WO2022222996A1 - 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途 - Google Patents

一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途 Download PDF

Info

Publication number
WO2022222996A1
WO2022222996A1 PCT/CN2022/088182 CN2022088182W WO2022222996A1 WO 2022222996 A1 WO2022222996 A1 WO 2022222996A1 CN 2022088182 W CN2022088182 W CN 2022088182W WO 2022222996 A1 WO2022222996 A1 WO 2022222996A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanate
nano
doped
nanoparticles
nanotubes
Prior art date
Application number
PCT/CN2022/088182
Other languages
English (en)
French (fr)
Inventor
李彦军
赵远云
张小雪
Original Assignee
李彦军
赵远云
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李彦军, 赵远云 filed Critical 李彦军
Priority to EP22791102.1A priority Critical patent/EP4328184A1/en
Priority to CN202280002282.1A priority patent/CN115279698B/zh
Priority to JP2023565448A priority patent/JP2024515757A/ja
Publication of WO2022222996A1 publication Critical patent/WO2022222996A1/zh
Priority to US18/489,670 priority patent/US20240228314A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to the technical field of nanomaterials, in particular to a nanometer titanate, nanometer titanic acid, nanometer TiO2 containing doped Ag elements, and a preparation method and application thereof.
  • the main method for preparing nano-titanate and its subsequent products nano-titanic acid and nano-TiO 2 is strong alkaline hydrothermal method.
  • this method requires the use of a high-pressure reaction vessel.
  • commercial nano-TiO 2 and high-concentration strong alkali such as NaOH solution
  • a long-term hydrothermal synthesis is carried out under high temperature and high pressure conditions, and the reaction obtains titanate (such as titanic acid).
  • Sodium nanotubes, titanate nanotubes are generally obtained after neutralization and pickling, and TiO2 nanotubes are obtained by further heat treatment.
  • the characteristics of the traditional strong alkali hydrothermal method are: 1) using TiO 2 as the titanium source; 2) conducting in a high-pressure reaction vessel, requiring closed and high-pressure conditions; 3) conducting at a higher temperature; 4) requiring a high Long reaction time, in several hours or tens of hours; 5)
  • the obtained product is generally tubular nano-titanate or tubular nano-titanic acid.
  • doping elements or doping nanoparticles has a very important effect on the functional applications of nanotitanates, nanotitanates, and nanoTiO2.
  • the method often used for element doping of nano-titanate, nano-titanic acid and nano-TiO 2 is the mixing method, that is, after preparing the above-mentioned matrix materials, the doping elements prepared by other methods are mainly composed of doping elements.
  • the doped nanoparticles are mixed with the above-mentioned matrix materials, so that the doped nanoparticles are adsorbed on the surface of the matrix.
  • This mechanical mixing-adsorption method is not only unfavorable for the physical-chemical interaction between the nanoparticles and the matrix material at the atomic scale, but also easily causes the doped nanoparticles to fall off on the surface of the above-mentioned matrix, thereby causing instability and instability of the material properties. deterioration.
  • the doping refers to the intercalation of the corresponding E group element containing the Ag element with the corresponding doped matrix material by means of atoms or atomic clusters.
  • the content of the present invention sequentially includes twenty-five aspects related to the main claims, and sequentially corresponds to the contents of claims 1-25 described in the claims, specifically:
  • a method for preparing a nano-titanate thin film material doped with an E group element is characterized in that the preparation comprises the following steps:
  • an initial alloy is provided, and the initial alloy includes T-type elements, Ti and E group elements; wherein, the T-type elements include at least one of Al and Zn; and the phase composition of the initial alloy includes solid-dissolved E group elements.
  • the T-Ti intermetallic compound of the element element; wherein, the atomic percentage content of Ag in the E element element is 50% to 100%, and the E element element and Ti which are solidly dissolved in the T-Ti intermetallic compound in the initial alloy The molar ratio range of 0 ⁇ C E /C Ti ⁇ 0.25;
  • step 2 the initial alloy is reacted with an alkaline solution at a temperature of T 1.
  • the reaction interface is pushed inward from the surface of the initial alloy at an average rate greater than 2 ⁇ m/min, and the initial alloy at the reaction interface is de-T through hydrogen evolution.
  • the reaction undergoes nano-fragmentation, and at the same time, a solid flocculent product containing E component elements is formed through shape and composition reconstruction;
  • step 3 the temperature of the solid flocculent product containing E element in the reaction system described in step 2 is lowered from T1 and the solid floc product containing E element is collected, that is, the nanometer doped with E element is obtained. Titanate thin film material.
  • the thin film material from a macroscopic view, is the shape of a powder material, and from a microscopic view, it is composed of a large number of two-dimensional thin films.
  • the thin film material is the morphology of the powder material, and microscopically, it is composed of a large number of monolithic two-dimensional thin films dispersed or entangled, and its structure is completely different from the nanoporous structure formed by the traditional dealloying reaction.
  • the nanoporous structure obtained by the traditional dealloying reaction is composed of a three-dimensional network tie to form a whole, and its overall appearance is basically the same as that of the initial alloy before the dealloying reaction;
  • the two-dimensional thin film material refers to a material whose smallest unit (such as a single film) of the material has a larger area, and its dimension in the thickness direction is much smaller than the two dimensions in the area direction, and its thickness not more than 10nm.
  • the doped E element is a common term in the field of chemistry. It is not that the E element is necessarily an impurity element. This is a concept relative to the matrix material to which it is attached, that is, the E element is Elements that are inconsistent in composition with the matrix material, and which have special functions, are designed and added for a purpose, so that they can be evenly compounded with the attached matrix material to achieve a certain purpose;
  • the T-type element comprises Al; Further, the T-type element is Al;
  • the T-type element comprises Zn; Further, the T-type element is Zn;
  • T-type elements include Al and Zn;
  • the E component element is mainly Ag; preferably, the E component element is Ag;
  • the E component elements when the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds, so that the E component elements can pass through the initial alloy.
  • the solid solution exists in the T-Ti intermetallic compound
  • T-Ti intermetallic compound is equivalent to the Ti-T intermetallic compound
  • the E component elements when the E component elements are not all Ag, the E component elements also include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir;
  • the solid solution includes interstitial solid solution and substitutional solid solution
  • the T-Ti intermetallic compound with the E element in solid solution means that the E element exists in the lattice gap of the T-Ti intermetallic compound in the form of interstitial atoms, or the E element Replace the T atom position or Ti atom position in the lattice of the T-Ti intermetallic compound in a way of replacing atoms;
  • the T refers to the T-type element, which is an abbreviation for the T-type element, and T represents any one of Al, Zn, and AlZn, and the ratio of Al to Zn in AlZn is not limited;
  • the initial alloy is prepared by solidifying a melt containing T-type elements, Ti and E component elements, and during the solidification process of the alloy, a solidified structure containing T-Ti intermetallic compounds is formed; the E component elements are mainly solidified. Soluble in T-Ti intermetallic compounds.
  • T-Ti intermetallic compound is equivalent to the Ti-T intermetallic compound
  • the solidification rate of the initial alloy melt is 1K/s ⁇ 10 7 K/s;
  • phase composition of the initial alloy is mainly composed of a T-Ti intermetallic compound in which the E component element is solid-dissolved;
  • the T-Ti intermetallic compound includes at least one of T 3 Ti, T 2 Ti, and TTi intermetallic compound;
  • the T-Ti intermetallic compound includes at least one of Al 3 Ti, Al 2 Ti, and AlTi intermetallic compound;
  • the initial alloy includes at least one of T 3 Ti, T 2 Ti, and TTi intermetallic compounds in which the E element is solid-dissolved;
  • the initial alloy includes at least one of Al 3 Ti, Al 2 Ti, and AlTi intermetallic compounds in which the E component element is solid-dissolved;
  • the initial alloy mainly includes any one of Al 3 Ti, Al 2 Ti, and AlTi intermetallic compounds in which the E component element is solid-dissolved;
  • the initial alloy is mainly composed of Al 3 Ti intermetallic compounds with E component elements in solid solution;
  • the initial alloy is mainly composed of Al 2 Ti intermetallic compounds with E element elements dissolved in a solid solution;
  • the initial alloy is mainly composed of AlTi intermetallic compounds with E component elements in solid solution;
  • the atomic percentage of T in the initial alloy is less than or equal to 75%
  • the atomic percentage of T in the initial alloy is less than 70%
  • the atomic percentage of Al in the initial alloy is less than or equal to 75%;
  • the atomic percentage of Al in the initial alloy is less than 70%
  • the initial alloy does not contain T phase
  • the initial alloy does not contain Al phase
  • the solidified structure of the alloy when the atomic percent content of Al in the Al-Ti alloy exceeds 75%, the solidified structure of the alloy generally contains Al phase; when the atomic percent content of Al in the Al-Ti alloy is When it is less than 75%, the alloy solidification structure generally does not contain Al phase;
  • phase diagram when TiAl 2 is contained in the alloy, it can coexist with TiAl phase or TiAl 3 phase, but cannot coexist with Al phase, so the alloy containing TiAl 2 cannot contain Al phase;
  • the T-Ti intermetallic compound means that the phase composition of the intermetallic compound is a T-Ti intermetallic compound phase, that is, the XRD phase analysis result of the T-Ti intermetallic compound is a T-Ti intermetallic compound.
  • the T-Ti intermetallic compound may also contain other elements, such as solid solution E element;
  • the T-Ti intermetallic compound has a relatively fixed element ratio, it can be determined according to the composition of the T-Ti intermetallic compound, the composition of the E element, and the mole of the E element and Ti. ratio, roughly get the main component ratio of the initial alloy;
  • the average composition of the initial alloy is approximately Al 74.258 Ti 24.752 Ag 0.99 ;
  • the shape of the initial alloy has an average size of any dimension in the three-dimensional direction greater than 4 ⁇ m;
  • the shape of the initial alloy has an average size of any dimension in the three-dimensional direction greater than 10 ⁇ m;
  • the shape of the initial alloy has an average size of any dimension in the three-dimensional direction greater than 15 ⁇ m;
  • the initial alloy is in the form of powder or strip, and at least one dimension of the powder particles or strip in the three-dimensional direction is less than 5 mm;
  • At least one dimension of the initial alloy powder particles or strips in the three-dimensional direction is less than 1 mm;
  • At least one dimension of the initial alloy powder particles or strips in the three-dimensional direction is less than 500 ⁇ m;
  • At least one dimension of the initial alloy powder particles or strips in the three-dimensional direction is less than 200 ⁇ m;
  • At least one dimension of the initial alloy powder particles or strips in the three-dimensional direction is less than 50 ⁇ m;
  • the initial alloy when it is in the shape of a strip, it can be prepared by a method including a melt strip method;
  • a larger-volume initial alloy ingot can be prepared by a casting method, and then crushed into the initial alloy powder.
  • the T refers to the T-type element, which is an abbreviation for the T-type element, and T represents any one of Al, Zn, and AlZn, and the ratio of Al to Zn in AlZn is not limited;
  • the hydrogen evolution and de-T reaction refers to the reaction in which the initial alloy reacts with a hot alkali solution with a temperature of T 1 , T is dissolved by the hot alkali into a salt and enters the solution, and hydrogen is released simultaneously;
  • the alkaline solution contains at least one of NaOH, KOH, LiOH, RbOH, Ba(OH) 2 , Ca(OH) 2 , and Sr(OH) 2 solutions;
  • the solvent in the alkaline solution contains water; preferably, the solvent in the alkaline solution is water;
  • the concentration of the alkali in the alkali solution is 5.1-25 mol/L;
  • the concentration of the alkali in the alkali solution is 5.1-15 mol/L;
  • the alkali concentration in the alkali solution is 7-15 mol/L; as a further preference, the alkali concentration in the alkali solution is 7-12 mol/L;
  • the concentration of the alkali in the alkali solution is 10-15 mol/L;
  • the concentration of the alkali refers to the concentration of OH - in the alkali
  • the alkali in the hot alkali solution reacted with the initial alloy is an excess dose, and the volume of the hot alkali solution is more than 5 times the volume of the initial alloy, so that the reaction can always be carried out at a higher alkali concentration;
  • volume of the hot alkali solution is more than 10 times the volume of the initial alloy; further, the volume of the hot alkali solution is more than 20 times the volume of the initial alloy;
  • the temperature of the hot alkali solution is the reaction temperature of the initial alloy and the hot alkali solution
  • the temperature T 1 of the alkali solution can ensure that the reaction interface is pushed inward from the initial alloy surface at an average rate of not less than 2 ⁇ m/min during the hydrogen evolution and de-T reaction process, and the reaction process is
  • the initial alloy can be nano-fragmented by the hydrogen evolution and de-T reaction, that is, by the hydrogen evolution and de-T reaction rate or the hydrogen evolution and de-T reaction time (because the reaction rate and the initial alloy size are determined, the reaction time is determined; the hydrogen evolution and de-T reaction time is determined.
  • the average rate of 2 ⁇ m/min is the critical reaction rate at which the initial alloy can undergo nano-fragmentation through the hydrogen evolution and de-T reaction during the reaction process;
  • the occurrence of nano-fragmentation means that the initial alloy is fragmented into a single intermediate product or product with at least one dimension in the three-dimensional direction less than 500 nm through the hydrogen evolution and de-T reaction;
  • reaction of the initial alloy and the alkaline solution is carried out under normal pressure or high pressure;
  • reaction of the initial alloy and the alkaline solution is carried out in a closed container
  • the initial alloy and the alkaline solution are first placed separately in the sealed container, and when the temperature of the alkaline solution reaches the set reaction temperature, the initial alloy is then contacted with the alkaline solution to carry out the reaction.
  • the temperature of the alkaline solution can exceed its boiling point temperature under normal pressure
  • reaction of the initial alloy and the hot alkali solution is carried out under normal pressure
  • the normal pressure refers to the atmospheric pressure in the case of not using a closed container; in addition, if the container is not tightly sealed, although the pressure in the container is slightly higher than the fully open ambient pressure, it is also a non-closed environment. , the pressure at this time also belongs to the category of normal pressure.
  • normal pressure generally refers to 1 standard atmospheric pressure, and the boiling point of corresponding water is 100 °C at this moment;
  • the boiling temperature of the aqueous solution of alkali under 1 standard atmospheric pressure Above 100°C, and the higher the alkali concentration, the higher its boiling point.
  • the molar concentration of 5.1mol/L sodium hydroxide aqueous solution, the boiling point T f solution is about 108 °C; the molar concentration of 7 mol/L sodium hydroxide aqueous solution, the boiling point T f solution is about 112 °C; the molar concentration of 10 mol/L sodium hydroxide aqueous solution , the boiling point T f solution is about 119 °C; the molar concentration of 12mol/L sodium hydroxide aqueous solution, the boiling point T f solution is about 128 °C; the molar concentration of 15mol/L sodium hydroxide aqueous solution, the boiling point T f solution is about 140 °C; the molar concentration 17mol/L sodium hydroxide aqueous solution, boiling point T f solution is about 148 °C; molar concentration 20mol/L sodium hydroxide aqueous solution, boiling point T f solution is about 160 °C; molar concentration 25mol/L sodium hydroxide
  • T f solution is the boiling point temperature of the alkali solution participating in the reaction under normal pressure
  • the highest temperature that the reaction solution can be heated to under normal pressure is its boiling point temperature (T f solution )
  • T f solution the lowest temperature that the reaction solution can be heated to under normal pressure
  • the temperature of the solution will not increase if the heating is continued. Therefore, the control of the boiling point temperature is the easiest, simple and precise.
  • the reaction time required for the reaction at the boiling point temperature under the same conditions is also shorter than the reaction time required for the reaction at other temperatures below the boiling point, and the product yield and efficiency are also the highest;
  • the alkali solution contains KOH
  • the concentration of KOH in the alkali solution is not less than 2mol/L; at this time, other OH- can be provided by other alkalis to ensure that the total OH - concentration reaches 5.1 more than mol/L;
  • the alkali solution is mainly composed of KOH aqueous solution
  • the alkali solution is an aqueous KOH solution
  • T-type elements Al, Zn
  • Al, Zn amphoteric metals
  • they can react with hydroxide in a hot concentrated alkali solution to become T salt, and dissolve in the solution, while releasing hydrogen violently;
  • the solution reaction removes T in the initial alloy, and the remaining E element and Ti in the initial alloy further interact with the alkaline solution and undergo a series of changes at the same time, including the diffusion rearrangement of Ti atoms and its interaction with the E element. , hydrogen, oxygen, OH - , the interaction of the cations in the base, and through the shape and composition reconstruction, the nano-titanate film containing the E group element is formed.
  • the reaction of the initial alloy with a hot alkaline solution at a temperature of 60°C ⁇ T 1 ⁇ T f is very important for the preparation of a film-like product with a microscopic morphology.
  • the initial alloy powder of TiAl 3 intermetallic compound in solid solution Ag is reacted with 10mol/L NaOH solution at 35°C for 2 hours, the shape of the original initial alloy powder before and after the reaction is roughly unchanged.
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f
  • the alkaline solution is mainly composed of NaOH aqueous solution
  • the obtained product is doped with E component
  • the yield of the target product of elemental nano-titanate thin films is low.
  • the alkaline solution contains KOH
  • the matrix of the nano-titanate film doped with the element E contains the matrix of the nano-potassium titanate film
  • the yield of the nano-titanate film doped with the element E in the product can be greatly improved.
  • the yield of the target product of the nano-potassium titanate thin film doped with E element in the obtained product is not less than 50%; when the reaction temperature is At 71°C, the yield of the target product of the nano-potassium titanate thin film doped with the element E in the obtained product is not less than 65%; when the reaction temperature is 81°C, the nano-titanium doped with the element E in the obtained product is obtained.
  • the yield of the target product of the potassium oxide film is not less than 75%; when the reaction temperature is 91 ° C, the yield of the target product of the nano-potassium titanate film doped with the E element element in the obtained product is not less than 85%; when the reaction When the temperature is 96°C, the yield of the target product of the nano-potassium titanate thin film doped with the element E in the obtained product is not less than 90%;
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f solution
  • the high value range of the temperature range is 100°C ⁇ T 1 ⁇ T f solution
  • the obtained nano-titanate film doped with E element in the product The yields of titanate are very high, and the product morphology is completely different from the original initial alloy powder particle or strip shape; for example, when the reaction temperature is higher than 101 °C, high E element doped nano titanate can be obtained
  • the yield of the film is generally 95% to 100%; when the reaction temperature is the boiling point Tf solution of the alkaline solution under normal pressure, a higher yield of the nano-titanate film doped with E element elements can be obtained. , the yield is generally 99% to 100%;
  • the solution composition of the reaction system has obvious special changes, which are embodied in: in the temperature range below the boiling point temperature of the alkaline solution, the solvent mainly exists as liquid water, The state of the reaction system is very common; however, at or near the boiling temperature of the alkaline solution, in addition to liquid water and gaseous water produced by boiling, the solvent also contains critical water that is undergoing transformation from liquid water to gaseous water.
  • the reaction system is in a special environment of full boiling and vaporizing.
  • the content and state of atmospheric ambient gases (oxygen, nitrogen) dissolved in the water are also very special (because the large amount of hydrogen generated by the reaction of boiling water vapor, T and alkali has changed the saturated content of dissolved gases in the water. pressure conditions).
  • oxygen, nitrogen oxygen
  • the Ti-T intermetallic compound with the E element in solid solution reacts with the concentrated alkali solution, and a large amount of hydrogen will be generated in the process of removing T in the alloy.
  • the theoretically required shortest time for the product generation process described in step 2 is: The time required for the initial alloy reaction interface to advance from the surface inward to complete the hydrogen evolution and de-T reaction can be judged by whether the hydrogen evolution ends.
  • the hydrogen evolution and de-T reaction is a severe hydrogen evolution and de-T reaction
  • the violent hydrogen evolution and de-T reaction refers to that the reaction interface advancing rate of the hydrogen evolution and de-T reaction is sufficiently fast, and the hydrogen evolved at the reaction interface is concentrated and released in a short time, thus showing a violent reaction process.
  • the severity of the hydrogen evolution and de-T reaction is related to the reaction advancing rate of the reaction interface from the initial alloy surface inward per unit time. The higher the temperature of the alkaline solution, the faster the advancing rate of the reaction interface and the more violent the reaction.
  • reaction interface is pushed inward from the initial alloy surface at an average rate greater than 4 ⁇ m/min;
  • reaction interface is pushed inward from the initial alloy surface at an average rate greater than 7.5 ⁇ m/min;
  • reaction interface is pushed inward from the initial alloy surface at an average rate greater than 17.5 ⁇ m/min;
  • reaction interface is pushed inward from the initial alloy surface at an average rate greater than 2 ⁇ m/min;
  • reaction interface is pushed inward from the initial alloy surface at an average rate greater than 20 ⁇ m/min;
  • the propulsion rate of the reaction interface from the surface of the initial alloy inward is as follows:
  • the average propulsion rate of the reaction interface is about 2.5 ⁇ m/min ⁇ 4.0 ⁇ m/min;
  • the average propulsion rate of the reaction interface is about 4.0 ⁇ m/min ⁇ 7.5 ⁇ m/min;
  • the average propulsion rate of the reaction interface is about 7.5 ⁇ m/min ⁇ 17.5 ⁇ m/min;
  • the average advancing rate of the reaction interface is about 17.5 ⁇ m/min ⁇ 35 ⁇ m/min;
  • the average propulsion rate of the reaction interface is about 35 ⁇ m/min ⁇ 60 ⁇ m/min;
  • the average propulsion rate of the reaction interface is about 60 ⁇ m/min ⁇ 125 ⁇ m/min;
  • the average propulsion rate of the reaction interface is greater than 120 ⁇ m/min;
  • T-type elements Al, Zn
  • their reaction with the alkaline solution near the boiling point temperature (which is higher than 100° C.) under normal pressure is very rapid.
  • the reaction time for complete removal of T element in the initial alloy is related to the shape of the initial alloy: when the initial alloy powder particles are smaller, or the initial alloy strip is thinner, the time required for the completion of the hydrogen evolution and de-T reaction is longer. On the contrary, the time required for the completion of the hydrogen evolution and de-T reaction is longer.
  • the frequency of the ultrasonic is 20 kHz ⁇ 10 6 kHz;
  • the minimum reaction time t required for the completion of the hydrogen evolution and de-T reaction can be calculated.
  • the initial alloy is a strip with a thickness of d
  • the average advance rate of the reaction interface is v
  • t 0.5d/v
  • the initial alloy strip of TiAl 3 intermetallic compound in solid solution Ag is reacted with a 10mol/L NaOH solution with a boiling point temperature (boiling temperature is about 119°C), and the average rate of advance of the reaction interface of the initial alloy strip About ⁇ 120 ⁇ m/min, that is, the initial alloy strip with a thickness of 40 ⁇ m, can complete the hydrogen evolution and de-Al reaction in 10s; the initial alloy strip with a thickness of 20 ⁇ m can complete the hydrogen evolution and Al removal reaction in 5s; even the initial alloy with a particle size of 5mm can complete the hydrogen evolution and Al removal reaction. ball, the hydrogen evolution and de-Al reaction can be completed in 21min;
  • the reaction system When the hydrogen evolution and de-T reaction is completed, the reaction system then reaches equilibrium; at this time, the stability of the product can still be ensured by continuing to prolong the holding time of the reaction system at the original reaction temperature. Therefore, when the reaction time of the initial alloy and the hot alkaline solution exceeds the required shortest hydrogen evolution and de-T reaction time t, such as several hours, the corresponding product can still be obtained;
  • the shortest reaction time between the initial alloy and the alkali solution at the temperature T1 can be 10s ;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 59min;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 29min;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 9.9min ;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 4.9min;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 2min;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 1min ;
  • reaction time of the initial alloy and the hot alkali solution at the temperature T1 is 10s ⁇ 30s;
  • the occurrence of nano-fragmentation means that the initial alloy at the reaction interface is fragmented into nano-scale intermediate products or products through the hydrogen evolution and de-T reaction, and at the same time, two-dimensional nano-titanium containing E component elements is formed through shape and composition reconstruction.
  • the hydrogen released violently by the hydrogen evolution and de-T reaction promotes the nano-fragmentation of the intermediates and products, the shape and composition reconstruction of the products, and the diffusion and distribution of the products in the alkaline solution after leaving the reaction interface.
  • the occurrence of nano-fragmentation means that the initial alloy is fragmented into a single intermediate product or product with at least one dimension in the three-dimensional direction less than 500 nm through the hydrogen evolution and de-T reaction;
  • the solid flocculent product containing the E element is mainly composed of a single intermediate product or product with at least one dimension in the three-dimensional direction less than 20 nm;
  • the solid flocculent product containing the E element is mainly composed of a single intermediate product or product with at least one dimension in the three-dimensional direction less than 10 nm;
  • the solid-state flocculent product containing the E component element will not remain at the initial alloy reaction interface after being reconstructed in shape and composition, but will leave the initial alloy reaction interface by diffusion at the same time of generation, and pass through the initial alloy reaction interface. Thermal diffusion and alkali solution liquid convection are further diffused and distributed in the alkali solution;
  • the reconfiguration of shape and composition means that the intermediate product after the hydrogen evolution and de-T reaction of the initial alloy and the nano-fragmentation undergoes further changes in shape and composition at the same time, and the composition and shape of the initial alloy of the micron or millimeter scale are completely changed.
  • Different nanoscale products the size of the nanoscale products is described in the follow-up description of step 3;
  • the generated nano-titanate film containing the E component element does not contain a three-dimensional continuous network-like nanoporous structure or porous skeleton structure;
  • the hydrogen evolution and de-T reaction transforms the micron-scale or even millimeter-scale initial alloy into a two-dimensional nano-titanate film containing a large amount of E element elements through the step-by-step nano-fragmentation process from the surface to the inside;
  • the solid flocculent product containing E element is mainly composed of a large number of two-dimensional nano-titanate films containing E element through the aggregation and entanglement of each other; it is macroscopically solid flocculent. product;
  • the flocculent solid product refers to the nanoscale film-like product after agglomeration during the diffusion process, which is solid flocculent, and can be suspended in the solution for a long time from the observation point of view.
  • the reaction system described in step 2 includes the product generated by the reaction and the alkali solution after the reaction;
  • step 3 also includes the process of reducing the temperature of the solid flocculent product in the reaction system in step 2 from T 1 to a lower temperature interval .
  • the reaction product can be delayed to change accordingly, so as to ensure that the components of the product are generated in the temperature range of 60° C ⁇ T1 , especially in the temperature range of 100 °C ⁇ T1 And the morphology is preserved; further, it can ensure that the composition and morphology of the product generated in the temperature range of 60°C ⁇ T 1 ⁇ T f solution , especially the temperature range of 100°C ⁇ T 1 ⁇ T f solution , are preserved.
  • the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is lowered from T 1 to a lower temperature range, where 60°C ⁇ T 1 ⁇ T f solution ;
  • the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is lowered from T1 to below 45°C;
  • the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is lowered from T1 to below 35°C;
  • the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is lowered from T1 to below 30°C;
  • the cooling rate for reducing the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is greater than 5K/s;
  • cooling rate is greater than 10K/s; further, the cooling rate is greater than 20K/s; further, the cooling rate is greater than 50K/s;
  • the required time for reducing the temperature of the solid floc product containing the E component element of the reaction system in step 2 is less than 20s;
  • the required time for temperature reduction is less than 10s; further, the required time for temperature reduction is less than 5s;
  • time required for temperature reduction is less than 2s
  • the temperature range of the reaction is the high value range of the temperature range of 60°C ⁇ T1 ⁇ Tf solution , such as 100 °C ⁇ T1 ⁇ Tf solution temperature range or Tf solution temperature
  • the reaction is rapidly reduced by step 3.
  • the temperature of the product can ensure the stability of the composition and morphology of the product.
  • the method of reducing the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 includes at least one of solvent dilution and filtration cooling;
  • the reaction Under normal pressure, the reaction is carried out in an open container, so it is easy to add a cold solvent (such as water) to the reaction system to make the solid flocculent product containing the E element in the reaction system described in step 2.
  • a cold solvent such as water
  • the temperature is rapidly reduced, and the concentration of the alkali solution in the reaction system is reduced at the same time; as another way, the hot alkali solution in the reaction system and the solid flocculent product containing the E component element can be quickly poured out together and filtered and separated at the same time. Thereby, the temperature of the solid flocculent product containing the E element is rapidly reduced;
  • the solvent corresponding to the dilution of the solubilizer comprises water
  • the temperature of the solvent corresponding to the solvent dilution is normal temperature
  • the temperature of the solvent corresponding to the solvent addition dilution is 0°C to 30°C;
  • the temperature of the solvent corresponding to the solvent dilution is 0°C to 25°C;
  • the temperature of the solvent corresponding to the solvent addition dilution is 0°C to 20°C;
  • the temperature of the solid flocculent product containing the E element in the reaction system described in step 2 is lowered, the temperature of the alkaline solution is also lowered synchronously. The concentration of the alkali solution in the reaction system is reduced;
  • the concentration of the alkaline solution after the reduced concentration is less than 0.25 times the original concentration; at the same time, the temperature of the alkaline solution after the reduced temperature is lower than 50°C;
  • the concentration of the alkali solution after reducing the concentration is less than 0.1 times of the original concentration; at the same time, the temperature of the alkali solution after reducing the temperature is lower than 45°C.
  • the specific steps are: under normal pressure, pour the alkali solution containing the solid flocculent product of the E component element and at a solution temperature of 60 ° C ⁇ T 1 ⁇ T f on a cold filter screen. , the solid flocculated product containing E element elements and the alkaline solution are separated through the filter screen; the heat of the solid flocculated product containing E element elements is quickly conducted through the environment and the filter screen, and the solid flocculated product containing E element elements The temperature can be quickly reduced to a low temperature range;
  • the temperature of the filter screen is not higher than 30 °C;
  • the temperature of the filter screen is not higher than 20 °C;
  • the temperature of the filter screen is not higher than 10 °C;
  • the plane of the filter screen forms a certain angle with the horizontal plane, so that after the hot alkali solution containing the solid floc product is poured into the filter screen, it can be fully filtered and cooled while flowing and spread on the filter screen;
  • the angle between the filter screen plane and the horizontal plane is 15° to 75°;
  • the mesh aperture size of the filter screen ranges from 5 ⁇ m to 1 mm;
  • the filter screen includes a multi-layer filter screen
  • the filter screen includes at least 4 layers
  • the filter screen includes a multi-layer filter screen, and the mesh size of each layer is inconsistent;
  • the solid flocculent products containing E element are generally aggregated and tangled together to form larger aggregates, so primary separation can be carried out through a filter with a larger pore size;
  • the net performs primary separation of solid products, the medium-sized mesh filter screen continues to separate solid flocculated products, and the small mesh filter screen performs final separation of solid flocculated products;
  • the filter screen includes a metal filter screen with excellent thermal conductivity
  • the historical change in the temperature of the nano-titanate thin film material of the hetero-E element belongs to the step 3.
  • the temperature of the solid flocculent product containing the E element in the reaction system described in the step 2 is reduced from T1. operation;
  • the process of collecting the solid flocculent product containing the E component element includes solid-liquid separation, cleaning and drying of the solid flocculent product containing the E component element;
  • the solid flocculent product containing the E element element is collected, that is, the two-dimensional nano-titanate thin film powder material doped with the E element element is obtained.
  • the thin film material from a macroscopic view, is the shape of a powder material, and from a microscopic view, it is composed of a large number of two-dimensional thin films.
  • the thin film material is the morphology of the powder material, and microscopically, it is composed of a large number of monolithic two-dimensional thin films dispersed or entangled, and its structure is completely different from the nanoporous structure formed by the traditional dealloying reaction.
  • the nanoporous structure obtained by the traditional dealloying reaction is composed of a three-dimensional network tie connection to form a whole, and its overall appearance is basically the same as that of the initial alloy before the dealloying reaction;
  • the two-dimensional thin film material refers to a material whose smallest unit (such as a single film) of the material has a larger area, and its dimension in the thickness direction is much smaller than the two dimensions in the area direction, and its thickness not more than 10nm.
  • the doped E element is a common term in the field of chemistry. It is not that the E element is necessarily an impurity element. This is a concept relative to the matrix material to which it is attached, that is, the E element is Elements that are inconsistent in composition with the matrix material, and which have special functions, are designed and added for a purpose, so that they can be evenly compounded with the attached matrix material to achieve a certain purpose;
  • nano-titanate film material doped with element E is polymerized from a large number of nano-titanate films doped with element E; it can be understood that a large number of monolithic films can tangled, aggregated softly together;
  • the thickness of the nano-titanate film doped with element E is 0.25nm-7.5nm;
  • the thickness of the nano-titanate film doped with element E is 0.25 nm to 4 nm;
  • the thickness of the nano-titanate film doped with element E is 0.25 nm to 3 nm;
  • the thickness of the nano-titanate film doped with element E is 0.25 nm to 2 nm;
  • the average area of the nano-titanate film doped with the element E is greater than 500 nm 2 ;
  • the average area of the nano-titanate film doped with element E is greater than 5000 nm 2 ;
  • the average area of the nano-titanate thin film doped with element E is greater than 20000 nm 2 .
  • nano-titanate film doped with the element E is mainly low-crystallinity titanate
  • titanate cation element in the nano-titanate film doped with the element E is derived from the corresponding cation element in the alkali;
  • the chemical composition of the nano-titanate thin film material doped with the E element element includes the E element element, Ti, O, and the corresponding cationic element in the alkali; wherein, the molar ratio of the E element element to Ti Satisfy 0 ⁇ C E /C Ti ⁇ 0.25; for example, when the base is NaOH, the corresponding cation element in the base is Na, and the titanate is sodium titanate, then the doped E element
  • the chemical composition of the nano-sodium titanate thin film material includes E group elements, Ti, O, and Na elements;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters;
  • the nano-titanate film can be regarded as a single-phase material. That is to say, the E group elements, like Ti, O and other titanate elements, are uniformly distributed in the film as atoms or atomic clusters, and the E group elements do not nucleate and grow into titanic acid. E phase other than salt phase.
  • the obtained product can be understood as a nano-titanate film doped with element E, also can be understood as a nano-titanate film with element E in solid solution, and it can also be understood as a brand new substance,
  • this brand-new substance can be considered as a nanometer sodium titanate (silver) film;
  • the E group elements are mainly embedded in the nano-titanate film in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E group elements are mainly distributed in the form of atoms or atom clusters. Fixed in the nano-titanate film, the diffusion movement of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E group element, it will greatly increase the phase transition heat of the titanate film matrix. For stability, see the related instructions later.
  • the matrix of the nano-titanate film is formed.
  • the thermal stability of the phase transition can be increased by up to 200 °C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the pure nano-titanate film substrate, to achieve the same phase transition during the heating process, the heat treatment temperature of the nano-titanate film doped with the element E needs to be increased by up to 200 °C;
  • the improved thermal stability of this phase transition further indicates that the E element is doped in the nano-titanate matrix at the atomic or atomic cluster scale, rather than in the form of a distinct E nanoparticle phase. If there is an obvious E nanoparticle phase, the titanate film matrix and the E nanoparticle phase are separate independent two phases, and the thermal stability of the titanate matrix will not be greatly affected.
  • the process of collecting the solid flocculent product containing the E component element in the step 3 includes a drying process, and by drying the solid flocculent product doped with the E component element, the powdery doped E group product is obtained. Elemental nano-titanate thin film material.
  • drying temperature is 50°C to 350°C; further, the drying temperature is 50°C to 300°C;
  • drying time is 1min ⁇ 24h; further, the drying time is 5min ⁇ 2h;
  • the drying time can take a low value range
  • the drying time can take a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the nano-titanate film doped with the element E contains Ag atoms or atomic clusters combined with O;
  • the nano-titanate film doped with element E contains Ag atoms or atomic clusters combined with O;
  • the nano-titanate film doped with the E element element contains Ag 2 O atomic clusters combined with O;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350 °C, the shape of the titanate film is generally unchanged, and the E element still remains embedded in the titanate film in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish between the atomic clusters containing the E element and the matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, they are uniformly distributed in the matrix.
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters;
  • the E group element is mainly distributed in the nano-titanate thin film in an atomic manner.
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag;
  • the E component element is Ag
  • the E component elements when the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or Al-Ti intermetallic compounds, so that the E component elements can pass through in the original initial alloy.
  • the solid solution exists in the Al-Ti intermetallic compound
  • the E component elements when the E component elements are not all Ag, the E component elements also include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir;
  • the yield of the two-dimensional nano-titanate film doped with the element E in the final product is its weight percentage in the final product
  • the yield of the nano-titanate film doped with the E component element in the final product is 50% to 100%
  • the yield of the nano-titanate film doped with the element E in the final product is 65% to 100%;
  • the yield of the nano-titanate film doped with the element E in the final product is 75% to 100%
  • the yield of the nano-titanate film doped with the E component element in the final product is 85% to 100%;
  • the yield of the nano-titanate film doped with the element E in the final product is 90% to 100%
  • the yield of the nano-titanate film doped with the element E in the final product is 95% to 100%
  • the yield of the nano-titanate film doped with the element E in the final product is 99% to 100%;
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f
  • the alkaline solution is mainly composed of NaOH aqueous solution
  • the obtained product is doped with E component
  • the yield of the target product of elemental nano-titanate thin films is low.
  • KOH is contained in the alkaline solution
  • the target nano-titanate film matrix doped with the E element element contains the nano-potassium titanate film matrix
  • the efficiency of the nano-titanate film doped with the E element element in the product can be greatly improved.
  • the yield of the target product of the nano-potassium titanate thin film doped with the E element element in the obtained product is not less than 50%; when the reaction temperature When the reaction temperature is 71 °C, the yield of the target product of the nano-potassium titanate film doped with the E component element in the obtained product is not less than 65%; when the reaction temperature is 81 °C, the obtained product is doped with the E component element.
  • the yield of the target product of the potassium titanate film is not less than 75%; when the reaction temperature is 91 ° C, the yield of the target product of the nano-potassium titanate film doped with the E element in the obtained product is not less than 85%; when When the reaction temperature is 96° C., the yield of the target product of the nano-potassium titanate thin film doped with the E component element in the obtained product is not less than 90%;
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f solution
  • the high value range of the temperature range is 100°C ⁇ T 1 ⁇ T f solution
  • the obtained nano-titanate film doped with E element in the product The yields of titanate are very high, and the product morphology is completely different from the original initial alloy powder particle or strip shape; for example, when the reaction temperature is higher than 101 °C, high E element doped nano titanate can be obtained
  • the yield of the film is generally 95% to 100%; when the reaction temperature is the boiling point Tf solution of the alkaline solution under normal pressure, a higher yield of the nano-titanate film doped with E element elements can be obtained. , the yield is generally 99% to 100%;
  • the present invention also relates to a method for preparing a nano-titanate thin film material containing embedded E nanoparticles, characterized in that the product described on the one hand or the nano-titanic acid doped with E element
  • the salt thin film material is prepared by heat treatment.
  • the thermal stability of nano-titanate film will be improved, and the film's thickening and shrinkage under heating will be hindered by E element. Therefore, during the heat treatment process, controlling the appropriate heat treatment temperature and heat treatment time can ensure that the thickness of the nano-titanate film does not change much (it is still in a thin film state), and is mainly distributed in the nano-titanate in the form of atoms or atomic clusters.
  • the doped E element in the salt film is diffused and aggregated by the elements to generate E nanoparticles embedded in the nano-titanate film.
  • This kind of intercalated E nanoparticles is different from the ordinary nanoparticles that are dominated by van der Waals adsorption (nanoparticles adsorbed by van der Waals force can move and fall off), which can ensure that E nanoparticles can tightly bind to nano-titanate.
  • the membranes are embedded together (cannot move, fall off).
  • the E group elements mainly distributed in the form of atoms or atomic clusters are all aggregated into E nanoparticles, due to the island-like distribution of E nanoparticles, they cannot be connected due to the steric hindrance of the nano-titanate film matrix, and it is difficult for them to continue to merge. , grow up, so the particle size can remain roughly unchanged in the subsequent continuous heating process.
  • the matrix of the nano-titanate film is formed.
  • the thermal stability of the phase transition can be increased by up to 200 °C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the pure nano-titanate film substrate, to achieve the same phase transition during the heating process, the heat treatment temperature of the nano-titanate film doped with the element E needs to be increased by up to 200 °C;
  • phase transition will occur; while the nano-titanate film with higher E-element is heat-treated at 600 °C for 0.5 h, the film matrix still does not undergo obvious change. Phase transition and shape change. If heat treatment at 650°C for 2min is selected, it can basically ensure that no obvious phase change and shape change will occur;
  • the E nanoparticles can diffuse through the elements, aggregate through the heat treatment, and accumulate in the film under the condition that the shape of the film does not change greatly. mosaic precipitation in the matrix;
  • the temperature of the heat treatment is 350°C ⁇ 650°C;
  • the temperature of the heat treatment is 350°C ⁇ 600°C;
  • the temperature of the heat treatment is 350°C to 550°C;
  • the time of the heat treatment is 2min ⁇ 96h; preferably, the time of the heat treatment is 10min ⁇ 5h.
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles mainly exist in the nano-titanate thin film by intercalation
  • the intercalation refers to a formation method of in-situ mosaic generation, that is, E nanoparticles diffuse, aggregate and grow by doping with E component elements, and then in-situ generate, which is expressed as a part of the nano-titanate thin film. Or fully wrapped, without relying on external additions or external mixing to make it embedded in it.
  • the thickness of the nano-titanate film after the heat treatment of precipitating E nanoparticles is slightly larger than that before the heat treatment
  • the thickness of the nano-titanate film containing embedded E nanoparticles is 0.3 nm to 10 nm;
  • the thickness of the nano-titanate film containing embedded E nanoparticles is 0.3 nm to 5 nm;
  • the thickness of the nano-titanate film containing the embedded E nanoparticles is 0.3 nm to 4 nm;
  • the thickness of the nano-titanate film containing embedded E nanoparticles is 0.3 nm to 2 nm;
  • the E nanoparticles also include a part of the exposed volume that is not embedded in the film;
  • the embedded E nanoparticles are generated by the diffusion and aggregation of the E element originally distributed in the nano-titanate film, they can be embedded in the film; because the film is thin enough, some E nanoparticles There will also be part of the volume exposed outside the film;
  • the average area of the nano-titanate film containing embedded E nanoparticles is greater than 400 nm 2 ; preferably, the average area of the nano-titanate film containing embedded E nanoparticles is greater than 4000 nm 2 ; Preferably, the average area of the nano-titanate film containing embedded E nanoparticles is greater than 16000 nm 2 ;
  • the main chemical composition of the nano-titanate film material containing embedded E nanoparticles includes E element, Ti, O, and the corresponding cationic element in the alkali in the original preparation process, wherein the E element and The molar ratio of Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag;
  • the E component element is Ag
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a nano-titanate film material doped with an E element element, characterized in that the product described on the one hand or the nano titanate doped with an E element element is used.
  • the thin film material reacts with the acid solution, and the solid product is collected to obtain the nano-titanate thin film material doped with the E group element.
  • the residual alkali adsorbed on the surface of the nano-titanate thin film material doped with the element E is first neutralized, and then the cation and the acid solution in the nano titanate thin film material doped with the element E are generated.
  • the ion exchange of hydrogen ions in the ion exchange, and then the nano-titanate thin film material doped with the E group element is obtained.
  • the main characteristics of the product after acid reaction are generally consistent with the product described in one aspect;
  • the acid solution comprises at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, oxalic acid, picric acid, oleic acid, and perchloric acid;
  • the two-dimensional nano-titanate film or two-dimensional nano-titanate film doped with the E group element prepared by this method is extremely thin, when the acid concentration is higher than 0.1 mol/L, obvious doping of the E group element will occur.
  • the hydrogen ion concentration in the acid solution is 0.0001mol/L ⁇ 0.09mol/L;
  • the hydrogen ion concentration in the acid solution is 0.0001mol/L ⁇ 0.05mol/L;
  • the concentration of hydrogen ions in the acid solution is 0.0001 mol/L to 0.01 mol/L.
  • the specific steps of reacting the nano-titanate thin film material doped with the E element element and the acid solution are: dispersing the nano titanate thin film material doped with the E element element in water, and stirring the The acid solution is gradually added into it, so that the pH value of the mixed solution continues to decrease, and finally the pH value of the mixed solution is controlled to be maintained between 2 and 5. After 1min to 5h, separation and drying are performed to obtain the doped E component element. of nano-titanate films.
  • Nano-titanate thin film material of E group element When the pH value is controlled between 2 and 5, that is, when the concentration of hydrogen ions in the mixed solution is 0.00001 mol/L to 0.01 mol/L, it can ensure that the nano-titanate film doped with the E element in the whole process is The residual alkali adsorbed on the surface of the material is first neutralized, and then the ion exchange between the cations in the nano-titanate thin film material doped with the E component element and the hydrogen ions in the acid solution occurs, and the dopant without obvious reaction with the acid solution is obtained. Nano-titanate thin film material of E group element.
  • the thickness of the nano-titanic acid film doped with the element E is 0.25 nm to 7.5 nm; further, the thickness of the nano titanic acid film doped with the element E is 0.25 nm to 4 nm; Preferably, the thickness of the nano-titanic acid film doped with the element E is 0.25 nm to 3 nm; preferably, the thickness of the nano titanic acid film doped with the element E is 0.25 nm to 2 nm;
  • the average area of the nano-titanate film doped with the element E is greater than 500 nm 2 ; preferably, the average area of the nano-titanate film doped with the element E is greater than 5000 nm 2 ; as a further preference, The average area of the nano-titanate film doped with the element E is greater than 20000 nm 2 ;
  • nano-titanate film doped with the element E is mainly low crystallinity titanate
  • the chemical composition of the nano-titanate thin film material doped with the E element element includes the E element element, Ti, H, and O elements; wherein, the molar ratio of the E element element and Ti satisfies 0 ⁇ CE/ CTi ⁇ 0.25;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters;
  • the nano-titanate film can be regarded as a single-phase material. That is to say, the E group elements, like Ti, H, O and other titanic acid elements, are uniformly distributed in the film as atoms or atomic clusters, and the E group elements do not nucleate and grow into titanium removal. E nanoparticle phase outside the acid phase.
  • the obtained product can be understood as a nano-titanic acid film doped with E-element elements, or a nano-titanic acid film with E-element elements dissolved in a solid solution, and it can also be understood as a brand-new substance, such as nano-titanic acid film.
  • Titanate (silver) film
  • the E group elements are mainly embedded in the nano-titanate film in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E group elements are mainly fixed in the form of atoms or atom clusters.
  • the diffusion motion of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E group element, it will greatly improve the thermal stability of the titanate film matrix, see the follow-up related instructions.
  • the phase of the nano-titanate film matrix is reduced.
  • the thermal stability can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the nano-titanate film substrate, the same phase transition is achieved during the heating process, and the heat treatment temperature required for the nano-titanate film doped with the E element element needs to be increased by up to 200 °C;
  • the improved thermal stability of this phase transition further indicates that the E element is doped in the nano-titanate matrix at the atomic or atomic cluster scale, rather than in the form of a distinct E nanoparticle phase. If there is an obvious E nanoparticle phase, the titanate matrix and the E nanoparticle phase are two separate phases, and the thermal stability of the titanate matrix will not be greatly affected.
  • the process of collecting the solid product includes a drying process
  • drying temperature is 50°C to 350°C;
  • drying temperature is 50°C to 300°C;
  • drying time is 1min ⁇ 24h
  • drying time is 5min ⁇ 2h
  • the drying time can take a low value range
  • the drying time can take a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the nano-titanate film doped with the E component element contains Ag atoms or atomic clusters combined with O;
  • the nano-titanate film doped with the element E contains Ag atoms or atomic clusters combined with O;
  • the nano-titanate film doped with the element E contains Ag 2 O atomic clusters combined with O;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters;
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350°C, the shape of the titanate film is generally unchanged, and the E element still remains embedded in the titanate film in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish between the atomic clusters containing the E element and the matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, they are uniformly distributed in the matrix.
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the nano-titanate film in the form of atoms.
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a nano-titanate film material containing embedded E nanoparticles, characterized in that the product described in the third aspect or the nano-titanate film doped with E element The material is prepared by heat treatment.
  • the thermal stability of nano-titanate film will be improved, and the film's thickening and shrinkage under heating will be hindered by the pinning of E element. Therefore, during the heat treatment process, controlling the appropriate heat treatment temperature and heat treatment time can ensure that the thickness of the nano-titanate film does not change much (it is still in a thin film state), and is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters.
  • the doped E group elements in it are diffused and aggregated to generate E nanoparticles embedded in the nano-titanate film.
  • This kind of intercalated E nanoparticles is different from the ordinary nanoparticles that are dominated by van der Waals adsorption (the nanoparticles adsorbed by van der Waals force can move and fall off), which can ensure that the E nanoparticles are tightly embedded with the nano-titanate film. Born together (cannot move, fall off).
  • the E group elements mainly distributed in the form of atoms or atomic clusters are all aggregated into E nanoparticles, due to the island-like distribution of E nanoparticles, they cannot be connected by the steric hindrance of the nano-titanate film matrix, and it is difficult to continue to merge, grow up, so the particle size can remain roughly unchanged in the subsequent continuous heating process.
  • the temperature of the heat treatment is 350°C ⁇ 650°C;
  • the temperature of the heat treatment is 350°C ⁇ 600°C;
  • the temperature of the heat treatment is 350°C to 550°C;
  • the heat treatment temperature can ensure that the doped E component elements are diffused and aggregated through the elements to generate E nanoparticles embedded in the nano-titanate film, and at the same time, the morphology of the nano-titanate film matrix can be maintained without obvious changes, except for the thickness of the film. Thicken a little outside.
  • the phase of the nano-titanate film matrix is reduced.
  • the thermal stability can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the nano-titanate film substrate, the same phase transition is achieved during the heating process, and the heat treatment temperature of the nano-titanate film doped with the element E needs to be increased by up to 200 °C;
  • the nano-titanate film without E element is heat-treated at 450 °C for 1 h, and then the phase transition occurs; while the nano-titanic acid film with higher E element is heat-treated at 600 °C for 0.5 h, there is still no obvious phase change.
  • time of the heat treatment is 5min ⁇ 96h
  • the time of the heat treatment is 10min ⁇ 5h;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles mainly exist in the nano-titanate thin film by intercalation
  • the intercalation refers to a formation method of in-situ mosaic generation, that is, E nanoparticles diffuse, aggregate and grow by doping with E component elements, and then in-situ generate, which is manifested as being partially or partially formed by the nano-titanate film. It is all wrapped, and it is embedded in it without relying on external addition or external mixing.
  • the thickness of the nano-titanate film after heat treatment is slightly larger than that before heat treatment
  • the thickness of the nano-titanate film containing embedded E nanoparticles is 0.3 nm to 10 nm;
  • the thickness of the nano-titanate film containing the embedded E nanoparticles is 0.3 nm to 5 nm;
  • the thickness of the nano-titanic acid film containing embedded E nanoparticles is 0.3 nm to 4 nm;
  • the thickness of the nano-titanate film containing the embedded E nanoparticles is 0.3 nm to 2 nm;
  • the E nanoparticles also include a part of the exposed volume that is not embedded in the film;
  • the embedded E nanoparticles are generated by the diffusion and aggregation of the E component elements originally distributed in the nano-titanate film, they can be embedded and distributed in the film; because the film is thin enough, some E nanoparticles also May be exposed outside the film;
  • the average area of the nano-titanate film containing embedded E nanoparticles is greater than 400 nm 2 ;
  • the average area of the nano-titanate film containing embedded E nanoparticles is greater than 4000 nm 2 ;
  • the average area of the nano-titanate film containing embedded E nanoparticles is greater than 16000 nm 2 ;
  • the chemical composition of the nano-titanate film material containing embedded E nanoparticles includes E element, Ti, H, and O elements; wherein, the molar ratio of E element to Ti satisfies 0 ⁇ CE/ CTi ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing nano-TiO 2 flake powder containing embedded E nanoparticles, characterized in that, by mixing the product described in the third aspect or the nano-titanic acid doped with E element elements
  • the thin film material, or the product described in the fourth aspect or the nano-titanate thin film material containing embedded E nanoparticles is prepared by heat treatment.
  • the time of the heat treatment is 1min ⁇ 48h;
  • the heat treatment time is 10min ⁇ 3h;
  • the temperature range of the heat treatment is 600°C to 1500°C;
  • the temperature range of the heat treatment is 600°C to 1000°C;
  • nano-TiO 2 is generated during the heat treatment
  • the heat-treated material is a nano-titanate film material doped with E element elements
  • the diffusion and aggregation of doped E element elements first occur, resulting in the formation of intercalation in nano-titanium.
  • E nanoparticles in acid films With the increase of heat treatment temperature and time, the nano-titanate film will shrink in area and increase in thickness, and at the same time, the transformation from nano-titanate film to nano-TiO 2 flakes will occur.
  • the heat-treated material is a nano-titanate film material containing embedded E nanoparticles
  • the E nanoparticles embedded in the nano-titanate film are separated and isolated by the nano-titanate film matrix.
  • the dispersed and distributed E nanoparticles that have been generated are difficult to continue to merge and grow, and their size and morphology will be in a stable state, that is, they will not grow with the increase of heat treatment temperature and heat treatment time.
  • the thickness of the generated nano-TiO 2 sheets does not exceed the outer diameter of the E nanoparticles, the E nanoparticles are partially embedded and distributed in the nano-TiO 2 sheets;
  • the thickness of the generated nano-TiO 2 sheets exceeds the outer diameter of the E nanoparticles, all or part of the E nanoparticles are embedded and distributed in the nano-TiO 2 sheets;
  • phase composition of nano-TiO 2 in the nano-TiO 2 flakes containing E nanoparticles includes at least one of brookite-type TiO 2 , anatase-type nano-TiO 2 , and rutile-type nano-TiO 2 .
  • the morphology of the nano-titanate matrix will change from film to titanate.
  • the sheet transitions and the thickness increases significantly, and at the same time, the transition from titanic acid to nano- TiO2 also occurs.
  • the product of nano titanate film containing embedded E nanoparticles after heat treatment will be "nano titanate film containing embedded E nanoparticles" ⁇ "containing embedded E nanoparticles”.
  • nano titanate film containing embedded E nanoparticles ⁇ “containing embedded E nanoparticles”.
  • the presence of brookite TiO sheets containing intercalated E nanoparticles cannot be ruled out.
  • some product states corresponding to the heat treatment temperature and time may have two crystal forms coexisting, such as "nano-titanate film material containing intercalated E nanoparticles” and "containing intercalated E nanoparticles".
  • the shape of the nano-TiO 2 sheet containing embedded E nanoparticles is plate-like;
  • the thickness of the nano-TiO 2 sheet containing embedded E nanoparticles is 1.0 nm ⁇ 30 nm;
  • the thickness of the nano-TiO 2 sheet containing embedded E nanoparticles is 1.0 nm ⁇ 20 nm;
  • the average area of the nano-TiO 2 sheet containing embedded E nanoparticles is greater than 100 nm 2 ;
  • the average area of the nano-TiO 2 sheet containing embedded E nanoparticles is greater than 1000 nm 2 ;
  • the average area of the nano-TiO 2 sheet containing embedded E nanoparticles is greater than 4000 nm 2 ;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles mainly exist in the nano-TiO 2 sheets by means of intercalation
  • the chemical composition of the nano-TiO 2 sheet containing embedded E nanoparticles includes E element, Ti, O element; wherein, the molar ratio of E element to Ti satisfies 0 ⁇ CE /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a titanate nanotube doped with an E element, which is characterized in that the preparation comprises the following steps:
  • the solid substance containing the product described in one aspect or the nano-titanate film doped with the E element element or (and) the product described in the three aspects or the nano titanate film doped with the E element element is sealed with an alkaline solution
  • high temperature and high pressure treatment is carried out at a temperature T 2 higher than the T f solution ; wherein, the T f solution is the boiling point temperature of the alkaline solution participating in the reaction under normal pressure, and the T f solution ⁇ T 2 ;
  • the reaction is certain After the time, the temperature of the closed container is lowered and the pressure is returned to normal pressure, and the final solid product is collected, that is, the titanate nanotube doped with the E group element is obtained.
  • the alkaline solution contains at least one of NaOH, KOH, LiOH, RbOH, Ba(OH) 2 , Ca(OH) 2 , and Sr(OH) 2 solutions;
  • the solvent in the alkaline solution contains water; preferably, the solvent in the alkaline solution is water;
  • the concentration of the alkali in the alkali solution is 5.1-25 mol/L;
  • the concentration of the alkali in the alkali solution is 5.1-15 mol/L;
  • the alkali concentration in the alkali solution is 7-15 mol/L; as a further preference, the alkali concentration in the alkali solution is 7-12 mol/L;
  • the concentration of the alkali in the alkali solution is 10-15 mol/L;
  • the concentration of the alkali refers to the concentration of OH - in the alkali
  • the alkali is an excess dose, and the volume of the alkali solution is more than 5 times the volume of the solid substance;
  • volume of the alkaline solution is more than 10 times the volume of the solid substance; further, the volume of the alkaline solution is more than 20 times the volume of the solid substance;
  • the "solid substance and alkali solution containing the nano-titanate film doped with the element E in one aspect or (and) the nano titanate film doped with the element E in the third aspect" is On the one hand, the solid flocculent product containing E element and the corresponding alkaline solution after the hydrogen evolution and de-T reaction obtained in step 1 and step 2 are finished;
  • This preferred solution does not need to separate the solid flocculent product containing the E element and the corresponding alkali solution, and then mix it with the alkali, nor does it need to cool down and then heat the alkali solution (T 1 ⁇ T 2 ), and the alkali concentration also satisfies
  • This preferred scheme requires high temperature and high pressure reaction. Therefore, this is the most economical and simple operation solution.
  • the thin film titanate or (and) the thin film titanate is converted into a tubular titanate, and T f solution ⁇ T 2 ;
  • reaction is carried out in an airtight container higher than normal pressure, so that the temperature of the alkaline solution can be heated to above its boiling point temperature Tf solution under normal pressure, so as to realize the film-like titanium doped with the E element element.
  • the acid salt or (and) the thin film titanic acid doped with the element E is converted to the tubular titanate under high temperature and pressure.
  • a certain temperature value when the type and concentration of the alkaline solution are determined, a certain temperature value must correspond to a certain pressure value, that is, the pressure value is a function of the temperature value; the higher the temperature, the higher the pressure.
  • the high temperature and high pressure treatment time at the T2 temperature is 0.1h to 10h ; further, the T2 temperature high temperature and high pressure treatment time is 0.1h to 1h ; further, the T2 temperature high temperature and high pressure treatment time is 0.1 h h ⁇ 0.5h; further preferably, the T2 temperature high temperature and high pressure treatment time is 0.1h ⁇ 0.2h ;
  • the incubation time can also be selected as a longer time value.
  • the outer diameter of the titanate nanotube doped with the element E is 2 nm to 20 nm;
  • the outer diameter of the titanate nanotube doped with the element E is 3 nm to 15 nm;
  • the average length of the titanate nanotube doped with the element E is greater than 5 times the average outer diameter thereof.
  • titanate nanotubes doped with the element E are mainly low crystallinity titanates
  • the cation elements in the titanate nanotubes are derived from the corresponding cation elements in the alkali;
  • the chemical composition of the titanate nanotube doped with the E element includes the E element, Ti, O, and the corresponding cationic element in the alkali; wherein, the molar ratio of the E element to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25; for example, when the base is NaOH, and the corresponding cation element in the base is Na, the chemical composition of the titanate nanotube doped with the E element element contains E. , Ti, O, and Na elements.
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the titanate nanotube can be regarded as a single-phase material. That is to say, the E group elements are the same as the constituent elements of titanate nanotubes, and they are uniformly distributed in the titanate nanotubes as atoms or atomic clusters, and the E group elements do not nucleate and grow into titanium removal E nanoparticle phase other than the acid phase.
  • the obtained product can be understood as titanate nanotubes doped with E element elements, or as titanate nanotubes with E element elements in solid solution, and it can also be understood as a brand new substance, Such as titanate (silver) salt nanotubes;
  • the E group elements are mainly distributed in the titanate nanotubes in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E group elements are mainly distributed in the form of atoms or atom clusters.
  • the diffusion movement of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E element, it will greatly affect the thermal stability of the titanate nanotubes , see the related description later.
  • the thermal stability of phase transition can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of phase transition. That is, compared with titanate nanotubes, to achieve the same phase transition during heating, the heat treatment temperature of titanate nanotubes doped with element E needs to be increased by up to 200 °C;
  • This improved thermal stability of the phase transition further indicates that the E element is doped in the titanate nanotubes at the atomic or atomic cluster scale, rather than in the form of a distinct E nanoparticle phase. If there is an obvious E nanoparticle phase, the titanate nanotubes and the E nanoparticle phase are two separate phases, and the thermal stability of the titanate nanotubes will not be greatly affected.
  • the process of collecting the final solid product includes a drying process, that is, obtaining powdered titanate nanotubes doped with E group elements.
  • drying temperature is 50°C to 350°C;
  • drying temperature is 50°C to 300°C;
  • drying time is 1min ⁇ 24h
  • drying time is 5min ⁇ 2h
  • the drying time can take a low value range
  • the drying time can take a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the titanate nanotubes doped with the E component element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotube doped with the element E contains Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag 2 O atomic clusters combined with O;
  • the E component element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters
  • the E group element is mainly distributed in the titanate nanotube in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350 °C, the shape of the titanate nanotubes is generally unchanged, and the E element still remains inlaid and distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish the atomic clusters containing the E element from the titanate nanotube matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, it is uniformly distributed in the matrix. middle.
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms
  • the titanate nanotubes doped with the E component element are mainly prepared by the high temperature and high pressure treatment of the sodium titanate film doped with the E component element. Therefore, when the high temperature and high pressure treatment is incomplete, the obtained product will also contain sodium titanate films doped with E group elements;
  • the weight percentage content of the titanate nanotubes doped with the element E in the final product is higher than 50%;
  • the weight percentage content of the titanate nanotubes doped with the element E in the final product is higher than 90%
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing titanate nanotubes containing embedded E nanoparticles, characterized in that, by mixing the final product described in the sixth aspect or the titanic acid doped with E element elements Salt nanotubes are prepared by heat treatment.
  • the thermal stability of titanate nanotubes will be improved. Therefore, during the heat treatment process, by controlling appropriate heat treatment temperature and heat treatment time, the morphology of titanate nanotubes can be improved.
  • the phase composition is almost unchanged, and the doped E group elements, which are mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters, are diffused and aggregated through the elements to form intercalated in the titanate nanotubes. E nanoparticles.
  • E nanoparticles This kind of intercalated E nanoparticles is different from ordinary nanoparticles that are dominated by van der Waals adsorption (the nanoparticles adsorbed by van der Waals force can move and fall off), which can ensure that E nanoparticles can tightly bind to titanate nanoparticles. Tubes are embedded together (cannot move, fall off).
  • the E group elements mainly distributed in the form of atoms or atomic clusters are all aggregated into E nanoparticles, since the E nanoparticles are distributed in an island shape, they cannot be connected by the steric hindrance of titanate nanotubes, and it is difficult to continue to merge, grow up, so the particle size can remain roughly unchanged in the subsequent continuous heating process.
  • the titanate nanotube matrix is made due to the pinning effect of the E-component element atoms.
  • the thermal stability of the phase transition can be increased by up to 200 °C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the titanate nanotube matrix, to achieve the same phase transition during the heating process, the heat treatment temperature of titanate nanotubes doped with element E needs to be increased by at most 200 °C;
  • the temperature of the heat treatment is 350°C ⁇ 650°C;
  • the temperature of the heat treatment is 350°C ⁇ 600°C;
  • the temperature of the heat treatment is 350°C to 550°C;
  • time of the heat treatment is 2min ⁇ 96h
  • the time of the heat treatment is 5min ⁇ 10h
  • the time of the heat treatment is 10min ⁇ 5h;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles are mainly present in the titanate nanotubes by intercalation
  • the intercalation refers to a formation method of in-situ mosaic generation, that is, E nanoparticles diffuse, aggregate and grow by doping with E component elements, and then in-situ generate, which is expressed as a part of titanate nanotubes. Or fully wrapped, without relying on external additions or external mixing to make it embedded in it.
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 2nm-20nm;
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 3 nm to 15 nm;
  • the average length of the titanate nanotubes containing the embedded E nanoparticles is greater than 5 times the average outer diameter thereof;
  • the intercalation mode of the intercalated E nanoparticles includes that the entire volume is embedded and distributed in the titanate nanotubes, or a part of the volume is embedded and distributed in the titanate nanotubes, and also includes no embedded E nanoparticles. Bare volume fractions grown within titanate nanotubes.
  • the main chemical composition of the titanate nanotubes containing embedded E nanoparticles includes E element, Ti, O, and the corresponding cation elements in the alkali in the original preparation process, wherein the E element and Ti The molar ratio satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a titanate nanotube doped with an E element, characterized in that the final product described in the sixth aspect or the titanate doped with an E element
  • the nanotube is reacted with the acid solution, and the solid product is collected, that is, the titanate nanotube doped with the E component element is obtained.
  • the acid solution comprises at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, oxalic acid, picric acid, oleic acid, and perchloric acid.
  • the residual alkali adsorbed on the surface of the titanate nanotubes doped with the element E is first neutralized, and then the titanate nanotubes doped with the element E and the hydrogen ions in the acid solution are generated. ion exchange to obtain titanate nanotubes doped with E element.
  • the reaction can be carried out by a slightly higher concentration of acid than the solutions described in the three aspects;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.2mol/L;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.1mol/L;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.05mol/L;
  • the specific steps of reacting the titanate nanotube material doped with the E element element and the acid solution are as follows: dispersing the titanate nanotube material doped with the E element element in water, and stirring the titanate nanotube material under stirring.
  • the acid solution is gradually added into it, so that the pH value of the mixed solution continues to decrease, and finally the pH value of the mixed solution is controlled to be kept between 2 and 4.
  • separation, cleaning and drying are performed to obtain the doped group E. Elemental titanate nanotube material. Since the titanate nanotubes have a certain thickness when rolled, when the pH value is controlled between 2 and 4, that is, when the concentration of hydrogen ions in the mixed solution is 0.0001 mol/L to 0.01 mol/L, the entire process can be guaranteed.
  • the residual alkali adsorbed on the surface of the titanate nanotube material doped with the element E is first neutralized, and then the ion exchange between the cations in the titanate nanotube doped with the element E and the hydrogen ion in the acid solution occurs , and then obtain the titanate nanotube material doped with the E group element that does not react significantly with the acid solution.
  • the outer diameter of the titanate nanotube doped with the element E is 2nm-20nm;
  • the outer diameter of the titanate nanotubes doped with the element E is 3 nm to 15 nm;
  • the average length of the titanate nanotubes doped with the element E is greater than 5 times the average outer diameter
  • titanate nanotubes doped with the element E are mainly low crystallinity titanic acid
  • the chemical composition of the titanate nanotube doped with the element E includes E, Ti, O, and H; wherein, the molar ratio of the element E to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the titanate nanotube can be regarded as a single-phase material. That is to say, the E group elements, like Ti, H, O and other titanate nanotube constituent elements, are uniformly distributed in the titanate nanotubes as atoms or atomic clusters, and the E group elements have no nucleation length. Large becomes the E nanoparticle phase other than titanate nanotubes.
  • the obtained product can be understood as titanate nanotubes doped with E element elements, and can also be understood as titanate nanotubes with E element elements in solid solution, and it can also be considered as a new substance;
  • the E component elements are mainly embedded in the titanate nanotubes in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E component elements are mainly fixed in the form of atoms or atom clusters In titanate nanotubes, the diffusion movement of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E element, it will greatly affect the thermal stability of the titanate nanotube matrix. See related instructions later.
  • the phase of the titanate nanotube matrix is reduced.
  • the thermal stability can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the pure titanate nanotube matrix, to achieve the same phase transition during the heating process, the heat treatment temperature of the titanate nanotube doped with the element E needs to be increased by up to 200 °C;
  • the improved thermal stability of this phase transition further indicates that the E element is doped in the titanate nanotube matrix at the atomic or atomic cluster scale, rather than in the form of a distinct E nanoparticle phase. If there is an obvious E nanoparticle phase, the titanate nanotube matrix and the E nanoparticle phase are two separate phases, and the thermal stability of the titanate nanotube matrix will not be greatly affected.
  • the process of collecting the solid product includes a drying process
  • drying temperature is 50°C to 350°C;
  • drying temperature is 50°C to 300°C;
  • drying time is 1min ⁇ 24h
  • drying time is 5min ⁇ 2h
  • the drying time takes a low value range
  • the drying time takes a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the titanate nanotubes doped with the E component element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag 2 O atomic clusters combined with O;
  • the E component element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350 °C, the shape of the titanate nanotubes is generally unchanged, and the E element still remains inlaid and distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish between the atomic clusters containing the E element and the titanate nanotube matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, it is uniformly distributed in the matrix. .
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a titanate nanotube containing embedded E nanoparticles, characterized in that, by mixing the product described in the eighth aspect or the titanate nanotube doped with E element Prepared by heat treatment.
  • the thermal stability of titanate nanotubes will be improved due to the presence of doping E element elements, and the structural transformation of titanate nanotubes under heating will be hindered by E element elements.
  • controlling the appropriate heat treatment temperature and heat treatment time can ensure that the composition and morphology of the titanate nanotubes are basically unchanged, and the doping is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters.
  • the E group elements are diffused and aggregated to generate E nanoparticles embedded in the titanate nanotubes.
  • This kind of intercalated E nanoparticles is different from the ordinary nanoparticles that are dominated by van der Waals adsorption (the van der Waals adsorbed nanoparticles can move and fall off), which can ensure that the E nanoparticles can tightly bind to the titanate nanotubes. Embedded together (cannot move, fall off).
  • the E group elements mainly distributed in the form of atoms or atomic clusters are all aggregated into E nanoparticles, due to the island-like distribution of E nanoparticles, they cannot be connected due to the steric hindrance of the titanate nanotube matrix, and it is difficult to continue to merge, grow up, so the particle size can remain roughly unchanged in the subsequent continuous heating process.
  • the temperature of the heat treatment is 350°C ⁇ 650°C;
  • the temperature of the heat treatment is 350°C ⁇ 600°C;
  • the temperature of the heat treatment is 350°C to 550°C;
  • the heat treatment temperature can ensure that the doped E element elements are diffused and aggregated through the elements to generate E nanoparticles embedded in the titanate nanotubes, and at the same time, the morphology of the titanate nanotube matrix can be maintained without obvious changes.
  • the phase of the titanate nanotube matrix is reduced.
  • the thermal stability can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the pure titanate nanotube matrix, to achieve the same phase transition during the heating process, the heat treatment temperature of the titanate nanotube doped with the element E needs to be increased by up to 200 °C;
  • time of the heat treatment is 5min ⁇ 96h
  • the time of the heat treatment is 5min ⁇ 10h
  • the time of the heat treatment is 10min ⁇ 5h;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • the E nanoparticles mainly exist in the titanate nanotubes by means of intercalation
  • the intercalation refers to a formation method of in-situ mosaic generation, that is, E nanoparticles diffuse, aggregate and grow by doping with E component elements, and then in-situ generate, which is manifested as being partially or partially formed by titanate nanotubes. It is all wrapped, and it is embedded in it without relying on external addition or external mixing.
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 2nm-20nm;
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 3 nm to 15 nm;
  • the average length of the titanate nanotubes containing the embedded E nanoparticles is greater than 5 times the average outer diameter thereof;
  • the intercalation mode of the intercalated E nanoparticles includes that the entire volume is embedded in the titanate nanotubes, or part of the volume is embedded in the titanate nanotubes, and also includes no intercalation in the titanate nanotubes. Exposed volume fractions among titanate nanotubes.
  • the chemical composition of the titanate nanotubes containing embedded E nanoparticles includes E element elements, Ti, H, and O elements; wherein, the molar ratio of E element elements to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing crystalline TiO2 nanotubes/rods containing embedded E nanoparticles, characterized in that, by mixing the products described in the eighth aspect or doped with E element elements.
  • the titanate nanotubes, or the products described in the ninth aspect or the titanate nanotubes containing embedded E nanoparticles are prepared by heat treatment.
  • the time of the heat treatment is 1min ⁇ 48h;
  • the heat treatment time is 10min ⁇ 3h;
  • the temperature of the heat treatment is 600°C to 1500°C;
  • the temperature of the heat treatment is 600°C to 1000°C;
  • the material to be heat treated is the titanate nanotubes doped with the E element in the eighth aspect
  • the diffusion and aggregation of the E element doped first occur, resulting in intercalation.
  • E nanoparticles in titanate nanotubes; at this time, the material state is consistent with the titanate nanotubes containing embedded E nanoparticles described in the ninth aspect.
  • the titanate nanotubes With the increase of heat treatment temperature and time, the titanate nanotubes further transformed into crystalline TiO2 nanotubes/rods.
  • the crystalline TiO 2 nanotube/rod means that the shape of the crystalline TiO 2 nanotube/rod includes at least one of a tube and a rod; when the inner diameter of the tube is reduced to zero, it is the shape of a rod;
  • phase composition of the crystalline TiO 2 nanotubes/rods of the embedded E nanoparticles includes at least one of brookite-type TiO 2 , anatase-type TiO 2 , and rutile-type TiO 2 .
  • some product states corresponding to the heat treatment temperature and time may have two crystal forms coexisting, such as "titanate nanotubes containing intercalated E nanoparticles” and “intercalated E nanoparticles containing titanate nanotubes”.
  • Tianate nanotubes containing intercalated E nanoparticles and “intercalated E nanoparticles containing titanate nanotubes”.
  • Coexistence of “Anatase TiO2 Nanotubes/Rods”, and “Anatase TiO2 Nanotubes/Rods Containing Intercalated E Nanoparticles” and “Rutile TiO2 Nanotubes/Rods Containing Intercalated E Nanoparticles” Great" coexistence.
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5nm ⁇ 7.5nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles mainly exist in the crystalline TiO 2 nanotubes/rods by intercalation
  • the outer diameter of the crystalline TiO 2 nanotubes/rods containing embedded E nanoparticles is 2nm-25nm;
  • the outer diameter of the crystalline TiO 2 nanotubes/rods containing embedded E nanoparticles is 3nm-20nm;
  • the average length of the crystalline TiO 2 nanotubes/rods containing embedded E nanoparticles is greater than 3 times the average outer diameter thereof;
  • the intercalation manner of the intercalated E nanoparticles includes that the entire volume is embedded in the TiO 2 nanotubes/rods, or part of the volume is embedded and distributed in the TiO 2 nanotubes/rods, and also includes no Part of the exposed volume embedded in TiO2 nanotubes/rods.
  • the chemical composition of the crystalline TiO 2 nanotubes/rods embedded in the E nanoparticles includes E element, Ti, O; wherein, the molar ratio of E element to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a nano-titanate thin film material doped with an E element, by including the preparation of the E element doped nano titanate thin film material described in one aspect.
  • the preparation method is characterized as described in one aspect thereof.
  • the present invention also relates to a nano-titanate thin film material containing embedded E nanoparticles, by including the preparation of the nano-titanate thin film material containing embedded E nanoparticles described in the second aspect The method is prepared, and its characteristics are as described in its two aspects.
  • the present invention also relates to a nano-titanate thin film material doped with E group element, which is prepared by a method for preparing a nano-titanate film material doped with E group element described in the third aspect. , which is characterized as described in its three aspects.
  • the present invention also relates to a nano-titanate film material containing embedded E nanoparticles, which is prepared by including the method for preparing a nano-titanate film material containing embedded E nanoparticles as described in the fourth aspect. , which is characterized as described in its four aspects.
  • the present invention also relates to a nano-TiO 2 flake powder containing embedded E nanoparticles, which is prepared by including the method for preparing a nano-TiO 2 flake powder containing embedded E nanoparticles as described in the fifth aspect. , which is characterized as described in its five aspects.
  • the present invention also relates to a titanate nanotube doped with an E element, prepared by including the preparation method of the E element doped titanate nanotube described in the sixth aspect , which is characterized as described in its six aspects.
  • the present invention also relates to a titanate nanotube containing embedded E nanoparticles, prepared by comprising the preparation method of a titanate nanotube doped with an E element as described in the seventh aspect , which is characterized as described in its seven aspects.
  • the present invention also relates to a titanate nanotube doped with an E element, prepared by comprising the preparation method of a titanate nanotube doped with an E element described in the eighteenth aspect.
  • the characteristics are as described in its eight aspects.
  • the present invention also relates to a titanate nanotube containing embedded E nanoparticles, which is prepared by including the method for preparing a titanate nanotube containing embedded E nanoparticles as described in the ninth aspect.
  • the characteristics are as described in its nine aspects.
  • the present invention also relates to a crystalline TiO 2 nanotube/rod containing embedded E nanoparticles, by including the crystalline TiO 2 nanotube containing embedded E nanoparticles as described in its tenth aspect
  • the preparation method of the rod is prepared, and its characteristics are as described in its tenth aspect.
  • the present invention also relates to another method for preparing a titanate nanotube doped with an E element, which is characterized in that it is prepared by the following steps:
  • Step 1) providing an initial alloy, the initial alloy includes T-type elements, Ti and E element elements; wherein, the T-type elements include at least one of Al and Zn; and the phase composition of the initial alloy includes a solid solution of E The T-Ti intermetallic compound of the component element; wherein, the atomic percentage content of Ag in the E component element is 50% to 100%, and the E component element solid-dissolved in the T-Ti intermetallic compound in the initial alloy and the The molar ratio of Ti is in the range of 0 ⁇ C E /C Ti ⁇ 0.25;
  • Step 2 sealing the initial alloy and the alkaline solution in a closed container, then heating the closed reaction system to T 2 and keeping the temperature for a period of time; wherein, 100° C. ⁇ T f solution ⁇ T 2 ; T f solution is normal The boiling point temperature of the alkali solution participating in the reaction is reduced under pressure, and the pressure in the reaction vessel is higher than normal pressure at T 2 temperature;
  • Step 3 lowering the temperature of the closed container and returning the pressure to normal pressure, collecting the final solid product, that is, obtaining the titanate nanotube doped with the E element.
  • step 1) and the detailed description about the step 1) are completely consistent with the step 1 and its detailed description described in one aspect (a preparation method of a nano-titanate thin film material doped with an E element element) (see part of the steps described in one of its aspects above);
  • the initial alloy and alkali solution are sealed in a closed container, and then the temperature of the closed reaction system is heated to a high temperature and high pressure state of T 2 and kept for a period of time; wherein, 100 ° C ⁇ T f solution ⁇ T 2 ;
  • the alkaline solution contains at least one of NaOH, KOH, LiOH, RbOH, Ba(OH) 2 , Ca(OH) 2 , and Sr(OH) 2 solutions;
  • the solvent in the alkaline solution contains water; preferably, the solvent in the alkaline solution is water;
  • the concentration of the alkali in the alkali solution is 5.1-25 mol/L;
  • the concentration of the alkali in the alkali solution is 5.1-15 mol/L;
  • the alkali concentration in the alkali solution is 7-15 mol/L; as a further preference, the alkali concentration in the alkali solution is 7-12 mol/L;
  • the concentration of the alkali in the alkali solution is 10-15 mol/L;
  • the concentration of the alkali refers to the concentration of OH - in the alkali
  • the alkali in the alkali solution reacted with the initial alloy is an excess dose, and the volume of the alkali solution is more than 5 times the volume of the initial alloy, so that the reaction can be carried out at a higher alkali concentration all the time;
  • volume of the alkaline solution is more than 10 times the initial alloy volume
  • volume of the alkaline solution is more than 20 times the initial alloy volume
  • reaction temperature of the initial alloy and the alkaline solution is the temperature of the alkaline solution
  • the reaction between the initial alloy and the alkaline solution is very slow.
  • the T-type elements in the initial alloy react with the alkaline solution.
  • the hydrogen gas is also sealed in an airtight container, which increases the pressure of the airtight container.
  • the closed reaction system includes an initial alloy, an alkali solution, and a closed container;
  • the temperature of the closed reaction system is the temperature corresponding to the initial alloy, the alkali solution, and the closed container;
  • the heating rate of heating the temperature of the initial alloy and the alkaline solution in the airtight container from normal temperature to T2 temperature is greater than 10°C/min;
  • the time for heating the temperature of the initial alloy and the alkaline solution in the airtight container from normal temperature to T2 temperature is less than 30min;
  • the holding time of the closed reaction system at the temperature T2 is 0.1h ⁇ 20h; preferably 0.1h ⁇ 2h , preferably 0.1h ⁇ 1h, preferably 0.1h ⁇ 0.5h, more preferably 0.2h ⁇ 0.4h;
  • the incubation time can also be selected as a longer time value.
  • the initial alloy and the alkaline solution in the airtight container undergo a hydrogen evolution and de-T reaction in the heating stage from room temperature to T 2 temperature, and the nanoporous titanate intermediate product doped with the E element is mainly generated;
  • the conversion of the nanoporous titanate intermediate product doped with the element E into the titanate nanotube doped with the element E occurs in the temperature holding stage of the closed reaction system T2 ;
  • the pressure of the closed reaction system is higher than normal pressure
  • the pressure of the closed reaction system is the superposition of the pressure corresponding to the closed system solution at the temperature T and the pressure corresponding to the hydrogen produced by the hydrogen evolution reaction at the temperature T;
  • the outer diameter of the titanate nanotube doped with the element E is 3 nm to 25 nm;
  • the outer diameter of the titanate nanotube doped with the element E is 3 nm to 20 nm;
  • the outer diameter of the titanate nanotube doped with the element E is 4 nm to 15 nm;
  • the average length of the titanate nanotube doped with the element E is greater than 5 times the average outer diameter thereof.
  • titanate nanotubes doped with the element E are mainly low crystallinity titanates
  • the cation elements in the titanate nanotubes are derived from the corresponding cation elements in the alkali;
  • the chemical composition of the titanate nanotubes doped with the E element includes E, Ti, O, and the corresponding cationic elements in the alkali; wherein, the molar ratio of the E element to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25; for example, when the base is NaOH, and the corresponding cation element in the base is Na, the chemical composition of the titanate nanotube doped with the element E includes E, Ti, O, and Na elements.
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the titanate nanotube can be regarded as a single-phase material. That is to say, the E group elements are the same as the constituent elements of titanate nanotubes, and they are uniformly distributed in the titanate nanotubes as atoms or atomic clusters, and the E group elements do not nucleate and grow into titanium removal E nanoparticle phase other than the acid phase.
  • the obtained product can be understood as titanate nanotubes doped with E element elements, or as titanate nanotubes with E element elements in solid solution, and it can also be understood as a brand new substance, Such as titanate (silver) salt nanotubes;
  • the E group elements are mainly distributed in the titanate nanotubes in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E group elements are mainly distributed in the form of atoms or atom clusters.
  • the diffusion movement of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E element, it will greatly affect the thermal stability of the titanate nanotubes sex.
  • the process of collecting the final solid product in the step 3 includes drying the final solid product, that is, to obtain powdery titanate nanotubes doped with E element.
  • drying temperature is 50°C to 350°C;
  • drying temperature is 50°C to 300°C;
  • drying temperature is 50°C to 250°C;
  • drying time is 1min ⁇ 24h
  • drying time is 5min ⁇ 2h
  • the drying time can take a low value range
  • the drying time can take a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the titanate nanotubes doped with the E component element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotube doped with the element E contains Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag 2 O atomic clusters combined with O;
  • the E component element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters
  • the E group element is mainly distributed in the titanate nanotube in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350 °C, the shape of the titanate nanotubes is generally unchanged, and the E element still remains inlaid and distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish the atomic clusters containing the E element from the titanate nanotube matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, it is uniformly distributed in the matrix. middle.
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms
  • the conversion process of the nanoporous titanate intermediate product doped with the E component element to the titanate nanotube doped with the E component element will also undergo the formation of nanometer titanic acid doped with the E component element.
  • the process of the salt film therefore, when the high temperature and high pressure treatment is incomplete, the final product described in step 3) may also contain the nano-titanate film doped with the element E;
  • the weight percentage content of the titanate nanotubes doped with the element E in the final product is higher than 50%;
  • the weight percentage content of the titanate nanotubes doped with the element E in the final product is higher than 90%
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a titanate nanotube doped with an E-component element, characterized in that, by doping the final product described in the twenty-first aspect or doped with an E-component element The obtained titanate nanotubes are reacted with an acid solution, and solid products are collected to obtain titanate nanotubes doped with E group elements.
  • the acid solution comprises at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, oxalic acid, picric acid, oleic acid, and perchloric acid.
  • the residual alkali adsorbed on the surface of the titanate nanotubes doped with the element E is first neutralized, and then the titanate nanotubes doped with the element E and the hydrogen ions in the acid solution are generated. ion exchange to obtain titanate nanotubes doped with E element.
  • the reaction can be carried out by a slightly higher concentration of acid than the solutions described in the three aspects;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.2mol/L;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.1mol/L;
  • the hydrogen ion concentration in the acid solution is 0.001mol/L ⁇ 0.05mol/L;
  • the specific steps of reacting the titanate nanotube material doped with the E element element and the acid solution are as follows: dispersing the titanate nanotube material doped with the E element element in water, and stirring the titanate nanotube material under stirring.
  • the acid solution is gradually added into it, so that the pH value of the mixed solution continues to decrease, and finally the pH value of the mixed solution is controlled to be kept between 2 and 4.
  • separation, cleaning and drying are performed to obtain the doped group E. Elemental titanate nanotube material. Since the titanate nanotubes have a certain thickness when rolled, when the pH value is controlled between 2 and 4, that is, when the concentration of hydrogen ions in the mixed solution is 0.0001 mol/L to 0.01 mol/L, the entire process can be guaranteed.
  • the residual alkali adsorbed on the surface of the titanate nanotube material doped with the element E is first neutralized, and then the ion exchange between the cations in the titanate nanotube doped with the element E and the hydrogen ion in the acid solution occurs , and then obtain the titanate nanotube material doped with the E group element that does not react significantly with the acid solution.
  • the outer diameter of the titanate nanotubes doped with the element E is 3 nm to 25 nm;
  • the outer diameter of the titanate nanotube doped with the element E is 3 nm to 20 nm;
  • the outer diameter of the titanate nanotube doped with the element E is 4 nm to 15 nm;
  • the average length of the titanate nanotubes doped with the element E is greater than 5 times the average outer diameter
  • titanate nanotubes doped with the element E are mainly low crystallinity titanic acid
  • the chemical composition of the titanate nanotube doped with the element E includes E, Ti, O, and H; wherein, the molar ratio of the element E to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the E component elements are mainly embedded in the titanate nanotubes in the form of atoms or atom clusters; the key feature of the mosaic distribution is that the E component elements are mainly fixed in the form of atoms or atom clusters In titanate nanotubes, the diffusion motion of atoms can only occur when a certain temperature is reached; at the same time, due to the pinning effect of the E element, it will greatly affect the thermal stability of the titanate nanotube matrix.
  • the process of collecting the solid product includes a drying process
  • drying temperature is 50°C to 350°C;
  • drying temperature is 50°C to 300°C;
  • drying time is 1min ⁇ 24h
  • drying time is 5min ⁇ 2h
  • the drying time can take a low value range
  • the drying time can take a high value range
  • the element of E is mainly Ag, according to the characteristics of Ag element, it is easy to be oxidized to Ag 2 O after drying below 180°C, while Ag 2 O is decomposed into Ag when it is dried above 180°C. Therefore:
  • the titanate nanotubes doped with the E component element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag atoms or atomic clusters combined with O;
  • the titanate nanotubes doped with the E element element contain Ag 2 O atomic clusters combined with O;
  • the E component element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters.
  • the degree of bonding with Ag and O can be controlled by controlling the drying temperature and drying time.
  • the drying temperature is lower than 350 °C, the shape of the titanate nanotubes is generally unchanged, and the E element still remains inlaid and distributed in the titanate nanotubes in the form of atoms or atomic clusters;
  • the size of the atomic cluster containing the E component element is less than 1.5 nm;
  • the size of the atomic cluster containing the E component element is less than 1 nm, and when the atomic cluster containing the E component element is less than 1 nm, the size of the atomic cluster is insufficient to form E-phase nanoparticles with distinguishable phase interfaces, And it is difficult to distinguish between the atomic clusters containing the E element and the titanate nanotube matrix through the difference in contrast through observation means such as transmission electron microscopy (TEM); therefore, from this scale, it is uniformly distributed in the matrix. .
  • TEM transmission electron microscopy
  • the E group element is mainly distributed in the titanate nanotubes in the form of atoms
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing a titanate nanotube containing embedded E nanoparticles, characterized in that, by mixing the product described in the twenty-second aspect or doped with E element elements. Titanate nanotubes were prepared by heat treatment.
  • the thermal stability of titanate nanotubes will be improved due to the presence of doping E element elements, and the structural transformation of titanate nanotubes under heating will be hindered by E element elements.
  • controlling the appropriate heat treatment temperature and heat treatment time can ensure that the composition and morphology of the titanate nanotubes are basically unchanged, and the doping is mainly distributed in the titanate nanotubes in the form of atoms or atomic clusters.
  • the E group elements are diffused and aggregated through the elements to generate E nanoparticles embedded in the titanate nanotubes.
  • This kind of intercalated E nanoparticles is different from the ordinary nanoparticles that are dominated by van der Waals adsorption (the van der Waals adsorbed nanoparticles can move and fall off), which can ensure that the E nanoparticles can tightly bind to the titanate nanotubes. Inlaid together (cannot move, fall off).
  • the E group elements mainly distributed in the form of atoms or atomic clusters are all aggregated into E nanoparticles, due to the island-like distribution of E nanoparticles, they cannot be connected due to the steric hindrance of the titanate nanotube matrix, and it is difficult to continue to merge, grow up, so the particle size can remain roughly unchanged in the subsequent continuous heating process.
  • the temperature of the heat treatment is 350°C ⁇ 650°C;
  • the temperature of the heat treatment is 350°C ⁇ 600°C;
  • the temperature of the heat treatment is 350°C to 550°C;
  • the heat treatment temperature can ensure that the doped E element elements are diffused and aggregated through the elements to generate E nanoparticles embedded in the titanate nanotubes, and at the same time, the morphology of the titanate nanotube matrix can be maintained without obvious changes.
  • the phase of the titanate nanotube matrix is reduced.
  • the thermal stability can be increased by up to 200°C; and the higher the E content, the higher the thermal stability of the phase transition. That is, compared with the pure titanate nanotube matrix, to achieve the same phase transition during the heating process, the heat treatment temperature of the titanate nanotube doped with the element E needs to be increased by up to 200 °C;
  • time of the heat treatment is 5min ⁇ 96h
  • the time of the heat treatment is 5min ⁇ 10h
  • the time of the heat treatment is 10min ⁇ 5h;
  • the size of the E nanoparticles is 1.5 nm to 15 nm;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • the E nanoparticles mainly exist in the titanate nanotubes by means of intercalation
  • the intercalation refers to a form of in-situ mosaic generation, that is, E nanoparticles are generated in-situ by doping with E element elements, which are diffused, aggregated, and grown in situ, which are expressed as being partially or fully encapsulated by titanate nanotubes. , without relying on external addition or external mixing to make it embedded in it.
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 3 nm to 25 nm;
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 3 nm to 20 nm;
  • the outer diameter of the titanate nanotubes containing embedded E nanoparticles is 4 nm to 15 nm;
  • the average length of the titanate nanotubes containing the embedded E nanoparticles is greater than 5 times the average outer diameter thereof;
  • the intercalation mode of the intercalated E nanoparticles includes that the entire volume is embedded and distributed in the titanate nanotubes, or a part of the volume is embedded and distributed in the titanate nanotubes (also includes no intercalation in the titanate nanotubes). exposed volume fractions among titanate nanotubes).
  • the chemical composition of the titanate nanotubes containing embedded E nanoparticles includes E element elements, Ti, H, and O elements; wherein, the molar ratio of E element elements to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to a method for preparing crystalline TiO 2 nanotubes/rods containing embedded E nanoparticles, characterized in that the product described in the twenty-second aspect is doped with E.
  • the titanate nanotubes of constituent elements, or the products described in aspect 23 or the titanate nanotubes containing embedded E nanoparticles are prepared by heat treatment.
  • the time of the heat treatment is 1min ⁇ 48h;
  • the heat treatment time is 10min ⁇ 3h;
  • the temperature of the heat treatment is 600°C to 1000°C;
  • the diffusion and aggregation of the E element doped first occur to generate E nanoparticles embedded in titanate nanotubes; at this time, the material state is consistent with the titanate nanotubes containing embedded E nanoparticles described in aspect 23.
  • the titanate nanotubes With the increase of heat treatment temperature and time, the titanate nanotubes further transformed into crystalline TiO2 nanotubes/rods.
  • the crystalline TiO 2 nanotube/rod means that the shape of the crystalline TiO 2 nanotube/rod includes at least one of a tube and a rod; when the inner diameter of the tube is reduced to zero, it is the shape of a rod;
  • phase composition of the crystalline TiO 2 nanotubes/rods of the embedded E nanoparticles includes at least one of brookite-type TiO 2 , anatase-type TiO 2 , and rutile-type TiO 2 .
  • the size of the E nanoparticles is 1.5 nm to 15 nm;
  • the size of the E nanoparticles is 1.5 nm to 10 nm;
  • the size of the E nanoparticles is 1.5 nm to 5 nm;
  • E nanoparticles mainly exist in the crystalline TiO 2 nanotubes/rods by intercalation
  • the average length of the crystalline TiO 2 nanotubes/rods containing embedded E nanoparticles is greater than 3 times the average outer diameter thereof;
  • the outer diameter of the TiO 2 nanotubes/rods containing embedded E nanoparticles is 5nm-30nm;
  • the outer diameter of the TiO 2 nanotubes/rods containing embedded E nanoparticles is 5nm-25nm;
  • the outer diameter of the TiO 2 nanotubes/rods containing embedded E nanoparticles is 7nm-20nm;
  • the intercalation manner of the intercalated E nanoparticles includes that the entire volume is embedded in the TiO 2 nanotubes/rods, or part of the volume is embedded and distributed in the TiO 2 nanotubes/rods, and also includes no Part of the exposed volume embedded in TiO2 nanotubes/rods.
  • the chemical composition of the crystalline TiO 2 nanotubes/rods embedded in the E nanoparticles includes E element, Ti, O; wherein, the molar ratio of E element to Ti satisfies 0 ⁇ C E /C Ti ⁇ 0.25;
  • the atomic percentage content of Ag in the E component element is 50% to 100%; further, the E component element is mainly Ag; further, the E component element is Ag;
  • the E component elements are not all Ag, the E component elements also include other elements that can be solid-dissolved in Ag or T-Ti intermetallic compounds;
  • the E component elements when the E component elements are not all Ag, the E component elements further include at least one of Au, Cu, Pt, Pd, Ru, Rh, Os, and Ir.
  • the present invention also relates to the product material prepared by the preparation method described in any one of its one aspect to its tenth aspect, or its preparation according to any one of its twenty-first aspect to its twenty-fourth aspect.
  • the product material prepared by the method, or the material according to any one of the eleventh aspect to the twentieth aspect thereof includes polymer-based nanocomposite materials, resin-based composite materials, ceramic materials, photocatalytic materials, hydrophobic materials, and sewage degradation. Applications in materials, bactericidal coatings, anti-corrosion coatings, marine coatings.
  • the present invention also relates to the application of the nano-titanate thin film material containing doped Ag element prepared by the preparation method described in the above three aspects, characterized in that the nano-titanate thin film material containing doped Ag element is polymerized with The composite coating of nano-titanic acid film and polymer containing doped Ag element is then prepared; in the composite coating, the Ag element is inlaid and dispersed in the nano-titanic acid film in the form of atoms or atomic clusters, while the nano-titanium The acid film is dispersed in the polymer; the polymer composite coating can be applied to the fields including hydrophobic materials, sewage degradation materials, bactericidal coating materials, anti-corrosion coatings, marine equipment and marine coatings.
  • the polymer includes at least one of polymer materials, resin materials, and coatings;
  • the nano-titanate film material containing doped Ag element is mixed with PDMS (called polydimethylsiloxane), and then prepared into Ag element doped Composite coating of nano-titanate film and PDMS.
  • PDMS polydimethylsiloxane
  • the Ag element in the coating is inlaid and dispersed in the nano-titanate film in the form of atoms or atomic clusters, which can maximize the bactericidal properties of the Ag element and the nano-titanate film, and at the same time enhance the hydrophobicity of the PDMS coating.
  • the composite coating of the Ag element-doped nano-titanic acid and PDMS can be applied to materials including hydrophobic materials, sewage degradation materials, bactericidal coating materials, anti-corrosion coatings, and marine equipment. And marine coatings and other fields.
  • the twenty-sixth aspect also relates to the product material prepared by the preparation method described in any one of the one aspect to the tenth aspect thereof, or the preparation described in any one of the twenty-first aspect to the twenty-fourth aspect thereof.
  • the application as a bactericidal spray is characterized in that the above-mentioned Ag-containing product material or material is mixed with other liquid spray components, and sprayed onto the surfaces of furniture, utensils, fabrics and walls together through the spray carrier to achieve antibacterial effect. ;
  • the application as an antifouling paint is characterized in that the above-mentioned Ag-containing product material or material is used to replace the bactericidal and antifouling components (such as cuprous oxide powder) in traditional antifouling paints (such as antifouling paint) to achieve antifouling pollution effect;
  • the Ag exists in at least one of Ag, Ag 2 O, and AgO.
  • the present invention also relates to the product material prepared by the preparation method described in any one of its one aspect to its tenth aspect, or its preparation according to any one of its twenty-first aspect to its twenty-fourth aspect.
  • the Ag exists in at least one of Ag, Ag 2 O, and AgO.
  • the Ti-T intermetallic compound with E element is solid-dissolved near the boiling temperature of the alkaline solution under normal pressure.
  • a short-time reaction with a hot alkali solution realizes the normal-pressure and efficient preparation of the nano-titanate thin film material doped with the E group element.
  • the matrix in the solid product is changed from a thin film to a tubular shape, and the titanate nanotubes doped with the E component element are further made. , Efficient, short-term, and low-cost preparation of titanate nanotubes doped with E element, titanate nanotubes containing embedded E nanoparticles, and TiO2 nanotubes/rods containing embedded E nanoparticles became possible.
  • the strong alkali hydrothermal method is a relatively mature process for preparing nano-titanate, nano-titanic acid and nano-TiO 2
  • the reaction requires a high-pressure reaction vessel, generally using nano-TiO 2 and high-concentration strong alkali (such as NaOH solution) ) as raw material, carry out long-term hydrothermal synthesis under high temperature conditions, and react to obtain nano-titanate (such as sodium titanate), and generally obtain titanate nanotubes after neutralization and pickling.
  • the preparation methods of sodium titanate reported in other literatures also include: weighing NaOH and TiO 2 according to the quantitative relationship, then transferring them into a polytetrafluoroethylene autoclave, mixing and keeping the temperature at 230 ° C for 48h to 96h, and then cooling to After taking out, washing and drying at room temperature, sodium titanate nanotubes are obtained, and further pickling is performed to obtain titanate nanotubes.
  • the characteristics of the traditional strong alkali hydrothermal method are: 1) using TiO 2 as the titanium source; 2) conducting in a high-pressure reaction vessel, requiring closed and high-pressure conditions; 3) conducting at a higher temperature; 4) requiring a high Long reaction time, calculated in hours; 5)
  • the product obtained is generally titanate nanotubes or titanate nanotubes.
  • the present invention prepares the thin-film titanate matrix and its follow-up products in one to five aspects.
  • a strong alkali solution is also used, it is significantly different from the traditional strong alkali hydrothermal method: 1) It mainly uses solid The Ti-T intermetallic compound dissolved with the E element is a titanium source; 2) the reaction is carried out in an open container and normal pressure, and a high-pressure closed container is not required; 3) it is preferably carried out at the boiling point or the vicinity of the boiling temperature of the alkaline solution, without It needs to be carried out at a very high temperature, and the upper limit of the temperature is the boiling point of the alkaline solution, which is very easy to precisely control; 4) The reaction can be completed in less than a minute or even a few seconds; 5) The obtained product is doped with E element elements Nano-titanate thin film materials, and on this basis, nano-titanate thin film materials containing embedded E nanoparticles, nano-titanate thin film materials doped with E element elements,
  • tubular nano-titanate and its subsequent products according to the sixth to the tenth aspects of the present invention, although the reaction of high temperature and high pressure is also adopted, the reactant added to the high-pressure reaction vessel (as described in the sixth aspect) has been prepared.
  • the Ti-T intermetallic compound in which the E element is dissolved in a solid solution is a powder or a strip with a diameter or thickness of several tens of microns, due to the special environment existing in the alkaline solution at the boiling point temperature, under normal pressure and After a few minutes or even seconds of reaction near the boiling point of the alkaline solution, the nano-titanate film material doped with the E group element can be formed, which greatly shortens the preparation time of the film-like titanate matrix.
  • the tubular titanate matrix needs to be further prepared, due to the ultra-thin thickness of the nano-titanate film doped with the E group element, it only needs a short period of high temperature and high pressure treatment to turn it into the doped E group.
  • elemental titanate nanotubes which in turn greatly shortens the preparation time of the corresponding tubular titanate matrix. Therefore, whether it is to prepare a film-like titanate matrix or a tubular titanate matrix doped with E element, the total time of the reaction time at normal pressure and the reaction time under high pressure in the whole preparation process of the present invention can be calculated in minutes (much lower than 1 h), still far lower than the preparation time required by other reported or disclosed preparation methods, which has extremely obvious positive significance.
  • the solution composition of the reaction system has obvious particularity, which is embodied in: in the temperature range below the boiling point temperature of the alkali solution, the solvent mainly exists in liquid water, and the reaction The state of the system is very common; but at or near the boiling point temperature of the alkaline solution, in addition to liquid water and gaseous water produced by boiling, the solvent also contains critical water that is undergoing transformation from liquid water to gaseous water.
  • the reaction system is in a special environment of full boiling and vaporizing.
  • the content and state of atmospheric ambient gases (oxygen, nitrogen) dissolved in the water are also very special (because the large amount of hydrogen generated by the reaction of boiling water vapor, T and alkali has changed the saturated content of dissolved gases in the water. pressure conditions).
  • oxygen, nitrogen oxygen
  • the Ti-T intermetallic compound with the E element in solid solution reacts with the concentrated alkali solution, and a large amount of hydrogen will be generated in the process of removing T in the alloy.
  • the temperature control can be extremely precise, which makes the control of the product morphology and composition extremely precise and easy.
  • the design and application of the present invention to this special reaction environment skillfully regulate the composition and morphology of the reaction product, and greatly shorten the preparation time of the target product.
  • the concentrated alkaline solution used in the present invention has two main functions: 1) removing T in the Ti-T intermetallic compound in which the E component element is solid-dissolved through a dealloying reaction, so that the E atom and the Ti atom are separated from the Ti-T intermetallic compound. freed from the compound.
  • the Ti-T intermetallic compound with the E component element in solid solution reacts with the strong alkali solution at or near the boiling point temperature of the solution, under a special reaction environment, the first thing that occurs is T and the strong alkali solution.
  • the extremely rapid dealloying reaction produces water-soluble T salts and hydrogen.
  • T enters the solution in the form of T salt the atoms of the element E and Ti atoms in the Ti-T intermetallic compound with the element E in the solid solution are released, and Ti can easily interact with elements such as O Combined, and further reconstructed by shape and composition to form a titanate film, this process can be completed in seconds or minutes as short as possible.
  • the Ti-O bond structure frees Ti and then recombine with O and other elements in a new and specific way to form titanate.
  • a comparative test is provided in the embodiment of the present invention.
  • anatase-type nano-TiO 2 with a particle size of 50-100 nm is used as the Ti source, after 10 min of reaction at the boiling temperature of 10 mol/L sodium hydroxide aqueous solution, it is still a particle size of 50-100nm anatase type nano-TiO 2 (it can be estimated that the size of the particle size does not change by the half width of the XRD peak), the reactant hardly changes. Therefore, for the rapid and short-time preparation of the reaction product, in addition to the special environment generated by the boiling point temperature of the solution, the selection of the Ti-T intermetallic compound titanium source with the E element in solid solution is also very important.
  • the reaction between the initial alloy and the alkaline solution at a lower temperature near room temperature is the same as the temperature range of the solution in the present invention in the range of 60°C ⁇ T 1 ⁇ T f , especially the high temperature section of this temperature range (100°C ⁇ T 1 ⁇ T f solution ), the reaction is completely different, and the product morphology is completely different.
  • the invention creatively invents the preparation of two-dimensional nano-titanate films doped with E-component elements and two-dimensional nano-titanate films doped with E-component elements by using the initial alloy of T-Ti intermetallic compounds with E-component elements in solid solution. Preparation method of titanate thin film material.
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f
  • the alkaline solution is mainly composed of NaOH aqueous solution
  • the obtained product is doped with E component
  • the yield of the target product of elemental nano-titanate thin films is low.
  • KOH is contained in the alkaline solution
  • the target nano-titanate film matrix doped with the E element element contains the nano-potassium titanate film matrix
  • the efficiency of the nano-titanate film doped with the E element element in the product can be greatly improved.
  • the yield of the target product of the nano-potassium titanate thin film doped with the E element element in the obtained product is not less than 50%; when the reaction temperature When the reaction temperature is 71 °C, the yield of the target product of the nano-potassium titanate film doped with the E component element in the obtained product is not less than 65%; when the reaction temperature is 81 °C, the obtained product is doped with the E component element.
  • the yield of the target product of the potassium titanate film is not less than 75%; when the reaction temperature is 91 ° C, the yield of the target product of the nano-potassium titanate film doped with the E element in the obtained product is not less than 85%; when When the reaction temperature is 96° C., the yield of the target product of the nano-potassium titanate thin film doped with the E component element in the obtained product is not less than 90%;
  • the reaction temperature is 60°C ⁇ T 1 ⁇ T f solution
  • the high value range of the temperature range is 100°C ⁇ T 1 ⁇ T f solution
  • the obtained nano-titanate film doped with E element in the product The yields of titanate are very high, and the product morphology is completely different from the original initial alloy powder particle or strip shape; for example, when the reaction temperature is higher than 101 °C, high E element doped nano titanate can be obtained
  • the yield of the film is generally 95% to 100%; when the reaction temperature is the boiling point Tf solution of the alkaline solution under normal pressure, a higher yield of the nano-titanate film doped with E element elements can be obtained. , the yield is generally 99% to 100%;
  • the preparation time of the product can be greatly shortened in its six aspects and its twenty-first aspect in the preparation of titanate nanotubes doped with E element elements. .
  • the difference between its six aspects and its twenty-first aspect is that: in the six aspects, firstly, the two-dimensional nano-titanate film doped with E element is prepared, and then it is prepared under high temperature and high pressure to prepare E element doped.
  • the preparation process of the special 2D nano-titanate titanate film doped with the E element element is skipped, and the E element element-doped titanate film is formed during the heating stage of the reaction system.
  • Nano-porous titanate and then in the high temperature and high pressure holding stage, a two-dimensional nano-titanate film doped with E group elements is formed and further titanate nanotubes doped with E group elements are formed.
  • the hydrogen evolution and de-T reaction of the six aspects of the preferred scheme is carried out near the boiling temperature.
  • the preparation of two-dimensional nano-titanate films doped with E element elements is realized in a very short time ( On the one hand, the preparation of titanate nanotubes doped with E element elements can be realized in the subsequent high temperature and high pressure reaction; on the twenty one hand, the reaction in the reaction preparation and heating stage It is relatively slow and not too violent, so the severe hydrogen evolution and de-T reaction is not used, and the nanoporous titanate structure doped with E group element is obtained in the heating stage. From this point of view, it is more difficult to convert the nanoporous titanate structure doped with the E element element into the titanate nanotube doped with the E element element in the high temperature and high pressure holding stage.
  • the total preparation time required for the six-aspect scheme is slightly shorter than the total preparation time required for the twenty-one scheme, and the efficiency is higher, but the twenty-one scheme is more efficient. One less step is easier, and both have their own advantages.
  • the six aspects and the twenty-one aspects of the two schemes greatly reduce the preparation time of titanate nanotubes doped with E element elements, and the total reaction time can be less than 0.5h , has a positive meaning.
  • the dealloying process of the Ti-T intermetallic compound with the E component element in solid solution generates a large amount of latent heat of reaction, and it can still ensure that the temperature of the reaction alkali solution is maintained at the boiling point temperature of the alkali solution.
  • the traditional high-pressure hydrothermal synthesis method performs product synthesis under high pressure and high temperature.
  • the reaction needs to be terminated, it is difficult to quickly change the pressure and temperature to normal temperature and pressure, and then take out the sample, which takes a certain time to complete.
  • a product with a certain composition and morphology corresponds to a certain temperature and pressure.
  • the temperature and pressure of the alkaline solution cannot be quickly changed to normal temperature and pressure, and the sample is taken out in time, the equilibrium of the reactants at the original temperature and pressure is broken, and it may be at other higher temperatures and higher pressures. Certain changes in composition and morphology occur.
  • the preparation of the nano-titanate film is carried out in a normal pressure open container.
  • the reaction needs to be terminated, it is only necessary to quickly add cold water or normal temperature water into the reaction container within a few seconds, or filter it through cold water.
  • the net cooling can almost instantaneously reduce the temperature and concentration of the reaction system to the temperature and concentration that the reaction cannot continue, so that the composition and morphology of the original reaction equilibrium product can be preserved. Therefore, the technical solution provided by the present invention can obtain the nano-titanate thin film material doped with the E group element with very stable composition and morphology.
  • nano-titanate thin film materials containing intercalated E nanoparticles can be further prepared with stable composition and morphology.
  • Thin film materials, as well as nano-TiO 2 flake powder containing embedded E nanoparticles can be further prepared with stable composition and morphology.
  • the stable control of product composition and morphology is one of the key factors for its wide application, which is of positive significance.
  • Doping elements or doping nanoparticles has a very important positive effect on functional applications of nanotitanates, nanotitanates, and nanoTiO2. At present, it is difficult to achieve in-situ doping of nano-titanate and nano-titanic acid by doping elements by means of atoms or atomic clusters in conventional preparation methods. Generally, it can only achieve doping with external nanoparticles.
  • the strategies adopted by these conventional preparation methods are mainly: after preparing nano-titanate, nano-titanic acid, or nano-TiO 2 , then mixing the doped nanoparticles prepared by other methods with nano-titanate, nano-titanic acid, Or nano-TiO 2 composite material, so as to prepare nano-titanate, nano-titanic acid, or nano-TiO 2 composite material mixed with doped nano-particles, wherein the nano-particles are mainly attached to the matrix by means of adsorption.
  • This mechanical mixing and attachment method is not only unfavorable for the physical-chemical interaction between the doping element and the matrix at the atomic scale, but also easily causes the doped nanoparticles to form in nano-titanate, nano-titanic acid, or nano-TiO 2 , etc. shedding on the matrix, resulting in instability and deterioration of the properties of the composite material.
  • the present invention creatively solves the above problems: not only by intercalating E nanoparticles in each corresponding matrix (including nano-titanate film, titanate film, nano- TiO2 flake powder, titanate nanotube, TiO2 nanotube)
  • the embedded distribution of E nanoparticles solves the problem of exfoliation of E nanoparticles, and also greatly enhances the physical-chemical interaction between nanoparticles and the matrix.
  • the present invention also realizes the doping of E group elements in each corresponding matrix (including nano-titanate films, nano-titanate films, titanate nanotubes, and titanate nanotubes) in the form of atoms or atomic clusters. distribution in .
  • the thermal stability of the matrix material is greatly improved, which can improve the thermal stability of the matrix by up to 200 °C, which has great application significance.
  • nano-Ag particles in the industry can generally be used as sterilization materials, and nano-titanate, nano-titanic acid, and nano-TiO 2 that are mechanically mixed with it can generally be used as its carrier. Since the sterilizing Ag is mainly the Ag atoms on the surface of the nano-Ag particles, the atoms inside the nano-Ag particles cannot play the role of sterilization, resulting in some waste of the internal Ag atoms in performance and increasing the cost.
  • the physically adsorbed nano-Ag particles are also easy to fall off from the substrate, resulting in unstable performance and poor performance durability.
  • the invention creatively realizes that Ag element is distributed in the nano-titanate film, nano-titanate film, titanate nanotube, and titanate nanotube in the form of atoms or atomic clusters, not only do not have to worry about the problem of Ag shedding, but also
  • the utilization of Ag can be maximized, and the thermal stability of the phase transition of the matrix material can be greatly improved, which is of great beneficial significance.
  • the Ag and titanate film matrix in the presence of atoms or atomic clusters, the composite coating obtained by compounding with the polymer exhibits extremely excellent bactericidal performance.
  • the reaction pressure of the key steps of this series of inventions can be normal pressure, and a high-pressure airtight container is not necessary; mild); the required titanium source is mainly a Ti-T intermetallic compound with a solid solution E element, which can be prepared on a large scale by methods such as "alloy melting + casting + crushing" or "alloy melting + melt stripping".
  • the critical reaction time can be as short as a few seconds, which is extremely efficient; and the reaction temperature, pressure and other conditions can be precisely controlled and the reaction can be quickly terminated and the desired product can be obtained.
  • the preparation method of the present invention has the characteristics of simple process, easy operation, high efficiency and low cost, and can prepare a variety of doped E component elements including nano-film, nano-tube/rod and other morphologies or containing embedded E Nanoparticles of nano-titanate, nano-titanate, and nano-TiO 2 materials are used in polymer-based nanocomposites, resin-based composites, ceramic materials, photocatalytic materials, hydrophobic materials, sewage degradation materials, bactericidal coatings, anticorrosion Coatings, marine coatings and other fields have good application prospects.
  • Fig. 1 is the TEM low magnification and high magnification photos of the Ag-doped nano-sodium titanate film described in Example 1 of the present invention
  • Fig. 2 is the TEM photograph of the nano-sodium titanate film containing the embedded Ag nanoparticles described in Example 1 of the present invention
  • Fig. 3 is the TEM low magnification and high magnification photos of the Ag-doped nano-titanate film according to Example 1 of the present invention
  • FIG. 4 is an element distribution diagram of the Ag-doped nano-titanate thin film according to Embodiment 1 of the present invention.
  • Fig. 5 is the TEM low magnification and high magnification photos of the nano-titanate film containing embedded Ag nanoparticles according to Example 1 of the present invention
  • Fig. 6 is the TEM low magnification, medium magnification and high magnification photographs of the anatase nano-TiO 2 flake powder containing intercalated Ag nanoparticles described in Example 1 of the present invention
  • Fig. 7 is the TEM low magnification and high magnification photos of the Ag-doped nano-titanate film according to Example 2 of the present invention.
  • Example 8 is a TEM low-magnification and high-magnification photograph of the Ag-doped nano-titanate thin film according to Example 9 of the present invention.
  • Fig. 9 is the XRD pattern of the product obtained by Comparative Example 1 of the present invention.
  • Fig. 11 is the low magnification photo of SEM of the reaction product of Comparative Example 2 of the present invention.
  • Fig. 12 is the high magnification photo of SEM of the reaction product of Comparative Example 2 of the present invention.
  • This embodiment provides an Ag-doped nano-sodium titanate film material, a nano-sodium titanate film material containing intercalated Ag nanoparticles, a nano-titanate film material doped with Ag, and nano-titanium containing intercalated Ag nanoparticles
  • the hydrogen evolution and de-Al reaction was completed within 15s, and the temperature was kept for 2min to ensure that the reaction was completely completed. Then, under stirring, 450ml of room temperature water was quickly poured into the reaction system at one time, and the alkali concentration in the solution was reduced to 1mol/L within 2s. The temperature is lowered to below 45°C.
  • the solid flocculent product is separated from the alkaline solution, washed, and dried at 280 ° C for 10 min to obtain the Ag-doped nano-sodium titanate thin film material.
  • the thickness of a single thin film is 0.25 nm to 2 nm, and the average area of 2000nm 2 , showing obvious characteristics of two-dimensional materials.
  • Its TEM morphology is shown in the low magnification-high magnification photos in Figure 1.
  • the Ag element is mainly distributed in the nano-sodium titanate film in the form of atoms or atomic clusters, so its contrast characteristics cannot be observed by TEM.
  • the Ag-doped nano-sodium titanate films are agglomerated, their structure does not contain any nanoporous structure or porous skeleton structure; according to the observation of the agglomerates in Fig.
  • the thickness of the body is extremely thin, indicating that the agglomerate is not a nearly spherical body with stable structure, but a flat aggregate of a large number of thin films, which is evenly spread on the TEM carbon mesh during the preparation of the TEM sample.
  • the above-mentioned Ag-doped nano-sodium titanate thin film material is heat-treated at 550° C. for 2 hours to obtain a nano-sodium titanate thin film material containing embedded Ag nanoparticles.
  • the thickness of a single thin film ranges from about 0.5 nm to 4 nm.
  • the average area is greater than 1000nm 2 , and the size of Ag nanoparticles ranges from 1.5nm to 5nm. Its TEM morphology is shown in Figure 2. Due to the pinning effect of Ag element, the thermal stability of the nano-sodium titanate thin film substrate is greatly improved, see Comparative Example 3 for details.
  • the Ag element is mainly distributed in the prepared nano-titanate film in the form of atoms or atomic clusters, as shown in the characterization results of element distribution in Fig. 4: Although the contrast of Ag cannot be seen in the bright field image, the Ag in the composition distribution diagram It is uniformly distributed in three different small areas (for the convenience of characterization, the area where the small agglomerates of the film are dispersed is selected for component surface scanning, so as to obtain as strong as possible the distinguishing signal of different areas).
  • the above-mentioned Ag-doped nano-titanate film material is heat-treated at 550 ° C for 2 hours, and the Ag elements distributed in the prepared nano-titanate film in the form of atoms or atomic clusters are diffused, agglomerated and grown to form embedded in the nanometer.
  • the thickness of a single film is about 0.5nm ⁇ 4nm, the average area of the film is greater than 1000nm 2 , compared with the unheated nano-titanium
  • the thickness of the acid film increases and the area shrinks; the size of the embedded Ag nanoparticles ranges from 1.5 nm to 5 nm.
  • some of the embedded Ag nanoparticles are partially exposed in the film matrix. outside the film matrix.
  • the TEM morphology of the obtained nano-titanate thin film material containing intercalated Ag nanoparticles is shown in the low-magnification-high-magnification photos in Figure 5. Due to the pinning effect of the Ag element, the thermal stability of the nano-titanate film substrate is greatly improved, see Comparative Example 3 for details.
  • the above-mentioned Ag-doped nano-titanate thin film material is heat-treated at 650° C. for 3 hours to obtain anatase-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the heat treatment at this temperature not only diffuses, agglomerates and grows Ag elements distributed in the form of atoms or atomic clusters in the Ag-doped nano-titanate film, but also generates intercalated Ag nanoparticles, and the matrix of the titanate film also undergoes a transformation.
  • the anatase TiO 2 is transformed, and the morphology is also transformed from a thin film to a sheet; the thickness of the anatase nano-TiO 2 sheet ranges from 1 nm to 15 nm, and the average area is greater than 500 nm 2 .
  • the size of Ag nanoparticles in anatase nano- TiO sheets ranges from 1.5 nm to 5 nm, and their TEM morphologies are shown in the low-medium-high magnification photos in Figure 6.
  • the above-mentioned Ag-doped nano-titanate thin film material was heat-treated at 950° C. for 2 hours to obtain rutile-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the rutile-type nano-TiO 2 sheet ranges from 2 nm to 25 nm, the average area is greater than 300 nm 2 , and the size of the Ag nanoparticles ranges from 1.5 nm to 5 nm.
  • the above-mentioned Ag-doped nano-titanic acid thin film material is mixed with PDMS (polydimethylsiloxane), and then a PDMS composite coating containing the Ag-doped nano-titanic acid thin film is obtained according to the coating preparation method.
  • the Ag element in the coating is dispersed in the nano-titanic acid film in the form of atoms or atomic clusters, and the nano-titanic acid film is dispersed in the PDMS, which can maximize the use of the bactericidal properties of the Ag element and the sterilization performance of the nano-titanate film.
  • the PDMS composite coating material can be applied to fields including hydrophobic materials, wood antiseptic and bactericidal materials, photocatalytic materials, bactericidal coating materials, marine engineering equipment, and marine coatings.
  • the above-mentioned Ag-doped nano-titanate film material is applied on the surfaces of furniture, utensils and walls as a coating additive and mixed with other components of the coating to achieve antibacterial effect;
  • the above-mentioned Ag-doped nano-titanate film material is mixed with other liquid spray components, and sprayed onto the surfaces of furniture, utensils, fabrics and walls through the spray carrier to achieve antibacterial effect;
  • antifouling paint the above-mentioned Ag-doped nano-titanate film material is used to replace the bactericidal antifouling component in traditional antifouling paint to achieve antifouling effect;
  • This embodiment provides a nanometer potassium titanate thin film material doped with Ag, a nanometer potassium titanate thin film material containing intercalated Ag nanoparticles, a nanometer titanate thin film material doped with Ag, and a nanometer titanium film material containing intercalated Ag nanoparticles Acid film material, and preparation method and use of TiO 2 flake powder containing embedded Ag nanoparticles, comprising the following steps:
  • Metal Ag, Ti and Al raw materials are weighed according to the ratio of Ag 1 Ti 33 Al 66 (atomic percentage), and smelted to obtain an alloy melt with a composition of Ag 1 Ti 33 Al 66 .
  • the alloy melt is prepared into a strip-shaped initial alloy with a thickness of ⁇ 20 ⁇ m by a method of rapid solidification by copper roll stripping, which is mainly composed of TiAl 2 intermetallic compound with Ag element dissolved in a solid solution.
  • the hydrogen evolution and de-Al reaction was completed within 10 s, and the incubation was continued for 1 h to confirm that after the hydrogen evolution and de-Al reaction was completed, the corresponding products could still be obtained by continuing to prolong the incubation time; during the incubation process, the volume of the solution was maintained at 50 ml by supplementing evaporated water.
  • the solid flocculent product is separated from the alkaline solution, washed, and dried at 150°C for 10 minutes to obtain a nanometer potassium titanate film material doped with Ag.
  • the thickness of a single film is about 0.25nm to 2nm, and the average area of the film is greater than 2000nm 2 .
  • the Ag element is mainly distributed in the nano-potassium titanate film in the form of atoms or atomic clusters, and due to the oxidation of Ag during the drying process, it contains Ag combined with O.
  • the above-mentioned solid flocculent product is separated from the alkaline solution, washed, and dried at 250° C. for 30 minutes to obtain a nanometer potassium titanate thin film material doped with Ag.
  • the thickness of a single thin film is about 0.25 nm to 2 nm, and the average area of the film greater than 2000 nm 2 .
  • the Ag element is mainly distributed in the nanometer potassium titanate film in the form of atoms or atomic clusters. It shows that the target product of Ag-doped nano-potassium titanate thin film can still be obtained after the hydrogen evolution and de-Al reaction is continued for 1 h.
  • the above-mentioned Ag-doped nano-potassium titanate thin film material is heat-treated at 550° C. for 1 hour to obtain a nano-potassium titanate thin film material containing embedded Ag nanoparticles.
  • the thickness of a single thin film ranges from about 0.55 nm to 4 nm.
  • the average area is greater than 1500nm 2 , and the size of Ag nanoparticles ranges from 1.5nm to 5nm.
  • the thickness of a single thin film is about 0.5nm-3nm, and the average area of the film is greater than 1500nm 2 , the size of Ag nanoparticles ranges from 1.5nm to 5nm, some Ag nanoparticles are partially embedded in the film matrix, and part of the volume is exposed outside the film matrix.
  • the above-mentioned Ag-doped nano-titanate thin film material was heat-treated at 650° C. for 2 hours to obtain anatase-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the anatase nano-TiO 2 sheet ranges from 1 nm to 15 nm, the average area is greater than 500 nm 2 , and the size of Ag nanoparticles embedded in the anatase nano-TiO 2 sheet ranges from 1.5 nm to 5 nm.
  • the above-mentioned Ag-doped nano-titanate thin film material was heat-treated at 950° C. for 2 hours to obtain rutile-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the rutile-type nano-TiO 2 sheet is in the range of 2 nm to 25 nm, and the size of the Ag nanoparticles embedded in the anatase-type nano-TiO 2 sheet is in the range of 1.5 nm to 5 nm.
  • the above-mentioned Ag-doped nano-titanate thin film material is mixed with a polymer containing a polymer material, and then a polymer composite coating containing the Ag-doped nano-titanic acid thin film is obtained according to the coating preparation method.
  • the Ag element in the coating is dispersed in the nano-titanic acid film in the form of atoms or atomic clusters, and the nano-titanic acid film is dispersed in the polymer composite coating, which can maximize the use of the bactericidal properties of the Ag element, and the nano-titanic acid film.
  • the mechanical strengthening and strong hydrophobic properties of the titanic acid film result in a polymer composite coating with excellent mechanical properties, hydrophobic properties and bactericidal properties.
  • the polymer composite coating material can be applied to fields including hydrophobic materials, wood antiseptic and bactericidal materials, photocatalytic materials, bactericidal coating materials, marine engineering equipment, and marine coatings.
  • the present embodiment provides a preparation method of Ag-doped nano-potassium titanate thin film material, comprising the following steps:
  • the hydrogen evolution and Al removal reaction was completed within 4 min, and the temperature was continued for 2 min to ensure the complete completion of the reaction. Then, the hot alkaline solution containing the solid flocculent product was poured on the five-layer copper mesh with the pore diameters of 200 ⁇ m, 20 ⁇ m, 5 ⁇ m, 5 ⁇ m, and 5 ⁇ m at an angle of 45 degrees to the horizontal plane, and the solid flocculent product was retained on five On the laminated copper mesh, the alkaline solution is filtered off, and the temperature of the solid product drops below 40°C within 10s.
  • the obtained solid flocculent product is further washed and dried at 50° C. for 1 h to obtain Ag-doped nano-potassium titanate film material with a yield of more than 60%.
  • the thickness of a single film is 0.25 nm to 2 nm, and the average area of the film is greater than 2000 nm 2 .
  • the Ag element is mainly distributed in the nanometer potassium titanate film in the form of atoms or atomic clusters.
  • This embodiment provides an Ag-doped sodium titanate nanotube, a sodium titanate nanotube containing intercalated Ag nanoparticles, an Ag-doped titanate nanotube, and a titanate nanotube containing intercalated Ag nanoparticles, And the preparation method of TiO2 nanotubes/rods containing embedded Ag nanoparticles, comprising the following steps:
  • Metal Ag, Ti and Al raw materials are weighed according to the proportion of Ag 1.5 Ti 24.5 Al 74 (atomic percentage), and smelted to obtain an alloy melt with a composition of Ag 1.5 Ti 24.5 Al 74 .
  • the alloy melt was prepared into a strip-shaped initial alloy with a thickness of ⁇ 100 ⁇ m by the method of rapid solidification of copper rolls, which was mainly composed of TiAl 3 intermetallic compound with Ag element dissolved in a solid solution.
  • the reaction kettle was placed in cold water at 20°C to cool down. After the reaction kettle is cooled to normal temperature, the pressure in the kettle is restored to normal pressure, and then the solid matter in the reaction kettle is separated from the solution, cleaned, and dried at 250° C. for 10 minutes to obtain Ag-doped sodium titanate nanotube materials.
  • the outer diameter of the tube ranges from 3 nm to 10 nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • Ag element is distributed in the sodium titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped sodium titanate nanotubes is higher than that of the pure sodium titanate nanotube matrix.
  • the above-mentioned Ag-doped sodium titanate nanotubes are heat-treated at 550° C. for 2 hours to obtain sodium titanate nanotubes containing embedded Ag nanoparticles. More than 5 times of the outer diameter, the size of the Ag nanoparticles ranges from 1.5 nm to 5 nm, and they are distributed in the sodium titanate nanotubes by means of intercalation.
  • the above-mentioned solid substance separated from the alkaline solution in the reactor is dispersed in water, and then the HCl solution of 0.025mol/L is gradually added therein, so that the pH value of the mixed solution continues to decrease, and finally the pH value of the mixed solution is controlled at 2 ⁇ between 4.
  • solid-liquid separation was carried out, washed, and dried at 250 °C for 15 minutes to obtain Ag-doped titanate nanotubes; and the outer diameter of the tube was in the range of 3 nm to 10 nm, and the length of the tube was greater than 5 times the outer diameter of the tube.
  • the Ag element is distributed in the titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped titanate nanotubes is higher than that of the pure titanate nanotube matrix.
  • the above-mentioned Ag-doped titanate nanotubes were heat-treated at 550° C. for 2 hours, to obtain titanate nanotubes containing intercalated Ag nanoparticles.
  • the size of the obtained Ag nanoparticles ranges from 1.5 nm to 5 nm, and they are distributed in the titanate nanotubes by intercalation; the outer diameter of the obtained titanate nanotubes is 3 nm to 10 nm, and the length of the tube is greater than 5 times of the outer diameter of the tube. above.
  • the above-mentioned Ag-doped titanate nanotubes were heat-treated at 650° C. for 2 h to obtain anatase-type TiO 2 nanotubes containing intercalated Ag nanoparticles.
  • the size of the Ag nanoparticles ranges from 1.5 nm to 5 nm, and they are distributed in the anatase TiO 2 nanotubes by intercalation; the outer diameter of the anatase TiO 2 nanotubes is 3 nm to 15 nm.
  • the length of the tube is more than 5 times the outer diameter of the tube.
  • the above Ag-doped titanate nanotubes were heat-treated at 950° C. for 2 h to obtain rutile-type TiO 2 nanotubes/rods containing intercalated Ag nanoparticles.
  • the size of the Ag nanoparticles ranges from 1.5nm to 5nm, and they are distributed in the rutile-type TiO2 nanotubes/rods by intercalation; the outer diameters of the rutile-type TiO2 nanotubes/rods range from 5nm to 20nm. , the length of the tube/rod is more than 3 times the outer diameter of the tube/rod.
  • This embodiment provides a nano-sodium titanate film doped with Ag-Au, a nano-sodium titanate film containing intercalated Ag-Au nanoparticles, and a nano-titanate film doped with Ag-Au, containing intercalated Ag-Au Nano-particle nano-titanate film, and preparation method and application of nano-TiO 2 flake powder containing embedded Ag-Au nano-particles, including the following steps:
  • Metal Ag, Au, Ti and Al raw materials were weighed according to the ratio of Ag 0.8 Au 0.2 Ti 24.75 Al 74.25 (atomic percentage), and smelted to obtain an alloy melt with a composition of Ag 0.8 Au 0.2 Ti 24.75 Al 74.25 .
  • the alloy melt was prepared into a strip-shaped initial alloy with a thickness of ⁇ 15 ⁇ m by the method of rapid solidification of copper rolls, which was mainly composed of TiAl 3 intermetallic compounds with Ag and Au elements dissolved in solid solution.
  • the solid flocculent product is separated from the solution, washed and dried at 250°C for 10 minutes to obtain a nano-sodium titanate film material doped with Ag-Au.
  • the thickness of a single film is about 0.25nm to 2nm, and the average area of the film is greater than 2000 nm 2 .
  • Ag and Au elements are mainly embedded in the nano-sodium titanate film in the form of atoms or atomic clusters; due to the pinning effect of Ag and Au elements, the thermal stability of the nano-sodium titanate film matrix has been greatly improved .
  • the above-mentioned nano-titanate film doped with Ag-Au is heat-treated at 550° C. for 2 hours to obtain a nano-titanate film material containing embedded Ag-Au nanoparticles.
  • the thickness of a single film is about 0.5nm to 3nm, and the average film thickness
  • the area of Ag-Au nanoparticles is greater than 1500nm 2 , and the size of Ag-Au nanoparticles ranges from 1.5nm to 5nm, which are distributed in the nano-titanate film by intercalation.
  • the above-mentioned Ag-Au-doped nano-titanate thin film was heat-treated at 650° C. for 2 hours, to obtain anatase-type nano-TiO 2 flake powder containing intercalated Ag-Au nanoparticles.
  • the thickness of the anatase type nano-TiO 2 sheet ranges from 1 nm to 10 nm, the average area is greater than 500 nm 2 , and the size of the Ag-Au nanoparticles is 1.5 nm to 5 nm, which are distributed in the anatase type nano-TiO 2 by intercalation 2 pieces.
  • the above-mentioned Ag-Au-doped nano-titanate film is heat-treated at 950° C. for 2 hours to obtain rutile-type nano-TiO 2 flake powder containing intercalated Ag-Au nanoparticles.
  • the thickness of the rutile nano-TiO 2 sheet ranges from 2 nm to 20 nm, the average area is greater than 400 nm 2 , and the size of Ag-Au nanoparticles is 1.5 nm to 5 nm.
  • the nano-titanate film material containing doped Ag-Au is mixed with polyaniline, and then a composite coating of Ag and Au element-doped nano-titanic acid and polyaniline is prepared.
  • Ag and Au elements are inlaid and dispersed in nano-titanic acid in the form of atoms or atomic clusters, and nano-titanic acid is dispersed in polyaniline, which can maximize the use of Ag elements, Au elements and titanic acid films. performance.
  • the material can be applied to fields including hydrophobic materials, photocatalytic materials, bactericidal coating materials, marine equipment and marine coatings.
  • This embodiment provides an Ag-Au-Pd-doped sodium titanate nanotube, a sodium titanate nanotube containing intercalated Ag-Au-Pd nanoparticles, an Ag-Au-Pd-doped titanate nanotube, A titanate nanotube containing intercalated Ag-Au-Pd nanoparticles, and a preparation method of a TiO2 nanotube/rod containing intercalated Ag-Au-Pd nanoparticles, comprising the following steps:
  • the raw materials of metal Ag, Au, Pd, Ti and Zn were weighed and smelted to obtain an alloy melt with the composition of Ag 0.8 Au 0.1 Pd 0.1 Ti 24.75 Zn 74.25 .
  • the alloy melt is solidified into an ingot, and then the ingot is broken into fine alloy powder with a particle size of not more than 100 ⁇ m, which is mainly composed of TiZn intermetallic compounds with Ag, Au, and Pd elements in solid solution;
  • the reaction kettle was placed in cold water to rapidly cool down. After the reaction kettle was cooled to normal temperature, the pressure in the kettle was restored to normal pressure, and then the solid matter in the reaction kettle was separated from the solution, cleaned, and dried at 250 ° C for 10 min, to obtain Ag, Au, Pd-doped sodium titanate nanotubes , the outer diameter of the tube ranges from 3nm to 12nm, and the length of the tube is more than 5 times the outer diameter of the tube.
  • Ag, Au and Pd elements are distributed in the sodium titanate nanotubes in the form of atoms or atomic clusters, and the phase transition thermal stability of the obtained sodium titanate nanotubes doped with Ag, Au and Pd is higher than that of pure sodium titanate Thermal Stability of Nanotube Matrix.
  • the above-mentioned sodium titanate nanotubes doped with Ag, Au, and Pd are heat-treated at 550 ° C for 1 h, to obtain sodium titanate nanotubes containing intercalated Ag-Au-Pd nanoparticles, and the outer diameter of the tubes ranges from 3nm to 12nm. , the length of the tube is more than 5 times the outer diameter of the tube.
  • the size of the intercalated Ag-Au-Pd nanoparticles is 1.5 nm to 5 nm
  • the outer diameter of the sodium titanate nanotube is 3 nm to 12 nm
  • the intercalated Ag-Au-Pd nanoparticles are distributed in the sodium titanate by intercalation. in nanotubes.
  • the titanate nanotubes doped with Ag, Au, and Pd were heat-treated at 550° C. for 1.5 h, to obtain titanate nanotubes containing intercalated Ag-Au-Pd nanoparticles.
  • the size of the obtained intercalated Ag-Au-Pd nanoparticles is 1.5 nm to 5 nm, which are distributed in the titanic acid nanotubes by means of intercalation, the outer diameter of the obtained titanic acid nanotubes is 3 nm to 12 nm, and the length of the tube is greater than More than 5 times the outer diameter of the tube.
  • the titanate nanotubes doped with Ag, Au, and Pd were heat-treated at 650° C. for 2 h to obtain anatase nano-TiO 2 tubes containing intercalated Ag-Au-Pd nanoparticles.
  • the size of the Ag-Au-Pd nanoparticles is 1.5nm to 5nm, and they are distributed in anatase type nano-TiO 2 tube by intercalation, and the outer diameter of the anatase type nano-TiO 2 tube is 3nm ⁇ 15nm, and the length of the tube is more than 5 times the outer diameter of the tube.
  • the titanate nanotubes doped with Ag, Au, and Pd were heat-treated at 950° C. for 2 h to obtain rutile-type nano-TiO 2 tubes/rods containing intercalated Ag-Au-Pd nanoparticles.
  • the size of the obtained intercalated Ag-Au-Pd nanoparticles is 1.5nm to 5nm, and they are distributed in the rutile-type nano-TiO 2 tube/rod by intercalation, and the outer diameter of the rutile-type nano-TiO 2 tube/rod is 3nm to 20nm, and the length of the tube/rod is more than 3 times the outer diameter of the tube/rod.
  • This embodiment provides an Ag-doped nanometer sodium (potassium titanate) thin film material, a nanometer sodium (potassium titanate) thin film material containing intercalated Ag nanoparticles, a nanometer titanate thin film material doped with Ag, and a nanometer titanate thin film material containing intercalated Ag nanoparticles.
  • the nano-titanate thin film material of Ag nanoparticles, and the preparation method of TiO flake powder containing embedded Ag nanoparticles, include the following steps:
  • the alloy melt with the composition of Ag 1 Ti 39 Al 60 is obtained by smelting, and the alloy melt is solidified into an ingot, and then It is broken into initial alloy coarse powder with a particle size of no more than 1 mm, which is mainly composed of TiAl 2 intermetallic compound with Ag element in solid solution and TiAl with Ag element in solid solution.
  • a 15mol/L KOH solution and a 15mol/L NaOH solution were prepared respectively, and the two solutions were mixed at a volume of 1:1 to obtain a mixed solution of KOH and NaOH with an OH - concentration of 15mol/L.
  • the above-mentioned solid flocculent product is separated from the solution, washed, and dried at 250° C. for 10 minutes to obtain Ag-doped nano-sodium (potassium) titanate thin film material.
  • the average area is greater than 2000 nm 2 .
  • the Ag element is mainly distributed in the nanometer sodium (potassium titanate) film in the form of atoms or atomic clusters. Due to the pinning effect of Ag element, the thermal stability of the nano-sodium (potassium) titanate thin film matrix has been greatly improved.
  • the thickness of a single thin film is about 0.25 nm to 2 nm, and the average area of the single thin film is greater than 2000 nm. 2 .
  • the Ag element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters; due to the pinning effect of the Ag element, the thermal stability of the nano-titanate film matrix has been greatly improved.
  • the thickness of a single film is about 0.5nm-3nm, and the average area of the film is greater than 1000nm.
  • the size of the embedded Ag nanoparticles ranges from 1.5 nm to 5 nm;
  • the above-mentioned Ag-doped nano-titanate thin film is heat-treated at 650° C. for 2 hours to obtain anatase-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the anatase nano-TiO 2 sheet ranges from 1 nm to 15 nm, the average area is greater than 400 nm 2 , and the size range of Ag nanoparticles embedded in the anatase nano-TiO 2 sheet is 1.5 nm to 5 nm.
  • This embodiment provides Ag-doped sodium titanate (lithium) nanotubes, Ag-doped titanate nanotubes, titanate nanotubes containing intercalated Ag nanoparticles, and TiO 2 containing intercalated Ag nanoparticles
  • the preparation method of nanotubes comprises the following steps:
  • the proportion of Ag 3 Ti 27 Al 70 (atomic percentage)
  • metal Ag, Ti and Al raw materials are weighed, and the alloy melt with the composition of Ag 3 Ti 27 Al 70 is obtained by smelting, and the alloy melt is passed through the copper roller with the speed of stripping.
  • the solidification method is used to prepare a strip-shaped initial alloy with a thickness of ⁇ 20 ⁇ m, which is mainly composed of TiAl 3 intermetallic compound with Ag element in solid solution and TiAl 2 intermetallic compound with Ag element in solid solution.
  • LiOH solution 6 mol/L LiOH solution and 14 mol/L NaOH solution were prepared respectively, and the two solutions were mixed by volume 1:1 to obtain a mixed solution of LiOH and NaOH with an OH - concentration of 10 mol/L.
  • the reaction kettle After being kept at 200°C for 30min, the reaction kettle was placed in cold water to rapidly cool down. After the reaction kettle was cooled to normal temperature, the pressure in the kettle was restored to normal pressure, and then the solid substances in the reaction kettle were separated from the solution, cleaned, and dried at 280 ° C for 10 min to obtain Ag-doped sodium titanate (lithium) nanotubes.
  • the material, the outer diameter of the tube is in the range of 3nm to 10nm, and the length of the tube is more than 5 times the outer diameter of the tube.
  • the Ag element is distributed in the nano-sodium titanate (lithium) in the form of atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped sodium titanate (lithium) nanotubes is higher than that of pure sodium titanate (lithium) Thermal Stability of Nanotube Matrix.
  • the pH value of the mixed solution is controlled between 2 ⁇ 4 .
  • solid-liquid separation was performed, washed, and dried at 250°C for 10 minutes to obtain Ag-doped titanate nanotubes; and the outer diameter of the tube was in the range of 3 nm to 10 nm, and the length of the tube was greater than 5 times the outer diameter of the tube.
  • the Ag element is distributed in the titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped titanate nanotubes is higher than that of the pure titanate nanotube matrix.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 550° C. for 1.5 hours to obtain titanate nanotubes containing intercalated Ag nanoparticles; It is distributed in titanate nanotubes, and the outer diameter of the titanate nanotubes is 3 nm to 10 nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 650° C. for 3 hours to obtain anatase-type TiO2 nanotubes containing intercalated Ag nanoparticles;
  • the raw form is distributed in the anatase TiO2 nanotubes, and the outer diameter of the anatase TiO2 nanotubes is 3 nm to 15 nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • the present embodiment provides an Ag-doped nano-sodium titanate thin film material and a preparation method of the Ag-doped nano-titanate thin film material, including the following steps:
  • the hydrogen evolution and de-Al reaction was completed within 15 s, and the incubation was continued for 2 h to confirm that after the hydrogen evolution and de-Al reaction was completed, the corresponding products could still be obtained by continuing to prolong the incubation time; during the incubation process, the volume of the solution was maintained at 50 ml by supplementing evaporated water.
  • the hot concentrated alkaline solution containing the solid flocculent product was poured onto a four-layer copper mesh with a pore size of 200 ⁇ m, 20 ⁇ m, 5 ⁇ m, and 5 ⁇ m at an angle of 45 degrees to the horizontal plane, and the solid flocculent product was retained on the grid.
  • the alkaline solution is filtered off, and the temperature of the solid flocculent product drops below 45°C within 20s.
  • the obtained solid flocculent product is further washed and dried at 250° C. for 10 minutes to obtain Ag-doped nano-sodium titanate thin film material, the thickness of a single thin film is 0.25 nm-2 nm, and the average area of the film is greater than 2000 nm 2 .
  • the Ag element is mainly distributed in the nano-sodium titanate film in the form of atoms or atomic clusters.
  • the above-mentioned Ag-doped nano-sodium titanate film was dispersed in water, and 0.025mol/L HCl solution was gradually added into it under stirring state, so that the pH value of the mixed solution continued to decrease, and finally the pH value of the mixed solution was controlled at Between 2 and 5, after 30 minutes, carry out separation, cleaning, and drying at 250°C for 10 minutes, to obtain Ag-doped nano-titanate thin film, the thickness of a single thin film is about 0.25 nm to 2 nm, and the average area of a single thin film is greater than 2000 nm 2 . Its morphology is shown in the low-magnification-high-magnification photos in Figure 8.
  • the heat preservation is continued for 2 h, and the target product of Ag-doped nano-titanate thin film can still be obtained in combination with the subsequent acid solution reaction.
  • the Ag element in the obtained product is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters; due to the pinning effect of the Ag element, the thermal stability of the nano-titanate film matrix has been greatly improved.
  • This embodiment provides an Ag-doped sodium titanate nanotube, an Ag-doped titanate nanotube, a titanate nanotube containing intercalated Ag nanoparticles, and a TiO2 nanotube containing intercalated Ag nanoparticles/
  • the preparation method of the stick comprises the following steps:
  • metal Ag, Ti and Al raw materials are weighed and smelted to obtain an alloy melt with a composition of Ag 1 Ti 24.75 Al 74.25 .
  • the alloy melt is solidified into an ingot, and then the ingot is crushed into an initial alloy fine powder with a particle size of not more than 50 ⁇ m, which is mainly composed of a TiAl 3 intermetallic compound in which Ag element is dissolved.
  • the reaction kettle was placed in cold water to cool down rapidly. After the reaction kettle was cooled to normal temperature, the pressure in the kettle was restored to normal pressure, and then the solid matter in the reaction kettle was separated from the solution, cleaned, and dried at 250° C. for 10 minutes to obtain Ag-doped sodium titanate nanotubes.
  • the outer diameter of the tube is 3nm to 12nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • Ag element is distributed in the sodium titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped sodium titanate nanotubes is higher than that of the pure sodium titanate nanotube matrix.
  • the pH value of the mixed solution is controlled between 2 ⁇ 4 .
  • solid-liquid separation was carried out, washed, and dried at 250°C for 10 minutes to obtain Ag-doped titanate nanotubes; and the outer diameter of the tube was in the range of 3 nm to 12 nm, and the length of the tube was greater than 5 times the outer diameter of the tube.
  • the Ag element is distributed in the titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped titanate nanotubes is higher than that of the pure titanate nanotube matrix.
  • the above-mentioned Ag-doped titanate nanotubes were heat-treated at 550° C. for 2 hours, to obtain titanate nanotubes containing intercalated Ag nanoparticles.
  • the size of the obtained intercalated Ag nanoparticles is 1.5nm to 5nm, which are distributed in the titanate nanotubes by intercalation, and the outer diameter of the titanate nanotubes is 3nm to 12nm, and the length of the tube is greater than 100% of the outer diameter of the tube. 5 times or more.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 650° C. for 3 hours to obtain anatase-type TiO2 nanotubes containing intercalated Ag nanoparticles;
  • the raw form is distributed in the anatase TiO2 nanotubes, and the outer diameter of the anatase TiO2 nanotubes is 3 nm to 15 nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 950° C. for 2 h, to obtain rutile-type TiO2 nanotubes/rods containing intercalated Ag nanoparticles;
  • the rutile-type TiO2 nanotubes/rods are distributed in the raw way, and the outer diameters of the rutile-type TiO2 nanotubes/rods are 4 nm to 20 nm, and the length of the tubes/rods is more than 3 times the outer diameter of the tubes/rods.
  • This embodiment provides an Ag-doped nano-sodium titanate film material, a nano-sodium titanate film material containing intercalated Ag nanoparticles, a nano-titanate film material doped with Ag, and nano-titanium containing intercalated Ag nanoparticles Acid film material, and preparation method and use of TiO 2 flake powder containing embedded Ag nanoparticles, comprising the following steps:
  • Metal Ag, Ti and Zn raw materials were weighed according to the ratio of Ag 0.5 Ti 24.5 Zn 75 (atomic percentage), and smelted to obtain an alloy melt with a composition of Ag 0.5 Ti 24.5 Zn 75 .
  • the alloy melt is prepared into a strip-shaped initial alloy with a thickness of ⁇ 20 ⁇ m by a method of rapid solidification of copper rolls, which is mainly composed of TiZn 3 intermetallic compound with Ag element dissolved in a solid solution.
  • the solid flocculent product is separated from the alkaline solution, washed, and dried at 250°C for 10 minutes to obtain Ag-doped nano-sodium titanate thin film material.
  • the thickness of a single thin film is about 0.25nm to 2nm, and the average area of 2000nm 2 .
  • the Ag element is mainly distributed in the nano-sodium titanate film in the form of atoms or atomic clusters. Due to the pinning effect of the Ag element, the thermal stability of the nano-sodium titanate film matrix has been greatly improved.
  • the above-mentioned Ag-doped nano-sodium titanate thin film material is heat-treated at 550° C. for 1 hour to obtain a nano-sodium titanate thin film material containing embedded Ag nanoparticles.
  • the average area is greater than 1500nm 2 , and the size of Ag nanoparticles ranges from 1.5nm to 5nm.
  • the thickness of a single thin film is about 0.25 nm to 2 nm, and the average area of the film is greater than 2000 nm. 2 .
  • the Ag element is mainly distributed in the nano-titanate film in the form of atoms or atomic clusters. Due to the pinning effect of the Ag element, the thermal stability of the nano-titanate film matrix has been greatly improved.
  • the thickness of a single thin film is about 0.5nm-3nm, and the average area of the film is greater than 1500nm 2 , the size of intercalated Ag nanoparticles ranges from 1.5nm to 5nm.
  • the above-mentioned Ag-doped nano-titanate thin film material is heat-treated at 650° C. for 2 hours to obtain anatase-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the anatase nano-TiO 2 sheet ranges from 1 nm to 10 nm, the average area is greater than 500 nm 2 , and the size of Ag nanoparticles embedded in the anatase nano-TiO 2 sheet is 1.5 nm to 5 nm.
  • the above-mentioned Ag-doped nano-titanate thin film material is heat-treated at 950° C. for 2 hours to obtain rutile-type TiO 2 flake powder containing intercalated Ag nanoparticles.
  • the thickness of the rutile-type nano-TiO 2 sheet ranges from 2 nm to 20 nm, the average area thereof is greater than 300 nm 2 , and the size of Ag nanoparticles embedded in the rutile-type nano-TiO 2 sheet is 1.5 nm to 5 nm.
  • the above-mentioned Ag-doped nano-titanic acid thin film material is mixed with polyvinylidene fluoride (PVDF), and then a composite coating of Ag-doped nano-titanic acid and PVDF is prepared.
  • the Ag element in the coating is inlaid and dispersed in the nano-titanic acid in the form of atoms or atomic clusters, and the nano-titanic acid is dispersed in the PVDF, which can maximize the use of the properties of the Ag element and the titanic acid.
  • the material can be applied to fields including hydrophobic materials, photocatalytic materials, bactericidal coating materials, marine equipment and marine coatings.
  • This embodiment provides an Ag-doped sodium titanate nanotube, an Ag-doped titanate nanotube, a titanate nanotube containing intercalated Ag nanoparticles, and a TiO2 nanotube containing intercalated Ag nanoparticles/
  • the preparation method of the stick comprises the following steps:
  • the Ag-doped nano-titanate film material was placed in a sealed reaction kettle lined with polytetrafluoroethylene according to the volume ratio of 1:50 and 50 mL of NaOH aqueous solution with a concentration of 10 mol/L; The temperature of the sealed reactor and its initial alloy and NaOH aqueous solution was raised to 250°C within 10min, and then kept for 10min;
  • the reaction kettle was placed in cold water to cool down rapidly. After the reaction kettle was cooled to normal temperature, the pressure in the kettle was restored to normal pressure, and then the solid matter in the reaction kettle was separated from the solution, cleaned, and dried at 250° C. for 10 minutes to obtain Ag-doped sodium titanate nanotubes.
  • the outer diameter of the tube is 3nm to 12nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • Ag element is distributed in the sodium titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped sodium titanate nanotubes is higher than that of the pure sodium titanate nanotube matrix.
  • the pH value of the mixed solution is controlled between 2 ⁇ 4 .
  • solid-liquid separation was performed, washed, and dried at 250°C for 10 minutes to obtain Ag-doped titanate nanotubes; and the outer diameter of the tube was in the range of 3 nm to 12 nm, and the length of the tube was greater than 5 times the outer diameter of the tube.
  • the Ag element is distributed in the titanate nanotubes as atoms or atomic clusters, and the phase transition thermal stability of the obtained Ag-doped titanate nanotubes is higher than that of the pure titanate nanotube matrix.
  • the above-mentioned Ag-doped titanate nanotubes were heat-treated at 550° C. for 2 hours, to obtain titanate nanotubes containing intercalated Ag nanoparticles.
  • the size of the obtained intercalated Ag nanoparticles is 1.5nm to 5nm, which are distributed in the titanate nanotubes by intercalation, and the outer diameter of the titanate nanotubes is 3nm to 12nm, and the length of the tube is greater than 100% of the outer diameter of the tube. 5 times or more.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 650° C. for 3 hours to obtain anatase-type TiO2 nanotubes containing intercalated Ag nanoparticles;
  • the raw form is distributed in the anatase TiO2 nanotubes, and the outer diameter of the anatase TiO2 nanotubes is 3 nm to 15 nm, and the length of the tube is more than 5 times greater than the outer diameter of the tube.
  • the above-mentioned Ag-doped titanate nanotubes are heat-treated at 950° C. for 2 h, to obtain rutile-type TiO2 nanotubes/rods containing intercalated Ag nanoparticles;
  • the rutile-type TiO2 nanotubes/rods are distributed in the raw way, and the outer diameters of the rutile-type TiO2 nanotubes/rods are 4 nm to 20 nm, and the length of the tubes/rods is more than 3 times the outer diameter of the tubes/rods.
  • This embodiment provides an Ag-doped nano-sodium titanate thin film powder material and a preparation method of the Ag-doped nano-titanate thin film powder material, including the following steps:
  • the solidification method prepares a strip-shaped initial alloy with a thickness of ⁇ 100 ⁇ m, which is mainly composed of TiAl 3 intermetallic compound with Ag element in solid solution.
  • the temperature in the airtight container, as well as the temperature of the initial alloy strip and the alkaline solution were raised to 150°C, and the airtight container was in a high pressure state at this time, and then the Ag 1 Ti 24.75 Al 74.25 initial alloy strip in the airtight container was mixed with the Alkaline solution at high temperature is mixed to make it undergo a violent hydrogen evolution and de-T reaction.
  • the initial alloy strip of Ag 1 Ti 24.75 Al 74.25 undergoes nano-fragmentation through the violent hydrogen evolution and de-Al reaction during the high temperature and high pressure reaction process, and at the same time, the shape and composition are changed. Reconstitution produces Ag-containing solid flocculent products.
  • the hydrogen evolution and de-Al reaction is completed within 30s, and after 30s, the airtight container and the reaction system are put into cooling water and rapidly cooled to near room temperature, and the pressure in the airtight container is reduced to normal pressure at the same time;
  • the solid flocculent product was separated from the alkaline solution, washed and dried at 280 °C for 10 min to obtain the Ag-doped nano-sodium titanate thin film powder material.
  • the thickness is 0.25nm-5nm, and the average area of the film is greater than 1000nm 2 , showing obvious characteristics of two-dimensional material; among them, Ag element is mainly distributed in the nano-sodium titanate film in the form of atoms or atomic clusters.
  • anatase-type TiO 2 powder with a particle size range of 50 nm to 100 nm was added to 50 ml of NaOH aqueous solution with a concentration of 10 mol/L and a temperature of its boiling temperature (about 119 °C), with constant stirring.
  • the solid substance in the solution was separated from the solution, washed and dried, and the XRD pattern of the product was measured, as shown in FIG. 9 .
  • Fig. 10 is the XRD pattern of the anatase TiO 2 powder before the reaction, which can be obtained from the analysis: after the reaction for 10 min, the anatase TiO 2 hardly changes. According to the width of the XRD peaks, it can be judged that the size of the TiO 2 particles has not changed significantly.
  • This comparative example shows that when the Ti source is TiO 2 powder, the boiling point temperature of the alkaline solution in the atmospheric environment makes it difficult to destroy the Ti-O bond of TiO 2 in a short time.
  • metal Ti and Al raw material are weighed, and the smelting obtains the alloy melt of Ti 25 Al 75 ; is ⁇ 30 ⁇ m ribbon-like starting alloy, which is mainly composed of TiAl3 intermetallics.
  • the hydrogen evolution and de-Al reaction was completed within 15s, and the temperature was kept for 2min to ensure that the reaction was completely completed. Then, under stirring, 450ml of room temperature water was quickly poured into the reaction system at one time, and the alkali concentration in the solution was reduced to 1mol/L within 2s. The temperature is lowered to below 45°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plant Pathology (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明涉及一类含有掺杂E元素或嵌生E纳米颗粒的纳米钛酸盐、纳米钛酸、纳米TiO 2的制备方法及用途。通过采用固溶有E元素的Ti-T金属间化合物为钛源,常压下在碱溶液的沸点温度附近将固溶有E元素的Ti-T金属间化合物与碱溶液反应,实现了掺杂E元素的纳米钛酸盐薄膜的常压、高效、短时制备。以此为基础,通过酸处理及热处理,进一步使含有嵌生E纳米颗粒的纳米钛酸盐薄膜、掺杂E组元元素的纳米钛酸薄膜、含有嵌生E纳米颗粒的钛酸薄膜与TiO 2片粉的制备成为了可能。结合后续高温高压反应,又进一步使掺杂E组元元素的钛酸盐纳米管与钛酸纳米管,含有嵌生E纳米颗粒的钛酸纳米管与TiO 2纳米管/棒的高效低成本制备成为了可能。

Description

一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途 技术领域
本发明涉及纳米材料技术领域,特别涉及一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途。
背景技术
目前,制备纳米钛酸盐、及其后续产物纳米钛酸与纳米TiO 2的主要方法为强碱水热法。但该方法需要采用高压反应容器,一般以商业纳米TiO 2和高浓度强碱(如NaOH溶液)为原料,在高温高压条件下进行长时间的水热合成,反应得到钛酸盐(如钛酸钠)纳米管,经过中和酸洗后一般得到钛酸纳米管,再进一步通过热处理得到TiO 2纳米管。例如,2001年有文献报道称,以锐钛矿型TiO 2和10mol/L氢氧化钠溶液为原料,在130℃条件下,在高压容器中水热反应72h后,将产物水洗至中性,可以得到管长为几十到几百纳米,内径为5.3nm的钛酸纳米管。其它文献上报道的纳米钛酸钠的制备方法还包括:将NaOH、TiO 2按照计量关系称量后移入聚四氟乙烯高压反应釜内,混合后在230℃温度下保温48h至96h,待冷却至室温后取出,洗涤、干燥后获得纳米钛酸钠,进一步酸洗得到纳米钛酸。由此可见,传统的强碱水热法的特点在于:1)以TiO 2为钛源;2)在高压反应容器中进行,需要密闭高压条件;3)在较高温度进行;4)需要很长的反应时间,以数小时或数十小时计;5)得到的产物一般为管状纳米钛酸盐或者管状纳米钛酸。这些特点,尤其是采用TiO 2为钛源,需要高压密闭环境与极长的反应时间,严重地增加了生产成本并降低了生产效率,进而阻碍了纳米钛酸盐、纳米钛酸、及纳米TiO 2的大规模广泛应用。
此外,掺杂元素或掺杂纳米颗粒对纳米钛酸盐、纳米钛酸、以及纳米TiO 2的功能性应用具有非常重要的影响。目前,对纳米钛酸盐、纳米钛酸、以及纳米TiO 2的元素掺杂所经常采用的方法是混合法,即制备上述基体材料后,再将通过别的方法制备的主要由掺杂元素组成的纳米颗粒与上述基体材料混合,使掺杂纳米颗粒吸附在基体表面。这种机械混合-吸附的方式,不仅在原子尺度不利于纳米颗粒与基体材料的物理-化学交互作用,而且很容易造成掺杂纳米颗粒在上述基体表面的脱落,从而造成材料性能的不稳与恶化。
发明内容
基于此,有必要针对上述问题,提供一种工艺简单、反应迅速高效、条件温和且适合大规模生产的含有掺杂元素的纳米钛酸盐、纳米钛酸、纳米TiO 2的制备方法。
首先说明的是,本发明所有技术方案中,所述掺杂,是指所对应的包含Ag元素的E组元元素通过原子或原子团簇的方式与对应的被掺杂的基体材料进行嵌生复合;
本发明内容依序包含二十五个与主权利要求相关的方面内容,且依序与权利要求书所述权利要求1-25的内容一一对应,具体为:
其一方面,一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法,其特征在于,包括如下步骤制备:
步骤一,提供初始合金,所述初始合金包含T类元素、Ti与E组元元素;其中,T类元素包含Al、Zn中的至少一种;且初始合金的相组成包含固溶有E组元元素的T-Ti金属间化合物;其中,E组元元素中Ag的原子百分比含量为50%~100%,且初始合金中固溶于T-Ti金属间化合物中的E组元元素与Ti的摩尔比范围为0<C E/C Ti≤0.25;
步骤二,将所述初始合金与温度为T 1的碱溶液反应,反应过程中反应界面以大于2μm/min的平均速率由初始合金表面向内推进,且反应界面处的初始合金通过析氢脱T反应发生纳米碎化,并同时经形状与成分重构生成含有E组元元素的固态絮状产物;
步骤三,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低并收集含有E组元元素 的固态絮状产物,即得到掺杂E组元元素的纳米钛酸盐薄膜材料。
进一步地,所述薄膜材料,宏观上看是粉体材料形貌,微观上观察其由大量二维薄膜组成。
进一步地,所述薄膜材料,宏观上看是粉体材料形貌,微观上观察其由大量单片二维薄膜分散或缠结组成,其结构与通过传统脱合金反应形成的纳米多孔结构完全不同;传统通过脱合金反应得到的纳米多孔结构由三维网状系带连接构成一个整体,其整体的外观形貌与脱合金反应前的初始合金的外观形貌基本一致;
进一步地,所述二维薄膜材料,是指材料的最小单元(如单片薄膜)的面积较大,而其厚度方向上的尺寸远远小于面积方向上两个维度尺寸的材料,且其厚度不超过10nm。
进一步地,所述掺杂E组元元素,是化学领域的通常说法,并非E组元元素一定就是杂质元素,这是相对于其所依附的基体材料来说的概念,即E组元元素为与基体材料成分不一致的元素,且该元素具有特殊的功能,为有目的设计并加入,使之与所依附的基体材料均匀复合,达到一定的目的;
所述步骤一中,
进一步地,所述T类元素包含Al;进一步地,T类元素为Al;
进一步地,所述T类元素包含Zn;进一步地,T类元素为Zn;
进一步地,所述T类元素包含Al与Zn;
进一步地,所述E组元元素主要为Ag;作为优选,E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素,从而使得E组元元素在初始合金中可以通过固溶方式存在于T-Ti金属间化合物中;
进一步地,T-Ti金属间化合物与Ti-T金属间化合物等同;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种;
进一步地,所述固溶,包括间隙固溶与置换固溶方式;
进一步地,所述固溶有E组元元素的T-Ti金属间化合物,是指E组元元素以间隙原子的方式存在于T-Ti金属间化合物的晶格间隙中,或E组元元素以置换原子的方式置换T-Ti金属间化合物晶格中的T原子位置或Ti原子位置;
进一步,所述T指代T类元素,为T类元素的简写,T代表Al、Zn、AlZn中的任意一种,且AlZn中Al与Zn的比例不限;
进一步地,以C E/C Ti代表初始合金中固溶于T-Ti金属间化合物中的E组元元素与Ti的摩尔比含量,则0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述初始合金通过将含有T类元素、Ti与E组元元素的熔体凝固制备,在合金凝固过程中形成包含有T-Ti金属间化合物的凝固组织;E组元元素主要固溶在T-Ti金属间化合物中。
进一步地,T-Ti金属间化合物与Ti-T金属间化合物等同;
进一步地,所述初始合金熔体凝固的速率为1K/s~10 7K/s;
进一步地,所述初始合金的相组成主要由固溶有E组元元素的T-Ti金属间化合物组成;
进一步地,所述T-Ti金属间化合物包括T 3Ti、T 2Ti、TTi金属间化合物中的至少一种;
进一步地,所述T-Ti金属间化合物包括Al 3Ti、Al 2Ti、AlTi金属间化合物中的至少一种;
进一步地,所述初始合金包含固溶有E组元元素的T 3Ti、T 2Ti、TTi金属间化合物中的至少一种;
进一步地,所述初始合金包含固溶有E组元元素的Al 3Ti、Al 2Ti、AlTi金属间化合物中的至少一种;
进一步地,所述初始合金主要包括固溶有E组元元素的Al 3Ti、Al 2Ti、AlTi金属间化合物中的某一种;
作为优选之一,所述初始合金主要由固溶有E组元元素的Al 3Ti金属间化合物组成;
作为优选之二,所述初始合金主要由固溶有E组元元素的Al 2Ti金属间化合物组成;
作为优选之三,所述初始合金主要由固溶有E组元元素的AlTi金属间化合物组成;
作为优选,所述初始合金中T的原子百分含量小于等于75%;
作为优选,所述初始合金中T的原子百分含量小于70%;
作为优选,所述初始合金中Al的原子百分含量小于等于75%;
作为优选,所述初始合金中Al的原子百分含量小于70%;
作为优选,所述初始合金中不包含T相;
作为优选,所述初始合金中不包含Al相;
进一步的,根据Al-Ti相图,当Al-Ti合金中Al的原子百分百含量超过75%时,合金凝固组织中一般含有Al相;当Al-Ti合金中Al的原子百分百含量低于75%时,合金凝固组织中一般不含有Al相;
根据相图,当合金中含有TiAl 2的时候,其可以与TiAl相或TiAl 3相共存,但不能与Al相共存,因此含有TiAl 2的合金中不可能含有Al相;
进一步地,所述T-Ti金属间化合物是指该金属间化合物的相组成为T-Ti金属间化合物相,即所述T-Ti金属间化合物的XRD物相分析结果为T-Ti金属间化合物,包括T 3Ti、T 2Ti、TTi金属间化合物相结构。此时,T-Ti金属间化合物除了包含T、Ti之外,还可以包含其它元素,如固溶的E组元元素;
进一步地,由于T-Ti金属间化合物有较固定的元素配比关系,因此,可以根据确定的T-Ti金属间化合物的组成,E组元元素的组成,以及E组元元素与Ti的摩尔比,大致得到初始合金的主要成分配比;
例如,Al 3Ti金属间化合物中固溶有Ag,且C Ag:C Ti=0.04时,初始合金的平均成分大致为Al 74.258Ti 24.752Ag 0.99
进一步地,所述初始合金的形状在三维方向上任一维度的平均尺寸均大于4μm;
进一步地,所述初始合金的形状在三维方向上任一维度的平均尺寸均大于10μm;
进一步地,所述初始合金的形状在三维方向上任一维度的平均尺寸均大于15μm;
进一步地,所述初始合金为粉末状或者条带状,且粉末颗粒或者条带在三维方向上至少有一维的尺度小于5mm;
进一步地,所述初始合金粉末颗粒或者条带在三维方向上至少有一维的尺度小于1mm;
进一步地,所述初始合金粉末颗粒或者条带在三维方向上至少有一维的尺度小于500μm;
作为优选,所述初始合金粉末颗粒或者条带在三维方向上至少有一维的尺度小于200μm;
作为优选,所述初始合金粉末颗粒或者条带在三维方向上至少有一维的尺度小于50μm;
进一步地,当初始合金为条带状时,可以通过包括熔体甩带法的方法制备;
进一步地,当初始合金为粉末状时,可以通过铸造法制备体积较大的初始合金铸锭,然后将其破碎成初始合金粉末。
所述步骤二中,
进一步,所述T指代T类元素,为T类元素的简写,T代表Al、Zn、AlZn中的任意一种,且AlZn中Al与Zn的比例不限;
进一步地,所述析氢脱T反应,是指初始合金与温度为T 1的热碱溶液反应时,T被热碱溶解变成盐进入溶液,同时释放氢气的反应;
进一步地,所述碱溶液包含NaOH、KOH、LiOH、RbOH、Ba(OH) 2、Ca(OH) 2、Sr(OH) 2溶液中的至少一种;
进一步地,所述碱溶液中的溶剂包含水;作为优选,所述碱溶液中的溶剂为水;
进一步地,所述碱溶液中碱的浓度为5.1~25mol/L;
作为优选,所述碱溶液中碱的浓度为5.1~15mol/L;
作为优选,所述碱溶液中碱的浓度为7~15mol/L;作为进一步优选,所述碱溶液中碱的浓度为7~12mol/L;
作为进一步优选,所述碱溶液中碱的浓度为10~15mol/L;
进一步的,所述碱的浓度指碱中OH -的浓度;
进一步地,与初始合金反应的热碱溶液中的碱为过量剂量,热碱溶液的体积为初始合金体积的5倍以上,从而可以使得反应一直在较高的碱浓度下进行;
进一步地,热碱溶液的体积为初始合金体积的10倍以上;进一步地,热碱溶液的体积为初始合金体积的20倍以上;
进一步地,所述热碱溶液的温度即为初始合金与热碱溶液的反应温度;
进一步地,一定的碱浓度条件下,所述碱溶液的温度T 1只要能够保证析氢脱T反应过程中反应界面以不低于2μm/min的平均速率由初始合金表面向内推进,且反应过程中初始合金可以通过析氢脱T反应发生纳米碎化 即可,即通过析氢脱T反应速率或析氢脱T反应时间(因为反应速率与初始合金尺寸确定,则反应时间即确定;析氢脱T反应时间即肉眼观察不到反应产生气体所需要的时间)与反应效果来确定碱溶液的温度T 1与浓度;因此,当采用反应速率的值限定反应条件后,也就同时间接地限定了碱溶液的温度T 1值与浓度值范围。
进一步地,2μm/min的平均速率即为反应过程中初始合金可以通过析氢脱T反应发生纳米碎化的临界反应速率;
进一步地,所述发生纳米碎化,是指初始合金经析氢脱T反应碎化成三维方向上至少有一维的尺度小于500nm的单个中间产物或产物;
进一步地,T 1≥60℃;
进一步地,所述初始合金与碱溶液的反应在常压或高压下进行;
进一步地,所述初始合金与碱溶液的反应在密闭容器内进行;
在密闭容器下,当容器内的压力超过一个大气压力,即为高压;同时,如果容器内反应产生的气体不能排出,也能形成额外高压。
进一步地,在密闭容器内进行反应时,初始合金与碱溶液首先在密闭容器内分开放置,当碱溶液温度达到设定的反应温度时,再将初始合金与碱溶液接触,进行反应。
进一步地,在密闭容器内,碱溶液的温度可以超过其常压下的沸点温度;
进一步地,所述初始合金与热碱溶液的反应在常压下进行;
进一步地,所述常压,是指不使用密闭容器情况下的大气环境气压;此外,如果容器密闭不严,虽然容器内压力稍高于完全敞开的环境压力,但由于其也属于非密闭环境,此时的压力也属于常压的范畴。
进一步地,所述反应在常压环境下进行,常压一般指1个标准大气压,此时对应水的沸点为100℃;当水中溶有碱时,1个标准大气压下碱的水溶液的沸点温度要高于100℃,且碱的浓度越高,则其沸点越高。例如,摩尔浓度5.1mol/L氢氧化钠水溶液,沸点T f溶液约为108℃;摩尔浓度7mol/L氢氧化钠水溶液,沸点T f溶液约为112℃;摩尔浓度10mol/L氢氧化钠水溶液,沸点T f溶液约为119℃;摩尔浓度12mol/L氢氧化钠水溶液,沸点T f 溶液约为128℃;摩尔浓度15mol/L氢氧化钠水溶液,沸点T f溶液约为140℃;摩尔浓度17mol/L氢氧化钠水溶液,沸点T f溶液约为148℃;摩尔浓度20mol/L氢氧化钠水溶液,沸点T f溶液约为160℃;摩尔浓度25mol/L氢氧化钠水溶液,沸点T f溶液约为180℃;摩尔浓度10mol/L氢氧化钾水溶液,沸点T f溶液约为125℃;摩尔浓度12mol/L氢氧化钾水溶液,沸点T f溶液约为136℃;摩尔浓度15mol/L氢氧化钾水溶液,沸点T f溶液约为150℃;
进一步地,60℃≤T 1≤T f溶液,T f溶液为常压下所述参与反应碱溶液的沸点温度;
进一步地,66℃≤T 1≤T f溶液;进一步地,71℃≤T 1≤T f溶液;进一步地,76℃≤T 1≤T f溶液
进一步地,81℃≤T 1≤T f溶液;进一步地,86℃≤T 1≤T f溶液;进一步地,91℃≤T 1≤T f溶液
进一步地,96℃≤T 1≤T f溶液;进一步地,100℃≤T 1≤T f溶液;进一步地,100℃<T 1≤T f溶液
进一步地,101℃≤T 1≤T f溶液;进一步地,105℃≤T 1≤T f溶液
进一步地,101℃≤T f溶液-5℃≤T 1≤T f溶液
进一步地,101℃≤T f溶液-2℃≤T 1≤T f溶液
作为进一步优选,所述碱溶液的温度为T f溶液,即T 1=T f溶液
由于反应溶液在常压下所能加热到的最高温度为其沸点温度(T f溶液),当温度达到该温度后,继续加热,溶液的温度也不会升高。因此,沸点温度的控制最为容易、简单、精确。而且,相同条件下沸点温度反应所需的反应时间也比沸点以下其它温度反应所需反应时间更短,产物产率与效率也最高;
进一步地,当60℃≤T 1≤100℃时,所述碱溶液包含KOH;
进一步地,当60℃≤T 1≤100℃时,所述碱溶液中KOH的浓度不低于2mol/L;此时,其它OH -可以通过其它碱提供,以保证总的OH -浓度达到5.1mol/L以上;
进一步地,当60℃≤T 1≤100℃时,所述碱溶液主要由KOH水溶液组成;
进一步地,当60℃≤T 1≤100℃时,所述碱溶液为KOH水溶液;
由于T类元素(Al、Zn)为两性金属,其可以和热的浓碱溶液中的氢氧根反应变成T盐,并溶于溶液中,同时剧烈释放氢气;因此可以通过T与热碱溶液反应脱除初始合金中的T,初始合金中剩余的E组元元素与Ti则 进一步与碱溶液相互作用并同时发生一系列的变化,包括Ti原子的扩散重排以及其与E组元元素、氢、氧、OH -、碱中阳离子的相互作用,并通过形状与成分重构生成含有E组元元素的纳米钛酸盐薄膜。
进一步地,所述初始合金与热碱溶液在60℃≤T 1≤T f溶液反应,对微观形貌为薄膜状产物的制备非常重要。在某一个对比实施例中,常压下,当固溶Ag的TiAl 3金属间化合物初始合金粉末与10mol/L且为35℃的NaOH溶液反应2h,反应前后原初始合金粉末的形状大致不变,仍然为原破碎状且具有棱角的粉末状颗粒,且其微观结构上也不生成大量的单片二维薄膜状产物,而是生成纳米多孔结构的钛酸盐或纳米多孔结构的钛,且这种纳米多孔结构通过三维网状链接的方式构成与原合金粉末形状一致的外观形貌,其粒径大小仍然为初始合金粉末相当的大小,主要为数微米或者数十微米级。因此,室温附近的较低温度下所发生的初始合金与碱溶液的反应与本发明在60℃≤T 1≤T f溶液,尤其是该温度区间高温段的反应完全不同,产物形貌也完全不同。
具体来说,当反应温度取60℃≤T 1≤T f溶液温度区间的低值范围60℃≤T 1≤100℃,且碱溶液主要由NaOH水溶液组成时,所得产物中掺杂E组元元素的纳米钛酸盐薄膜目标产物的产率较低。但当碱溶液中含有KOH,且掺杂E组元元素的纳米钛酸盐薄膜基体包含纳米钛酸钾薄膜基体时,可以大幅提高产物中掺杂E组元元素的纳米钛酸盐薄膜的产率;例如,当碱溶液主要由KOH水溶液组成,反应温度为60℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于50%;当反应温度为71℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于65%;当反应温度为81℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于75%;当反应温度为91℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于85%;当反应温度为96℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于90%;
当反应温度取60℃≤T 1≤T f溶液温度区间高值范围100℃<T 1≤T f溶液时,无论碱的种类变化,所得产物中掺杂E组元元素的纳米钛酸盐薄膜的产率均很高,且产物形貌与原初始合金粉末颗粒或条带形状完全不同;例如,当反应温度高于101℃时,可以得到高的掺杂E组元元素的纳米钛酸盐薄膜的产率,其产率一般为95%~100%;当反应温度取常压下碱溶液沸点T f溶液时,可以得到更高的掺杂E组元元素的纳米钛酸盐薄膜产率,其产率一般为99%~100%;
特别地,当反应在常压下,且在碱溶液沸点温度发生时,反应体系的溶液组成具有明显的特殊变化,具体表现在:在碱溶液沸点温度以下温度区间,溶剂主要以液态水存在,反应体系状态很普通;但在碱溶液沸点温度或者沸点温度附近,溶剂中除了液态水与沸腾产生的气态水外,还包含正在发生由液态水向气态水转变的临界态水。而且,由于溶液中反应物及在先生成纳米尺度反应产物的存在,根据异质形核原理,其提供了大量沸腾汽化的质点,从而使得反应体系处于全面沸腾汽化的特殊环境。在这一特殊环境下,水中溶解的大气环境气体(氧气、氮气)的含量与状态也极为特殊(因为沸腾水蒸气、T和碱反应生成的氢气的大量出现,改变了水中溶解气体的饱和分压条件)。同时,固溶有E组元元素的Ti-T金属间化合物与浓碱溶液反应,在脱掉合金中T的过程中会生成的大量氢气,这些短时生成的氢气以及大量异质形核沸腾汽化产生的水蒸汽作用于析氢脱T反应界面,其引起的剧烈冲胀作用会进一步促进反应界面初始合金的持续纳米碎化及形状与成分重构过程;而溶于碱溶液中的T盐也会改变反应溶液体系的物质组成。这些沸点温度下溶液的诸多特征都为反应提供了一个非常特殊的反应环境。在这一特殊的反应环境条件下,将会发生特殊的反应过程,使初始合金通过析氢脱T反应发生高效的纳米碎化及形状与成分重构,从而使得低温或室温脱合金反应一般生成的三维网络状连续的纳米多孔结构难以稳定存在,而是通过特殊的纳米碎化及形状与成分重构过程生成主要由掺杂E组元元素纳米钛酸盐薄膜组成的絮状产物。这不仅极大地缩短目标薄膜状产物的制备时间,同时获得了高的掺杂E组元元素的纳米钛酸盐薄膜的产率。而且,由于特定碱溶液沸点温度的恒定特性,温度控制可以极为精准,从而使得产物形貌与成分的控制变得极为精准与简便。
进一步地,由于步骤二所述“纳米碎化-产物形状与成分重构”过程几乎与“析氢脱T”反应几乎同时发生,因此,步骤二所述产物生成过程理论上所需的最短时间为初始合金反应界面自表面向内推进完成析氢脱T反应需要的时间,其可以通过氢气析出是否结束来判断。
进一步地,所述析氢脱T反应为剧烈的析氢脱T反应;
进一步地,所述剧烈的析氢脱T反应,是指析氢脱T反应的反应界面推进速率足够快,反应界面析出的氢气集中在很短的时间释放,从而表现为剧烈的反应过程。
进一步地,所述析氢脱T反应的剧烈成程度与单位时间内反应界面由初始合金表面向内的反应推进速率有关,碱溶液温度越高,反应界面推进速率越快,反应越剧烈。
进一步地,所述反应界面以大于4μm/min的平均速率由初始合金表面向内推进;
进一步地,所述反应界面以大于7.5μm/min的平均速率由初始合金表面向内推进;
进一步地,所述反应界面以大于17.5μm/min的平均速率由初始合金表面向内推进;
进一步地,当60℃<T 1≤100℃时,所述反应界面以大于2μm/min的平均速率由初始合金表面向内推进;
进一步地,当100℃<T 1≤T f溶液时,所述反应界面以大于20μm/min的平均速率由初始合金表面向内推进;
例如,当碱浓度为10mol/L时,Ag 1Ti 25Al 74初始合金与碱溶液反应过程中,反应界面由初始合金表面向内的推进速率如下:
60℃<T 1≤71℃时,所述反应界面的平均推进速率约为2.5μm/min~4.0μm/min;
71℃<T 1≤81℃时,所述反应界面的平均推进速率约为4.0μm/min~7.5μm/min;
81℃<T 1≤91℃时,所述反应界面的平均推进速率约为7.5μm/min~17.5μm/min;
91℃<T 1≤100℃时,所述反应界面的平均推进速率约为17.5μm/min~35μm/min;
100℃<T 1≤110℃时,所述反应界面的平均推进速率约为35μm/min~60μm/min;
110℃<T 1≤120℃时,所述反应界面的平均推进速率约为60μm/min~125μm/min;
120℃<T 1≤T f溶液时,所述反应界面的平均推进速率大于120μm/min;
由于T类元素(Al、Zn)为两性金属,其与常压下沸点温度(其高于100℃)附近的碱溶液的反应非常迅速。一般来说,初始合金中T元素被完全脱除的反应时间与初始合金的形状相关:当初始合金粉末颗粒越小,或初始合金条带越薄时,析氢脱T反应完成所需的时间越短;反之,析氢脱T反应完成所需的时间越长。
进一步地,所述析氢脱T反应过程中施加超声,通过超声处理进一步增进纳米碎化效果与反应速率;
进一步地,所述超声的频率为20kHz~10 6kHz;
根据反应界面的平均推进速率以及初始合金的尺寸,即可计算出析氢脱T反应完成所需最少的反应时间t。例如,当初始合金为厚度为d的条带状,且反应界面的平均推进速率为v时,考虑到反应界面分别从条带上下两个面推进,t=0.5d/v;同理,当初始合金为直径为d的颗粒状,且反应界面的平均推进速率为v时,t=0.5d/v。
在某一个实施例中,固溶Ag的TiAl 3金属间化合物初始合金条带与10mol/L且为沸点温度的NaOH溶液反应(沸点温度约119℃),初始合金条带反应界面推进的平均速率约为~120μm/min,亦即40μm厚的初始合金条带,10s就可以完成析氢脱Al反应;20μm厚的初始合金条带,5s就可以完成析氢脱Al反应;即使5mm粒径的初始合金球,21min就可以将其析氢脱Al反应完毕;
当所述d约为40μm时,其相应初始合金的制备极为简便,普通甩带法就能很容易制备,根据t=0.5d/v,即使反应界面的平均推进速率为低温区间60℃所对应的2.5μm/min,8min即可完成析氢脱T反应;
当析氢脱T反应完成后,随后反应体系达到平衡;此时,继续延长反应体系在原反应温度的保温时间,仍然能保证产物的稳定。因此,当初始合金与热碱溶液的反应时间超过所需最短析氢脱T反应时间t,如达数小时时,仍能够获得相应的产物;
进一步的,所述初始合金与碱溶液在T 1温度的反应时间最短可为10s;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~59min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~29min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~9.9min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~4.9min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~2min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~1min;
进一步地,所述初始合金与热碱溶液在T 1温度的反应时间为10s~30s;
很显然,当T 1越高,初始合金的厚度越薄或者粒径越小时,所需反应时间越短;反之,反应时间越长;
进一步地,所述发生纳米碎化,是指反应界面的初始合金经析氢脱T反应碎化成纳米尺度的中间产物或产物,同时经形状与成分重构生成含有E组元元素的二维纳米钛酸盐薄膜;在这个过程中,析氢脱T反应剧烈释放的氢气促进了中间产物及产物的纳米碎化、产物的形状与成分重构、以及产物离开反应界面后在碱溶液中的 扩散分布。
进一步地,所述发生纳米碎化,是指初始合金经析氢脱T反应碎化成三维方向上至少有一维的尺度小于500nm的单个中间产物或产物;
进一步地,所述含有E组元元素的固态絮状产物,主要由三维方向上至少有一维的尺度小于20nm的单个中间产物或产物组成;
进一步地,所述含有E组元元素的固态絮状产物,主要由三维方向上至少有一维的尺度小于10nm的单个中间产物或产物组成;
进一步地,所述含有E组元元素的固态絮状产物,经形状与成分重构生成后不会存留在初始合金反应界面处,而是在生成的同时通过扩散离开初始合金反应界面,并通过热扩散及碱溶液液体对流进一步扩散分布于碱溶液中;
进一步地,所述形状与成分重构,是指初始合金析氢脱T反应及纳米碎化后的中间产物同时发生形状与成分的进一步变化,生成与微米级或毫米级的初始合金成分、形状完全不同的纳米级产物;所述纳米级产物的尺寸见步骤三后续说明;
进一步地,所述生成的含有E组元元素的纳米钛酸盐薄膜中不含有三维连续网络状的纳米多孔结构或多孔骨架结构;
进一步地,所述析氢脱T反应将微米级甚至毫米级的初始合金通过由表向内的逐级纳米碎化过程,变成了大量含有E组元元素的二维纳米钛酸盐薄膜;
进一步地,所述含有E组元元素的固态絮状产物主要由大量含有E组元元素的二维纳米钛酸盐薄膜通过彼此的聚集、缠结结合而成;其宏观上看为固态絮状产物;
进一步地,所述絮状固态产物,是指纳米级尺度的薄膜状产物在扩散过程中团聚后,呈固态絮状,从观察上来看可以较长时间悬浮在溶液中。
所述步骤三中,
一般来说,化学反应的温度、产物达到平衡后,如果缓慢降低反应体系的温度,则反应在新的温度下长期保温会导致原反应平衡的打破,从而引起反应产物组成与形貌的可能变化。
步骤二所述反应体系包括反应生成的产物与反应后的碱溶液;
为了将热碱溶液中原反应平衡的产物保留下来,同时利于产物的固液分离,步骤三还包括将步骤二所述反应体系中固态絮状产物的温度自T 1降低至更低的温度区间过程。通过控制降温速率,使得反应体系的温度迅速降低时,可以使反应产物来不及发生相应的变化,从而可以确保在60℃≤T 1的温度区间,尤其是100℃<T 1温度区间生成产物的成分与形貌得到保留;进一步地,从而可以确保在60℃≤T 1≤T f溶液的温度区间,尤其是100℃<T 1≤T f 溶液温度区间生成产物的成分与形貌得到保留。
进一步地,常压下,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低至更低的温度区间,其中,60℃≤T 1≤T f溶液
进一步地,66℃≤T 1≤T f溶液;进一步地,71℃≤T 1≤T f溶液;进一步地,76℃≤T 1≤T f溶液
进一步地,81℃≤T 1≤T f溶液;进一步地,86℃≤T 1≤T f溶液;进一步地,91℃≤T 1≤T f溶液
进一步地,96℃≤T 1≤T f溶液;进一步地,100℃≤T 1≤T f溶液;进一步地,100℃<T 1≤T f溶液
进一步地,101℃≤T 1≤T f溶液;进一步地,105℃≤T 1≤T f溶液
进一步地,101℃≤T f溶液-5℃≤T 1≤T f溶液
进一步地,101℃≤T f溶液-2℃≤T 1≤T f溶液
进一步地,T 1=T f溶液
进一步地,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低至45℃以下;
进一步地,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低至35℃以下;
进一步地,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低至30℃以下;
进一步地,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度降低的降温速率大于5K/s;
进一步地,降温速率大于10K/s;进一步地,降温速率大于20K/s;进一步地,降温速率大于50K/s;
进一步地,将步骤二所述反应体系在含有E组元元素的固态絮状产物的温度降低的所需时间低于20s;
进一步地,温度降低的所需时间低于10s;进一步地,温度降低的所需时间低于5s;
进一步地,温度降低的所需时间低于2s;
可以理解,当反应的温度区间为60℃≤T 1≤T f溶液温度区间的高值范围,如100℃<T 1≤T f溶液温度区间或T f溶液温度时,通过步骤三迅速降低反应产物的温度可以确保产物的成分与形貌的稳定。
进一步地,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度降低的方式包括加溶剂稀释、过滤冷却中的至少一种;
常压下,反应在敞口容器中进行,因此可以很容易地通过往反应体系中加入冷的溶剂(如水),来使步骤二所述反应体系中含有E组元元素的固态絮状产物的温度迅速降低,同时降低反应体系中的碱溶液浓度;作为另外一种途径,也可以将反应体系中热碱溶液与含有E组元元素的固态絮状产物迅速一并倒出并同时过滤分离,从而迅速降低含有E组元元素的固态絮状产物的温度;
进一步地,所述加溶剂稀释所对应的溶剂包含水;
进一步的,加溶剂稀释所对应溶剂的温度为常温;
进一步的,加溶剂稀释所对应溶剂的温度为0℃~30℃;
进一步的,加溶剂稀释所对应溶剂的温度为0℃~25℃;
进一步的,加溶剂稀释所对应溶剂的温度为0℃~20℃;
进一步地,当采用加溶剂稀释时,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度降低的同时,也将碱溶液的温度同步降低,此外还会将步骤二所述反应体系中碱溶液的浓度降低;
进一步地,所述降低浓度后的碱溶液的浓度为原浓度的0.25倍以下;同时,降低温度后的碱溶液的温度低于50℃;
作为优选,所述降低浓度后的碱溶液的浓度为原浓度的0.1倍以下;同时,降低温度后的碱溶液的温度低于45℃。
进一步地,当采取过滤冷却降温时,具体步骤为:常压下,将含有E组元元素的固态絮状产物且处于60℃≤T 1≤T f溶液温度的碱溶液倒在冷的过滤网上,含有E组元元素的固态絮状产物与碱溶液通过滤网分离;通过环境与滤网迅速导走含有E组元元素的固态絮状产物的热量,含有E组元元素的固态絮状产物温度可以迅速降低至低的温度区间;
进一步地,101℃≤T 1≤T f溶液;进一步地,T 1=T f溶液
进一步地,过滤网的温度不高于30℃;
进一步地,过滤网的温度不高于20℃;
进一步地,过滤网的温度不高于10℃;
进一步地,过滤网平面与水平面成一定角度,使得包含固态絮状产物的热碱溶液倒入滤网后,其可以在滤网上流动铺开的同时进行充分的过滤与冷却;
进一步地,过滤网平面与水平面的角度为15°~75°;
进一步地,过滤网的网孔孔径大小范围为5μm~1mm;
进一步地,过滤网包括多层过滤网;
进一步地,过滤网包括至少4层;
进一步地,过滤网包括多层过滤网,且每一层的网孔大小不一致;
含有E组元元素的固态絮状产物一般聚集缠结在一起,形成较大的聚集团,因此可以通过较大孔径的滤网进行初级分离;通过多层过滤网,可以实现较大网孔滤网对固态产物进行初级分离,中等大小网孔滤网对固态絮状产物进行继续分离,小网孔滤网对固态絮状产物进行最终分离;
进一步地,过滤网包括导热性能优异的金属过滤网;
可以理解,通过冷网过滤冷却降温时,不仅迅速降低了含有E组元元素的固态絮状产物的温度,同时发生了原反应平衡对应的固液物质的分离,相比稀释法减少了分离出来副产物溶液的体积,且进一步保证了T 1温度生成产物的成分与形貌得到保留,具有积极意义。
进一步地,只要最终获得的掺杂E组元元素的纳米钛酸盐薄膜材料的温度低于T 1,或者其在低于T 1温度进行固液分离、清洗、保存、使用,不管中间过程掺杂E组元元素的纳米钛酸盐薄膜材料的温度发生怎样的历史 变化,都属于步骤三所述将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低的操作;
进一步地,收集含有E组元元素的固态絮状产物的过程,包括对含有E组元元素的固态絮状产物的固液分离、清洗、干燥;
进一步地,收集含有E组元元素的固态絮状产物,即得到掺杂E组元元素的二维纳米钛酸盐薄膜材料;
进一步地,收集含有E组元元素的固态絮状产物,即得到掺杂E组元元素的二维纳米钛酸盐薄膜粉体材料。
进一步地,所述薄膜材料,宏观上看是粉体材料形貌,微观上观察其由大量二维薄膜组成。
进一步地,所述薄膜材料,宏观上看是粉体材料形貌,微观上观察其由大量单片二维薄膜分散或缠结组成,其结构与通过传统脱合金反应形成的纳米多孔结构完全不同;传统通过脱合金反应得到的纳米多孔结构由三维网状系带连接构成一个整体,且其整体的外观形貌与脱合金反应前的初始合金的外观形貌基本一致;
进一步地,所述二维薄膜材料,是指材料的最小单元(如单片薄膜)的面积较大,而其厚度方向上的尺寸远远小于面积方向上两个维度尺寸的材料,且其厚度不超过10nm。
进一步地,所述掺杂E组元元素,是化学领域的通常说法,并非E组元元素一定就是杂质元素,这是相对于其所依附的基体材料来说的概念,即E组元元素为与基体材料成分不一致的元素,且该元素具有特殊的功能,为有目的设计并加入,使之与所依附的基体材料均匀复合,达到一定的目的;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜材料由大量单片掺杂E组元元素的纳米钛酸盐薄膜聚合而成;可以理解,大量单片薄膜之间可以通过相互缠结、聚集软团聚在一起;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜的厚度为0.25nm~7.5nm;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜的厚度为0.25nm~4nm;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜的厚度为0.25nm~3nm;
作为优选,所述掺杂E组元元素的纳米钛酸盐薄膜的厚度为0.25nm~2nm;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜的平均面积大于500nm 2
作为优选,所述掺杂E组元元素的纳米钛酸盐薄膜的平均面积大于5000nm 2
作为进一步优选,所述掺杂E组元元素的纳米钛酸盐薄膜的平均面积大于20000nm 2
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜主要为低结晶度钛酸盐;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜中钛酸盐阳离子元素源自于所述碱中对应的阳离子元素;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜材料的化学组成包含E组元元素、Ti、O,以及碱中对应的阳离子元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;例如,当碱为NaOH时,所述碱中对应的阳离子元素即为Na,钛酸盐即为钛酸钠,则所述掺杂E组元元素的纳米钛酸钠薄膜材料的化学组成包含E组元元素、Ti、O,以及Na元素;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中;
进一步地,当E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中时,纳米钛酸盐薄膜可以看成是单相材料。也就是说,E组元元素,与Ti,O等钛酸盐组成元素一样,都是以原子或原子团簇均匀地分布在薄膜中,E组元元素并没有形核长大变成除钛酸盐相之外的E相。此时所得产物可以理解为是掺杂E组元元素的纳米钛酸盐薄膜,也可以理解为固溶有E组元元素的纳米钛酸盐薄膜,还可以理解其是一种全新的物质,如当所述碱中对应的阳离子元素为Na时,这种全新的物质可认为是纳米钛酸钠(银)薄膜;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在纳米钛酸盐薄膜之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在纳米钛酸盐薄膜之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大地提高所述钛酸盐薄膜基体的相变热稳定性,见后续相关说明。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的纳米钛酸盐薄膜中时,由于E组元元素原子的钉扎作用,使得纳米钛酸盐薄膜基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比单纯的纳米钛酸盐薄膜基体,加热过程中实现相同的相变,掺杂E组元元素的纳米钛酸盐薄膜热处理温度最高需要提高200℃;
这种相变热稳定性的提高,进一步说明E组元元素以原子或原子团簇尺度掺杂在纳米钛酸盐基体中,而不 是以明显E纳米颗粒相的方式存在。如果以明显E纳米颗粒相的方式存在,则钛酸盐薄膜基体与E纳米颗粒相为分开的独立两相,钛酸盐基体的相变热稳定性不会受到大的影响。
进一步地,所述步骤三收集含有E组元元素的固态絮状产物的过程包括干燥过程,通过对掺杂E组元元素的固态絮状产物进行干燥处理,即得到粉末状的掺杂E组元元素的纳米钛酸盐薄膜材料。
进一步地,所述干燥温度为50℃~350℃;进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥时间为1min~24h;进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间可取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间可取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的纳米钛酸盐薄膜中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的纳米钛酸盐薄膜中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的纳米钛酸盐薄膜中含有与O结合的Ag 2O原子团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸盐薄膜的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸盐薄膜中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中;
进一步地,所述E组元元素主要以原子的方式分布在纳米钛酸盐薄膜之中。
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;
进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或Al-Ti金属间化合物中的其它元素,从而使得E组元元素在原初始合金中可以通过固溶方式存在于Al-Ti金属间化合物中;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种;
进一步地,所述掺杂E组元元素的二维纳米钛酸盐薄膜在最终产物中的产率即为其在最终产物中的重量百分含量;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为50%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为65%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为75%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为85%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为90%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为95%~100%;
进一步地,所述掺杂E组元元素的纳米钛酸盐薄膜在最终产物中的产率为99%~100%;
具体来说,当反应温度取60℃≤T 1≤T f溶液温度区间的低值范围60℃≤T 1≤100℃,且碱溶液主要由NaOH水溶液组成时,所得产物中掺杂E组元元素的纳米钛酸盐薄膜目标产物的产率较低。但当碱溶液中含有KOH,且目标掺杂E组元元素的纳米钛酸盐薄膜基体包含纳米钛酸钾薄膜基体时,可以大幅提高产物中掺杂E组元元素的纳米钛酸盐薄膜的产率;例如,当碱溶液主要由KOH水溶液组成,反应温度为60℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于50%;当反应温度为71℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于65%;当反应温度为81℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于75%;当反应温度为91℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于85%;当反应温度为96℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于90%;
当反应温度取60℃≤T 1≤T f溶液温度区间高值范围100℃<T 1≤T f溶液时,无论碱的种类变化,所得产物中掺杂E组元元素的纳米钛酸盐薄膜的产率均很高,且产物形貌与原初始合金粉末颗粒或条带形状完全不同;例如,当反应温度高于101℃时,可以得到高的掺杂E组元元素的纳米钛酸盐薄膜的产率,其产率一般为95%~100%;当反应温度取常压下碱溶液沸点T f溶液时,可以得到更高的掺杂E组元元素的纳米钛酸盐薄膜产率,其产率一般为99%~100%;
其二方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料的制备方法,其特征在于,将其一方面所述的产物或掺杂E组元元素的纳米钛酸盐薄膜材料进行热处理制备。
由于掺杂E组元元素的存在,纳米钛酸盐薄膜的热稳定性会有所提高,薄膜在加热情况下的变厚收缩情况会受到E组元元素的阻碍。因此,所述热处理过程中,控制合适的热处理温度与热处理时间,可以保证纳米钛酸盐薄膜的厚度变化不大(仍然为薄膜状态),而主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中的掺杂E组元元素通过元素扩散、聚集,生成嵌生于纳米钛酸盐薄膜之中的E纳米颗粒。这种嵌生E纳米颗粒与普通的靠范德华力吸附主导的其它文献报道的纳米颗粒不同(范德华力吸附的纳米颗粒可以移动、脱落),其可以保证E纳米颗粒可以紧密地和纳米钛酸盐薄膜嵌生在一起(不能移动、脱落)。当主要以原子或原子团簇的方式分布的E组元元素全部聚集为E纳米颗粒后,由于E纳米颗粒呈岛状分布,受到纳米钛酸盐薄膜基体的空间阻碍作用不能相连,其难以继续合并、长大,因此可以在后续的继续加热过程中仍然保持粒径大致不变。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的纳米钛酸盐薄膜中时,由于E组元元素原子的钉扎作用,使得纳米钛酸盐薄膜基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比单纯的纳米钛酸盐薄膜基体,加热过程中实现相同的相变,掺杂E组元元素的纳米钛酸盐薄膜热处理温度最高需要提高200℃;
例如,不含有E组元元素的纳米钛酸盐薄膜450℃热处理1h,即发生相变;而含有较高E组元元素的纳米钛酸盐薄膜600℃热处理0.5h,薄膜基体仍不发生明显相变与形状变化。如果选择650℃热处理2min,也基本能保证不发生明显相变与形状变化;
因此,可以利用掺杂E组元元素的纳米钛酸盐薄膜热稳定性提高的特点,在保证薄膜形状不发生较大变化的情况下,通过热处理使E纳米颗粒通过元素扩散、聚集并在薄膜基体中镶嵌析出;
进一步地,所述热处理的温度为350℃~650℃;
进一步地,所述热处理的温度为350℃~600℃;
进一步地,所述热处理的温度为350℃~550℃;
进一步地,所述热处理的时间为2min~96h;作为优选,所述热处理的时间为10min~5h。
当选择温度范围低值时,且E组元元素含量较高时,需要较长的时间来使E纳米颗粒通过元素扩散、聚集并析出;当选择温度范围高值时,E组元元素含量较低时,需要较短的时间来使E纳米颗粒通过元素扩散、聚集并析出;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于纳米钛酸盐薄膜中;
所述嵌生,是指原位镶嵌生成的一种形成方式,即E纳米颗粒通过掺杂E组元元素扩散、聚集、长大,进而原位生成,其表现为被纳米钛酸盐薄膜部分或全部包裹,不依靠外加或者外混的方式使其镶嵌在其中。
进一步地,纳米钛酸盐薄膜经过析出E纳米颗粒的热处理后,厚度稍大于热处理之前的厚度;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的厚度为0.3nm~10nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的厚度为0.3nm~5nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的厚度为0.3nm~4nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的厚度为0.3nm~2nm;
进一步地,所述E纳米颗粒除了部分体积嵌生在纳米钛酸盐薄膜之中外,还包括未有嵌生在薄膜之中的裸露体积部分;
可以理解,因为嵌生E纳米颗粒为原分布在纳米钛酸盐薄膜之中的E组元元素扩散聚集产生,因此,其可以镶嵌分布在薄膜之中;由于薄膜足够薄,因此部分E纳米颗粒还会有部分体积裸露在薄膜之外;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的平均面积大于400nm 2;作为优选,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的平均面积大于4000nm 2;作为进一步优选,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜的平均面积大于16000nm 2
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料的主要化学组成包含E组元元素、Ti、O,以及原制备过程中碱中对应的阳离子元素,其中E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;
进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其三方面,本发明还涉及一种掺杂E组元元素的纳米钛酸薄膜材料的制备方法,其特征在于,将其一方面所述的产物或掺杂E组元元素的纳米钛酸盐薄膜材料与酸溶液反应,收集固态产物,即得到掺杂E组元元素的纳米钛酸薄膜材料。
通过与酸溶液反应,掺杂E组元元素的纳米钛酸盐薄膜材料表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的纳米钛酸盐薄膜材料中的阳离子与酸溶液中氢离子的离子交换,进而得到掺杂E组元元素的纳米钛酸薄膜材料。除此之外,酸反应后的产物与其一方面所述的产物的主要特征大体一致;
进一步地,所述酸溶液包含盐酸、硝酸、硫酸、醋酸、磷酸、草酸、苦味酸、油酸、高氯酸中的至少一种;
由于本方法制备的掺杂E组元元素的二维纳米钛酸盐薄膜或二维纳米钛酸薄膜极薄,当酸浓度高于0.1mol/L时,会发生明显的掺杂E组元元素的纳米钛酸薄膜基体在酸溶液中的进一步溶解。因此,为了防止掺杂E组元元素的纳米钛酸薄膜基体与酸的进一步反应溶解,所述酸溶液为稀酸溶液,且其中氢离子浓度低于0.1mol/L;
作为优选,所述酸溶液中氢离子浓度为0.0001mol/L~0.09mol/L;
作为优选,所述酸溶液中氢离子浓度为0.0001mol/L~0.05mol/L;
作为进一步优选,所述酸溶液中氢离子浓度为0.0001mol/L~0.01mol/L。
进一步地,掺杂E组元元素的纳米钛酸盐薄膜材料与酸溶液反应的具体步骤为:将掺杂E组元元素的纳米钛酸盐薄膜材料分散在水中,在搅拌状态下,将所述酸溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制保持在2~5之间,1min~5h后,进行分离、干燥,即得到掺杂E组元元素的纳米钛酸薄膜。当PH值控制保持在2~5之间,即混合溶液中氢离子对应的浓度为0.00001mol/L~0.01mol/L时,可以确保整个过程中掺杂E组元元素的纳米钛酸盐薄膜材料表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的纳米钛酸盐薄膜材料中的阳离子与酸溶液中氢离子的离子交换,进而获得未与酸溶液明显反应的掺杂E组元元素的纳米钛酸薄膜材料。
进一步地,所述掺杂E组元元素的纳米钛酸薄膜的厚度为0.25nm~7.5nm;进一步地,所述掺杂E组元元素的纳米钛酸薄膜的厚度为0.25nm~4nm;作为优选,所述掺杂E组元元素的纳米钛酸薄膜的厚度为0.25nm~3nm; 作为优选,所述掺杂E组元元素的纳米钛酸薄膜的厚度为0.25nm~2nm;
进一步地,所述掺杂E组元元素的纳米钛酸薄膜的平均面积大于500nm 2;作为优选,所述掺杂E组元元素的纳米钛酸薄膜的平均面积大于5000nm 2;作为进一步优选,所述掺杂E组元元素的纳米钛酸薄膜的平均面积大于20000nm 2
进一步地,所述掺杂E组元元素的纳米钛酸薄膜主要为低结晶度钛酸盐;
进一步地,所述掺杂E组元元素的纳米钛酸薄膜材料的化学组成包含E组元元素、Ti、H、O元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中;
进一步地,当E组元元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中时,纳米钛酸薄膜可以看成是单相材料。也就是说,E组元元素,与Ti、H、O等钛酸组成元素一样,都是以原子或原子团簇均匀地分布在薄膜中,E组元元素并没有形核长大变成除钛酸相之外的E纳米颗粒相。此时所得产物可以理解为是掺杂E组元元素的纳米钛酸薄膜,也可以理解为固溶有E组元元素的纳米钛酸薄膜,还可以理解其是一种全新的物质,如纳米钛酸(银)薄膜;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在纳米钛酸薄膜之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在纳米钛酸薄膜之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大地提高所述钛酸薄膜基体的热稳定性,见后续相关说明。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的纳米钛酸薄膜中时,由于E组元元素原子的钉扎作用,使得纳米钛酸薄膜基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比纳米钛酸薄膜基体,加热过程中实现相同的相变,掺杂E组元元素的纳米钛酸薄膜需要的热处理温度最高需要提高200℃;
这种相变热稳定性的提高,进一步说明E组元元素以原子或原子团簇尺度掺杂在纳米钛酸基体中,而不是以明显E纳米颗粒相的方式存在。如果以明显E纳米颗粒相的方式存在,则钛酸基体与E纳米颗粒相为分开的两相,钛酸基体的相变热稳定性不会受到大的影响。
进一步地,所述收集固态产物的过程包括干燥过程;
进一步地,所述干燥温度为50℃~350℃;
进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥时间为1min~24h;
进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间可取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间可取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的纳米钛酸薄膜中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的纳米钛酸薄膜中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的纳米钛酸薄膜中含有与O结合的Ag 2O原子团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸 薄膜之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸薄膜的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸薄膜中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子的方式分布在纳米钛酸薄膜之中。
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其四方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料的制备方法,其特征在于,将其三方面所述的产物或掺杂E组元元素的纳米钛酸薄膜材料进行热处理制备。
由于掺杂E组元元素的存在,纳米钛酸薄膜的热稳定性会有所提高,薄膜在加热情况下的变厚收缩情况会受到E组元元素的钉扎阻碍。因此,所述热处理过程中,控制合适的热处理温度与热处理时间,可以保证纳米钛酸薄膜的厚度变化不大(仍然为薄膜状态),而主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中的掺杂E组元元素通过元素扩散、聚集,生成嵌生于纳米钛酸薄膜之中的E纳米颗粒。这种嵌生E纳米颗粒与普通的靠范德华力吸附主导的其它文献报道的纳米颗粒不同(范德华力吸附的纳米颗粒可以移动、脱落),其可以保证E纳米颗粒紧密地和纳米钛酸薄膜嵌生在一起(不能移动、脱落)。当主要以原子或原子团簇的方式分布的E组元元素全部聚集为E纳米颗粒后,由于E纳米颗粒呈岛状分布,受到纳米钛酸薄膜基体的空间阻碍作用不能相连,其难以继续合并、长大,因此可以在后续的继续加热过程中仍然保持粒径大致不变。
进一步地,所述热处理的温度为350℃~650℃;
进一步地,所述热处理的温度为350℃~600℃;
进一步地,所述热处理的温度为350℃~550℃;
所述热处理温度可以保证掺杂E组元元素通过元素扩散、聚集,生成嵌生于纳米钛酸薄膜之中的E纳米颗粒,同时维持纳米钛酸薄膜基体形貌不发生明显变化,除厚度稍变厚一点外。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的纳米钛酸薄膜中时,由于E组元元素原子的钉扎作用,使得纳米钛酸薄膜基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比纳米钛酸薄膜基体,加热过程中实现相同的相变,掺杂E组元元素的纳米钛酸薄膜热处理温度最高需要提高200℃;
例如,不含有E组元元素的纳米钛酸薄膜450℃热处理1h,即发生相变;而含有较高E组元元素的纳米钛酸薄膜600℃热处理0.5h,仍不发生明显相变。
进一步地,所述热处理的时间为5min~96h;
作为优选,所述热处理的时间为10min~5h;
当选择温度范围低值时,且E组元元素含量较高时,需要较长的时间来使E纳米颗粒通过元素扩散、聚集并析出;当选择温度范围高值时,E组元元素含量较低时,需要较短的时间来使E纳米颗粒通过元素扩散、聚集并析出;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于纳米钛酸薄膜中;
所述嵌生,是指原位镶嵌生成的一种形成方式,即E纳米颗粒通过掺杂E组元元素扩散、聚集、长大,进而原位生成,其表现为被纳米钛酸薄膜部分或全部包裹,不依靠外加或者外混的方式使其镶嵌在其中。
进一步地,纳米钛酸薄膜经过热处理后,厚度稍大于热处理之前的厚度;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的厚度为0.3nm~10nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的厚度为0.3nm~5nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的厚度为0.3nm~4nm;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的厚度为0.3nm~2nm;
进一步地,所述E纳米颗粒除了部分体积嵌生在纳米钛酸薄膜之中外,还包括未有嵌生在薄膜之中的裸露体积部分;
可以理解,因为嵌生E纳米颗粒为原分布在纳米钛酸薄膜之中的E组元元素扩散聚集产生,因此,其可以镶嵌分布在薄膜之中;由于薄膜足够薄,因此部分E纳米颗粒还可能会裸露在薄膜之外;
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的平均面积大于400nm 2
作为优选,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的平均面积大于4000nm 2
作为进一步优选,所述含有嵌生E纳米颗粒的纳米钛酸薄膜的平均面积大于16000nm 2
进一步地,所述含有嵌生E纳米颗粒的纳米钛酸薄膜材料的化学组成包含E组元元素、Ti、H、O元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其五方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米TiO 2片粉的制备方法,其特征在于,通过将其三方面所述的产物或掺杂E组元元素的纳米钛酸薄膜材料,或其四方面所述的产物或含有嵌生E纳米颗粒的纳米钛酸薄膜材料进行热处理制备。
进一步地,所述热处理的时间为1min~48h;
作为优选,所述热处理时间为10min~3h;
进一步地,所述热处理的温度范围为600℃~1500℃;
进一步地,所述热处理的温度范围为600℃~1000℃;
进一步地,热处理过程中生成纳米TiO 2
当选择上述温度范围低值时,需要较长的时间来使纳米钛酸薄膜变成纳米TiO 2片,当选择上述温度范围高值时,需要较短的时间来使纳米钛酸薄膜变成纳米TiO 2片;
进一步地,所述热处理过程中,且所进行热处理的材料为掺杂E组元元素的纳米钛酸薄膜材料时,其首先发生掺杂E组元元素的扩散、聚集,生成嵌生于纳米钛酸薄膜之中的E纳米颗粒。随着热处理温度与时间的增加,纳米钛酸薄膜将会面积收缩,厚度增加,同时发生由纳米钛酸薄膜向纳米TiO 2片粉的转变。由于嵌生于纳米钛酸薄膜之中的E纳米颗粒被纳米钛酸薄膜基体所分开隔离,因此,在纳米钛酸薄膜发生物质转变并变厚的过程中,已经完全生成的E纳米颗粒难以继续相互合并、长大,其大小和形貌将处于稳定状态。即基体中以原子或原子团簇存在的E组元元素全部转变为E纳米颗粒后,没有额外的E组元元素来源,已经生成的分散分布的E纳米颗粒不会随着热处理温度的升高与热处理时间延长而明显长大;
所述热处理过程中,且所进行热处理的材料为含有嵌生E纳米颗粒的纳米钛酸薄膜材料时,由于嵌生于纳米钛酸薄膜之中的E纳米颗粒被纳米钛酸薄膜基体所分开隔离,因此,在纳米钛酸薄膜发生相转变并变厚的过程中,如果钛酸薄膜基体中以原子或原子团簇存在的E组元元素已经全部转变为E纳米颗粒,没有额外的E组元元素来源,则已经生成的分散分布的E纳米颗粒难以继续相互合并、长大,其大小和形貌将处于稳定状态,即不会随着热处理温度的升高与热处理时间延长而长大。
进一步地,当生成的纳米TiO 2片的厚度不超过E纳米颗粒的外径时,E纳米颗粒部分内嵌分布在纳米TiO 2片中;
进一步地,当生成的纳米TiO 2片的厚度超过E纳米颗粒的外径时,E纳米颗粒全部或部分内嵌分布在纳米TiO 2片中;
进一步的,所述含有E纳米颗粒的纳米TiO 2片粉中纳米TiO 2的相组成包括板钛矿型TiO 2、锐钛矿型纳米TiO 2、金红石型纳米TiO 2中的至少一种。
进一步地,在热处理过程过程中,除了掺杂E组元元素会发生扩散、聚集,生成嵌生于纳米钛酸薄膜之中的E纳米颗粒外,纳米钛酸基体形貌将会发生由薄膜到片的转变且厚度明显增加,同时,还会发生由钛酸到纳米TiO 2的转变。
具体来说,随着热处理温度与热处理时间的增加,含有嵌生E纳米颗粒的纳米钛酸薄膜热处理后的产物会发生“含有嵌生E纳米颗粒的纳米钛酸薄膜”→“含有嵌生E纳米颗粒的锐钛矿型纳米TiO 2片”→“含有嵌生E纳米颗粒的金红石型纳米TiO 2片”的连续转变。某些情况还不排除有含有嵌生E纳米颗粒的板钛矿TiO 2片的出现。
在转变的过程中,某些热处理温度与时间对应的产物状态,可能会有两种晶型的共存,如“含有嵌生E纳米颗粒的纳米钛酸薄膜材料”与“含有嵌生E纳米颗粒的锐钛矿型纳米TiO 2片”的共存,以及“含有嵌生E纳米颗粒的锐钛矿型纳米TiO 2片”与“含有嵌生E纳米颗粒的金红石型纳米TiO 2片”的共存。
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的形状为板片状;
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的厚度为1.0nm~30nm;
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的厚度为1.0nm~20nm;
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的平均面积大于100nm 2
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的平均面积大于1000nm 2
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的平均面积大于4000nm 2
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于纳米TiO 2片中;
进一步地,所述含有嵌生E纳米颗粒的纳米TiO 2片的化学组成包含E组元元素、Ti、O元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其六方面,本发明还涉及一种掺杂E组元元素的钛酸盐纳米管的制备方法,其特征在于,包括如下步骤制备:
将含有其一方面所述产物或掺杂E组元元素的纳米钛酸盐薄膜或(和)其三方面所述产物或掺杂E组元元素的纳米钛酸薄膜的固态物质与碱溶液密封于封闭容器中,随后在高于T f溶液的温度T 2进行高温高压处理;其中,T f溶液为常压下所述参与反应碱溶液的沸点温度,且T f溶液<T 2;反应一定时间后,降低封闭容器的温度并使压力恢复到常压,收集最终固态产物,即得到掺杂E组元元素的钛酸盐纳米管。
进一步地,所述碱溶液包含NaOH、KOH、LiOH、RbOH、Ba(OH) 2、Ca(OH) 2、Sr(OH) 2溶液中的至少一种;
进一步地,所述碱溶液中的溶剂包含水;作为优选,所述碱溶液中的溶剂为水;
进一步地,所述碱溶液中碱的浓度为5.1~25mol/L;
作为优选,所述碱溶液中碱的浓度为5.1~15mol/L;
作为优选,所述碱溶液中碱的浓度为7~15mol/L;作为进一步优选,所述碱溶液中碱的浓度为7~12mol/L;
作为进一步优选,所述碱溶液中碱的浓度为10~15mol/L;
进一步的,所述碱的浓度指碱中OH -的浓度;
进一步地,与含有其一方面所述掺杂E组元元素的纳米钛酸盐薄膜或(和)其三方面所述掺杂E组元元素的纳米钛酸薄膜的固态物质混合的碱溶液中碱为过量剂量,且碱溶液的体积为所述固态物质体积的5倍以上;
进一步地,碱溶液的体积为所述固态物质体积的10倍以上;进一步地,碱溶液的体积为所述固态物质体积的20倍以上;
作为优选方案,
所述“含有其一方面所述掺杂E组元元素的纳米钛酸盐薄膜或(和)其三方面所述掺杂E组元元素的纳米钛酸薄膜的固态物质与碱溶液”为其一方面所述经过步骤一和步骤二所得的析氢脱T反应结束后的含有E组元元素的固态絮状产物及对应的碱溶液;
即:将其一方面所述经过步骤一和步骤二所得的析氢脱T反应结束后的含有E组元元素的固态絮状产物及对应的碱溶液密封于封闭容器中,随后在高于T f溶液的温度T 2进行高温高压处理;其中,T f溶液为常压下所述参与反应碱溶液的沸点温度,且T f溶液<T 2;一定反应时间后,降低封闭容器的温度并使压力恢复到常压,收集最终固态产物,即得到掺杂E组元元素的钛酸盐纳米管。
该优选方案不需要将含有E组元元素的固态絮状产物及对应的碱溶液分离,然后再与碱混合,也不需碱溶液降温再升温(T 1<T 2),且碱浓度也满足该优选方案高温高压反应的要求。因此,这是最经济简便的操作方案。
进一步地,所述高温高压处理过程中,薄膜状钛酸盐或(和)薄膜状钛酸向管状钛酸盐转化,且T f溶液<T 2
进一步地,T 1≤T f溶液<T 2
进一步地,所述反应在高于常压的密闭容器中进行,从而使碱溶液的温度可以加热到其常压下的沸点温度T f溶液以上,从而实现掺杂E组元元素的薄膜状钛酸盐或(和)掺杂E组元元素的薄膜状钛酸在高温高压下向管状钛酸盐转化。
进一步地,密闭容器中,当碱溶液品种与浓度确定时,某一确定的温度值下必定对应某一确定值的压力,即压力值是温度值的函数;温度越高,压力也越高。
进一步地,T f溶液<T 2<300℃;
进一步地,T f溶液<T 2<250℃;
进一步地,T f溶液<T 2<200℃;
进一步地,T f溶液<120℃<T 2<200℃;
进一步地,T f溶液<140℃<T 2<200℃;
进一步地,T f溶液<150℃<T 2<180℃;
进一步地,所述T 2温度高温高压处理时间为0.1h~10h;进一步地,所述T 2温度高温高压处理时间为0.1h~1h;进一步地,所述T 2温度高温高压处理时间为0.1h~0.5h;进一步地优选,所述T 2温度高温高压处理时间为0.1h~0.2h;
由于反应平衡后,继续保温也能得到产物,因此,所述保温时间也可以选择较长的时间值。
进一步地,所述掺杂E组元元素的钛酸盐纳米管的外径为2nm~20nm;
进一步地,所述掺杂E组元元素的钛酸盐纳米管的外径为3nm~15nm;
进一步地,所述掺杂E组元元素的钛酸盐纳米管的平均长度大于其平均外径的5倍。
进一步地,所述掺杂E组元元素的钛酸盐纳米管主要为低结晶度钛酸盐;
进一步地,所述钛酸盐纳米管中的阳离子元素源自于所述碱中对应的阳离子元素;
进一步的,所述掺杂E组元元素的钛酸盐纳米管的化学组成包含E组元元素、Ti、O,以及碱中对应的阳离子元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;例如,当碱为NaOH时,所述碱中对应的阳离子元素即为Na,则所述掺杂E组元元素的钛酸盐纳米管的化学组成包含E、Ti、O,以及Na元素。
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中;
进一步地,当E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中时,钛酸盐纳米管可以看成是单相材料。也就是说,E组元元素与钛酸盐纳米管组成元素一样,都是以原子或原子团簇均匀地分布在钛 酸盐纳米管中,E组元元素并没有形核长大变成除钛酸盐相之外的E纳米颗粒相。此时所得产物可以理解为是掺杂E组元元素的钛酸盐纳米管,也可以理解为固溶有E组元元素的钛酸盐纳米管,还可以理解其是一种全新的物质,如钛酸(银)盐纳米管;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在钛酸盐纳米管之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在钛酸盐纳米管之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大的影响所述钛酸盐纳米管的热稳定性,见后续相关说明。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的钛酸盐纳米管中时,由于E组元元素原子的钉扎作用,使得钛酸盐纳米管的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比钛酸盐纳米管,加热过程中实现相同的相变,掺杂E组元元素的钛酸盐纳米管热处理温度最高需要提高200℃;
这种相变热稳定性的提高,进一步说明E组元元素以原子或原子团簇尺度掺杂在钛酸盐纳米管中,而不是以明显E纳米颗粒相的方式存在。如果以明显E纳米颗粒相的方式存在,则钛酸盐纳米管与E纳米颗粒相为分开的两相,钛酸盐纳米管的相变热稳定性不会受到大的影响。
进一步地,所述收集最终固态产物的过程包括干燥过程,即得到粉末状的掺杂E组元元素的钛酸盐纳米管。
进一步地,所述干燥温度为50℃~350℃;
进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥时间为1min~24h;
进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间可取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间可取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag 2O原子团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸盐纳米管的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸盐纳米管中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与钛酸盐纳米管基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子的方式分布在钛酸盐纳米管之中;
进一步地,所述掺杂E组元元素的钛酸盐纳米管主要通过掺杂E组元元素的钠米钛酸盐薄膜经高温高压处 理制备,因此,当高温高压处理不完全时,所得产物中也会包含掺杂E组元元素的钠米钛酸盐薄膜;
进一步地,所述掺杂E组元元素的钛酸盐纳米管在最终产物中的重量百分比含量高于50%;
进一步地,所述掺杂E组元元素的钛酸盐纳米管在最终产物中的重量百分比含量高于90%;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其七方面,本发明还涉及一种含有嵌生E纳米颗粒的钛酸盐纳米管的制备方法,其特征在于,通过将其六方面所述的最终产物或掺杂E组元元素的钛酸盐纳米管进行热处理制备。
由于掺杂E组元元素的存在,钛酸盐纳米管的热稳定性会有所提高,因此,所述热处理过程中,控制合适的热处理温度与热处理时间,可以使钛酸盐纳米管形貌与相组成几乎不变,而主要以原子或原子团簇的方式分布在钛酸盐纳米管之中的掺杂E组元元素通过元素扩散、聚集,生成嵌生于钛酸盐纳米管之中的E纳米颗粒。这种嵌生E纳米颗粒与普通的靠范德华力吸附主导的其它文献报道的纳米颗粒不同(范德华力吸附的纳米颗粒可以移动、脱落),其可以保证E纳米颗粒可以紧密地和钛酸盐纳米管嵌生在一起(不能移动、脱落)。当主要以原子或原子团簇的方式分布的E组元元素全部聚集为E纳米颗粒后,由于E纳米颗粒呈岛状分布,受到钛酸盐纳米管的空间阻碍作用不能相连,其难以继续合并、长大,因此可以在后续的继续加热过程中仍然保持粒径大致不变。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的钛酸盐纳米管中时,由于E组元元素原子的钉扎作用,使得钛酸盐纳米管基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比钛酸盐纳米管基体,加热过程中实现相同的相变,掺杂E组元元素的钛酸盐纳米管热处理温度最多需要提高200℃;
进一步地,所述热处理的温度为350℃~650℃;
进一步地,所述热处理的温度为350℃~600℃;
进一步地,所述热处理的温度为350℃~550℃;
进一步地,所述热处理的时间为2min~96h;
进一步地,所述热处理的时间为5min~10h;
作为优选,所述热处理的时间为10min~5h;
当选择温度范围低值时,且E组元元素含量较高时,需要较长的时间来使E纳米颗粒通过元素扩散、聚集并析出;当选择温度范围高值时,E组元元素含量较低时,需要较短的时间来使E纳米颗粒通过元素扩散、聚集并析出;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于钛酸盐纳米管中;
所述嵌生,是指原位镶嵌生成的一种形成方式,即E纳米颗粒通过掺杂E组元元素扩散、聚集、长大,进而原位生成,其表现为被钛酸盐纳米管部分或全部包裹,不依靠外加或者外混的方式使其镶嵌在其中。
进一步地,所述含有嵌生E纳米颗粒的钛酸盐纳米管的外径为2nm~20nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸盐纳米管的外径为3nm~15nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸盐纳米管的平均长度大于其平均外径的5倍;
进一步地,所述嵌生E纳米颗粒的嵌生方式包括全部体积内嵌分布在钛酸盐纳米管之中,或者部分体积内嵌分布在钛酸盐纳米管之中,同时还包括未有嵌生在钛酸盐纳米管之中的裸露体积部分。
进一步地,所述含有嵌生E纳米颗粒的钛酸盐纳米管的主要化学组成包含E组元元素、Ti、O,以及原制备过程中碱中对应的阳离子元素,其中E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其八方面,本发明还涉及一种掺杂E组元元素的钛酸纳米管的制备方法,其特征在于,通过将其六方面所述的最终产物或掺杂E组元元素的钛酸盐纳米管与酸溶液反应,收集固态产物,即得到掺杂E组元元素的钛酸纳米管。
进一步地,所述酸溶液包含盐酸、硝酸、硫酸、醋酸、磷酸、草酸、苦味酸、油酸、高氯酸中的至少一种。
通过与酸溶液反应,所述掺杂E组元元素的钛酸盐纳米管表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的钛酸盐纳米管与酸溶液中氢离子的离子交换,进而获得掺杂E组元元素的钛酸纳米管。
由于钛酸纳米管比钛酸薄膜的比表面积稍小,因此,可以通过相比其三方面所述方案稍高一点浓度的酸来进行反应;
进一步地,所述酸溶液中氢离子浓度为0.001mol/L~0.2mol/L;
作为优选,所述酸溶液中氢离子浓度为0.001mol/L~0.1mol/L;
作为优选,所述酸溶液中氢离子浓度为0.001mol/L~0.05mol/L;
进一步地,掺杂E组元元素的钛酸盐纳米管材料与酸溶液反应的具体步骤为:将掺杂E组元元素的钛酸盐纳米管材料分散在水中,在搅拌状态下,将所述酸溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制保持在2~4之间,1min~5h后,进行分离、清洗、干燥,即得到掺杂E组元元素的钛酸纳米管材料。由于钛酸盐纳米管卷起来有一定的厚度,当PH值控制保持在2~4之间,即混合溶液中氢离子对应的浓度为0.0001mol/L~0.01mol/L时,可以确保整个过程中掺杂E组元元素的钛酸盐纳米管材料表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的钛酸盐纳米管中的阳离子与酸溶液中氢离子的离子交换,进而获得未与该酸溶液明显反应的掺杂E组元元素的钛酸纳米管材料。
进一步地,所述掺杂E组元元素的钛酸纳米管的外径为2nm~20nm;
进一步地,所述掺杂E组元元素的钛酸纳米管的外径为3nm~15nm;
进一步地,所述掺杂E组元元素的钛酸纳米管的平均长度大于其平均外径的5倍;
进一步地,所述掺杂E组元元素的钛酸纳米管主要为低结晶度钛酸;
进一步的,所述掺杂E组元元素的钛酸纳米管的化学组成包含E、Ti、O,H;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中;
进一步地,当E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中时,钛酸纳米管可以看成是单相材料。也就是说,E组元元素,与Ti、H、O等钛酸纳米管组成元素一样,都是以原子或原子团簇均匀地分布在钛酸纳米管中,E组元元素并没有形核长大变成除钛酸纳米管之外的E纳米颗粒相。此时所得产物可以理解为是掺杂E组元元素的钛酸纳米管,也可以理解为固溶有E组元元素的钛酸纳米管,还可以认为其是一种新的物质;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在钛酸纳米管之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在钛酸纳米管之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大的影响所述钛酸纳米管基体的热稳定性,见后续相关说明。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的钛酸纳米管中时,由于E组元元素原子的钉扎作用,使得钛酸纳米管基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比单纯的钛酸纳米管基体,加热过程中实现相同的相变,掺杂E组元元素的钛酸纳米管热处理温 度最高需要提高200℃;
这种相变热稳定性的提高,进一步说明E组元元素以原子或原子团簇尺度掺杂在钛酸纳米管基体中,而不是以明显E纳米颗粒相的方式存在。如果以明显E纳米颗粒相的方式存在,则钛酸纳米管基体与E纳米颗粒相为分开的两相,钛酸纳米管基体的相变热稳定性不会受到大的影响。
进一步地,所述收集固态产物的过程包括干燥过程;
进一步地,所述干燥温度为50℃~350℃;
进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥时间为1min~24h;
进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag 2O原子团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸纳米管的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸纳米管中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与钛酸纳米管基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子的方式分布在钛酸纳米管之中;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其九方面,本发明还涉及一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法,其特征在于,通过将其八方面所述的产物或掺杂E组元元素的钛酸纳米管进行热处理制备。
由于掺杂E组元元素的存在,钛酸纳米管的热稳定性会有所提高,钛酸纳米管在加热情况下的结构转变会受到E组元元素的阻碍。所述热处理过程中,控制合适的热处理温度与热处理时间,可以保证钛酸纳米管的组成与形貌基本不变,而主要以原子或原子团簇的方式分布在钛酸纳米管之中的掺杂E组元元素通过元素扩散、 聚集,生成嵌生于钛酸纳米管中的E纳米颗粒。
这种嵌生E纳米颗粒与普通的靠范德华力吸附主导的其它文献报道的纳米颗粒不同(范德华力吸附的纳米颗粒可以移动、脱落),其可以保证E纳米颗粒可以紧密地和钛酸纳米管嵌生在一起(不能移动、脱落)。当主要以原子或原子团簇的方式分布的E组元元素全部聚集为E纳米颗粒后,由于E纳米颗粒呈岛状分布,受到钛酸纳米管基体的空间阻碍作用不能相连,其难以继续合并、长大,因此可以在后续的继续加热过程中仍然保持粒径大致不变。
进一步地,所述热处理的温度为350℃~650℃;
进一步地,所述热处理的温度为350℃~600℃;
进一步地,所述热处理的温度为350℃~550℃;
所述热处理温度可以保证掺杂E组元元素通过元素扩散、聚集,生成嵌生于钛酸纳米管之中的E纳米颗粒,同时维持钛酸纳米管基体形貌不发生明显变化。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的钛酸纳米管中时,由于E组元元素原子的钉扎作用,使得钛酸纳米管基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比单纯的钛酸纳米管基体,加热过程中实现相同的相变,掺杂E组元元素的钛酸纳米管热处理温度需要最高提高200℃;
进一步地,所述热处理的时间为5min~96h;
进一步地,所述热处理的时间为5min~10h;
作为优选,所述热处理的时间为10min~5h;
当选择温度范围低值时,且E组元元素含量较高时,需要较长的时间来使E纳米颗粒通过元素扩散、聚集并析出;当选择温度范围高值时,E组元元素含量较低时,需要较短的时间来使E纳米颗粒通过元素扩散、聚集并析出;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于钛酸纳米管中;
所述嵌生,是指原位镶嵌生成的一种形成方式,即E纳米颗粒通过掺杂E组元元素扩散、聚集、长大,进而原位生成,其表现为被钛酸纳米管部分或全部包裹,不依靠外加或者外混的方式使其镶嵌在其中。
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的外径为2nm~20nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的外径为3nm~15nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的平均长度大于其平均外径的5倍;
进一步地,所述嵌生E纳米颗粒的嵌生方式包括全部体积内嵌分布在钛酸纳米管之中,或者部分体积内嵌分布在钛酸纳米管之中,同时还包括未有嵌生在钛酸纳米管之中的裸露体积部分。
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的化学组成包含E组元元素、Ti、H、O元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其十方面,本发明还涉及一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法,其特征在于,通过将其八方面所述的产物或掺杂E组元元素的钛酸纳米管,或其九方面所述的产物或含有嵌生E纳米颗粒的钛酸纳米管进行热处理制备。
进一步地,所述热处理的时间为1min~48h;
作为优选,所述热处理时间为10min~3h;
进一步地,所述热处理的温度为600℃~1500℃;
进一步地,所述热处理的温度为600℃~1000℃;
进一步地,所述热处理过程中,发生钛酸纳米管向晶态TiO 2纳米管/棒的转化;
当选择温度为上述范围低值时,需要较长的时间来完成钛酸纳米管向晶态TiO 2纳米管/棒的转化,当选择温度为上述范围高值时,需要较短的时间来完成钛酸纳米管向晶态TiO 2纳米管/棒的转化。
进一步地,所述热处理过程中,所进行热处理的材料为其八方面所述掺杂E组元元素的钛酸纳米管时,其首先发生掺杂E组元元素的扩散、聚集,生成嵌生于钛酸纳米管之中的E纳米颗粒;此时材料状态与其九方面所述的含有嵌生E纳米颗粒的钛酸纳米管一致。随着热处理温度与时间的增加,钛酸纳米管进一步发生向晶态TiO 2纳米管/棒的转变。由于嵌生于钛酸纳米管或晶态TiO 2纳米管/棒中的E纳米颗粒被钛酸纳米管或晶态TiO 2纳米管/棒所分开隔离,因此,在钛酸纳米管发生向晶态TiO 2纳米管/棒的转变过程中,已经生成的E纳米颗粒难以继续相互合并、长大,其大小和形貌将处于稳定状态,不会随着热处理温度的升高与热处理时间的延长而明显变化。
进一步地,所述晶态TiO 2纳米管/棒是指晶态TiO 2纳米管/棒的形状包括管、棒中的至少一种;当管内径缩小为零时,即为棒的形状;
进一步的,所述嵌生E纳米颗粒的晶态TiO 2纳米管/棒的相组成包括板钛矿型TiO 2、锐钛矿型TiO 2、金红石型TiO 2中的至少一种。
具体来说,随着热处理温度与热处理时间的增加,热处理后的产物会发生“含有嵌生E纳米颗粒的钛酸纳米管”→“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”→“含有嵌生E纳米颗粒的金红石型TiO 2纳米管/棒”的连续转变。
在转变的过程中,某些热处理温度与时间对应的产物状态,可能会有两种晶型的共存,如“含有嵌生E纳米颗粒的钛酸纳米管”与“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”的共存,以及“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”与“含有嵌生E纳米颗粒的金红石型TiO 2纳米管/棒”的共存。
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~7.5nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于晶态TiO 2纳米管/棒中;
进一步地,所述含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的外径为2nm~25nm;
进一步地,所述含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的外径为3nm~20nm;
进一步地,所述含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的平均长度大于其平均外径的3倍;
进一步地,所述嵌生E纳米颗粒的嵌生方式包括全部体积内嵌分布在TiO 2纳米管/棒之中,或者部分体积内嵌分布在TiO 2纳米管/棒之中,还包括未有嵌生在TiO 2纳米管/棒之中的裸露体积部分。
进一步地,所述嵌生E纳米颗粒的晶态TiO 2纳米管/棒的化学组成包含E组元元素、Ti、O;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其十一方面,本发明还涉及一种掺杂E组元元素的纳米钛酸盐薄膜材料,通过包括其一方面所述的一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法制备,其特征如其一方面所述。
其十二方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料,通过包括其二方面所述的一 种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料的制备方法制备,其特征如其二方面所述。
其十三方面,本发明还涉及一种掺杂E组元元素的纳米钛酸薄膜材料,通过包括其三方面所述的一种掺杂E组元元素的纳米钛酸薄膜材料的制备方法制备,其特征如其三方面所述。
其十四方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料,通过包括其四方面所述的一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料的制备方法制备,其特征如其四方面所述。
其十五方面,本发明还涉及一种含有嵌生E纳米颗粒的纳米TiO 2片粉,通过包括其五方面所述的一种含有嵌生E纳米颗粒的纳米TiO 2片粉的制备方法制备,其特征如其五方面所述。
其十六方面,本发明还涉及一种掺杂E组元元素的钛酸盐纳米管,通过包括其六方面所述的一种掺杂E组元元素的钛酸盐纳米管的制备方法制备,其特征如其六方面所述。
其十七方面,本发明还涉及一种含有嵌生E纳米颗粒的钛酸盐纳米管,通过包括其七方面所述的一种掺杂E组元元素的钛酸盐纳米管的制备方法制备,其特征如其七方面所述。
其十八方面,本发明还涉及一种掺杂E组元元素的钛酸纳米管,通过包括其八方面所述的一种掺杂E组元元素的钛酸纳米管的制备方法制备,其特征如其八方面所述。
其十九方面,本发明还涉及一种含有嵌生E纳米颗粒的钛酸纳米管,通过包括其九方面所述的一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法制备,其特征如其九方面所述。
其二十方面,本发明还涉及一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒,通过包括其十方面所述的一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法制备,其特征如其十方面所述。
其二十一方面,本发明还涉及另外一种掺杂E组元元素的钛酸盐纳米管的制备方法,其特征在于,通过如下步骤制备:
步骤1),提供初始合金,所述初始合金包含T类元素、Ti与E组元元素;其中,T类元素包含Al、Zn中的至少一种;且初始合金的相组成包含固溶有E组元元素的T-Ti金属间化合物;其中,E组元元素中Ag的原子百分比含量为50%~100%,且初始合金中固溶于T-Ti金属间化合物中的E组元元素与Ti的摩尔比范围为0<C E/C Ti≤0.25;
步骤2),将所述初始合金与碱溶液密封于封闭容器中,随后将封闭反应体系温度加热至T 2并保温一段时间;其中,100℃<T f溶液<T 2;T f溶液为常压下参与反应碱溶液的沸点温度,且T 2温度下反应容器内的压力高于常压;
步骤3),降低封闭容器的温度并使压力恢复到常压,收集最终固态产物,即得到掺杂E组元元素的钛酸盐纳米管。
所述步骤1)以及关于步骤1)的详细说明均与其一方面(一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法)所述的步骤一及其详细说明完全一致(见上文其一方面所述步骤一部分);
所述步骤2)中,
进一步的,常温常压下,将初始合金与碱溶液密封于封闭容器中,随后将封闭反应体系温度加热至T 2的高温高压状态并保温一段时间;其中,100℃<T f溶液<T 2
进一步地,所述碱溶液包含NaOH、KOH、LiOH、RbOH、Ba(OH) 2、Ca(OH) 2、Sr(OH) 2溶液中的至少一种;
进一步地,所述碱溶液中的溶剂包含水;作为优选,所述碱溶液中的溶剂为水;
进一步地,所述碱溶液中碱的浓度为5.1~25mol/L;
作为优选,所述碱溶液中碱的浓度为5.1~15mol/L;
作为优选,所述碱溶液中碱的浓度为7~15mol/L;作为进一步优选,所述碱溶液中碱的浓度为7~12mol/L;
作为进一步优选,所述碱溶液中碱的浓度为10~15mol/L;
进一步的,所述碱的浓度指碱中OH -的浓度;
进一步地,与初始合金反应的碱溶液中的碱为过量剂量,碱溶液的体积为初始合金体积的5倍以上,从而可以使得反应一直在较高的碱浓度下进行;
进一步地,碱溶液的体积为初始合金体积的10倍以上;
进一步地,碱溶液的体积为初始合金体积的20倍以上;
进一步地,所述初始合金与碱溶液的反应温度即为碱溶液的温度;
可以理解,常温常压下的反应准备及开始阶段,初始合金与碱溶液密的反应很缓慢,将初始合金与碱溶液密封于封闭容器后,初始合金中的T类元素与碱溶液反应后生成的氢气也密封于密闭容器中,使得密闭容器的压力升高。
进一步的,封闭反应体系包括,初始合金,碱溶液,封闭容器;封闭反应体系的温度即为初始合金、碱溶液、封闭容器对应的温度;
进一步地,将密闭容器中初始合金与碱溶液的温度自常温加热至T 2温度的加热速率大于10℃/min;
进一步地,将密闭容器中初始合金与碱溶液的温度自常温加热至T 2温度的时间小于30min;
进一步地,100℃<T f溶液<T 2<300℃;
进一步地,100℃<T f溶液<T 2<250℃;
进一步地,100℃<T f溶液<T 2<200℃;
进一步地,100℃<T f溶液<120℃<T 2<200℃;
进一步地,100℃<T f溶液<140℃<T 2<200℃;
进一步地,100℃<T f溶液<150℃<T 2<180℃;
进一步地,封闭反应体系在T 2温度的保温时间为0.1h~20h;优选为0.1h~2h,优选为0.1h~1h,优选为0.1h~0.5h,进一步优选为0.2h~0.4h;
由于反应平衡后,继续保温也能得到产物,因此,所述保温时间也可以选择较长的时间值。
进一步地,密闭容器中初始合金与碱溶液在常温至T 2温度的加热阶段发生发生析氢脱T反应,主要生成掺杂E组元元素的纳米多孔钛酸盐中间产物;
进一步地,封闭反应体系T 2温度保温阶段发生掺杂E组元元素的纳米多孔钛酸盐中间产物向掺杂E组元元素的钛酸盐纳米管的转化;
进一步地,封闭反应体系的压力高于常压;
进一步地,封闭反应体系的压力为封闭体系溶液在T 2温度下对应的压力与析氢反应产生的氢气在T 2温度下对应的压力的叠加;
可以理解,因为由密闭氢气压力的存在,所述封闭反应体系的压力高于单纯的封闭体系溶液在T 2温度下对应的压力;这种高压环境为掺杂E组元元素的纳米多孔钛酸盐中间产物向掺杂E组元元素的钛酸盐纳米管的转化创造了条件;
所述步骤3)中,
进一步地,所述掺杂E组元元素的钛酸盐纳米管的外径为3nm~25nm;
进一步地,所述掺杂E组元元素的钛酸盐纳米管的外径为3nm~20nm;
进一步地,所述掺杂E组元元素的钛酸盐纳米管的外径为4nm~15nm;
进一步地,所述掺杂E组元元素的钛酸盐纳米管的平均长度大于其平均外径的5倍。
进一步地,所述掺杂E组元元素的钛酸盐纳米管主要为低结晶度钛酸盐;
进一步地,所述钛酸盐纳米管中的阳离子元素源自于所述碱中对应的阳离子元素;
进一步的,所述掺杂E组元元素的钛酸盐纳米管的化学组成包含E、Ti、O,以及碱中对应的阳离子元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;例如,当碱为NaOH时,所述碱中对应的阳离子元素即为Na,则所述掺杂E组元元素的钛酸盐纳米管的化学组成包含E、Ti、O,以及Na元素。
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中;
进一步地,当E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中时,钛酸盐纳米管可以看成是单相材料。也就是说,E组元元素与钛酸盐纳米管组成元素一样,都是以原子或原子团簇均匀地分布在钛酸盐纳米管中,E组元元素并没有形核长大变成除钛酸盐相之外的E纳米颗粒相。此时所得产物可以理解为是掺杂E组元元素的钛酸盐纳米管,也可以理解为固溶有E组元元素的钛酸盐纳米管,还可以理解其是一种全新 的物质,如钛酸(银)盐纳米管;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在钛酸盐纳米管之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在钛酸盐纳米管之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大的影响所述钛酸盐纳米管的热稳定性。
进一步地,所述步骤3收集最终固态产物的过程包括对最终固态产物的干燥处理,即得到粉末状的掺杂E组元元素的钛酸盐纳米管。
进一步地,所述干燥温度为50℃~350℃;
进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥温度为50℃~250℃;
进一步地,所述干燥时间为1min~24h;
进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间可取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间可取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸盐纳米管中含有与O结合的Ag 2O原子团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸盐纳米管的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸盐纳米管中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与钛酸盐纳米管基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子的方式分布在钛酸盐纳米管之中;
进一步地,所述掺杂E组元元素的纳米多孔钛酸盐中间产物向掺杂E组元元素的钛酸盐纳米管的转化过程中还会经历生成掺杂E组元元素的纳米钛酸盐薄膜的过程,因此,当高温高压处理不完全时,步骤3)所述最终产物中也会可能包含掺杂E组元元素的纳米钛酸盐薄膜;
进一步地,所述掺杂E组元元素的钛酸盐纳米管在最终产物中的重量百分比含量高于50%;
进一步地,所述掺杂E组元元素的钛酸盐纳米管在最终产物中的重量百分比含量高于90%;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其二十二方面,本发明还涉及一种掺杂E组元元素的钛酸纳米管的制备方法,其特征在于,通过将其二十一方面所述的最终产物或掺杂E组元元素的钛酸盐纳米管与酸溶液反应,收集固态产物,即得到掺杂E组元元素的钛酸纳米管。
进一步地,所述酸溶液包含盐酸、硝酸、硫酸、醋酸、磷酸、草酸、苦味酸、油酸、高氯酸中的至少一种。
通过与酸溶液反应,所述掺杂E组元元素的钛酸盐纳米管表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的钛酸盐纳米管与酸溶液中氢离子的离子交换,进而获得掺杂E组元元素的钛酸纳米管。
由于钛酸纳米管比钛酸薄膜的比表面积稍小,因此,可以通过相比其三方面所述方案稍高一点浓度的酸来进行反应;
进一步地,所述酸溶液中氢离子浓度为0.001mol/L~0.2mol/L;
作为优选,所述酸溶液中氢离子浓度为0.001mol/L~0.1mol/L;
作为优选,所述酸溶液中氢离子浓度为0.001mol/L~0.05mol/L;
进一步地,掺杂E组元元素的钛酸盐纳米管材料与酸溶液反应的具体步骤为:将掺杂E组元元素的钛酸盐纳米管材料分散在水中,在搅拌状态下,将所述酸溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制保持在2~4之间,1min~5h后,进行分离、清洗、干燥,即得到掺杂E组元元素的钛酸纳米管材料。由于钛酸盐纳米管卷起来有一定的厚度,当PH值控制保持在2~4之间,即混合溶液中氢离子对应的浓度为0.0001mol/L~0.01mol/L时,可以确保整个过程中掺杂E组元元素的钛酸盐纳米管材料表面吸附的残余碱首先被中和,然后发生掺杂E组元元素的钛酸盐纳米管中的阳离子与酸溶液中氢离子的离子交换,进而获得未与该酸溶液明显反应的掺杂E组元元素的钛酸纳米管材料。
进一步地,所述掺杂E组元元素的钛酸纳米管的外径为3nm~25nm;
进一步地,所述掺杂E组元元素的钛酸纳米管的外径为3nm~20nm;
进一步地,所述掺杂E组元元素的钛酸纳米管的外径为4nm~15nm;
进一步地,所述掺杂E组元元素的钛酸纳米管的平均长度大于其平均外径的5倍;
进一步地,所述掺杂E组元元素的钛酸纳米管主要为低结晶度钛酸;
进一步的,所述掺杂E组元元素的钛酸纳米管的化学组成包含E、Ti、O,H;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素主要以原子或原子团簇的方式镶嵌分布在钛酸纳米管之中;所述镶嵌分布的关键特征在于:E组元元素主要以原子或原子团簇的方式被固定在钛酸纳米管之中,只有达到一定的温度才能发生原子的扩散运动;同时,由于E组元元素的钉扎作用,其会极大的影响所述钛酸纳米管基体的热稳定性。
进一步地,所述收集固态产物的过程包括干燥过程;
进一步地,所述干燥温度为50℃~350℃;
进一步地,所述干燥温度为50℃~300℃;
进一步地,所述干燥时间为1min~24h;
进一步地,所述干燥时间为5min~2h;
进一步地,所述干燥温度取高值范围时,干燥时间可取低值范围;
进一步地,所述干燥温度取低值范围时,干燥时间可取高值范围;
由于E组元元素主要为Ag,根据Ag元素的特征,其180℃以下干燥处理容易氧化成Ag 2O,而高于180℃干燥处理Ag 2O则会分解为Ag,因此:
进一步地,当干燥温度取范围低值时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag原子或者原子团簇;
作为优选,当干燥温度为50℃~180℃时,所述掺杂E组元元素的钛酸纳米管中含有与O结合的Ag 2O原子 团簇;
由于O-Ag键在较高温度时会断裂分解,因此,当干燥温度取范围高值时,与Ag结合的O元素会因O-Ag键的断裂而与Ag分离;
进一步地,当干燥温度取范围高值时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中;
作为优选,当干燥温度为181℃~350℃时,所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中。
因此,可以通过干燥温度与干燥时间的控制来控制与Ag与O结合的程度。
进一步地,当干燥温度低于350℃,钛酸纳米管的形状大体不变,且E元素仍然保持以原子或者原子团簇的方式镶嵌分布在钛酸纳米管中;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1.5nm;
进一步地,所述包含E组元元素的原子团簇的尺寸小于1nm,且当包含E组元元素的原子团簇小于1nm时,该原子团簇的大小不足以形成相界面可区分的E相纳米颗粒,且难以通过透射电镜(TEM)等观察手段将包含E组元元素的原子团簇与钛酸纳米管基体通过衬度的不同区分开来;因此,从这个尺度上来说,其是均匀分布在基体中。
进一步地,所述E组元元素主要以原子的方式分布在钛酸纳米管之中;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其二十三方面,本发明还涉及一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法,其特征在于,通过将其二十二方面所述的产物或掺杂E组元元素的钛酸纳米管进行热处理制备。
由于掺杂E组元元素的存在,钛酸纳米管的热稳定性会有所提高,钛酸纳米管在加热情况下的结构转变会受到E组元元素的阻碍。所述热处理过程中,控制合适的热处理温度与热处理时间,可以保证钛酸纳米管的组成与形貌基本不变,而主要以原子或原子团簇的方式分布在钛酸纳米管之中的掺杂E组元元素通过元素扩散、聚集,生成嵌生于钛酸纳米管中的E纳米颗粒。
这种嵌生E纳米颗粒与普通的靠范德华力吸附主导的其它文献报道的纳米颗粒不同(范德华力吸附的纳米颗粒可以移动、脱落),其可以保证E纳米颗粒可以紧密地和钛酸纳米管嵌生在一起(不能移动、脱落)。当主要以原子或原子团簇的方式分布的E组元元素全部聚集为E纳米颗粒后,由于E纳米颗粒呈岛状分布,受到钛酸纳米管基体的空间阻碍作用不能相连,其难以继续合并、长大,因此可以在后续的继续加热过程中仍然保持粒径大致不变。
进一步地,所述热处理的温度为350℃~650℃;
进一步地,所述热处理的温度为350℃~600℃;
进一步地,所述热处理的温度为350℃~550℃;
所述热处理温度可以保证掺杂E组元元素通过元素扩散、聚集,生成嵌生于钛酸纳米管之中的E纳米颗粒,同时维持钛酸纳米管基体形貌不发生明显变化。
进一步地,当E组元元素以原子或原子团簇的方式存在于掺杂E组元元素的钛酸纳米管中时,由于E组元元素原子的钉扎作用,使得钛酸纳米管基体的相变热稳定性可以最高提高200℃;且E含量越高,相变热稳定性越高。即相比单纯的钛酸纳米管基体,加热过程中实现相同的相变,掺杂E组元元素的钛酸纳米管热处理温度最高需要提高200℃;
进一步地,所述热处理的时间为5min~96h;
进一步地,所述热处理的时间为5min~10h;
作为优选,所述热处理的时间为10min~5h;
当选择温度范围低值时,且E组元元素含量较高时,需要较长的时间来使E纳米颗粒通过元素扩散、聚集并析出;当选择温度范围高值时,E组元元素含量较低时,需要较短的时间来使E纳米颗粒通过元素扩散、聚集并析出;
进一步地,所述E纳米颗粒的大小为1.5nm~15nm;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于钛酸纳米管中;
所述嵌生,是指原位镶嵌生成的一种形成方式,即E纳米颗粒通过掺杂E组元元素扩散、聚集、长大原位生成,其表现为被钛酸纳米管部分或全部包裹,不依靠外加或者外混的方式使其镶嵌在其中。
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的外径为3nm~25nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的外径为3nm~20nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的外径为4nm~15nm;
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的平均长度大于其平均外径的5倍;
进一步地,所述嵌生E纳米颗粒的嵌生方式包括全部体积内嵌分布在钛酸纳米管之中,或者部分体积内嵌分布在钛酸纳米管之中(同时还包括未有嵌生在钛酸纳米管之中的裸露体积部分)。
进一步地,所述含有嵌生E纳米颗粒的钛酸纳米管的化学组成包含E组元元素、Ti、H、O元素;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其二十四方面,本发明还涉及一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法,其特征在于,通过将其二十二方面所述的产物或掺杂E组元元素的钛酸纳米管,或其二十三方面所述的产物或含有嵌生E纳米颗粒的钛酸纳米管进行热处理制备。
进一步地,所述热处理的时间为1min~48h;
作为优选,所述热处理时间为10min~3h;
进一步地,所述热处理的温度为600℃~1000℃;
进一步地,所述热处理过程中,发生钛酸纳米管向晶态TiO 2纳米管/棒的转化;
当选择温度为上述范围低值时,需要较长的时间来完成钛酸纳米管向晶态TiO 2纳米管/棒的转化,当选择温度为上述范围高值时,需要较短的时间来完成钛酸纳米管向晶态TiO 2纳米管/棒的转化。
进一步地,所述热处理过程中,所进行热处理的材料为其二十二方面所述掺杂E组元元素的钛酸纳米管时,其首先发生掺杂E组元元素的扩散、聚集,生成嵌生于钛酸纳米管之中的E纳米颗粒;此时材料状态与其二十三方面所述的含有嵌生E纳米颗粒的钛酸纳米管一致。随着热处理温度与时间的增加,钛酸纳米管进一步发生向晶态TiO 2纳米管/棒的转变。由于嵌生于钛酸纳米管或晶态TiO 2纳米管/棒中的E纳米颗粒被钛酸纳米管或晶态TiO 2纳米管/棒所分开隔离,因此,在钛酸纳米管发生向晶态TiO 2纳米管/棒的转变过程中,已经完全生成的E纳米颗粒难以继续相互合并、长大,其大小和形貌将处于稳定状态,不会随着热处理温度的升高与热处理时间的延长而明显变化。
进一步地,所述晶态TiO 2纳米管/棒是指晶态TiO 2纳米管/棒的形状包括管、棒中的至少一种;当管内径缩小为零时,即为棒的形状;
进一步的,所述嵌生E纳米颗粒的晶态TiO 2纳米管/棒的相组成包括板钛矿型TiO 2、锐钛矿型TiO 2、金红石型TiO 2中的至少一种。
具体来说,随着热处理温度与热处理时间的增加,热处理后的产物会发生“含有嵌生E纳米颗粒的钛酸纳米 管”→“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”→“含有嵌生E纳米颗粒的金红石型TiO 2纳米管/棒”的连续转变。
在相转变的过程中,某些热处理温度与时间对应的产物状态,可能会有两种晶型的共存,如“含有嵌生E纳米颗粒的钛酸纳米管”与“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”的共存,以及“含有嵌生E纳米颗粒的锐钛矿型TiO 2纳米管/棒”与“含有嵌生E纳米颗粒的金红石型TiO 2纳米管/棒”的共存。
进一步地,所述E纳米颗粒的大小为1.5nm~15nm;
进一步地,所述E纳米颗粒的大小为1.5nm~10nm;
进一步地,所述E纳米颗粒的大小为1.5nm~5nm;
进一步地,所述E纳米颗粒主要通过嵌生的方式存在于晶态TiO 2纳米管/棒中;
进一步地,所述含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的平均长度大于其平均外径的3倍;
进一步地,所述含有嵌生E纳米颗粒的TiO 2纳米管/棒的外径为5nm~30nm;
进一步地,所述含有嵌生E纳米颗粒的TiO 2纳米管/棒的外径为5nm~25nm;
进一步地,所述含有嵌生E纳米颗粒的TiO 2纳米管/棒的外径为7nm~20nm;
进一步地,所述嵌生E纳米颗粒的嵌生方式包括全部体积内嵌分布在TiO 2纳米管/棒之中,或者部分体积内嵌分布在TiO 2纳米管/棒之中,还包括未有嵌生在TiO 2纳米管/棒之中的裸露体积部分。
进一步地,所述嵌生E纳米颗粒的晶态TiO 2纳米管/棒的化学组成包含E组元元素、Ti、O;其中,E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;
进一步地,0<C E/C Ti≤0.10;
进一步地,所述E组元元素中Ag的原子百分比含量为50%~100%;进一步地,所述E组元元素主要为Ag;进一步地,所述E组元元素为Ag;
进一步地,当E组元元素不全为Ag时,所述E组元元素还包含能够固溶在Ag或T-Ti金属间化合物中的其它元素;
进一步地,当E组元元素不全为Ag时,E组元元素还包含Au、Cu、Pt、Pd、Ru、Rh、Os、Ir中的至少一种。
其二十五方面,本发明还涉及所述其一方面至其十方面任一项所述制备方法制得的产物材料,或其二十一方面至其二十四方面任一项所述制备方法制得的产物材料,或其十一方面至其二十方面任一项所述材料,在包括聚合物基纳米复合材料、树脂基复合材料、陶瓷材料、光催化材料、疏水材料、污水降解材料、杀菌涂层、防腐涂料、海工涂料中的应用。
进一步地,本发明还涉及上述其三方面所述制备方法制得的含有掺杂Ag元素的纳米钛酸薄膜材料的应用,其特征在于,将含有掺杂Ag元素的纳米钛酸薄膜材料与聚合物混合,然后制备成含有掺杂Ag元素的纳米钛酸薄膜与聚合物的复合涂层;该复合涂层中Ag元素以原子或原子团簇方式镶嵌分散在纳米钛酸薄膜之中,而纳米钛酸薄膜又分散在聚合物中;该聚合物复合涂层,可以应用于包括疏水材料、污水降解材料、杀菌涂层材料、防腐涂料、海工设备及船舶用涂料领域。
进一步地,所述聚合物包括高分子材料、树脂材料、涂料中的至少一种;
进一步地,在某一个具体实施例中,其特征在于,将含有掺杂Ag元素的纳米钛酸薄膜材料与PDMS(称为聚二甲基硅氧烷)混合,然后制备成Ag元素掺杂的纳米钛酸薄膜与PDMS的复合涂层。该涂层中Ag元素以原子或原子团簇方式镶嵌分散在纳米钛酸薄膜之中,可以最大限度的利用Ag元素与纳米钛酸薄膜的杀菌性能,同时增强PDMS涂层的疏水性。
进一步地,在某一个具体实施例中,所述Ag元素掺杂的纳米钛酸与PDMS的复合涂层,可以应用于包括疏水材料、污水降解材料、杀菌涂层材料、防腐涂料、海工设备及船舶用涂料等领域。
其二十六方面,本发明还涉及所述其一方面至其十方面任一项所述制备方法制得的产物材料,或其二十一方面至其二十四方面任一项所述制备方法制得的产物材料,或其十一方面至其二十方面任一项所述材料,在家装涂料、杀菌喷剂、防污涂料中的应用;
作为家装涂料的应用,其特征在于,将上述所述含Ag产物材料或材料在家具、器物、墙壁的表面,作为 涂料添加剂与涂料其它组分混合后一起进行涂装,实现抗菌效果;
作为杀菌喷剂的应用,其特征在于,将上述所述含Ag产物材料或材料与其它液体喷剂组分混合,通过喷剂载体一起喷涂到家具、器物、织物、墙壁的表面,实现抗菌效果;
作为防污涂料的应用,其特征在于,将上述所述含Ag产物材料或材料替代传统防污涂料(如防污漆)中的杀菌防污组分(如氧化亚铜粉),以实现防污效果;
由于Ag以极小的粒度存在于纳米钛酸盐、纳米钛酸、纳米TiO 2中,Ag的利用效率极高,因此,只需要极少的添加量就可以实现最佳的防污效果;
进一步地,所述Ag以Ag、Ag 2O、AgO中的至少一种存在。
其二十七方面,本发明还涉及所述其一方面至其十方面任一项所述制备方法制得的产物材料,或其二十一方面至其二十四方面任一项所述制备方法制得的产物材料,或其十一方面至其二十方面任一项所述材料,在抗菌织物中的应用;
进一步地,其特征在于,将上述所述含Ag产物材料或材料分散后,使其依附或涂覆在织物表面,或与织物混编在一起,从而使织物拥有抗菌、杀菌的效果与能力;
进一步地,所述Ag以Ag、Ag 2O、AgO中的至少一种存在。
本发明的有益效果主要体现在以下几个方面:
首先,通过创造性地采用廉价易得的固溶有E组元元素的Ti-T合金为钛源,常压下在碱溶液的沸点温度附近将固溶E组元元素的Ti-T金属间化合物与热碱溶液短时间反应,实现了掺杂E组元元素的纳米钛酸盐薄膜材料的常压、高效制备。以此为基础,使低成本高效制备含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料、掺杂E组元元素的纳米钛酸薄膜材料、含有嵌生E纳米颗粒的钛酸薄膜材料、以及含有嵌生E纳米颗粒的纳米TiO 2片粉等材料成为了可能。结合关键步骤(析氢脱T反应)的后续高温高压反应(其六方面所述),将固态产物中的基体由薄膜状变成管状,又进一步使掺杂E组元元素的钛酸盐纳米管,掺杂E组元元素的钛酸纳米管,含有嵌生E纳米颗粒的钛酸纳米管,以及含有嵌生E纳米颗粒的TiO 2纳米管/棒的高效、短时、低成本制备成为了可能。
虽然强碱水热法是目前较为成熟的制备纳米钛酸盐、纳米钛酸及纳米TiO 2的工艺,但该反应需要采用高压反应容器,一般以纳米TiO 2和高浓度强碱(如NaOH溶液)为原料,在高温条件下进行长时间的水热合成,反应得到纳米钛酸盐(如钛酸钠),经过中和酸洗后一般得到钛酸纳米管。例如,2001年有文献报道称,通过工业锐钛矿型TiO 2和10mol/L氢氧化钠溶液为原料,在130℃条件下,与高压反应容器中水热反应72h后,将产物水洗至中性,可以得到管长为几十到几百纳米,内径为5.3nm的钛酸纳米管。其它文献上报道的钛酸钠的制备方法还包括:将NaOH与TiO 2按照计量关系称量后移入聚四氟乙烯高压反应釜内,混合后在230℃温度下保温48h至96h,待冷却至室温后取出、洗涤、干燥后获得钛酸钠纳米管,并进一步酸洗得到钛酸纳米管。由此可见,传统的强碱水热法的特点在于:1)以TiO 2为钛源;2)在高压反应容器中进行,需要密闭高压条件;3)在较高温度进行;4)需要很长的反应时间,且以小时计算;5)得到的产物一般为钛酸盐纳米管或者钛酸纳米管。
与此不同,本发明其一至其五方面制备薄膜状钛酸盐基体及其后续产物,虽然也采用了强碱溶液,但其与传统强碱水热法具有明显的不同:1)主要以固溶有E组元元素的Ti-T金属间化合物为钛源;2)反应在敞开容器与常压下进行,不需要高压密闭容器;3)优选在碱溶液的沸点或沸点温度附近进行,不需要在很高的温度进行,且温度的上限为碱溶液的沸点,非常容易精准控制;4)反应可以在不到一分钟甚至数秒内完成;5)得到的产物为掺杂E组元元素的纳米钛酸盐薄膜材料,且以此基础,可以进一步制备含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料、掺杂E组元元素的纳米钛酸薄膜材料、含有嵌生E纳米颗粒的钛酸薄膜材料、以及含有嵌生E纳米颗粒的纳米TiO 2片粉等材料。
此外,本发明其六至其十方面所述制备管状纳米钛酸盐及其后续产物,虽然也采用了高温高压的反应,但加入高压反应容器的反应物(如其六方面所述)是已经制备好且掺杂E组元元素的纳米钛酸盐薄膜材料以及对应的反应碱液。因此,不需要像传统水热反应那样采用TiO 2为钛源,首先需要数小时来破坏Ti-O键,再进一步经高温高压得到TiO 2纳米管产物。具体来说,即使固溶有E组元元素的Ti-T金属间化合物为直径或厚度为 数十微米的粉料或者条带,由于沸点温度下碱溶液中存在的特殊环境,在常压及碱溶液沸点温度附近经过几分钟甚至数秒反应后,即可以生成掺杂E组元元素的纳米钛酸盐薄膜材料,这就极大地缩短了薄膜状钛酸盐基体的制备时间。当需要进一步制备管状钛酸盐基体时,由于掺杂E组元元素的纳米钛酸盐薄膜厚度超薄,其六方面只需要较短时间的高温高压处理就可以将其变成掺杂E组元元素的钛酸盐纳米管,这又极大地缩短了所对应管状钛酸盐基体的制备时间。因此,无论是制备掺杂E组元元素的薄膜状钛酸盐基体或者管状钛酸盐基体,本发明所述整个制备过程的常压反应时间与高压反应时间加起来的总时间可以以分钟计(远低于1h),仍然远远低于已报到或公开的其它制备方法所需要的制备时间,具有极为明显的积极意义。
这一明显的有益效果的获得,尤其是极大地缩短了目标产物的制备时间,与固溶有E组元元素的Ti-T金属间化合物作为钛源以及在优选沸点温度(T f溶液)或沸点温度附近进行反应密切相关。当反应在常压下,且在溶液沸点温度或沸点温度附近发生时,反应体系的溶液组成具有明显特殊性,具体表现在:在碱溶液沸点温度以下温度区间,溶剂主要以液态水存在,反应体系状态很普通;但在碱溶液沸点温度或者沸点温度附近,溶剂中除了液态水与沸腾产生的气态水外,还包含正在发生由液态水向气态水转变的临界态水。而且,由于溶液中反应物及在先生成纳米尺度反应产物的存在,根据异质形核原理,其提供了大量沸腾汽化的质点,从而使得反应体系处于全面沸腾汽化的特殊环境。在这一特殊环境下,水中溶解的大气环境气体(氧气、氮气)的含量与状态也极为特殊(因为沸腾水蒸气、T和碱反应生成的氢气的大量出现,改变了水中溶解气体的饱和分压条件)。同时,固溶有E组元元素的Ti-T金属间化合物与浓碱溶液反应,在脱掉合金中T的过程中会生成的大量氢气,这些短时生成的氢气以及大量异质形核沸腾汽化产生的水蒸汽作用于析氢脱T反应界面,其引起的剧烈冲胀作用会进一步促进反应界面初始合金的持续纳米碎化及形状与成分重构过程;而溶于碱溶液中的T盐也会改变反应溶液体系的物质组成。这些沸点温度下溶液的诸多特征都为反应提供了一个非常特殊的反应环境。尤其地,由于Ti-T金属间化合物在沸点温度或沸点温度附近的脱T反应极为剧烈,反应产生的氢气也极为迅猛。因此,在原位产生氢气的高速冲胀作用下,原初始反应物(初始合金粉末或者条带)通过剧烈的析氢脱T反应发生纳米碎化,使得低温或室温脱合金反应一般生成的三维网络状连续的纳米多孔结构难以稳定存在,并进一步经形状与成分重构生成掺杂E组元元素的二维纳米钛酸盐薄膜构成的絮状固态产物,极大地缩短目标产物的制备时间,同时获得高的掺杂E组元元素的二维纳米钛酸盐薄膜的产率。由于沸点温度的恒定特性,温度控制可以极为精准,从而使得产物形貌与成分的控制变得极为精准与简便。总之,本发明对这一特殊反应环境的设计与应用,巧妙地调控了反应产物的组成与形貌,并极大地缩短目标产物的制备时间。
当采用固溶有E组元元素的Ti-T金属间化合物作为钛源时,即使钛源为微米级的粉末或条带状样品,其与传统的TiO 2作为钛源与强碱的水热法制备钛酸盐纳米薄膜或纳米管相比,反应机理也明显不同。本发明所用浓碱溶液主要有两个作用:1)通过去合金反应脱掉固溶有E组元元素的Ti-T金属间化合物中的T,使E原子与Ti原子从Ti-T金属间化合物中游离出来。具体来说,当固溶有E组元元素的Ti-T金属间化合物与强碱溶液在溶液沸点温度或该温度附近反应时,在特殊的反应环境下,首先发生的是T与强碱溶液的极为迅速的脱合金反应,生成溶于水的T盐,并产生氢气。当T以T盐的方式进入溶液中后,固溶有E组元元素的Ti-T金属间化合物中的E组元元素原子与Ti原子就被游离出来,Ti可以很容易地与O等元素结合,并进一步经形状与成分重构生成钛酸盐薄膜,这一过程最短可以在数秒或数分钟内完成。2)热碱的存在,可以使得Ti原子游离出来后,在碱溶液沸点温度附近这一特殊环境下,实现Ti原子与碱液中的阳离子、氧元素等结合生成纳米钛酸盐薄膜,所需时间最短也可以在数秒或数分钟内完成。与此同时,同样游离的惰性的E组元元素则以原子或原子团簇的方式被包裹在纳米钛酸盐薄膜中。相比而言,传统高压水热法采用稳定性极高的TiO 2为Ti源,即使TiO 2为纳米级粉末时,其仍然需要通过高压、高温、数小时时间的反应才能首先破坏TiO 2的Ti-O键结构,使Ti游离出来后再重新与O等元素以新的特定的方式结合生成钛酸盐。本发明实施例中提供有一个对比试验,当采用粒径50-100nm的锐钛矿型纳米TiO 2为Ti源,在10mol/L氢氧化钠水溶液沸点温度反应10min后,其仍然为粒径为50-100nm的锐钛矿型纳米TiO 2(通过XRD峰的半高宽可以估计粒径的大小没有变化),反应物几乎没有发生变化。因此,对于反应产物的快速短时制备,除了溶液沸点温度产生的特殊环境外,固溶有E组元元素的Ti-T金属间化合物钛源的选择也十分重要。
其次,创造性地发明了掺杂E组元元素的二维纳米钛酸盐薄膜材料、掺杂E组元元素的二维纳米钛酸薄膜材料的简易制备条件,并以此为基础进一步通过热处理或酸处理制备了其它后续材料。所述初始合金与碱溶液 在60℃≤T 1≤T f溶液温度的反应,对微观形貌为二维薄膜状产物的制备非常重要。在某一个对比实施例中,常压下,当含有固溶Ag的TiAl 3金属间化合物初始合金粉末与10mol/L且为35℃的NaOH溶液反应2h,反应前后的原初始合金粉末的形状大致不变,仍然为原破碎状且具有棱角的粉末状颗粒,且其微观结构上也不生成大量的单片二维薄膜状产物,而是生成纳米多孔结构的钛酸盐或纳米多孔结构的钛,且这种纳米多孔结构通过三维网状链接的方式构成与原合金粉末形状一致的外观形貌,其粒径大小仍然为初始合金粉末相当的大小,主要为数微米或者数十微米级。因此,室温附近的较低温度所发生的初始合金与碱溶液的反应与本发明在60℃≤T 1≤T f溶液的温度区间,尤其是该温度区间高温段(100℃<T 1≤T f溶液)的反应完全不同,产物形貌也完全不同。本发明创造性地发明了通过固溶有E组元元素的T-Ti金属间化合物的初始合金制备掺杂E组元元素的二维纳米钛酸盐薄膜及掺杂E组元元素的二维纳米钛酸薄膜材料的制备方法。
具体来说,当反应温度取60℃≤T 1≤T f溶液温度区间的低值范围60℃≤T 1≤100℃,且碱溶液主要由NaOH水溶液组成时,所得产物中掺杂E组元元素的纳米钛酸盐薄膜目标产物的产率较低。但当碱溶液中含有KOH,且目标掺杂E组元元素的纳米钛酸盐薄膜基体包含纳米钛酸钾薄膜基体时,可以大幅提高产物中掺杂E组元元素的纳米钛酸盐薄膜的产率;例如,当碱溶液主要由KOH水溶液组成,反应温度为60℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于50%;当反应温度为71℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于65%;当反应温度为81℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于75%;当反应温度为91℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于85%;当反应温度为96℃时,所得产物中掺杂E组元元素的纳米钛酸钾薄膜目标产物的产率不低于90%;
当反应温度取60℃≤T 1≤T f溶液温度区间高值范围100℃<T 1≤T f溶液时,无论碱的种类变化,所得产物中掺杂E组元元素的纳米钛酸盐薄膜的产率均很高,且产物形貌与原初始合金粉末颗粒或条带形状完全不同;例如,当反应温度高于101℃时,可以得到高的掺杂E组元元素的纳米钛酸盐薄膜的产率,其产率一般为95%~100%;当反应温度取常压下碱溶液沸点T f溶液时,可以得到更高的掺杂E组元元素的纳米钛酸盐薄膜产率,其产率一般为99%~100%;
第三,其六方面与其二十一方面制备掺杂E组元元素的钛酸盐纳米管的工艺,相比传统以纳米TiO 2为前驱体的制备方法,均能极大地缩短产物的制备时间。具体来说,其六方面与其二十一方面的区别在于:其六方面首先制备掺杂E组元元素的二维纳米钛酸盐薄膜,然后将其在高温高压下制备掺杂E组元元素的钛酸盐纳米管;而其二十一方面,跳过了专门的掺杂E组元元素的二维纳米钛酸盐薄膜的制备过程,在反应体系升温阶段形成掺杂E组元元素的纳米多孔钛酸盐,然后在高温高压保温阶段形成掺杂E组元元素的二维纳米钛酸盐薄膜并进一步形成掺杂E组元元素的钛酸盐纳米管。其六方面优选方案的析氢脱T反应在沸点温度附近进行,由于利用了剧烈的析氢脱T反应,在很短时间就实现了掺杂E组元元素的二维纳米钛酸盐薄膜的制备(其一方面所述),因此,后续只需要较短时间的高温高压反应就可以实现掺杂E组元元素的钛酸盐纳米管的制备;其二十一方面在反应准备与升温阶段的反应较慢,不太剧烈,因此没有利用剧烈的析氢脱T反应,其升温阶段得到的是掺杂E组元元素的纳米多孔钛酸盐结构。从这个角度来说,其在高温高压保温阶段将掺杂E组元元素的纳米多孔钛酸盐结构转变成掺杂E组元元素的钛酸盐纳米管的难度较其六方面较大(需要多一个转变成掺杂E组元元素的二维纳米钛酸盐薄膜中间产物的过程),所需时间也更长;但其二十一方面密闭容器中包含有由反应氢气产生的额外高压,其在相同T 2温度下的压力要高于其六方面所对应的压力,而高压有助于掺杂E组元元素的钛酸盐纳米管的形成;因此,从这个角度来说,其二十一方面在高温高压保温阶段形成掺杂E组元元素的钛酸盐纳米管的难度在压力角度又较其六方面较低。实际过程中,是两种情形博弈的结果,其六方面的方案在所需总的制备时间上要稍短于其二十一方面方案所需总制备时间,效率更高,但其二十一方面少了一个步骤,则更为简便,两者各有优势。总之,相比传统制备方法,其六方面与其二十一方面两种方案均极大的降低了掺杂E组元元素的钛酸盐纳米管的制备时间,其总反应时间均可不到0.5h,具有积极意义。
第四,通过反应条件的精准控制,可以实现产物组成与形貌的精准控制。具体来说,当溶液中碱的浓度确定时,其常压下碱溶液所能加热到的沸点温度也就确定了,也就意味着反应条件中的压力与温度就被精准确定。在碱溶液沸点温度下,碱溶液中任何补充的过多热量都会转变为水的汽化热而不会使碱溶液温度升高,这就可以通过持续加热保持碱溶液的温度恒定为沸点温度。即使反应过程中,固溶有E组元元素的Ti-T金属间化合物 的脱合金过程产生大量的反应潜热,仍然可以保证反应碱溶液的温度维持在碱溶液的沸点温度。
相比之下,传统高压水热合成法在高压与高温下进行产物的合成。当需要终止反应时,难以迅速地将压力与温度变为常温常压,再将样品取出,这一过程需要一定的时间完成。一般来说,对于化学反应,其一定温度与压力条件下对应一定组成与形貌的产物。当不能迅速地将碱溶液温度与压力变为常温常压,并将样品及时取出时,反应物在原温度与压力下的的平衡被打破,可能会在其它较高的温度与较高的压力下发生组成与形貌的一定变化。而本发明中纳米钛酸盐薄膜的制备在常压敞口容器中进行,当需要反应终止时,只需要将冷水或者常温水在数秒的时间内迅速加入到反应容器中,或者通过冷的滤网冷却,几乎可以瞬时将反应体系的温度与浓度降低为反应不能继续进行的温度与浓度,从而使得原反应平衡产物的组成与形貌得到保留。因此,本发明所提供的技术方案可以获得组成与形貌非常稳定的掺杂E组元元素的纳米钛酸盐薄膜材料。以此为基础,可以进一步制备组成与形貌稳定的含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料、掺杂E组元元素的纳米钛酸薄膜材料、含有嵌生E纳米颗粒的钛酸薄膜材料、以及含有嵌生E纳米颗粒的纳米TiO 2片粉等材料。而产物组成与形貌的稳定控制,是其能够得到广泛应用的关键因素之一,具有积极意义。
第五,实现了掺杂E组元元素以原子或原子团簇的方式在纳米钛酸盐薄膜、纳米钛酸薄膜、钛酸盐纳米管,钛酸纳米管中的原位掺杂与分布;并通过后续热处理进一步实现了E纳米颗粒在纳米钛酸盐、纳米钛酸、纳米TiO 2、钛酸纳米管,以及TiO 2纳米管/棒中的内嵌析出。
掺杂元素或掺杂纳米颗粒对纳米钛酸盐、纳米钛酸、以及纳米TiO 2的功能性应用具有非常重要的积极作用。目前,常规制备方法很难实现掺杂元素通过原子或原子团簇的方式对纳米钛酸盐、纳米钛酸的原位掺杂,其一般仅仅能实现外加的纳米颗粒对其进行掺杂。这些常规制备方法采取的策略主要是:通过制备出纳米钛酸盐、纳米钛酸、或纳米TiO 2之后,再将通过别的方法制备的掺杂纳米颗粒与纳米钛酸盐、纳米钛酸、或纳米TiO 2复合混合,从而制备出混合有掺杂纳米颗粒的纳米钛酸盐、纳米钛酸、或纳米TiO 2复合材料,其中纳米颗粒主要通过吸附的方式依附在基体上。这种机械混合与依附的方式,不仅在原子尺度不利于掺杂元素与基体的物理-化学交互作用,而且很容易造成掺杂纳米颗粒在纳米钛酸盐、纳米钛酸、或纳米TiO 2等基体上的脱落,从而造成复合材料性能的不稳与恶化。
本发明则创造性地解决了上述问题:不仅通过嵌生E纳米颗粒在各个对应基体中(包含纳米钛酸盐薄膜、钛酸薄膜、纳米TiO 2片粉、钛酸纳米管、TiO 2纳米管)的内嵌分布,解决了E纳米颗粒的脱落问题,而且还极大地增强了纳米颗粒与基体之间的物理-化学交互作用。特别地,本发明还实现了掺杂E组元元素以原子或者原子团簇的方式在各个对应基体(包括纳米钛酸盐薄膜、纳米钛酸薄膜、钛酸盐纳米管、以及钛酸纳米管)中的分布。同时,因为E组元元素的钉扎作用,还极大地提高了基体材料的相变热稳定性,其将基体的相变热稳定性提高最高可达200℃,具有极大的应用意义。例如,目前工业界纳米Ag颗粒一般可以作为杀菌材料应用,而与之机械混合的纳米钛酸盐、纳米钛酸、纳米TiO 2一般可以作为其载体。由于起杀菌作用的Ag主要为纳米Ag颗粒表面的Ag原子,因此纳米Ag颗粒内部的原子起不到杀菌的作用,造成了内部Ag原子在性能上的某种浪费,增加了成本。而且,物理吸附纳米Ag颗粒还容易从基体上脱落,导致性能不稳与性能持久性差。而本发明创造性地实现了Ag元素以原子或者原子团簇的方式分布在纳米钛酸盐薄膜、纳米钛酸薄膜、钛酸盐纳米管、以及钛酸纳米管中,不仅不用担心Ag的脱落问题,而且还可以使Ag的利用达到极大化,同时还极大地提高了基体材料的相变热稳定性,极具有益意义。在其中一个实施例中,这种以原子或者原子团簇存在的Ag及钛酸薄膜基体,与聚合物复合后所得到的复合涂层,表现出了极为优异的杀菌性能。
第六,使所涉及诸多产物的大规模工业生产成为了可能。本系列发明关键步骤的反应压力可以为常压,不必须需要高压密闭容器;反应温度为溶液沸点温度或溶液沸点温度附近(根据溶液中碱浓度不同,其温度大致在105℃~180℃,比较温和);所需钛源主要为固溶E组元元素的Ti-T金属间化合物,其可以通过“合金熔炼+铸造+破碎”或者“合金熔炼+熔体甩带”等方法大规模制备。尤其重要的是,关键的反应时间可以短至数秒,极为高效;而且反应温度、压力等条件可以精准控制并可以迅速终止反应并获得需要的产物。这些特点都极大地简化了生产过程,提高了生产效率,并降低了生产成本,使各相应产物的低成本、常压、中温、短时高效大规模制备成为了可能。
因此,本发明的制备方法具有工艺简单、易于操作、高效、成本低的特点,可以制备包括纳米薄膜、纳米 管/棒等形貌在内的多种掺杂E组元元素或含有嵌生E纳米颗粒的纳米钛酸盐、纳米钛酸、以及纳米TiO 2材料,在聚合物基纳米复合材料、树脂基复合材料、陶瓷材料、光催化材料、疏水材料、污水降解材料、杀菌涂层、防腐涂料、海工涂料等领域具有很好的应用前景。
附图说明
图1为本发明实施例1所述掺杂Ag的纳米钛酸钠薄膜的TEM低倍与高倍照片;
图2为本发明实施例1所述含有嵌生Ag纳米颗粒的纳米钛酸钠薄膜的TEM照片;
图3为本发明实施例1所述掺杂Ag的纳米钛酸薄膜的TEM低倍与高倍照片;
图4为本发明实施例1所述掺杂Ag的纳米钛酸薄膜的元素分布图;
图5为本发明实施例1所述含有嵌生Ag纳米颗粒的纳米钛酸薄膜的TEM低倍与高倍照片;
图6为本发明实施例1所述含有嵌生Ag纳米颗粒的锐钛矿型纳米TiO 2片粉的TEM低倍、中倍、高倍照片;
图7为本发明实施例2所述掺杂Ag的纳米钛酸薄膜的TEM低倍与高倍照片;
图8为本发明实施例9所述掺杂Ag的纳米钛酸薄膜的TEM低倍与高倍照片;
图9为本发明对比实施例1制得的产物的XRD图谱;
图10为本发明对比实施例1反应前锐钛矿型TiO 2粉的XRD图谱;
图11为本发明对比实施例2反应产物的SEM低倍照片;
图12为本发明对比实施例2反应产物的SEM高倍照片;
图13为本发明对比实施例3所述不含有掺杂元素的纳米钛酸薄膜在475℃热处理2h产物的TEM形貌及衍射谱。
具体实施方式
以下,将通过以下具体实施例对所述技术方案做进一步的说明:
实施例1:
本实施例提供一种掺杂Ag的纳米钛酸钠薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸钠薄膜材料、掺杂Ag的纳米钛酸薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,以及含有嵌生Ag纳米颗粒的纳米TiO 2片粉的制备方法及用途,包括如下步骤:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体;将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物组成。
常压下,将0.25g上述制得的Ag 1Ti 24.75Al 74.25初始合金条带加入50ml浓度为10mol/L,温度为其沸点温度(约119℃)的NaOH水溶液中,并不断搅拌。Ag 1Ti 24.75Al 74.25初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在15s内结束,继续保温2min,确保反应彻底完成,然后在搅拌状态下,将450ml常温水一次性迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L,温度的降低到45℃以下。
将固态絮状产物与碱溶液进行分离,经清洗,并在280℃干燥10min,即得到掺杂Ag的纳米钛酸钠薄膜材料,其单一薄膜的厚度为0.25nm~2nm,膜的平均面积大于2000nm 2,表现出明显的二维材料的特征。其TEM形貌如图1的低倍-高倍照片所示。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钠薄膜之中,因此TEM观察不到其衬度特征。虽然掺杂Ag的纳米钛酸钠薄膜团聚在一起,但其结构中不含有任何纳米多孔结构或多孔骨架结构;根据图1团聚体的观察,结合TEM的电子束穿透情况,可以发现,团聚体的厚度极薄,说明团聚体不是结构稳定的近球形体,而是大量薄膜的平铺聚集体,在TEM样品制备过程中,均匀地平铺在TEM碳网上。
将上述掺杂Ag的纳米钛酸钠薄膜材料在550℃热处理2小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸钠薄膜材料,其单一薄膜的厚度范围约为0.5nm~4nm,膜的平均面积大于1000nm 2,Ag纳米颗粒的大小范围为 1.5nm~5nm。其TEM形貌如图2所示。由于Ag元素的钉扎作用,纳米钛酸钠薄膜基体的热稳定得到了极大的提高,详见对比实施例3。
将上述与碱溶液分离后的固态絮状产物分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间。5min后,进行固液分离、经清洗、并在250℃干燥15min,即得到掺杂Ag的纳米钛酸薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其TEM形貌如图3的低倍-高倍照片所示,且图片所示薄膜的面积大于50000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在所制备的纳米钛酸薄膜中,如图4元素分布表征结果所示:虽然明场像看不见Ag的衬度,但成分分布图中Ag均匀分布在三个不同的小区域中(为了表征方便,选择薄膜分散小团聚的区域进行成分面扫,以获得尽可能强的不同区域的区别信号)。
将上述掺杂Ag的纳米钛酸薄膜材料在550℃热处理2小时,以原子或原子团簇方式分布在所制备的纳米钛酸薄膜中的Ag元素经扩散、团聚、长大,生成嵌生在纳米钛酸薄膜中的Ag纳米颗粒,即得到含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,其单一薄膜的厚度约0.5nm~4nm,膜的平均面积大于1000nm 2,相比未热处理的纳米钛酸薄膜,其厚度有所增加,面积有所收缩;嵌生Ag纳米颗粒的大小范围为1.5nm~5nm,某些嵌生Ag纳米颗粒除了部分嵌生在薄膜基体中外,还有部分体积裸露在薄膜基体之外。所得含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料的TEM形貌如图5低倍-高倍照片所示。由于Ag元素的钉扎作用,纳米钛酸薄膜基体的热稳定得到了极大的提高,详见对比实施例3。
将上述掺杂Ag的纳米钛酸薄膜材料在650℃热处理3小时,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2片粉。该温度下的热处理,不仅掺杂Ag的纳米钛酸薄膜中以原子或原子团簇方式分布的Ag元素经扩散、团聚、长大,生成嵌生Ag纳米颗粒,其钛酸薄膜基体也发生了向锐钛矿TiO 2的转变,同时形貌也发生了由薄膜向片状的转变;该锐钛矿型纳米TiO 2片的厚度范围为1nm~15nm,平均面积大于500nm 2,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小范围为1.5nm~5nm,其TEM形貌如图6低-中-高倍照片所示。
将上述掺杂Ag的纳米钛酸薄膜材料在950℃热处理2小时,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2片粉。该金红石型纳米TiO 2片的厚度范围为2nm~25nm,平均面积大于300nm 2,Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料与PDMS(聚二甲基硅氧烷)混合,然后按照涂层制备方法得到含有掺杂Ag的纳米钛酸薄膜的PDMS复合涂层。该涂层中Ag元素以原子或原子团簇方式分散在纳米钛酸薄膜之中,而纳米钛酸薄膜又分散在PDMS之中,可以最大限度的利用Ag元素的杀菌性能,以及纳米钛酸薄膜的力学强化与强疏水性能,得到具有优异力学性能,疏水性能与杀菌性能的PDMS复合涂层。该PDMS复合涂层材料可以应用于包括疏水材料、木材防腐杀菌材料、光催化材料、杀菌涂层材料、海工设备及船舶用涂料等领域。
作为家装涂料的应用:将上述所述掺杂Ag的纳米钛酸薄膜材料在家具、器物、墙壁的表面,作为涂料添加剂与涂料其它组分混合后一起进行涂装,实现抗菌效果;
作为杀菌喷剂的应用:将上述所述掺杂Ag的纳米钛酸薄膜材料与其它液体喷剂组分混合,通过喷剂载体一起喷涂到家具、器物、织物、墙壁的表面,实现抗菌效果;
作为防污涂料的应用:将上述所述掺杂Ag的纳米钛酸薄膜材料替代传统防污涂料中的杀菌防污组分,以实现防污效果;
抗菌织物中的应用:将上述所述掺杂Ag的纳米钛酸薄膜材料分散后,使其依附或涂覆在织物表面,或与织物混编在一起,从而使织物拥有抗菌、杀菌的效果与能力。
实施例2:
本实施例提供一种掺杂Ag的纳米钛酸钾薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸钾薄膜材料、掺杂Ag的纳米钛酸薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,以及含有嵌生Ag纳米颗粒的TiO 2片粉的制备方法及用途,包括如下步骤:
按照Ag 1Ti 33Al 66(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 33Al 66的合金熔体。将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 2金属间化合物组成。
常压下,将0.25g上述制得的Ag 1Ti 33Al 66初始合金条带加入50ml浓度为10mol/L、温度为其沸点温度的KOH 水溶液中(约125℃),并不断搅拌。Ag 1Ti 33Al 66初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在10s内结束,继续保温1h以确认析氢脱Al反应结束后,继续延长保温时间仍然可以获得相应的产物;保温过程中通过补充蒸发水维持溶液的体积为50ml不变。
1h后,在搅拌状态下,将450ml常温水一次性迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L,温度的降低到45℃以下。
将固态絮状产物与碱溶液进行分离,经清洗,并在150℃干燥10min,即得到掺杂Ag的纳米钛酸钾薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钾薄膜之中,且由于Ag在干燥过程中的氧化,其中含有与O结合的Ag。
将上述固态絮状产物与碱溶液进行分离,经清洗,并在250℃干燥30min,即得到掺杂Ag的纳米钛酸钾薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钾薄膜之中。说明析氢脱Al反应结束后继续保温1h,仍然可以获得掺杂Ag的纳米钛酸钾薄膜目标产物。
将上述掺杂Ag的纳米钛酸钾薄膜材料在550℃热处理1小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸钾薄膜材料,其单一薄膜的厚度范围约为0.55nm~4nm,膜的平均面积大于1500nm 2,Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述与碱溶液分离后的固态絮状产物分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间,5min后,进行分离、清洗、并在280℃干燥20min,即得到掺杂Ag的纳米钛酸薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素以原子或原子团簇分布在纳米钛酸薄膜中,其形貌如图7低倍-高倍照片所示。
将上述掺杂Ag的纳米钛酸薄膜材料在500℃热处理5小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,其单一薄膜的厚度约0.5nm~3nm,膜的平均面积大于1500nm 2,Ag纳米颗粒的大小范围为1.5nm~5nm,某些Ag纳米颗粒除了部分嵌生在薄膜基体中外,还有部分体积裸露在薄膜基体之外。
将上述掺杂Ag的纳米钛酸薄膜材料在650℃热处理2小时,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2片粉。该锐钛矿型纳米TiO 2片的厚度范围为1nm~15nm,平均面积大于500nm 2,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料在950℃热处理2小时,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2片粉。该金红石型纳米TiO 2片的厚度范围为2nm~25nm,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料与包含高分子材料的聚合物混合,然后按照涂层制备方法得到含有掺杂Ag的纳米钛酸薄膜的聚合物复合涂层。该涂层中Ag元素以原子或原子团簇方式分散在纳米钛酸薄膜之中,而纳米钛酸薄膜又分散在聚合物复合涂层之中,可以最大限度的利用Ag元素的杀菌性能,以及纳米钛酸薄膜的力学强化与强疏水性能,得到具有优异力学性能,疏水性能与杀菌性能的聚合物复合涂层。该聚合物复合涂层材料可以应用于包括疏水材料、木材防腐杀菌材料、光催化材料、杀菌涂层材料、海工设备及船舶用涂料等领域。
实施例3:
本实施例提供一种掺杂Ag的纳米钛酸钾薄膜材料的制备方法,包括如下步骤:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体;将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物组成。
常压下,将0.25g上述制得的Ag 1Ti 24.75Al 74.25初始合金条带加入50ml浓度为15mol/L,温度60℃的KOH水溶液中,并不断搅拌。Ag 1Ti 24.75Al 74.25初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在4min内结束,继续保温2min,确保反应彻底完成。然后,将包含有固态絮状产物的热碱溶液倾倒在与水平面呈45度角的且孔径分别为200μm、20μm、5μm、5μm、5μm的五叠层铜网上,固态絮状产 物被保留在五叠层铜网上,碱溶液则被滤掉,同时固态产物的温度在10s内降低到40℃以下。
将所得固态絮状产物进一步清洗,并在50℃干燥1h,即得到产率60%以上的掺杂Ag的纳米钛酸钾薄膜材料,其单一薄膜的厚度为0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钾薄膜之中。
实施例4:
本实施例提供一种掺杂Ag的钛酸钠纳米管、含有嵌生Ag纳米颗粒的钛酸钠纳米管、掺杂Ag的钛酸纳米管、含有嵌生Ag纳米颗粒的钛酸纳米管,以及含有嵌生Ag纳米颗粒的TiO 2纳米管/棒的制备方法,包括如下步骤:
按照Ag 1.5Ti 24.5Al 74(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1.5Ti 24.5Al 74的合金熔体。将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~100μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物组成。
常压下,将1g上述制得的Ag 1.5Ti 24.5Al 74初始合金条带加入50ml浓度为10mol/L,温度为其沸点温度(约119℃)的NaOH水溶液中,并不断搅拌。Ag 1.5Ti 24.5Al 74初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在1min内结束,然后,将上述包含有固态絮状产物的热的碱溶液密封于内衬为聚四氟乙烯的反应釜中,随后在5min内将反应体系加热到200℃,此时反应釜内的压力高于常压;
在200℃的高温高压状态保温10min后,将反应釜置于20℃的冷水中降温。反应釜降温到常温后,将釜内压力恢复到常压,然后将反应釜内的固态物质与溶液分离、经清洗、250℃干燥10min,即得到掺杂Ag的钛酸钠纳米管材料,其管的外径范围为3nm~10nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸钠纳米管中,且所得掺杂Ag的钛酸钠纳米管的相变热稳定性高于单纯钛酸钠纳米管基体的热稳定性。
将上述掺杂Ag的钛酸钠纳米管在550℃热处理2小时,即得到含有嵌生Ag纳米颗粒的钛酸钠纳米管,其其管的外径范围为3nm~10nm,管的长度大于管外径的5倍以上,Ag纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在钛酸钠纳米管中。
将上述与反应釜内碱溶液分离后的固态物质分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~4之间。15min后,进行固液分离、经清洗、并在250℃干燥15min,即得到掺杂Ag的钛酸纳米管;且管的外径范围为3nm~10nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸纳米管中,且所得掺杂Ag的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
将上述掺杂Ag的钛酸纳米管在550℃热处理2h,即得含有嵌生Ag纳米颗粒的钛酸纳米管。所得Ag纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在钛酸纳米管中;所得钛酸纳米管的外径为3nm~10nm,管的长度大于管外径的5倍以上。
将上述掺杂Ag的钛酸纳米管在650℃热处理2h,即得含有嵌生Ag纳米颗粒的锐钛矿型TiO 2纳米管。所述Ag纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型TiO 2纳米管中;所述锐钛矿型TiO 2纳米管的外径为3nm~15nm,管的长度大于管外径的5倍以上。
将上述掺杂Ag的钛酸纳米管在950℃热处理2h,即得含有嵌生Ag纳米颗粒的金红石型TiO 2纳米管/棒。所述Ag纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在金红石型TiO 2纳米管/棒中;所述金红石型TiO 2纳米管/棒的外径范围为5nm~20nm,管/棒的长度大于管/棒外径的3倍以上。
实施例5:
本实施例提供一种掺杂Ag-Au的纳米钛酸钠薄膜,含有嵌生Ag-Au纳米颗粒的纳米钛酸钠薄膜,掺杂Ag-Au的纳米钛酸薄膜,含有嵌生Ag-Au纳米颗粒的纳米钛酸薄膜,以及含有嵌生Ag-Au纳米颗粒的纳米TiO 2片粉的制备方法及应用,包括如下步骤:
按照Ag 0.8Au 0.2Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Au、Ti与Al原料,熔炼得到成分为Ag 0.8Au 0.2Ti 24.75Al 74.25的合金熔体。将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~15μm的条带状的初始 合金,其主要由固溶有Ag、Au元素的TiAl 3金属间化合物构成。
常压下,将1g上述制得的Ag 0.8Au 0.2Ti 24.75Al 74.25初始合金条带加入50ml浓度为10mol/L,温度范围为105℃~119℃(碱溶液沸点温度)的NaOH水溶液中,并不断搅拌。Ag 0.8Au 0.2Ti 24.75Al 74.25初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在10s内结束,继续保温2min,确保反应彻底完成,然后在搅拌状态下,将450ml常温水一次性迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L,温度的降低到45℃以下。
将固态絮状产物与溶液进行分离,经清洗,并在250℃干燥10min,即得到掺杂Ag-Au的纳米钛酸钠薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag、Au元素主要以原子或原子团簇的方式镶嵌分布在纳米钛酸钠薄膜之中;由于Ag、Au元素的钉扎作用,纳米钛酸钠薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag-Au的纳米钛酸钠薄膜在600℃热处理0.1小时,即得到含有嵌生Ag-Au纳米颗粒的纳米钛酸钠薄膜材料,其单一薄膜的厚度范围约为0.5nm~3nm,膜的平均面积大于1200nm 2,Ag-Au纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在纳米钛酸钠薄膜中。
将上述与碱溶液分离后的固态絮状物质分散在水中后,将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间,4h后,进行分离、清洗、250℃干燥10min,即得到掺杂Ag-Au的纳米钛酸薄膜,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag、Au元素主要以原子或原子团簇的方式镶嵌分布在纳米钛酸薄膜之中;由于Ag、Au元素的钉扎作用,纳米钛酸薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag-Au的纳米钛酸薄膜在550℃热处理2小时,即得到含有嵌生Ag-Au纳米颗粒的纳米钛酸薄膜材料,其单一薄膜的厚度约0.5nm~3nm,膜的平均面积大于1500nm 2,Ag-Au纳米颗粒的大小范围为1.5nm~5nm,其通过嵌生的方式分布在纳米钛酸薄膜中。
将上述掺杂Ag-Au的纳米钛酸薄膜在650℃热处理2小时,即得到含有嵌生Ag-Au纳米颗粒的锐钛矿型纳米TiO 2片粉。该锐钛矿型纳米TiO 2片的厚度范围为1nm~10nm,平均面积大于500nm 2,Ag-Au纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型纳米TiO 2片中。
将上述掺杂Ag-Au的纳米钛酸薄膜在950℃热处理2小时,即得到含有嵌生Ag-Au纳米颗粒的金红石型纳米TiO 2片粉。该金红石型纳米TiO 2片的厚度范围为2nm~20nm,平均面积大于400nm 2,Ag-Au纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在金红石型纳米TiO 2片中。
将含有掺杂Ag-Au的纳米钛酸薄膜材料与聚苯胺混合,然后制备成Ag、Au元素掺杂的纳米钛酸与聚苯胺的复合涂层。该涂层中Ag元素与Au元素以原子或原子团簇方式镶嵌分散在纳米钛酸之中,而纳米钛酸又分散在聚苯胺之中,可以最大限度的利用Ag元素、Au元素与钛酸薄膜的性能。该材料可以应用于包括疏水材料、光催化材料、杀菌涂层材料、海工设备及船舶用涂料等领域。
实施例6:
本实施例提供一种掺杂Ag-Au-Pd的钛酸钠纳米管、含有嵌生Ag-Au-Pd纳米颗粒的钛酸钠纳米管、掺杂Ag-Au-Pd的钛酸纳米管、含有嵌生Ag-Au-Pd纳米颗粒的钛酸纳米管,以及含有嵌生Ag-Au-Pd纳米颗粒的TiO 2纳米管/棒的制备方法,包括如下步骤:
按照Ag 0.8Au 0.1Pd 0.1Ti 24.75Zn 74.25(原子百分比)的配比称取金属Ag、Au、Pd、Ti与Zn原料,熔炼得到成分为Ag 0.8Au 0.1Pd 0.1Ti 24.75Zn 74.25的合金熔体。将该合金熔体凝固成铸锭,然后将铸锭破碎成粒径不超过100μm的合金细粉,其主要由固溶有Ag、Au、Pd元素的TiZn 3金属间化合物构成;
常压下,将1g上述制得的Ag 0.8Au 0.1Pd 0.1Ti 24.75Zn 74.25初始合金细粉加入50ml浓度为15mol/L、温度范围为105℃~115℃的NaOH水溶液中,并不断搅拌。Ag 0.8Au 0.1Pd 0.1Ti 24.75Zn 74.25初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Zn反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物(该固态絮状产物经后续分离,干燥,即为掺杂Ag-Au-Pd的纳米钛酸钠薄膜材料)。
析氢脱Zn反应在1min内结束,然后,将上述包含有固态絮状产物的热的碱溶液密封于内衬为聚四氟乙烯的反应釜中,随后在10min内将反应体系加热到250℃,此时反应釜内的压力高于常压;
在250℃高压保温10min后,将反应釜置于冷水中迅速降温。反应釜降温到常温后,将釜内压力恢复到常压,然后将反应釜内的固态物质与溶液分离、清洗、250℃干燥10min,即得到掺杂Ag、Au、Pd的钛酸钠纳米管,其管的外径范围为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag、Au、Pd元素以原子或原子团簇方式分布在钛酸钠纳米管中,且所得掺杂Ag、Au、Pd的钛酸钠纳米管的相变热稳定性高于单纯钛酸钠纳米管基体的热稳定性。
将上述掺杂Ag、Au、Pd的钛酸钠纳米管在550℃热处理1h,即得含有嵌生Ag-Au-Pd纳米颗粒的钛酸钠纳米管,其管的外径范围为3nm~12nm,管的长度大于管外径的5倍以上。嵌生Ag-Au-Pd纳米颗粒的大小为1.5nm~5nm,所述钛酸钠纳米管的外径3nm~12nm,嵌生Ag-Au-Pd纳米颗粒通过嵌生的方式分布在钛酸钠纳米管中。
将上述与碱溶液分离后的固态物质分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~4之间。10min后,进行固液分离、经清洗、并在250℃干燥10min,即得到掺杂Ag、Au、Pd的钛酸纳米管;且管的外径范围为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag、Au、Pd元素以原子或原子团簇分布在钛酸纳米管中,且所得掺杂Ag、Au、Pd的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
将上述掺杂Ag、Au、Pd的钛酸纳米管在550℃热处理1.5h,即得含有嵌生Ag-Au-Pd纳米颗粒的钛酸纳米管。所得嵌生Ag-Au-Pd纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在钛酸纳米管中,所得钛酸纳米管的外径为3nm~12nm,且管的长度大于管外径的5倍以上。
将上述掺杂Ag、Au、Pd的钛酸纳米管在650℃热处理2h,即得含有嵌生Ag-Au-Pd纳米颗粒的锐钛矿型纳米TiO 2管。所述Ag-Au-Pd纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型纳米TiO 2管中,所述锐钛矿型纳米TiO 2管的外径为3nm~15nm,且管的长度大于管外径的5倍以上。
将上述掺杂Ag、Au、Pd的钛酸纳米管在950℃热处理2h,即得含有嵌生Ag-Au-Pd纳米颗粒的金红石型纳米TiO 2管/棒。所得嵌生Ag-Au-Pd纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在金红石型纳米TiO 2管/棒中,所述金红石型纳米TiO 2管/棒的外径为3nm~20nm,且管/棒的长度大于管/棒外径的3倍以上。
实施例7:
本实施例提供一种掺杂Ag的纳米钛酸钠(钾)薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸钠(钾)薄膜材料、掺杂Ag的纳米钛酸薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,以及含有嵌生Ag纳米颗粒的TiO 2片粉的制备方法,包括如下步骤:
按照Ag 1Ti 39Al 60(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 39Al 60的合金熔体,将该合金熔体凝固成铸锭,然后破碎成粒径不超过1mm的初始合金粗粉,其主要由固溶有Ag元素的TiAl 2金属间化合物与固溶有Ag元素的TiAl组成。
分别配制15mol/L的KOH溶液与15mol/L的NaOH溶液,将两种溶液1:1体积混合,得到OH -浓度为15mol/L的KOH与NaOH混合溶液。
常压下,将1g上述制得的Ag 1Ti 39Al 60初始合金粗粉加入50ml浓度为15mol/L,温度范围为105℃~115℃的KOH与NaOH混合水溶液中,并不断搅拌。Ag 1Ti 39Al 60初始合金粗粉在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在接近8min内结束,继续保温2min确保反应完全,然后,在搅拌状态下,将700ml常温水迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L以下,温度的降低到45℃以下。
将上述固态絮状产物与溶液进行分离,经清洗,250℃干燥10min,即得到掺杂Ag的纳米钛酸钠(钾)薄膜材料,其单一薄膜的厚度约0.25nm~2nm,单片薄膜的平均面积大于2000nm 2。其中Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钠(钾)薄膜之中。由于Ag元素的钉扎作用,纳米钛酸钠(钾)薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag的纳米钛酸钠(钾)在550℃热处理2小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸钠(钾)薄膜,其单一薄膜的厚度范围约为0.5nm~3nm,膜的平均面积大于1000nm 2,嵌生纳米Ag颗粒的大小范围为1.5nm~5nm;
将上述与碱溶液分离后的固态絮状物质分散在水中,在搅拌状态下,将0.025mol/L的HCl溶液逐渐加入其 中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间,5min后,进行分离、清洗、250℃干燥10min,即得到掺杂Ag的纳米钛酸薄膜,其单一薄膜的厚度约0.25nm~2nm,单片薄膜的平均面积大于2000nm 2。其中Ag元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中;由于Ag元素的钉扎作用,纳米钛酸薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag的纳米钛酸薄膜在550℃热处理1.5小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,其单一薄膜的厚度约0.5nm~3nm,膜的平均面积大于1000nm 2,嵌生Ag纳米颗粒的大小范围为1.5nm~5nm;
将上述掺杂Ag的纳米钛酸薄膜在650℃热处理2小时,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2片粉。该锐钛矿型纳米TiO 2片的厚度范围为1nm~15nm,平均面积大于400nm 2,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜在950℃热处理2小时,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2片粉;该金红石型纳米TiO 2片的厚度范围为2nm~20nm,平均面积大于300nm 2,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小范围为1.5nm~5nm。
实施例8:
本实施例提供一种掺杂Ag的钛酸钠(锂)纳米管、掺杂Ag的钛酸纳米管、含有嵌生Ag纳米颗粒的钛酸纳米管,以及含有嵌生Ag纳米颗粒的TiO 2纳米管的制备方法,包括如下步骤:
按照Ag 3Ti 27Al 70(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 3Ti 27Al 70的合金熔体,将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物与固溶有Ag元素的TiAl 2金属间化合物组成。
分别配制6mol/L的LiOH溶液与14mol/L的NaOH溶液,将两种溶液按体积1:1混合,得到OH -浓度为10mol/L的LiOH与NaOH混合溶液。
常压下,将1g上述制得的初始合金条带加入50ml且温度范围为T f溶液-5℃~T f溶液的上述混合溶液中,并不断搅拌。Ag 3Ti 27Al 70初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在20s内结束,然后,将上述包含有固态絮状产物的热的混合碱溶液密封于内衬为聚四氟乙烯的反应釜中,随后在5min内将反应体系加热到200℃,此时反应釜内的压力高于常压;
在200℃保温30min后,将反应釜置于冷水中迅速降温。反应釜降温到常温后,将釜内压力恢复到常压,然后将反应釜内的固态物质与溶液分离、清洗、经280℃干燥10min,即得到掺杂Ag的钛酸钠(锂)纳米管材料,其管的外径范围为3nm~10nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇方式分布在纳米钛酸钠(锂)中,且所得掺杂Ag的钛酸钠(锂)纳米管的相变热稳定性高于单纯钛酸钠(锂)纳米管基体的热稳定性。
将上述与碱溶液分离后的固态物质分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~4之间。10min后,进行固液分离、经清洗、并在250℃干燥10min,即得到掺杂Ag的钛酸纳米管;且管的外径范围为3nm~10nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸纳米管中,且所得掺杂Ag的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
上述掺杂Ag的钛酸纳米管在550℃热处理1.5h,即得到含有嵌生Ag纳米颗粒的钛酸纳米管;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在钛酸纳米管中,且钛酸纳米管的外径为3nm~10nm,且管的长度大于管外径的5倍以上。
上述掺杂Ag的钛酸纳米管在650℃热处理3h,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2纳米管;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型TiO 2纳米管中,且锐钛矿型TiO 2纳米管的外径为3nm~15nm,且管的长度大于管外径的5倍以上。
实施例9
本实施例提供一种掺杂Ag的纳米钛酸钠薄膜材料、掺杂Ag的纳米钛酸薄膜材料的制备方法,包括如下步骤:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体;将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物组成。
常压下,将1g上述制得的Ag 1Ti 24.75Al 74.25初始合金条带加入50ml浓度为10mol/L,温度为105℃-112℃的NaOH水溶液中,并不断搅拌。Ag 1Ti 24.75Al 74.25初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在15s内结束,继续保温2h以确认析氢脱Al反应结束后,继续延长保温时间仍然可以获得相应的产物;保温过程中通过补充蒸发水维持溶液的体积为50ml不变。
2h后,将包含有固态絮状产物的热的浓碱溶液倾倒在与水平面呈45度角的且孔径分别为200μm、20μm、5μm、5μm的四叠层铜网上,固态絮状产物被保留在四叠层铜网上,碱溶液则被滤掉,同时固态絮状产物的温度在20s内降低到45℃以下。
将所得固态絮状产物进一步清洗,250℃干燥10min,即得到掺杂Ag的纳米钛酸钠薄膜材料,其单一薄膜的厚度为0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钠薄膜之中。
将上述掺杂Ag的纳米钛酸钠薄膜分散在水中,在搅拌状态下,将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间,30min后,进行分离、清洗、250℃干燥10min,即得到掺杂Ag的纳米钛酸薄膜,其单一薄膜的厚度约0.25nm~2nm,单片薄膜的平均面积大于2000nm 2。其形貌如图8低倍-高倍照片所示。说明析氢脱Al反应结束后继续保温2h,结合后续酸溶液反应,仍然可以获得掺杂Ag的纳米钛酸薄膜目标产物。其中,所得产物中Ag元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中;由于Ag元素的钉扎作用,纳米钛酸薄膜基体的热稳定得到了极大的提高。
实施例10:
本实施例提供一种掺杂Ag的钛酸钠纳米管、掺杂Ag的钛酸纳米管、含有嵌生Ag纳米颗粒的钛酸纳米管,以及含有嵌生Ag纳米颗粒的TiO 2纳米管/棒的制备方法,包括如下步骤:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体。将该合金熔体凝固成铸锭,然后将铸锭破碎成粒径不超过50μm的初始合金细粉,其主要由固溶有Ag元素的TiAl 3金属间化合物构成。
常温常压下,将0.5g上述制得的初始合金细粉与50mL浓度为10mol/L的NaOH水溶液置于内衬为聚四氟乙烯的密封反应釜中;然后马上将密封反应釜及其内部的初始合金与NaOH水溶液在10min内温度升高到250℃,然后保温25min;
25min后,将反应釜置于冷水中迅速降温。反应釜降温到常温后,将釜内压力恢复到常压,然后将反应釜内的固态物质与溶液分离、清洗、经250℃干燥10min,即得到掺杂Ag的钛酸钠纳米管,其管的外径为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸钠纳米管中,且所得掺杂Ag的钛酸钠纳米管的相变热稳定性高于单纯钛酸钠纳米管基体的热稳定性。
将上述与碱溶液分离后的固态物质分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~4之间。10min后,进行固液分离、经清洗、并在250℃干燥10min,即得到掺杂Ag的钛酸纳米管;且管的外径范围为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸纳米管中,且所得掺杂Ag的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
将上述掺杂Ag的钛酸纳米管在550℃热处理2h,即得含有嵌生Ag纳米颗粒的钛酸纳米管。所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在钛酸纳米管中,且钛酸纳米管的外径为3nm~12nm,且管的长度大于管外径的5倍以上。
上述掺杂Ag的钛酸纳米管在650℃热处理3h,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2纳米管;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型TiO 2纳米管中,且锐钛矿型TiO 2纳米管的外径为3nm~15nm,且管的长度大于管外径的5倍以上。
上述掺杂Ag的钛酸纳米管在950℃热处理2h,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2纳米管/棒;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在金红石型TiO 2纳米管/棒中,且金红石型TiO 2纳米管/棒的外径为4nm~20nm,且管/棒的长度大于管/棒外径的3倍以上。
实施例11:
本实施例提供一种掺杂Ag的纳米钛酸钠薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸钠薄膜材料、掺杂Ag的纳米钛酸薄膜材料、含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,以及含有嵌生Ag纳米颗粒的TiO 2片粉的制备方法及用途,包括如下步骤:
按照Ag 0.5Ti 24.5Zn 75(原子百分比)的配比称取金属Ag、Ti与Zn原料,熔炼得到成分为Ag 0.5Ti 24.5Zn 75的合金熔体。将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~20μm的条带状的初始合金,其主要由固溶有Ag元素的TiZn 3金属间化合物组成。
常压下,将1g上述制得的Ag 0.5Ti 24.5Zn 75初始合金条带加入50ml浓度为15mol/L、温度为其沸点温度(约140℃)的NaOH水溶液中,并不断搅拌。Ag 0.5Ti 24.5Zn 75初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Zn反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Zn反应在15s内结束,继续保温2min,确保反应彻底完成,然后在搅拌状态下,将700ml常温水一次性迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L以下,温度的降低到45℃以下。
将固态絮状产物与碱溶液进行分离,经清洗,并在250℃干燥10min,即得到掺杂Ag的纳米钛酸钠薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钠薄膜之中,由于Ag元素的钉扎作用,纳米钛酸钠薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag的纳米钛酸钠薄膜材料在550℃热处理1小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸钠薄膜材料,其单一薄膜的厚度范围约为0.5nm~3nm,膜的平均面积大于1500nm 2,Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述与碱溶液分离后的固态絮状产物分散在水中分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间,20min后,进行分离、清洗、并在280℃干燥10min,即得到掺杂Ag的纳米钛酸薄膜材料,其单一薄膜的厚度约0.25nm~2nm,膜的平均面积大于2000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中,由于Ag元素的钉扎作用,纳米钛酸薄膜基体的热稳定得到了极大的提高。
将上述掺杂Ag的纳米钛酸薄膜材料在500℃热处理5小时,即得到含有嵌生Ag纳米颗粒的纳米钛酸薄膜材料,其单一薄膜的厚度约0.5nm~3nm,膜的平均面积大于1500nm 2,嵌生Ag纳米颗粒的大小范围为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料在在650℃热处理2小时,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2片粉。该锐钛矿型纳米TiO 2片的厚度范围为1nm~10nm,其平均面积大于500nm 2,原位嵌生在锐钛矿型纳米TiO 2片中的Ag纳米颗粒的大小为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料在在950℃热处理2小时,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2片粉。该金红石型纳米TiO 2片的厚度范围为2nm~20nm,其平均面积大于300nm 2,原位嵌生在金红石型纳米TiO 2片中的Ag纳米颗粒的大小为1.5nm~5nm。
将上述掺杂Ag的纳米钛酸薄膜材料与聚偏氟乙烯(PVDF)混合,然后制备成Ag元素掺杂的纳米钛酸与PVDF的复合涂层。该涂层中Ag元素以原子或原子团簇方式镶嵌分散在纳米钛酸之中,而纳米钛酸又分散在PVDF之中,可以最大限度的利用Ag元素与钛酸的性能。该材料可以应用于包括疏水材料、光催化材料、杀菌涂层材料、海工设备及船舶用涂料等领域。
实施例12:
本实施例提供一种掺杂Ag的钛酸钠纳米管、掺杂Ag的钛酸纳米管、含有嵌生Ag纳米颗粒的钛酸纳米管,以及含有嵌生Ag纳米颗粒的TiO 2纳米管/棒的制备方法,包括如下步骤:
常温常压下,将掺杂Ag的纳米钛酸盐薄膜材料按照1:50的体积比与50mL浓度为10mol/L的NaOH水溶液置于内衬为聚四氟乙烯的密封反应釜中;然后将密封反应釜及其内部的初始合金与NaOH水溶液在10min内 温度升高到250℃,然后保温10min;
10min后,将反应釜置于冷水中迅速降温。反应釜降温到常温后,将釜内压力恢复到常压,然后将反应釜内的固态物质与溶液分离、清洗、经250℃干燥10min,即得到掺杂Ag的钛酸钠纳米管,其管的外径为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸钠纳米管中,且所得掺杂Ag的钛酸钠纳米管的相变热稳定性高于单纯钛酸钠纳米管基体的热稳定性。
将上述与碱溶液分离后的固态物质分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~4之间。60min后,进行固液分离、经清洗、并在250℃干燥10min,即得到掺杂Ag的钛酸纳米管;且管的外径范围为3nm~12nm,管的长度大于管外径的5倍以上。其中,Ag元素以原子或原子团簇分布在钛酸纳米管中,且所得掺杂Ag的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
将上述掺杂Ag的钛酸纳米管在550℃热处理2h,即得含有嵌生Ag纳米颗粒的钛酸纳米管。所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在钛酸纳米管中,且钛酸纳米管的外径为3nm~12nm,且管的长度大于管外径的5倍以上。
上述掺杂Ag的钛酸纳米管在650℃热处理3h,即得到含有嵌生Ag纳米颗粒的锐钛矿型TiO 2纳米管;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在锐钛矿型TiO 2纳米管中,且锐钛矿型TiO 2纳米管的外径为3nm~15nm,且管的长度大于管外径的5倍以上。
上述掺杂Ag的钛酸纳米管在950℃热处理2h,即得到含有嵌生Ag纳米颗粒的金红石型TiO 2纳米管/棒;所得嵌生Ag纳米颗粒的大小为1.5nm~5nm,其通过嵌生的方式分布在金红石型TiO 2纳米管/棒中,且金红石型TiO 2纳米管/棒的外径为4nm~20nm,且管/棒的长度大于管/棒外径的3倍以上。
实施例13:
本实施例提供一种掺杂Ag的纳米钛酸钠薄膜粉体材料、掺杂Ag的纳米钛酸薄膜粉体材料的制备方法,包括如下步骤:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体;将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~100μm的条带状的初始合金,其主要由固溶有Ag元素的TiAl 3金属间化合物组成。
常压下,将0.5g上述制得的Ag 1Ti 24.75Al 74.25初始合金条带与50ml浓度为10mol/L的NaOH水溶液置于密闭容器中,一开始初始合金条带与碱溶液不接触;
将密闭容器内的温度,以及初始合金条带与碱溶液的温度升高到150℃,此时密闭容器内处于高压状态,然后将密闭容器内的Ag 1Ti 24.75Al 74.25初始合金条带与该温度的碱溶液混合,使之发生剧烈的析氢脱T反应,Ag 1Ti 24.75Al 74.25初始合金条带在高温高压反应过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成含Ag的固态絮状产物。
析氢脱Al反应在30s内结束,30s之后,将密闭容器及反应体系放入冷却水中迅速降温至室温附近,同时将密闭容器内压力降低至常压;
反应体系温度降至常温常压后,将固态絮状产物与碱溶液进行分离,经清洗,并在280℃干燥10min,即得到掺杂Ag的纳米钛酸钠薄膜粉体材料,其单一薄膜的厚度为0.25nm~5nm,膜的平均面积大于1000nm 2,表现出明显的二维材料的特征;其中,Ag元素主要以原子或原子团簇的方式分布在纳米钛酸钠薄膜之中。
将上述与碱溶液分离后的固态絮状产物分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在3~5之间。5min后,进行固液分离、经清洗、并在250℃干燥15min,即得到掺杂Ag的纳米钛酸薄膜粉体材料,其单一薄膜的厚度约0.25nm~5nm,膜的平均面积大于1000nm 2。其中,Ag元素主要以原子或原子团簇的方式分布在所制备的纳米钛酸薄膜中。
对比实施例1:
常压下,将1g粒径范围为50nm~100nm的锐钛矿型TiO 2粉加入到50ml浓度为10mol/L且温度为其沸点温度(约119℃)的NaOH水溶液中,并不断搅拌。
10min后,在搅拌状态下,将450ml常温水迅速倒入反应体系中,溶液中碱浓度降低到1mol/L,温度的降 低到40℃以下。
将溶液中固态物质与溶液分离,经清洗、干燥,测得其产物的XRD图谱,如图9所示。
结合图10为该反应之前锐钛矿型TiO 2粉的XRD图,可与分析得到:反应10min后,锐钛矿型TiO 2几乎没有发生任何变化。根据XRD峰的宽度,可以判断出TiO 2颗粒的大小也未有发生明显变化。这一对比实施例表明,当Ti源为TiO 2粉时,大气环境下碱溶液的沸点温度,很难在短时间内将TiO 2的Ti-O键破坏。
对比实施例2:
按照Ag 1Ti 24.75Al 74.25(原子百分比)的配比称取金属Ag、Ti与Al原料,熔炼得到成分为Ag 1Ti 24.75Al 74.25的合金熔体;将合金熔体凝固成合金锭,然后破碎成粒径不超过30μm的初始合金粉末,其相组成主要由固溶Ag的TiAl 3组成。
常压下,将上述初始合金粉末与10mol/L且温度为35℃的NaOH溶液反应2h,所得产物如图11与图12所示。可见,在该反应条件下,反应前后的原初始合金粉末的形状大致不变,仍然为原破碎状且具有棱角的粉末状颗粒,如图12所示的棱角状形貌,且其微观结构上也不生成大量单片的二维薄膜状产物,而是纳米多孔网状结构构成的原棱角状粉末颗粒。因此,较低的温度下所发生的初始合金与碱溶液的反应平衡与本发明在碱溶液沸点温度附近发生的反应平衡完全不同,产物形貌也完全不同。
对比实施例3:
按照Ti 25Al 75(原子百分比)的配比称取金属Ti与Al原料,熔炼得到成分为Ti 25Al 75的合金熔体;将该合金熔体通过铜辊甩带速凝的方法制备成厚度为~30μm的条带状的初始合金,其主要由TiAl 3金属间化合物组成。
常压下,将0.25g上述制得的Ti 25Al 75初始合金条带加入50ml浓度为10mol/L,温度为其沸点温度(约119℃)的NaOH水溶液中,并不断搅拌。Ti 25Al 75初始合金条带在与浓碱溶液反应的过程中通过剧烈的析氢脱Al反应发生纳米碎化,并同时经形状与成分重构生成扩散分布于碱溶液中的固态絮状产物。
析氢脱Al反应在15s内结束,继续保温2min,确保反应彻底完成,然后在搅拌状态下,将450ml常温水一次性迅速倒入反应体系中,溶液中碱浓度在2s内降低到1mol/L,温度的降低到45℃以下。
将上述与碱溶液分离后的固态絮状产物分散在水中,然后将0.025mol/L的HCl溶液逐渐加入其中,使混合溶液PH值持续下降,并最终将混合溶液的PH值控制在2~5之间。10min后,得到纳米钛酸薄膜产物,对其进行固液分离、经清洗、并在475℃热处理2h,即得到锐钛矿型纳米TiO 2片粉,其TEM形貌及衍射谱如图13所示。该对比实施例说明,不含有掺杂元素的纳米钛酸薄膜在475℃即可发生明显的相变,同时发生明显的形貌变化,由薄膜状变为片状。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (29)

  1. 一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法,其特征在于,包括如下步骤制备:
    步骤一,提供初始合金,所述初始合金包含T类元素、Ti与E组元元素;其中,T类元素包含Al、Zn中的至少一种;且初始合金的相组成包含固溶有E组元元素的T-Ti金属间化合物;其中,E组元元素中Ag的原子百分比含量为50%~100%,且初始合金中固溶于T-Ti金属间化合物中的E组元元素与Ti的摩尔比范围为0<C E/C Ti≤0.25;
    步骤二,将所述初始合金与温度为T 1的碱溶液反应,反应过程中反应界面以大于2μm/min的平均速率由初始合金表面向内推进,且反应界面处的初始合金通过析氢脱T反应发生纳米碎化,并同时经形状与成分重构生成含有E组元元素的固态絮状产物;其中,T 1≥60℃;
    步骤三,将步骤二所述反应体系中含有E组元元素的固态絮状产物的温度自T 1降低并收集含有E组元元素的固态絮状产物,即得到掺杂E组元元素的纳米钛酸盐薄膜材料。
  2. 一种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料的制备方法,其特征在于,通过将权利要求1所述制备的产物或掺杂E组元元素的纳米钛酸盐薄膜材料进行热处理制备。
  3. 一种掺杂E组元元素的纳米钛酸薄膜材料的制备方法,其特征在于,通过将权利要求1所述制备的产物或掺杂E组元元素的纳米钛酸盐薄膜材料与酸溶液反应,收集固态产物,即得到掺杂E组元元素的纳米钛酸薄膜材料。
  4. 一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料的制备方法,其特征在于,通过将权利要求3所述制备的产物或掺杂E组元元素的纳米钛酸薄膜材料进行热处理制备。
  5. 一种含有嵌生E纳米颗粒的纳米TiO 2片粉的制备方法,其特征在于,通过将权利要求3所述制备的产物或掺杂E组元元素的纳米钛酸薄膜材料,或权利要求4所述制备的产物或含有嵌生E纳米颗粒的纳米钛酸薄膜材料进行热处理制备。
  6. 一种掺杂E组元元素的钛酸盐纳米管的制备方法,其特征在于,包括如下步骤制备:
    将含有权利要求1所述产物或掺杂E组元元素的纳米钛酸盐薄膜或(和)权利要求3所述产物或掺杂E组元元素的纳米钛酸薄膜的固态物质与碱溶液密封于封闭容器中,随后在高于T f溶液的温度T 2进行高温高压处理;其中,T f溶液为常压下所述参与反应碱溶液的沸点温度,且T f溶液<T 2;反应一定时间后,降低封闭容器的温度并使压力恢复到常压,收集最终固态产物,即得到掺杂E组元元素的钛酸盐纳米管。
  7. 一种含有嵌生E纳米颗粒的钛酸盐纳米管的制备方法,其特征在于,通过将权利要求6所述制备的最终产物或掺杂E组元元素的钛酸盐纳米管进行热处理制备。
  8. 一种掺杂E组元元素的钛酸纳米管的制备方法,其特征在于,通过将权利要求6所述制备的最终产物或掺杂E组元元素的钛酸盐纳米管与酸溶液反应,收集固态产物,即得到掺杂E组元元素的钛酸纳米管。
  9. 一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法,其特征在于,通过将权利要求8所述制备的产物或掺杂E组元元素的钛酸纳米管进行热处理制备。
  10. 一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法,其特征在于,通过将权利要求8所述制备的产物或掺杂E组元元素的钛酸纳米管,或权利要求9所述制备的产物或含有嵌生E纳米颗粒的钛酸纳米管进行热处理制备。
  11. 一种掺杂E组元元素的纳米钛酸盐薄膜材料,通过包括权利要求1所述的一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法制备,其特征包括:
    所述掺杂E组元元素的纳米钛酸盐薄膜的厚度为0.25nm~10nm;所述掺杂E组元元素的纳米钛酸盐薄膜的平均面积大于500nm 2;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%;所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸盐薄膜之中;所述掺杂E组元元素的纳米钛酸盐薄膜的相变热稳定性高于单纯纳米钛酸盐薄膜基体的热稳定性。
  12. 一种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料,通过包括权利要求2所述的一种含有嵌生E纳米颗粒的纳米钛酸盐薄膜材料的制备方法制备,其特征包括:
    所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于纳米钛酸盐薄膜中;所述含有E纳米颗粒的纳米钛酸盐薄膜的厚度为0.3nm~10nm;所述含有E纳米颗粒的纳米钛酸盐薄膜的平均面积大于400nm 2;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  13. 一种掺杂E组元元素的纳米钛酸薄膜材料,通过包括权利要求3所述的一种掺杂E组元元素的纳米钛酸薄膜材料的制备方法制备,其特征包括:
    所述掺杂E组元元素的纳米钛酸薄膜的厚度为0.25nm~10nm;所述掺杂E组元元素的纳米钛酸薄膜的平均面积大于500nm 2;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%;所述E组元元素主要以原子或原子团簇的方式分布在纳米钛酸薄膜之中;所述掺杂E组元元素的纳米钛酸薄膜的相变热稳定性高于单纯纳米钛酸薄膜基体的热稳定性。
  14. 一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料,通过包括权利要求4所述的一种含有嵌生E纳米颗粒的纳米钛酸薄膜材料的制备方法制备,其特征包括:
    所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于纳米钛酸薄膜中;所述含有嵌生E纳米颗粒的纳米钛酸薄膜的厚度为0.3nm~10nm;所述含有嵌生E纳米颗粒的纳米钛酸薄膜的平均面积大于400nm 2;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  15. 一种含有嵌生E纳米颗粒的纳米TiO 2片粉,通过包括权利要求5所述的一种含有嵌生E纳米颗粒的纳米TiO 2片粉的制备方法制备,其特征包括:
    所述含有嵌生E纳米颗粒的纳米TiO 2片的形状为板片状;所述含有嵌生E纳米颗粒的纳米TiO 2片的厚度为1nm~30nm;所述含有嵌生E纳米颗粒的纳米TiO 2片的平均面积大于100nm 2;所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于纳米TiO 2片中;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  16. 一种掺杂E组元元素的钛酸盐纳米管,通过包括权利要求6所述的一种掺杂E组元元素的钛酸盐纳米管的制备方法制备,其特征包括:
    所述掺杂E组元元素的钛酸盐纳米管的外径为2nm~20nm;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%;所述E组元元素主要以原子或原子团簇的方式分布在钛酸盐纳米管之中;所述掺杂E组元元素的钛酸盐纳米管的相变热稳定性高于单纯钛酸盐纳米管基体的热稳定性。
  17. 一种含有嵌生E纳米颗粒的钛酸盐纳米管,通过包括权利要求7所述的一种含有嵌生E纳米颗粒的钛酸盐纳米管的制备方法制备,其特征包括:
    所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于钛酸盐纳米管中;所述含有嵌生E纳米颗粒的钛酸盐纳米管的外径为2nm~20nm;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  18. 一种掺杂E组元元素的钛酸纳米管,通过包括权利要求8所述的一种掺杂E组元元素的钛酸纳米管的制备方法制备,其特征包括:
    所述掺杂E组元元素的钛酸纳米管的外径为2nm~20nm;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%;所述E组元元素主要以原子或原子团簇的方式分布在钛酸纳米管之中;所述掺杂E组元元素的钛酸纳米管的相变热稳定性高于单纯钛酸纳米管基体的热稳定性。
  19. 一种含有嵌生E纳米颗粒的钛酸纳米管,通过包括权利要求9所述的一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法制备,其特征包括:
    所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于钛酸纳米管中;所述含有嵌生E纳米颗粒的钛酸纳米管的外径为2nm~20nm;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  20. 一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒,通过包括权利要求10所述的一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法制备,其特征包括:
    所述E纳米颗粒的大小为1.5nm~10nm;所述E纳米颗粒主要通过嵌生的方式存在于晶态TiO 2纳米管/棒中;所述含有嵌生E纳米颗粒的TiO 2纳米管/棒的外径为2nm~25nm;所述E组元元素与Ti的摩尔比满足0<C E/C Ti≤0.25;所述E组元元素中Ag的原子百分比含量为50%~100%。
  21. 一种掺杂E组元元素的钛酸盐纳米管的制备方法,其特征在于,通过如下步骤制备:
    步骤1),提供初始合金,所述初始合金包含T类元素、Ti与E组元元素;其中,T类元素包含Al、Zn中的至少一种;且初始合金的相组成包含固溶有E组元元素的T-Ti金属间化合物;其中,E组元元素中Ag的原子百分比含量为50%~100%,且初始合金中固溶于T-Ti金属间化合物中的E组元元素与Ti的摩尔比范围为0<C E/C Ti≤0.25;
    步骤2),将所述初始合金与碱溶液密封于封闭容器中,随后将封闭反应体系温度加热至T 2并保温一段时间;其中,100℃<T f溶液<T 2;T f溶液为常压下参与反应碱溶液的沸点温度,且T 2温度下反应容器内的压力高于常压;
    步骤3),降低封闭容器的温度并使压力恢复到常压,收集最终固态产物,即得到掺杂E组元元素的钛酸盐纳米管。
  22. 一种掺杂E组元元素的钛酸纳米管的制备方法,其特征在于,通过将权利要求21所述制备的最终产物或掺杂E组元元素的钛酸盐纳米管与酸溶液反应,收集固态产物,即得到掺杂E组元元素的钛酸纳米管。
  23. 一种含有嵌生E纳米颗粒的钛酸纳米管的制备方法,其特征在于,通过将权利要求22所述制备的产物或掺杂E组元元素的钛酸纳米管进行热处理制备。
  24. 一种含有嵌生E纳米颗粒的晶态TiO 2纳米管/棒的制备方法,其特征在于,通过将权利要求22所述制备的产物或掺杂E组元元素的钛酸纳米管,或权利要求23所述制备的产物或含有嵌生E纳米颗粒的钛酸纳米管进行热处理制备。
  25. 根据权利要求1-10任一项所述的制备方法制得的产物材料,或权利要求21-24任一项所述的制备方法制得的产物材料,或权利要求11-20任一项所述的材料,在包括聚合物基纳米复合材料、树脂基复合材料、陶瓷材料、光催化材料、疏水材料、污水降解材料、杀菌涂层、防腐涂料、海工涂料中的应用。
  26. 根据权利要求25所述产物材料的应用,其特征在于,将权利要求3所述制备方法制得的含有掺杂Ag元素的纳米钛酸薄膜材料与聚合物混合,然后制备成含有掺杂Ag元素的纳米钛酸薄膜与聚合物的复合涂层;该复合涂层中Ag元素以原子或原子团簇方式镶嵌分散在纳米钛酸薄膜之中,而纳米钛酸薄膜又分散在聚合物中;该聚合物复合涂层,可以应用于包括疏水材料、污水降解材料、杀菌涂层材料、防腐涂料、海工设备及船舶用涂料领域。
  27. 根据权利要求1所述的一种掺杂E组元元素的纳米钛酸盐薄膜材料的制备方法,其特征在于,将步骤二所述反应体系含有E组元元素的固态絮状产物的温度自T 1降低的方式包括加溶剂稀释、过滤冷却中的至少一种。
  28. 根据权利要求1-10任一项所述的制备方法制得的产物材料,或权利要求21-24任一项所述的制备方法制得的产物材料,或权利要求11-20任一项所述的材料,在家装涂料、杀菌喷剂、防污涂料中的应用,其特征在于,
    作为家装涂料的应用,其特征在于,将上述所述含Ag产物材料或材料在家具、器物、墙壁的表面,作为涂料添加剂与涂料其它组分混合后一起进行涂装,实现抗菌效果;
    作为杀菌喷剂的应用,其特征在于,将上述所述含Ag产物材料或材料与其它液体喷剂组分混合,通过喷剂载体一起喷涂到家具、器物、织物、墙壁的表面,实现抗菌效果;
    作为防污涂料的应用,其特征在于,将上述所述含Ag产物材料或材料替代传统防污涂料中的杀菌防污组 分,以实现防污效果。
  29. 根据权利要求1-10任一项所述的制备方法制得的产物材料,或权利要求21-24任一项所述的制备方法制得的产物材料,或权利要求11-20任一项所述的材料,在抗菌织物中的应用,其特征在于,将上述所述含Ag产物材料或材料分散后,使其依附或涂覆在织物表面,或与织物混编在一起,从而使织物拥有抗菌、杀菌的效果与能力。
PCT/CN2022/088182 2021-04-23 2022-04-21 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途 WO2022222996A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22791102.1A EP4328184A1 (en) 2021-04-23 2022-04-21 Nano-titanate, nano-titanic acid, and nano-tio2 containing doping ag, preparation method therefor and use thereof
CN202280002282.1A CN115279698B (zh) 2021-04-23 2022-04-21 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO2及其制备方法与用途
JP2023565448A JP2024515757A (ja) 2021-04-23 2022-04-21 ドープされたAg元素を含むナノチタン酸塩、ナノチタン酸、ナノTiO2の製造方法と用途
US18/489,670 US20240228314A9 (en) 2021-04-23 2023-10-18 Nano-titanate, nano-titanic acid, and nano-tio2 containing doping ag, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110444047.7 2021-04-22
CN202110444047 2021-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/489,670 Continuation US20240228314A9 (en) 2021-04-23 2023-10-18 Nano-titanate, nano-titanic acid, and nano-tio2 containing doping ag, preparation method therefor and use thereof

Publications (1)

Publication Number Publication Date
WO2022222996A1 true WO2022222996A1 (zh) 2022-10-27

Family

ID=83723533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088182 WO2022222996A1 (zh) 2021-04-23 2022-04-21 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途

Country Status (3)

Country Link
EP (1) EP4328184A1 (zh)
JP (1) JP2024515757A (zh)
WO (1) WO2022222996A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942205A (en) * 1995-06-14 1999-08-24 Otsuka Kagaku Kabushiki Kaisha Titanate whiskers and process for their preparation
CN1695744A (zh) * 2005-06-14 2005-11-16 河北工业大学 用作人工骨骼的钛或钛合金生物医学材料及其制备方法
JP2006169046A (ja) * 2004-12-16 2006-06-29 Tdk Corp 水熱合成装置、チタン酸塩粉末の製造方法、チタン酸塩粉末及び積層セラミックコンデンサ
CN101766839A (zh) * 2009-12-31 2010-07-07 东南大学 载银抗菌型的人工关节及其制备方法
CN102408892A (zh) * 2010-09-26 2012-04-11 海洋王照明科技股份有限公司 一种钛酸盐发光材料及其制备方法
CN104258850A (zh) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 一种Ag掺杂TiO2纳米薄膜及含有该薄膜的复合材料
CN104628029A (zh) * 2015-01-23 2015-05-20 济南大学 一种钛酸盐、锐钛矿TiO2和AgCl/Ag/TiO2复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942205A (en) * 1995-06-14 1999-08-24 Otsuka Kagaku Kabushiki Kaisha Titanate whiskers and process for their preparation
JP2006169046A (ja) * 2004-12-16 2006-06-29 Tdk Corp 水熱合成装置、チタン酸塩粉末の製造方法、チタン酸塩粉末及び積層セラミックコンデンサ
CN1695744A (zh) * 2005-06-14 2005-11-16 河北工业大学 用作人工骨骼的钛或钛合金生物医学材料及其制备方法
CN101766839A (zh) * 2009-12-31 2010-07-07 东南大学 载银抗菌型的人工关节及其制备方法
CN102408892A (zh) * 2010-09-26 2012-04-11 海洋王照明科技股份有限公司 一种钛酸盐发光材料及其制备方法
CN104258850A (zh) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 一种Ag掺杂TiO2纳米薄膜及含有该薄膜的复合材料
CN104628029A (zh) * 2015-01-23 2015-05-20 济南大学 一种钛酸盐、锐钛矿TiO2和AgCl/Ag/TiO2复合材料的制备方法

Also Published As

Publication number Publication date
EP4328184A1 (en) 2024-02-28
CN115279698A (zh) 2022-11-01
JP2024515757A (ja) 2024-04-10
US20240132366A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
Lan et al. Titanate nanotubes and nanorods prepared from rutile powder
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
Wu et al. Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures
CN103072968B (zh) 碳纳米复合材料及其制备方法
Zhou et al. Three-dimensional sea-urchin-like hierarchical TiO2 microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity
US20090117028A1 (en) Rapid synthesis of titanate nanomaterials
Zhong et al. CuSn (OH) 6 submicrospheres: room-temperature synthesis, growth mechanism, and weak antiferromagnetic behavior
Cai et al. TiO 2 mesocrystals: Synthesis, formation mechanisms and applications
Saini et al. Phase modulation in nanocrystalline vanadium di-oxide (VO2) nanostructures using citric acid via one pot hydrothermal method
EP4328185A1 (en) METHOD FOR PREPARING NANO-TITANATE, NANO-TITANIC ACID AND NANO-TiO2 COMPRISING EMBEDDED NANOPARTICLES AND METHOD FOR PREPARING METAL NANOPARTICLES
WO2022222996A1 (zh) 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO 2及其制备方法与用途
WO2022222997A1 (zh) 含有嵌生纳米颗粒的纳米钛酸盐、纳米钛酸、纳米TiO 2的制备方法及金属纳米颗粒的制备方法
Kim et al. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process
WO2022222998A1 (zh) 一种纳米钛酸盐、纳米钛酸、纳米TiO2的制备方法及用途
CN115279698B (zh) 一种含有掺杂Ag元素的纳米钛酸盐、纳米钛酸、纳米TiO2及其制备方法与用途
US20240228314A9 (en) Nano-titanate, nano-titanic acid, and nano-tio2 containing doping ag, preparation method therefor and use thereof
US20240228315A9 (en) Method for preparing nano-titanate, nano-titanic acid and nano-tio2 containing embedded nanoparticles and method for preparing metal nanoparticles
CN115151510B (zh) 含有嵌生纳米颗粒的纳米钛酸盐、纳米钛酸、纳米TiO2的制备方法及金属纳米颗粒的制备方法
CN115038666B (zh) 一种纳米钛酸盐、纳米钛酸、纳米TiO2的制备方法及用途
WO2024055754A1 (zh) 一种原位内生掺杂的钛氧基复合粉体材料及其制备方法与用途
WO2023201708A1 (zh) 一种复合纳米金属氧化物及其制备方法与用途
EP4328186A1 (en) Preparation method for nano titanate, nano titanic acid, and nano tio2, and a use thereof
Su et al. Fabrication of ZnO with tunable morphology through a facile treatment of Zn-based coordination polymers
WO2023201994A1 (zh) 贵金属纳米颗粒掺杂的纳米金属氧化物及贵金属纳米颗粒的制备方法与用途
Arvisdea et al. Synthesis of nanoparticles and nanocomposite of WO3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565448

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022791102

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022791102

Country of ref document: EP

Effective date: 20231123