has reached the first overspeed, the power supply of the drive device (hoisting machine) and It outputs a command signal for shutting off the power supply of the control device that controls this drive device. Further, when the safety control device determines that the measured speed has reached the second overspeed, it outputs a command signal for operating the electric actuator 10 .
  • the pair of brakes included in the safety device 2 are pulled up by the lifting rod 21, the pair of brakes sandwich the guide rail 4.
  • the lifting rod 21 is driven by a drive mechanism (12-20) connected to the electric actuator 10. As shown in FIG.
  • the operating lever 11 of the electric actuator 10 and the first operating piece 16 are connected to form a substantially T-shaped first link member.
  • the operating lever 11 and the first operating piece 16 constitute a T-shaped head and foot, respectively.
  • a substantially T-shaped first link member is rotatably supported by a crosshead 50 as a support member via a first operating shaft 19 at a connecting portion between the operating lever 11 and the first operating piece 16 .
  • One of the pair of lifting rods 21 (left side in the figure) is attached to the end of the first operating piece 16 which is the foot of the T-shape, opposite to the connecting portion between the operating lever 11 and the first operating piece 16 . The ends are connected.
  • the connecting piece 17 and the second operating piece 18 are connected to form a substantially T-shaped second link member.
  • the connecting piece 17 and the second operating piece 18 constitute a T-shaped head and foot, respectively.
  • the substantially T-shaped second link member is rotatably supported by the crosshead 50 via the second operating shaft 20 at the connecting portion between the connecting piece 17 and the second operating piece 18 .
  • the second operating piece 18 which is the leg of the T-shape, opposite to the connecting portion between the connecting piece 17 and the second operating piece 18, the other of the pair of lifting rods 21 (left side in the figure) is attached. The ends are connected.
  • the end of the operating lever 11 extending from the inside of the housing 30 to the outside and the end of the connecting piece 17 nearer to the upper part of the car 1 than the second operating shaft 20 are connected to the car. 1 are connected to one end (left side in the figure) and the other end (right side in the figure) of a drive shaft 12 lying on the upper side.
  • the drive shaft 12 slidably penetrates a fixing portion 14 (fixing bolts not shown) fixed to the crosshead 50 by bolting. Further, the drive shaft 12 passes through the pressing member 15 , and the pressing member 15 is fixed to the drive shaft 12 .
  • the pressing member 15 is positioned on the second link member (connecting piece 17, second operating piece 18) side of the fixed portion 14. As shown in FIG. An elastic drive spring 13 is positioned between the fixed portion 14 and the pressing member 15 , and the drive shaft 12 is inserted through the drive spring 13 .
  • the electric actuator 10 When the electric actuator 10 operates, that is, when the electromagnet section is deenergized in the first embodiment, the electromagnetic force that restrains the movement of the operating lever 11 against the biasing force of the drive spring 13 disappears.
  • the biasing force of the drive spring 13 applied to the pressing member 15 drives the drive shaft 12 along the longitudinal direction. Therefore, the first link member (operating lever 11, first operating piece 16) rotates around the first operating shaft 19, and the second link member (connecting piece 17, second operating piece 18) rotates. rotates about the second actuation axis 20 .
  • one lifting rod 21 connected to the first operating piece 16 of the first link member is driven and lifted, and the other lifting rod connected to the second operating piece 18 of the second link member is pulled up. 21 is driven and pulled up.
  • a flexible cover member 32 through which the operation lever is inserted is provided at the insertion portion of the operation lever 11 in the housing cover 31 which is the upper surface of the housing 30 . This prevents dust, foreign matter, and the like from entering the housing 30 in which the mechanical portion of the electric actuator 10 is housed.
  • FIG. 2 is a front view showing the mechanical part housed in the housing 30 of the electric actuator 10 according to the first embodiment, in the installation state of FIG.
  • the safety device is in a non-operating state
  • the electric actuator 10 is in a standby state. That is, the elevator installation is in normal operating condition.
  • the movable member has an attraction portion 34A that is attracted to the magnetic pole surface of the electromagnet portion 35, and a support portion 34B to which the attraction portion 34A is fixed.
  • the operating lever 11 is connected to the support portion 34B via a bracket 38 that is rotatably connected to the support portion 34B.
  • at least the attracting portion 34A is made of a magnetic material.
  • the support portion 34B is connected to the bracket 38 by an engagement pin 102.
  • a shaft portion 101 of the engaging pin 102 passes through a long hole 103 in the support portion 34B, and the end portion of the shaft portion 101 is fixed to the bracket 38 .
  • the longitudinal direction of the long hole 103 is parallel to the adsorption surface of the adsorption portion 34A.
  • the width of the long hole 103 in the direction perpendicular to the longitudinal direction of the long hole 103 is larger than the diameter of the shaft portion 101 of the engaging pin 102 and smaller than the diameter of the head portion of the engaging pin 102 .
  • the electromagnet part 35 has a guide part 201 .
  • the guide portion 201 is fitted with the suction portion 34A of the movable member. Thereby, the movable member is positioned with respect to the electromagnet portion 35 .
  • a positional deviation of the movable member may occur during the emergency stop operation of the electric actuator 10 . Even if the displacement occurs, when the guide portion 201 of the electromagnet portion 35 and the attracting portion 34A are fitted together in the return operation of the electric actuator 10, the movable member that is displaced is guided by the guide portion 201. The movement brings it into alignment with the electromagnet portion 35 .
  • a flexible cover member 32 that covers the opening through which the operation lever 11 is inserted is provided in the housing cover 31 that is the upper surface of the housing 30 .
  • the cover member 32 is made of a thin plate-like rubber material. Since the cover member 32 has flexibility, the movement of the operating lever 11 when operating the safety device is not hindered.
  • the cover member 32 prevents dust, foreign matter, etc. from entering the housing 30 and adhering to or coming into contact with the mechanism. This improves the reliability of the operation of the electric actuator 10 in the installation environment (in a hoistway, etc.).
  • FIG. 3 is a front view showing the mechanical part housed in the housing 30 of the electric actuator 10 according to the first embodiment, in the installation state of FIG.
  • the safety device is in a braking state
  • the electric actuator 10 is in an operating state. That is, the elevator system is in a state of being stopped by the safety device.
  • the electric actuator 10 has a lead screw 36 located on the flat surface of the substrate 40 for driving the movable member.
  • the feed screw 36 is rotatably supported by a first support member 41 and a second support member 42 fixed on the plane of the substrate 40 .
  • the electromagnet part 35 has a feed nut 39 , and the feed nut 39 is screwed with the feed screw 36 .
  • a feed screw 36 is rotated by a motor 37 .
  • the motor 37 is driven to rotate the feed screw 36 .
  • Rotation of the motor 37 is converted into linear movement of the electromagnet section 35 along the axial direction of the feed screw 36 by the rotating feed screw 36 and the feed nut 39 provided in the electromagnet section 35 .
  • the guide part 201 is fitted with the attracting part 34A of the movable member.
  • the attraction portion 34A and the magnetic pole surface of the electromagnet portion 35 come into surface contact.
  • the electromagnet portion 35 is excited and the motor 37 is stopped.
  • the movable member is attracted to the electromagnet portion 35 by the action of electromagnetic force.
  • the movable member When the movable member is attracted to the electromagnet part 35, the direction of rotation of the motor 37 is reversed while the excitation of the electromagnet part 35 is continued, and the feed screw 36 is reversed. As a result, the movable member moves together with the electromagnet portion 35 to the standby position. At this time, since the movable member is aligned with the electromagnet portion 35 , the movable member moves smoothly without increasing the load on the motor 37 .
  • FIG. 4 is a side view showing the arrangement of the movable members (34A, 34B), electromagnet section 35, guide section 201 and feed screw 36 in FIG. 4 is a side view of FIG. 2 as seen from the right direction in the figure.
  • the suction portion 34A of the movable member has a line-symmetrical planar shape with an axis of symmetry passing through the central axis of the feed screw 36 .
  • the electromagnet part 35 has two circular magnetic pole faces. These pole faces are arranged symmetrically about the same axis of symmetry.
  • the adsorption part 34A has a notch part 34C in the central part.
  • the notch portion 34C and the guide portion 201 are fitted.
  • the guide portion 201 has a hollow cylindrical shape, and the feed screw 36 passes through the inside of the guide portion 201 .
  • the open end portion of the guide portion 201 on the side of the movable member has a tapered surface that decreases in diameter toward the suction portion 34A of the movable member. Note that this tapered surface is visible in FIG.
  • the movable member side of the guide portion 201 is first A tapered surface at the open end contacts the edge of the notch 34C to move the movable member. That is, the displaced movable member moves while being guided by the guide portion 201 . Further, when the guide portion 201 and the notch portion 34C are fitted up to the maximum diameter portion of the tapered surface, that is, the cylindrical portion following the tapered surface, the movable member is set by the guide portion 201 with respect to the electromagnet portion 35. position.
  • the width (w) of the notch portion 34C in the horizontal direction in FIG. It is set larger than (d) (d ⁇ w ⁇ d+ ⁇ x).
  • the support portion 34B of the movable member has two engagement portions with the bracket 38. These two engaging portions are arranged line-symmetrically with respect to the axis of symmetry of the suction portion 34A described above. At each of the two engaging portions, the movable member is connected to the bracket 38 via an engaging pin 102 through which the shaft portion 101 is fixedly connected to the side portion of the bracket 38 through an elongated hole 103. be.
  • FIG. 4 shows the movable member aligned, but in this state, the side of bracket 38 and the side of support 34B that face each other are positioned so that they do not contact each other. The dimensions and the positional relationship between the two are set. Therefore, there is a gap (play) between the side portion of the bracket 38 and the side portion of the support portion 34B. Further, as described above, in order to allow the degree of freedom in the position of the engaging pin 102 within the range of the elongated hole 103, the end portion of the shaft portion 101 of the engaging pin 102 on the head side of the engaging pin 102 is , on the side opposite to the bracket 38 side of the support portion 34B, and protrudes from the elongated hole 103 to form a free end.
  • the movable members (34A, 34B) are rotatable around the engagement pin 102 and movable in the axial direction of the engagement pin 102, that is, the rotation axis direction.
  • the movable members (34A, 34B) can be misaligned in the axial direction of the engagement pin 102, and the movable members (34A, 34B) can be aligned as described later.
  • 5 to 7 are top views showing the mechanical portion of the electric actuator according to the first embodiment.
  • the electric actuator is in the operating state (corresponding to Fig. 3), during the return operation, and in the standby state (corresponding to Fig. 2) in Figs. 5, 6 and 7, respectively.
  • the movable members (34A, 34B) are misaligned in the axial direction of the engagement pin. That is, the center of the notch portion 34C (horizontal center in FIG. 4) is shifted upward in FIG. 5 (to the right in FIG. 4) from the rotation axis of the feed screw 36. Therefore, when the support portion 34B of the movable member approaches the bracket 38 due to positional deviation, the support portion 34B and the bracket 38 may come into contact with each other due to dimensional tolerances and assembly tolerances of the electric actuator.
  • the movable member is positioned with respect to the electromagnet portion 35 during the return operation, so that the support portion 34B and the bracket 38 come into contact with each other and the motor load is reduced. can be prevented from increasing.
  • the electromagnet portion 35 is driven by the feed screw 36 rotated by the motor 37, and the electromagnet portion 35 moves toward the movable member.
  • the tip portion of the guide portion 201 having a tapered surface is fitted into the notch portion 34C of the adsorption portion 34A.
  • the edge of the notch portion 34C is pressed by the tapered surface, so that the movable member moves in the axial direction of the engagement pin 102.
  • the movable member moves downward in FIG. 5 from the position in FIG.
  • the movable member is guided by the guide part 201 provided in the electromagnet part 35 and moves in the direction opposite to the displaced direction. Thereby, the movable member is aligned with the position set by the guide portion 201 with respect to the electromagnet portion 35 .
  • Such alignment eliminates the possibility of contact between the support portion 34B and the bracket 38 due to dimensional tolerances and assembly tolerances of the electric actuator when the movable member is misaligned.
  • the electromagnet part 35 When the movable member is aligned with the electromagnet part 35, the electromagnet part 35 is energized and attracts the attracting part 34A by electromagnetic force. While the electromagnet part 35 is energized, the motor 37 is rotated in a direction opposite to the direction in which the electromagnet part 35 is moved toward the movable member. The electromagnet 35 is driven by the feed screw 36 rotated by the motor 37 rotating in the reverse direction, and the electromagnet 35 and the movable members (34A, 34B) move to the standby state position as shown in FIG. At this time, the electromagnet part 35 and the movable members ( 34 A, 34 B) move while the movable member is aligned with the electromagnet part 35 . Therefore, it is possible to prevent an increase in motor load due to dimensional tolerances and assembly tolerances of the electric actuator.
  • the moving direction of the movable members (34A, 34B), which are displaced when the electric actuator is actuated, is adjusted by the guide portion 201 when the electric actuator is restored.
  • Positioning is performed with respect to the electromagnet part 35 by moving while guiding in the direction opposite to the direction of positional deviation. That is, the movable member is provided with the electromagnet portion such that, in the return operation, the electromagnet portion 35 aligns the movable member with respect to the electromagnet portion 35 when the electromagnet portion 35 moves toward and contacts the movable member.
  • the movement of the electromagnet part 35 is followed by the guide part 201 .
  • the electric actuator according to the first embodiment operates in the same manner even when the power supply to the electromagnet part 35 is stopped due to a power failure, when the power failure is restored.
  • the schematic configuration of the elevator apparatus of the second embodiment is the same as that of the first embodiment (Fig. 1).
  • FIG. 8 shows the mechanical part housed in the housing 30 of the electric actuator 10 in Embodiment 2, and is a front view in the installation state of FIG. 1 (corresponding to FIG. 2 described above).
  • the safety device is in a non-operating state, and the electric actuator 10 is in a standby state. That is, the elevator installation is in normal operating condition.
  • the suction portion 34A of the movable member (34A, 34B) has a guide portion 301.
  • the guide portions 301 are provided on both the left and right sides of the attracting surface of the attracting portion 34A with the electromagnet portion 35 .
  • the electromagnet portion 35 is fitted with the adsorption portion 34A of the movable member. Thereby, the movable member is positioned with respect to the electromagnet portion 35 .
  • the alignment mechanism is the same as in the first embodiment, although the movable member has the guide portion 301 .
  • the movable member is aligned with the electromagnet section 35 by moving while being guided by the guide section 301 .
  • FIG. 9 shows the mechanical part housed in the housing 30 of the electric actuator 10 in the second embodiment, and is a front view in the installation state of FIG. 1 (corresponding to FIG. 3 described above).
  • the safety device is in the braking state, and the electric actuator 10 is in the operating state. That is, the elevator system is in a state of being stopped by the safety device.
  • FIG. 10 is a side view showing the arrangement of the movable members (34A, 34B), electromagnet section 35, guide section 301 and feed screw 36 in FIG. 10 is a side view of FIG. 8 as seen from the right direction in the figure.
  • the suction portion 34A has a notch portion 34C in the central portion of the suction surface.
  • the feed screw 36 passes through the central portion of the notch portion 34C.
  • the width of the notch 34C in the horizontal direction in the drawing is set so that the edge of the notch 34C does not come into contact with the feed screw 36 in anticipation of the positional displacement of the movable member.
  • the adsorption section 34A has guide sections 301 at both left and right ends in the horizontal direction in the drawing.
  • the two guide portions have tapered surfaces that open toward the electromagnet portion 35, as shown in FIGS. 11 to 13 described later. Note that these tapered surfaces are visible in FIG.
  • width (W) of the suction surface between the guide portions 301 in the horizontal direction in FIG. It is set larger than the distance (D) between the ends of the two magnetic pole faces (D ⁇ W ⁇ D+ ⁇ X).
  • 11 to 13 are top views showing the mechanical portion of the electric actuator according to the first embodiment.
  • the electric actuator is in the operating state (corresponding to Fig. 9), during the return operation, and in the standby state (corresponding to Fig. 8) in Figs. 11, 12 and 13, respectively.
  • the suction section 34A of the movable member has guide sections 301 on both sides of the notch section 34C.
  • the guide portions 301 are provided at both end portions of the attracting surface of the attracting portion 34 ⁇ /b>A facing parallel to the magnetic pole surface of the electromagnet portion 35 .
  • Guide portion 301 has a tapered surface. Each tapered surface is formed of an inclined surface that extends outward from the end of the attracting surface and approaches the magnetic pole surface of the electromagnet portion 35 . Therefore, the two tapered surfaces at both ends of the attracting surface are open toward the electromagnet section 35 . Between such tapered surfaces, the movable member is aligned as described below by fitting the electromagnet portion 35 with the movable member.
  • the guide portion 301 is configured by a member different from the suction portion 34A. It should be noted that the guide portion 301 may be configured by bending both ends of the plate material that configures the adsorption portion 34A into a tapered shape. Also, the guide portion 301 may be made of a non-magnetic material. In this case, when the electromagnet portion 35 is energized, the magnetic pole surface of the electromagnet and the attracting surface of the attracting portion 34A are attracted with high reliability.
  • the movable members (34A, 34B) are displaced in the axial direction of the engagement pin 102.
  • the center of the notch portion 34C (horizontal center in FIG. 10) is shifted upward in FIG. 11 (to the right in FIG. 10) from the rotation axis of the feed screw 36 . Therefore, when the support portion 34B of the movable member approaches the bracket 38 due to positional deviation, the support portion 34B and the bracket 38 may come into contact with each other due to dimensional tolerances and assembly tolerances of the electric actuator.
  • the movable member is positioned with respect to the electromagnet portion 35 during the return operation, so that the support portion 34B and the bracket 38 come into contact with each other and the motor load is reduced. can be prevented from increasing.
  • the electromagnet part 35 is driven by the feed screw 36 rotated by the motor 37, and the electromagnet part 35 moves toward the movable member.
  • the electromagnet part 35 approaches the movable member, the electromagnet part 35 is fitted between the guide parts 301 of the adsorption part 34A.
  • the movable member moves in the axial direction of the engagement pin 102 .
  • the movable member moves downward in FIG. 11 from the position in FIG.
  • the movable member is guided by the guide part 301 of the movable member and moves in the direction opposite to the displaced direction. Thereby, the movable member is aligned with the position set by the electromagnet section 35 .
  • Such alignment eliminates the possibility of contact between the support portion 34B and the bracket 38 due to dimensional tolerances and assembly tolerances of the electric actuator when the movable member is misaligned.
  • the electromagnet part 35 When the movable member is aligned with the electromagnet part 35, the electromagnet part 35 is energized and attracts the attracting part 34A by electromagnetic force. While the electromagnet part 35 is energized, the motor 37 is rotated in a direction opposite to the direction in which the electromagnet part 35 is moved toward the movable member. The electromagnet 35 is driven by the feed screw 36 rotated by the motor 37 rotating in the reverse direction, and the electromagnet 35 and the movable members (34A, 34B) move to the standby state position as shown in FIG. At this time, the electromagnet part 35 and the movable members ( 34 A, 34 B) move while the movable member is aligned with the electromagnet part 35 . Therefore, it is possible to prevent an increase in motor load due to dimensional tolerances and assembly tolerances of the electric actuator.
  • the moving direction of the movable members (34A, 34B), which are displaced when the electric actuator is actuated, is changed by the guide portion 301 when the electric actuator is restored.
  • Positioning is performed with respect to the electromagnet part 35 by moving while guiding in the direction opposite to the direction of positional deviation. That is, the movable member is provided with a movable member such that, in the return movement, the movable member aligns the movable member with respect to the electromagnet portion 35 when the electromagnet portion 35 moves toward and contacts the movable member.
  • the movement of the electromagnet part 35 is followed by the guide part 301 .
  • the electric actuator in the second embodiment similarly operates at the time of power failure recovery even when the power supply to the electromagnet part 35 is stopped due to power failure.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • the electric actuator 10 may be provided not only on the upper part of the car 1, but also on the lower part or the side part.
  • the elevator device may be equipped with a machine room, or may be a so-called machine room-less elevator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnets (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Disclosed is an elevator apparatus that comprises an emergency stopping device that operates by an electric actuator, and that can reduce the load applied to the motor. This elevator apparatus includes an elevator car, an emergency stopping device, drive mechanisms (12-19) that drive the emergency stopping device, and an electric actuator (10) that causes the drive mechanisms to operate. The electric actuator comprises: an operating lever (11) connected to the drive mechanisms; movable members (34A, 34B) pivotably connected to the operating lever; an electromagnet part (35) that attracts the movable members in a stand-by state of the electric actuator; a feed screw (36) that screws into the electromagnet part; a motor (37) that drives the feed screw; and a guide part (201) that, in a return operation of the electric actuator and when the electromagnet part moves toward the movable members and contacts the electric actuator as the feed screw is driven by the motor, causes the movable members to follow the movement of the electromagnet part so as to position the movable members with respect to the electromagnet part.

Description

エレベータ装置elevator equipment
 本発明は、電動作動器によって作動する非常止め装置を備えるエレベータ装置に関する。 The present invention relates to an elevator system equipped with a safety device operated by an electric actuator.
 エレベータ装置には、乗りかごの昇降速度を常時監視して、所定の過速状態に陥った乗りかごを非常停止させるために、ガバナおよび非常止め装置が備えられている。一般に、乗りかごとガバナはガバナロープによって結合されており、過速状態を検出すると、ガバナがガバナロープを拘束することで乗りかご側の非常止め装置を動作させ、乗りかごを非常停止するようになっている。 The elevator system is equipped with a governor and an emergency stop device to constantly monitor the ascending and descending speed of the car and to emergency stop the car that has fallen into a predetermined overspeed condition. In general, the car and the governor are connected by a governor rope, and when an overspeed condition is detected, the governor restrains the governor rope and activates the emergency stop device on the car side to bring the car to an emergency stop. there is
 このようなエレベータ装置では、昇降路内に長尺物であるガバナロープを敷設するため、省スペース化および低コスト化が難しい。また、ガバナロープが振れる場合、昇降路内における構造物とガバナロープとが干渉しやすくなる。 In such an elevator system, it is difficult to save space and reduce costs because a long governor rope is laid in the hoistway. In addition, when the governor rope swings, the structures in the hoistway and the governor rope tend to interfere with each other.
 これに対し、ガバナロープを用いない非常止め装置が提案されている。 In response, an emergency stop device that does not use a governor rope has been proposed.
 ガバナロープを用いない非常止め装置に関する従来技術として、特許文献1に記載された技術が知られている。 The technology described in Patent Document 1 is known as a conventional technology related to a safety device that does not use a governor rope.
 本従来技術では、乗りかご上に、非常止め装置を駆動する駆動軸と、駆動軸を作動させる作動機構が設けられる。作動機構は、接続片を介して駆動軸に機械的に接続される可動鉄心と、可動鉄心を吸着する電磁コアを備えている。駆動軸は、駆動バネによって付勢されているが、通常時は、電磁石部が通電され可動鉄心が吸着されているため、作動機構によって駆動軸の動きが拘束されている。 In this prior art, a drive shaft that drives the safety device and an operating mechanism that operates the drive shaft are provided on the car. The operating mechanism includes a movable iron core mechanically connected to the drive shaft via a connecting piece, and an electromagnetic core that attracts the movable iron core. The drive shaft is urged by the drive spring, but normally the movement of the drive shaft is restrained by the operating mechanism because the electromagnet is energized and the movable iron core is attracted.
 非常時には、電磁コアが消磁されて駆動軸の拘束が解かれ、駆動バネの付勢力によって駆動軸が駆動される。これにより、非常止め装置が動作して、乗りかごが非常停止する。 In the event of an emergency, the electromagnetic core is demagnetized and the restraint on the drive shaft is released, and the drive shaft is driven by the biasing force of the drive spring. As a result, the safety device operates to bring the car to an emergency stop.
 また、非常止め装置を通常状態に復帰させるときには、非常時に移動した可動鉄心に電磁コアを移動して近付ける。電磁コアの移動機構は送りネジと、送りネジを回転させるモータと、電磁コアに設けられ、送りネジと螺合する送りナットとからなる。モータが回転すると、送りネジおよび送りナットによって、電磁コアが移動する。電磁コアが可動鉄心に当接したら、電磁コアを通電し、可動鉄心を電磁コアに吸着する。さらに、可動鉄心が電磁コアに吸着された状態で、電磁コアを駆動して、可動鉄心および電磁コアを通常時の待機位置に戻す。 Also, when returning the safety device to its normal state, the electromagnetic core is moved to approach the movable iron core that was moved in an emergency. A mechanism for moving the electromagnetic core includes a feed screw, a motor for rotating the feed screw, and a feed nut provided on the electromagnetic core and screwed with the feed screw. As the motor rotates, the lead screw and lead nut move the electromagnetic core. When the electromagnetic core contacts the movable core, the electromagnetic core is energized to attract the movable core to the electromagnetic core. Further, the electromagnetic core is driven while the movable iron core is attracted to the electromagnetic core, and the movable iron core and the electromagnetic core are returned to the normal standby position.
国際公開第2020/110437号WO2020/110437
 上記従来技術では、作動機構の組立公差や寸法公差によって、非常止め装置の復帰時にモータに掛かる機械的負荷が増大する。このため、モータの出力を大きくすると、モータの大きさや消費電力の増大を招く。 In the conventional technology described above, the mechanical load applied to the motor increases when the safety device returns due to assembly tolerances and dimensional tolerances of the operating mechanism. Therefore, if the output of the motor is increased, the size of the motor and power consumption will increase.
 そこで、本発明は、モータに掛かる負荷を低減できる電動作動器によって作動する非常止め装置を備えるエレベータ装置を提供する。 Therefore, the present invention provides an elevator apparatus equipped with a safety device operated by an electric actuator capable of reducing the load on the motor.
 上記課題を解決するために、本発明によるエレベータ装置は、乗りかごと、乗りかごに設けられる非常止め装置と、乗りかごに設けられ、非常止め装置を駆動する駆動機構と、乗りかごに設けられ、駆動機構を動作させる電動作動器と、を備えるものであって、電動作動器は、駆動機構に接続される操作レバーと、操作レバーに回動可能に接続される可動部材と、電動作動器の待機状態において、可動部材を吸着する電磁石部と、電磁石部に螺合する送りネジと、送りネジを駆動するモータと、電動作動器の復帰動作において、モータにより送りネジを駆動することにより、電磁石部が、可動部材に向かって移動して、可動部材に接触する時に、可動部材を電磁石部に対して位置合わせするように、可動部材を電磁石部の動きに従動させるガイド部と、を備える。 In order to solve the above problems, an elevator apparatus according to the present invention includes a car, a safety device provided in the car, a drive mechanism provided in the car for driving the safety device, and a safety device provided in the car. and an electric actuator for operating the drive mechanism, the electric actuator comprising: an operation lever connected to the drive mechanism; a movable member rotatably connected to the operation lever; In the standby state of , the electromagnet that attracts the movable member, the feed screw that is screwed into the electromagnet, the motor that drives the feed screw, and the motor that drives the feed screw in the return operation of the electric actuator, a guide portion for following movement of the movable member so as to align the movable member with respect to the electromagnet portion when the electromagnet portion moves toward and contacts the movable member. .
 本発明によれば、電動作動器の復帰動作時に、モータに掛かる負荷を低減できる。 According to the present invention, the load applied to the motor can be reduced during the return operation of the electric actuator.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施例1であるエレベータ装置の概略構成図である。1 is a schematic configuration diagram of an elevator apparatus that is Embodiment 1. FIG. 実施例1における電動作動器の機構部を示す正面図である(待機状態)。Fig. 2 is a front view showing the mechanical portion of the electric actuator in Example 1 (standby state); 実施例1における電動作動器の機構部を示す正面図である(作動状態)。Fig. 2 is a front view showing the mechanical portion of the electric actuator in Example 1 (in an operating state); 図2における可動部材、電磁石部、ガイド部および送りネジの配置を示す側面図である。FIG. 3 is a side view showing arrangement of a movable member, an electromagnet portion, a guide portion, and a feed screw in FIG. 2; 実施例1における電動作動器の機構部を示す上面図である(作動状態)。4 is a top view showing the mechanical portion of the electric actuator in Example 1 (operating state); FIG. 実施例1における電動作動器の機構部を示す上面図である(復帰動作中)。4 is a top view showing the mechanical portion of the electric actuator in Example 1 (during return operation); FIG. 実施例1における電動作動器の機構部を示す上面図である(待機状態)。4 is a top view showing the mechanism of the electric actuator in Example 1 (standby state); FIG. 実施例2における電動作動器の機構部を示す正面図である(待機状態)。FIG. 10 is a front view showing the mechanical portion of the electric actuator in Example 2 (standby state); 実施例2における電動作動器の機構部を示す正面図である(作動状態)。FIG. 11 is a front view showing the mechanical portion of the electric actuator in Example 2 (in an operating state); 図8における可動部材、電磁石部、ガイド部および送りネジの配置を示す側面図である。FIG. 9 is a side view showing arrangement of a movable member, an electromagnet portion, a guide portion and a feed screw in FIG. 8; 実施例2における電動作動器の機構部を示す上面図である(作動状態)。FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (operating state); 実施例2における電動作動器の機構部を示す上面図である(復帰動作中)。FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (during return operation); 実施例2における電動作動器の機構部を示す上面図である(待機状態)。FIG. 11 is a top view showing the mechanical portion of the electric actuator in Example 2 (standby state);
 以下、本発明の一実施形態であるエレベータ装置について、実施例1~2により、図面を用いながら説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 Hereinafter, an elevator apparatus that is one embodiment of the present invention will be described with reference to Examples 1 and 2 with reference to the drawings. In each figure, the same reference numbers denote the same components or components with similar functions.
 図1は、本発明の実施例1であるエレベータ装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an elevator apparatus that is Embodiment 1 of the present invention.
 図1に示すように、エレベータ装置は、乗りかご1と、電動作動器10と、駆動機構(12~20)と、引上げロッド21と、非常止め装置2とを備えている。 As shown in FIG. 1, the elevator system includes a car 1, an electric actuator 10, a drive mechanism (12-20), a lifting rod 21, and a safety device 2.
 乗りかご1は、建築物に設けられる昇降路内に主ロープ(図示せず)により吊られており、案内装置(図示せず)を介してガイドレール4に摺動可能に係合している。駆動装置(巻上機:図示せず)により主ロープが摩擦駆動されると、乗りかご1は昇降路内を昇降する。 A car 1 is suspended by a main rope (not shown) in a hoistway provided in a building, and is slidably engaged with a guide rail 4 via a guide device (not shown). . When the main rope is friction-driven by a driving device (hoisting machine: not shown), the car 1 ascends and descends in the hoistway.
 図示しない速度検出装置が、乗りかご1に備えられ、昇降路内における乗りかご1の昇降速度を常時検出する。したがって、速度検出装置により、乗りかご1の昇降速度が所定の過速度を超えたことを検出することができる。 A speed detection device (not shown) is provided in the car 1 and constantly detects the ascending/descending speed of the car 1 in the hoistway. Therefore, the speed detector can detect that the elevator car 1 has exceeded a predetermined overspeed.
 本実施例1では、速度検出装置は、画像センサを備え、画像センサによって取得されるガイドレール4の表面状態の画像情報に基づいて、乗りかご1の速度を検出する。例えば、速度検出装置は、所定時間における画像特徴量の移動距離から速度を算出する。 In the first embodiment, the speed detection device is provided with an image sensor, and detects the speed of the car 1 based on the image information of the surface condition of the guide rail 4 acquired by the image sensor. For example, the speed detection device calculates the speed from the moving distance of the image feature amount in a predetermined time.
 なお、速度検出装置は、乗りかごの移動とともに回転するロータリーエンコーダの出力信号に基づいて、乗りかごの速度を算出してもよい。 Note that the speed detection device may calculate the speed of the car based on the output signal of a rotary encoder that rotates as the car moves.
 電動作動器10は、本実施例1では電磁操作器であり、乗りかご1の上部に配置される。電磁操作器は、例えば、ソレノイドもしくは電磁石部によって作動する可動片もしくは可動杆を備えるものである。電動作動器10は、速度検出装置が乗りかご1の所定の過速状態を検出したときに作動する。このとき、操作レバー11に接続されている駆動機構(12~20)により、引上げロッド21が引き上げられる。これにより、非常止め装置2が制動状態となる。 The electric actuator 10 is an electromagnetic operator in the first embodiment, and is arranged above the car 1 . The electromagnetic operator has, for example, a movable piece or a movable rod that is operated by a solenoid or electromagnet section. The electric actuator 10 is activated when the speed detector detects a predetermined overspeed condition of the car 1 . At this time, the drive mechanism (12-20) connected to the operating lever 11 pulls up the pull-up rod 21. As shown in FIG. As a result, the safety device 2 is brought into a braking state.
 なお、駆動機構(12~20)については後述する。 The drive mechanisms (12-20) will be described later.
 非常止め装置2は、乗りかご1の左右に一台ずつ配置される。各非常止め装置2が備える図示しない一対の制動子は、制動位置および非制動位置の間で可動であり、制動位置においてガイドレール4を挟持し、さらに、乗りかご1の下降により相対的に上昇すると、制動子とガイドレール4との間に作用する摩擦力により制動力を生じる。これにより、非常止め装置2は、乗りかご1が過速状態に陥ったときに作動し、乗りかご1を非常停止させる。 The safety devices 2 are arranged one by one on the left and right sides of the car 1. A pair of brakes (not shown) included in each safety device 2 are movable between a braking position and a non-braking position, sandwich the guide rail 4 at the braking position, and rise relatively as the car 1 descends. Then, a braking force is generated by the frictional force acting between the brake shoe and the guide rail 4 . As a result, the safety device 2 is actuated when the car 1 is in an overspeed condition to bring the car 1 to an emergency stop.
 本実施例1のエレベータ装置は、ガバナロープを用いない、いわゆるロープレスガバナシステムを備えるものであり、乗りかご1の昇降速度が定格速度を超えて第1過速度(例えば、定格速度の1.3倍を超えない速度)に達すると、駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源が遮断される。また、乗りかご1の下降速度が第2過速度(例えば、定格速度の1.4倍を超えない速度)に達すると、乗りかご1に設けられる電動作動器10が非常止め装置2を作動させて、乗りかご1が非常停止される。 The elevator system of the present embodiment 1 is provided with a so-called ropeless governor system that does not use a governor rope. speed not more than doubled), power to the drive (hoisting machine) and to the control device controlling this drive is cut off. Further, when the descending speed of the car 1 reaches a second overspeed (for example, a speed not exceeding 1.4 times the rated speed), the electric actuator 10 provided in the car 1 operates the safety device 2. Then, the car 1 is brought to an emergency stop.
 本実施例1において、ロープレスガバナシステムは、前述の速度検出装置と、速度検出装置の出力信号に基づいて乗りかご1の過速状態を判定する安全制御装置と、から構成される。この安全制御装置は、速度検出装置の出力信号に基づいて乗りかご1の速度を計測し、計測される速度が第1過速度に達したと判定すると、駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源を遮断するための指令信号を出力する。また、安全制御装置は、計測される速度が第2過速度に達したと判定すると、電動作動器10を作動するための指令信号を出力する。 In the present embodiment 1, the ropeless governor system is composed of the aforementioned speed detection device and a safety control device that determines the overspeed state of the car 1 based on the output signal of the speed detection device. This safety control device measures the speed of the car 1 based on the output signal of the speed detection device, and when it is determined that the measured speed has reached the first overspeed, the power supply of the drive device (hoisting machine) and It outputs a command signal for shutting off the power supply of the control device that controls this drive device. Further, when the safety control device determines that the measured speed has reached the second overspeed, it outputs a command signal for operating the electric actuator 10 .
 前述のように、非常止め装置2が備える一対の制動子が引上げロッド21によって引き上げられると、一対の制動子がガイドレール4を挟持する。引上げロッド21は、電動作動器10に接続される駆動機構(12~20)によって駆動される。 As described above, when the pair of brakes included in the safety device 2 are pulled up by the lifting rod 21, the pair of brakes sandwich the guide rail 4. The lifting rod 21 is driven by a drive mechanism (12-20) connected to the electric actuator 10. As shown in FIG.
 以下、この駆動機構の構成について説明する。なお、電動作動器10の構成については、後述する(図2~4)。 The configuration of this drive mechanism will be described below. The configuration of the electric actuator 10 will be described later (FIGS. 2 to 4).
 電動作動器10の操作レバー11と第1の作動片16が連結され、略T字状の第1リンク部材が構成される。操作レバー11および第1の作動片16はそれぞれT字の頭部および足部を構成する。略T字状の第1リンク部材は、操作レバー11と第1の作動片16の連結部において、第1の作動軸19を介して、支持部材であるクロスヘッド50に回動可能に支持される。T字の足部となる第1の作動片16における、操作レバー11と第1の作動片16の連結部とは反対側の端部に、一対の引上げロッド21の一方(図中左側)の端部が接続される。 The operating lever 11 of the electric actuator 10 and the first operating piece 16 are connected to form a substantially T-shaped first link member. The operating lever 11 and the first operating piece 16 constitute a T-shaped head and foot, respectively. A substantially T-shaped first link member is rotatably supported by a crosshead 50 as a support member via a first operating shaft 19 at a connecting portion between the operating lever 11 and the first operating piece 16 . be. One of the pair of lifting rods 21 (left side in the figure) is attached to the end of the first operating piece 16 which is the foot of the T-shape, opposite to the connecting portion between the operating lever 11 and the first operating piece 16 . The ends are connected.
 接続片17と第2の作動片18が連結され、略T字状の第2リンク部材が構成される。接続片17および第2の作動片18はそれぞれT字の頭部および足部を構成する。略T字状の第2リンク部材は、接続片17と第2の作動片18の連結部において、第2の作動軸20を介してクロスヘッド50に回動可能に支持される。T字の足部となる第2の作動片18における、接続片17と第2の作動片18の連結部とは反対側の端部に、一対の引上げロッド21の他方(図中左側)の端部が接続される。 The connecting piece 17 and the second operating piece 18 are connected to form a substantially T-shaped second link member. The connecting piece 17 and the second operating piece 18 constitute a T-shaped head and foot, respectively. The substantially T-shaped second link member is rotatably supported by the crosshead 50 via the second operating shaft 20 at the connecting portion between the connecting piece 17 and the second operating piece 18 . At the end of the second operating piece 18, which is the leg of the T-shape, opposite to the connecting portion between the connecting piece 17 and the second operating piece 18, the other of the pair of lifting rods 21 (left side in the figure) is attached. The ends are connected.
 筐体30の内部から外部に伸びる操作レバー11の端部と、接続片17の両端部の内、第2の作動軸20よりも乗りかご1の上部に近い端部とが、それぞれ、乗りかご1上に横たわる駆動軸12の一端(図中左側)と他端(図中右側)とに接続される。 The end of the operating lever 11 extending from the inside of the housing 30 to the outside and the end of the connecting piece 17 nearer to the upper part of the car 1 than the second operating shaft 20 are connected to the car. 1 are connected to one end (left side in the figure) and the other end (right side in the figure) of a drive shaft 12 lying on the upper side.
 駆動軸12は、ボルト締結によってクロスヘッド50に固定される固定部14(固定用ボルトは図示せず)を摺動可能に貫通している。また、駆動軸12は、押圧部材15を貫通し、押圧部材15は駆動軸12に固定されている。なお、押圧部材15は、固定部14の第2リンク部材(接続片17、第2の作動片18)側に位置する。固定部14と押圧部材15の間に、弾性体である駆動ばね13が位置し、駆動ばね13には駆動軸12が挿通される。 The drive shaft 12 slidably penetrates a fixing portion 14 (fixing bolts not shown) fixed to the crosshead 50 by bolting. Further, the drive shaft 12 passes through the pressing member 15 , and the pressing member 15 is fixed to the drive shaft 12 . The pressing member 15 is positioned on the second link member (connecting piece 17, second operating piece 18) side of the fixed portion 14. As shown in FIG. An elastic drive spring 13 is positioned between the fixed portion 14 and the pressing member 15 , and the drive shaft 12 is inserted through the drive spring 13 .
 電動作動器10が作動すると、すなわち本実施例1では電磁石部への通電が遮断されると、駆動ばね13の付勢力に抗して操作レバー11の動きを拘束する電磁力が消失するので、押圧部材15に加わる駆動ばね13の付勢力によって、駆動軸12が長手方向に沿って駆動される。このため、第1リンク部材(操作レバー11、第1の作動片16)が第1の作動軸19の回りに回動するとともに、第2リンク部材(接続片17、第2の作動片18)が第2の作動軸20の回りに回動する。これにより、第1リンク部材の第1の作動片16に接続される一方の引上げロッド21が駆動されて引き上げられるとともに、第2リンク部材の第2の作動片18に接続される他方の引上げロッド21が駆動されて引き上げられる。 When the electric actuator 10 operates, that is, when the electromagnet section is deenergized in the first embodiment, the electromagnetic force that restrains the movement of the operating lever 11 against the biasing force of the drive spring 13 disappears. The biasing force of the drive spring 13 applied to the pressing member 15 drives the drive shaft 12 along the longitudinal direction. Therefore, the first link member (operating lever 11, first operating piece 16) rotates around the first operating shaft 19, and the second link member (connecting piece 17, second operating piece 18) rotates. rotates about the second actuation axis 20 . As a result, one lifting rod 21 connected to the first operating piece 16 of the first link member is driven and lifted, and the other lifting rod connected to the second operating piece 18 of the second link member is pulled up. 21 is driven and pulled up.
 なお、本実施例1においては、筐体30の上面となる筐体カバー31における操作レバー11の挿通部に、操作レバーが挿通する可撓性のカバー部材32が設けられる。これにより、電動作動器10の機構部が格納される筐体30内への塵埃や異物などの侵入が防止される。 It should be noted that, in the first embodiment, a flexible cover member 32 through which the operation lever is inserted is provided at the insertion portion of the operation lever 11 in the housing cover 31 which is the upper surface of the housing 30 . This prevents dust, foreign matter, and the like from entering the housing 30 in which the mechanical portion of the electric actuator 10 is housed.
 図2は、本実施例1における電動作動器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である。なお、図2において、非常止め装置は非作動状態であり、電動作動器10は待機状態にある。すなわち、エレベータ装置は、通常の運転状態である。 FIG. 2 is a front view showing the mechanical part housed in the housing 30 of the electric actuator 10 according to the first embodiment, in the installation state of FIG. In FIG. 2, the safety device is in a non-operating state, and the electric actuator 10 is in a standby state. That is, the elevator installation is in normal operating condition.
 図2に示すように、待機状態においては、操作レバー11に接続される可動部材(34A,34B)が、励磁されている電磁石部35に吸引されている。これにより、駆動ばね13(圧縮ばね)の付勢力に抗して、操作レバー11の動きが拘束されている。 As shown in FIG. 2, in the standby state, the movable members (34A, 34B) connected to the operating lever 11 are attracted to the electromagnet section 35 that is excited. As a result, the movement of the operating lever 11 is restrained against the biasing force of the drive spring 13 (compression spring).
 可動部材は、電磁石部35の磁極面に吸着される吸着部34Aと、吸着部34Aが固定される支持部34Bとを有する。操作レバー11は、支持部34Bに回動可能に接続されるブラケット38を介して、支持部34Bに接続される。また、可動部材において、少なくとも吸着部34Aは磁性体からなる。 The movable member has an attraction portion 34A that is attracted to the magnetic pole surface of the electromagnet portion 35, and a support portion 34B to which the attraction portion 34A is fixed. The operating lever 11 is connected to the support portion 34B via a bracket 38 that is rotatably connected to the support portion 34B. Moreover, in the movable member, at least the attracting portion 34A is made of a magnetic material.
 支持部34Bは、係合ピン102によって、ブラケット38と接続されている。係合ピン102の軸部101は、支持部34Bにおける長孔103を通り、軸部101の端部がブラケット38に固定されている。長孔103の長手方向は、吸着部34Aの吸着面に平行である。また、長孔103の長手方向に垂直な方向における長孔103の幅は、係合ピン102の軸部101の直径よりも大きく、係合ピン102の頭部の直径よりも小さい。 The support portion 34B is connected to the bracket 38 by an engagement pin 102. A shaft portion 101 of the engaging pin 102 passes through a long hole 103 in the support portion 34B, and the end portion of the shaft portion 101 is fixed to the bracket 38 . The longitudinal direction of the long hole 103 is parallel to the adsorption surface of the adsorption portion 34A. Also, the width of the long hole 103 in the direction perpendicular to the longitudinal direction of the long hole 103 is larger than the diameter of the shaft portion 101 of the engaging pin 102 and smaller than the diameter of the head portion of the engaging pin 102 .
 このような長孔103により、支持部34Bにおける係合ピン102の位置には自由度がある。このため、後述する電動作動器の復帰動作時のように、操作レバー11が回動して基板40からの係合ピン102の高さが変化するときに、可動部材(34A,34B)が係合ピン102から受ける応力を緩和できる。 Due to such long holes 103, there is a degree of freedom in the position of the engaging pin 102 in the support portion 34B. Therefore, the movable members (34A, 34B) are engaged when the operating lever 11 rotates and the height of the engaging pin 102 from the substrate 40 changes, as in the return operation of the electric actuator, which will be described later. The stress received from the dowel pin 102 can be relaxed.
 電磁石部35はガイド部201を備える。ガイド部201は、可動部材における吸着部34Aと嵌合する。これにより、可動部材が電磁石部35に対して位置決めされている。 The electromagnet part 35 has a guide part 201 . The guide portion 201 is fitted with the suction portion 34A of the movable member. Thereby, the movable member is positioned with respect to the electromagnet portion 35 .
 電動作動器10の非常止め動作時に可動部材の位置ずれが生じ得る。位置ずれが生じても、電動作動器10の復帰動作において電磁石部35のガイド部201と吸着部34Aとが嵌合するときに、位置ずれしている可動部材が、ガイド部201によって案内されながら動くことによって、電磁石部35に対して位置合わせされる。 A positional deviation of the movable member may occur during the emergency stop operation of the electric actuator 10 . Even if the displacement occurs, when the guide portion 201 of the electromagnet portion 35 and the attracting portion 34A are fitted together in the return operation of the electric actuator 10, the movable member that is displaced is guided by the guide portion 201. The movement brings it into alignment with the electromagnet portion 35 .
 図2中における他の機構部(36,37,40-42)については、後述する(図3)。 The other mechanism parts (36, 37, 40-42) in FIG. 2 will be described later (FIG. 3).
 本実施例1においては、筐体30の上面となる筐体カバー31において操作レバー11が挿通する開口部に、この開口部を覆う可撓性のカバー部材32が設けられる。例えば、カバー部材32は、薄板状のゴム材からなる。カバー部材32が可撓性を有するので、非常止め装置を作動させるときの操作レバー11の動きは妨げられない。 In the first embodiment, a flexible cover member 32 that covers the opening through which the operation lever 11 is inserted is provided in the housing cover 31 that is the upper surface of the housing 30 . For example, the cover member 32 is made of a thin plate-like rubber material. Since the cover member 32 has flexibility, the movement of the operating lever 11 when operating the safety device is not hindered.
 カバー部材32よって、筐体30内への塵埃や異物などが侵入して、機構部に付着したり接触したりすることが抑制される。これにより、設置環境(昇降路内など)における電動作動器10の動作の信頼性が向上する。 The cover member 32 prevents dust, foreign matter, etc. from entering the housing 30 and adhering to or coming into contact with the mechanism. This improves the reliability of the operation of the electric actuator 10 in the installation environment (in a hoistway, etc.).
 図3は、本実施例1における電動作動器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である。なお、図3において、非常止め装置は制動状態であり、電動作動器10は作動状態にある。すなわち、エレベータ装置は、非常止め装置により停止された状態である。 FIG. 3 is a front view showing the mechanical part housed in the housing 30 of the electric actuator 10 according to the first embodiment, in the installation state of FIG. In FIG. 3, the safety device is in a braking state, and the electric actuator 10 is in an operating state. That is, the elevator system is in a state of being stopped by the safety device.
 図示しない安全制御装置からの指令により、電磁石部35の励磁が停止されると、可動部材(34A,34B)に作用する吸引力が消失するので、駆動ばね13の付勢力が開放されて駆動軸12が駆動される。駆動軸12が駆動されると、駆動軸12に接続される操作レバー11が第1の作動軸19の回りに回動し、連動して、操作レバー11に連結される第1の作動片16が第1の作動軸19の回りに回動する。これにより、第1の作動片16に接続される引上げロッド21が引き上げられる。 When the excitation of the electromagnet portion 35 is stopped by a command from a safety control device (not shown), the attractive force acting on the movable members (34A, 34B) disappears. 12 is driven. When the drive shaft 12 is driven, the operating lever 11 connected to the drive shaft 12 rotates around the first operating shaft 19, interlocking with the first operating piece 16 connected to the operating lever 11. rotates about the first actuation shaft 19 . Thereby, the pulling rod 21 connected to the first operating piece 16 is pulled up.
 上述のように操作レバー11が回動すると、操作レバー11に接続される可動部材は、操作レバー11の回動方向に沿って移動する。電動作動器10を図2に示したような待機状態に復帰させるためには、次に述べるように、図2で説明を省略した機構部(36,37,40-42)によって、可動部材を移動位置(図3)から待機時の位置(図2)に戻す。 When the operating lever 11 rotates as described above, the movable member connected to the operating lever 11 moves along the rotating direction of the operating lever 11 . In order to return the electric actuator 10 to the standby state shown in FIG. It returns from the moving position (FIG. 3) to the standby position (FIG. 2).
 図3に示すように、電動作動器10は、可動部材を駆動するために基板40の平面部上に位置する送りネジ36を有する。送りネジ36は、基板40の平面上に固定される第1の支持部材41および第2の支持部材42によって回転可能に支持される。電磁石部35は、送りナット39を備えており、この送りナット39が送りネジ36と螺合する。送りネジ36は、モータ37によって回転される。 As shown in FIG. 3, the electric actuator 10 has a lead screw 36 located on the flat surface of the substrate 40 for driving the movable member. The feed screw 36 is rotatably supported by a first support member 41 and a second support member 42 fixed on the plane of the substrate 40 . The electromagnet part 35 has a feed nut 39 , and the feed nut 39 is screwed with the feed screw 36 . A feed screw 36 is rotated by a motor 37 .
 電動作動器10を待機状態に復帰させるには、まず、モータ37を駆動して送りネジ36を回転させる。回転する送りネジ36と電磁石部35が備える送りナット39とによって、モータ37の回転が、送りネジ36の軸方向に沿った電磁石部35の直線的移動に変換される。 In order to return the electric actuator 10 to the standby state, first, the motor 37 is driven to rotate the feed screw 36 . Rotation of the motor 37 is converted into linear movement of the electromagnet section 35 along the axial direction of the feed screw 36 by the rotating feed screw 36 and the feed nut 39 provided in the electromagnet section 35 .
 電磁石部35は、可動部材(34A,34B)の移動位置に近づくと、ガイド部201が可動部材の吸着部34Aと嵌合する。これにより、可動部材が電磁石部35に対して位置合わせされながら、吸着部34Aと電磁石部35の磁極面とが面接触する。このような可動部材と電磁石部35との接触が、図示されないスイッチ、もしくはモータ37の負荷電流によって、検知されたら、電磁石部35を励磁するとともに、モータ37を停止する。可動部材は、電磁力が作用して、電磁石部35に吸着する。 When the electromagnet part 35 approaches the moving position of the movable member (34A, 34B), the guide part 201 is fitted with the attracting part 34A of the movable member. As a result, while the movable member is aligned with the electromagnet portion 35, the attraction portion 34A and the magnetic pole surface of the electromagnet portion 35 come into surface contact. When such contact between the movable member and the electromagnet portion 35 is detected by a switch (not shown) or the load current of the motor 37, the electromagnet portion 35 is excited and the motor 37 is stopped. The movable member is attracted to the electromagnet portion 35 by the action of electromagnetic force.
 可動部材が電磁石部35に吸着したら、電磁石部35の励磁を継続しながら、モータ37の回転方向を逆にして、送りネジ36を逆転させる。これにより、可動部材は、電磁石部35とともに、待機時の位置まで移動する。このとき、可動部材が電磁石部35に対して位置合わせされているので、モータ37の負荷を増大することなく、可動部材は、スムースに移動する。 When the movable member is attracted to the electromagnet part 35, the direction of rotation of the motor 37 is reversed while the excitation of the electromagnet part 35 is continued, and the feed screw 36 is reversed. As a result, the movable member moves together with the electromagnet portion 35 to the standby position. At this time, since the movable member is aligned with the electromagnet portion 35 , the movable member moves smoothly without increasing the load on the motor 37 .
 図4は、図2における可動部材(34A,34B)、電磁石部35、ガイド部201および送りネジ36の配置を示す側面図である。なお、本図4は、図2において、図中、右方向から見た側面図である。 FIG. 4 is a side view showing the arrangement of the movable members (34A, 34B), electromagnet section 35, guide section 201 and feed screw 36 in FIG. 4 is a side view of FIG. 2 as seen from the right direction in the figure.
 図4に示すように、可動部材の吸着部34Aは、送りネジ36の中心軸を通る対称軸を有する線対称な平面形状を有する。また、電磁石部35は、2個の円形の磁極面を有する。これらの磁極面は、同対称軸に対して、対称に配置される。 As shown in FIG. 4 , the suction portion 34A of the movable member has a line-symmetrical planar shape with an axis of symmetry passing through the central axis of the feed screw 36 . Also, the electromagnet part 35 has two circular magnetic pole faces. These pole faces are arranged symmetrically about the same axis of symmetry.
 吸着部34Aは、中央部に切り欠け部34Cを有する。この切り欠け部34Cとガイド部201とが嵌合する。ガイド部201は中空の円筒状であり、ガイド部201内を送りネジ36が通っている。なお、ガイド部201の可動部材側の開口端部は、可動部材の吸着部34Aに向かって、直径が小さくなるようなテーパー面を有する。なお、図4では、このテーパー面が見えている。 The adsorption part 34A has a notch part 34C in the central part. The notch portion 34C and the guide portion 201 are fitted. The guide portion 201 has a hollow cylindrical shape, and the feed screw 36 passes through the inside of the guide portion 201 . The open end portion of the guide portion 201 on the side of the movable member has a tapered surface that decreases in diameter toward the suction portion 34A of the movable member. Note that this tapered surface is visible in FIG.
 非常止め動作時に可動部材の位置ずれが生じていても、電動作動器10の復帰動作において、ガイド部201と切り欠け部34Cとが嵌合するときに、まず、ガイド部201の可動部材側の開口端部におけるテーパー面が、切り欠け部34Cの縁部に接触して、可動部材を動かす。すなわち、位置ずれしている可動部材が、ガイド部201に案内されて動く。さらに、ガイド部201と切り欠け部34Cとが、テーパー面の最大径部、すなわち、テーパー面に続く円筒部まで嵌合すると、可動部材が、電磁石部35に対して、ガイド部201によって設定される位置に位置合わせされる。 Even if the position of the movable member is displaced during the emergency stop operation, when the guide portion 201 and the notch portion 34C are fitted together in the return operation of the electric actuator 10, the movable member side of the guide portion 201 is first A tapered surface at the open end contacts the edge of the notch 34C to move the movable member. That is, the displaced movable member moves while being guided by the guide portion 201 . Further, when the guide portion 201 and the notch portion 34C are fitted up to the maximum diameter portion of the tapered surface, that is, the cylindrical portion following the tapered surface, the movable member is set by the guide portion 201 with respect to the electromagnet portion 35. position.
 なお、切り欠け部34Cの、図4中の水平方向、すなわち係合ピン102の軸方向における幅(w)は、所望の合わせ精度(Δx)の範囲内で、ガイド部201の円筒部の直径(d)よりも大きく設定される(d<w≦d+Δx)。また、本実施例1においては、ガイド部201と切り欠け部34Cとが嵌合するときに、切り欠け部34Cの上縁がガイド部201のテーパー面によって押し上げられることにより、可動部材の高さ方向の位置ずれに対しても、位置合わせすることができる。 The width (w) of the notch portion 34C in the horizontal direction in FIG. It is set larger than (d) (d<w≦d+Δx). In the first embodiment, when the guide portion 201 and the notch portion 34C are fitted together, the upper edge of the notch portion 34C is pushed up by the tapered surface of the guide portion 201, thereby increasing the height of the movable member. Alignment can also be achieved for directional misalignment.
 図4に示すように、可動部材の支持部34Bは、ブラケット38との係合部を、二か所有する。この二か所の係合部は、上述した吸着部34Aの対称軸に対して線対称に配置される。二か所の係合部の各々において、軸部101が長孔103を通ってブラケット38の側部に固定的に接続される係合ピン102を介して、可動部材は、ブラケット38と接続される。 As shown in FIG. 4, the support portion 34B of the movable member has two engagement portions with the bracket 38. These two engaging portions are arranged line-symmetrically with respect to the axis of symmetry of the suction portion 34A described above. At each of the two engaging portions, the movable member is connected to the bracket 38 via an engaging pin 102 through which the shaft portion 101 is fixedly connected to the side portion of the bracket 38 through an elongated hole 103. be.
 図4は、可動部材が位置合わせされた状態であるが、この状態において、互いに対向するブラケット38の側部および支持部34Bの側部が、互いに接触しないように、ブラケット38や支持部34Bの寸法や両者の位置関係が設定されている。したがって、ブラケット38の側部と支持部34Bの側部との間には、隙間(遊び)がある。また、上述したように、長孔103の範囲内で、係合ピン102の位置に自由度を持たせるため、係合ピン102の軸部101における係合ピン102の頭部側の端部は、支持部34Bにおけるブラケット38側とは反対側において、長孔103から突出しており、自由端になっている。 FIG. 4 shows the movable member aligned, but in this state, the side of bracket 38 and the side of support 34B that face each other are positioned so that they do not contact each other. The dimensions and the positional relationship between the two are set. Therefore, there is a gap (play) between the side portion of the bracket 38 and the side portion of the support portion 34B. Further, as described above, in order to allow the degree of freedom in the position of the engaging pin 102 within the range of the elongated hole 103, the end portion of the shaft portion 101 of the engaging pin 102 on the head side of the engaging pin 102 is , on the side opposite to the bracket 38 side of the support portion 34B, and protrudes from the elongated hole 103 to form a free end.
 したがって、可動部材(34A,34B)は、係合ピン102の回りに回動可能であるとともに、係合ピン102の軸方向すなわち回動軸方向に可動である。これにより、係合ピン102の軸方向において、可動部材(34A,34B)の位置ずれが生じ得るとともに、後述するように可動部材(34A,34B)を位置合わせすることができる。 Therefore, the movable members (34A, 34B) are rotatable around the engagement pin 102 and movable in the axial direction of the engagement pin 102, that is, the rotation axis direction. As a result, the movable members (34A, 34B) can be misaligned in the axial direction of the engagement pin 102, and the movable members (34A, 34B) can be aligned as described later.
 次に、電動作動器10の復帰動作について、図5~7を用いて説明する。 Next, the return operation of the electric actuator 10 will be explained using FIGS.
 図5~7は、本実施例1における電動作動器の機構部を示す上面図である。 5 to 7 are top views showing the mechanical portion of the electric actuator according to the first embodiment.
 電動作動器は、図5,6および7において、それぞれ、作動状態(図3に対応)、復帰動作中、待機状態(図2に対応)である。  The electric actuator is in the operating state (corresponding to Fig. 3), during the return operation, and in the standby state (corresponding to Fig. 2) in Figs. 5, 6 and 7, respectively.
 図5においては、係合ピンの軸方向に、可動部材(34A,34B)の位置ずれが生じている。すなわち、切り欠け部34Cの中心(図4における水平方向の中心)が、送りネジ36の回転軸から、図5中で上方向(図4中で右方向)にずれている。このため、位置ずれにより可動部材における支持部34Bがブラケット38に近づくと、電動作動器の寸法公差や組立公差に起因して、支持部34Bとブラケット38とが接触し得る。 In FIG. 5, the movable members (34A, 34B) are misaligned in the axial direction of the engagement pin. That is, the center of the notch portion 34C (horizontal center in FIG. 4) is shifted upward in FIG. 5 (to the right in FIG. 4) from the rotation axis of the feed screw 36. Therefore, when the support portion 34B of the movable member approaches the bracket 38 due to positional deviation, the support portion 34B and the bracket 38 may come into contact with each other due to dimensional tolerances and assembly tolerances of the electric actuator.
 支持部34Bとブラケット38とが接触すると、復帰動作時に、モータ37の負荷が大きくなる。このため、復帰動作の信頼性を確保するためには、モータ37に対して、支持部34Bとブラケット38との接触による負荷の増大を見込んだ大きさの出力値が要求される。 When the support portion 34B and the bracket 38 come into contact with each other, the load on the motor 37 increases during the return operation. Therefore, in order to ensure the reliability of the return operation, the motor 37 is required to have an output value that takes into account the increased load due to the contact between the support portion 34B and the bracket 38. FIG.
 これに対し、本実施例1では、以下に説明するように、復帰動作時において、可動部材を電磁石部35に対して位置合わせすることにより、支持部34Bとブラケット38とが接触してモータ負荷が増大することを防止することができる。 In contrast, in the first embodiment, as will be described below, the movable member is positioned with respect to the electromagnet portion 35 during the return operation, so that the support portion 34B and the bracket 38 come into contact with each other and the motor load is reduced. can be prevented from increasing.
 図6に示すように、電動作動器の復帰動作時には、モータ37によって回転する送りネジ36によって電磁石部35が駆動され、電磁石部35は可動部材に向かって移動する。電磁石部35が可動部材に近づくと、吸着部34Aの切り欠け部34Cに、テーパー面を有するガイド部201の先端部が嵌合する。このとき、切り欠け部34Cの縁部がテーパー面によって押圧されるので、可動部材は、係合ピン102の軸方向に動く。本実施例1では、可動部材は、図5における位置から、図5中の下方へ動く。 As shown in FIG. 6, during the return operation of the electric actuator, the electromagnet portion 35 is driven by the feed screw 36 rotated by the motor 37, and the electromagnet portion 35 moves toward the movable member. When the electromagnet portion 35 approaches the movable member, the tip portion of the guide portion 201 having a tapered surface is fitted into the notch portion 34C of the adsorption portion 34A. At this time, the edge of the notch portion 34C is pressed by the tapered surface, so that the movable member moves in the axial direction of the engagement pin 102. As shown in FIG. In the first embodiment, the movable member moves downward in FIG. 5 from the position in FIG.
 電磁石部35がさらに移動して、図6に示すように、ガイド部201と切り欠け部34Cとが、テーパー面の最大径部、すなわち、テーパー面に続く円筒部まで嵌合すると、可動部材の動きは止まり、可動部材は、電磁石部35に対して、ガイド部201によって設定される位置に位置合わせされる。 When the electromagnet portion 35 moves further and the guide portion 201 and the notch portion 34C are fitted to the maximum diameter portion of the tapered surface, that is, the cylindrical portion following the tapered surface as shown in FIG. Movement ceases and the movable member is aligned with respect to the electromagnet portion 35 in the position set by the guide portion 201 .
 すなわち、位置ずれした可動部材に電磁石部35が近接すると、可動部材は、電磁石部35が備えるガイド部201に案内されて、位置ずれした方向とは反対方向に移動する。これにより、可動部材は、電磁石部35に対して、ガイド部201によって設定される位置に位置合わせされる。 That is, when the electromagnet part 35 approaches the displaced movable member, the movable member is guided by the guide part 201 provided in the electromagnet part 35 and moves in the direction opposite to the displaced direction. Thereby, the movable member is aligned with the position set by the guide portion 201 with respect to the electromagnet portion 35 .
 このような位置合わせにより、可動部材の位置ずれ時に、電動作動器の寸法公差や組立公差に起因して生じる、支持部34Bとブラケット38との接触し得る状態を、解消することができる。 Such alignment eliminates the possibility of contact between the support portion 34B and the bracket 38 due to dimensional tolerances and assembly tolerances of the electric actuator when the movable member is misaligned.
 可動部材が電磁石部35に対して位置合わせされると、電磁石部35は、通電されて、電磁力によって、吸着部34Aを吸着する。電磁石部35を通電したまま、モータ37が、電磁石部35を可動部材に向かって移動する場合とは逆方向に回転される。このように逆回転するモータ37によって回転する送りネジ36によって電磁石部35が駆動され、電磁石部35および可動部材(34A,34B)は、図7に示すような待機状態における位置まで移動する。このとき、可動部材が電磁石部35に対して位置合わせされた状態で、電磁石部35および可動部材(34A,34B)が移動する。したがって、電動作動器の寸法公差や組立公差に起因するモータ負荷の増大を防止することができる。 When the movable member is aligned with the electromagnet part 35, the electromagnet part 35 is energized and attracts the attracting part 34A by electromagnetic force. While the electromagnet part 35 is energized, the motor 37 is rotated in a direction opposite to the direction in which the electromagnet part 35 is moved toward the movable member. The electromagnet 35 is driven by the feed screw 36 rotated by the motor 37 rotating in the reverse direction, and the electromagnet 35 and the movable members (34A, 34B) move to the standby state position as shown in FIG. At this time, the electromagnet part 35 and the movable members ( 34 A, 34 B) move while the movable member is aligned with the electromagnet part 35 . Therefore, it is possible to prevent an increase in motor load due to dimensional tolerances and assembly tolerances of the electric actuator.
 電磁石部35および可動部材(34A,34B)が待機状態における位置まで移動したら、モータ37は停止し、電磁石部35の通電は保持される。これにより、電動作動器は、図7に示すような待機状態となる。 When the electromagnet part 35 and the movable members (34A, 34B) move to the positions in the standby state, the motor 37 stops and the electromagnet part 35 is kept energized. As a result, the electric actuator enters a standby state as shown in FIG.
 上述のように、本実施例1によれば、電動作動器の作動時に位置ずれした可動部材(34A,34B)を、電動作動器の復帰動作時に、ガイド部201によって、可動部材の動かす方向を位置ずれ方向とは反対方向に案内しながら動かして、電磁石部35に対して位置合わせする。すなわち、復帰動作において、電磁石部35が、可動部材に向かって移動して、可動部材に接触する時に、可動部材を電磁石部35に対して位置合わせするように、可動部材が、電磁石部が備えるガイド部201によって、電磁石部35の動きに従動する。 As described above, according to the first embodiment, the moving direction of the movable members (34A, 34B), which are displaced when the electric actuator is actuated, is adjusted by the guide portion 201 when the electric actuator is restored. Positioning is performed with respect to the electromagnet part 35 by moving while guiding in the direction opposite to the direction of positional deviation. That is, the movable member is provided with the electromagnet portion such that, in the return operation, the electromagnet portion 35 aligns the movable member with respect to the electromagnet portion 35 when the electromagnet portion 35 moves toward and contacts the movable member. The movement of the electromagnet part 35 is followed by the guide part 201 .
 また、本実施例1による電動作動器は、停電により電磁石部35への通電が停止した場合にも、停電復旧時に、同様に動作する。 In addition, the electric actuator according to the first embodiment operates in the same manner even when the power supply to the electromagnet part 35 is stopped due to a power failure, when the power failure is restored.
 これにより、電動作動器の寸法公差や組立公差に起因して発生する、電磁石部35を待機状態における位置まで移動するときのモータ負荷の増大が防止できる。したがって、モータ37の出力容量を低減できる。 As a result, it is possible to prevent an increase in the motor load when moving the electromagnet part 35 to the position in the standby state, which is caused by dimensional tolerances and assembly tolerances of the electric actuator. Therefore, the output capacity of the motor 37 can be reduced.
 次に、本発明の実施例2であるエレベータ装置について、図8~13を用いて説明する。  Next, an elevator apparatus that is a second embodiment of the present invention will be described with reference to Figs.
 なお、本実施例2のエレベータ装置の概略構成は、実施例1(図1)と同様である。 The schematic configuration of the elevator apparatus of the second embodiment is the same as that of the first embodiment (Fig. 1).
 以下、主に、実施例1と異なる点について説明する。 The points that differ from the first embodiment will be mainly described below.
 図8は、本実施例2における電動作動器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である(前述の図2に対応)。なお、図8において、非常止め装置は非作動状態であり、電動作動器10は待機状態にある。すなわち、エレベータ装置は、通常の運転状態である。 FIG. 8 shows the mechanical part housed in the housing 30 of the electric actuator 10 in Embodiment 2, and is a front view in the installation state of FIG. 1 (corresponding to FIG. 2 described above). In FIG. 8, the safety device is in a non-operating state, and the electric actuator 10 is in a standby state. That is, the elevator installation is in normal operating condition.
 図8に示すように、本実施例2においては、実施例1とは異なり、可動部材(34A,34B)における吸着部34Aがガイド部301を備える。後述するように(図10)、ガイド部301は、吸着部34Aにおける電磁石部35との吸着面の左右両側に設けられる。これらガイド部301間において、電磁石部35は、可動部材における吸着部34Aと嵌合する。これにより、可動部材が電磁石部35に対して位置決めされている。 As shown in FIG. 8, in the second embodiment, unlike the first embodiment, the suction portion 34A of the movable member (34A, 34B) has a guide portion 301. As shown in FIG. As will be described later (FIG. 10), the guide portions 301 are provided on both the left and right sides of the attracting surface of the attracting portion 34A with the electromagnet portion 35 . Between these guide portions 301, the electromagnet portion 35 is fitted with the adsorption portion 34A of the movable member. Thereby, the movable member is positioned with respect to the electromagnet portion 35 .
 後述するように、ガイド部301のテーパー面が電磁石部35によって押圧されることにより、位置ずれしている可動部材が、動かされて位置合わせされる。したがって、可動部材がガイド部301を備えてはいるが、位置合わせのメカニズムは実施例1と同様である。このように、本実施例2においても、可動部材は、ガイド部301によって案内されながら動くことによって、電磁石部35に対して位置合わせされる。 As will be described later, when the tapered surface of the guide portion 301 is pressed by the electromagnet portion 35, the misaligned movable member is moved and aligned. Therefore, the alignment mechanism is the same as in the first embodiment, although the movable member has the guide portion 301 . Thus, also in the second embodiment, the movable member is aligned with the electromagnet section 35 by moving while being guided by the guide section 301 .
 図9は、本実施例2における電動作動器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である(前述の図3に対応)。なお、図9において、非常止め装置は制動状態であり、電動作動器10は作動状態にある。すなわち、エレベータ装置は、非常止め装置により停止された状態である。 FIG. 9 shows the mechanical part housed in the housing 30 of the electric actuator 10 in the second embodiment, and is a front view in the installation state of FIG. 1 (corresponding to FIG. 3 described above). In FIG. 9, the safety device is in the braking state, and the electric actuator 10 is in the operating state. That is, the elevator system is in a state of being stopped by the safety device.
 電磁石部35が、図9に示す位置から、可動部材(34A,34B)に近づくと、吸着部34Aにおける吸着面の左右両側に設けられるガイド部301間において、電磁石部35は、可動部材における吸着部34Aと嵌合する。これにより、可動部材が電磁石部35に対して位置決めされる。このため、可動部材が、可動部材を吸着する電磁石部35とともに、待機時の位置まで移動するとき、モータ37の負荷を増大することなく、可動部材は、スムースに移動する。 When the electromagnet part 35 approaches the movable members (34A, 34B) from the position shown in FIG. It fits with the portion 34A. Thereby, the movable member is positioned with respect to the electromagnet portion 35 . Therefore, when the movable member moves to the standby position together with the electromagnet portion 35 that attracts the movable member, the movable member smoothly moves without increasing the load on the motor 37 .
 図10は、図8における可動部材(34A,34B)、電磁石部35、ガイド部301および送りネジ36の配置を示す側面図である。なお、本図10は、図8において、図中、右方向から見た側面図である。 FIG. 10 is a side view showing the arrangement of the movable members (34A, 34B), electromagnet section 35, guide section 301 and feed screw 36 in FIG. 10 is a side view of FIG. 8 as seen from the right direction in the figure.
 実施例1と同様に、吸着部34Aは、吸着面の中央部に切り欠け部34Cを有する。この切り欠け部34Cの中央部を送りネジ36が通る。なお、切り欠け部34Cの図中水平方向の幅は、可動部材の位置ずれを見込んで、切り欠け部の34Cの縁部が送りネジ36と接触しないような大きさに設定される。 As in the first embodiment, the suction portion 34A has a notch portion 34C in the central portion of the suction surface. The feed screw 36 passes through the central portion of the notch portion 34C. The width of the notch 34C in the horizontal direction in the drawing is set so that the edge of the notch 34C does not come into contact with the feed screw 36 in anticipation of the positional displacement of the movable member.
 図10に示すように、吸着部34Aは、図中水平方向の左右両端部に、それぞれガイド部301を備えている。2つのガイド部は、後述の図11~13に示すように、電磁石部35に向かって開くテーパー面を有している。なお、図10では、これらのテーパー面が見えている。 As shown in FIG. 10, the adsorption section 34A has guide sections 301 at both left and right ends in the horizontal direction in the drawing. The two guide portions have tapered surfaces that open toward the electromagnet portion 35, as shown in FIGS. 11 to 13 described later. Note that these tapered surfaces are visible in FIG.
 非常止め動作時に可動部材の位置ずれが生じていても、電動作動器10の復帰動作において、二つのガイド部301の間において吸着部34Aと電磁石部35とが嵌合するときに、まず、ガイド部301のテーパー面に、電磁石部35の磁極面の端部が接触する。このため、テーパー面が磁極面の端部に押圧され、可動部材が動かされる。すなわち、位置ずれしている可動部材が、ガイド部301に案内されて動く。電磁石部35が、さらに移動して、電磁石部35の磁極面が、ガイド部301間の吸着面に面接触すると、可動部材が、電磁石部35によって設定される位置に位置合わせされる。 Even if the movable member is displaced during the emergency stop operation, when the attracting portion 34A and the electromagnet portion 35 are fitted between the two guide portions 301 in the return operation of the electric actuator 10, first, the guide The end portion of the magnetic pole surface of the electromagnet portion 35 contacts the tapered surface of the portion 301 . As a result, the tapered surface is pressed against the end of the pole surface, moving the movable member. That is, the displaced movable member moves while being guided by the guide portion 301 . When the electromagnet part 35 moves further and the magnetic pole surface of the electromagnet part 35 comes into surface contact with the attracting surface between the guide parts 301 , the movable member is aligned with the position set by the electromagnet part 35 .
 なお、ガイド部301間の吸着面の、図10中の水平方向、すなわち係合ピン102の軸方向における幅(W)は、所望の合わせ精度(ΔX)の範囲内で、テーパー面に接触する二つの磁極面の端部間の距離(D)よりも大きく設定される(D<W≦D+ΔX)。 It should be noted that the width (W) of the suction surface between the guide portions 301 in the horizontal direction in FIG. It is set larger than the distance (D) between the ends of the two magnetic pole faces (D<W≤D+ΔX).
 次に、電動作動器10の復帰動作について、図11~13を用いて説明する。 Next, the return operation of the electric actuator 10 will be described with reference to FIGS. 11-13.
 図11~13は、本実施例1における電動作動器の機構部を示す上面図である。 11 to 13 are top views showing the mechanical portion of the electric actuator according to the first embodiment.
 電動作動器は、図11,12および13において、それぞれ、作動状態(図9に対応)、復帰動作中、待機状態(図8に対応)である。  The electric actuator is in the operating state (corresponding to Fig. 9), during the return operation, and in the standby state (corresponding to Fig. 8) in Figs. 11, 12 and 13, respectively.
 図11~13に示すように、可動部材の吸着部34Aは、切り欠け部34Cの両側に、ガイド部301を有する。ガイド部301は、電磁石部35の磁極面に平行に対向する吸着部34Aの吸着面の両端部に設けられる。ガイド部301は、テーパー面を有する。各テーパー面は、吸着面の端部から外側に向かって、かつ電磁石部35の磁極面に近づくように延びる斜面からなる。したがって、吸着面の両端部における二つのテーパー面は、電磁石部35に向かって開いている。このようなテーパー面間において、電磁石部35が、可動部材と嵌合することによって、以下に説明するように、可動部材が位置合わせされる。 As shown in FIGS. 11 to 13, the suction section 34A of the movable member has guide sections 301 on both sides of the notch section 34C. The guide portions 301 are provided at both end portions of the attracting surface of the attracting portion 34</b>A facing parallel to the magnetic pole surface of the electromagnet portion 35 . Guide portion 301 has a tapered surface. Each tapered surface is formed of an inclined surface that extends outward from the end of the attracting surface and approaches the magnetic pole surface of the electromagnet portion 35 . Therefore, the two tapered surfaces at both ends of the attracting surface are open toward the electromagnet section 35 . Between such tapered surfaces, the movable member is aligned as described below by fitting the electromagnet portion 35 with the movable member.
 なお、本実施例2では、ガイド部301は、吸着部34Aとは別の部材によって構成される。なお、吸着部34Aを構成する板材の両端部をテーパー状にまげて、ガイド部301を構成してもよい。また、ガイド部301は、非磁性体からなるものでもよい。この場合、電磁石部35の通電時に、電磁石の磁極面と吸着部34Aにおける吸着面とが、信頼性高く、吸着される。 It should be noted that in the second embodiment, the guide portion 301 is configured by a member different from the suction portion 34A. It should be noted that the guide portion 301 may be configured by bending both ends of the plate material that configures the adsorption portion 34A into a tapered shape. Also, the guide portion 301 may be made of a non-magnetic material. In this case, when the electromagnet portion 35 is energized, the magnetic pole surface of the electromagnet and the attracting surface of the attracting portion 34A are attracted with high reliability.
 図11においては、係合ピン102の軸方向に、可動部材(34A,34B)の位置ずれが生じている。すなわち、切り欠け部34Cの中心(図10における水平方向の中心)が、送りネジ36の回転軸から、図11中で上方向(図10中で右方向)にずれている。このため、位置ずれにより可動部材における支持部34Bがブラケット38に近づくと、電動作動器の寸法公差や組立公差に起因して、支持部34Bとブラケット38とが接触し得る。 In FIG. 11, the movable members (34A, 34B) are displaced in the axial direction of the engagement pin 102. In FIG. That is, the center of the notch portion 34C (horizontal center in FIG. 10) is shifted upward in FIG. 11 (to the right in FIG. 10) from the rotation axis of the feed screw 36 . Therefore, when the support portion 34B of the movable member approaches the bracket 38 due to positional deviation, the support portion 34B and the bracket 38 may come into contact with each other due to dimensional tolerances and assembly tolerances of the electric actuator.
 支持部34Bとブラケット38とが接触すると、復帰動作時に、モータ37の負荷が大きくなる。このため、復帰動作の信頼性を確保するためには、モータ37に対して、支持部34Bとブラケット38との接触による負荷の増大を見込んだ大きさの出力値が要求される。 When the support portion 34B and the bracket 38 come into contact with each other, the load on the motor 37 increases during the return operation. Therefore, in order to ensure the reliability of the return operation, the motor 37 is required to have an output value that takes into account the increased load due to the contact between the support portion 34B and the bracket 38. FIG.
 これに対し、本実施例2では、以下に説明するように、復帰動作時において、可動部材を電磁石部35に対して位置合わせすることにより、支持部34Bとブラケット38とが接触してモータ負荷が増大することを防止することができる。 In contrast, in the second embodiment, as will be described below, the movable member is positioned with respect to the electromagnet portion 35 during the return operation, so that the support portion 34B and the bracket 38 come into contact with each other and the motor load is reduced. can be prevented from increasing.
 図12に示すように、電動作動器の復帰動作時には、モータ37によって回転する送りネジ36によって電磁石部35が駆動され、電磁石部35は可動部材に向かって移動する。電磁石部35が可動部材に近づくと、吸着部34Aのガイド部301間に、電磁石部35が嵌合する。このとき、電磁石部35の磁極面の端部によってガイド部301のテーパー面が押圧されるので、可動部材は、係合ピン102の軸方向に動く。本実施例2では、可動部材は、図11における位置から、図11中の下方へ動く。 As shown in FIG. 12, during the return operation of the electric actuator, the electromagnet part 35 is driven by the feed screw 36 rotated by the motor 37, and the electromagnet part 35 moves toward the movable member. When the electromagnet part 35 approaches the movable member, the electromagnet part 35 is fitted between the guide parts 301 of the adsorption part 34A. At this time, since the tapered surface of the guide portion 301 is pressed by the end of the magnetic pole surface of the electromagnet portion 35 , the movable member moves in the axial direction of the engagement pin 102 . In the second embodiment, the movable member moves downward in FIG. 11 from the position in FIG.
 電磁石部35がさらに移動して、図12に示すように、吸着部34Aのガイド部301間の吸着面と電磁石部35の磁極面とが面接触すると、可動部材の動きは止まる。このとき、可動部材は、電磁石部35に対して、電磁石部35によって設定される位置に位置合わせされる。 When the electromagnet part 35 moves further and the attraction surface between the guide parts 301 of the attraction part 34A and the magnetic pole surface of the electromagnet part 35 come into surface contact as shown in FIG. 12, the movement of the movable member stops. At this time, the movable member is aligned with the electromagnet section 35 at the position set by the electromagnet section 35 .
 すなわち、位置ずれした可動部材に電磁石部35が近接すると、可動部材は、可動部材が備えるガイド部301に案内されて、位置ずれした方向とは反対方向に移動する。これにより、可動部材は、電磁石部35によって設定される位置に位置合わせされる。 That is, when the electromagnet part 35 approaches the displaced movable member, the movable member is guided by the guide part 301 of the movable member and moves in the direction opposite to the displaced direction. Thereby, the movable member is aligned with the position set by the electromagnet section 35 .
 このような位置合わせにより、可動部材の位置ずれ時に、電動作動器の寸法公差や組立公差に起因して生じる、支持部34Bとブラケット38との接触し得る状態を、解消することができる。 Such alignment eliminates the possibility of contact between the support portion 34B and the bracket 38 due to dimensional tolerances and assembly tolerances of the electric actuator when the movable member is misaligned.
 可動部材が電磁石部35に対して位置合わせされると、電磁石部35は、通電されて、電磁力によって、吸着部34Aを吸着する。電磁石部35を通電したまま、モータ37が、電磁石部35を可動部材に向かって移動する場合とは逆方向に回転される。このように逆回転するモータ37によって回転する送りネジ36によって電磁石部35が駆動され、電磁石部35および可動部材(34A,34B)は、図13に示すような待機状態における位置まで移動する。このとき、可動部材が電磁石部35に対して位置合わせされた状態で、電磁石部35および可動部材(34A,34B)が移動する。したがって、電動作動器の寸法公差や組立公差に起因するモータ負荷の増大を防止することができる。 When the movable member is aligned with the electromagnet part 35, the electromagnet part 35 is energized and attracts the attracting part 34A by electromagnetic force. While the electromagnet part 35 is energized, the motor 37 is rotated in a direction opposite to the direction in which the electromagnet part 35 is moved toward the movable member. The electromagnet 35 is driven by the feed screw 36 rotated by the motor 37 rotating in the reverse direction, and the electromagnet 35 and the movable members (34A, 34B) move to the standby state position as shown in FIG. At this time, the electromagnet part 35 and the movable members ( 34 A, 34 B) move while the movable member is aligned with the electromagnet part 35 . Therefore, it is possible to prevent an increase in motor load due to dimensional tolerances and assembly tolerances of the electric actuator.
 電磁石部35および可動部材(34A,34B)が待機状態における位置まで移動したら、モータ37は停止し、電磁石部35の通電は保持される。これにより、電動作動器は、図13に示すような待機状態となる。 When the electromagnet part 35 and the movable members (34A, 34B) move to the positions in the standby state, the motor 37 stops and the electromagnet part 35 is kept energized. As a result, the electric actuator enters a standby state as shown in FIG.
 上述のように、本実施例2によれば、電動作動器の作動時に位置ずれした可動部材(34A,34B)を、電動作動器の復帰動作時に、ガイド部301によって、可動部材の動かす方向を位置ずれ方向とは反対方向に案内しながら動かして、電磁石部35に対して位置合わせする。すなわち、復帰動作において、電磁石部35が、可動部材に向かって移動して、可動部材に接触する時に、可動部材を電磁石部35に対して位置合わせするように、可動部材が、可動部材が備えるガイド部301によって、電磁石部35の動きに従動する。 As described above, according to the second embodiment, the moving direction of the movable members (34A, 34B), which are displaced when the electric actuator is actuated, is changed by the guide portion 301 when the electric actuator is restored. Positioning is performed with respect to the electromagnet part 35 by moving while guiding in the direction opposite to the direction of positional deviation. That is, the movable member is provided with a movable member such that, in the return movement, the movable member aligns the movable member with respect to the electromagnet portion 35 when the electromagnet portion 35 moves toward and contacts the movable member. The movement of the electromagnet part 35 is followed by the guide part 301 .
 また、本実施例2における電動作動器は、停電により電磁石部35への通電が停止した場合にも、停電復旧時に、同様に動作する。 In addition, the electric actuator in the second embodiment similarly operates at the time of power failure recovery even when the power supply to the electromagnet part 35 is stopped due to power failure.
 これにより、電動作動器の寸法公差や組立公差に起因して発生する、電磁石部35を待機状態における位置まで移動するときのモータ負荷の増大が防止できる。したがって、モータ37の出力容量を低減できる。 As a result, it is possible to prevent an increase in the motor load when moving the electromagnet part 35 to the position in the standby state, which is caused by dimensional tolerances and assembly tolerances of the electric actuator. Therefore, the output capacity of the motor 37 can be reduced.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.
 例えば、電動作動器10は、乗りかご1の上方部のほか、下方部や側方部に設けられてもよい。 For example, the electric actuator 10 may be provided not only on the upper part of the car 1, but also on the lower part or the side part.
 また、エレベータ装置は、機械室を備えるものでもよいし、いわゆる機械室レスエレベータでもよい。 In addition, the elevator device may be equipped with a machine room, or may be a so-called machine room-less elevator.
1…乗りかご、2…非常止め装置、3…位置センサ、4…ガイドレール、10…電動作動器、11…操作レバー、12…駆動軸、13…駆動ばね、14…固定部、15…押圧部材、16…作動片、17…接続片、18…作動片、19…作動軸、20…作動軸、21…引上げロッド、30…筐体、31…筐体カバー、32…カバー部材、33…板状部材、34A…吸着部、34B…支持部、34C…切り欠け部、35…電磁石部、36…送りネジ、37…モータ、38…ブラケット、39…送りナット、40…基板、41…支持部材、42…支持部材、50…クロスヘッド、101…軸部、102…係合ピン、103…長孔、201…ガイド部、301…ガイド部 DESCRIPTION OF SYMBOLS 1... Car, 2... Emergency stop device, 3... Position sensor, 4... Guide rail, 10... Electric actuator, 11... Operation lever, 12... Drive shaft, 13... Drive spring, 14... Fixed part, 15... Pressure Member 16 Operating piece 17 Connecting piece 18 Operating piece 19 Operating shaft 20 Operating shaft 21 Lifting rod 30 Case 31 Case cover 32 Cover member 33 Plate-like member 34A Adsorption portion 34B Support portion 34C Notch portion 35 Electromagnet portion 36 Feed screw 37 Motor 38 Bracket 39 Feed nut 40 Substrate 41 Support Member 42 Supporting member 50 Cross head 101 Shaft 102 Engagement pin 103 Long hole 201 Guide part 301 Guide part

Claims (9)

  1.  乗りかごと、
     前記乗りかごに設けられる非常止め装置と、
     前記乗りかごに設けられ、前記非常止め装置を駆動する駆動機構と、
     前記乗りかごに設けられ、前記駆動機構を動作させる電動作動器と、
    を備えるエレベータ装置において、
     前記電動作動器は、
     前記駆動機構に接続される操作レバーと、
     前記操作レバーに回動可能に接続される可動部材と、
     前記電動作動器の待機状態において、前記可動部材を吸着する電磁石部と、
     前記電磁石部に螺合する送りネジと、
     前記送りネジを駆動するモータと、
     前記電動作動器の復帰動作において、前記モータにより前記送りネジを駆動することにより、前記電磁石部が、前記可動部材に向かって移動して、前記可動部材に接触する時に、前記可動部材を前記電磁石部に対して位置合わせするように、前記可動部材を前記電磁石部の動きに従動させるガイド部と、
    を備えることを特徴とするエレベータ装置。
    car and
    a safety device provided in the car;
    a drive mechanism provided in the car for driving the safety device;
    an electric actuator provided in the car for operating the drive mechanism;
    In an elevator installation comprising
    The electric actuator is
    an operating lever connected to the drive mechanism;
    a movable member rotatably connected to the operating lever;
    an electromagnet part that attracts the movable member in a standby state of the electric actuator;
    a feed screw screwed into the electromagnet;
    a motor that drives the feed screw;
    In the return operation of the electric actuator, by driving the feed screw by the motor, the electromagnet portion moves toward the movable member and contacts the movable member. a guide portion for following the movement of the electromagnet portion so as to align the movable member with the portion;
    An elevator system comprising:
  2.  請求項1に記載のエレベータ装置において、
     前記可動部材と、前記操作レバーにおける前記可動部材との接続部との間には、隙間があることを特徴とするエレベータ装置。
    The elevator installation of claim 1, wherein
    An elevator apparatus according to claim 1, wherein a gap is provided between the movable member and a connecting portion of the operating lever to the movable member.
  3.  請求項2に記載のエレベータ装置において、
     前記可動部材は、回動軸に沿って可動であることを特徴とするエレベータ装置。
    An elevator installation according to claim 2, wherein
    An elevator apparatus, wherein the movable member is movable along a rotation axis.
  4.  請求項1に記載のエレベータ装置において、
     前記電磁石部が前記ガイド部を備えていることを特徴とするエレベータ装置。
    The elevator installation of claim 1, wherein
    An elevator apparatus, wherein the electromagnet section includes the guide section.
  5.  請求項4に記載のエレベータ装置において、
     前記ガイド部は、前記可動部材と嵌合することを特徴とするエレベータ装置。
    In the elevator installation according to claim 4,
    The elevator apparatus according to claim 1, wherein the guide portion is fitted with the movable member.
  6.  請求項5に記載のエレベータ装置において、
     前記ガイド部はテーパー面を有し、
     前記ガイド部が前記可動部材と嵌合する時に、前記テーパー面によって前記ガイド部が押圧されることにより、前記可動部材が従動することを特徴とするエレベータ装置。
    In the elevator installation according to claim 5,
    The guide portion has a tapered surface,
    1. An elevator apparatus according to claim 1, wherein when said guide portion is fitted with said movable member, said tapered surface presses said guide portion so that said movable member follows.
  7.  請求項1に記載のエレベータ装置において、
     前記可動部材が前記ガイド部を備え、
     前記ガイド部は、前記電磁石部に対向する第一ガイド部および第二ガイド部を有することを特徴とするエレベータ装置。
    The elevator installation of claim 1, wherein
    The movable member includes the guide section,
    The elevator apparatus, wherein the guide section has a first guide section and a second guide section facing the electromagnet section.
  8.  請求項7に記載のエレベータ装置において、
     前記電磁石部は、前記第一ガイド部および前記第二ガイド部の間において、前記可動部材と嵌合することを特徴とするエレベータ装置。
    An elevator installation according to claim 7, wherein
    The elevator apparatus according to claim 1, wherein the electromagnet portion is fitted with the movable member between the first guide portion and the second guide portion.
  9.  請求項8に記載のエレベータ装置において、
     前記ガイド部はテーパー面を有し、
     前記電磁石部が前記可動部材と嵌合する時に、前記電磁石部によって前記テーパー面が押圧されることにより、前記可動部材が従動することを特徴とするエレベータ装置。
    An elevator installation according to claim 8, wherein
    The guide portion has a tapered surface,
    1. An elevator apparatus according to claim 1, wherein said movable member is driven by said tapered surface being pressed by said electromagnet portion when said electromagnet portion is engaged with said movable member.
PCT/JP2021/016048 2021-04-20 2021-04-20 Elevator apparatus WO2022224351A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21937848.6A EP4328166A1 (en) 2021-04-20 2021-04-20 Elevator apparatus
JP2023515930A JP7505119B2 (en) 2021-04-20 2021-04-20 Elevator Equipment
CN202180097306.1A CN117177932A (en) 2021-04-20 2021-04-20 Elevator device
PCT/JP2021/016048 WO2022224351A1 (en) 2021-04-20 2021-04-20 Elevator apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016048 WO2022224351A1 (en) 2021-04-20 2021-04-20 Elevator apparatus

Publications (1)

Publication Number Publication Date
WO2022224351A1 true WO2022224351A1 (en) 2022-10-27

Family

ID=83722043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016048 WO2022224351A1 (en) 2021-04-20 2021-04-20 Elevator apparatus

Country Status (4)

Country Link
EP (1) EP4328166A1 (en)
JP (1) JP7505119B2 (en)
CN (1) CN117177932A (en)
WO (1) WO2022224351A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227353A (en) * 2008-03-19 2009-10-08 Mitsubishi Electric Corp Emergency stop device for elevator and checking method thereof
JP2012520810A (en) * 2009-03-16 2012-09-10 オーチス エレベータ カンパニー Electromagnetic safety trigger
WO2013092239A1 (en) * 2011-12-21 2013-06-27 Inventio Ag Actuator for lift brake
WO2020110437A1 (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Emergency stop device and elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227353A (en) * 2008-03-19 2009-10-08 Mitsubishi Electric Corp Emergency stop device for elevator and checking method thereof
JP2012520810A (en) * 2009-03-16 2012-09-10 オーチス エレベータ カンパニー Electromagnetic safety trigger
WO2013092239A1 (en) * 2011-12-21 2013-06-27 Inventio Ag Actuator for lift brake
WO2020110437A1 (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Emergency stop device and elevator

Also Published As

Publication number Publication date
CN117177932A (en) 2023-12-05
JP7505119B2 (en) 2024-06-24
EP4328166A1 (en) 2024-02-28
JPWO2022224351A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7292230B2 (en) Emergency stop device and elevator
JP2007521203A (en) Remote resettable ropeless emergency stop for elevators
WO2022224351A1 (en) Elevator apparatus
JP7407936B2 (en) elevator equipment
JP2022114059A (en) Elevator apparatus
CN116419904B (en) Elevator device
WO2023037538A1 (en) Elevator apparatus
WO2023047561A1 (en) Elevator device
WO2023026423A1 (en) Elevator device
WO2022013939A1 (en) Elevator device
WO2022172364A1 (en) Elevator apparatus
WO2023058199A1 (en) Device and method for checking operation of electrically‐powered actuator for emergency stop apparatus
WO2021014559A1 (en) Elevator apparatus
JP7558754B2 (en) Emergency stop devices and elevators
WO2022201529A1 (en) Elevator apparatus
JP7524487B2 (en) Fault detection device and method for electric actuator of emergency stop device
JP2023030908A (en) Elevator device
US20240182267A1 (en) Frictionless safety brake actuator
JP7545007B2 (en) Elevator Equipment
WO2022038665A1 (en) Elevator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515930

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021937848

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937848

Country of ref document: EP

Effective date: 20231120