WO2022224343A1 - Display device and display method - Google Patents

Display device and display method Download PDF

Info

Publication number
WO2022224343A1
WO2022224343A1 PCT/JP2021/016019 JP2021016019W WO2022224343A1 WO 2022224343 A1 WO2022224343 A1 WO 2022224343A1 JP 2021016019 W JP2021016019 W JP 2021016019W WO 2022224343 A1 WO2022224343 A1 WO 2022224343A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitters
distance
video signal
led
size
Prior art date
Application number
PCT/JP2021/016019
Other languages
French (fr)
Japanese (ja)
Inventor
弘典 小林
Original Assignee
シャープNecディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープNecディスプレイソリューションズ株式会社 filed Critical シャープNecディスプレイソリューションズ株式会社
Priority to PCT/JP2021/016019 priority Critical patent/WO2022224343A1/en
Publication of WO2022224343A1 publication Critical patent/WO2022224343A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to a display device and a display method.
  • an LED Light Emitting Diode
  • a plurality of transparent pipes into which the printed circuit board is inserted are arranged in parallel to form a screen-like display surface.
  • a display device is disclosed.
  • the LED display device disclosed in Patent Document 1 has a plurality of transparent pipes that are stretchable like a so-called blind.
  • a plurality of light emitters, a plurality of support members that support each of the plurality of light emitters, and a second direction in which the light emitters are arranged in a first direction and a direction orthogonal to the first direction are provided.
  • a stretchable structure that supports the support members so as to be aligned along the first direction and expands and contracts the distance between the light emitters adjacent to each other in the first direction; Based on the distance between the light emitters supported by the support members at both ends in the first direction specified by the distance measured by the measurement unit that measures the distance between the support members calculating the size in the first direction of the display screen on which the light emitters are arranged, and calculating the size of the display screen in the first direction and the size of the light emitters in each of the first direction and the second direction; and a video signal control unit that scales a video signal based on the number, and lights the light emitter based on the scaled video signal.
  • a plurality of light emitters, a plurality of support members supporting each of the plurality of light emitters, and a first direction of the light emitters and a direction orthogonal to the first direction are provided. and a stretchable structure supporting the support member so as to be aligned along the second direction, wherein the stretchable structure is arranged between the light emitters adjacent to each other in the first direction.
  • the interval is expanded and contracted, the distance between the supporting members at both ends supporting the light emitter in the first direction is measured, and the supporting members at both ends in the first direction specified by the measured distance are supported.
  • the size of the display screen in which the light emitters are arranged in the first direction is calculated based on the distance between the light emitters, and the calculated size of the display screen in the first direction and the first direction scaling a video signal based on the number of the light emitters in each of the second directions; and lighting the light emitters based on the scaled video signal.
  • FIG. 1 is a block diagram showing the configuration of a display system according to a first embodiment
  • FIG. It is a front view of the LED module part of 1st Embodiment. It is a side view of the LED module part of 1st Embodiment. It is a figure which shows an example (1) which installed the LED module part of 1st Embodiment in the window.
  • 4 is a flow chart showing the flow of processing by the display device of the first embodiment; It is a figure which shows an example (2) which installed the LED module part of 1st Embodiment in the window.
  • 6B is a diagram showing an image displayed on a display screen in the case of FIG. 6A; FIG.
  • FIG. 7B is a diagram showing an image displayed on a display screen in the case of FIG. 7A;
  • FIG. FIG. 11 is a block diagram showing the configuration of a display system according to a second embodiment;
  • FIG. It is a front view of the LED module part of 2nd Embodiment.
  • It is a left view of the LED module part of 2nd Embodiment.
  • It is a top view of the LED module part of 2nd Embodiment.
  • FIG. 11 is a block diagram showing the configuration of a display device according to a third embodiment;
  • FIG. 1 is a block diagram showing the configuration of a display system 100 according to the first embodiment.
  • a display system 100 includes a display device 1 and a video signal output device 2 .
  • the video signal output device 2 is connected to the display device 1 by, for example, an electric line, and outputs a video signal.
  • the display device 1 includes a video signal control section 10 and an LED module section 20 .
  • the video signal control section 10 and the LED module section 20 are connected by, for example, an electric line.
  • the LED module section 20 includes a measuring section 22, a transmitting/receiving section 23, an LED driver section 24, a plurality of LED elements 21-1, 21-2, . , and a telescopic structure 40 .
  • any one of the LED elements 21-1 to 21-N will be referred to as the LED element 21 without any additional number.
  • the number of the plurality of rod-shaped frames 30-1, 30-2, . . . is also a predetermined integer value of 2 or more, and FIG. .
  • Each of the rod-shaped frames 30-1 to 30-10 is a rod-shaped member having a rod-like shape, and a predetermined number of LED elements 21 are mounted at regular intervals.
  • FIG. 2 shows an example in which seven LED elements 21 are attached to each of the rod-shaped frames 30-1 to 30-10.
  • the stretchable structure 40 supports the support member so that the light emitters are aligned along a first direction and a second direction perpendicular to the first direction, and the light emitters adjacent to each other in the first direction are aligned. Stretch each interval.
  • the elastic structure 40 includes a plurality of rod-shaped frames 30-1 to 30-10 arranged in parallel, and the LED elements arranged linearly in a direction orthogonal to the longitudinal direction of the rod-shaped frames 30-1 to 30-10. A plurality of rod-shaped frames 30-1 to 30-10 are supported so that 21 are lined up.
  • the state in which the LED elements 21 are arranged linearly in a direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10 means, for example, the LED elements 21-1 and 21- in the leftmost column. 8, 21-15, 21-22, 21-29, 21-36, 21-43, 21-50, 21-57, and 21-64 are arranged in a straight line. Since seven LED elements 21 are attached to each of the rod-shaped frames 30-1 to 30-10 at equal intervals, the LED elements 21 of the other rows are similarly attached to the rod-shaped frame 30-1. ⁇ 30-10 in a straight line in the direction orthogonal to the longitudinal direction.
  • the telescopic structure 40 has, for example, a telescopic structure in which pantograph structures are stacked in multiple stages in the vertical direction. is moved up and down, the distance between each of the rod-shaped frames 30-1 to 30-10 can be expanded and contracted, that is, they can be moved closer to each other or separated from each other. More specifically, the telescopic structure 40 maintains a state in which the intervals between the rod-shaped frames 30-1 to 30-10 are equal or substantially equal, and each of the rod-shaped frames 30-1 to 30-10 The structure changes to stretch or shrink the distance between
  • FIG. 3 is a side view of the LED module section 20 as seen from either the left or right side of the LED module section 20 shown in the front view of FIG.
  • An extension frame 51 is attached to the uppermost rod-shaped frame 30-1, and an extension frame 52 is attached to the lowermost rod-shaped frame 30-10.
  • the measurement unit 22 is, for example, a distance sensor and attached to the extension frame 51 .
  • the measurement unit 22 irradiates a laser beam in the direction of the extension frame 52, that is, in the direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10, and receives the laser beam reflected by the extension frame 52.
  • the distance D between the extended frame 51 and the extended frame 52 is calculated from the round trip time of the laser light.
  • the thickness of the measuring part 22 is so small that the distance D measured by the measuring part 22 can be regarded as indicating the distance between the extension frames 51 and 52 .
  • the LED driver unit 24 lights the LED elements 21-1, 21-2, .
  • the LED elements 21-1, 21-2, . . . that are not designated by the LED control signal are extinguished.
  • the transmitting/receiving unit 23 is, for example, a control board, transmits data indicating the distance D calculated by the measuring unit 22 to the video signal control unit 10 through an electric line, and receives data from the video signal control unit 10 through an electric line. A signal is output to the LED driver section 24 .
  • the image formed by lighting the plurality of LED elements 21-1, 21-2, . . . does not correspond to the size of the display screen. Therefore, the video signal output by the video signal output device 2 is scaled, that is, enlarged or reduced, so that an image corresponding to the size of the display screen is formed, and based on the scaled video signal, a plurality of LED elements are displayed. 21-1, 21-2, . . . need to be controlled to light up.
  • the video signal control unit 10 performs the control.
  • the video signal control section 10 includes an LED controller section 11 and an LED controller setting section 12 .
  • the LED controller setting section 12 includes a measurement data receiving section 13 , a module size calculating section 14 and a data output section 15 .
  • the measurement data reception unit 13 receives data indicating the distance D calculated by the measurement unit 22 .
  • the module size calculator 14 determines the module size, that is, the size of the LED elements 21-1, 21-2, . Calculate the size of the display screen to be used.
  • the measuring section 22 is attached to an extension frame 51, and the extension frame 51 is attached to a bar frame 30-1.
  • An extension frame 52 that reflects the laser beam from the measuring section 22 is attached to the rod-shaped frame 30-10. Therefore, the distance D measured by the measuring unit 22 is the distance between the uppermost LED element 21-1 and the lowermost LED element 21-64 located on the straight line in the vertical direction when viewed from the LED element 21-1. Not exact distance.
  • the module size calculation unit 14 determines the position of the measurement unit 22 based on the predetermined positional relationship between the extension frames 51 and 52 and the LED elements 21 attached to the rod-shaped frames 30-1 and 30-10. From the measured distance D, the distance between the uppermost LED element 21-1 and the lowermost LED element 21-64 located on the vertical straight line from the LED element 21-1 is calculated.
  • the module size calculator 14 stores in advance the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in an internal storage area.
  • the module size calculator 14 determines the calculated distance from the uppermost LED element 21-1 to the lowermost LED element 21-64 as "1" from the number of vertical LED elements 21 stored in the internal storage area.
  • the vertical pitch length of the LED elements 21 is calculated by dividing by the subtracted value.
  • the pitch length of the LED elements 21 in the horizontal direction is a fixed value. Therefore, the module size calculator 14 stores in advance the pitch length of the LED elements 21 in the horizontal direction in an internal storage area.
  • the size of the display screen formed by one LED element 21 is a rectangular area centered on the position of the LED element 21, and the horizontal length of the rectangular area is the pitch length of the LED element 21 in the horizontal direction. , and defined as the size of the rectangular area with the vertical length of the rectangular area being the pitch length of the LED elements 21 in the vertical direction. Assuming that the intervals between each of the plurality of rod-shaped frames 30-1 to 30-10 are uniform, the area where each rectangular area of the LED element 21 is aligned with the position of each LED element 21 and connected is displayed. screen area.
  • the length of the display screen in the vertical direction is the length of the rectangular area in the vertical direction, that is, the pitch length of the LED elements 21 in the vertical direction, when the LED elements 21 in the vertical direction are arranged at equal distances. is multiplied by the number of LED elements 21.
  • the horizontal length of the display screen is the horizontal length of the rectangular area, that is, the value obtained by multiplying the pitch length of the LED elements 21 in the horizontal direction by the number of the LED elements 21 in the horizontal direction.
  • the length in the vertical direction and the length in the horizontal direction of the display screen calculated by multiplication become data indicating the size of the display screen, that is, the module size.
  • the module size calculation unit 14 multiplies the calculated pitch length of the LED elements 21 in the vertical direction by the number of the LED elements 21 in the vertical direction stored in the internal storage area to obtain the display screen size. Calculate the vertical length. Further, the module size calculator 14 multiplies the pitch length of the horizontal LED elements 21 stored in the internal storage area by the number of horizontal LED elements 21 stored in the internal storage area, and calculates the display screen size. Calculate the horizontal length of
  • the data output unit 15 outputs data indicating the module size calculated by the module size calculation unit 14 to the LED controller unit 11 .
  • the LED controller section 11 stores in advance the number of LED elements 21 in the vertical direction and the number of LED elements 21 in the horizontal direction of the LED module section 20 in an internal storage area. Based on the module size output by the data output unit 15, the number of LED elements 21 in the vertical direction, and the number of LED elements 21 in the horizontal direction of the LED module unit 20 stored in the internal storage area, the LED controller unit 11 to scale the video signal output by the video signal output device 2 . Based on the scaled video signal, the LED controller unit 11 generates an LED control signal designating the LED elements 21-1 to 21-N to be lit. The LED controller section 11 transmits the generated LED control signal to the LED module section 20 .
  • FIG. 5 is a flow chart showing the flow of processing by the display device 1.
  • the number of LED elements 21 in the horizontal direction of the LED module section 20 is seven
  • the number of LED elements 21 in the vertical direction is ten
  • the pitch length of the elements 21 is 100 mm.
  • the module size calculator 14 stores the number of LED elements 21 in the horizontal direction, the number of LED elements 21 in the vertical direction, and the pitch length of the LED elements 21 in the horizontal direction in advance in an internal storage area.
  • the LED controller unit 11 stores the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in advance in an internal storage area.
  • the user installs the LED module section 20 by expanding and contracting it in the vertical direction according to the size of the window frame of the window on which the LED module section 20 is to be installed.
  • a user activates the video signal output device 2 and the display device 1 .
  • the video signal output device 2 When the video signal output device 2 is activated, it transmits a video signal to the LED controller section 11 included in the video signal control section 10 of the display device 1 through an electric line. Thereafter, the processing shown in the flowchart of FIG. 5 is performed.
  • the measurement unit 22 measures the distance D.
  • the measurement unit 22 outputs data indicating the measured distance D to the transmission/reception unit 23 .
  • the transmitting/receiving section 23 transmits the data indicating the distance D received from the measuring section 22 to the measurement data receiving section 13 of the LED controller setting section 12 .
  • the measurement data receiving unit 13 receives the data indicating the distance D transmitted by the transmitting/receiving unit 23, and outputs the received data indicating the distance D to the module size calculating unit 14 (step S1).
  • the module size calculator 14 calculates the distance D measured by the measuring unit 22 from the distance D measured by the uppermost LED element 21-1 and the lowermost LED element 21-64 located on a straight line in the vertical direction when viewed from the LED element 21-1. Calculate the distance between Here, the distance between the uppermost LED element 21-1 calculated by the module size calculating unit 14 and the lowermost LED element 21-64 located on a straight line in the vertical direction when viewed from the LED element 21-1 is is 45 cm.
  • the module size calculation unit 14 divides the calculated distance of 45 cm by a value of “9” obtained by subtracting 1 from “10”, which is the number of LED elements 21 in the vertical direction stored in the internal storage area. 5 cm is calculated as the pitch length of the LED elements 21 in the direction.
  • the module size calculator 14 multiplies the calculated 5 cm by "10", which is the number of LED elements 21 in the vertical direction, to calculate 50 cm, which is the vertical length of the display screen.
  • the module size calculator 14 calculates the pitch length of the LED elements 21 in the horizontal direction stored in the internal storage area "100 mm” and the number of LED elements 21 in the horizontal direction stored in the internal storage area "7". to calculate 70 cm, which is the horizontal length of the display screen.
  • the module size calculator 14 outputs to the data output unit 15 data indicating the module size including the calculated horizontal length of the display screen of 70 cm and the calculated vertical length of the display screen of 50 cm. (step S2).
  • the LED controller section 11 receives a video signal transmitted by the video signal output device 2 . Based on the number of LED elements 21 in the horizontal direction stored in the internal storage area, that is, the physical resolution in the horizontal direction of 7 pixels, and the calculated virtual resolution in the vertical direction of 5 pixels, The received video signal is scaled (step S3).
  • the LED controller section 11 generates an LED control signal based on the scaled video signal, and transmits the generated LED control signal to the transmission/reception section 23 of the LED module section 20 (step S4).
  • the transmitting/receiving section 23 of the LED module section 20 receives the LED control signal transmitted by the LED controller section 11 and outputs the received LED control signal to the LED driver section 24 .
  • the LED driver section 24 takes in the LED control signal output from the transmitting/receiving section 23, and lights up the LED elements 21-1 to 21-N specified in the received LED control signal (step S5).
  • the vertical length of the display screen of the LED module section 20 is shorter than the vertical length of the window frame of the window 71 shown in FIG. Scaling performed by the LED controller unit 11 when the vertical length of the window frame and the vertical length of the display screen of the LED module unit 20 are the same or substantially the same will be described.
  • the uppermost LED element 21-1 calculated by the module size calculating unit 14 and the lowermost stage positioned on a straight line in the vertical direction when viewed from the LED element 21-1. is 45 cm, that is, the display screen of the LED module section 20 has a vertical length of 50 cm and a horizontal length of 70 cm.
  • the vertical virtual resolution is 5 pixels.
  • the uppermost LED element 21-1 calculated by the module size calculator 14 and the lowermost LED element 21-1 located on a straight line in the vertical direction when viewed from the LED element 21-1 and the LED element 21-64 is 81 cm.
  • the number of pixels in the vertical and horizontal directions of one frame of the video signal output by the video signal output device 2 is 315 pixels ⁇ 315 pixels.
  • the virtual resolution in the vertical direction is 5 pixels
  • the physical resolution in the horizontal direction is 7 pixels. Scaling is performed to reduce the size and reduce the size to 1/45 in the horizontal direction.
  • the virtual resolution in the vertical direction is 9 pixels
  • the physical resolution in the horizontal direction is 7 pixels. is reduced to 1/35 and the horizontal direction is reduced to 1/45.
  • the LED controller section 11 generates an LED control signal based on the video signal scaled as described above.
  • the LED driver unit 24 turns on the LED elements 21-1 to 21-70 based on the LED control signal generated by the LED controller unit 11, in the case of FIG. 6A, reference numeral 61 in FIG. is displayed, and in the case of FIG. 7A, the image indicated by reference numeral 62 in FIG. 7B is displayed.
  • a plurality of LED elements 21-1 to 21-70 are attached to the plurality of rod-shaped frames 30-1 to 30-10 at equal intervals in the longitudinal direction.
  • the telescopic structure 40 includes a plurality of rod-shaped frames 30-1 to 30-10 arranged in parallel, and the LED elements 21-1 to 21-1 extending linearly in a direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10.
  • a plurality of rod-shaped frames 30-1 to 30-10 are supported so that 21-70 are arranged side by side, and the rod-shaped frames 30-1 to 30-10 are maintained at uniform or substantially uniform intervals. Stretch the distance between each of 30-1 to 30-10.
  • the measuring section 22 measures the distance between the rod-shaped frames 30-1 and 30-10 at both ends.
  • the video signal control unit 10 calculates the size of the display screen configured by the LED elements 21-1 to 21-70 based on the distance measured by the measurement unit 22, and calculates the size of the display screen and the vertical direction.
  • the video signal is scaled based on the number of LED elements 21-1 to 21-70 and the number of LED elements 21-1 to 21-70 in the horizontal direction, and the LED element 21-1 is scaled based on the scaled video signal. ⁇ 21-70 is lit.
  • the display device 1 calculates the size of the display screen based on the distance between the rod-shaped frames 30-1 to 30-10 at both ends measured by the measurement unit 22, Scaling the video signal based on the direction and the number of LED elements 21-1 to 21-70 in each of the horizontal directions, and lighting the LED elements 21-1 to 21-70 based on the scaled video signal. can be done. As a result, in the display device 1 whose display screen can be expanded and contracted, it is possible to display an arbitrary image in an appropriate size according to the size of the display screen.
  • the module size calculator 14 stores the number of LED elements 21 in the horizontal direction and the pitch length of the LED elements 21 in the horizontal direction in advance in an internal storage area.
  • the expandable structure 40 of the LED module section 20 does not expand and contract in the horizontal direction, and the pitch length of the LED elements 21 in the horizontal direction is fixed.
  • the horizontal length of the display screen may be stored in advance.
  • the LED module unit 20 multiplies the pitch length of the horizontal LED elements 21 stored in the internal storage area by the number of the horizontal LED elements 21 stored in the internal storage area to obtain a display screen. It is not necessary to calculate the horizontal length, and the horizontal length of the display screen can be obtained by reading the horizontal length of the display screen stored in the internal storage area.
  • the video signal control unit 10 and the LED module unit 20 are shown as functional units of the display device 1.
  • Each of the LED module sections 20 may be configured as a single device and installed at a remote location.
  • each of the LED controller unit 11 and the LED controller setting unit 12 of the video signal control unit 10 may be configured as a single device and installed at a remote location.
  • the data output unit 15 is connected by, for example, an electric line.
  • the measuring section 22 is attached to the extension frame 51 attached to the rod-shaped frame 30-1.
  • the measuring section 22 may be attached to an extension frame 52 attached to the rod-shaped frame 30-10.
  • the expansion structure 40 is expanded and contracted in the vertical direction.
  • the expansion structure 40 may be used in such a manner as to expand and contract in the horizontal direction.
  • the measuring unit 22 calculates the distance D between the extension frames 51 and 52.
  • the distance between the LED element 21-1 at both ends and the LED element 21-64 may be calculated based on the positional relationship with the LED element 21 attached to each of the rod-shaped frames 30-1 and 30-10. good.
  • the module size calculator 14 can acquire the distance between the LED element 21-1 and the LED element 21-64 from the measurement data receiver 13, so there is no need to calculate this distance.
  • FIG. 8 is a block diagram showing the configuration of a display system 100a according to the second embodiment of the invention.
  • the display system 100 a includes a display device 1 a and a video signal output device 2 .
  • the display device 1a includes a video signal control section 10a and an LED module section 20a.
  • the video signal control section 10a and the LED module section 20a are connected by, for example, an electric line.
  • the LED module section 20a includes a measurement section 22a, a transmission/reception section 23a, an LED driver section 24, a plurality of LED elements 21-1 to 21-N, a plurality of frames 31-1, 31-2, . It has a structure 40a.
  • Each of the plurality of frames 31-1, 31-2, . . . is a support member that supports one LED element 21 corresponding to each. Therefore, the number of frames 31-1, 31-2, . . . FIG. 9 shows an example in which each of frames 31-1 to 31-30 supports LED elements 21-1 to 21-30 having the same branch number as that of each code.
  • the stretchable structure 40a supports the frames 31-1 to 31-30 so that the lines connecting the adjacent LED elements 21 in the vertical direction and the horizontal direction are perpendicular to each other to form a lattice.
  • the stretchable structure 40a has, for example, a stretchable structure in which pantograph structures are stacked in multiple stages in the vertical direction and the horizontal direction.
  • the space between the LED elements 21 adjacent in the direction can be expanded and contracted. More specifically, in the elastic structure 40a, the spacing between the LED elements 21 adjacent in the vertical direction is uniform or substantially uniform, and the spacing between the LED elements 21 adjacent in the lateral direction is uniform or substantially uniform.
  • the plurality of frames 31-1 to 31-30 arranged in the vertical direction are expanded and contracted, or the plurality of frames 31-1 to 31-30 arranged in the horizontal direction are expanded and contracted.
  • the elastic structure 40a may expand and contract in both the vertical direction and the horizontal direction.
  • the measurement unit 22a includes a vertical measurement unit 22v and a horizontal measurement unit 22h, which are distance sensors.
  • FIG. 10 is a left side view of the LED module section 20 as viewed from the left side of the LED module section 20a shown in the front view of FIG.
  • An extension frame 53 is attached to the uppermost frame 31-1, and an extension frame 54 is attached to the lowermost frame 30-26.
  • the vertical measurement section 22v is attached to the extension frame 53.
  • the vertical direction measuring unit 22v irradiates a laser beam in the direction of the extension frame 54, that is, in the vertical direction of the LED module unit 20a, and receives the laser beam reflected by the extension frame 54, thereby measuring the round trip time of the laser beam.
  • the distance Dv from the extension frame 53 to the extension frame 54 is calculated.
  • the thickness of the vertical direction measuring portion 22v is so small that the distance Dv measured by the vertical direction measuring portion 22v can be regarded as indicating the distance between the extension frame 53 and the extension frame 54. shall be
  • FIG. 11 is a top view of the LED module section 20 when the LED module section 20a shown in the front view of FIG. 9 is viewed from above.
  • An extension frame 55 is attached to the left end frame 31-1, and an extension frame 56 is attached to the right end frame 31-5.
  • the lateral measurement portion 22h is attached to the extension frame 55.
  • the lateral direction measurement unit 22h irradiates a laser beam in the direction of the extension frame 56, that is, in the lateral direction of the LED module portion 20a, and receives the laser beam reflected by the extension frame 56, thereby measuring the round-trip time of the laser beam. , the distance Dh from the extension frame 55 to the extension frame 56 is calculated.
  • the thickness of the lateral direction measuring portion 22h is so small that the distance Dh measured by the lateral direction measuring portion 22h can be regarded as indicating the distance between the extension frame 55 and the extension frame 56. shall be
  • the transmission/reception unit 23a is, for example, a control board, and outputs an LED control signal received from the video signal control unit 10a through an electric line to the LED driver unit 24.
  • the transmitting/receiving unit 23a takes in data indicating the distance Dv calculated and output by the vertical direction measuring unit 22v and data indicating the distance Dh calculated and output by the horizontal direction measuring unit 22h.
  • the transmitting/receiving section 23a transmits the data indicating the distance Dv and the data indicating the distance Dh to the measurement data receiving section 13a provided in the LED controller setting section 12a of the video signal control section 10a through an electric line.
  • the measurement data receiving unit 13a receives the data indicating the distance Dv and the data indicating the distance Dh transmitted by the transmitting/receiving unit 23a, and converts the received data indicating the distance Dv and the data indicating the distance Dh to the module size calculating unit. 14a.
  • the module size calculation unit 14a calculates the vertical direction measurement unit 22v based on the predetermined positional relationship between the extension frames 53 and 54 and the LED elements 21 attached to each of the frames 31-1 and 31-26. calculates the distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 from the measured distance Dv. In addition, the module size calculator 14a calculates the horizontal direction based on the predetermined positional relationship between the extension frames 55 and 56 and the LED elements 21 attached to each of the frames 31-1 and 31-5. The distance between the leftmost LED element 21-1 and the rightmost LED element 21-5 is calculated from the distance Dh measured by the part 22h.
  • the module size calculator 14a stores in advance the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in an internal storage area. Similar to the module size calculation unit 14 of the first embodiment, the module size calculation unit 14a calculates the number of LED elements 21 in the vertical direction stored in the internal storage area and the calculated uppermost LED element 21-1. The length of the display screen in the vertical direction is calculated based on the distance between the bottom LED elements 21-26. The module size calculation unit 14a expands the method of calculating the length of the display screen in the vertical direction to the horizontal direction, and calculates the number of horizontal LED elements 21 stored in the internal storage area, 1 and the distance between the rightmost LED element 21-5, the horizontal length of the display screen is calculated. The module size calculation unit 14a generates data indicating the module size including the calculated vertical and horizontal lengths of the display screen, and transmits the generated data indicating the module size to the LED controller unit via the data output unit 15. 11a.
  • the LED controller section 11a preliminarily stores the number of LED elements 21 in the vertical direction and the number of LED elements 21 in the horizontal direction of the LED module section 20a in an internal storage area.
  • the LED controller unit 11a stores the data indicating the module size generated by the module size calculation unit 14a, the number of LED elements 21 in the vertical direction of the LED module unit 20a stored in the internal storage area, and the number of LED elements 21 in the horizontal direction.
  • the vertical and horizontal virtual resolutions are calculated based on the numbers.
  • the LED controller unit 11a calculates the calculated vertical and horizontal virtual resolutions, the number of horizontal LED elements 21 stored in the internal storage area, that is, the horizontal physical resolution, and the number of vertical LED elements 21.
  • the video signal output by the video signal output device 2 is scaled based on the number, that is, the physical resolution in the vertical direction. Based on the scaled video signal, the LED controller section 11a generates an LED control signal that determines which of the LED elements 21-1 to 21-N is to be lit, and sends the generated LED control signal to the LED module section 20a. Send.
  • the display device 1a of the second embodiment performs the same processing as that performed by the display device 1 of the first embodiment for scaling the video signal in the vertical direction. Processing is applied horizontally to provide horizontal scaling of the video signal.
  • the display device 1a calculates the size of the display screen based on the distance between the frames 31 at both ends in the direction of expansion and contraction measured by the measurement unit 22a. and the number of LED elements 21 in the horizontal direction, the video signal can be scaled, and the LED elements 21 can be lit based on the scaled video signal.
  • the display device 1a whose display screen can be expanded and contracted, it is possible to display an arbitrary image in an appropriate size according to the size of the display screen.
  • the longitudinal measurement section 22v is attached to the extension frame 53 attached to the frame 31-1.
  • the extension frame 53 may be attached to any one of the frames 31-2 to 31-5 other than the frame 31-1, and the vertical direction measuring section 22v may be attached to the extension frame 53.
  • the extension frame 54 is attached to any one of the lowermost frames 31-27 to 31-30 vertically opposed to any one of the frames 31-2 to 31-5 to which the extension frame 53 is attached. will be installed.
  • the vertical direction measuring portion 22v may be attached to the extension frame 54 instead of the extension frame 53. As shown in FIG.
  • an extension frame 55 is attached to any one of the frames 31-6, 31-11, 31-16, 31-21, and 31-26 other than the frame 31-1, and the extension frame 55 is attached to the horizontal You may make it attach the direction measurement part 22h.
  • the extension frame 56 is attached to any one of 15, 31-20, 31-25, 31-30.
  • the horizontal direction measuring portion 22h may be attached to the extension frame 56 instead of the extension frame 55. As shown in FIG.
  • the vertical measurement unit 22v calculates the distance Dv from the extension frame 53 to the extension frame 54
  • the horizontal measurement unit 22h calculates the distance Dv from the extension frame 55 to the extension frame 56. Calculate Dh.
  • the vertical direction measuring part 22v is based on the predetermined positional relationship between the extension frames 53 and 54 and the LED elements 21 attached to each of the frames 31-1 and 31-26. The distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 may be calculated.
  • the horizontal direction measurement unit 22h measures the horizontal direction based on the predetermined positional relationship between the extension frames 55 and 56 and the LED elements 21 attached to the frames 31-1 and 31-5.
  • the distance between the leftmost LED element 21-1 and the rightmost LED element 21-5 may be calculated from the distance Dh measured by the section 22h.
  • the module size calculator 14a calculates the distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 from the measurement data receiver 13a and the leftmost LED element 21 Since the distance between -1 and the rightmost LED element 21-5 can be obtained, there is no need to calculate these distances.
  • the LED element 21 may be, for example, a light-emitting body such as an incandescent lamp or a discharge tube other than the LED.
  • a light-emitting body such as an incandescent lamp or a discharge tube other than the LED.
  • an elastic structure 40 and 40a an elastic structure having a bellows structure, an accordion structure, or the like may be applied in addition to the elastic structure having the pantograph structure.
  • FIG. 12 is a block diagram showing the configuration of the display device 80 according to the third embodiment.
  • the display device 80 includes a plurality of light emitters 81-1 to 81-N, a plurality of support members 82-1 to 82-N that support the plurality of light emitters 81-1 to 81-N, and a measurement unit 83. - 1 , an elastic structure 84 and a video signal control unit 85 .
  • the stretchable structure 84 is arranged such that the light emitters 81-1 to 81-N are arranged along a first direction, for example, the vertical direction and a second direction, for example, the horizontal direction, which is perpendicular to the first direction.
  • Support members 82-1 to 82-N are supported in the first direction, and the intervals between the light emitters 81-1 to 81-N adjacent in the first direction are expanded and contracted.
  • the measuring unit 83-1 measures the distance between the support members 82-1 to 82-N at both ends supporting the light emitters 81-1 to 81-N in the first direction.
  • the video signal control unit 85 controls the distance between the light emitters 81-1 to 81-N supported by the supporting members 82-1 to 82-N at both ends in the first direction specified by the distance measured by the measuring unit 83-1.
  • the size in the first direction of the display screen on which the light emitters 81-1 to 81-N are arranged is calculated, and the calculated size of the display screen in the first direction, the first direction and the second direction
  • the video signal is scaled based on the number of the light emitters and the number of the light emitters, and the light emitters 81-1 to 81-N are lit based on the scaled video signal.
  • the video signal control units 10, 10a, and 85 in the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This display device comprises: a plurality of light emitters (81-1 to 81-N); a plurality of support members (82-1 to 82-N) that respectively support the plurality of light emitters; an extension and contraction structure (84) that supports the support members such that the light emitters are arranged along a first direction and a second direction orthogonal to the first direction, and extends and contracts the respective intervals between the light emitters adjacent in the first direction; a measurement unit (83-1) that measures the distance between the support members at both ends supporting the light emitters in the first direction; and a video signal control unit (85) that, on the basis of the distance measured by the measurement unit, calculates the size in the first direction of a display screen on which the light emitters are arranged, on the basis of the calculated size in the first direction of the display screen, and the respective numbers of the light emitters in the first direction and the second direction, scales a video signal, and on the basis of the scaled video signal, turns on the light emitters.

Description

表示装置、及び表示方法Display device and display method
 本発明は、表示装置、及び表示方法に関する。 The present invention relates to a display device and a display method.
 特許文献1には、LED(Light Emitting Diode)を細長いプリント基板の所要の位置に搭載し、当該プリント基板を挿入した複数の透明パイプを平行に並べることにより、すだれ状のディスプレイ面を形成するLEDディスプレイ装置が開示されている。 In Patent Document 1, an LED (Light Emitting Diode) is mounted at a desired position on an elongated printed circuit board, and a plurality of transparent pipes into which the printed circuit board is inserted are arranged in parallel to form a screen-like display surface. A display device is disclosed.
 特許文献1に開示されているLEDディスプレイ装置は、いわゆるブラインドのように、複数の透明パイプの間隔が伸縮自在になっており、運搬時には、縮小した状態にすることにより、持ち運びが容易になる。また、例えば、建物の窓側から屋外に向けて設置するような場合、窓の大きさにフィットさせた大きさにすることが可能である。 The LED display device disclosed in Patent Document 1 has a plurality of transparent pipes that are stretchable like a so-called blind. In addition, for example, when installing facing the outside from the window side of a building, it is possible to make the size fit to the size of the window.
実公平05-038387号公報Japanese Utility Model Publication No. 05-038387
 しかしながら、特許文献1に開示されているLEDディスプレイ装置では、特許文献1の第1図に示されているように、予め表示する文字の形状にLEDが固定的に配置されており、任意の映像をディスプレイ面の大きさに応じた適切な大きさで表示することができないという問題がある。 However, in the LED display device disclosed in Patent Document 1, as shown in FIG. cannot be displayed in an appropriate size according to the size of the display surface.
 上記事情に鑑み、本発明は、表示画面が伸縮可能な表示装置において、任意の映像を表示画面のサイズに応じた適切な大きさで表示する技術の提供を目的としている。 In view of the above circumstances, it is an object of the present invention to provide a technique for displaying an arbitrary image in an appropriate size according to the size of the display screen in a display device with an expandable display screen.
 本発明の一態様は、複数の発光体と、複数の前記発光体の各々を支持する複数の支持部材と、前記発光体が第1方向と当該第1方向とは直交する方向である第2方向とに沿って並ぶように前記支持部材を支持し、前記第1方向において隣接する前記発光体のそれぞれの間隔を伸縮させる伸縮構造体と、前記第1方向において前記発光体を支持する両端の前記支持部材の間の距離を測定する測定部と、前記測定部が測定する前記距離によって特定される前記第1の方向の両端の前記支持部材が支持する前記発光体の間の距離に基づいて、前記発光体が並べられた表示画面の前記第1方向におけるサイズを算出し、算出した前記表示画面の第1方向のサイズと、前記第1方向と前記第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、スケーリングした前記映像信号に基づいて前記発光体を点灯させる映像信号制御部と、を備える表示装置である。 According to one aspect of the present invention, a plurality of light emitters, a plurality of support members that support each of the plurality of light emitters, and a second direction in which the light emitters are arranged in a first direction and a direction orthogonal to the first direction are provided. a stretchable structure that supports the support members so as to be aligned along the first direction and expands and contracts the distance between the light emitters adjacent to each other in the first direction; Based on the distance between the light emitters supported by the support members at both ends in the first direction specified by the distance measured by the measurement unit that measures the distance between the support members calculating the size in the first direction of the display screen on which the light emitters are arranged, and calculating the size of the display screen in the first direction and the size of the light emitters in each of the first direction and the second direction; and a video signal control unit that scales a video signal based on the number, and lights the light emitter based on the scaled video signal.
 また、本発明の一態様は、複数の発光体と、複数の前記発光体の各々を支持する複数の支持部材と、前記発光体が第1方向と当該第1方向とは直交する方向である第2方向とに沿って並ぶように前記支持部材を支持する伸縮構造体とを備える表示装置における表示方法であって、前記伸縮構造体が、前記第1方向において隣接する前記発光体のそれぞれの間隔を伸縮させ、前記第1方向において前記発光体を支持する両端の前記支持部材の間の距離を測定し、測定した前記距離によって特定される前記第1の方向の両端の前記支持部材が支持する前記発光体の間の距離に基づいて、前記発光体が並べられた表示画面の前記第1方向におけるサイズを算出し、算出した前記表示画面の第1方向のサイズと、前記第1方向と前記第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、スケーリングした前記映像信号に基づいて前記発光体を点灯させる表示方法である。 Further, according to one aspect of the present invention, a plurality of light emitters, a plurality of support members supporting each of the plurality of light emitters, and a first direction of the light emitters and a direction orthogonal to the first direction are provided. and a stretchable structure supporting the support member so as to be aligned along the second direction, wherein the stretchable structure is arranged between the light emitters adjacent to each other in the first direction. The interval is expanded and contracted, the distance between the supporting members at both ends supporting the light emitter in the first direction is measured, and the supporting members at both ends in the first direction specified by the measured distance are supported. The size of the display screen in which the light emitters are arranged in the first direction is calculated based on the distance between the light emitters, and the calculated size of the display screen in the first direction and the first direction scaling a video signal based on the number of the light emitters in each of the second directions; and lighting the light emitters based on the scaled video signal.
 この発明によれば、表示画面が伸縮可能な表示装置において、任意の映像を表示画面のサイズに応じた適切な大きさで表示することが可能になる。 According to this invention, in a display device whose display screen can be expanded and contracted, it is possible to display any image in an appropriate size according to the size of the display screen.
第1の実施形態の表示システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a display system according to a first embodiment; FIG. 第1の実施形態のLEDモジュール部の正面図である。It is a front view of the LED module part of 1st Embodiment. 第1の実施形態のLEDモジュール部の側面図である。It is a side view of the LED module part of 1st Embodiment. 第1の実施形態のLEDモジュール部を窓に設置した一例(その1)を示す図である。It is a figure which shows an example (1) which installed the LED module part of 1st Embodiment in the window. 第1の実施形態の表示装置による処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing by the display device of the first embodiment; 第1の実施形態のLEDモジュール部を窓に設置した一例(その2)を示す図である。It is a figure which shows an example (2) which installed the LED module part of 1st Embodiment in the window. 図6Aの場合に表示画面に表示される映像を示す図である。6B is a diagram showing an image displayed on a display screen in the case of FIG. 6A; FIG. 第1の実施形態のLEDモジュール部を窓に設置した一例(その3)を示す図である。It is a figure which shows an example (3) which installed the LED module part of 1st Embodiment in the window. 図7Aの場合に表示画面に表示される映像を示す図である。7B is a diagram showing an image displayed on a display screen in the case of FIG. 7A; FIG. 第2の実施形態の表示システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a display system according to a second embodiment; FIG. 第2の実施形態のLEDモジュール部の正面図である。It is a front view of the LED module part of 2nd Embodiment. 第2の実施形態のLEDモジュール部の左側面図である。It is a left view of the LED module part of 2nd Embodiment. 第2の実施形態のLEDモジュール部の上面図である。It is a top view of the LED module part of 2nd Embodiment. 第3の実施形態の表示装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a display device according to a third embodiment; FIG.
(第1の実施形態)
 以下、本発明の実施形態について図面を参照して説明する。図1は、第1の実施形態による表示システム100の構成を示すブロック図である。表示システム100は、表示装置1と、映像信号出力装置2とを備える。映像信号出力装置2は、例えば、電気回線により表示装置1に接続されており、映像信号を出力する。
(First embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a display system 100 according to the first embodiment. A display system 100 includes a display device 1 and a video signal output device 2 . The video signal output device 2 is connected to the display device 1 by, for example, an electric line, and outputs a video signal.
 表示装置1は、映像信号制御部10と、LEDモジュール部20とを備える。映像信号制御部10と、LEDモジュール部20とは、例えば、電気回線により接続されている。LEDモジュール部20は、測定部22、送受信部23、LEDドライバ部24、複数のLED素子21-1,21-2,…、図2に示す複数の棒状フレーム30-1,30-2,…、及び伸縮構造体40を備える。 The display device 1 includes a video signal control section 10 and an LED module section 20 . The video signal control section 10 and the LED module section 20 are connected by, for example, an electric line. The LED module section 20 includes a measuring section 22, a transmitting/receiving section 23, an LED driver section 24, a plurality of LED elements 21-1, 21-2, . , and a telescopic structure 40 .
 複数のLED素子21-1~21-Nの数である「N」は、予め定められる2以上の整数値であり、図2では、N=70の例を示している。以下、LED素子21-1~21-Nの中のいずれか1つの任意のものを示す場合、符号に枝番号を付さずに、LED素子21という。複数の棒状フレーム30-1,30-2,…の数も予め定められる2以上の整数値であり、図2では、10個の棒状フレーム30-1~30-10を備える例を示している。棒状フレーム30-1~30-10の各々は、形状が棒状である棒状部材であり、予め定められる数のLED素子21が、均等な間隔で取り付けられる。図2では、棒状フレーム30-1~30-10の各々に、7個ずつLED素子21が取り付けられている例を示している。 "N", which is the number of the plurality of LED elements 21-1 to 21-N, is a predetermined integer value of 2 or more, and FIG. 2 shows an example of N=70. Hereinafter, any one of the LED elements 21-1 to 21-N will be referred to as the LED element 21 without any additional number. The number of the plurality of rod-shaped frames 30-1, 30-2, . . . is also a predetermined integer value of 2 or more, and FIG. . Each of the rod-shaped frames 30-1 to 30-10 is a rod-shaped member having a rod-like shape, and a predetermined number of LED elements 21 are mounted at regular intervals. FIG. 2 shows an example in which seven LED elements 21 are attached to each of the rod-shaped frames 30-1 to 30-10.
 伸縮構造体40は、発光体が第1方向と当該第1方向とは直交する方向である第2方向とに沿って並ぶように支持部材を支持し、前記第1方向において隣接する発光体のそれぞれの間隔を伸縮させる。
 例えば伸縮構造体40は、複数の棒状フレーム30-1~30-10が平行に並び、かつ棒状フレーム30-1~30-10の長手方向に対して直交する方向に向かって直線状にLED素子21が並ぶように、複数の棒状フレーム30-1~30-10を支持している。ここで、棒状フレーム30-1~30-10の長手方向に対して直交する方向に向かって直線状にLED素子21が並ぶ状態とは、例えば、左端の列のLED素子21-1,21-8,21-15,21-22,21-29,21-36,21-43,21-50,21-57,21-64が直線状に並ぶ状態のことである。棒状フレーム30-1~30-10の各々には、LED素子21が、7個ずつ均等な間隔で取り付けられているため、他の列のLED素子21についても、同様に、棒状フレーム30-1~30-10の長手方向に対する直交方向に向かって直線状に並ぶ状態になる。
The stretchable structure 40 supports the support member so that the light emitters are aligned along a first direction and a second direction perpendicular to the first direction, and the light emitters adjacent to each other in the first direction are aligned. Stretch each interval.
For example, the elastic structure 40 includes a plurality of rod-shaped frames 30-1 to 30-10 arranged in parallel, and the LED elements arranged linearly in a direction orthogonal to the longitudinal direction of the rod-shaped frames 30-1 to 30-10. A plurality of rod-shaped frames 30-1 to 30-10 are supported so that 21 are lined up. Here, the state in which the LED elements 21 are arranged linearly in a direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10 means, for example, the LED elements 21-1 and 21- in the leftmost column. 8, 21-15, 21-22, 21-29, 21-36, 21-43, 21-50, 21-57, and 21-64 are arranged in a straight line. Since seven LED elements 21 are attached to each of the rod-shaped frames 30-1 to 30-10 at equal intervals, the LED elements 21 of the other rows are similarly attached to the rod-shaped frame 30-1. ∼30-10 in a straight line in the direction orthogonal to the longitudinal direction.
 伸縮構造体40は、例えば、パンタグラフ構造が縦方向に多段に重ねられた伸縮構造を備えており、最上段の棒状フレーム30-1を固定している状態で、最下段の棒状フレーム30-10を上下に動かすと、棒状フレーム30-1~30-10の各々の間隔が伸縮可能、すなわち近接したり、離間したりするようになっている。より詳細には、伸縮構造体40は棒状フレーム30-1~30-10の各々の間隔が、均等、または、略均等である状態を維持しつつ、棒状フレーム30-1~30-10の各々の間の距離を伸縮させるように構造が変化する。 The telescopic structure 40 has, for example, a telescopic structure in which pantograph structures are stacked in multiple stages in the vertical direction. is moved up and down, the distance between each of the rod-shaped frames 30-1 to 30-10 can be expanded and contracted, that is, they can be moved closer to each other or separated from each other. More specifically, the telescopic structure 40 maintains a state in which the intervals between the rod-shaped frames 30-1 to 30-10 are equal or substantially equal, and each of the rod-shaped frames 30-1 to 30-10 The structure changes to stretch or shrink the distance between
 図3は、図2の正面図で示されるLEDモジュール部20を左右いずれかの側面からみたLEDモジュール部20の側面図である。最上段の棒状フレーム30-1に延長フレーム51が取り付けられており、最下段の棒状フレーム30-10に延長フレーム52が取り付けられている。測定部22は、例えば、距離センサであり、延長フレーム51に取り付けられている。測定部22は、延長フレーム52の方向、すなわち、棒状フレーム30-1~30-10の長手方向の垂直方向に向かってレーザ光を照射し、延長フレーム52が反射するレーザ光を受光することにより、レーザ光の往復時間から、延長フレーム51と、延長フレーム52との間の距離Dを算出する。なお、測定部22の厚みは、測定部22が測定した距離Dが、延長フレーム51と、延長フレーム52との間の距離を示すとみなすことができるほどの微小な厚みであるものとする。 FIG. 3 is a side view of the LED module section 20 as seen from either the left or right side of the LED module section 20 shown in the front view of FIG. An extension frame 51 is attached to the uppermost rod-shaped frame 30-1, and an extension frame 52 is attached to the lowermost rod-shaped frame 30-10. The measurement unit 22 is, for example, a distance sensor and attached to the extension frame 51 . The measurement unit 22 irradiates a laser beam in the direction of the extension frame 52, that is, in the direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10, and receives the laser beam reflected by the extension frame 52. , the distance D between the extended frame 51 and the extended frame 52 is calculated from the round trip time of the laser light. The thickness of the measuring part 22 is so small that the distance D measured by the measuring part 22 can be regarded as indicating the distance between the extension frames 51 and 52 .
 LEDドライバ部24は、複数のLED素子21-1,21-2,…のうちLED制御信号において指定されているLED素子21-1,21-2,…を点灯させる。LED制御信号において指定されていないLED素子21-1,21-2,…は、消灯する。送受信部23は、例えば、制御基板であり、測定部22が算出した距離Dを示すデータを、電気回線を通じて映像信号制御部10に送信し、映像信号制御部10から電気回線を通じて受信するLED制御信号をLEDドライバ部24に出力する。 The LED driver unit 24 lights the LED elements 21-1, 21-2, . The LED elements 21-1, 21-2, . . . that are not designated by the LED control signal are extinguished. The transmitting/receiving unit 23 is, for example, a control board, transmits data indicating the distance D calculated by the measuring unit 22 to the video signal control unit 10 through an electric line, and receives data from the video signal control unit 10 through an electric line. A signal is output to the LED driver section 24 .
 このようなLEDモジュール部20を用いることで、例えば、図4に示すように、窓70の大きさに合わせて、LEDモジュール部20の伸縮構造体40を伸縮させることで、窓70の上下の窓枠一杯まで、縦方向に均等、または略均等な間隔で複数のLED素子21-1,21-2,…を配置して表示画面のサイズを大きくすることが可能になる。ただし、この場合、複数のLED素子21-1,21-2,…が点灯することにより形成される像は、表示画面のサイズに応じた像ではない。そのため、表示画面のサイズに応じた像が形成されるように映像信号出力装置2が出力する映像信号をスケーリング、すなわち、拡大、または、縮小させ、スケーリングした映像信号に基づいて、複数のLED素子21-1,21-2,…を点灯させる制御が必要となる。当該制御を行うのが映像信号制御部10である。 By using such an LED module section 20, for example, as shown in FIG. By arranging a plurality of LED elements 21-1, 21-2, . However, in this case, the image formed by lighting the plurality of LED elements 21-1, 21-2, . . . does not correspond to the size of the display screen. Therefore, the video signal output by the video signal output device 2 is scaled, that is, enlarged or reduced, so that an image corresponding to the size of the display screen is formed, and based on the scaled video signal, a plurality of LED elements are displayed. 21-1, 21-2, . . . need to be controlled to light up. The video signal control unit 10 performs the control.
 映像信号制御部10は、LEDコントローラ部11と、LEDコントローラ設定部12とを備える。LEDコントローラ設定部12は、測定データ受信部13、モジュールサイズ算出部14、及びデータ出力部15を備える。測定データ受信部13は、測定部22が算出した距離Dを示すデータを受信する。 The video signal control section 10 includes an LED controller section 11 and an LED controller setting section 12 . The LED controller setting section 12 includes a measurement data receiving section 13 , a module size calculating section 14 and a data output section 15 . The measurement data reception unit 13 receives data indicating the distance D calculated by the measurement unit 22 .
 モジュールサイズ算出部14は、測定データ受信部13が受信する距離Dを示すデータに基づいて、モジュールサイズ、すなわち、LEDモジュール部20の複数のLED素子21-1,21-2,…によって形成される表示画面のサイズを算出する。図3に示すように、測定部22は、延長フレーム51に取り付けられており、延長フレーム51は、棒状フレーム30-1に取り付けられている。また、測定部22からのレーザ光を反射する延長フレーム52は、棒状フレーム30-10に取り付けられている。そのため、測定部22が測定する距離Dは、最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の正確な距離ではない。 The module size calculator 14 determines the module size, that is, the size of the LED elements 21-1, 21-2, . Calculate the size of the display screen to be used. As shown in FIG. 3, the measuring section 22 is attached to an extension frame 51, and the extension frame 51 is attached to a bar frame 30-1. An extension frame 52 that reflects the laser beam from the measuring section 22 is attached to the rod-shaped frame 30-10. Therefore, the distance D measured by the measuring unit 22 is the distance between the uppermost LED element 21-1 and the lowermost LED element 21-64 located on the straight line in the vertical direction when viewed from the LED element 21-1. Not exact distance.
 モジュールサイズ算出部14は、予め定められている延長フレーム51,52と、棒状フレーム30-1,30-10の各々に取り付けられているLED素子21との位置関係に基づいて、測定部22が測定した距離Dから最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の距離を算出する。 The module size calculation unit 14 determines the position of the measurement unit 22 based on the predetermined positional relationship between the extension frames 51 and 52 and the LED elements 21 attached to the rod-shaped frames 30-1 and 30-10. From the measured distance D, the distance between the uppermost LED element 21-1 and the lowermost LED element 21-64 located on the vertical straight line from the LED element 21-1 is calculated.
 モジュールサイズ算出部14は、内部の記憶領域に横方向のLED素子21の数と、縦方向のLED素子21の数とを予め記憶させている。モジュールサイズ算出部14は、算出した最上段のLED素子21-1から最下段のLED素子21-64までの距離を、内部の記憶領域が記憶する縦方向のLED素子21の数から「1」減算した値で除算して縦方向のLED素子21のピッチ長を算出する。なお、横方向のLED素子21のピッチ長は、固定値である。そのため、モジュールサイズ算出部14は、内部の記憶領域に予め横方向のLED素子21のピッチ長を記憶させておく。 The module size calculator 14 stores in advance the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in an internal storage area. The module size calculator 14 determines the calculated distance from the uppermost LED element 21-1 to the lowermost LED element 21-64 as "1" from the number of vertical LED elements 21 stored in the internal storage area. The vertical pitch length of the LED elements 21 is calculated by dividing by the subtracted value. The pitch length of the LED elements 21 in the horizontal direction is a fixed value. Therefore, the module size calculator 14 stores in advance the pitch length of the LED elements 21 in the horizontal direction in an internal storage area.
 ここで、モジュールサイズ、すなわち表示画面のサイズの定義について説明する。1つのLED素子21によって形成される表示画面の大きさを、当該LED素子21の位置を中心とした矩形領域であって当該矩形領域の横方向の長さを横方向のLED素子21のピッチ長とし、当該矩形領域の縦方向の長さを縦方向のLED素子21のピッチ長とする矩形領域の大きさとして定義する。複数の棒状フレーム30-1~30-10の各々の間隔が均等であるとした場合に、LED素子21の各々の矩形領域を、各々のLED素子21の位置に合わせて連結した領域が、表示画面の領域になる。そのため、表示画面の縦方向の長さは、縦方向のLED素子21が均等な距離で並んでいる場合、矩形領域の縦方向の長さ、すなわち縦方向のLED素子21のピッチ長に縦方向のLED素子21の数を乗算した値になる。また、表示画面の横方向の長さは、矩形領域の横方向の長さ、すなわち横方向のLED素子21のピッチ長に横方向のLED素子21の数を乗算した値になる。乗算により算出した表示画面の縦方向の長さと、横方向の長さとが、表示画面のサイズ、すなわちモジュールサイズを示すデータになる。 Here, we will explain the definition of the module size, that is, the size of the display screen. The size of the display screen formed by one LED element 21 is a rectangular area centered on the position of the LED element 21, and the horizontal length of the rectangular area is the pitch length of the LED element 21 in the horizontal direction. , and defined as the size of the rectangular area with the vertical length of the rectangular area being the pitch length of the LED elements 21 in the vertical direction. Assuming that the intervals between each of the plurality of rod-shaped frames 30-1 to 30-10 are uniform, the area where each rectangular area of the LED element 21 is aligned with the position of each LED element 21 and connected is displayed. screen area. Therefore, the length of the display screen in the vertical direction is the length of the rectangular area in the vertical direction, that is, the pitch length of the LED elements 21 in the vertical direction, when the LED elements 21 in the vertical direction are arranged at equal distances. is multiplied by the number of LED elements 21. The horizontal length of the display screen is the horizontal length of the rectangular area, that is, the value obtained by multiplying the pitch length of the LED elements 21 in the horizontal direction by the number of the LED elements 21 in the horizontal direction. The length in the vertical direction and the length in the horizontal direction of the display screen calculated by multiplication become data indicating the size of the display screen, that is, the module size.
 上記した定義にしたがって、モジュールサイズ算出部14は、算出した縦方向のLED素子21のピッチ長と、内部の記憶領域が記憶する縦方向のLED素子21の数とを乗算して、表示画面の縦方向の長さを算出する。また、モジュールサイズ算出部14は、内部の記憶領域が記憶する横方向のLED素子21のピッチ長と、内部の記憶領域が記憶する横方向のLED素子21の数とを乗算して、表示画面の横方向の長さを算出する。 According to the above definition, the module size calculation unit 14 multiplies the calculated pitch length of the LED elements 21 in the vertical direction by the number of the LED elements 21 in the vertical direction stored in the internal storage area to obtain the display screen size. Calculate the vertical length. Further, the module size calculator 14 multiplies the pitch length of the horizontal LED elements 21 stored in the internal storage area by the number of horizontal LED elements 21 stored in the internal storage area, and calculates the display screen size. Calculate the horizontal length of
 データ出力部15は、モジュールサイズ算出部14が算出するモジュールサイズを示すデータをLEDコントローラ部11に出力する。LEDコントローラ部11は、内部の記憶領域にLEDモジュール部20の縦方向のLED素子21の数と、横方向のLED素子21の数とを予め記憶させている。LEDコントローラ部11は、データ出力部15が出力するモジュールサイズと、内部の記憶領域が記憶するLEDモジュール部20の縦方向のLED素子21の数と、横方向のLED素子21の数とに基づいて、映像信号出力装置2が出力する映像信号をスケーリングする。LEDコントローラ部11は、スケーリングした映像信号に基づいて、点灯させるLED素子21-1~21-Nを指定するLED制御信号を生成する。LEDコントローラ部11は、生成したLED制御信号をLEDモジュール部20に送信する。 The data output unit 15 outputs data indicating the module size calculated by the module size calculation unit 14 to the LED controller unit 11 . The LED controller section 11 stores in advance the number of LED elements 21 in the vertical direction and the number of LED elements 21 in the horizontal direction of the LED module section 20 in an internal storage area. Based on the module size output by the data output unit 15, the number of LED elements 21 in the vertical direction, and the number of LED elements 21 in the horizontal direction of the LED module unit 20 stored in the internal storage area, the LED controller unit 11 to scale the video signal output by the video signal output device 2 . Based on the scaled video signal, the LED controller unit 11 generates an LED control signal designating the LED elements 21-1 to 21-N to be lit. The LED controller section 11 transmits the generated LED control signal to the LED module section 20 .
(表示装置による処理)
 次に、図5から図7を参照しつつ表示装置1による処理について説明する。図5は、表示装置1による処理の流れを示すフローチャートである。前提条件として、LEDモジュール部20の横方向のLED素子21の数は、図2に示すように、7個であり、縦方向のLED素子21の数は、10個であり、横方向のLED素子21のピッチ長は100mmであるとする。モジュールサイズ算出部14は、横方向のLED素子21の数と、縦方向のLED素子21の数と、横方向のLED素子21のピッチ長を予め内部の記憶領域に記憶させている。LEDコントローラ部11は、横方向のLED素子21の数と、縦方向のLED素子21の数とを予め内部の記憶領域に記憶させている。
(Processing by display device)
Next, processing by the display device 1 will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a flow chart showing the flow of processing by the display device 1. As shown in FIG. As a prerequisite, the number of LED elements 21 in the horizontal direction of the LED module section 20 is seven, the number of LED elements 21 in the vertical direction is ten, as shown in FIG. Assume that the pitch length of the elements 21 is 100 mm. The module size calculator 14 stores the number of LED elements 21 in the horizontal direction, the number of LED elements 21 in the vertical direction, and the pitch length of the LED elements 21 in the horizontal direction in advance in an internal storage area. The LED controller unit 11 stores the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in advance in an internal storage area.
 また、図5に示すフローチャートの処理が開始される前に以下のことが行われる。利用者は、LEDモジュール部20を設置する窓の窓枠の大きさに応じてLEDモジュール部20を縦方向に伸縮させて設置する。利用者は、映像信号出力装置2と、表示装置1を起動する。映像信号出力装置2は、起動すると映像信号を、電気回線を通じて表示装置1の映像信号制御部10が備えるLEDコントローラ部11に送信する。以下、図5のフローチャートに示す処理が行われる。 Also, the following is performed before the processing of the flowchart shown in FIG. 5 is started. The user installs the LED module section 20 by expanding and contracting it in the vertical direction according to the size of the window frame of the window on which the LED module section 20 is to be installed. A user activates the video signal output device 2 and the display device 1 . When the video signal output device 2 is activated, it transmits a video signal to the LED controller section 11 included in the video signal control section 10 of the display device 1 through an electric line. Thereafter, the processing shown in the flowchart of FIG. 5 is performed.
 測定部22は、距離Dを測定する。測定部22は、測定した距離Dを示すデータを送受信部23に出力する。送受信部23は、測定部22から受けた距離Dを示すデータをLEDコントローラ設定部12の測定データ受信部13に送信する。測定データ受信部13は、送受信部23が送信する距離Dを示すデータを受信し、受信した距離Dを示すデータをモジュールサイズ算出部14に出力する(ステップS1)。 The measurement unit 22 measures the distance D. The measurement unit 22 outputs data indicating the measured distance D to the transmission/reception unit 23 . The transmitting/receiving section 23 transmits the data indicating the distance D received from the measuring section 22 to the measurement data receiving section 13 of the LED controller setting section 12 . The measurement data receiving unit 13 receives the data indicating the distance D transmitted by the transmitting/receiving unit 23, and outputs the received data indicating the distance D to the module size calculating unit 14 (step S1).
 モジュールサイズ算出部14は、測定部22が測定した距離Dから最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の距離を算出する。ここで、モジュールサイズ算出部14が算出する最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の距離が45cmであったとする。モジュールサイズ算出部14は、内部の記憶領域が記憶する縦方向のLED素子21の数である「10」から1を減算した「9」の値で、算出した距離45cmを除算することにより、縦方向のLED素子21のピッチ長として5cmを算出する。 The module size calculator 14 calculates the distance D measured by the measuring unit 22 from the distance D measured by the uppermost LED element 21-1 and the lowermost LED element 21-64 located on a straight line in the vertical direction when viewed from the LED element 21-1. Calculate the distance between Here, the distance between the uppermost LED element 21-1 calculated by the module size calculating unit 14 and the lowermost LED element 21-64 located on a straight line in the vertical direction when viewed from the LED element 21-1 is is 45 cm. The module size calculation unit 14 divides the calculated distance of 45 cm by a value of “9” obtained by subtracting 1 from “10”, which is the number of LED elements 21 in the vertical direction stored in the internal storage area. 5 cm is calculated as the pitch length of the LED elements 21 in the direction.
 モジュールサイズ算出部14は、算出した5cmに、縦方向のLED素子21の数である「10」を乗算して、表示画面の縦方向の長さである50cmを算出する。モジュールサイズ算出部14は、内部の記憶領域が記憶する横方向のLED素子21のピッチ長である「100mm」に、内部の記憶領域が記憶する横方向のLED素子21の数である「7」を乗算して、表示画面の横方向の長さである70cmを算出する。モジュールサイズ算出部14は、算出した表示画面の横方向の長さである70cmと、算出した表示画面の縦方向の長さである50cmとを含むモジュールサイズを示すデータをデータ出力部15に出力する(ステップS2)。 The module size calculator 14 multiplies the calculated 5 cm by "10", which is the number of LED elements 21 in the vertical direction, to calculate 50 cm, which is the vertical length of the display screen. The module size calculator 14 calculates the pitch length of the LED elements 21 in the horizontal direction stored in the internal storage area "100 mm" and the number of LED elements 21 in the horizontal direction stored in the internal storage area "7". to calculate 70 cm, which is the horizontal length of the display screen. The module size calculator 14 outputs to the data output unit 15 data indicating the module size including the calculated horizontal length of the display screen of 70 cm and the calculated vertical length of the display screen of 50 cm. (step S2).
 LEDコントローラ部11は、伸縮構造体40が伸縮する方向、すなわち、LEDモジュール部20の縦方向の仮想解像度を算出する。Xを、スケーリング目標値の縦の仮想解像度とすると、「モジュールサイズの横方向の長さ(70[cm]):モジュールサイズの縦方向の長さ(50[cm])=横方向の物理的解像度(7ピクセル):縦方向の仮想解像度X」という関係式が成り立つことになる。この場合、縦方向の仮想解像度X=5ピクセルになる。LEDコントローラ部11は、映像信号出力装置2が送信する映像信号を受信する。LEDコントローラ部11は、内部の記憶領域が記憶する横方向のLED素子21の数、すなわち横方向の物理的解像度である7ピクセルと、算出した縦方向の仮想解像度の5ピクセルとに基づいて、受信した映像信号をスケーリングする(ステップS3)。 The LED controller section 11 calculates the virtual resolution in the direction in which the expandable structure 40 expands and contracts, that is, the vertical direction of the LED module section 20 . Assuming that X is the vertical virtual resolution of the scaling target value, "horizontal length of module size (70 [cm]): vertical length of module size (50 [cm]) = horizontal physical resolution (7 pixels):vertical virtual resolution X" is established. In this case, the vertical virtual resolution is X=5 pixels. The LED controller section 11 receives a video signal transmitted by the video signal output device 2 . Based on the number of LED elements 21 in the horizontal direction stored in the internal storage area, that is, the physical resolution in the horizontal direction of 7 pixels, and the calculated virtual resolution in the vertical direction of 5 pixels, The received video signal is scaled (step S3).
 LEDコントローラ部11は、スケーリングした映像信号に基づいてLED制御信号を生成し、生成したLED制御信号をLEDモジュール部20の送受信部23に送信する(ステップS4)。LEDモジュール部20の送受信部23は、LEDコントローラ部11が送信するLED制御信号を受信し、受信したLED制御信号をLEDドライバ部24に出力する。LEDドライバ部24は、送受信部23が出力するLED制御信号を取り込み、取り込んだLED制御信号において指定されているLED素子21-1~21-Nを点灯させる(ステップS5)。 The LED controller section 11 generates an LED control signal based on the scaled video signal, and transmits the generated LED control signal to the transmission/reception section 23 of the LED module section 20 (step S4). The transmitting/receiving section 23 of the LED module section 20 receives the LED control signal transmitted by the LED controller section 11 and outputs the received LED control signal to the LED driver section 24 . The LED driver section 24 takes in the LED control signal output from the transmitting/receiving section 23, and lights up the LED elements 21-1 to 21-N specified in the received LED control signal (step S5).
 例えば、図6(A)に示す窓71の窓枠の縦方向の長さに対してLEDモジュール部20の表示画面の縦方向の長さが短い場合と、図7(A)に示す窓71の窓枠の縦方向の長さと、LEDモジュール部20の表示画面の縦方向の長さとが同一、または、略同一の場合とにおいて、LEDコントローラ部11が行うスケーリングについて説明する。図6(A)に示す場合が、例えば、上記したモジュールサイズ算出部14が算出する最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の距離が45cmの場合、すなわち、LEDモジュール部20の表示画面の縦方向の長さが50cm、横方向の長さが70cmの場合であるとする。この場合、上記したように、縦方向の仮想解像度は、5ピクセルになる。 For example, when the vertical length of the display screen of the LED module section 20 is shorter than the vertical length of the window frame of the window 71 shown in FIG. Scaling performed by the LED controller unit 11 when the vertical length of the window frame and the vertical length of the display screen of the LED module unit 20 are the same or substantially the same will be described. In the case shown in FIG. 6A, for example, the uppermost LED element 21-1 calculated by the module size calculating unit 14 and the lowermost stage positioned on a straight line in the vertical direction when viewed from the LED element 21-1. is 45 cm, that is, the display screen of the LED module section 20 has a vertical length of 50 cm and a horizontal length of 70 cm. In this case, as described above, the vertical virtual resolution is 5 pixels.
 これに対して、図7(A)に示す場合、モジュールサイズ算出部14が算出する最上段のLED素子21-1と、当該LED素子21-1からみて縦方向の直線上に位置する最下段のLED素子21-64との間の距離が81cmであるとする。この場合、LEDモジュール部20の表示画面の縦方向の長さは、90cm(=81/9×10)になり、縦方向の仮想解像度は、9ピクセルになる。 On the other hand, in the case shown in FIG. 7A, the uppermost LED element 21-1 calculated by the module size calculator 14 and the lowermost LED element 21-1 located on a straight line in the vertical direction when viewed from the LED element 21-1 and the LED element 21-64 is 81 cm. In this case, the vertical length of the display screen of the LED module section 20 is 90 cm (=81/9×10), and the vertical virtual resolution is 9 pixels.
 ここで、映像信号出力装置2が出力する映像信号の1フレームの縦方向と横方向のピクセル数が、315ピクセル×315ピクセルであるとする。図6(A)の場合、縦方向の仮想解像度が、5ピクセルであり、横方向の物理的解像度が、7ピクセルであるため、LEDコントローラ部11は、映像信号の縦方向を1/63に縮小し、横方向を1/45に縮小するスケーリングを行うことになる。これに対して、図7(A)の場合、縦方向の仮想解像度が、9ピクセルであり、横方向の物理的解像度が、7ピクセルであるため、LEDコントローラ部11は、映像信号の縦方向を1/35に縮小し、横方向を1/45に縮小するスケーリングを行うことになる。 Here, it is assumed that the number of pixels in the vertical and horizontal directions of one frame of the video signal output by the video signal output device 2 is 315 pixels×315 pixels. In the case of FIG. 6A, the virtual resolution in the vertical direction is 5 pixels, and the physical resolution in the horizontal direction is 7 pixels. Scaling is performed to reduce the size and reduce the size to 1/45 in the horizontal direction. On the other hand, in the case of FIG. 7A, the virtual resolution in the vertical direction is 9 pixels, and the physical resolution in the horizontal direction is 7 pixels. is reduced to 1/35 and the horizontal direction is reduced to 1/45.
 LEDコントローラ部11は、上記のようにしてスケーリングした映像信号に基づいてLED制御信号を生成する。LEDドライバ部24が、LEDコントローラ部11が生成したLED制御信号に基づいて、LED素子21-1~21-70を点灯させると、図6(A)の場合、図6(B)において符号61により示す映像が表示され、図7(A)の場合、図7(B)において符号62により示す映像が表示されることになる。 The LED controller section 11 generates an LED control signal based on the video signal scaled as described above. When the LED driver unit 24 turns on the LED elements 21-1 to 21-70 based on the LED control signal generated by the LED controller unit 11, in the case of FIG. 6A, reference numeral 61 in FIG. is displayed, and in the case of FIG. 7A, the image indicated by reference numeral 62 in FIG. 7B is displayed.
 上記の第1の実施形態の表示装置1において、複数の棒状フレーム30-1~30-10に、複数のLED素子21-1~21-70が長手方向に均等な間隔で取り付けられている。伸縮構造体40は、複数の棒状フレーム30-1~30-10が平行に並び、かつ棒状フレーム30-1~30-10の長手方向に対する垂直方向に向かって直線状にLED素子21-1~21-70が並ぶように複数の棒状フレーム30-1~30-10を支持し、棒状フレーム30-1~30-10の間隔が均等、または、略均等である状態を維持しつつ、棒状フレーム30-1~30-10の各々の間の距離を伸縮させる。測定部22は、両端の棒状フレーム30-1,30-10の間の距離を測定する。映像信号制御部10は、測定部22が測定する距離に基づいて、LED素子21-1~21-70により構成される表示画面のサイズを算出し、算出した表示画面のサイズと、縦方向のLED素子21-1~21-70の数と、横方向のLED素子21-1~21-70の数とに基づいて、映像信号をスケーリングし、スケーリングした映像信号に基づいてLED素子21-1~21-70を点灯させる。 In the display device 1 of the first embodiment described above, a plurality of LED elements 21-1 to 21-70 are attached to the plurality of rod-shaped frames 30-1 to 30-10 at equal intervals in the longitudinal direction. The telescopic structure 40 includes a plurality of rod-shaped frames 30-1 to 30-10 arranged in parallel, and the LED elements 21-1 to 21-1 extending linearly in a direction perpendicular to the longitudinal direction of the rod-shaped frames 30-1 to 30-10. A plurality of rod-shaped frames 30-1 to 30-10 are supported so that 21-70 are arranged side by side, and the rod-shaped frames 30-1 to 30-10 are maintained at uniform or substantially uniform intervals. Stretch the distance between each of 30-1 to 30-10. The measuring section 22 measures the distance between the rod-shaped frames 30-1 and 30-10 at both ends. The video signal control unit 10 calculates the size of the display screen configured by the LED elements 21-1 to 21-70 based on the distance measured by the measurement unit 22, and calculates the size of the display screen and the vertical direction. The video signal is scaled based on the number of LED elements 21-1 to 21-70 and the number of LED elements 21-1 to 21-70 in the horizontal direction, and the LED element 21-1 is scaled based on the scaled video signal. ~ 21-70 is lit.
 これにより、表示装置1は、測定部22が測定する両端の棒状フレーム30-1~30-10の間の距離に基づいて、表示画面のサイズを算出し、算出した表示画面のサイズと、縦方向と横方向の各々のLED素子21-1~21-70の数とに基づいて、映像信号をスケーリングさせ、スケーリングさせた映像信号に基づいてLED素子21-1~21-70を点灯させることができる。それにより、表示画面が伸縮可能な表示装置1において、任意の映像を表示画面のサイズに応じた適切な大きさで表示することが可能になる。 As a result, the display device 1 calculates the size of the display screen based on the distance between the rod-shaped frames 30-1 to 30-10 at both ends measured by the measurement unit 22, Scaling the video signal based on the direction and the number of LED elements 21-1 to 21-70 in each of the horizontal directions, and lighting the LED elements 21-1 to 21-70 based on the scaled video signal. can be done. As a result, in the display device 1 whose display screen can be expanded and contracted, it is possible to display an arbitrary image in an appropriate size according to the size of the display screen.
 なお、上記の第1の実施形態では、モジュールサイズ算出部14は、横方向のLED素子21の数と、横方向のLED素子21のピッチ長を予め内部の記憶領域に記憶させるようにしている。これに対して、LEDモジュール部20の伸縮構造体40は、横方向には伸縮せず、横方向のLED素子21のピッチ長は固定体であることから、モジュールサイズ算出部14は、横方向のLED素子21の数と、横方向のLED素子21のピッチ長とに替えて、表示画面の横方向の長さを予め記憶するようにしてもよい。この場合、LEDモジュール部20は、内部の記憶領域が記憶する横方向のLED素子21のピッチ長に、内部の記憶領域が記憶する横方向のLED素子21の数を乗算して、表示画面の横方向の長さを算出する必要がなく、内部の記憶領域が記憶する表示画面の横方向の長さを読み出すことにより、表示画面の横方向の長さを得ることができる。 In the above-described first embodiment, the module size calculator 14 stores the number of LED elements 21 in the horizontal direction and the pitch length of the LED elements 21 in the horizontal direction in advance in an internal storage area. . On the other hand, the expandable structure 40 of the LED module section 20 does not expand and contract in the horizontal direction, and the pitch length of the LED elements 21 in the horizontal direction is fixed. In place of the number of LED elements 21 and the pitch length of the LED elements 21 in the horizontal direction, the horizontal length of the display screen may be stored in advance. In this case, the LED module unit 20 multiplies the pitch length of the horizontal LED elements 21 stored in the internal storage area by the number of the horizontal LED elements 21 stored in the internal storage area to obtain a display screen. It is not necessary to calculate the horizontal length, and the horizontal length of the display screen can be obtained by reading the horizontal length of the display screen stored in the internal storage area.
 また、上記の第1の実施形態では、図1に示すように、映像信号制御部10と、LEDモジュール部20とを、表示装置1の機能部として示しているが、映像信号制御部10とLEDモジュール部20の各々は、それぞれ単体の装置として構成され、離れた場所に設置されていてもよい。また、映像信号制御部10のLEDコントローラ部11とLEDコントローラ設定部12の各々は、それぞれ単体の装置として構成され、離れた場所に設置されていてもよく、その場合、LEDコントローラ部11と、データ出力部15との間は、例えば、電気回線により接続されることになる。 Further, in the first embodiment described above, as shown in FIG. 1, the video signal control unit 10 and the LED module unit 20 are shown as functional units of the display device 1. Each of the LED module sections 20 may be configured as a single device and installed at a remote location. Further, each of the LED controller unit 11 and the LED controller setting unit 12 of the video signal control unit 10 may be configured as a single device and installed at a remote location. The data output unit 15 is connected by, for example, an electric line.
 また、上記の第1の実施形態では、測定部22を、棒状フレーム30-1に取り付けられた延長フレーム51に取り付けている。これに対して、測定部22を、棒状フレーム30-10に取り付けられた延長フレーム52に取り付けるようにしてもよい。 Further, in the first embodiment described above, the measuring section 22 is attached to the extension frame 51 attached to the rod-shaped frame 30-1. On the other hand, the measuring section 22 may be attached to an extension frame 52 attached to the rod-shaped frame 30-10.
 また、上記の第1の実施形態では、図4に示すように、伸縮構造体40を縦方向に伸縮させるような利用形態を示しているが、左右いずれかの方向に90度回転させて、伸縮構造体40を横方向に伸縮させるような利用形態にしてもよい。 Further, in the above-described first embodiment, as shown in FIG. 4, the expansion structure 40 is expanded and contracted in the vertical direction. The expansion structure 40 may be used in such a manner as to expand and contract in the horizontal direction.
 また、上記の第1の実施形態では、測定部22は、延長フレーム51と、延長フレーム52との間の距離Dを算出するようにしているが、予め定められている延長フレーム51,52と、棒状フレーム30-1,30-10の各々に取り付けられているLED素子21との位置関係に基づいて、両端のLED素子21-1とLED素子21-64の距離を算出するようにしてもよい。このようにすることで、モジュールサイズ算出部14は、測定データ受信部13からLED素子21-1とLED素子21-64の距離を取得することができるので、この距離を算出する必要がなくなる。 Further, in the first embodiment described above, the measuring unit 22 calculates the distance D between the extension frames 51 and 52. , the distance between the LED element 21-1 at both ends and the LED element 21-64 may be calculated based on the positional relationship with the LED element 21 attached to each of the rod-shaped frames 30-1 and 30-10. good. By doing so, the module size calculator 14 can acquire the distance between the LED element 21-1 and the LED element 21-64 from the measurement data receiver 13, so there is no need to calculate this distance.
(第2の実施形態)
 図8は、本発明の第2の実施形態における表示システム100aの構成を示すブロック図である。第2の実施形態において、第1の実施形態と同一の構成については同一の符号を付し、以下、異なる構成について説明する。表示システム100aは、表示装置1aと、映像信号出力装置2とを備える。
(Second embodiment)
FIG. 8 is a block diagram showing the configuration of a display system 100a according to the second embodiment of the invention. In the second embodiment, the same reference numerals are assigned to the same configurations as in the first embodiment, and the different configurations will be described below. The display system 100 a includes a display device 1 a and a video signal output device 2 .
 表示装置1aは、映像信号制御部10aと、LEDモジュール部20aとを備える。映像信号制御部10aと、LEDモジュール部20aとは、例えば、電気回線により接続されている。LEDモジュール部20aは、測定部22a、送受信部23a、LEDドライバ部24、複数のLED素子21-1~21-N、図9に示す複数のフレーム31-1,31-2,…、及び伸縮構造体40aを備える。図9では、LED素子21の数「N」として、N=30の例を示している。 The display device 1a includes a video signal control section 10a and an LED module section 20a. The video signal control section 10a and the LED module section 20a are connected by, for example, an electric line. The LED module section 20a includes a measurement section 22a, a transmission/reception section 23a, an LED driver section 24, a plurality of LED elements 21-1 to 21-N, a plurality of frames 31-1, 31-2, . It has a structure 40a. FIG. 9 shows an example of N=30 as the number “N” of the LED elements 21 .
 複数のフレーム31-1,31-2,…の各々は、各々に対応する1つのLED素子21を支持する支持部材である。そのため、複数のフレーム31-1,31-2,…の数は、LED素子21の数と同数になる。図9では、フレーム31-1~31-30の各々が、各々の符号の枝番号と同一の枝番号を有するLED素子21-1~21-30を支持する例を示している。以下、フレーム31-1,31-2,…の中のいずれか1つの任意のものを示す場合、符号に枝番号を付さずに、フレーム31という。 Each of the plurality of frames 31-1, 31-2, . . . is a support member that supports one LED element 21 corresponding to each. Therefore, the number of frames 31-1, 31-2, . . . FIG. 9 shows an example in which each of frames 31-1 to 31-30 supports LED elements 21-1 to 21-30 having the same branch number as that of each code. Hereinafter, any one of the frames 31-1, 31-2, .
 伸縮構造体40aは、縦方向と横方向とにおいて隣接するLED素子21の各々の間を結ぶ線が直交して格子状になるようにフレーム31-1~31-30を支持する。伸縮構造体40aは、例えば、パンタグラフ構造が縦方向と横方向とに多段に重ねられた伸縮構造を備えており、縦方向において隣接するLED素子21の間隔が伸縮可能になっており、かつ横方向において隣接するLED素子21の間隔が伸縮可能になっている。より詳細には、伸縮構造体40aは、縦方向において隣接するLED素子21の間隔が均等、または、略均等になり、かつ横方向において隣接するLED素子21の間隔が均等、または、略均等になる状態を維持しつつ、縦方向に並ぶ複数のフレーム31-1~31-30の間を伸縮させるか、または、横方向に並ぶ複数のフレーム31-1~31-30の間を伸縮させる。また、伸縮構造体40aは、縦方向と横方向の両方を伸縮させてもよい。 The stretchable structure 40a supports the frames 31-1 to 31-30 so that the lines connecting the adjacent LED elements 21 in the vertical direction and the horizontal direction are perpendicular to each other to form a lattice. The stretchable structure 40a has, for example, a stretchable structure in which pantograph structures are stacked in multiple stages in the vertical direction and the horizontal direction. The space between the LED elements 21 adjacent in the direction can be expanded and contracted. More specifically, in the elastic structure 40a, the spacing between the LED elements 21 adjacent in the vertical direction is uniform or substantially uniform, and the spacing between the LED elements 21 adjacent in the lateral direction is uniform or substantially uniform. While maintaining this state, the plurality of frames 31-1 to 31-30 arranged in the vertical direction are expanded and contracted, or the plurality of frames 31-1 to 31-30 arranged in the horizontal direction are expanded and contracted. Moreover, the elastic structure 40a may expand and contract in both the vertical direction and the horizontal direction.
 測定部22aは、距離センサである、縦方向測定部22vと、横方向測定部22hとを備える。図10は、図9の正面図で示されるLEDモジュール部20aを左側からみたLEDモジュール部20の左側面図である。最上段のフレーム31-1に延長フレーム53が取り付けられており、最下段のフレーム30-26に延長フレーム54が取り付けられている。縦方向測定部22vは、延長フレーム53に取り付けられている。縦方向測定部22vは、延長フレーム54の方向、すなわち、LEDモジュール部20aの縦方向に向かってレーザ光を照射し、延長フレーム54が反射するレーザ光を受光することにより、レーザ光の往復時間から、延長フレーム53から延長フレーム54までの距離Dvを算出する。なお、縦方向測定部22vの厚みは、縦方向測定部22vが測定した距離Dvが、延長フレーム53と、延長フレーム54との間の距離を示すとみなすことができるほどの微小な厚みであるものとする。 The measurement unit 22a includes a vertical measurement unit 22v and a horizontal measurement unit 22h, which are distance sensors. FIG. 10 is a left side view of the LED module section 20 as viewed from the left side of the LED module section 20a shown in the front view of FIG. An extension frame 53 is attached to the uppermost frame 31-1, and an extension frame 54 is attached to the lowermost frame 30-26. The vertical measurement section 22v is attached to the extension frame 53. As shown in FIG. The vertical direction measuring unit 22v irradiates a laser beam in the direction of the extension frame 54, that is, in the vertical direction of the LED module unit 20a, and receives the laser beam reflected by the extension frame 54, thereby measuring the round trip time of the laser beam. , the distance Dv from the extension frame 53 to the extension frame 54 is calculated. The thickness of the vertical direction measuring portion 22v is so small that the distance Dv measured by the vertical direction measuring portion 22v can be regarded as indicating the distance between the extension frame 53 and the extension frame 54. shall be
 図11は、図9の正面図で示されるLEDモジュール部20aを上側からみたLEDモジュール部20の上面図である。左端のフレーム31-1に延長フレーム55が取り付けられており、右端のフレーム31-5に延長フレーム56が取り付けられている。横方向測定部22hは、延長フレーム55に取り付けられている。横方向測定部22hは、延長フレーム56の方向、すなわち、LEDモジュール部20aの横方向に向かってレーザ光を照射し、延長フレーム56が反射するレーザ光を受光することにより、レーザ光の往復時間から、延長フレーム55から延長フレーム56までの距離Dhを算出する。なお、横方向測定部22hの厚みは、横方向測定部22hが測定した距離Dhが、延長フレーム55と、延長フレーム56との間の距離を示すとみなすことができるほどの微小な厚みであるものとする。 FIG. 11 is a top view of the LED module section 20 when the LED module section 20a shown in the front view of FIG. 9 is viewed from above. An extension frame 55 is attached to the left end frame 31-1, and an extension frame 56 is attached to the right end frame 31-5. The lateral measurement portion 22h is attached to the extension frame 55. As shown in FIG. The lateral direction measurement unit 22h irradiates a laser beam in the direction of the extension frame 56, that is, in the lateral direction of the LED module portion 20a, and receives the laser beam reflected by the extension frame 56, thereby measuring the round-trip time of the laser beam. , the distance Dh from the extension frame 55 to the extension frame 56 is calculated. The thickness of the lateral direction measuring portion 22h is so small that the distance Dh measured by the lateral direction measuring portion 22h can be regarded as indicating the distance between the extension frame 55 and the extension frame 56. shall be
 送受信部23aは、例えば、制御基板であり、映像信号制御部10aから電気回線を通じて受信するLED制御信号をLEDドライバ部24に出力する。送受信部23aは、縦方向測定部22vが算出して出力する距離Dvを示すデータと、横方向測定部22hが算出して出力する距離Dhを示すデータとを取り込む。送受信部23aは、取り込んだ距離Dvを示すデータと、距離Dhを示すデータとを、電気回線を通じて映像信号制御部10aのLEDコントローラ設定部12aが備える測定データ受信部13aに送信する。測定データ受信部13aは、送受信部23aが送信する距離Dvを示すデータと、距離Dhを示すデータとを受信し、受信した距離Dvを示すデータと、距離Dhを示すデータとをモジュールサイズ算出部14aに出力する。 The transmission/reception unit 23a is, for example, a control board, and outputs an LED control signal received from the video signal control unit 10a through an electric line to the LED driver unit 24. The transmitting/receiving unit 23a takes in data indicating the distance Dv calculated and output by the vertical direction measuring unit 22v and data indicating the distance Dh calculated and output by the horizontal direction measuring unit 22h. The transmitting/receiving section 23a transmits the data indicating the distance Dv and the data indicating the distance Dh to the measurement data receiving section 13a provided in the LED controller setting section 12a of the video signal control section 10a through an electric line. The measurement data receiving unit 13a receives the data indicating the distance Dv and the data indicating the distance Dh transmitted by the transmitting/receiving unit 23a, and converts the received data indicating the distance Dv and the data indicating the distance Dh to the module size calculating unit. 14a.
 モジュールサイズ算出部14aは、予め定められている延長フレーム53,54と、フレーム31-1,31-26の各々に取り付けられているLED素子21との位置関係に基づいて、縦方向測定部22vが測定した距離Dvから最上段のLED素子21-1と、最下段のLED素子21-26との間の距離を算出する。また、モジュールサイズ算出部14aは、予め定められている延長フレーム55,56と、フレーム31-1,31-5の各々に取り付けられているLED素子21との位置関係に基づいて、横方向測定部22hが測定した距離Dhから左端のLED素子21-1と、右端のLED素子21-5との間の距離を算出する。 The module size calculation unit 14a calculates the vertical direction measurement unit 22v based on the predetermined positional relationship between the extension frames 53 and 54 and the LED elements 21 attached to each of the frames 31-1 and 31-26. calculates the distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 from the measured distance Dv. In addition, the module size calculator 14a calculates the horizontal direction based on the predetermined positional relationship between the extension frames 55 and 56 and the LED elements 21 attached to each of the frames 31-1 and 31-5. The distance between the leftmost LED element 21-1 and the rightmost LED element 21-5 is calculated from the distance Dh measured by the part 22h.
 モジュールサイズ算出部14aは、内部の記憶領域に横方向のLED素子21の数と、縦方向のLED素子21の数とを予め記憶させている。モジュールサイズ算出部14aは、第1の実施形態のモジュールサイズ算出部14と同様に、内部の記憶領域が記憶する縦方向のLED素子21の数と、算出した最上段のLED素子21-1と最下段のLED素子21-26との間の距離とに基づいて、表示画面の縦方向の長さを算出する。モジュールサイズ算出部14aは、縦方向の表示画面の長さを算出した手法を横方向にも拡張し、内部の記憶領域が記憶する横方向のLED素子21の数と、左端のLED素子21-1と右端のLED素子21-5との間の距離とに基づいて、表示画面の横方向の長さを算出する。モジュールサイズ算出部14aは、算出した表示画面の縦方向と横方向の長さを含むモジュールサイズを示すデータを生成し、生成したモジュールサイズを示すデータを、データ出力部15を介してLEDコントローラ部11aに出力する。 The module size calculator 14a stores in advance the number of LED elements 21 in the horizontal direction and the number of LED elements 21 in the vertical direction in an internal storage area. Similar to the module size calculation unit 14 of the first embodiment, the module size calculation unit 14a calculates the number of LED elements 21 in the vertical direction stored in the internal storage area and the calculated uppermost LED element 21-1. The length of the display screen in the vertical direction is calculated based on the distance between the bottom LED elements 21-26. The module size calculation unit 14a expands the method of calculating the length of the display screen in the vertical direction to the horizontal direction, and calculates the number of horizontal LED elements 21 stored in the internal storage area, 1 and the distance between the rightmost LED element 21-5, the horizontal length of the display screen is calculated. The module size calculation unit 14a generates data indicating the module size including the calculated vertical and horizontal lengths of the display screen, and transmits the generated data indicating the module size to the LED controller unit via the data output unit 15. 11a.
 LEDコントローラ部11aは、内部の記憶領域にLEDモジュール部20aの縦方向のLED素子21の数と、横方向のLED素子21の数とを予め記憶させている。LEDコントローラ部11aは、モジュールサイズ算出部14aが生成したモジュールサイズを示すデータと、内部の記憶領域が記憶するLEDモジュール部20aの縦方向のLED素子21の数と、横方向のLED素子21の数とに基づいて、縦方向と横方向の仮想解像度を算出する。 The LED controller section 11a preliminarily stores the number of LED elements 21 in the vertical direction and the number of LED elements 21 in the horizontal direction of the LED module section 20a in an internal storage area. The LED controller unit 11a stores the data indicating the module size generated by the module size calculation unit 14a, the number of LED elements 21 in the vertical direction of the LED module unit 20a stored in the internal storage area, and the number of LED elements 21 in the horizontal direction. The vertical and horizontal virtual resolutions are calculated based on the numbers.
 LEDコントローラ部11aは、算出した縦方向と横方向の仮想解像度と、内部の記憶領域が記憶する横方向のLED素子21の数、すなわち横方向の物理的解像度と、縦方向のLED素子21の数、すなわち縦方向の物理的解像度とに基づいて、映像信号出力装置2が出力する映像信号をスケーリングする。LEDコントローラ部11aは、スケーリングした映像信号に基づいて、いずれのLED素子21-1~21-Nを点灯させるかを定めたLED制御信号を生成し、生成したLED制御信号をLEDモジュール部20aに送信する。 The LED controller unit 11a calculates the calculated vertical and horizontal virtual resolutions, the number of horizontal LED elements 21 stored in the internal storage area, that is, the horizontal physical resolution, and the number of vertical LED elements 21. The video signal output by the video signal output device 2 is scaled based on the number, that is, the physical resolution in the vertical direction. Based on the scaled video signal, the LED controller section 11a generates an LED control signal that determines which of the LED elements 21-1 to 21-N is to be lit, and sends the generated LED control signal to the LED module section 20a. Send.
 言い換えると、第2の実施形態の表示装置1aにおいて、縦方向、または、横方向のいずれか一方の伸縮を固定したものが、第1の実施形態の表示装置1になる。そのため、第2の実施形態の表示装置1aは、映像信号の縦方向のスケーリングについては、第1の実施形態の表示装置1が行った処理と同一の処理を行い、縦方向に対して行った処理を、横方向に適用して、映像信号の横方向のスケーリングを行う。 In other words, in the display device 1a of the second embodiment, the expansion and contraction in either the vertical direction or the horizontal direction is fixed to become the display device 1 of the first embodiment. Therefore, the display device 1a of the second embodiment performs the same processing as that performed by the display device 1 of the first embodiment for scaling the video signal in the vertical direction. Processing is applied horizontally to provide horizontal scaling of the video signal.
 これにより、表示装置1aは、測定部22aが測定する伸縮した方向における両端における各々のフレーム31の間の距離に基づいて、表示画面のサイズを算出し、算出した表示画面のサイズと、縦方向と横方向の各々のLED素子21の数とに基づいて、映像信号をスケーリングさせ、スケーリングさせた映像信号に基づいてLED素子21を点灯させることができる。それにより、表示画面が伸縮可能な表示装置1aにおいて、任意の映像を表示画面のサイズに応じた適切な大きさで表示することが可能になる。 As a result, the display device 1a calculates the size of the display screen based on the distance between the frames 31 at both ends in the direction of expansion and contraction measured by the measurement unit 22a. and the number of LED elements 21 in the horizontal direction, the video signal can be scaled, and the LED elements 21 can be lit based on the scaled video signal. As a result, in the display device 1a whose display screen can be expanded and contracted, it is possible to display an arbitrary image in an appropriate size according to the size of the display screen.
 なお、上記の第2の実施形態では、縦方向測定部22vを、フレーム31-1に取り付けられた延長フレーム53に取り付けている。これに対して、フレーム31-1以外のフレーム31-2~31-5のいずれか1つに延長フレーム53を取り付け、当該延長フレーム53に、縦方向測定部22vを取り付けるようにしてもよい。この場合、延長フレーム53が取り付けられたフレーム31-2~31-5のいずれか1つに縦方向において対向する最下段のフレーム31-27~31-30のいずれか1つに延長フレーム54を取り付けることになる。また、縦方向測定部22vを、延長フレーム53に替えて延長フレーム54に取り付けるようにしてもよい。 It should be noted that, in the above-described second embodiment, the longitudinal measurement section 22v is attached to the extension frame 53 attached to the frame 31-1. On the other hand, the extension frame 53 may be attached to any one of the frames 31-2 to 31-5 other than the frame 31-1, and the vertical direction measuring section 22v may be attached to the extension frame 53. In this case, the extension frame 54 is attached to any one of the lowermost frames 31-27 to 31-30 vertically opposed to any one of the frames 31-2 to 31-5 to which the extension frame 53 is attached. will be installed. Also, the vertical direction measuring portion 22v may be attached to the extension frame 54 instead of the extension frame 53. As shown in FIG.
 また、同様に、フレーム31-1以外のフレーム31-6,31-11,31-16,31-21,31-26のいずれか1つに延長フレーム55を取り付け、当該延長フレーム55に、横方向測定部22hを取り付けるようにしてもよい。この場合、延長フレーム55が取り付けられたフレーム31-6,31-11,31-16,31-21,31-26のいずれか1つに横方向において対向する右端のフレーム31-10,31-15,31-20,31-25,31-30のいずれか1つに延長フレーム56を取り付けることになる。また、横方向測定部22hを、延長フレーム55に替えて延長フレーム56に取り付けるようにしてもよい。 Similarly, an extension frame 55 is attached to any one of the frames 31-6, 31-11, 31-16, 31-21, and 31-26 other than the frame 31-1, and the extension frame 55 is attached to the horizontal You may make it attach the direction measurement part 22h. In this case, the rightmost frame 31-10, 31- laterally facing any one of the frames 31-6, 31-11, 31-16, 31-21, 31-26 to which the extension frame 55 is attached. The extension frame 56 is attached to any one of 15, 31-20, 31-25, 31-30. Further, the horizontal direction measuring portion 22h may be attached to the extension frame 56 instead of the extension frame 55. As shown in FIG.
 また、上記の第2の実施形態では、縦方向測定部22vは、延長フレーム53から延長フレーム54までの距離Dvを算出し、横方向測定部22hは、延長フレーム55から延長フレーム56までの距離Dhを算出する。これに対して、縦方向測定部22vが、予め定められている延長フレーム53,54と、フレーム31-1,31-26の各々に取り付けられているLED素子21との位置関係に基づいて、最上段のLED素子21-1と、最下段のLED素子21-26との間の距離を算出するようにしてもよい。また、横方向測定部22hは、予め定められている延長フレーム55,56と、フレーム31-1,31-5の各々に取り付けられているLED素子21との位置関係に基づいて、横方向測定部22hが測定した距離Dhから左端のLED素子21-1と、右端のLED素子21-5との間の距離を算出ようにしてもよい。このようにすることで、モジュールサイズ算出部14aは、測定データ受信部13aから最上段のLED素子21-1と、最下段のLED素子21-26との間の距離と、左端のLED素子21-1と、右端のLED素子21-5との間の距離とを取得することができるので、これらの距離を算出する必要がなくなる。 Further, in the above-described second embodiment, the vertical measurement unit 22v calculates the distance Dv from the extension frame 53 to the extension frame 54, and the horizontal measurement unit 22h calculates the distance Dv from the extension frame 55 to the extension frame 56. Calculate Dh. On the other hand, the vertical direction measuring part 22v is based on the predetermined positional relationship between the extension frames 53 and 54 and the LED elements 21 attached to each of the frames 31-1 and 31-26. The distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 may be calculated. In addition, the horizontal direction measurement unit 22h measures the horizontal direction based on the predetermined positional relationship between the extension frames 55 and 56 and the LED elements 21 attached to the frames 31-1 and 31-5. The distance between the leftmost LED element 21-1 and the rightmost LED element 21-5 may be calculated from the distance Dh measured by the section 22h. By doing so, the module size calculator 14a calculates the distance between the uppermost LED element 21-1 and the lowermost LED element 21-26 from the measurement data receiver 13a and the leftmost LED element 21 Since the distance between -1 and the rightmost LED element 21-5 can be obtained, there is no need to calculate these distances.
 また、上記の第1及び第2の実施形態において、LED素子21は、例えば、LED以外の白熱電球や放電管などの発光体であってもよい。また、伸縮構造体40,40aとして、パンタグラフ構造を有する伸縮構造体以外に、蛇腹構造やアコーディオン構造などを有する伸縮構造体を適用してもよい。 Also, in the first and second embodiments described above, the LED element 21 may be, for example, a light-emitting body such as an incandescent lamp or a discharge tube other than the LED. As the elastic structures 40 and 40a, an elastic structure having a bellows structure, an accordion structure, or the like may be applied in addition to the elastic structure having the pantograph structure.
(第3の実施形態)
 図12は、第3の実施形態による表示装置80の構成を示すブロック図である。表示装置80は、複数の発光体81-1~81-Nと、複数の発光体81-1~81-Nの各々を支持する複数の支持部材82-1~82-Nと、測定部83-1と、伸縮構造体84と、映像信号制御部85を備える。伸縮構造体84は、発光体81-1~81-Nが第1方向、例えば、縦方向と当該第1方向とは直交する方向である第2方向、例えば、横方向とに沿って並ぶように支持部材82-1~82-Nを支持し、第1方向において隣接する発光体81-1~81-Nのそれぞれの間隔を伸縮させる。測定部83-1は、第1方向において発光体81-1~81-Nを支持する両端の支持部材82-1~82-Nの間の距離を測定する。映像信号制御部85は、測定部83-1が測定する距離によって特定される第1の方向の両端の支持部材82-1~82-Nが支持する発光体81-1~81-Nの間の距離に基づいて、発光体81-1~81-Nが並べられた表示画面の第1方向におけるサイズを算出し、算出した表示画面の第1方向のサイズと、第1方向と第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、スケーリングした映像信号に基づいて発光体81-1~81-Nを点灯させる。
(Third embodiment)
FIG. 12 is a block diagram showing the configuration of the display device 80 according to the third embodiment. The display device 80 includes a plurality of light emitters 81-1 to 81-N, a plurality of support members 82-1 to 82-N that support the plurality of light emitters 81-1 to 81-N, and a measurement unit 83. - 1 , an elastic structure 84 and a video signal control unit 85 . The stretchable structure 84 is arranged such that the light emitters 81-1 to 81-N are arranged along a first direction, for example, the vertical direction and a second direction, for example, the horizontal direction, which is perpendicular to the first direction. Support members 82-1 to 82-N are supported in the first direction, and the intervals between the light emitters 81-1 to 81-N adjacent in the first direction are expanded and contracted. The measuring unit 83-1 measures the distance between the support members 82-1 to 82-N at both ends supporting the light emitters 81-1 to 81-N in the first direction. The video signal control unit 85 controls the distance between the light emitters 81-1 to 81-N supported by the supporting members 82-1 to 82-N at both ends in the first direction specified by the distance measured by the measuring unit 83-1. Based on the distance, the size in the first direction of the display screen on which the light emitters 81-1 to 81-N are arranged is calculated, and the calculated size of the display screen in the first direction, the first direction and the second direction The video signal is scaled based on the number of the light emitters and the number of the light emitters, and the light emitters 81-1 to 81-N are lit based on the scaled video signal.
 上述した実施形態における映像信号制御部10,10a,85をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The video signal control units 10, 10a, and 85 in the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
 表示画面のサイズが変わる表示装置に適用することができる。 It can be applied to display devices whose display screen sizes change.
1,1a,80…表示装置、2…映像信号出力装置、10,10a,85…映像信号制御部、11,11a…LEDコントローラ部、12,12a…LEDコントローラ設定部、13,13a…測定データ受信部、14,14a…モジュールサイズ算出部、15…データ出力部、20,20a…LEDモジュール部、22,22a,83-1,83-2…測定部、23,23a…送受信部、24…LEDドライバ部、21-1~21-N…LED素子、30-1~30-10…棒状フレーム、31-1~31-30,82-1~82-N…フレーム、51~56…延長フレーム,40,40a,84…伸縮構造体、81-1~81-N…発光体、100,100a…表示システム 1, 1a, 80... display device, 2... video signal output device, 10, 10a, 85... video signal control section, 11, 11a... LED controller section, 12, 12a... LED controller setting section, 13, 13a... measurement data Receiver 14, 14a Module size calculator 15 Data output 20, 20a LED module 22, 22a, 83-1, 83-2 Measuring section 23, 23a Transceiver 24 LED driver part, 21-1 to 21-N... LED element, 30-1 to 30-10... bar frame, 31-1 to 31-30, 82-1 to 82-N... frame, 51 to 56... extension frame , 40, 40a, 84... Elastic structure, 81-1 to 81-N... Luminous body, 100, 100a... Display system

Claims (9)

  1.  複数の発光体と、
     複数の前記発光体の各々を支持する複数の支持部材と、
     前記発光体が第1方向と当該第1方向とは直交する方向である第2方向とに沿って並ぶように前記支持部材を支持し、前記第1方向において隣接する前記発光体のそれぞれの間隔を伸縮させる伸縮構造体と、
     前記第1方向において前記発光体を支持する両端の前記支持部材の間の距離を測定する測定部と、
     前記測定部が測定する前記距離によって特定される前記第1の方向の両端の前記支持部材が支持する前記発光体の間の距離に基づいて、前記発光体が並べられた表示画面の前記第1方向におけるサイズを算出し、算出した前記表示画面の第1方向のサイズと、前記第1方向と前記第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、スケーリングした前記映像信号に基づいて前記発光体を点灯させる映像信号制御部と、
     を備える表示装置。
    a plurality of light emitters;
    a plurality of support members supporting each of the plurality of light emitters;
    The support member is supported so that the light emitters are arranged along a first direction and a second direction orthogonal to the first direction, and the distance between the light emitters adjacent to each other in the first direction an elastic structure that expands and contracts the
    a measuring unit that measures the distance between the support members at both ends that support the light emitter in the first direction;
    Based on the distance between the light emitters supported by the supporting members at both ends in the first direction specified by the distance measured by the measuring unit, the first display screen on which the light emitters are arranged is measured. a size in a direction is calculated, and a video signal is scaled based on the calculated size of the display screen in the first direction and the number of the light emitters in each of the first direction and the second direction; a video signal control unit for lighting the light emitter based on the video signal;
    A display device.
  2.  前記伸縮構造体は、前記第2方向において並べられた前記発光体の間隔が変わらないように前記支持部材を支持する、
     請求項1に記載の表示装置。
    The elastic structure supports the support member so that the distance between the light emitters arranged in the second direction does not change.
    The display device according to claim 1.
  3.  前記映像信号制御部は、
     前記表示画面の前記第1方向と前記第2方向のサイズと、前記第1方向の前記発光体の数と、前記第2方向の前記発光体の数とに基づいて、仮想解像度を算出し、算出した前記仮想解像度に基づいて、前記映像信号をスケーリングする、
     請求項1または請求項2に記載の表示装置。
    The video signal control unit
    calculating a virtual resolution based on the sizes of the display screen in the first direction and the second direction, the number of the light emitters in the first direction, and the number of the light emitters in the second direction; scaling the video signal based on the calculated virtual resolution;
    The display device according to claim 1 or 2.
  4.  前記第2方向において並べられた前記発光体の間隔は均等であり、
     前記伸縮構造体は、
     前記第1方向において隣接する前記発光体の間隔が均等になる状態を維持しつつ、前記第1方向に並ぶ複数の前記支持部材の間を伸縮させる、
     請求項2に記載の表示装置。
    The distance between the light emitters arranged in the second direction is even,
    The elastic structure is
    expanding and contracting between the plurality of support members arranged in the first direction while maintaining a state where the intervals between the adjacent light emitters in the first direction are uniform;
    3. The display device according to claim 2.
  5.  前記映像信号制御部は、
     前記測定部が測定する前記距離によって特定される前記第1の方向の両端の前記支持部材が支持する前記発光体の間の距離と、前記第1方向における前記発光体の数とに基づいて、前記第1方向における前記発光体のピッチ長を算出し、算出した前記第1方向における前記発光体のピッチ長と、前記第1方向における前記発光体の数とを乗算して前記表示画面の前記第1の方向におけるサイズを算出し、前記第1方向の前記発光体の数である物理的解像度と、前記第2方向の仮想解像度の比が、算出した前記表示画面の前記第1の方向におけるサイズと、前記表示画面の前記第2の方向におけるサイズとの比になるように前記仮想解像度を求める、
     請求項4に記載の表示装置。
    The video signal control unit
    Based on the distance between the light emitters supported by the supporting members at both ends in the first direction specified by the distance measured by the measuring unit and the number of the light emitters in the first direction, calculating the pitch length of the light emitters in the first direction; multiplying the calculated pitch length of the light emitters in the first direction by the number of the light emitters in the first direction; The size in a first direction is calculated, and the ratio of the physical resolution, which is the number of the light emitters in the first direction, to the virtual resolution in the second direction is the calculated size of the display screen in the first direction determining the virtual resolution to be the ratio of the size to the size of the display screen in the second direction;
    The display device according to claim 4.
  6.  前記伸縮構造体は、前記第2方向においても隣接する前記発光体の間隔を伸縮させ、
     前記測定部は、前記第2方向において前記発光体を支持する両端の前記支持部材の間の距離を測定し、
     前記映像信号制御部は、
     前記測定部が測定する前記距離によって特定される前記第1の方向及び前記第2方向の両端の前記支持部材が支持する前記発光体の間の距離に基づいて、前記発光体が並べられた表示画面の前記第1方向及び前記第2方向のサイズを算出し、算出した前記表示画面のサイズと、前記第1方向と前記第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、スケーリングした前記映像信号に基づいて前記発光体を点灯させる
     請求項1から請求項5のうちいずれか1項に記載の表示装置。
    The elastic structure expands and contracts the interval between the adjacent light emitters also in the second direction,
    The measurement unit measures the distance between the support members at both ends supporting the light emitter in the second direction,
    The video signal control unit
    A display in which the light emitters are arranged based on the distance between the light emitters supported by the supporting members at both ends in the first direction and the second direction specified by the distance measured by the measuring unit. calculating the size of the screen in the first direction and the second direction, and generating a video signal based on the calculated size of the display screen and the number of the light emitters in each of the first direction and the second direction; is scaled, and the light emitter is turned on based on the scaled video signal.
  7.  複数の前記支持部材は、前記第2方向の前記発光体の間隔が均等になるように連結された複数の棒状部材であって各々が同一数の前記発光体を支持する複数の棒状部材であり、
     前記伸縮構造体は、
     複数の前記棒状部材が平行に並ぶように複数の前記棒状部材を支持し、前記棒状部材の長手方向には伸縮せず、前記棒状部材の長手方向に対する垂直方向に伸縮し、
     前記測定部は、
     両端の前記棒状部材の間の距離を測定する、
     請求項2に記載の表示装置。
    The plurality of support members are a plurality of rod-shaped members connected so that the intervals between the light emitters in the second direction are uniform, and each of the plurality of rod-shaped members supports the same number of the light emitters. ,
    The elastic structure is
    Supporting the plurality of rod-shaped members so that the plurality of rod-shaped members are arranged in parallel, does not expand and contract in the longitudinal direction of the rod-shaped member, but expands and contracts in the direction perpendicular to the longitudinal direction of the rod-shaped member,
    The measurement unit
    measuring the distance between the rod-shaped members at both ends;
    3. The display device according to claim 2.
  8.  前記発光体は、LED素子である
     請求項1から請求項7のうちいずれか1項に記載の表示装置。
    The display device according to any one of claims 1 to 7, wherein the light emitter is an LED element.
  9.  複数の発光体と、複数の前記発光体の各々を支持する複数の支持部材と、前記発光体が第1方向と当該第1方向とは直交する方向である第2方向とに沿って並ぶように前記支持部材を支持する伸縮構造体とを備える表示装置における表示方法であって、
     前記伸縮構造体が、前記第1方向において隣接する前記発光体のそれぞれの間隔を伸縮させ、
     前記第1方向において前記発光体を支持する両端の前記支持部材の間の距離を測定し、
     測定した前記距離によって特定される前記第1の方向の両端の前記支持部材が支持する前記発光体の間の距離に基づいて、前記発光体が並べられた表示画面の前記第1方向におけるサイズを算出し、
     算出した前記表示画面の第1方向のサイズと、前記第1方向と前記第2方向の各々の前記発光体の数とに基づいて、映像信号をスケーリングし、
     スケーリングした前記映像信号に基づいて前記発光体を点灯させる、
     表示方法。
    a plurality of light emitters, a plurality of support members for supporting each of the plurality of light emitters, and the light emitters aligned along a first direction and a second direction perpendicular to the first direction; A display method in a display device comprising a stretchable structure that supports the support member in
    The elastic structure expands and contracts the distance between the light emitters adjacent in the first direction,
    measuring the distance between the support members at both ends supporting the light emitter in the first direction;
    Based on the distance between the light emitters supported by the support members at both ends in the first direction specified by the measured distance, the size of the display screen in which the light emitters are arranged is determined in the first direction. calculate,
    scaling a video signal based on the calculated size of the display screen in the first direction and the number of the light emitters in each of the first direction and the second direction;
    lighting the light emitter based on the scaled video signal;
    Display method.
PCT/JP2021/016019 2021-04-20 2021-04-20 Display device and display method WO2022224343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016019 WO2022224343A1 (en) 2021-04-20 2021-04-20 Display device and display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016019 WO2022224343A1 (en) 2021-04-20 2021-04-20 Display device and display method

Publications (1)

Publication Number Publication Date
WO2022224343A1 true WO2022224343A1 (en) 2022-10-27

Family

ID=83722030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016019 WO2022224343A1 (en) 2021-04-20 2021-04-20 Display device and display method

Country Status (1)

Country Link
WO (1) WO2022224343A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212486A (en) * 2002-12-27 2004-07-29 Sony Corp Image display device, image signal processing apparatus, image signal processing method, and program for executing the method
JP2006317801A (en) * 2005-05-13 2006-11-24 Toshiba Transport Eng Inc Image display device and lighting system
WO2008117393A1 (en) * 2007-03-26 2008-10-02 Mitsubishi Electric Corporation Video display device and image display method
JP2019191469A (en) * 2018-04-27 2019-10-31 東芝情報システム株式会社 Display device, method for display, and program
US20200203312A1 (en) * 2018-12-19 2020-06-25 Lg Display Co., Ltd. Stretchable display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212486A (en) * 2002-12-27 2004-07-29 Sony Corp Image display device, image signal processing apparatus, image signal processing method, and program for executing the method
JP2006317801A (en) * 2005-05-13 2006-11-24 Toshiba Transport Eng Inc Image display device and lighting system
WO2008117393A1 (en) * 2007-03-26 2008-10-02 Mitsubishi Electric Corporation Video display device and image display method
JP2019191469A (en) * 2018-04-27 2019-10-31 東芝情報システム株式会社 Display device, method for display, and program
US20200203312A1 (en) * 2018-12-19 2020-06-25 Lg Display Co., Ltd. Stretchable display device

Similar Documents

Publication Publication Date Title
EP1380937B1 (en) Electronic system for data transmission within tiled displays
US20090121988A1 (en) Large scale flexible led video display and control system therefor
KR20230069886A (en) Display device and method for displaying image using display device
JP5440340B2 (en) Image display device and image display method
US20160189622A1 (en) Sensing circuit and organic light emitting diode display device having the same
WO2022224343A1 (en) Display device and display method
ATE552521T1 (en) BROADBAND REFLECTIVE DISPLAY DEVICE
JP2008159483A (en) Lighting system
KR970005022A (en) Gray scale display method and gray scale display device
GB2416654A (en) Control means for heat load in x-ray scanning apparatus
EP1162595A3 (en) Display device and luminance control method therefor
JP2008522650A (en) Dance guide floor using LED matrix display
JP6142235B2 (en) Display device and driving method thereof
CN110895302B (en) Light emitting diode detection system
KR20170087558A (en) Spot compensating apparatus, method of compensating spot, and display system having the spot compensating apparatus
US20140307265A1 (en) Electronic device
NO20054373L (en) Light-impacting element
ES2201286T3 (en) PROCEDURE AND DEVELOPMENT EXHIBITION DEVICE.
US8085282B2 (en) Image display apparatus and driving method of image display apparatus
JP2005182055A5 (en)
JP6370733B2 (en) Information transmission device and information acquisition device
KR100846717B1 (en) Apparatus for mesuring response time of display
EP2892017A1 (en) Content output system, content output apparatus, and content output method
KR20150043741A (en) Apparatus and method for compensating dynamic false contour
CN112331143A (en) Segmented adjustable gamma correction method for silicon-based OLED micro-display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937840

Country of ref document: EP

Kind code of ref document: A1