WO2022222982A1 - 触控信号的校验、人机交互、笔迹的显示方法及相关装置 - Google Patents

触控信号的校验、人机交互、笔迹的显示方法及相关装置 Download PDF

Info

Publication number
WO2022222982A1
WO2022222982A1 PCT/CN2022/088069 CN2022088069W WO2022222982A1 WO 2022222982 A1 WO2022222982 A1 WO 2022222982A1 CN 2022088069 W CN2022088069 W CN 2022088069W WO 2022222982 A1 WO2022222982 A1 WO 2022222982A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
display screen
touch signal
track
Prior art date
Application number
PCT/CN2022/088069
Other languages
English (en)
French (fr)
Inventor
陈玉香
Original Assignee
广州创知科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州创知科技有限公司 filed Critical 广州创知科技有限公司
Publication of WO2022222982A1 publication Critical patent/WO2022222982A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the embodiments of the present application relate to the technical field of touch control, and in particular, to a touch signal verification, human-computer interaction, and handwriting display methods and related devices.
  • the optical touch system is one of the touch methods used by the interactive tablet.
  • the optical touch sensors 120 are generally disposed on both sides of the surface of the display screen 110 , and the optical signals transmitted by the optical touch sensors 120 are The surface of the display screen 110 is propagated, and the position of the touch object on the surface of the display screen 110 is calculated by analyzing the situation that the touch object (for example, a hand or a pen) blocks the light signal, and the touch data is generated, and then the touch data is further processed by the interactive tablet,
  • the current technical solution cannot solve the problem of zero writing height.
  • the embodiments of the present invention propose a method for verifying touch signals, human-computer interaction, and handwriting display methods and related devices, so as to solve the misoperation caused by the touch area of the optical touch sensor, and to solve the problems caused by the optical touch sensor in the interactive tablet.
  • an embodiment of the present invention provides a method for verifying a touch signal, which is applied to an interactive tablet, wherein an optical touch sensor and a touch sensor are respectively provided in the interactive tablet, and the method includes:
  • the validity of each touch signal for touching the display screen is determined according to the correlation between each touch signal and each touch signal.
  • an embodiment of the present invention further provides a human-computer interaction method, which is applied to an interactive tablet, and the method includes:
  • An interactive operation adapted to the touch type is performed for each of the touch operations, respectively.
  • an embodiment of the present invention further provides a method for displaying handwriting, which is applied to an interactive tablet, and the method includes:
  • a first sub-track and a second sub-track are determined for each of the touch objects, where the first sub-track is a touch track where the touch object is close to the display screen, and the second sub-track is a touch object that has been touched. touch the touch track of the display screen;
  • the first sub-track is ignored, and handwriting matching the second sub-track is drawn on the writing interface.
  • an embodiment of the present invention further provides a touch signal verification device, which is applied to an interactive tablet, wherein an optical touch sensor and a touch sensor are respectively provided in the interactive tablet, and the device includes:
  • an optical touch sensor activation module for activating the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the display screen surface
  • a touch sensor activation module for activating the touch sensor to generate at least one touch signal when at least one touch object touches the display screen
  • a correlation determination module configured to determine the correlation between each of the touch signals and each of the touch signals
  • a validity determination module configured to determine the validity of each of the touch signals for touching the display screen according to the correlation between each of the touch signals and each of the touch signals.
  • an embodiment of the present invention further provides a human-computer interaction device, which is applied to an interactive tablet, and the device includes:
  • a touch operation detection module for detecting at least one touch operation triggered by at least one touch object on the surface of the display screen
  • a touch relationship identification module used for identifying the touch relationship between each touch object and the display screen as a touch relationship during the triggering of each touch operation
  • a touch type dividing module configured to divide touch types for each of the touch operations according to the touch relationship
  • An interactive operation execution module configured to perform interactive operations adapted to the touch types for each of the touch operations respectively.
  • an embodiment of the present invention further provides a device for displaying handwriting, which is applied to an interactive tablet, and the device includes:
  • the writing interface display module is used to display the writing interface
  • a touch track determination module configured to determine at least one touch track when at least one touch object moves on the surface of the display screen
  • a touch track distinguishing module for determining a first sub-track and a second sub-track for each of the touch objects, where the first sub-track is the touch track of the touch object approaching the display screen, the second sub-track The sub-track is the touch track where the touch object has touched the display screen;
  • a handwriting drawing module configured to ignore the first sub-track, and draw handwriting matching the second sub-track on the writing interface.
  • an embodiment of the present invention further provides an interactive tablet, including:
  • an optical touch sensor for generating at least one touch signal when at least one touch object approaches or touches the surface of the display screen
  • a touch sensor for generating at least one touch signal when at least one touch object touches the display screen
  • a processor for determining the correlation between each of the touch signals and each of the touch signals; according to the correlation between each of the touch signals and each of the touch signals Touch the validity of the display.
  • an embodiment of the present invention further provides an interactive tablet, including:
  • a touch sensor for detecting at least one touch operation triggered by at least one touch object on the surface of the display screen
  • the processor is used to identify the touch relationship between each touch object and the display screen as a touch relationship during the period when each touch operation is triggered; respectively, according to the touch relationship
  • the touch operations are classified into touch types; interactive operations adapted to the touch types are respectively performed for each of the touch operations.
  • an embodiment of the present invention further provides an interactive tablet, including:
  • Display screen used to display the writing interface
  • a touch sensor for determining at least one touch track when at least one touch object moves on the surface of the display screen
  • a processor configured to determine a first sub-track and a second sub-track for each of the touch objects, the first sub-track is a touch track of the touch object approaching the display screen, and the second sub-track is The touch object has touched the touch track of the display screen; the first sub-track is ignored, and handwriting matching the second sub-track is drawn on the writing interface.
  • an embodiment of the present invention further provides an interactive tablet, the interactive tablet comprising:
  • processors one or more processors
  • memory for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the touch signal verification method as described in the first aspect or as described in the second aspect The human-computer interaction method or the handwriting display method as described in the third aspect.
  • an embodiment of the present invention further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the touch-sensitive method described in the first party is implemented.
  • the optical touch sensor is activated to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen, and the touch sensor is activated to enable at least one touch object to touch the display screen At least one touch signal is generated, the correlation between each touch signal and each touch signal is determined, and the validity of each touch signal for touching the display screen is determined according to the correlation between each touch signal and each touch signal.
  • the touch signal can detect the event of touching the display screen, and the correlation between the touch signal and the touch signal can identify and determine the effectiveness of the touch signal for the touch screen, and give the touch signal more dimension.
  • this embodiment can be based on the effectiveness of touch signals for touching the display screen. Differentiate the response methods of touch signals, so that the method of responding to touch operations is more suitable for the needs of business scenarios, thereby improving the performance of touch operations in the business scenarios, and in the writing scenarios, it can solve the problem of zero-height writing .
  • FIG. 1A is an example diagram of an existing touch signal and its reporting point
  • Fig. 1B is an example diagram of a kind of existing handwriting
  • FIGS. 2A to 2C are exemplary diagrams of installing an optical touch sensor according to an embodiment of the present invention.
  • FIG. 3A is an example diagram of denoising of a touch signal according to an embodiment of the present invention.
  • FIG. 3B is an exemplary diagram of installing a touch sensor according to an embodiment of the present invention.
  • 3C to 3D are exemplary diagrams of a detection range of a touch sensor according to an embodiment of the present invention.
  • 4A is a schematic diagram of electrical connection between a touch sensor and a touch controller according to an embodiment of the present invention
  • 4B and 4C are schematic diagrams of electrical connection between a touch sensor and a host controller according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for verifying a touch signal according to Embodiment 1 of the present invention.
  • FIG. 6A is an exemplary diagram of a touch signal and its validity provided by Embodiment 1 of the present invention.
  • FIG. 6B to FIG. 6G are exemplary diagrams of a multi-touch according to Embodiment 1 of the present invention.
  • FIGS. 7A to 7C are exemplary diagrams of a writing handwriting provided in Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart of a method for verifying a touch signal according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of a method for verifying a touch signal according to Embodiment 3 of the present invention.
  • Embodiment 10 is a flowchart of a human-computer interaction method provided in Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart of a method for displaying handwriting according to Embodiment 5 of the present invention.
  • FIG. 12 is a schematic structural diagram of a touch signal verification device according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic structural diagram of a human-computer interaction device according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic structural diagram of a display device for handwriting according to Embodiment 8 of the present invention.
  • FIG. 15 is a schematic structural diagram of an interactive tablet according to Embodiment 9 of the present invention.
  • FIG. 16 is a schematic structural diagram of an interactive tablet according to Embodiment 10 of the present invention.
  • FIG. 17 is a schematic structural diagram of an interactive tablet according to Embodiment 11 of the present invention.
  • FIG. 18 is a schematic structural diagram of an interactive tablet according to Embodiment 12 of the present invention.
  • the hardware part of the interactive tablet is composed of a display screen, an intelligent processing system, etc., which are combined by the overall structural parts, and are also supported by a dedicated software system.
  • the display includes LED (Light Emitting Diode) display, OLED (Organic Light-Emitting Diode) display, LCD (Liquid Crystal Display) display, etc.
  • a touch display can be formed by arranging optical touch sensors on both sides of the display surface. Optical touch sensors use light signals on the surface of the display to scan touch objects, such as the user's finger, stylus, etc. It can be understood that in order to protect the display screen from being scratched by touching objects, a cover glass will be provided on the surface of the display screen. Therefore, in the embodiments of this specification, the surface of the display screen may refer to the cover plate of the display screen. glass surface.
  • touch screen To distinguish the touch screen from the technical principle, it can include the following types:
  • the optical touch sensor includes an infrared transmitter and an infrared receiver.
  • the infrared transmitter is used to transmit infrared signals
  • the infrared receiver is used to receive infrared signals.
  • the infrared signals densely distributed in different directions are used to form a beam grid to locate the touch point.
  • the display screen is installed with a frame with a circuit board, and the function is to arrange infrared transmitters and infrared receivers around the display screen to form a horizontal and vertical beam grid.
  • the light measurement value When the touch object blocks the infrared signal, the light measurement value will be weakened at the corresponding infrared receiver, so the position of the touch point on the screen can be determined.
  • the infrared transmitter is installed on the first side of the frame of the display screen
  • the infrared receiver is installed on the second side of the frame of the display screen, and the first side is opposite to the second side.
  • the infrared signal emitted by the infrared transmitter is received by the infrared receiver.
  • the shape of the display screen is different, such as rectangle, hexagon, circle, etc.
  • the shape of the frame also varies with the shape of the display screen, such as rectangle, hexagon, circle, etc.
  • the settings of the infrared transmitter and infrared receiver in each infrared module are also different.
  • the shape of the frame of the interactive tablet is a rectangle.
  • the frame of the interactive tablet includes a first frame 211 , a second frame 212 , a third frame 213 , and a fourth frame 214 , wherein, in the vertical direction, the first frame 211 is opposite to the third frame 213, and in the horizontal direction, the second frame 212 is opposite to the fourth frame 214, for this, the first frame 211 is also called the sky side and the third frame. 213 is also called the ground side, the second frame 212 is also called the left side, and the fourth frame 214 is also called the right side.
  • One group of infrared transmitters 221 is arranged on the first frame 211 , and the infrared receivers 223 are arranged on the third frame 213 .
  • Another group of infrared transmitters 222 is arranged on the second frame 212 , and an infrared receiver 224 is arranged on the fourth frame 214 .
  • the shape of the frame of the interactive tablet is a hexagon.
  • the frame of the interactive tablet includes a first frame 231, a second frame 232, a third frame 233, a third frame The four frame 234 , the fifth frame 235 and the sixth frame 236 , wherein the first frame 231 is opposite to the fourth frame 234 , the second frame 232 is opposite to the fifth frame 235 , and the third frame 233 is opposite to the sixth frame 236 .
  • One group of infrared transmitters 241 is arranged on the first frame 231 , and the infrared receiver 242 is arranged on the fourth frame 234 .
  • infrared transmitters 242 are arranged on the second frame 232 , and infrared receivers 245 are arranged on the fifth frame 235 .
  • infrared transmitters 243 are arranged on the third frame 233
  • infrared receivers 246 are arranged on the sixth frame 236 .
  • the shape of the frame of the interactive tablet is a circle
  • the frame of the interactive tablet includes a first arc edge 251 , a second arc edge 252 , and a third arc edge 253 , the fourth arc edge 254, wherein the first arc edge 251 is opposite to the third arc edge 253, and the second arc edge 252 is opposite to the fourth arc edge 254.
  • the first arc edge 251 and the second arc edge 252 The included angles between the third arc edge 253 and the fourth arc edge 254 and the center of the circle are all 90°.
  • One group of infrared transmitters 261 is disposed on the first arc edge 251 , and the infrared receiver 253 is disposed on the third arc edge 253 .
  • infrared transmitters 262 is arranged on the second arc edge 252
  • infrared receivers 264 are arranged on the fourth arc edge 254 .
  • the frame and the optical touch sensor of the interactive tablet shown in FIG. 2A are used as an example for description.
  • CCD charge coupled device, charge coupled device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • Optical touch sensors include CCD (or CMOS), infrared emitters, CCD cameras, and emission bars.
  • CCD or CMOS
  • CMOS complementary metal-oxide-semiconductor
  • the reflective strips attached to the right, left, and lower sides of the display
  • two infrared emitters are usually tied to the CCD (or CMOS) camera
  • the CCD camera installed in the upper left corner of the display screen emits light through the infrared emitter, which is reflected by the surrounding reflective strips and enters the CCD camera in the upper right corner. Similarly, the light emitted by the CCD camera in the upper right corner is transmitted into the CCD camera on the left side.
  • the dense light forms a light net in the touch area, and the space between the multiple reflected light is within 1mm.
  • the touch controller obtains the coordinates of the touch point by analyzing the image in the CCD (or CMOS) camera and the triangular relationship of the position of the touch object.
  • the optical touch sensor includes an infrared emitter, a projector, and a camera.
  • the infrared emitter is installed on the side of the display screen of the interactive flat panel, and the projector and the camera are installed at the bottom of the display screen of the interactive flat panel.
  • the infrared transmitter injects the infrared signal light from one end of the display screen, and the total reflection occurs.
  • the application of non-total internal reflection that is, when the touch object touches the surface of the display screen, the laser light scatters from the touch object and is detected by the projector and camera.
  • the optical touch sensor includes an infrared emitter, a projector, and a camera.
  • the infrared emitter is installed on the upper surface of the display screen of the interactive flat panel, and the projector and the camera are installed at the bottom of the display screen of the interactive flat panel.
  • the infrared emitter is injected into the laser from the surface of the display screen to form an infrared surface.
  • the laser scatters from the touch object and is detected by the projector and camera.
  • Light emitting diode plane multi-touch technology Light emitting Diode Light Plane, LED-LP
  • the optical touch sensor includes a projector and a camera, and the projector and camera are mounted on the bottom of the display screen of the interactive tablet.
  • zero writing height means that when a touch object (such as a hand or a pen) is writing on the display screen, writing handwriting is generated only when the touch object touches the surface of the display screen. Spacing is zero.
  • the optical touch sensor 120 generally protrudes from the surface of the display screen 110, and there is a certain height range when transmitting or receiving optical signals, so that in the vertical direction A touch area is formed, and its height is H.
  • the touch object is pressed and lifted, there will be a situation where the touch object is located in the touch area but does not touch the surface of the display screen 110, and the touch will still be reported at this time.
  • state 132 to state 133 the stage of pressing the touch object is described.
  • the touch object is above the touch area, and no touch signal is generated, and no touch point data is reported.
  • state 132 In the state, the touch object is in the touch area, close to the surface of the display screen 110 but does not touch the surface of the display screen 110, a touch signal will be generated and touch point data will be reported.
  • state 133 the touch object is in the touch area , The display screen 110 has been touched, a touch signal will be generated, and the touch point data will be reported.
  • state 134 From state 133, state 134 to state 135, the stages of lifting of the touch object are described.
  • the touch object is in the touch area and is close to the surface of the display screen 110 but does not touch the display screen 110, which will cause a touch Signal, and report touch point data.
  • the touch object In state 135, the touch object is above the touch area, and no touch signal is generated, and no touch point data is reported.
  • the user Under the condition of maintaining the habit of using capacitive touch operation, the user triggers the optical touch operation, which is likely to cause misoperation and poor performance in some scenarios.
  • the user writes handwriting on the display screen.
  • the handwriting will be displayed, but the user may be starting or writing at this time. It is not intended to be written, and the handwriting that shows up and down will lead to continuous strokes, and the handwriting will appear scribbled.
  • the optical touch sensor In the first method, no matter how low the optical touch sensor position is, it must protrude from the surface of the display screen, and there must be a height of the light signal, so it still cannot achieve zero writing height;
  • the optical touch sensor is embedded in the interactive panel, and the structure of the interactive panel (such as the cover glass, back panel of the display screen, etc.) requires concave control to prevent the display and cover glass from blocking the light of the optical touch sensor. , the cost and control difficulty are high.
  • the touch object is not a stylus, such as a hand
  • the embodiments of the present invention provide a brand new idea to solve this technical problem.
  • the touch controller belongs to the processor (Display Controllers) matched with the optical touch sensor, with low computing performance, such as 811SOC (System on Chip, system-on-chip).
  • the touch controller can provide touch processing functions, that is,
  • the touch controller can process the optical signal scanned by the optical touch sensor on the touch object, for example, calculate the X coordinate, the Y coordinate, etc., form a touch data packet, and report it to the intelligent processing system.
  • the touch controller and the optical touch sensor can be set in the same board, or can be set in other boards independently of the optical touch sensor board.
  • the optical touch sensor board The card is electrically connected to other boards, so that the optical touch sensor is electrically connected to the touch controller, which is not limited in this embodiment.
  • the interactive tablet may default to a touch controller, and in this case, the touch processing function is handed over to the host controller of the intelligent processing system.
  • the intelligent processing system includes a host controller.
  • the host controller belongs to the processor of the interactive tablet.
  • the built-in software of the host controller can realize different functional applications, and use the display screen to display images and create vivid audio and video effects.
  • the host controller belongs to the computing module with higher performance.
  • the host controller can be an Android (Android) module, which can install the Android (Android) system, configure CPU (Central Processing Unit, central processing unit), GPU (Graphics Processing Unit, graphics processor), RAM (random access memory, random access memory) and ROM (Read-Only Memory, read-only memory) and other components, for example, for Android 7.0 version, the CPU is dual-core A72 and quad-core A53, the GPU is Mali T860, the RAM is 4GB, and the ROM is 32GB, etc.
  • Android Android
  • the CPU is dual-core A72 and quad-core A53
  • the GPU is Mali T860
  • the RAM is 4GB
  • the ROM is 32GB, etc.
  • the host controller may be a PC (personal computer, personal computer) module configured with components such as CPU, GPU, memory, hard disk, etc.
  • the CPU is an Intel Core i5 /i7
  • the GPU is Intel HD Graphics
  • the memory is DDR4 8G/16G
  • the hard disk is 128G/256G.
  • the touch sensor is a sensor that detects whether two objects collide and the position where they collide by using vibration, sound, etc., that vibrate when two objects touch.
  • This feature can be detected by gas, liquid, solid
  • the touch sensor judges that two objects collide according to this feature, and generates a touch signal.
  • a touch controller such as a single-chip microcomputer, can be set in the touch sensor, and the touch controller can be used to generate a touch signal when two objects collide according to the characteristics of vibration.
  • touch controller matched with the optical touch sensor and the touch controller matched with the touch sensor may be independent chips, or may be integrated on the same chip, which is not the case in this embodiment. be restricted.
  • the touch sensor is an elastic wave sensor, that is, a sensor that uses elastic waves to detect whether two objects collide.
  • the mechanical vibration below the audio frequency, the sound in the audio frequency range, and the ultrasonic wave beyond the audio frequency are all wave phenomena of gas, liquid, solid and other media. Compared with light and electromagnetic waves, this wave phenomenon is called elastic wave.
  • the material particles on the surface of the display screen leave the equilibrium position due to pressure, that is, when strain occurs, the particles are in the elastic force.
  • the vibration occurs under the action of the glass, and at the same time causes the strain and vibration of the particles around the glass.
  • the propagation process of the vibration formed in the elastic medium is called elastic wave.
  • the generated elastic wave passes through the contacting piezoelectric sensor. After the piezoelectric sensor is subjected to force, the surface generates charge, and the charge is amplified and transformed by the amplifier and the measuring circuit, and becomes an electrical output proportional to the external force.
  • the charge signal is introduced into the touch controller, processed by the analog circuit in the touch controller and converted into a digital signal, and finally the final result is output through algorithm processing.
  • each noise-generating component (such as motor, horn, fan, etc.) in the interactive panel can be determined, and the noise-generating components (such as room air conditioner, TV, etc.) outside the interactive panel can also be determined, that is, the noise source.
  • the interactive tablet will generate elastic waves that are not intended by the user to control.
  • the way the element generates noise can be confirmed.
  • the noise generated by the speaker mainly comes from the elastic wave generated in the overall medium of the interactive flat panel when it emits sound. Therefore, for the elastic wave sensor, the The touch signal can also be called an elastic wave signal.
  • the elastic wave data generated by the element within a preset time period under different driving voltages can be collected in advance, and the elastic wave data can be converted into electrical signals as noise signals.
  • the elastic wave data generated by the touch object touching the interactive tablet is converted into an electrical signal through the piezoelectric sensor, which is used as a touch signal, and the noise signal is filtered out in the touch signal, so as to eliminate noise interference.
  • the touch signal can be adaptively enlarged or reduced with reference to the noise signal, so as to highlight the difference between the noise signal and the touch signal.
  • the elastic wave signal generated when the touch object touches is obviously higher than the elastic wave signal (ie noise signal) generated by noise sources such as speakers.
  • the difference between the two is not obvious.
  • the voltage threshold compare the phase of the touch signal and the noise signal, remove the signal data in the touch signal that is consistent with the phase of the noise signal, and reduce the unnecessary calculation amount in actual calculation, for example, when When the noise generated by noise sources such as speakers is relatively slight, the touch signal generated by the user's touch is obviously higher than the noise signal generated by noise sources such as speakers. At this time, comparing the two, the difference is not obvious.
  • the threshold value of the voltage it is easier to identify and remove the band generated by the noise, thereby effectively improving the efficiency of noise removal.
  • the phase of the touch signal and the noise signal can be compared. If the phase of the touch signal is consistent with the noise signal, the signal data in the touch signal that is consistent with the phase of the noise signal will be deleted. Contrary to the phase of the noise signal, the signal data in the touch signal with the opposite phase to that of the noise signal is retained, so as to avoid errors caused by direct subtraction when the band of the noise signal is opposite to the band of the touch signal, and retain more. Real touch signal.
  • the touch sensor can sense the shock wave signal generated by the touch object touching the surface of the display screen, and detect the energy of the shock wave signal and its arrival time. The principle of approximate equality is used to analyze and calculate the touched position.
  • touch sensors are scattered at any position on the display screen, and the coordinates of each touch sensor are recorded.
  • Each touch sensor detects the energy of the received shock wave signal and records the arrival time of the shock wave signal.
  • shock wave group velocity is approximately equal in all directions on the isotropic or quasi-isotropic structure.
  • (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ), (x 4 , y 4 ) are the coordinates of the four touch sensors
  • T 1 , T 2 , T 3 , T4 is the arrival time of the shock wave signal recorded by the four touch sensors
  • (x, y) is the position where the touch object touches the surface of the display screen
  • solving the wave velocity equations can solve the position where the touch object touches the surface of the display screen (x, y).
  • the touch sensor is installed at a position that can transmit the vibration (such as elastic wave signal) generated by the display screen, so as to realize the touch detection on the display screen, so as to detect the event that the touch object touches the display screen, and It is not necessarily installed where vibrations (such as elastic wave signals) occur.
  • the touch sensor may be directly mounted on the surface of the display screen, for example, as shown in FIG. 3B, the touch sensor 321 may be mounted on the upper surface of the display screen 310, or the touch sensor 322 may be mounted on the display screen
  • the lower surface of the screen 310 receives vibrations (such as elastic wave signals) transmitted by the display screen, and improves the accuracy of touch detection.
  • the touch sensor 321 can be installed in the frame 330 of the display screen 310 .
  • the exposure of the touch sensor 321 can be avoided to reduce the influence on the appearance.
  • the frame 330 of the display screen 310 There are fewer components inside, and installing the touch sensor 321 in the frame 330 of the display screen 310 can reduce the impact on the internal structure (eg, wiring), and at the same time, reduce the common mode noise interference from the display screen.
  • the touch sensor may be mounted on other components in contact with the display screen for receiving vibrations (eg, elastic wave signals) transmitted by the other components and occurring on the display screen.
  • vibrations eg, elastic wave signals
  • the touch sensor detects a touch in a range, not just the area where the touch sensor is installed. Therefore, according to the relationship between this range and the display screen of the interactive tablet, in the same One or more touch sensors are installed on an interactive tablet, so that the range of touch detection by one touch sensor is greater than or equal to the area of the display screen, so that the range of touch detection by one touch sensor can cover the display screen, or, multiple touch
  • the combined range of the touch detection ranges of the touch sensors is greater than or equal to the area of the display screen, so that the combined range of the touch detection ranges of the multiple touch sensors can cover the display screen.
  • the number of the touch sensors is positively related to the area of the display screen, that is, the larger the area of the display screen, the more the number of touch sensors; conversely, the smaller the area of the display screen, the less the number of touch sensors.
  • the touch sensor 341 can be installed in the center of the display screen, or the touch sensor can be installed in the middle point of the upper frame of the display screen 342, or, install a touch sensor 343 at the midpoint of the lower frame of the display screen, the touch sensor 341 touch detection range 351, the touch sensor 342 touch detection range 352, the touch sensor 343 touch detection range 353 can cover the entire display.
  • the touch sensor 344 can be installed in the upper left corner of the display screen, the touch sensor 345 can be installed in the upper right corner of the display screen, and the touch sensor can be installed in the lower left corner of the display screen 346.
  • the range of touch detection 357 overlay can cover the entire display.
  • the display screen, the intelligent processing system, and the touch sensor can store the following connection relationships:
  • the touch controller can be electrically connected to the optical touch sensor.
  • the touch controller is an independent chip (such as a single-chip microcomputer), the chip It can be integrated with the optical touch sensor on the same board, or it can be independent of the board where the optical touch sensor is located.
  • the host controller When equipped with or defaulting a touch controller, the host controller has a touch processing function and can be electrically connected to the optical touch sensor. At this time, the host controller provides a touch processing function and receives the received and analyze the optical signal to generate a touch data packet for the user's touch operation, parse the information in the touch data packet, and respond to the touch operation.
  • the optical touch sensor includes an infrared transmitter 432 and an infrared receiver 442 , and one or more transmission driving chips 431 , one or more receiving The driver chip 441, wherein the emission driver chip 431 is electrically connected to the infrared transmitter 432 and can be used to provide an infrared control signal of the infrared transmitter 432, and the reception driver chip 441 is electrically connected to the infrared receiver 442 and can be used to provide the processing infrared receiver 442 function of the received infrared signal.
  • the touch controller 410 when the touch controller 410 is equipped, the touch controller 410 can be electrically connected to the emission driver chip 431 and the receiver driver chip 441 respectively, so that the touch controller 410 is connected to the infrared
  • the transmitter 432 and the infrared receiver 442 are electrically connected.
  • the host controller 400 can be electrically connected to the transmitting driver chip 431 and the receiving driver chip 441 respectively, so that the host controller 400 is respectively connected to the infrared transmitter 432 , the infrared receiver 442 is electrically connected.
  • USB Universal Serial Bus, Universal Serial Bus
  • the touch controller 410 communicates with the host controller 400 through a USB component.
  • USB HUB hub
  • USB switch a USB switch
  • a USB Redriver signal repeater
  • the host controller 400 can be used as a HID (Human Interface Device)
  • the touch controller 410 communicates with the host controller 400 through a USB component.
  • the touch controller 410 provides a touch processing function, receives the light signal received by the optical touch sensor, and analyzes the light signal, so as to generate a touch data packet for the user's touch operation, and transmit it to the user through a standard USB protocol.
  • the host controller 400 the host controller 400 parses the information in the touch data packet, and responds to the touch operation.
  • the host controller 400 provides a touch processing function, receives the optical signal received by the optical touch sensor, and analyzes the optical signal, so as to generate a touch data packet for the user's touch operation, and parse the touch data packet. information to respond to touch operations.
  • the touch sensor is electrically connected to the touch controller or the host controller.
  • the touch controller 410 provides the function of processing the touch signal, the calculation amount of processing the touch signal is relatively low, and the performance of the touch controller 410 can support the processing of the touch signal,
  • the touch sensor 450 can be connected to the touch controller 410 through a serial port, I2C (Inter-Integrated Circuit, integrated circuit bus), SPI (Serial Peripheral Interface, serial peripheral interface), etc., and the touch sensor 450 can connect to the touch controller 410.
  • the detected touch signal is transmitted to the touch controller 410, and the touch controller 410 processes the touch signal as part of data of the touch operation.
  • the touch controller 420 of the touch sensor 450 can be electrically connected to the touch controller 410, and the touch controller 420 of the touch sensor 450 can transmit the touch signal to the touch controller 410 for processing.
  • the manufacturer of the display screen of the interactive tablet takes the touch signal as one of the specifications of the touch operation, and encapsulates the touch sensor 450 in the display screen of the interactive tablet.
  • a unified touch data package is provided externally. Manufacturers of interactive tablets can not care about the touch sensor 450, and can adjust the dedicated software system accordingly to process the touch signal, thereby reducing the impact on hardware design and production, and reducing production, Development costs.
  • the touch sensor 450 can be connected to the host controller 400 through a serial port, I2C, SPI, etc., and the touch sensor 450 can transmit the detected touch signal to the host controller.
  • the host controller 400 processes the touch signal as part of the data of the touch operation.
  • the touch controller 420 of the touch sensor 450 can be electrically connected to the host controller 400, and the touch controller 420 of the touch sensor 450 can transmit the touch signal to the host controller 400 for processing.
  • the touch controller 420 can be used as a component of the touch sensor 450 and configured in the touch sensor 450 , or can be a component independent of the touch sensor 450 . . Among other chips in the integration, this embodiment does not limit this.
  • the manufacturer of the interactive tablet can select the appropriate touch sensor 450 according to different business scenarios (such as education, corporate office, home entertainment, etc.), integrate it into the interactive tablet, and customize the functions based on touch signals, service, maintain the flexibility of production and design to reduce production and development costs, and the touch sensor 450 adapted to business scenarios can improve the overall performance of the interactive tablet.
  • different business scenarios such as education, corporate office, home entertainment, etc.
  • the method can be performed by a touch signal verification device, which can be implemented by software and/or hardware, and can be configured in the interactive tablet, especially in the processing of the interactive tablet.
  • the processor can be a touch controller or a host controller, an optical touch sensor and a touch sensor are respectively provided in the interactive tablet, and the processor is electrically connected to the optical touch sensor and the touch sensor, respectively.
  • the processor can directly or indirectly receive the touch signal generated by the optical touch sensor and the touch signal generated by the touch sensor locally, as shown in FIG. 5 , the method specifically includes the following steps:
  • Step 501 Activate the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen.
  • one or more optical touch sensors 620 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the optical touch sensor 620, and the optical touch sensor 620 is in the The display surface of the interactive tablet scans the light signal, and the touch object can block the light signal, so as to detect whether there is a touch object on the display screen surface according to the transmission of the light signal, and generate a touch signal for the touch object when the touch object is detected.
  • the optical touch sensor 620 scans the optical signal on the surface of the display screen 610 of the interactive tablet, which has a certain effective spatial range. Beyond the spatial range, the touch object can block the optical signal in the spatial range, and the optical touch sensor 620 cannot detect the optical signal. reach the touch object, within this spatial range, the optical touch sensor 620 can detect the touch object, and this spatial range is called the touch area, and the touch area has a certain height in the vertical direction of the display plane of the display screen 610, This height is denoted as H.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the optical touch sensor, or , the host controller directly sends a start-up signal to the optical touch sensor, and the optical touch sensor responds to the start-up signal and is powered on to start.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller activates the optical touch sensor in response to the activation signal.
  • the optical signal is transmitted normally and is not blocked, and the optical touch sensor 620 does not Generate touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the optical signal is normally transmitted and not blocked, and the optical touch sensor 620 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H.
  • the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor, and the vertical distance between the touch object and the display screen 610 is greater than the height H. At this time, the optical signal is transmitted normally and is not blocked. , the optical touch sensor 620 does not generate touch signals.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • the types (materials) of the touch objects are generally different, for example, a touch object
  • another touch object is a stylus pen
  • one touch object is a plastic stylus pen
  • another touch object is an alloy stylus pen, and so on.
  • all touch objects eg, touch objects 650 and 660
  • the optical touch sensor 620 does not generate touch signals.
  • At least one touch object is close to the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 .
  • the optical touch sensor 620 targets the part that enters the touch area.
  • a touch object (eg, the touch object 650 ) generates a touch signal.
  • all touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the optical touch sensor 620 generates touch signals for some touch objects (eg, the touch objects 650 and 660 ) entering the touch area.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • the optical touch sensor 620 is aimed at entering the touch area.
  • Some of the touch objects (such as the touch object 650 ) generate touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • All touch objects (eg, the touch objects 650 and 660 ) in the touch area generate touch signals.
  • Step 502 Activate the touch sensor to generate at least one touch signal when at least one touch object touches the display screen.
  • one or more touch sensors 630 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the touch sensors 630, and the touch sensor 630 detects the presence of the touch sensor 630 on the interactive tablet.
  • a touch event occurs on the display screen, and a touch signal is generated for the event.
  • the touch event detected by the touch sensor on the display screen of the interactive tablet has a certain effective plane range. If it exceeds the plane range, the touch sensor cannot detect the touch event.
  • the touch sensor can detect the touch event.
  • the plane range is called the touch area.
  • One or more touch sensors can be installed in the same interactive tablet, a touch sensor independent touch area or a touch sensor. The combined touch area of can cover the interactive tablet.
  • any touch sensor generates a touch signal at the same time point, it can be considered that the touch signal is valid and the touch signal corresponding to the time point. , all the touch sensors do not generate touch signals at the same time, so there is no touch signal at this time point.
  • the processor is a host controller
  • the host controller activates the touch sensor when the interactive tablet is powered on.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on and activated, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch sensor 630 when the user does not trigger a touch operation, when there is no touch object on the surface of the display screen 610 of the interactive tablet, the touch sensor 630 does not generate a touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the touch sensor 630 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than the height H, at this time, the touch sensor 630 does not generate Touch the signal.
  • the touch operation normally triggered by the user there is a process of pressing, moving, and lifting the touch object, and the touch object will approach or touch
  • the touch area of the optical touch sensor 620 has a height H
  • the touch object first enters the touch area of the optical touch sensor 620 .
  • touch the touch screen 610 to trigger the touch sensor 630 and finally leave the touch area of the optical touch sensor 620. Therefore, under normal circumstances, the optical touch sensor 620 first generates a touch signal, and the touch The touch sensor 630 then generates a touch signal, the touch sensor 630 stops the touch signal first, and then the optical touch sensor 620 stops the touch signal.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • all touch objects eg, touch objects 650 and 660
  • the touch sensor 630 does not generate a touch signal.
  • At least one touch object is close to the surface of the display screen 610
  • some touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 .
  • the touch sensor 630 does not generate a touch signal.
  • all touch objects (such as touch objects 650 and 660 ) enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the touch sensor 630 does not generate a touch signal.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • Part of the touch object on the surface, such as touch object 650, generates a touch signal.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • the touch sensor 630 is used for touch All touch objects (eg, touch objects 650 and 660 ) on the surface of the display screen 610 generate touch signals.
  • the optical touch sensor does not generate a touch signal, but the touch sensor generates a touch signal, it may be that an object collides with the interactive tablet on the side to trigger the touch sensor, and the location where the interactive tablet is installed shakes to trigger the touch. Problems such as excessive noise affecting the touch sensor due to abnormal operation of the touch sensor and components in the interactive tablet (such as a fan) can be ignored in this embodiment.
  • the optical touch sensor and the touch sensor are independent of each other and are not affected by each other, that is, the optical touch sensor starts, runs, and shuts down independently, and is not affected by the touch sensor, and the touch sensor starts and runs independently. , off, the optical touch sensor is not affected.
  • the optical touch sensor first generates the touch signal, the touch sensor then generates the touch signal, the touch sensor stops the touch signal first, and the optical touch sensor stops the touch signal, that is, the touch
  • the sensor generates a touch signal for the touch object for the first time, which means that the touch object touches the display screen for the first time.
  • the processor can start the touch sensor, and on the other hand, the processor can control the optical touch sensor to sleep, that is, control the optical touch sensor to stop scanning the light signal on the surface of the interactive tablet, or, with low power
  • the light signal is scanned on the surface of the interactive tablet in a low-power mode (such as non-sequential scanning and low scanning frequency, so as to save power consumption).
  • a low-power mode such as non-sequential scanning and low scanning frequency, so as to save power consumption.
  • the touch signals detected by the optical touch sensor are relevant to the business scenarios.
  • the meaning is low, or even negative effects (such as continuous strokes of handwriting), so when the touch object enters the touch area but does not touch the display screen of the interactive tablet, the touch signal detected by the optical touch sensor is lost , for touch operations (such as writing handwriting), there is basically no influence, and even the normal execution of touch operations is guaranteed.
  • the processor may detect whether a touch signal generated by the touch sensor is received.
  • the processor can keep the optical touch sensor sleep.
  • the processor can activate (aka wake up) the optical touch sensor, exit sleep, and the optical touch sensor scans the light signal on the surface of the interactive tablet again.
  • a touch object is detected on the surface (ie, in the touch area)
  • a touch signal is generated, and when a plurality of touch objects approach or touch the surface of the display screen, a plurality of touch signals are generated.
  • the processor can re-control the optical touch sensor to sleep, waiting for the touch signal of the touch sensor to wake up.
  • the touch sensor during the sleep period of the optical touch sensor, the touch sensor first
  • the second generation of the touch signal may be referred to as the first generation of the touch signal for the touch object.
  • condition for detecting whether the touch signal is interrupted can be set by those skilled in the art. For example, when the touch signal is not received for a preset period of time, the touch signal is considered to be interrupted, or, when the touch signal is interrupted on the interactive tablet
  • the display screen displays a business scenario suitable for touch operations (such as handwriting)
  • determine that the touch signal is continuous
  • determine that the touch signal is continuous
  • determine the touch signal interrupt etc., which are not limited in this embodiment.
  • the optical touch sensor can be controlled to sleep, Wake-up by the touch signal of the touch sensor ensures that the touch object can be detected normally in this business scenario, thereby ensuring the normal response of the touch operation, and it can reduce the power consumption of the optical touch sensor, thereby reducing the interactive tablet power consumption.
  • Step 503 Determine the correlation between each touch signal and each touch signal.
  • the optical touch sensor scans the light signal as a continuous operation, that is, the optical touch sensor can continuously generate multiple frames of touch signals within a certain period of time. It may be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the optical touch sensor, so as to continuously or intermittently receive multi-frame touch signals transmitted by the optical touch sensor.
  • the touch sensor detection event is also a continuous operation, that is, within a period of time, the touch sensor can continue to generate multiple frames of touch signals.
  • the multiple frames of touch signals can be It can be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the touch sensor, so as to continuously or intermittently receive multiple frames of touch signals transmitted by the touch sensor.
  • the touch object since the touch object is single, in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 . , the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • state 643 that is, the touch object is located in the touch area of the optical touch sensor 620
  • the display screen 610 is touched, at this time, the optical touch sensor 620 generates a touch signal for the touch object
  • the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference, and when the processor receives the touch signal transmitted by the optical touch sensor, it can detect the correlation between the touch signal and the touch signal at the same time point, that is, within the same time point Whether a touch signal or a touch signal is received, so as to identify the state of the touch object at this point in time.
  • the touch signal is received at the same time point but not the touch signal, it can be determined that the touch signal and the touch signal at the same time point are not related, and the touch signal is not related to the touch signal, that is The touch signal is received separately at the same time point.
  • touch signal is received at the same time point and the touch signal is received, it can be determined that the touch signal and the touch signal at the same time point are correlated, and the touch signal has been associated with the touch signal, that is, the touch signal is received at the same time point. Touch signal and touch signal.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal.
  • the control signal and the processor There is a certain delay between the control signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor. Not necessarily synchronized.
  • the validity period of the touch signal of the current frame can be set with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the frequency of the signal, the validity period is less than or equal to the time interval between every two frames of touch signals, before the arrival of the next frame of touch signals, the processing of the current frame of touch signals is completed, so as to ensure that the current frame of touch signals does not affect the next frame.
  • One frame of touch signal processing referring to the frequency of the optical touch sensor generating the touch signal and the frequency of the touch sensor generating the touch signal, the validity period is greater than or equal to the difference between the touch signal and the touch signal. time interval, so as to ensure that the touch signal generated by the touch sensor can be received at the same time point.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch signal is not received within the validity period, that is, the touch signal is received alone in a short period of time, but the touch signal is not received, it can be determined that there is no correlation between the touch signal and the touch signal, and the touch signal is not Associate touch signals.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits There is a certain delay between the touch signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor.
  • the signals are also not necessarily synchronized. And, if there is a touch event, the touch signal is a continuous multi-frame touch signal.
  • the touch sensor generates a touch signal when it detects the start and end of the touch event, and transmits the frame of touch signal to the processor, and does not generate a touch signal at other times, as follows :
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • a line is connected between the touch sensor and the processor as a state line.
  • the GPIO General-purpose input/output
  • the processor's GPIO is set to interrupt input mode.
  • the validity period is set for the current frame of the touch signal with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the touch signal is generated with reference to the optical touch sensor.
  • the validity period is less than or equal to the time interval between every two frames of touch signals.
  • Frame touch signal processing refers to the frequency of the optical touch sensor to generate the touch signal and the frequency of the touch sensor to generate the touch signal, the validity period is greater than or equal to the time between the touch signal and the touch signal interval, so as to ensure that the touch signal generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch sensor and the touch sensor is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object initially touches the display screen (that is, a touch signal representing "1", at this time, the touch sensor outputs a high-level signal from the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and the correlation between the touch signal and the touch signal is determined, and the touch signal is associated with the touch signal.
  • the touch object initially touches the display screen The touch signal is set, and the flag bit is set in the firmware program of the processor and other areas.
  • the flag can replace the touch signal, indicating that The touch signal and the touch signal are received continuously in a short period of time, and it is determined that the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal.
  • the number of touch signals generated by the touch sensor reduces the calculation amount of the touch sensor, and because the flag can be directly detected by the processor, it can reduce the delay in the generation of touch signals and transmission of touch signals. influences.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object has finished touching the display screen (that is, a touch signal representing "0", at this time, the touch sensor will output a low-level signal of the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and the correlation between the touch signal and the touch signal is determined, and the touch signal is associated with the touch signal.
  • the touch signal of the processor clears the flag bit in the processor's firmware program and other areas.
  • the touch signal When the touch signal is not received within the validity period, and there is no flag in the firmware program of the processor, etc., the touch signal is received alone in a short period of time, but the touch signal is not received, and the touch signal is determined to be the same as the one. There is no correlation between touch signals, and touch signals are not associated with touch signals.
  • the touch object continuously touches the display screen.
  • the so-called continuous touch can mean that the touch object presses down and touches the display screen, and then the touch object moves on the display screen. After the touch object completes the movement, touch
  • two frames of touch signals can be used to determine the correlation between the touch signal and the touch signal.
  • Other touch signals can be stopped between the target signals, wherein the first target signal is a touch signal indicating that the touch object initially touches the display screen, and the second target signal is a touch signal indicating that the touch object finishes touching the display screen signal, not only greatly reduces the number of touch signals generated by the touch sensor, thereby reducing the calculation amount of the touch sensor.
  • the above method of determining the correlation between the touch signal and the touch signal is only an example.
  • other methods for determining the correlation between the touch signal and the touch signal may be set according to the actual situation, for example, When a touch signal is received, a validity period is set for the touch signal. When a touch signal is received within the validity period, it is determined that the touch signal is correlated with the touch signal. When the touch signal is received, it is determined that the touch signal is correlated with the touch signal, the touch signal is not correlated with the touch signal, and so on, which is not limited in this embodiment of the present invention.
  • those skilled in the art can also adopt other methods for determining the correlation between the touch signal and the touch signal according to actual needs. Nor are they limited.
  • the touch signal and the touch signal caused by the touch object touching the surface of the display screen should be in the dimensions of time, location, etc. It is related, that is, the same touch object triggers the touch signal and the touch signal at the same time point and the same position. Therefore, for the touch signal and the touch signal caused when multiple touch objects approach or touch the surface of the display screen at the same time
  • the correlation between these touch signals and touch signals can be detected in dimensions such as time and position, so as to distinguish different states of different touch objects.
  • the touch object in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 , At this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • the touch object is located in the touch area of the optical touch sensor 620 . and touches the display screen 610 , at this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference.
  • the processor receives the touch signal transmitted by the optical touch sensor, it can identify the temporal correlation between the touch signal and the touch signal, that is, whether the touch signal is received at the same time point. Touch signal, touch signal.
  • the touch signal is received at the same time point but not received, that is, the touch signal is independently generated at the same time point, it can be determined that the touch signal and the touch signal are not related in time.
  • the touch signal is received at the same time point and the touch signal is received, that is, the touch signal and the touch signal are simultaneously generated at the same time point, it can be determined that the touch signal and the touch signal are related in time.
  • the positional correlation between the touch signal and the touch signal is identified, that is, whether a touch signal or a touch signal is received in the same position.
  • a touch signal is received at the same position but not received, that is, a touch signal is generated independently at the same position, it can be determined that there is no temporal correlation between the touch signal and the touch signal.
  • the touch signal is received at the same position and the touch signal is received, that is, the touch signal and the touch signal are simultaneously generated at the same position, it can be determined that the touch signal and the touch signal are correlated in position.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal
  • the processor There is a certain delay to the processor, and there is a certain delay for the touch sensor to transmit the touch signal to the processor, and the delays of the two are not consistent, resulting in the same touch signal and touch signal generated for the same touch object. Not necessarily synchronous.
  • the validity period of the touch signal of the current frame of the touch operation can be set with reference to factors such as the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal, etc.
  • the validity period is less than or equal to the time interval between every two frames of touch signals, and before the arrival of the next frame of touch signals, the processing of the current frame of touch signals is completed, so as to ensure the current frame of touch signals. It does not affect the processing of the touch signal of the next frame.
  • the validity period is greater than or equal to the touch signal and the touch signal.
  • the time interval between the signals ensures that the touch signals generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal of the touch operation is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are related in time.
  • the touch signal of the touch operation is not received within the validity period, that is, the touch signal is received alone in a short period of time, but the touch signal is not received, it can be determined that the touch signal and the touch signal do not exist in time. Relevance.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the touch position associated with the touch signal is determined, and the touch position represents the position when the touch object approaches or touches the surface of the display screen, which can be processed by processing
  • the sensor is calculated according to the optical signal scanned by the optical touch sensor.
  • the touch position associated with the touch signal is determined, the touch position represents the position when the touch object touches the surface of the display screen, and can be calculated by the touch sensor.
  • the real position of the same touch object is constant, that is, the touch signal and the touch signal generated by the same touch object originate from the same position.
  • the processor calculates the touch position and the way the touch sensor calculates the touch position
  • the accuracy of infrared touch sensors and touch sensors is generally high. Therefore, there may be differences between the touch position and the touch position of the same touch object, but the difference is generally small and within an acceptable error range.
  • a threshold value can be preset, and the threshold value represents an acceptable error range.
  • the distance between the touch position and the touch position may be calculated by means of Euclidean distance and the like, and the distance is compared with a preset threshold.
  • the distance between the touch position and the touch position is less than or equal to the preset threshold, it means that the difference between the touch position and the touch position is within the error range, and it can be determined that the touch signal and the touch signal are in position There is a correlation.
  • the distance between the touch position and the touch position is greater than the preset threshold, it means that the difference between the touch position and the touch position is outside the error range, and it can be determined that the touch signal and the touch signal do not exist in position Relevance.
  • the above manner of determining the correlation between time and location is only an example.
  • other determinations of the correlation between time and location may be set according to the actual situation. For example, when a touch signal is received When the touch signal and the touch signal are related in time, if there is a time correlation between the touch signal and the touch signal, then identify the positional correlation between the touch signal and the touch signal, or, A validity period is set for the touch signal. When the touch signal is received within the validity period, it is determined that the touch signal and the touch signal are related in time. When no touch signal is received within the validity period, the touch signal and the touch signal are determined. The signals are correlated in time, etc., which are not limited in this embodiment of the present invention. In addition, in addition to the above method of determining the correlation between time and position, those skilled in the art may also adopt other methods for determining the correlation between time and position according to actual needs, which are not limited in this embodiment of the present invention. .
  • Step 504 Determine the validity of each touch signal for touching the display screen according to the correlation between each touch signal and each touch signal.
  • the touch signal is one and the touch signal is one, if the correlation between the touch signal and the touch signal has been determined at the same time point, that is, whether the touch signal is received at the same time point, the touch
  • the validity of the control signal for touching the display screen is to confirm that the touch object associated with the touch signal touches the display screen, or the touch object associated with the touch signal does not touch the display screen.
  • the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal, that is, the touch signal and the touch signal exist at the same time, it is determined that the touch signal is related to the touch signal.
  • the validity of touching the display screen is valid, and the touch object associated with the touch signal touches the display screen.
  • touch signal and touch signal so as to determine the validity of the touch signal for touching the surface of the display screen, that is, to confirm that the touch object associated with the touch signal touches the surface of the display screen (valid), or, the touch The touch object associated with the signal is close to the surface of the display, but does not touch the surface of the display (invalid).
  • the touch signal and the touch signal are correlated in time and position, that is, the touch signal and the touch signal are generated at the same time and at the same position, it can be determined that the touch signal represents the touch It is effective to touch the surface of the display screen, and the touch signal and the touch object to which the touch signal belongs touch the surface of the display screen.
  • the touch signal or the touch signal is independently generated at the same time or at the same position. There is no correlation in time. It may be that multiple touch objects are close to the surface of the display screen and do not touch the surface of the display screen. There is no correlation between the touch signal and the position of the touch signal. The touch object is close to the surface of the display screen, and some of the touch objects touch the surface of the display screen. At this time, it can be determined that the touch signal indicates that touching the surface of the display screen is invalid, and the touch signal or the touch object to which the touch signal belongs is not valid. Touch the surface of the display.
  • the optical touch sensor is activated to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen, and the touch sensor is activated to enable at least one touch object to touch the display screen
  • the touch signal is received, at least one touch signal is generated, and when the touch signal is received, the correlation between each touch signal and each touch signal is determined, and each touch signal is determined according to the correlation between each touch signal and each touch signal.
  • the touch signal can detect the event of the touch screen, and the correlation between the touch signal and the touch signal can identify and determine the validity of the touch signal for the touch screen.
  • each touch object touches independently and does not interfere with each other, giving the touch signal one more dimension and enriching the meaning of the touch signal.
  • this embodiment can distinguish the response mode of the touch signal based on the effectiveness of the touch signal for the touch screen, so that the response mode of the touch operation is more suitable for the business In order to improve the performance of touch operation in this business scene, in the scene of writing, the problem of zero-height writing can be solved.
  • the optical touch sensor can maintain a protruding configuration, slow down or avoid burying the optical touch sensor in the interactive panel, and reduce or avoid the requirement for the structure of the interactive panel (such as the glass of the display screen, the back panel, etc.) Concave control reduces cost and control difficulty. Since the optical touch controller can maintain the touch area, it can maintain the scanned information and maintain the accuracy of touch detection.
  • the touch signals generated during writing are classified into touch signals that are effective for touching the display screen (shown as solid lines). ), for the touch signal whose validity of touching the display screen is invalid (displayed as a dotted line), it can be seen that there are continuous strokes and strokes 711 between the writing of the first horizontal and the first vertical, and when the writing of the second horizontal is completed There is a stroke 712, and there are continuous strokes and strokes 713 between the second vertical and the third horizontal of writing, all of which have obvious continuous strokes. The touch signals corresponding to these continuous strokes are mostly effective for touching the display screen. Invalid touch signal (shown as dotted line).
  • the corresponding handwriting is drawn in response to the touch signal whose validity is valid for touching the display screen, and the corresponding handwriting is not drawn by ignoring the touch signal whose validity for touching the display screen is invalid, and the corresponding handwriting is not drawn.
  • there is a continuous pen-start and pen-down 711 between writing the first horizontal and the first vertical a pen-start 712 exists when the writing of the second horizontal is completed, and there is a continuous pen-start and a continuous writing between the second vertical and the third horizontal.
  • Writing down 713 can eliminate the more obvious consecutive strokes, making the "positive" more neat.
  • the method of the present embodiment is applied, and corresponding handwriting is drawn in response to a touch signal whose validity for touching the display screen is valid, and the validity for touching the display screen is ignored. If the touch signal is invalid, the corresponding handwriting is not drawn, and multiple "positive" characters are written.
  • the previous technology is applied to directly respond to the touch signal to draw corresponding handwriting, and write multiple "positive" characters. Character.
  • the writing operations of different users can be distinguished, that is, the writing operation of one user does not affect the writing operation of another user, and the method of this embodiment can be applied to comprehensively improve the writing performance of handwriting. quality.
  • FIG. 8 is a flowchart of a method for verifying a touch signal according to Embodiment 2 of the present invention. This embodiment is based on the foregoing embodiment, and further increases the number of touch sensors when the touch controller or the host controller is connected to the touch sensor.
  • the business operation, the method specifically includes the following steps:
  • Step 801 Activate the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen.
  • Step 802 Activate the touch sensor to generate at least one touch signal when at least one touch object touches the display screen.
  • Step 803 Determine the correlation between each touch signal and each touch signal.
  • Step 804 Determine the validity of each touch signal for touching the display screen according to the correlation between each touch signal and each touch signal.
  • Step 805 Generate a touch data packet for the touch signal according to the validity of the touch signal for touching the display screen.
  • Step 806 Execute a service operation according to the touch data packet.
  • the optical touch sensor is electrically connected to a processor (eg, a host controller, a touch controller), and the optical touch sensor transmits a touch signal to the processor (eg, a host controller, a touch controller) controller), on the other hand, the touch sensor is electrically connected to the processor (such as a host controller, a touch controller), and the touch sensor transmits a touch signal to the processor (such as a host controller, a touch controller) , at this time, the processor (eg, the host controller, the touch controller) identifies the correlation between the touch signal and the touch signal.
  • a processor eg, a host controller, a touch controller
  • the processor (such as a host controller, a touch controller) can refer to the validity of the touch signal for the touch screen, generate a touch data packet for the touch signal, and record the information of the touch signal in the touch data packet. information, wherein, on the basis of the original data, the touch data packet can reflect the validity of the touch signal for touching the display screen.
  • a method of generating a touch data packet if the validity of the touch signal for the touch screen is invalid, the generation of the touch data packet is prohibited; if the validity of the touch signal for the touch screen is valid, then allows the generation of touch packets.
  • the touch operation that touches the display screen is more meaningful for the overall application of the interactive tablet, for example, the interactive tablet is used in education, and the touch operation is mostly handwriting (ie writing on the blackboard, answering information, annotations, etc.).
  • the bottom layer uses the validity of the touch signal for the touch screen as the condition for filtering the touch data packets. For the case where the touch object is close to the surface of the display screen, it is forbidden to generate touch data packets for the touch signal. For the touch object to touch the display
  • the surface of the screen allows the generation of touch data packets for touch signals, which can reduce the number of generated touch data packets, thereby reducing the resource occupancy for processing touch operations.
  • the so-called prohibition of generating touch data packets may mean generating touch data packets, but the touch data packets do not contain touch point data, that is, the touch data packets are empty data packets used to maintain the touch controller
  • the communication with the host controller does not report touch point data, or it may not generate touch point data, including not generating an empty data packet, which is not limited in this embodiment.
  • touch data packets may refer to encapsulating touch point data related to touch operations in the data packets.
  • the touch point data included in the touch data package includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the status may include at least one of the following data:
  • First identification data second identification data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, and the first identification data and the first The second identification data indicates that the first identification data is used to record the existence of the touch signal at a certain time and at a certain position;
  • the second identification data is used to record the presence of the touch signal at a certain time and at a certain position
  • the combination of the first identification data and the second identification data indicates the validity of the touch signal for touching the display screen
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the status can include at least one of the following data:
  • the third identifies data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, which is represented by the third identification data,
  • the third identification data indicates the validity of the touch signal for touching the display screen.
  • the data format of the state is as follows:
  • the state in the touch data packet carries the first identification data and the second identification data at the same time.
  • the generated touch data packet is empty data pack.
  • the touch sensor starts to generate a touch signal at the 8th frame and ends at the 23rd frame
  • the optical touch sensor starts to generate a touch signal at the 4th frame, and ends at the 26th frame
  • the touch The packet looks like this:
  • the state in the touch data packet also carries the third identification data.
  • the generated touch data packet is an empty data packet.
  • the touch sensor starts to generate a touch signal at the 8th frame and ends at the 23rd frame
  • the optical touch sensor starts to generate a touch signal at the 4th frame, and ends at the 26th frame
  • the touch The packet looks like this:
  • the state in the touch data packet does not carry the first identification data, the second identification data, or the third identification data. In the case of invalid, touch data packets are not generated.
  • the touch sensor starts to generate a touch signal at the 8th frame and ends at the 23rd frame
  • the optical touch sensor starts to generate a touch signal at the 4th frame, and ends at the 26th frame
  • the touch The packet looks like this:
  • the touch data packet when the validity of the touch signal for the touch screen is valid or invalid, the touch data packet is allowed to be generated.
  • the touch signal generates a touch data packet, that is, whether the touch signal indicates that the surface of the touch screen is valid or that the surface of the touch screen is invalid, a touch data packet is generated, and the generated touch data packet can distinguish the touch.
  • the control signal means that the touch object approaches the surface of the display screen or touches the display screen.
  • the touch operation that touches the display screen or not has positive significance for the overall application of the interactive tablet, for example, when the validity of the touch signal for the touch screen is valid,
  • the floating touch is defined when the validity of the touch screen is invalid.
  • the meaning of the touch operation can be enriched, and the touch operation will give the touch screen more expressive force, thereby improving the flexibility of the touch operation.
  • the so-called allowing the generation of touch data packets may refer to encapsulating touch point data related to touch operations in the data packets.
  • the touch point data included in the touch data package includes at least one of the following items:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • First identification data second identification data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, and the first identification data and the first The second identification data indicates that the first identification data is used to record the relevance of the touch signal at a certain time and at a certain position;
  • the second identification data is used to record the correlation of the touch signal at a certain time and at a certain position
  • the combination of the first identification data and the second identification data indicates the validity of the touch signal for touching the display screen
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the status includes at least one of the following data:
  • the third identification data, the second identification data, the reliability, and the reserved parameter are the third identification data, the second identification data, the reliability, and the reserved parameter.
  • the third identification data indicates the validity of the touch signal for touching the display screen.
  • the state in the touch data packet simultaneously carries the first identification data and the second identification data, or the state in the touch data packet The state carries third identification data.
  • the optical touch sensor starts to generate a touch signal at the 3rd frame and ends at the 26th frame
  • the touch sensor starts to generate a touch signal at the 8th frame, and ends at the 22nd frame
  • the touch The packet looks like this:
  • the optical touch sensor starts to generate a touch signal at the 4th frame and ends at the 27th frame, and the touch sensor starts to generate a touch signal at the 8th frame and ends at the 22nd frame.
  • the touch data packet is as follows:
  • Step 806 Execute a service operation according to the touch data packet.
  • the touch controller can transmit the touch data packet to the upper-layer application of the host controller.
  • Applications can transmit touch data packets to upper-layer applications.
  • the upper-layer application of the host controller After the upper-layer application of the host controller receives the touch data packet of the touch controller, it can parse the touch data packet, so as to perform the corresponding business operation in the current business scenario, for example, freeze the courseware to write comments, start a certain apps, erase handwriting with an eraser, and more.
  • touch controller prohibits the generation of touch data packets when the validity of the touch signal for the touch screen is invalid, and allows the generation of touch data packets when the validity of the touch signal for the touch screen is valid .
  • the host controller when the host controller receives the touch data packet, it defaults that the validity of the touch signal for touching the display screen is valid, and reads the touch point data in the valid touch data packet (that is, the non-empty data packet), such as The X coordinate, Y coordinate, width, height, etc., locate the position where the touch operation occurs, so as to perform the corresponding business operation according to the touch point data (such as the position).
  • the valid touch data packet that is, the non-empty data packet
  • the X coordinate, Y coordinate, width, height, etc. locate the position where the touch operation occurs, so as to perform the corresponding business operation according to the touch point data (such as the position).
  • touch controller If the touch controller is valid or invalid for the touch signal to touch the display screen, it is allowed to generate touch data packets.
  • the host controller when the host controller receives the touch data packet, it can read the touch point data in the touch data packet, and the touch point data includes the state.
  • the method for processing the touch point data can be selected according to business requirements.
  • One of the processing methods is to ignore the touch point data, that is, not to respond to the user's touch operation.
  • Another processing method is to perform the first type of business operation according to the touch point data.
  • the second type of business operation is performed according to the touch point data.
  • the first type of business operation is not the same as the second type of business operation, ignoring the touch point data, the combination relationship between the first type of business operation and the second type of business operation can be based on the needs of the business scenario and selection, thereby improving the diversity and flexibility of business operations, which is not limited in this embodiment.
  • the touch point data will be ignored and handwriting will not be drawn.
  • the combination of the first identification data and the second identification data indicates that the validity of the touch signal for touching the display screen is valid, then the second type of business operation is performed according to the touch point data, and normal handwriting is drawn.
  • the first type of business operation is performed according to the touch point data, and the handwriting with lighter color is drawn, and so on. If the status indicates that the validity of the touch signal for touching the display screen is valid, the second type of business operation is performed according to the touch point data, and darker handwriting is drawn.
  • FIG. 9 is a flowchart of a method for verifying a touch signal according to Embodiment 2 of the present invention. This embodiment is based on the foregoing embodiment, and further adds business operations when the host controller is connected to the touch sensor. This method Specifically include the following steps:
  • Step 901 Activate the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen.
  • Step 902 Activate the touch sensor to generate at least one touch signal when at least one touch object touches the display screen.
  • Step 903 Determine the correlation between each touch signal and each touch signal.
  • Step 904 Determine the validity of each touch signal for touching the display screen according to the correlation between each touch signal and each touch signal.
  • the optical touch sensor is electrically connected to the touch controller, and the touch controller is electrically connected to the host controller.
  • the optical touch sensor transmits touch signals to the touch controller, and the touch controller generates touch data packets. , and, transmit the touch data packets to the host controller.
  • the touch point data included in the touch data includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the touch signal is represented by a touch data packet, that is, when the host controller receives a valid touch data packet (ie, a non-null data packet), it is equivalent to receiving a frame of touch signals.
  • the touch sensor is electrically connected to the host controller. At this time, the touch sensor transmits the touch signal to the host controller, and the host controller recognizes the correlation between the touch signal and the touch signal.
  • the host controller can determine the validity of the touch signal for touching the display screen by comparing the correlation between the touch signal and the touch signal at the same time point and the same position.
  • the optical touch sensor starts to generate the touch signal in the 3rd frame and ends in the 26th frame
  • the touch sensor starts to generate the touch signal in the 8th frame
  • the touch signal and the touch data are The relationship between packages:
  • Step 905 If the validity of the touch signal for touching the display screen is invalid, ignore the touch signal, or read the touch point data from the touch signal, and perform the first type of business operation according to the touch point data.
  • Step 906 If the validity of the touch signal for touching the display screen is valid, read the touch point data from the touch signal, and perform the second type of business operation according to the touch point data.
  • the host controller may select a method for processing the touch signal (ie, the touch data packet) according to service requirements.
  • One of the processing methods is to ignore the touch data packet, that is, not to respond to the user's touch operation.
  • Another processing method is to read the touch point data in a valid touch signal (that is, a non-empty touch data packet), such as X coordinate, Y coordinate, width, height, and locate the position where the touch operation occurs.
  • Touch point data eg, location
  • Touch point data performs a first type of business operation.
  • the host controller determines that the validity of the touch signal for touching the display screen is valid, the host controller reads the touch point data in the valid touch signal (ie, a non-empty touch data packet), according to the touch point data A second type of business operation is performed.
  • the first type of business operation is not the same as the second type of business operation, ignoring the touch point data, the combination relationship between the first type of business operation, and the second type of business operation can be based on the needs of the business scenario and selection, thereby improving the diversity and flexibility of business operations, which is not limited in this embodiment.
  • the touch signal ie, the touch data packet
  • the touch signal ie, the touch data packet
  • the touch point data in the touch data packet does not draw handwriting. If the touch signal is combined with the touch signal (ie, the touch data packet), it means that the validity of the touch signal for touching the display screen is valid.
  • the touch point data in the control signal (that is, the touch data packet) performs the second type of business operation and draws normal handwriting.
  • the touch signal is combined with the touch signal (ie, the touch data packet)
  • the touch signal ie, the touch data
  • the touch signal ie, the touch data The touch point data in the package
  • the touch signal it means that the touch signal is very important for the touch screen.
  • the second type of business operation is performed according to the touch point data in the touch signal (ie, the touch data packet), and darker handwriting is drawn.
  • FIG. 10 is a flowchart of a human-computer interaction method according to Embodiment 4 of the present invention.
  • This embodiment can be applied to divide touch types according to the touch relationship between the touch operation and the display screen, so as to trigger the corresponding interactive operation
  • the method can be executed by a human-computer interaction device, which can be implemented by software and/or hardware, and can be applied to an interactive tablet, especially configured in a processor of the interactive tablet, which can be a touch controller or host controller, the method specifically includes the following steps:
  • Step 1001 Detect at least one touch operation triggered by at least one touch object on the surface of the display screen.
  • a touch object approaches or touches the surface of the display screen and triggers a touch operation, intending to realize human-computer interaction, at this time, the information of the touch operation can be detected.
  • Multiple touch objects are approaching or touching the surface of the display screen and trigger the touch operation, with the intention of realizing human-computer interaction.
  • the touch operation of each touch object can be detected separately, and the relevant information of the touch operation can be recorded. .
  • an optical touch sensor and a touch sensor are respectively provided in the interactive tablet, and the processor is electrically connected to the optical touch sensor and the touch sensor, respectively. Therefore, the processor can directly or indirectly receive the data locally.
  • the touch signal generated by the optical touch sensor and the touch signal generated by the touch sensor are respectively provided in the interactive tablet, and the processor is electrically connected to the optical touch sensor and the touch sensor, respectively. Therefore, the processor can directly or indirectly receive the data locally.
  • the optical touch sensor can be activated to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen and triggers a touch operation.
  • one or more optical touch sensors 620 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the optical touch sensor 620, and the optical touch sensor 620 is in the The display surface of the interactive tablet scans the light signal, and detects whether there is a touch object on the display surface to trigger the touch operation according to the transmission of the light signal.
  • the touch operation triggered by the touch object is generated. touch signal.
  • the optical touch sensor 620 scans the optical signal on the display screen 610 of the interactive flat panel within a certain effective spatial range. If the optical touch sensor 620 exceeds the spatial range, the optical touch sensor 620 cannot detect the touch object.
  • the optical touch sensor 620 can detect a touch object, and the spatial range is called a touch area.
  • the touch area has a certain height in the vertical direction of the display plane of the display screen 610 , and the height is denoted as H.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the optical touch sensor, or , the host controller directly sends a start-up signal to the optical touch sensor, and the optical touch sensor responds to the start-up signal and is powered on to start.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller activates the optical touch sensor in response to the activation signal.
  • the optical signal is transmitted normally and is not blocked, and the optical touch sensor 620 does not Generate touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the optical signal is normally transmitted and not blocked, and the optical touch sensor 620 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H.
  • the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor, and the vertical distance between the touch object and the display screen 610 is greater than the height H. At this time, the optical signal is transmitted normally and is not blocked. , the optical touch sensor 620 does not generate touch signals.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • all touch objects eg, touch objects 650 and 660
  • the optical touch sensor 620 does not generate touch signals.
  • At least one touch object is close to the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 .
  • the optical touch sensor 620 targets the part that enters the touch area.
  • the touch object (eg, the touch object 650 ) generates touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the optical touch sensor 620 generates touch signals for some touch objects (eg, the touch objects 650 and 660 ) entering the touch area.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • the optical touch sensor 620 is aimed at entering the touch area.
  • Some of the touch objects (such as the touch object 650 ) generate touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • All touch objects (eg, the touch objects 650 and 660 ) in the touch area generate touch signals.
  • the touch sensor is activated to generate at least one touch signal when at least one touch object touches the display screen and triggers a touch operation.
  • one or more touch sensors 630 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the touch sensors 630, and the touch sensor 630 detects the presence of the touch sensor 630 on the interactive tablet.
  • a touch event occurs on the display screen, and a touch signal is generated for the event.
  • the touch sensor can generate a touch signal for the case.
  • the touch event detected by the touch sensor on the display screen of the interactive tablet has a certain effective plane range. If it exceeds the plane range, the touch sensor cannot detect the touch event.
  • the touch sensor can detect the touch event.
  • the plane range is called the touch area.
  • One or more touch sensors can be installed in the same interactive tablet, a touch sensor independent touch area or a touch sensor. The combined touch area of can cover the interactive tablet.
  • any touch sensor generates a touch signal at the same time point, it can be considered that the touch signal is valid and the touch signal corresponding to the time point. , all the touch sensors do not generate touch signals at the same time, so there is no touch signal at this time point.
  • the processor is a host controller
  • the host controller activates the touch sensor when the interactive tablet is powered on.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on and activated, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch sensor 630 when the user does not trigger a touch operation, when there is no touch object on the surface of the display screen 610 of the interactive tablet, the touch sensor 630 does not generate a touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the touch sensor 630 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than the height H, at this time, the touch sensor 630 does not generate Touch the signal.
  • the touch operation normally triggered by the user there is a process of pressing, moving, and lifting the touch object, and the touch object will approach or touch
  • the touch area of the optical touch sensor 620 has a height H
  • the touch object first enters the touch area of the optical touch sensor 620 .
  • touch the touch screen 610 to trigger the touch sensor 630 and finally leave the touch area of the optical touch sensor 620. Therefore, under normal circumstances, the optical touch sensor 620 first generates a touch signal, and the touch The touch sensor 630 then generates a touch signal, the touch sensor 630 stops the touch signal first, and then the optical touch sensor 620 stops the touch signal.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • all touch objects eg, touch objects 650 and 660
  • the optical touch sensor 620 does not generate touch signals.
  • At least one touch object is close to the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 .
  • the optical touch sensor 620 targets the part that enters the touch area.
  • the touch object (eg, the touch object 650 ) generates touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the optical touch sensor 620 generates touch signals for some touch objects (eg, the touch objects 650 and 660 ) entering the touch area.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • the optical touch sensor 620 is aimed at entering the touch area.
  • Some of the touch objects (such as the touch object 650 ) generate touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • All touch objects (eg, the touch objects 650 and 660 ) in the touch area generate touch signals.
  • the optical touch sensor does not generate a touch signal, but the touch sensor generates a touch signal, it may be that an object collides with the interactive tablet on the side to trigger the touch sensor, and the location where the interactive tablet is installed shakes to trigger the touch. Problems such as excessive noise affecting the touch sensor due to abnormal operation of the touch sensor and components in the interactive tablet (such as a fan) can be ignored in this embodiment.
  • the optical touch sensor and the touch sensor are independent of each other and are not affected by each other, that is, the optical touch sensor starts, runs, and shuts down independently, and is not affected by the touch sensor, and the touch sensor starts and runs independently. , off, the optical touch sensor is not affected.
  • Step 1002 during the triggering of each touch operation, identify the touch relationship between each touch object and the display screen as a touch relationship.
  • the touch relationship between each touch object and the display screen can be detected separately as a touch relationship, that is, the touch relationship indicates that the touch object has touched the display screen, or , the touch object does not touch the display.
  • step 1002 may include the following steps:
  • Step 100211 If the touch operation is represented by a touch signal and a touch signal, when a touch signal is received, determine the correlation between the touch signal and the touch signal.
  • the optical touch sensor and the touch sensor are used to detect the touch operation at the same time.
  • the touch sensor is used to generate a touch signal when the touch object touches the display screen and triggers a touch operation.
  • the optical touch sensor scans the light signal as a continuous operation, that is, the optical touch sensor can continuously generate multiple frames of touch signals within a certain period of time. It may be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the optical touch sensor, so as to continuously or intermittently receive multi-frame touch signals transmitted by the optical touch sensor.
  • the touch sensor detection event is also a continuous operation, that is, within a period of time, the touch sensor can continue to generate multiple frames of touch signals.
  • the multiple frames of touch signals can be It can be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the touch sensor, so as to continuously or intermittently receive multiple frames of touch signals transmitted by the touch sensor.
  • the touch object since the touch object is single, in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 . , the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • state 643 that is, the touch object is located in the touch area of the optical touch sensor 620
  • the display screen 610 is touched, at this time, the optical touch sensor 620 generates a touch signal for the touch object
  • the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference, and when the processor receives the touch signal transmitted by the optical touch sensor, it can detect the correlation between the touch signal and the touch signal at the same time point, that is, within the same time point Whether a touch signal is received, so as to identify the state of the touch object at this point in time.
  • the touch signal is received at the same time point but not the touch signal, it can be determined that the touch signal and the touch signal at the same time point are not related, and the touch signal is not related to the touch signal, that is The touch signal is received separately at the same time point.
  • touch signal is received at the same time point and the touch signal is received, it can be determined that the touch signal and the touch signal at the same time point are correlated, and the touch signal has been associated with the touch signal, that is, the touch signal is received at the same time point. Touch signal and touch signal.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal.
  • the control signal and the processor There is a certain delay between the control signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor. Not necessarily synchronized.
  • the validity period of the touch signal of the current frame can be set with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the frequency of the signal, the validity period is less than or equal to the time interval between every two frames of touch signals, before the arrival of the next frame of touch signals, the processing of the touch signals of this frame is ended, so as to ensure that the current frame of touch signals does not affect the next frame.
  • One frame of touch signal processing referring to the frequency of the optical touch sensor generating the touch signal and the frequency of the touch sensor generating the touch signal, the validity period is greater than or equal to the difference between the touch signal and the touch signal. time interval, so as to ensure that the touch signal generated by the touch sensor can be received at the same time point.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch signal is not received within the validity period, that is, the touch signal is received alone in a short period of time, but the touch signal is not received, it can be determined that there is no correlation between the touch signal and the touch signal, and the touch signal is not Associate touch signals.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits There is a certain delay between the touch signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor.
  • the signals are also not necessarily synchronized. And, if there is a touch event, the touch signal is a continuous multi-frame touch signal.
  • the touch sensor generates a touch signal when it detects the start and end of the touch event, and transmits the frame of touch signal to the processor, and does not generate a touch signal at other times, as follows :
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • a line is connected between the touch sensor and the processor as a state line.
  • the GPIO General-purpose input/output
  • the processor's GPIO is set to interrupt input mode.
  • the validity period is set for the current frame of the touch signal with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the touch signal is generated with reference to the optical touch sensor.
  • the validity period is less than or equal to the time interval between every two frames of touch signals.
  • the frame touch signal processing refers to the frequency of the optical touch sensor to generate the touch signal and the frequency of the touch sensor to generate the touch signal, the validity period is greater than or equal to the time between the touch signal and the touch signal interval, so as to ensure that the touch signal generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal is small and negligible.
  • the time interval between the touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch sensor and the touch sensor is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object initially touches the display screen (that is, a touch signal representing "1", at this time, the touch sensor outputs a high-level signal from the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and it is determined that the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal. Touch the signal to set the flag in the processor's firmware program and other areas.
  • the flag can replace the touch signal, indicating that The touch signal and the touch signal are received continuously in a short period of time, and it is determined that the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal.
  • the number of touch signals generated by the touch sensor reduces the calculation amount of the touch sensor, and because the flag can be directly detected by the processor, it can reduce the delay in the generation of touch signals and transmission of touch signals. influences.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object has finished touching the display screen (that is, a touch signal representing "0", at this time, the touch sensor will output a low-level signal of the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and it is determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal. Touch the signal to clear the flag in the processor's firmware program and other areas.
  • the touch signal When the touch signal is not received within the validity period, and there is no flag in the firmware program of the processor, etc., the touch signal is received alone in a short period of time, but the touch signal is not received, and it is determined that the touch signal is not There is no correlation between touch signals, and touch signals are not associated with touch signals.
  • the touch object continuously touches the display screen.
  • the so-called continuous touch can mean that the touch object presses down and touches the display screen, and then the touch object moves on the display screen. After the touch object completes the movement, touch
  • two frames of touch signals can be used to determine the correlation between the touch signal and the touch signal.
  • Other touch signals can be stopped between the target signals, wherein the first target signal is a touch signal indicating that the touch object initially touches the display screen, and the second target signal is a touch signal indicating that the touch object finishes touching the display screen signal, not only greatly reduces the number of touch signals generated by the touch sensor, thereby reducing the calculation amount of the touch sensor.
  • the above method of determining the correlation between the touch signal and the touch signal is only an example.
  • other methods for determining the correlation between the touch signal and the touch signal may be set according to the actual situation, for example, When a touch signal is received, a validity period is set for the touch signal. When a touch signal is received within the validity period, it is determined that the touch signal is correlated with the touch signal. When the touch signal is received, it is determined that there is no correlation between the touch signal and the touch signal, the touch signal is not associated with the touch signal, and so on, which is not limited in this embodiment of the present invention.
  • those skilled in the art can also adopt other methods for determining the correlation between the touch signal and the touch signal according to actual needs. Nor are they limited.
  • Step 100212 Determine the touch relationship between the touch object and the display screen as the touch relationship according to the correlation between the touch signal and the touch signal.
  • the correlation between the touch signal and the touch signal has been determined, that is, whether the touch signal is received at the same time point, so as to determine the relationship between the touch object and the display screen in terms of touch, as The touch relationship is to confirm that the touch object associated with the touch signal touches the display screen, or the touch object associated with the touch signal does not touch the display screen.
  • the touch relationship between the touch object and the display screen is that the touch object has touched the display screen, and use As a touch relationship, that is, a touch signal and a touch signal exist at the same time, and the touch object associated with the touch signal touches the display screen.
  • the touch relationship between the touch object and the display screen is that the touch object does not touch the display screen, which is used as a touch relationship, that is, there is a separate touch If there is no touch signal, the touch object associated with the touch signal does not touch the display screen.
  • step 1002 may include the following steps:
  • Step 100221 Determine the correlation in time and position between the touch signals of the plurality of touch operations and the touch signals of the plurality of touch operations.
  • the optical touch sensor and the touch sensor are used to detect multiple touch operations of multiple touch objects at the same time, wherein the optical touch sensor is used when the multiple touch objects approach or touch the surface of the display screen When a touch operation is triggered, a touch signal is generated, and the touch sensor is used to generate a touch signal when multiple touch objects touch the surface of the display screen and trigger the touch operation.
  • the optical touch sensor scans the light signal as a continuous operation, that is, the optical touch sensor can continuously generate multiple frames of touch signals within a certain period of time. It may be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the optical touch sensor, so as to continuously or intermittently receive multi-frame touch signals transmitted by the optical touch sensor.
  • the touch sensor detection event is also a continuous operation, that is, within a period of time, the touch sensor can continue to generate multiple frames of touch signals.
  • the multiple frames of touch signals can be It can be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the touch sensor, so as to continuously or intermittently receive multiple frames of touch signals transmitted by the touch sensor.
  • the touch signal and the touch signal caused by the touch object touching the surface of the display screen should be related in dimensions such as time and position, that is, the same touch object is at the same time point and the same position.
  • Touch signals and touch signals are triggered. Therefore, for the touch signals and touch signals caused when multiple touch objects approach or touch the surface of the display screen at the same time, these touch signals and touch signals can be detected in the dimensions of time and position. Correlation of touch signals to distinguish different states of different touch objects.
  • the touch object in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 , At this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • the touch object is located in the touch area of the optical touch sensor 620 . and touches the display screen 610 , at this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference, and when the processor receives the touch signal of the touch operation transmitted by the optical touch sensor, it can identify the temporal correlation between the touch signal and the touch signal of the touch operation, that is, , whether the touch signal and touch signal are received at the same time point.
  • the touch signal is received at the same time point but not received, that is, the touch signal is independently generated at the same time point, it can be determined that the touch signal and the touch signal are not related in time.
  • the touch signal is received at the same time point and the touch signal is received, that is, the touch signal and the touch signal are simultaneously generated at the same time point, it can be determined that the touch signal and the touch signal are related in time.
  • the positional correlation between the touch signal and the touch signal is identified, that is, whether a touch signal or a touch signal is received in the same position.
  • a touch signal is received at the same position but not received, that is, a touch signal is generated independently at the same position, it can be determined that there is no temporal correlation between the touch signal and the touch signal.
  • the touch signal is received at the same position and the touch signal is received, that is, the touch signal and the touch signal are simultaneously generated at the same position, it can be determined that the touch signal and the touch signal are correlated in position.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal
  • the processor There is a certain delay to the processor, and there is a certain delay for the touch sensor to transmit the touch signal to the processor, and the delays of the two are not consistent, resulting in the same touch signal and touch signal generated for the same touch object. Not necessarily synchronous.
  • the validity period of the touch signal of the current frame of the touch operation can be set with reference to factors such as the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal, etc.
  • the validity period is less than or equal to the time interval between every two frames of touch signals, and before the arrival of the next frame of touch signals, the processing of the current frame of touch signals is completed, so as to ensure the current frame of touch signals. It does not affect the processing of the touch signal of the next frame.
  • the validity period is greater than or equal to the touch signal and the touch signal.
  • the time interval between the signals ensures that the touch signals generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal of the touch operation is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are related in time.
  • the touch signal of the touch operation is not received within the validity period, that is, the touch signal is received alone in a short period of time, but the touch signal is not received, it can be determined that the touch signal and the touch signal do not exist in time. Relevance.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the touch position associated with the touch signal of the touch operation is determined, and the touch position represents the time when the touch object approaches or touches the surface of the display screen.
  • the position can be calculated by the processor according to the optical signal scanned by the optical touch sensor.
  • the touch position associated with the touch signal of the touch operation is determined, and the touch position represents the position when the touch object touches the surface of the display screen, which can be calculated by the touch sensor.
  • the real position of the touch operation for the same touch object is constant, that is, the touch signal and the touch signal generated by the touch operation of the same touch object originate from the same position.
  • the touch sensor calculates the touch position in different ways, and the infrared touch sensor and touch sensor generally have higher accuracy. Therefore, the touch position and the touch position of the same touch object may be different, but the difference is generally larger. Small, within an acceptable error range, for this, a threshold value can be preset, and the threshold value represents an acceptable error range.
  • the distance between the touch position and the touch position may be calculated by means of Euclidean distance and the like, and the distance is compared with a preset threshold.
  • the distance between the touch position and the touch position is less than or equal to the preset threshold, it means that the difference between the touch position and the touch position is within the error range, and it can be determined that the touch signal and the touch signal are in position There is a correlation.
  • the distance between the touch position and the touch position is greater than the preset threshold, it means that the difference between the touch position and the touch position is outside the error range, and it can be determined that the touch signal and the touch signal do not exist in position Relevance.
  • the above manner of determining the correlation between time and location is only an example.
  • other determinations of the correlation between time and location may be set according to the actual situation. For example, when a touch signal is received When the touch signal and the touch signal are related in time, if there is a time correlation between the touch signal and the touch signal, then identify the positional correlation between the touch signal and the touch signal, or, Set the validity period for the touch signal. When the touch signal is received within the validity period, it is determined that there is a correlation between the touch signal and the touch signal, and the touch signal has been associated with the touch signal.
  • the touch signal is correlated with the touch signal, the touch signal is not correlated with the touch signal, and so on, which is not limited in this embodiment of the present invention.
  • those skilled in the art may also adopt other methods for determining the correlation between time and position according to actual needs, which are not limited in this embodiment of the present invention. .
  • Step 100222 Determine the touch relationship between the multiple touch objects and the surface of the display screen as the touch relationship according to the correlation.
  • the correlation between the touch signal and the touch signal has been determined at the same time and at the same position, that is, whether the touch signal and the touch signal are simultaneously received at the same time and at the same position, it is determined that the touch signal has an effect on the touch.
  • the validity of the surface of the display screen means confirming that the touch object associated with the touch signal touches the display screen, or that the touch object associated with the touch signal does not touch the display screen.
  • the touch signal and the touch signal are correlated in time and position, that is, the touch signal and the touch signal are simultaneously generated at the same time and at the same position, it can be determined that the touch object touches the display.
  • the surface of the screen as a touch relationship.
  • the touch signal or the touch signal is independently generated at the same time or at the same position. There is no correlation in time. It may be that multiple touch objects are close to the surface of the display screen and do not touch the surface of the display screen. There is no correlation between the touch signal and the position of the touch signal. The touch object is close to the surface of the display screen, and some of the touch objects touch the surface of the display screen. At this time, it can be determined that the touch object is close to the surface of the display screen as a touch relationship.
  • Step 1003 Divide each touch operation into touch types according to the touch relationship.
  • the touch relationship represents the touch relationship between the touch object and the display screen, that is, the touch relationship means that the touch object has touched the display screen, or the touch object has not touched the display screen, Accordingly, the touch operation can be divided into different touch types in the dimension of touch.
  • the touch relationship is that the touch object has touched the display screen, it is determined that the touch type of the touch operation is touch touch.
  • the touch relationship is that the touch object does not touch the display screen, it is determined that the touch type of the touch operation is a floating touch.
  • Step 1004 performing an interactive operation adapted to the touch type for each touch operation, respectively.
  • corresponding interactive operations can be performed according to the logic preset in the interactive tablet.
  • step 1004 includes the following steps:
  • Step 10041 generating a touch data packet adapted to the touch type for the touch operation.
  • the optical touch sensor is electrically connected to the processor (such as a host controller, a touch controller), and the optical touch sensor transmits touch signals to the processor (such as a host controller, a touch controller), and the other
  • the touch sensor is electrically connected to the processor (such as a host controller, a touch controller), and the touch sensor transmits a touch signal to the processor (such as a host controller, a touch controller).
  • the processor such as a host controller, a touch controller
  • the processor recognizes the correlation between the touch signal and the touch signal in time and position, so as to determine the touch type of the touch operation.
  • the processor (such as a host controller, a touch controller) can refer to the touch type of the touch operation, generate a touch data packet for the touch operation, and record the information of the touch operation in the touch data packet, wherein,
  • the touch data package can reflect the touch type of the touch operation based on the original touch point data.
  • the touch data packet When generating the touch data packet, it may refer to encapsulating the touch point data related to the touch operation in the data packet.
  • the touch point data included in the touch data package includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • First identification data second identification data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, and the first identification data and the first The second identification data indicates that the first identification data is used to record the relevance of the touch signal at a certain time and at a certain position;
  • the second identification data is used to record the correlation of the touch signal at a certain time and at a certain position
  • the combination of the first identification data and the second identification data indicates the touch type of the touch operation
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the status includes at least one of the following data:
  • the third identification data, the second identification data, the reliability, and the reserved parameter are the third identification data, the second identification data, the reliability, and the reserved parameter.
  • the third identification data indicates the touch type of the touch operation.
  • the data format of the state is as follows:
  • the state in the touch data packet simultaneously carries the first identification data and the second identification data, or the state in the touch data packet carries the third identification data. identification data.
  • the touch data packet is as follows :
  • the touch sensor starts to generate a touch signal at the 8th frame and ends at the 23rd frame
  • the optical touch sensor starts to generate a touch signal at the 4th frame, and ends at the 26th frame
  • the touch The packet looks like this:
  • Step 10042 Parse the touch data packet to perform an interactive operation adapted to the touch type.
  • the touch controller can transmit the touch data packet to the upper layer application of the host controller. If the touch data packet is first generated by the bottom layer application of the host controller, Then the underlying application can transmit the touch data packet to the upper application.
  • the upper-layer application of the host controller After the upper-layer application of the host controller receives the touch data packet of the touch controller, it can parse the touch data packet, so as to perform the interactive operation corresponding to the touch type in the current business scenario, for example, freeze courseware writing Annotate, launch an app, wipe with the eraser, and more.
  • the host controller When the host controller receives the touch data packet, it can read the touch point data in the touch data packet, and the touch point data includes the state.
  • the first type of interactive operation is performed according to the touch point data.
  • the second type of interactive operation is performed according to the touch point data.
  • the first type of interaction operation is different from the second type of interaction operation.
  • the combination relationship between the first type of interaction operation and the second type of interaction operation can be selected according to the needs of the business scenario, thereby improving the The diversity and flexibility of business operations are not limited in this embodiment.
  • the first type of interactive operation is performed according to the touch point data, and light-colored handwriting is drawn. If the status indicates that the touch type is touch touch, Then, the second type of interactive operation is performed according to the touch point data, and darker handwriting is drawn.
  • the touch operation is represented by a touch signal and a touch signal, that is, the touch operation includes a touch signal and a touch signal, and step 1004 includes the following steps:
  • Step 10043 Read touch point data from the touch signal.
  • the optical touch sensor is electrically connected to the touch controller, and the touch controller is electrically connected to the host controller.
  • the optical touch sensor transmits touch signals to the touch controller, and the touch controller generates touch data packets. , and, transmit the touch data packets to the host controller.
  • the touch point data included in the touch data includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the touch signal is represented by a touch data packet, that is, when the host controller receives a valid touch data packet (ie, a non-null data packet), it is equivalent to receiving a frame of touch signals.
  • the touch sensor is electrically connected to the host controller. At this time, the touch sensor transmits the touch signal to the host controller, and the host controller recognizes the correlation between the touch signal and the touch signal, so as to determine the touch operation. touch type.
  • the host controller can determine the touch type of the touch operation by comparing the correlation between the touch signal and the touch signal at the same time point, the same position, and the touch signal.
  • the optical touch sensor starts to generate a touch signal at the 4th frame and ends at the 27th frame
  • the touch sensor starts to generate a touch signal at the 8th frame
  • the touch signal and the touch data are The relationship between packages:
  • Step 10044 If the touch type is a floating touch, perform the first type of interactive operation according to the touch point data.
  • Step 10045 If the touch type is touch touch, perform the second type of interactive operation according to the touch point data.
  • the host controller can read the touch point data in a valid touch data packet (ie, a non-empty data packet), such as X coordinate, Y coordinate, Width and height, locate the position where the touch operation occurs, and perform the first type of interactive operation according to the touch point data (eg, position).
  • a valid touch data packet ie, a non-empty data packet
  • the host controller determines that the touch type of the touch operation is touch touch, the host controller reads the touch point data in a valid touch data packet (ie, a non-empty data packet), and executes the second touch point data according to the touch point data. type of interaction.
  • the first type of interaction operation is different from the second type of interaction operation.
  • the combination relationship between the first type of interaction operation and the second type of interaction operation can be selected according to the needs of the business scenario, thereby improving the The diversity and flexibility of business operations are not limited in this embodiment.
  • the first type of interactive operation is performed according to the touch point data, and light-colored handwriting is drawn. If the status indicates that the touch type is touch touch, Then, the second type of interactive operation is performed according to the touch point data, and darker handwriting is drawn.
  • At least one touch operation triggered by at least one touch object on the surface of the display screen is detected, and during each touch operation is triggered, the relationship between each touch object and the display screen on the touch is identified, as Touch relationship.
  • each touch operation is divided into touch types, and each touch operation is performed with an interactive operation adapted to the touch type.
  • the interactive operation is writing handwriting
  • handwriting for the touch operation that touches the display screen, handwriting can be written, and for the touch operation that does not touch the display screen, handwriting is not written, so as to solve the problem.
  • FIG. 11 is a flowchart of a method for displaying handwriting according to Embodiment 5 of the present invention.
  • This embodiment is applicable to one or more touch scenarios based on the touch relationship between the touch track and the display screen.
  • the method can be executed by a handwriting display device, the human-computer interaction device can be implemented by software and/or hardware, and can be applied to an interactive tablet, especially configured in a processor of the interactive tablet, the processing
  • the controller can be a touch controller or a host controller, and the method specifically includes the following steps:
  • Step 1101 displaying a writing interface.
  • the interactive device is provided with a GPU (Graphics Processing Unit, graphics processor), which can provide video processing functions. Specifically, it receives information from the host controller, inserts it into the frame memory, and generates a display screen for the video signal in a partition-driven manner. The required serial display data and scan control timing, the display screen plays according to the serial display data and scan control timing, so as to display various pictures on the display screen.
  • a GPU Graphics Processing Unit, graphics processor
  • the user triggers the writing mode, and at this time, in the writing mode, an interface can be displayed on the display screen, and the user can select the configuration parameters of the handwriting, such as color, width, etc., so as to follow the configuration parameters on the interface Writing handwriting, therefore, the interface is called the writing interface.
  • the writing interface can be an independent interface.
  • the interactive tablet provides an electronic whiteboard
  • the user triggers a control operation to display the electronic whiteboard in the interactive tablet
  • the interactive tablet receives the control operation and displays the electronic whiteboard as a
  • the writing interface at this time, the user can trigger a touch operation on the electronic whiteboard, and the touch operation is represented in the form of a track, so it can be called a touch track
  • the interactive tablet can display and display on the screen of the interactive tablet.
  • the touch track is corresponding, wherein the control operation for displaying the electronic whiteboard includes but is not limited to touch operation, keyboard operation, mouse operation, and physical key operation.
  • the writing interface can also be an interface with a background.
  • the interactive tablet displays the local courseware, displays the transmission of the screen transmission device (USB Dongle, USB software dongle), and belongs to the source device (such as a laptop, etc.).
  • Screen images and other data the user triggers the annotation operation in the interactive tablet, the interactive tablet receives the annotation operation, freezes the courseware, screen image and other data, and makes it the background, that is, maintains the current frame of the courseware, screen image and other data, and displays it on the screen.
  • a mask is generated on the courseware, screen images and other data to serve as a writing interface.
  • the user can trigger a touch operation on the screen of the interactive tablet, and the touch operation is represented in the form of a track. Therefore, it can be called a touch operation.
  • control track the interactive tablet can display handwriting corresponding to the touch track on the mask.
  • the so-called courseware can refer to the course documents produced according to the requirements of teaching, after the determination of teaching objectives, the analysis of teaching content and tasks, the structure of teaching activities and interface design, etc.
  • the courseware can be Word documents, PPT (PowerPoint, presentation) and other public format files may also be custom pages composed of elements such as text, tables, and pictures, which are not limited in this embodiment.
  • Step 1102 Determine at least one touch track when at least one touch object moves on the surface of the display screen.
  • a user can use a touch object such as a finger or a touch pen to trigger a specified touch track on the surface of the display screen of the interactive tablet, where the specified touch track can be used to write handwriting, such as in a single-touch gesture swipe operation.
  • the interactive tablet receives the specified touch track, and, in response to the touch track, displays handwriting at the location where the specified touch track occurs according to the configuration parameter.
  • touch track triggered by each touch object, and, in response to the touch track, display handwriting at the location where the specified touch track occurs according to the configuration parameter
  • the interactive tablet is provided with an optical touch sensor and a touch sensor, respectively, and the processor is electrically connected to the optical touch sensor and the touch sensor, respectively. Therefore, the processor can directly or indirectly receive the optical touch sensor and generate The touch signal generated by the touch sensor and the touch signal generated by the touch sensor.
  • the optical touch sensor is activated to generate touch signals for each touch track respectively when at least one touch object approaches or touches the surface of the display screen and moves.
  • one or more optical touch sensors 620 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the optical touch sensor 620, and the optical touch sensor 620 is in the The display surface of the interactive tablet scans the light signal, and detects whether there is a touch object on the display screen surface according to the transmission of the light signal.
  • the optical touch sensor 620 scans the optical signal on the display screen 610 of the interactive flat panel within a certain effective spatial range. If the optical touch sensor 620 exceeds the spatial range, the optical touch sensor 620 cannot detect the touch object.
  • the optical touch sensor 620 can detect a touch object, and the spatial range is called a touch area.
  • the touch area has a certain height in the vertical direction of the display plane of the display screen 610 , and the height is denoted as H.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the optical touch sensor, or , the host controller directly sends a start-up signal to the optical touch sensor, and the optical touch sensor responds to the start-up signal and is powered on to start.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller activates the optical touch sensor in response to the activation signal.
  • the optical signal is transmitted normally and is not blocked, and the optical touch sensor 620 does not Generate touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the optical signal is normally transmitted and not blocked, and the optical touch sensor 620 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H.
  • the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the optical signal is blocked by the touch object, and the optical touch sensor 620 generates a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor, and the vertical distance between the touch object and the display screen 610 is greater than the height H. At this time, the optical signal is transmitted normally and is not blocked. , the optical touch sensor 620 does not generate touch signals.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • all touch objects eg, touch objects 650 and 660
  • the optical touch sensor 620 does not generate touch signals.
  • At least one touch object is close to the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 .
  • the optical touch sensor 620 targets the part that enters the touch area.
  • a touch object (eg, the touch object 650 ) generates a touch signal.
  • all touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the optical touch sensor 620 generates touch signals for some touch objects (eg, the touch objects 650 and 660 ) entering the touch area.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • the optical touch sensor 620 is aimed at entering the touch area.
  • Some of the touch objects (such as the touch object 650 ) generate touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • All touch objects (eg, the touch objects 650 and 660 ) in the touch area generate touch signals.
  • the touch sensor is activated to generate a touch signal to the touch track when the touch object touches the display screen and moves.
  • one or more touch sensors 630 are installed in the display screen 610 of the interactive tablet.
  • the processor can activate the touch sensors 630, and the touch sensor 630 detects the presence of the touch sensor 630 on the interactive tablet.
  • a touch event occurs on the display screen, and a touch signal is generated for the event.
  • a touch signal can be generated for the touch track generated when the touch object moves.
  • the touch event detected by the touch sensor on the display screen of the interactive tablet has a certain effective plane range. If it exceeds the plane range, the touch sensor cannot detect the touch event.
  • the touch sensor can detect the touch event.
  • the plane range is called the touch area.
  • One or more touch sensors can be installed in the same interactive tablet, a touch sensor independent touch area or a touch sensor. The combined touch area of can cover the interactive tablet.
  • any touch sensor generates a touch signal at the same time point, it can be considered that the touch signal is valid and the touch signal corresponding to the time point. , all the touch sensors do not generate touch signals at the same time, so there is no touch signal at this time point.
  • the processor is a host controller
  • the host controller activates the touch sensor when the interactive tablet is powered on.
  • the host controller can send an activation signal to the touch controller when the interactive tablet is powered on and activated, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch controller receives an activation signal sent by the host controller when the interactive tablet is powered on, and the touch controller responds to the activation signal to activate the touch sensor.
  • the touch sensor 630 when the user does not trigger the touch track, and when there is no touch object on the surface of the display screen 610 of the interactive tablet, the touch sensor 630 does not generate a touch signal.
  • a touch object appears on the surface of the display screen 610 of the interactive tablet and is in state 641, that is, the touch object does not enter the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than At the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 642 , that is, the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 , but does not touch the display screen 610 , and the touch object and the display screen 610 are in a vertical direction.
  • the distance above is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 643, that is, the touch object enters the touch area of the optical touch sensor 620 and touches the display screen 610, and the vertical distance between the touch object and the display screen 610 is equal to 0 or less than 0 (ie Due to the pressing, the glass is deformed inwardly), at this time, the touch sensor 630 generates a touch signal.
  • the touch object is in state 644 , that is, the touch object leaves the display screen 610 , but is still in the touch area of the optical touch sensor 620 , and is still in a state close to the display screen 610 , and the vertical distance between the touch object and the display screen 610 is When the distance is greater than 0 and less than the height H, at this time, the touch sensor 630 does not generate a touch signal.
  • the touch object is in state 645, that is, the touch object leaves the touch area of the optical touch sensor 620, and the vertical distance between the touch object and the display screen 610 is greater than the height H, at this time, the touch sensor 630 does not generate Touch the signal.
  • the touch object For the overall operation of the optical touch sensor and the touch sensor, as shown in FIG. 6A , for the touch track normally triggered by the user, there are processes of pressing, moving, and lifting the touch object, and the touch object will approach or touch
  • the touch area of the optical touch sensor 620 has a height H, in general, in the process of pressing, moving and lifting the touch object, the touch object first enters the touch area of the optical touch sensor 620 . Then, touch the touch screen 610 to trigger the touch sensor 630, and finally leave the touch area of the optical touch sensor 620. Therefore, under normal circumstances, the optical touch sensor 620 first generates a touch signal, and the touch The touch sensor 630 then generates a touch signal, the touch sensor 630 stops the touch signal first, and then the optical touch sensor 620 stops the touch signal.
  • the optical touch sensor can detect a plurality of touch objects respectively, so as to generate a plurality of touch signals correspondingly.
  • all touch objects eg, touch objects 650 and 660
  • the optical touch sensor 620 does not generate touch signals.
  • At least one touch object is close to the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and is close to the surface of the display screen 610 .
  • the optical touch sensor 620 targets the part that enters the touch area.
  • a touch object (eg, the touch object 650 ) generates a touch signal.
  • all touch objects enter the touch area of the optical touch sensor 620 and are close to the surface of the display screen 610 , but do not touch the display screen 610 .
  • the optical touch sensor 620 generates touch signals for some touch objects (eg, the touch objects 650 and 660 ) entering the touch area.
  • At least one touch object touches the surface of the display screen 610
  • a part of the touch object enters the touch area of the optical touch sensor 620 and touches the surface of the display screen 610 .
  • the optical touch sensor 620 is aimed at entering the touch area.
  • Some of the touch objects (such as the touch object 650 ) generate touch signals.
  • all touch objects enter the touch area of the optical touch sensor 620 and touch the surface of the display screen 610 .
  • All touch objects (eg, the touch objects 650 and 660 ) in the touch area generate touch signals.
  • the optical touch sensor does not generate a touch signal, but the touch sensor generates a touch signal, it may be that an object collides with the interactive tablet on the side to trigger the touch sensor, and the location where the interactive tablet is installed shakes to trigger the touch. Problems such as excessive noise affecting the touch sensor due to abnormal operation of the touch sensor and components in the interactive tablet (such as a fan) can be ignored in this embodiment.
  • the optical touch sensor and the touch sensor are independent of each other and are not affected by each other, that is, the optical touch sensor starts, runs, and shuts down independently, and is not affected by the touch sensor, and the touch sensor starts and runs independently. , off, the optical touch sensor is not affected.
  • the optical touch sensor first generates the touch signal, the touch sensor then generates the touch signal, the touch sensor stops the touch signal first, and the optical touch sensor stops the touch signal, that is, the touch
  • the sensor generates a touch signal for the touch object for the first time, which means that the touch object touches the display screen for the first time.
  • the processor can start the touch sensor, and on the other hand, the processor can control the optical touch sensor to sleep, that is, control the optical touch sensor to stop scanning the light signal on the surface of the interactive tablet, or, with low power
  • the light signal is scanned on the surface of the interactive tablet in a low-power mode (such as non-sequential scanning and low scanning frequency, so as to save power consumption).
  • a low-power mode such as non-sequential scanning and low scanning frequency, so as to save power consumption.
  • the touch signal detected by the optical touch sensor is very important for the scene of writing handwriting. Therefore, when the lost touch object enters the touch area but does not touch the display screen of the interactive tablet, the touch detected by the optical touch sensor The signal, for the touch track, basically does not affect or even guarantees the normal handwriting of the touch track.
  • the processor may detect whether a touch signal generated by the touch sensor is received.
  • the processor can keep the optical touch sensor sleep.
  • the processor can activate (aka wake up) the optical touch sensor, exit sleep, and the optical touch sensor scans the light signal on the surface of the interactive tablet again.
  • the optical touch sensor When at least one touch object is on the surface of the display (That is, when the touch area moves, the optical touch sensor generates at least one touch signal to the touch track.
  • the processor can re-control the optical touch sensor to sleep, waiting for the touch signal of the touch sensor to wake up.
  • the touch sensor during the sleep period of the optical touch sensor, the touch sensor first
  • the second generation of the touch signal may be referred to as the first generation of the touch signal for the touch object.
  • condition for detecting whether the touch signal is interrupted can be set by those skilled in the art. For example, when the touch signal is not received for a preset period of time, the touch signal is considered to be interrupted, or, when the touch signal is interrupted on the interactive tablet When the display screen displays a writing scene suitable for the touch track, it is determined that the touch signal is continuous. When the display screen of the interactive tablet displays a business scenario (such as playing a video) that does not depend on the touch track, it is determined that the touch signal is interrupted, and so on. This embodiment does not limit this.
  • the optical touch sensor can be controlled to sleep, Wake-up by the touch signal of the touch sensor ensures that the touch object can be detected normally in this business scenario, thereby ensuring the normal response of the touch track, and it can reduce the power consumption of the optical touch sensor, thereby reducing the interactive tablet power consumption.
  • Step 1103 Determine a first sub-track and a second sub-track for each touch object.
  • the touch track can be divided into a first sub-track and a second character track depending on whether the touch object touches the display screen, wherein the first sub-track is the touch object that approaches but does not touch the display screen.
  • the touch track and the second sub track are the touch track where the touch object has touched the display screen.
  • step 1103 when there is one touch object, includes the following steps:
  • Step 110311 When receiving the touch signal, determine the correlation between the touch signal and the touch signal.
  • the optical touch sensor scans the light signal as a continuous operation, that is, the optical touch sensor can continuously generate multiple frames of touch signals within a certain period of time. It may be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the optical touch sensor, so as to continuously or intermittently receive multi-frame touch signals transmitted by the optical touch sensor.
  • the touch sensor detection event is also a continuous operation, that is, within a period of time, the touch sensor can continue to generate multiple frames of touch signals.
  • the multiple frames of touch signals can be It can be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the touch sensor, so as to continuously or intermittently receive multiple frames of touch signals transmitted by the touch sensor.
  • the touch object since the touch object is single, in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 . , the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • state 643 that is, the touch object is located in the touch area of the optical touch sensor 620
  • the display screen 610 is touched, at this time, the optical touch sensor 620 generates a touch signal for the touch object
  • the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference, and when the processor receives the touch signal transmitted by the optical touch sensor, it can detect the correlation between the touch signal and the touch signal at the same time point, that is, at the same time point Whether a touch signal is received, so as to identify the state of the touch object at this point in time.
  • the touch signal is received at the same time point but not the touch signal, it can be determined that the touch signal and the touch signal at the same time point are not related, and the touch signal is not related to the touch signal, that is The touch signal is received independently at the same time point.
  • touch signal is received at the same time point and the touch signal is received, it can be determined that the touch signal and the touch signal at the same time point are correlated, and the touch signal has been associated with the touch signal, that is, the touch signal is received at the same time point. Touch signal and touch signal.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal.
  • the control signal and the processor There is a certain delay between the control signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor. Not necessarily synchronized.
  • the validity period of the touch signal of the current frame can be set with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the frequency of the signal, the validity period is less than or equal to the time interval between every two frames of touch signals, before the arrival of the next frame of touch signals, the processing of the current frame of touch signals is completed, so as to ensure that the current frame of touch signals does not affect the next frame.
  • One frame of touch signal processing referring to the frequency of the optical touch sensor generating the touch signal and the frequency of the touch sensor generating the touch signal, the validity period is greater than or equal to the difference between the touch signal and the touch signal. time interval, so as to ensure that the touch signal generated by the touch sensor can be received at the same time point.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch signal is not received within the validity period, that is, the touch signal is received alone in a short period of time, but the touch signal is not received, it can be determined that there is no correlation between the touch signal and the touch signal, and the touch signal is not Associate touch signals.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits There is a certain delay between the touch signal and the processor, and there is a certain delay in transmitting the touch signal from the touch sensor to the processor.
  • the signals are also not necessarily synchronized. And, if there is a touch event, the touch signal is a continuous multi-frame touch signal.
  • the touch sensor generates a touch signal when it detects the start and end of the touch event, and transmits the frame of touch signal to the processor, and does not generate a touch signal at other times, as follows :
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • a line is connected between the touch sensor and the processor as a state line.
  • the GPIO General-purpose input/output
  • the processor's GPIO is set to interrupt input mode.
  • the validity period is set for the current frame of the touch signal with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the touch signal is generated with reference to the optical touch sensor.
  • the validity period is less than or equal to the time interval between every two frames of touch signals.
  • Frame touch signal processing refers to the frequency of the optical touch sensor to generate the touch signal and the frequency of the touch sensor to generate the touch signal, the validity period is greater than or equal to the time between the touch signal and the touch signal interval, so as to ensure that the touch signal generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch sensor and the touch sensor is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object initially touches the display screen (that is, a touch signal representing "1", at this time, the touch sensor outputs a high-level signal from the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and it is determined that the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal. Touch the signal to set the flag in the processor's firmware program and other areas.
  • the flag can replace the touch signal, indicating that The touch signal and the touch signal are received continuously in a short period of time, and it is determined that the touch signal is correlated with the touch signal, and the touch signal has been associated with the touch signal.
  • the number of touch signals generated by the touch sensor reduces the calculation amount of the touch sensor, and because the flag can be directly detected by the processor, it can reduce the delay in the generation of touch signals and transmission of touch signals. influences.
  • the touch sensor When a touch signal is received within the validity period, and the touch signal indicates that the touch object has finished touching the display screen (that is, a touch signal representing "0", at this time, the touch sensor will output a low-level signal of the status line) , that is, the touch signal and the touch signal are received continuously within a short period of time, and it is determined that the touch signal and the touch signal are correlated, and the touch signal is associated with the touch signal. Touch the signal to clear the flag in the processor's firmware program and other areas.
  • the touch signal When the touch signal is not received within the validity period, and there is no flag in the firmware program of the processor, etc., the touch signal is received alone in a short period of time, but the touch signal is not received, and the touch signal is determined to be the same as the one. There is no correlation between touch signals, and touch signals are not associated with touch signals.
  • the touch object continuously touches the display screen.
  • the so-called continuous touch can mean that the touch object presses down and touches the display screen, and then the touch object moves on the display screen. After the touch object completes the movement, touch
  • two frames of touch signals can be used to determine the correlation between the touch signal and the touch signal.
  • Other touch signals can be stopped between the target signals, wherein the first target signal is a touch signal indicating that the touch object initially touches the display screen, and the second target signal is a touch signal indicating that the touch object finishes touching the display screen signal, not only greatly reduces the number of touch signals generated by the touch sensor, thereby reducing the calculation amount of the touch sensor.
  • the above method of determining the correlation between the touch signal and the touch signal is only an example.
  • other methods for determining the correlation between the touch signal and the touch signal may be set according to the actual situation, for example, When a touch signal is received, a validity period is set for the touch signal. When a touch signal is received within the validity period, it is determined that the touch signal is correlated with the touch signal. When the touch signal is received, it is determined that there is no correlation between the touch signal and the touch signal, the touch signal is not associated with the touch signal, and the like, which is not limited in this embodiment of the present invention.
  • those skilled in the art can also adopt other methods for determining the correlation between the touch signal and the touch signal according to actual needs. Nor are they limited.
  • Step 110312 If there is no correlation between the touch signal and the touch signal, it is determined that the touch object does not touch the display screen, and the touch track is the first sub track.
  • the touch signal is not associated with the touch signal, that is, the touch signal exists alone and there is no touch signal, then it is determined that the touch signal is associated with the touch signal.
  • the touch object does not touch the display screen, and at this time, the touch track is divided into the first sub track.
  • Step 110313 If there is a correlation between the touch signal and the touch signal, it is determined that the touch object has touched the display screen, and the touch track is the second sub track.
  • the touch object associated with the touch signal touches The display screen, at this time, divides the touch track into a second sub track.
  • step 1103 when there are multiple touch objects, step 1103 includes the following steps:
  • Step 110321 Determine the time and position correlation between the touch signal of the touch track and the touch signal of the touch track.
  • the optical touch sensor scans the light signal is a continuous operation, that is, within a period of time, the optical touch sensor can continuously generate multiple frames of touch signals. It may be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the optical touch sensor, so as to continuously or intermittently receive multi-frame touch signals transmitted by the optical touch sensor.
  • the touch sensor detection event is also a continuous operation, that is, within a period of time, the touch sensor can continue to generate multiple frames of touch signals.
  • the multiple frames of touch signals can be It can be continuous or discontinuous, which is not limited in this embodiment.
  • the processor can continuously monitor the touch sensor, so as to continuously or intermittently receive multiple frames of touch signals transmitted by the touch sensor.
  • the touch signal triggered by the touch track triggered by the touch object and the touch signal should be related in dimensions such as time and position when the touch object touches the surface of the display screen.
  • the touch track triggers the touch signal and the touch signal at the same time point and the same position. Therefore, the touch signal and the touch signal are caused when the touch track triggered by multiple touch objects approaches or touches the surface of the display screen at the same time.
  • the correlation between these touch signals and the touch signals can be detected in dimensions such as time and position, so as to distinguish different states of touch trajectories triggered by different touch objects.
  • the touch object in states 642 and 644 , that is, the touch object is located in the touch area of the optical touch sensor 620 but does not touch the display screen 610 , At this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 does not generate a touch signal for the touch object.
  • the touch object is located in the touch area of the optical touch sensor 620 . and touches the display screen 610 , at this time, the optical touch sensor 620 generates a touch signal for the touch object, and the touch sensor 630 generates a touch signal for the touch object.
  • the touch signal can be used as a reference.
  • the processor receives the touch signal of the touch track transmitted by the optical touch sensor, it can identify the time difference between the touch signal of the touch track and the touch signal of the touch track. Correlation, that is, whether the touch signal of the touch track and the touch signal of the touch track are received at the same time point.
  • the touch track can be determined. There is no temporal correlation between the touch signal of the touch track and the touch signal of the touch track.
  • the touch signal of the touch track is received at the same time point, and the touch signal of the touch track is received, that is, the touch signal of the touch track and the touch signal of the touch track are simultaneously generated at the same time point, it can be determined There is a temporal correlation between the touch signal of the touch track and the touch signal of the touch track.
  • the positional correlation between the touch signal of the touch track and the touch signal of the touch track is identified, that is, the same Whether the touch signal of the touch track and the touch signal of the touch track are received in the position.
  • the touch signal of the touch track can be determined. There is no temporal correlation between the control signal and the touch signal of the touch track.
  • the touch signal of the touch track is received at the same position, and the touch signal of the touch track is received, that is, the touch signal of the touch track and the touch signal of the touch track are simultaneously generated at the same position, the touch can be determined. There is a positional correlation between the touch signal of the track and the touch signal of the touch track.
  • the frequency at which the optical touch sensor generates the touch signal is generally different from the frequency at which the touch sensor generates the touch signal, and that the optical touch sensor transmits the touch signal
  • the processor There is a certain delay to the processor, and there is a certain delay for the touch sensor to transmit the touch signal to the processor, and the delays of the two are not consistent, resulting in the same touch signal and touch signal generated for the same touch object. Not necessarily synchronous.
  • the validity period of the touch signal of the current frame of the touch track can be set with reference to the frequency of the optical touch sensor generating the touch signal, the frequency of the touch sensor generating the touch signal and other factors.
  • the validity period is less than or equal to the time interval between every two frames of touch signals, and before the arrival of the next frame of touch signals, the processing of the current frame of touch signals is completed, so as to ensure the current frame of touch signals. It does not affect the processing of the touch signal of the next frame.
  • the validity period is greater than or equal to the touch signal and the touch signal.
  • the time interval between the signals ensures that the touch signals generated by the touch sensor at the same time point can be received.
  • the frequency at which the optical touch sensor generates the touch signal since the delay in transmitting the touch signal from the optical touch sensor to the processor and the delay in transmitting the touch signal from the touch sensor to the processor are both small and negligible, the frequency at which the optical touch sensor generates the touch signal.
  • the time interval between two frames of touch signals in the middle and every two frames is 20ms, and the time that the optical touch sensor transmits the touch signal to the processor is at most 10ms earlier than the time that the touch sensor transmits the touch signal to the processor (that is, the touch signal
  • the maximum time interval between the touch signal and the touch signal is 10ms)
  • the validity period can be set to 20ms.
  • the touch signal of the touch track is received within the validity period, that is, the touch signal and the touch signal are continuously received within a short period of time, it can be determined that the touch signal of the touch track and the touch signal of the touch track are in time. correlation exists.
  • the touch signal of the touch track is not received within the validity period, that is, the touch signal is received alone in a relatively short period of time, but the touch signal is not received, the touch signal of the touch track and the touch signal of the touch track can be determined. Touch signals are not correlated in time.
  • the touch sensor every time the touch sensor detects a touch event, it normally generates a frame of touch signal, and transmits the frame of touch signal to the processor, as follows:
  • indicates that no touch event is detected
  • indicates that a touch event is detected
  • Ni indicates that no touch signal is generated
  • 1 indicates that a touch signal containing touch information is generated
  • 0 means to generate a touch signal indicating the end of the touch.
  • the touch position associated with the touch signal of the touch track is determined, and the touch position represents the time when the touch object approaches or touches the surface of the display screen.
  • the position can be calculated by the processor according to the optical signal scanned by the optical touch sensor.
  • the touch position of the touch track associated with the touch signal is determined, where the touch position represents the position of the touch object when it touches the surface of the display screen, and can be calculated by the touch sensor.
  • the real position of the same touch object is constant, that is, the touch signal and the touch signal generated by the touch track of the same touch object originate from the same position.
  • the processor calculates the touch position and the touch sensor calculates the touch
  • the way of touching the position is different, and the accuracy of infrared touch sensor and touch sensor is generally high. Therefore, there may be differences between the touch position and the touch position of the same touch object, but the difference is generally small and acceptable.
  • a threshold value can be preset, and the threshold value represents an acceptable error range.
  • the distance between the touch position and the touch position may be calculated by means of Euclidean distance and the like, and the distance is compared with a preset threshold.
  • the distance between the touch position and the touch position is less than or equal to the preset threshold, it means that the difference between the touch position and the touch position is within the error range, and it can be determined that the touch signal and the touch signal are in position There is a correlation.
  • the distance between the touch position and the touch position is greater than the preset threshold, it means that the difference between the touch position and the touch position is outside the error range, and it can be determined that the touch signal and the touch signal do not exist in position Relevance.
  • the above manner of determining the correlation between time and location is only an example.
  • other determinations of the correlation between time and location may be set according to the actual situation. For example, when a touch signal is received When the touch signal and the touch signal are related in time, if there is a time correlation between the touch signal and the touch signal, then identify the positional correlation between the touch signal and the touch signal, or, Set the validity period for the touch signal. When the touch signal is received within the validity period, it is determined that there is a correlation between the touch signal and the touch signal, and the touch signal has been associated with the touch signal.
  • the touch signal is correlated with the touch signal, the touch signal is not correlated with the touch signal, and so on, which is not limited in this embodiment of the present invention.
  • those skilled in the art may also adopt other methods for determining the correlation between time and position according to actual needs, which are not limited in this embodiment of the present invention. .
  • Step 110322 If there is no correlation in time or position between the touch signal and the touch signal, determine that the touch object is close to the surface of the display screen and the touch track is the first sub-track.
  • the touch signal or the touch signal is generated independently at the same time or at the same position, there is no correlation in time between the touch signal and the touch signal.
  • Step 110323 If the touch signal and the touch signal are correlated in time and position, determine that the touch object touches the surface of the display screen and the touch track is the second sub track.
  • the touch signal and the touch signal are correlated in time and position, that is, the touch signal and the touch signal are generated at the same time and at the same position, it can be determined that the touch signal indicates that the surface of the touch screen is valid. , the touch signal and the touch object to which the touch signal belongs touch the surface of the display screen.
  • Step 1104 ignoring the first sub-track, and drawing handwriting matching the second sub-track on the writing interface.
  • the touch object When writing the first sub-track, the touch object is suspended on the surface of the display screen, which is generally not the handwriting intended by the user, therefore, the first sub-track can be ignored.
  • the touch object touches the surface of the display screen, which is generally the handwriting intended by the user. Therefore, handwriting is drawn along the second sub-track on the writing interface.
  • FIG. 7A if the user writes the character "Zheng", the touch trace generated during writing is divided into the second character trace (shown as a solid line) that has touched the display screen, and the first character trace that has not touched the display screen.
  • the sub-track (shown as a dotted line), it can be seen that there are continuous pen-start and pen-down 711 between writing the first horizontal and the first vertical; There are continuous starting and ending 713 between the strokes, and there are obvious continuous strokes, and these continuous strokes are mostly the first sub-track (shown as dotted lines).
  • the handwriting corresponding to the second sub-track is drawn, while the first sub-track is ignored and the corresponding handwriting is not drawn.
  • the method of this embodiment is applied to draw handwriting corresponding to the second sub-track, ignore the first sub-track, do not draw the corresponding handwriting, and write a plurality of "positive" Words, in the area 742, the previous technology is applied, the handwriting corresponding to the touch track is directly drawn, and a plurality of "positive" characters are written.
  • step 1104 includes the following steps:
  • Step 11041 generating a touch data packet for the touch track to distinguish the first sub-track and the second sub-track.
  • the optical touch sensor is electrically connected to a processor (eg, a host controller, a touch controller), and the optical touch sensor transmits a touch signal to the processor (eg, a host controller, a touch controller) controller), on the other hand, the touch sensor is electrically connected to the processor (such as a host controller, a touch controller), and the touch sensor transmits a touch signal to the processor (such as a host controller, a touch controller) , at this time, the processor (eg, the host controller, the touch controller) identifies the correlation between the touch signal and the touch signal in time and position.
  • a processor eg, a host controller, a touch controller
  • the processor (such as a host controller, a touch controller) can refer to whether the touch object touches the display screen, generate a touch data packet for the touch track, and record the information of the touch signal in the touch data packet, wherein , on the basis of the original data, the touch data package can reflect whether the touch object touches the display screen, so as to distinguish the first sub-track and the second sub-track.
  • a method of generating a touch data packet if the touch track is the first sub-track, the generation of the touch data packet for the touch track is prohibited; if the touch track is the second sub-track, the touch track is allowed to be generated. Generate touch packets.
  • the touch track that touches the display screen is more meaningful for the overall application of the interactive tablet, for example, the interactive tablet is used in education, and the touch track is mostly handwriting (i.e. writing on the blackboard, answering information, comments, etc.).
  • the bottom layer uses the validity of the touch signal for the touch screen as the condition for filtering the touch data packets. For the case where the touch object is close to the surface of the display screen, it is forbidden to generate touch data packets for the touch track. In the case of the surface of the screen, it is allowed to generate touch data packets for the touch traces, which can reduce the number of generated touch data packets, thereby reducing the resource occupation for processing the touch traces.
  • the so-called prohibition of generating touch data packets may mean generating touch data packets, but the touch data packets do not contain touch point data, that is, the touch data packets are empty data packets used to maintain the touch controller
  • the communication with the host controller does not report touch point data, or it may not generate touch point data, including not generating an empty data packet, which is not limited in this embodiment.
  • the so-called allowing the generation of touch data packets may refer to encapsulating touch point data related to the touch track in the data packets.
  • the touch point data included in the touch data package includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • First identification data second identification data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, and the first identification data and the first The second identification data indicates that the first identification data is used to record the existence of the touch signal at a certain time and at a certain position;
  • the second identification data is used to record the presence of the touch signal at a certain time and at a certain position
  • the combination of the first identification data and the second identification data indicates that the touch track is the first sub-track or the second sub-track;
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the status can include at least one of the following data:
  • the third identifies data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, which is represented by the third identification data,
  • the third identification data represents the first sub-track or the second sub-track of the touch track.
  • the data format of the state is as follows:
  • the state in the touch data packet carries the first identification data and the second identification data at the same time.
  • the generated touch data packet is empty data pack.
  • the touch data packet is as follows :
  • the state in the touch data packet also carries the third identification data.
  • the generated touch data packet is an empty data packet.
  • the touch data packet is as follows :
  • the state in the touch data packet does not carry the first identification data and the second identification data. In this case, when the touch track is the first sub-track, the touch data packet is not generated .
  • the touch data packet is as follows :
  • the touch track is the first sub-track or the second sub-track, it is allowed to generate touch data packets.
  • the signal generates a touch data packet, that is, whether the touch signal indicates that the surface of the touch screen is valid or that the surface of the touch screen is invalid, a touch data packet is generated, and the generated touch data packet can distinguish the touch signal. It means that the touch object is close to the surface of the display or touching the display.
  • the touch operation that touches the surface of the display screen has positive significance for the overall application of the interactive tablet, for example, when the touch signal indicates that touching the surface of the display screen is valid, It means that the floating touch is defined when the surface of the touch screen is invalid.
  • the meaning of the touch operation can be enriched, and the touch operation will give the touch screen more expressive force, thereby improving the flexibility of the touch operation.
  • the so-called allowing the generation of touch data packets may refer to encapsulating touch point data related to the touch track in the data packets.
  • the touch point data included in the touch data package includes at least one of the following items:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state can be used to distinguish the touch track as the first sub-track or the second sub-track, and can include at least one of the following data:
  • First identification data second identification data, reliability, and retention parameters.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, and the first identification data and the first The second identification data indicates that the first identification data is used to record the relevance of the touch signal;
  • the second identification data is used to record the relevance of the touch signal
  • the combination of the first identification data and the second identification data indicates that the touch track is the first sub-track or the second sub-track;
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the status includes at least one of the following data:
  • the third identification data, the second identification data, the reliability, and the reserved parameter are the third identification data, the second identification data, the reliability, and the reserved parameter.
  • the touch signal and the touch signal belonging to the same touch object can be distinguished, so that the information of the touch signal and the touch signal are written into the same touch data packet, which is represented by the third identification data,
  • the third identification data indicates that the touch track is the first sub-track or the second sub-track.
  • the state in the touch data packet simultaneously carries the first identification data and the second identification data, or the state in the touch data packet The state carries third identification data.
  • the optical touch sensor starts to generate a touch signal at the 3rd frame and ends at the 26th frame
  • the touch sensor starts to generate a touch signal at the 8th frame, and ends at the 22nd frame
  • the touch The packet looks like this:
  • the optical touch sensor starts to generate a touch signal at the 4th frame and ends at the 27th frame, and the touch sensor starts to generate a touch signal at the 8th frame and ends at the 22nd frame.
  • the touch data packet is as follows:
  • Step 11042 Parse the touch data packets belonging to the second sub-track to draw handwriting matching the second sub-track on the writing interface.
  • the touch controller can transmit the touch data packet to the upper layer application of the host controller. If the touch data packet is first generated by the bottom layer application of the host controller, Then the underlying application can transmit the touch data packet to the upper application.
  • the host controller After the upper-layer application of the host controller receives the touch data packet of the touch controller, it can parse the touch data packet, so as to write handwriting corresponding to the second sub-track in the current business scenario.
  • touch controller prohibits the generation of touch data packets when the touch track is the first sub-track, and allows the generation of touch data packets when the touch track is the second sub-track.
  • the host controller when the host controller receives the touch data packet, it belongs to the second sub-track by default, and reads the touch point data in the touch data packet (ie, the non-empty data packet), wherein the touch point data includes X coordinates and Y coordinates , you can draw handwriting along the X and Y coordinates on the writing interface.
  • the touch point data ie, the non-empty data packet
  • the touch controller is the first sub-track or the second sub-track, the touch controller is allowed to generate touch data packets.
  • the host controller when it receives the touch data packet, it can read the touch point data in the touch data packet, and the touch point data includes the state, the X coordinate, and the Y coordinate.
  • the touch point data is ignored, that is, no corresponding handwriting is drawn on the writing interface.
  • handwriting is drawn along the X coordinate and the Y coordinate on the writing interface.
  • the touch track is represented by a touch signal and a touch signal, that is, the touch track includes a touch signal and a touch signal.
  • Step 1104 includes the following steps: Step 11043 , if the touch track is For the first sub-track, the touch track is ignored.
  • Step 11044 If the touch track is the second sub track, read the touch point data from the touch signal of the second sub track.
  • Step 11045 Draw handwriting along the X coordinate and the Y coordinate on the writing interface.
  • the optical touch sensor is electrically connected to the touch controller, and the touch controller is electrically connected to the host controller.
  • the optical touch sensor transmits touch signals to the touch controller, and the touch controller generates touch data packets. , and, transmit the touch data packets to the host controller.
  • the touch point data included in the touch data includes at least one of the following items:
  • the data format of the touch data packet is as follows:
  • the X coordinate and the Y coordinate may be the touch position calculated according to the optical signal scanned by the optical touch sensor, the touch position calculated by the touch sensor, or the touch position and the touch position.
  • This embodiment does not limit the position calculated by calculating the average value, weighted summation, and the like.
  • the state may include at least one of the following data:
  • the reserved parameters are reserved fields, and the required parameters can be added according to the needs of the business scenario.
  • the data format of the state is as follows:
  • the touch signal is represented by a touch data packet, that is, when the host controller receives a valid touch data packet (ie, a non-null data packet), it is equivalent to receiving a frame of touch signals.
  • the touch sensor is electrically connected to the host controller. At this time, the touch sensor transmits the touch signal to the host controller, and the host controller recognizes the correlation between the touch signal and the touch signal.
  • the host controller can determine whether the touch track is the first sub-track or the second sub-track by comparing the correlation between the touch signal and the touch signal at the same time point.
  • the optical touch sensor starts to generate the touch signal in the 3rd frame and ends in the 26th frame
  • the touch sensor starts to generate the touch signal in the 8th frame
  • the touch signal and the touch data are The relationship between packages:
  • the touch track is the first sub-track
  • the current touch track can be ignored and the corresponding handwriting is not drawn on the writing interface.
  • the touch point data is read from the touch signal of the device, and the touch point data includes the X coordinate and the Y coordinate, so that handwriting is drawn along the X coordinate and the Y coordinate on the writing interface.
  • a writing interface is displayed, at least one touch track when at least one touch object moves on the surface of the display screen is determined, and a first sub track, a second sub track, and a first sub track are determined for each touch object.
  • the second sub track is the touch track where the touch object has touched the display screen. Ignore the first sub track, and draw handwriting matching the second sub track on the writing interface.
  • each touch object independently recognizes the touch operation without interfering with each other, giving the touch track more features of one dimension and enriching the touch track.
  • this embodiment is based on distinguishing the touch track into the first sub-track and the second sub-track, so that the The handwriting in response to writing is more suitable for the needs of business scenarios, thereby improving the performance of handwriting in this business scenario and solving the problem of zero-height writing.
  • FIG. 12 is a structural block diagram of a touch signal verification device according to Embodiment 6 of the present invention, which is applied to an interactive tablet, and an optical touch sensor and a touch sensor are respectively arranged in the interactive tablet.
  • the following modules can be included:
  • an optical touch sensor activation module 1201, configured to activate the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the display screen surface;
  • a touch sensor activation module 1202 configured to activate the touch sensor to generate at least one touch signal when at least one touch object touches the display screen;
  • a correlation determination module 1203, configured to determine the correlation between each of the touch signals and each of the touch signals
  • the validity determination module 1204 is configured to determine the validity of each touch signal for touching the display screen according to the correlation between each touch signal and each touch signal.
  • the optical touch sensor activation module 1001 includes:
  • a sleep determination module used to determine the sleep of the optical touch sensor
  • a sleep maintaining module for maintaining the sleep of the optical touch sensor if the touch signal is not received
  • the sensor activation module is configured to activate the optical touch sensor if the touch signal is received, so as to generate at least one touch signal when at least one touch object approaches or touches the display screen surface.
  • the optical touch sensor activation module 1001 further includes:
  • the sleep control module is configured to control the optical touch sensor to sleep if the touch signal is interrupted.
  • the correlation determination module 1003 includes:
  • a single-touch correlation determination module configured to determine the correlation between the touch signal and the touch signal when the touch signal is one and the touch signal is one;
  • a multi-touch correlation determination module configured to determine the time and position of the plurality of touch signals and the plurality of the touch signals when the touch signals are multiple or the touch signals are multiple correlation.
  • the single-touch association determination module includes:
  • a single-touch first validity period setting module configured to set the validity period for the touch signal
  • a single-touch first correlation determination module configured to determine that the touch signal is correlated with the touch signal when the touch signal is received within the validity period
  • a single-touch second correlation determination module configured to determine that the touch signal is not correlated with the touch signal when the touch signal is not received within the validity period.
  • the single-touch association determination module includes:
  • a single-touch second validity period setting module configured to set the validity period for the touch signal
  • a single-touch third correlation determination module configured to determine the touch signal when the touch signal is received within the validity period and the touch signal indicates that the touch object initially touches the display screen There is a correlation with the touch signal, and a flag is set for the touch signal when the touch object initially touches the display screen;
  • a single-touch fourth correlation determination module configured to determine the touch signal when the touch signal is received within the validity period, and the touch signal indicates that the touch object finishes touching the display screen There is a correlation with the touch signal, and the flag bit is cleared for the touch signal when the touch object finishes touching the display screen;
  • a single-touch fifth correlation determination module configured to determine that the touch signal is correlated with the touch signal when the touch signal is not received within the validity period and the flag bit is present;
  • a sixth correlation determination module for single touch is configured to determine that the touch signal does not have correlation with the touch signal when the touch signal is not received within the validity period and there is no flag bit.
  • the touch sensor when the touch object continuously touches the display screen, the touch sensor stops generating other touch signals between the first target signal and the second target signal, so The first target signal is the touch signal indicating that the touch object initially touches the display screen, and the second target signal is the touch signal indicating that the touch object finishes touching the display screen .
  • the multi-touch association determination module includes:
  • a multi-touch temporal correlation identification module configured to identify the temporal correlation between the touch signal and the touch signal when the touch signal is received
  • the multi-touch position correlation identification module is used for identifying the positional correlation between the touch signal and the touch signal if the touch signal is correlated in time with the touch signal.
  • the multi-touch association determination module includes:
  • a multi-touch validity period setting module for setting the validity period for the touch signal
  • a multi-touch first correlation determination module configured to determine that the touch signal is correlated with the touch signal when the touch signal is received within the validity period
  • a multi-touch second correlation determination module configured to determine that the touch signal is not correlated with the touch signal when the touch signal is not received within the validity period.
  • the multi-touch association determination module includes:
  • a multi-touch touch position determination module configured to determine a touch position associated with the touch signal, where the touch position represents a position when the touch object approaches or touches the surface of the display screen;
  • a multi-touch touch location determination module configured to determine a touch location associated with the touch signal, where the touch location represents a location where the touch object touches the surface of the display screen;
  • a third multi-touch correlation determination module configured to determine that the touch signal and the touch signal are in the same position if the distance between the touch position and the touch position is less than or equal to a preset threshold there is a relationship;
  • the fourth multi-touch correlation determination module is configured to determine that the touch signal and the touch signal are not in position if the distance between the touch position and the touch position is greater than a preset threshold. There is a correlation.
  • the validity determination module 1004 includes:
  • a valid determination module configured to determine that the touch signal is valid for touching the display screen if the touch signal is correlated with the touch signal
  • An invalidity determination module configured to determine that the touch signal is invalid for touching the display screen if the touch signal has no correlation with the touch signal.
  • it also includes:
  • a touch data packet generation module configured to generate a touch data packet for the touch signal according to the validity of the touch signal for touching the display screen
  • a first service operation execution module configured to execute a service operation according to the touch data packet.
  • the generating module for generating a touch data packet includes:
  • a generation prohibition module configured to prohibit the generation of a touch data packet if the validity of the touch signal for touching the display screen is invalid
  • the first permission generating module is configured to allow the generation of a touch data packet if the validity of the touch signal for touching the display screen is valid.
  • the touch point data included in the touch data packet includes at least one of the following items:
  • the state includes first identification data and second identification data
  • the first identification data is used to record the existence of the touch signal
  • the second identification data is used to record the presence of the touch signal
  • the combination of the first identification data and the second identification data indicates the validity of the touch signal for touching the display screen.
  • the state includes third identification data
  • the third identification data indicates the validity of the touch signal for touching the display screen.
  • the first service operation execution module includes:
  • a first touch point data reading module configured to read the touch point data in the touch data packet
  • a touch point execution module configured to perform business operations according to the touch point data.
  • the touch data packet generation module includes:
  • the second permission generation module is configured to allow the generation of touch data packets when the validity of the touch signal for touching the display screen is valid or invalid.
  • the touch point data included in the touch data packet includes at least one of the following items:
  • the state includes first identification data and second identification data
  • the first identification data is used to record the existence of the touch signal
  • the second identification data is used to record the presence of the touch signal
  • the combination of the first identification data and the second identification data indicates the validity of the touch signal for touching the display screen
  • the state includes third identification data
  • the third identification data indicates the validity of the touch signal for touching the display screen.
  • the first service operation execution module includes:
  • a second touch point data reading module configured to read the touch point data in the touch data packet, where the touch point data includes a state
  • the first invalid operation execution module is configured to ignore the touch point data if the state indicates that the validity of the touch signal for touching the display screen is invalid, or execute the first invalid operation according to the touch point data. a type of business operation;
  • a first valid operation execution module configured to execute a second type of business operation according to the touch point data if the state indicates that the touch signal is valid for touching the display screen.
  • the device further includes:
  • the second invalid operation execution module is configured to ignore the touch signal if the validity of the touch signal for touching the display screen is invalid, or read touch point data from the touch signal , and perform the first type of business operation according to the touch point data;
  • the second valid operation execution module is configured to read the touch point data from the touch signal if the validity of the touch signal for touching the display screen is valid, and execute the first step according to the touch point data. Two types of business operations.
  • the touch point data included in the touch data includes at least one of the following items:
  • the optical touch sensor includes an infrared transmitter and an infrared receiver
  • the infrared transmitter is used for transmitting infrared signals
  • the infrared receiver is used for receiving infrared signals
  • the infrared transmitter is installed on the first side of the frame of the display screen
  • the infrared receiver is installed on the second side of the frame of the display screen, and the first side is opposite to the second side.
  • the touch sensor is an elastic wave sensor.
  • the number of the touch sensors is positively related to the area of the display screen, and the touch sensors are installed at positions that can transmit vibrations generated by the display screen.
  • the touch sensor is mounted on the surface of the display screen, and the touch sensor is located within the frame of the display screen.
  • the touch signal verification device provided by the embodiment of the present invention can execute the touch signal verification method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 13 is a structural block diagram of a human-computer interaction device according to Embodiment 7 of the present invention, which is applied to an interactive tablet.
  • the device may include the following modules:
  • a touch operation detection module 1301, configured to detect at least one touch operation triggered by at least one touch object on the surface of the display screen;
  • the touch relationship recognition module 1302 is used to recognize the touch relationship between each touch object and the display screen as a touch relationship during the triggering of each touch operation;
  • a touch type dividing module 1303, configured to divide touch types for each of the touch operations according to the touch relationship
  • the interactive operation execution module 1304 is configured to perform an interactive operation adapted to the touch type for each of the touch operations respectively.
  • the interactive tablet is provided with an optical touch sensor and a touch sensor, respectively, and the touch operation detection module 1301 includes:
  • an optical touch sensor activation module for activating the optical touch sensor to generate at least one touch signal when at least one touch object approaches or touches the surface of the display screen and triggers a touch operation
  • the touch sensor activation module is used to activate the touch sensor to generate at least one touch signal when at least one touch object touches the display screen and triggers a touch operation.
  • the touch relationship identification module 1302 includes:
  • a single-touch correlation determination module configured to determine the touch when receiving the touch signal if the touch operation is represented by a touch signal and a touch signal when the touch operation is one the correlation between the touch signal and the touch signal;
  • a single-touch touch relationship determination module configured to determine the touch relationship between the touch object and the display screen as a touch relationship according to the correlation between the touch signal and the touch signal;
  • a multi-touch correlation determination module configured to determine the correlation in time and position between the touch signals of the plurality of touch operations and the touch signals of the plurality of touch operations;
  • the multi-touch relationship determination module is configured to determine the touch relationship between a plurality of the touch objects and the surface of the display screen as a touch relationship according to the correlation.
  • the single-touch association determination module includes:
  • a single-touch first validity period setting module configured to set the validity period for the touch signal
  • a single-touch first correlation determination module configured to determine that the touch signal is correlated with the touch signal when the touch signal is received within the validity period
  • a single-touch second correlation determination module configured to determine that the touch signal is not correlated with the touch signal when the touch signal is not received within the validity period.
  • the single-touch association determination module includes:
  • a single-touch second validity period setting module configured to set the validity period for the touch signal
  • a single-touch third correlation determination module configured to determine the touch signal when the touch signal is received within the validity period and the touch signal indicates that the touch object initially touches the display screen There is a correlation with the touch signal, and a flag is set for the touch signal when the touch object initially touches the display screen;
  • a single-touch fourth correlation determination module configured to determine the touch signal when the touch signal is received within the validity period, and the touch signal indicates that the touch object finishes touching the display screen There is a correlation with the touch signal, and the flag bit is cleared for the touch signal when the touch object finishes touching the display screen;
  • a single-touch fifth correlation determination module configured to determine that the touch signal is correlated with the touch signal when the touch signal is not received within the validity period and has the flag bit;
  • a sixth correlation determination module for single touch is configured to determine that the touch signal does not have correlation with the touch signal when the touch signal is not received within the validity period and there is no flag bit.
  • the touch sensor when the touch object continuously touches the display screen, the touch sensor stops generating other touch signals between the first target signal and the second target signal, so The first target signal is the touch signal indicating that the touch object initially touches the display screen, and the second target signal is the touch signal indicating that the touch object finishes touching the display screen .
  • the touch relationship determination module includes:
  • a touched determination module configured to determine that the touching relationship between the touch object and the display screen is that the touch object has touched if there is a correlation between the touch signal and the touch signal touching the display screen, as a touch relationship;
  • a no-touch determination module configured to determine that the touch object is not in touch with the display screen if there is no correlation between the touch signal and the touch signal. Touching the display screen is used as a touch relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请实施例提供了触控信号的校验、人机交互、笔迹的显示方法及相关装置,该触控信号的校验方法包括:启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号,启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号,确定各触碰信号与各触控信号的关联性,根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性,触碰信号可检测到触碰显示屏的事件,以触碰信号与触控信号的关联性,可识别确定触控信号对于触碰显示屏的有效性,赋予触控信号更多一个维度的特征,丰富触控信号的含义,在书写的场景中,可以解决零高度书写的问题。

Description

触控信号的校验、人机交互、笔迹的显示方法及相关装置 技术领域
本申请实施例涉及触摸控制的技术领域,尤其涉及触控信号的校验、人机交互、笔迹的显示方法及相关装置。
背景技术
光学式的触控系统是交互平板采用的触控方式之一,如图1A所示,光学触控传感器120一般设置于显示屏110的表面的两侧,光学触控传感器120传输的光信号在显示屏110表面传播,通过分析触摸物(例如,手或笔)遮挡光信号的情况,计算触摸物在显示屏110表面的位置,生成触摸数据,进而由交互平板对触摸数据进行进一步的处理,但是,当前的技术方案无法解决零书写高度的问题。
发明内容
本发明实施例提出了触控信号的校验、人机交互、笔迹的显示方法及相关装置,以解决因光学触控传感器的触控区域而出现的误操作,以及在交互平板中光学式的触控系统性能较差的问题。
第一方面,本发明实施例提供了一种触控信号的校验方法,应用于交互平板,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述方法包括:
启动所述光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
启动所述触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
确定各所述触碰信号与各所述触控信号的关联性;
根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
第二方面,本发明实施例还提供了一种人机交互方法,应用于交互平板,所述方法包括:
检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
根据所述触碰关系分别对各所述触控操作划分触控类型;
分别对各所述触控操作执行与所述触控类型适配的交互操作。
第三方面,本发明实施例还提供了一种笔迹的显示方法,应用于交互平板,所述方法包括:
显示书写界面;
确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;
忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
第四方面,本发明实施例还提供了一种触控信号的校验装置,应用于交互平板,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述装置包括:
光学触控传感器启动模块,用于启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
触碰传感器启动模块,用于启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
关联性确定模块,用于确定各所述触碰信号与各所述触控信号的关联性;
有效性确定模块,用于根据各所述触碰信号与各所述触控信号的关联性、确定各所述触 控信号对于触碰所述显示屏的有效性。
第五方面,本发明实施例还提供了一种人机交互装置,应用于交互平板,所述装置包括:
触控操作检测模块,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
触碰关系识别模块,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
触控类型划分模块,用于根据所述触碰关系分别对各所述触控操作划分触控类型;
交互操作执行模块,用于分别对各所述触控操作执行与所述触控类型适配的交互操作。
第六方面,本发明实施例还提供了一种笔迹的显示装置,应用于交互平板,所述装置包括:
书写界面显示模块,用于显示书写界面;
触控轨迹确定模块,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
触控轨迹区分模块,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;
笔迹绘制模块,用于忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
第七方面,本发明实施例还提供了一种交互平板,包括:
光学触控传感器,用于在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
触碰传感器,用于在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
处理器,用于确定各所述触碰信号与各所述触控信号的关联性;根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
第八方面,本发明实施例还提供了一种交互平板,包括:
触控传感器,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
处理器,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;根据所述触碰关系分别对各所述触控操作划分触控类型;分别对各所述触控操作执行与所述触控类型适配的交互操作。
第九方面,本发明实施例还提供了一种交互平板,包括:
显示屏,用于显示书写界面;
触控传感器,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
处理器,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
第十方面,本发明实施例还提供了一种交互平板,所述交互平板包括:
一个或多个处理器;
存储器,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面所述的触控信号的校验方法或者如第二方面所述的人机交互方法或者如第三方面所述的笔迹的显示方法。
第十一方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方所述的触控信号的校验方法或者如第二方面所述的人机交互方法或者如第三方面所述的笔迹的显示方法。
在本实施例中,启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号,启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少 一个触碰信号,确定各触碰信号与各触控信号的关联性,根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性,触碰信号可检测到触碰显示屏的事件,以触碰信号与触控信号的关联性,可识别确定触控信号对于触碰显示屏的有效性,赋予触控信号更多一个维度的特征,丰富触控信号的含义,在部分业务场景下,如果是否触碰到显示屏对于该业务场景具有更加积极的意义,那么,本实施例基于触控信号对于触碰显示屏的有效性可对触控信号的响应方式进行区分,使得响应触控操作的方式更加适配业务场景的需求,从而提高触控操作在该业务场景的表现,在书写的场景中,可以解决零高度书写的问题。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1A为现有的一种触控信号及其报点的示例图;
图1B为现有的一种书写笔迹的示例图;
图2A至图2C为本发明实施例提供的一种安装光学触控传感器的示例图;
图3A为本发明实施例提供的一种触碰信号的去噪示例图;
图3B为本发明实施例提供的一种安装触碰传感器的示例图;
图3C至图3D为本发明实施例提供的一种触碰传感器的检测范围的示例图;
图4A为本发明实施例提供的一种触碰传感器与触控控制器电连接的示意图;
图4B与图4C为本发明实施例提供的一种触碰传感器与主机控制器电连接的示意图;
图5为本发明实施例一提供的一种触控信号的校验方法的流程图;
图6A为本发明实施例一提供的触控信号及其有效性的示例图;
图6B至图6G为本发明实施例一提供的一种多点触控的示例图;
图7A至图7C为本发明实施例一提供的一种书写笔迹的示例图;
图8是本发明实施例二提供的一种触控信号的校验方法的流程图;
图9是本发明实施例三提供的一种触控信号的校验方法的流程图;
图10是本发明实施例四提供的一种人机交互方法的流程图;
图11是本发明实施例五提供的一种笔迹的显示方法的流程图;
图12为本发明实施例六提供的一种触控信号的校验装置的结构示意图;
图13为本发明实施例七提供的一种人机交互装置的结构示意图;
图14为本发明实施例八提供的一种笔迹的显示装置的结构示意图;
图15为本发明实施例九提供的一种交互平板的结构示意图;
图16为本发明实施例十提供的一种交互平板的结构示意图;
图17为本发明实施例十一提供的一种交互平板的结构示意图;
图18为本发明实施例十二提供的一种交互平板的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例方式作进一步地详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”等仅用于区别类似的对象,而不必用于描述特定的顺序或先后次序,也不能理解为指示或暗示相对重要性。 对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在实际应用中,交互平板的硬件部分由显示屏、智能处理系统等部分所构成,由整体结构件结合到一起,同时也由专用的软件系统作为支撑,以下对显示屏、智能处理系统等部分进行解析:
1.1、显示屏
在实际应用中,显示屏包括LED(Light Emitting Diode)显示屏、OLED(Organic Light-Emitting Diode)显示屏、LCD(Liquid Crystal Display)显示屏等。通过在显示屏表面的两侧设置光学触控传感器,可以构成触控显示屏。光学触控传感器可在显示屏的表面使用光信号扫描触摸物,如用户的手指、触控笔等。可以理解的,为了保护显示屏不被触摸物划伤,在显示屏的表面会设置盖板玻璃,因此,本说明书中的实施例中,显示屏的表面,可以指的是显示屏的盖板玻璃表面。
当触摸物触摸显示屏、触发了显示屏上某个界面时,执行定位等操作,从而实现对智能处理系统的控制。
从技术原理来区别触控显示屏,可以包括如下几个类型:
1.1.1、红外触摸技术
光学触控传感器包括红外发射器与红外接收器,红外发射器用于发射红外信号,红外接收器用于接收红外信号,利用不同方向上密布的红外线信号形成光束栅格来定位触摸点。
显示屏安装带电路板的边框,作用是在显示屏的周围排布红外发射器和红外接收器,形成横竖交叉的光束栅格。
当触控物体遮断了红外信号,就会在相应红外接收器处引起光测量值的减弱,因而,可以判断出触摸点在屏幕的位置。
具体而言,红外发射器安装在显示屏的边框的第一侧,红外接收器安装在显示屏的边框的第二侧,第一侧与第二侧位置相对,即红外接收器在红外发射器的扫描范围内,使得红外发射器所发射的红外信号由红外接收器所接收。
针对不同的业务需求,显示屏的形状有所不同,如矩形、六边形、圆形等,边框的形状也随显示屏的形状而有所不同,如矩形、六边形、圆形等,针对不同形状的边框,各个红外模组中红外发射器、红外接收器的设置也有所不同。
在一个示例中,如图2A所示,交互平板的边框的形状为矩形,则在本示例中,交互平板的边框包括第一边框211、第二边框212、第三边框213、第四边框214,其中,在垂直方向上,第一边框211与第三边框213相对,在水平方向上,第二边框212与第四边框214相对,对此,第一边框211又称天侧、第三边框213又称地侧,第二边框212又称左侧、第四边框214又称右侧。
其中一组红外发射器221设置在第一边框211、红外接收器223设置在第三边框213。
另一组红外发射器222设置在第二边框212、红外接收器224设置在第四边框214。
在另一个示例中,如图2B所示,交互平板的边框的形状为六边形,则在本示例中,交互平板的边框包括第一边框231、第二边框232、第三边框233、第四边框234、第五边框235、第六边框236,其中,第一边框231与第四边框234相对、第二边框232与第五边框235相对、第三边框233与第六边框236相对。
其中一个组红外发射器241设置在第一边框231、红外接收器242设置在第四边框234。
另一组红外发射器设置242在第二边框232、红外接收器245设置在第五边框235。
又一组红外发射器设置243在第三边框233、红外接收器246设置在第六边框236。
在又一个示例中,如图2C所示,交互平板的边框的形状为圆形,则在本示例中,交互平板的边框包括第一弧边251、第二弧边252、第三弧边253、第四弧边254,其中,第一弧边251与第三弧边253相对、第二弧边252与第四弧边254相对,一般情况下,第一弧边251、第二弧边252、第三弧边253、第四弧边254与圆心的夹角均为90°。
其中一组的红外发射器261设置在第一弧边251、红外接收器253设置在第三弧边253。
另一组的红外发射器262设置在第二弧边252、红外接收器264设置在第四弧边254。
为使本领域技术人员更好地理解本发明,在本说明书的实施例中,将图2A所示的交互平板的边框及光学触控传感器作为一种示例进行说明。
1.1.2、CCD(charge coupled device,电荷耦合器件)/CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)触摸技术
光学触控传感器包括CCD(或CMOS)、红外发射器、CCD摄像头、发射条。
两个CCD(或CMOS)摄像头分别平贴在显示屏的左上角及右上角,以作为感光元件来观测阴影(触摸物)发生的位置。
另外,反射条(贴在显示屏的右侧、左侧、下侧)及两颗平贴在显示屏的左上角与右上角的红外发射器(红外发射器通常与CCD(或CMOS)摄像头绑在一起)。
安装在显示屏顶部左上角的CCD摄像头通过红外发射器射出光线,经过四周反射条反射,进入右上角的CCD摄像头中。同理,右上角的CCD摄像头发射的光线传入左侧的CCD摄像头中。密布的光线在触摸区域内形成一张光线网,经过多次反射的光线之间的空间在1mm以内。
当触摸物触摸一点时,这个点与两个CCD(或CMOS)摄像头会构成一个三角形,形成几个重要的角度。触控控制器通过分析CCD(或CMOS)摄像头中的图像、触摸物体位置的三角关系,得到触摸点的坐标。
1.1.3、非全内反射触摸技术(Frustrated Total Internal Reflection,FITR)
光学触控传感器包括红外发射器、投影机、摄像机,红外发射器安装在交互平板的显示屏的侧边,投影机和摄像机安装在交互平板的显示屏的底部。
红外发射器将红外信号光从显示屏的一端射入,发生全反射。应用非全内反射,即,当触摸物触摸显示屏的表面时,激光从触摸物处散射出去,被投影机和摄像机检测到。
1.1.4、激光平面触摸技术(Laser Light Plane,LLP)
光学触控传感器包括红外发射器、投影机、摄像机,红外发射器安装在交互平板的显示屏的上表面,投影机和摄像机安装在交互平板的显示屏的底部。
将红外发射器从显示屏的表面射入激光,形成红外面,当触摸物触摸显示屏的表面时,激光从触摸物处散射出去,被投影机和摄像机检测到。
1.1.5、发光二极管平面多点触摸技术(Light emitting Diode Light Plane,LED-LP)
光学触控传感器包括投影机、摄像机,投影机和摄像机安装在交互平板的显示屏的底部。
当用户的手指等触摸物触摸显示屏的表面时,自身的红外信号被投影机和摄像机检测到。
对于通过光学触控传感器来实现交互平板的触控功能,在本行业中一直存在长期的技术难题,即零书写高度技术问题。所谓零书写高度是指:触摸物(例如手或笔)在显示屏上书写时,触摸物触碰到显示屏的表面时,才产生书写笔迹,触摸物在书写产生笔迹时与显示屏表面的间距为零。
为了更好的理解零书写高度,结合图1A作进一步的说明,光学触控传感器120一般凸出显示屏110的表面,在发射或接收光信号时是存在一定高度范围的,从而在垂直方向上形成触控区域,其高度为H,在触摸物按下、抬起的阶段,会存在触摸物位于该触控区域内、但并未接触到显示屏110表面的情况,此时依然会上报触摸点数据、执行相应的操作,如显示触摸物的书写笔迹。
从状态131、状态132至状态133描述触摸物按下的阶段,在状态131中,触摸物处于 触控区域之上,并不会产生触控信号、并不会上报触摸点数据,在状态132中,触摸物处于触控区域中、接近显示屏110的表面但并未触碰到显示屏110表面,会产生触控信号、上报触摸点数据,在状态133中,触摸物处于触控区域中、已触碰到显示屏110,会产生触控信号、上报触摸点数据。
从状态133、状态134至状态135描述触摸物抬起的阶段,在状态134中,触摸物处于触控区域中、接近显示屏110的表面但并未触碰到显示屏110,会产生触控信号、上报触摸点数据,在状态135中,触摸物处于触控区域之上,并不会产生触控信号、并不会上报触摸点数据。
也就是,通过光学触控传感器来实现交互平板的触控功能,会存在一个书写高度H,无法做到零书写高度。
由于用户日常使用的触控设备多为手机、平板电脑,这些触控设备多应用电阻式或电容式的触控操作,使得用户多习惯使用电阻式或电容式的触控操作,即接触到显示屏时才会上报触摸点数据、执行相应的操作。
用户在维持使用电容式的触控操作的习惯的情况下,触发光学式的触控操作,在部分的场景下容易导致误操作、性能较差。
以书写笔迹为例,用户在显示屏书写笔迹,当手指在光学触控传感器的触控区域内、但并未接触到显示屏时,就显示笔迹,但用户此时是可能是起笔或落笔,并非意图书写,显示起笔和落笔的笔迹会导致连笔,书写的字体就显得较为潦草。
例如,如图1B所示,若用户书写“正”,在书写第一横与第一竖之间存在连续的起笔与落笔141、在书写第二横结束时存在起笔142、在书写第二竖与第三横之间存在连续的起笔与落笔143,均存在较为明显的连笔。
当前针对这个技术问题的解决思路主要有两种:
一、尽可能降低书写高度,通过减低光学触控传感器凸出于显示屏表面的高度,来降低书写高度。
二、通过在触控笔设置压电传感器,当触控笔触碰到显示屏表面时,触控笔会产生压感数据,从而实现零书写高度。
然而,第一种方法,光学触控传感器位置即使再低,也必须凸出于显示屏表面,就必然存在一个光线信号的高度,也就仍然不能实现零书写高度;并且,这种方法要将光学触控传感器埋入在交互平板内,对交互平板的结构(如显示屏的盖板玻璃、背板等)要求内凹管控,避免显示屏及盖板玻璃外凸遮挡光学触控传感器的光线,成本及管控难度较高。
第二种方法,当触摸物不是触控笔,例如触摸物为手时,还是无法实现零书写高度;并且,触控笔与交互平板连接,占用交互平板有限的端口资源,影响传屏、投屏等操作。
为此,本发明实施例提供一种全新的思路来解决这个技术问题。
1.2、触控控制器
触控控制器属于与光学触控传感器匹配的处理器(Display Control lers),运算性能较低,如811SOC(System on Chip,系统级芯片),触控控制器可提供触控处理功能,即,
触控控制器可处理光学触控传感器对触摸物扫描到的光信号,例如,计算X坐标、Y坐标等,形成触控数据包,上报至智能处理系统。
需要说明的是,触控控制器可以与光学触控传感器设置在同一块板卡中,也可以独立于光学触控传感器的板卡、设置其他板卡中,此时,光学触控传感器的板卡与其他板卡电连接,使得光学触控传感器与触控控制器电连接,本实施例对此不加以限制。
需要说明的是,在某些情况下,交互平板可以缺省触控控制器,此时,触控处理功能交给智能处理系统的主机控制器。
2、智能处理系统
智能处理系统包括主机控制器,主机控制器属于交互平板的处理器,主机控制器内置的 软件可实现不同的功能应用,并借由显示屏显示画面、制造出生动的影音效果。
其中,主机控制器属于性能较高的运算模块。
例如,该主机控制器可以为Android(安卓)模块,即可安装Android(安卓)系统,配置CPU(Central Processing Unit,中央处理器)、GPU(Graphics Processing Unit,图形处理器)、RAM(random access memory,随机存取存储器)和ROM(Read-Only Memory,只读存储器)等组件,例如,针对Android7.0版本,CPU为双核A72与四核A53,GPU为Mali T860,RAM为4GB、ROM为32GB,等等。
又例如,该主机控制器可以为PC(personal computer,个人电脑)模块,配置有CPU、GPU、内存、硬盘等组件,例如,针对为插拔式Intel Core系列模块化电脑,CPU为Intel Core i5/i7,GPU为核显Intel HD Graphics,内存为DDR4 8G/16G,硬盘为128G/256G。
3、触碰传感器
3.1、原理
在本实施例中,触碰传感器为利用振动、声音等在两个物体触碰时发生振动的特征检测两个物体是否发生碰撞及其碰撞的位置的传感器,该特征可以通过气体、液体、固体等介质传递,触碰传感器根据该特征判断发生两个物体碰撞时、产生触碰信号。
在触碰传感器中可以设置触碰控制器,如单片机,该触碰控制器可以用于根据振动的特征判断发生两个物体碰撞时、产生触碰信号。
需要说明的是,与光学触控传感器匹配的触控控制器、与触碰传感器匹配的触碰控制器,可以是相互独立的芯片,也可以集成在同一块芯片上,本实施例对此不加以限制。
在一个示例中,触碰传感器为弹性波传感器,即利用弹性波检测两个物体是否发生碰撞的传感器。
其中,音频以下的机械振动,音频范围的声音,超过音频的超声波,这些都是气体、液体、固体等介质的波动现象,相对于光和电磁波来说,这种波动现象叫做弹性波。
触摸物在接触到显示屏的表面(即玻璃盖板的表面)时,由于压力导致显示屏的表面(即玻璃盖板的表面)物质粒子离开平衡位置,即发生应变时,该粒子在弹性力的作用下发生振动,同时又引起玻璃周围粒子的应变和振动,这样形成的振动在弹性介质中的传播过程称为弹性波,在弹性波传感器内部,产生的弹性波通过接触的压电传感器,由于压电传感器受力后表面产生电荷,电荷经放大器和测量电路放大变换后,成为与外力成正比的电输出。电荷信号引入触碰控制器,由触碰控制器中的模拟电路处理后转换为数字信号,最后经过算法处理输出最终的结果。
具体而言,可以确定交互平板内各产生噪声的元件(如马达、喇叭、风扇等),还可以确定交互平板外部产生噪声的元件(如室内空调、电视等),即噪源,这些元件在使用的过程中,会导致该交互平板产生非用户控制本意的弹性波。通过元件的类别,可确认该元件产生噪声的方式,例如,喇叭所产生的噪声主要来至于其发出声音时所导致的交互平板整体介质中产生弹性波,因此,对于弹性波传感器而言,该触碰信号又可称之为弹性波信号。
针对这些元件,可预先采集不同驱动电压下在预设的时间周期内、该元件产生的弹性波数据,并将弹性波数据转换为电信号,作为噪声信号。
通过压电传感器将触摸物触碰交互平板产生的弹性波数据转化为电信号,作为触碰信号,在触碰信号中滤除该噪声信号,可排除噪声干扰。
在滤除的过程中,考虑到噪声信号产生的干扰并不相同,可参照噪声信号自适应地对触碰信号进行放大或缩小,以凸显噪声信号与触碰信号的差别。
如图3A所示,考虑到喇叭等噪源产生噪声较为轻微时,触摸物触碰时产生的弹性波信号明显会高于喇叭等噪源产生的弹性波信号(即噪声信号),此时,两者之间区别并不明显,通过设定电压范围限定电压的阈值,可更为容易确认噪声所产生的弹性波波段并予以去除,以此降低计算量的情况,有效提高滤除噪声的效率。
即,在电压的阈值组成的范围内,将触碰信号和噪声信号进行相位比对,去除触碰信号中与噪声信号相位一致的信号数据,降低实际计算时不必要的计算量,例如,当喇叭等噪源产生的噪声较为轻微时,用户操作触碰时产生的触碰信号明显会高于喇叭等噪源产生的噪声信号,此时,将两者相对比,其区别并不明显,而通过限定电压的阈值的方式,则可更为容易确认噪声所产生的波段并予以去除,以此有效提高噪声去除的效率。
在该过程中,可将触碰信号和噪声信号进行相位比对,如果触碰信号中与噪声信号相位一致,将触碰信号中与噪声信号相位一致的信号数据予以删除,如果触碰信号中与噪声信号相位相反,将触碰信号中与噪声信号相位相反的信号数据予以保留,以此避免在噪声信号的波段与触碰信号的波段相反的情况下直接相减带来的误差,保留更真实的触碰信号。
此外,触碰传感器可感应触摸物触碰显示屏的表面而产生的冲击波信号,检测到达的冲击波信号能量及其到达时间,根据冲击波群速度在各向同性或准各向同性结构上各方向上近似相等的原理,对触碰的位置进行分析计算。
示例性地,在显示屏中任意位置分散设置四个以上的触碰传感器,记录各触碰传感器的坐标。
当触摸物触碰显示屏的表面任一点时,于触碰的位置产生冲击波,各触碰传感器检测收到的冲击波信号能量,并记录冲击波信号到达时间。
根据冲击波群速度在各向同性或准各向同性结构上各方向上近似相等的原理,任选四个触碰传感器,建立波速方程组:
Figure PCTCN2022088069-appb-000001
Figure PCTCN2022088069-appb-000002
其中,(x 1,y 1)、(x 2,y 2)、(x 3,y 3)、(x 4,y 4)为四个触碰传感器的坐标,T 1、T 2、T 3、T 4为四个触碰传感器记录的冲击波信号的到达时间,(x,y)为触摸物触碰显示屏的表面的位置,求解波速方程组可求解触摸物触碰显示屏的表面的位置(x,y)。
3.2、安装规范
在本实施例中,触碰传感器安装在可传递显示屏发生的振动(如弹性波信号)的位置,实现对显示屏的触碰检测,从而检测到触摸物触碰到显示屏的事件,而并不一定安装在发生振动(如弹性波信号)的位置。
在一种情况中,触碰传感器可直接安装在显示屏的表面,例如,如图3B所示,触碰传感器321可安装在显示屏310的上表面,或者,触碰传感器322可安装在显示屏310的下表面,从而接收由显示屏传递的振动(如弹性波信号),提高触碰检测的精确度。
进一步地,如图3B所示,触碰传感器321可安装在显示屏310的边框330内,一方面,避免暴露触碰传感器321、可减少对外观的影响,另一方面,显示屏310边框330内的元件较少,将触碰传感器321安装在显示屏310的边框330内,可减少对内部结构(如布线)的影响,同时,减少来自显示屏的共模噪声干扰。
在另一种情况中,触碰传感器可安装在与显示屏相接触的其他部件上,用于接收由其他部件传递的、发生在显示屏的振动(如弹性波信号)。
此外,在保持精确度的情况下,触碰传感器检测触碰存在一个范围,而并非仅检测安装触碰传感器的区域,因此,可根据该范围与交互平板的显示屏之间的关系,在同一个交互平板安装一个或多个触碰传感器,使得一个触碰传感器检测触碰的范围大于或等于显示屏的面 积,使得一个触碰传感器检测触碰的范围可覆盖显示屏,或者,多个触碰传感器检测触碰的范围合并之后的范围大于或等于显示屏的面积,使得多个触碰传感器检测触碰的范围合并之后的范围可覆盖显示屏。
其中,该触碰传感器的数量与显示屏的面积正相关,即,显示屏的面积越大,触碰传感器的数量越多,反之,显示屏的面积越小,触碰传感器的数量越少。
以矩形的显示屏为例,如图3C所示,若显示屏的面积较小,则可以在显示屏的中心安装触碰传感器341,或者,在显示屏的上边框的中点安装触碰传感器342,或者,在显示屏的下边框的中点安装触碰传感器343,触碰传感器341触碰检测的范围351、触碰传感器342触碰检测的范围352、触碰传感器343触碰检测的范围353均可覆盖整个显示屏。
如图3D所示,若显示屏的面积较大,则可以在显示屏的左上角安装触碰传感器344、在显示屏的右上角安装触碰传感器345、在显示屏的左下角安装触碰传感器346、在显示屏的右下角安装触碰传感器347,触碰传感器344触碰检测的范围354、触碰传感器345触碰检测的范围355、触碰传感器346触碰检测的范围356、触碰传感器347触碰检测的范围357叠加可覆盖整个显示屏。
4、连接关系
在本实施例中,显示屏、智能处理系统、触碰传感器可存下如下连接关系:
4.1、光学触控传感器与触控控制器或主机控制器电连接
在触控控制器具备触控处理功能的情况下,触控控制器可以与光学触控传感器电连接,在此种情况中,若触控控制器为独立的芯片(如单片机),则该芯片可以与光学触控传感器集成在同一块板卡上,也可以独立于光学触控传感器所在的板卡。
在配备或缺省触控控制器的情况下,主机控制器具备触控处理功能、可以与光学触控传感器电连接,此时,主机控制器提供触控处理功能,接收光学触控传感器接收到的光信号,并对该光信号进行分析、从而对用户的触控操作生成触控数据包,解析触控数据包中的信息,对触控操作进行响应。
示例性地,如图4A、图4B、图4C所示,光学触控传感器包括红外发射器432、红外接收器442,交互平板上设置有一个或多个发射驱动芯片431、一个或多个接收驱动芯片441,其中,发射驱动芯片431与红外发射器432电连接、可用于提供红外发射器432的红外控制信号,接收驱动芯片441与红外接收器442电连接,可用于提供处理红外接收器442接收到的红外信号的功能。
如图4A、图4B所示,在配备触控控制器410的情况下,触控控制器410可以分别与发射驱动芯片431、接收驱动芯片441电连接,从而使得触控控制器410分别与红外发射器432、红外接收器442电连接。
如图4C所示,在缺省触控控制器410的情况下,主机控制器400均可以分别与发射驱动芯片431、接收驱动芯片441电连接,从而使得主机控制器400分别与红外发射器432、红外接收器442电连接。
4.2、触控控制器与主机控制器电连接
如图4A、图4B、图4C所示,触控控制器410与主机控制器400之间设置有USB(通用串行总线,Universal Serial Bus)组件,如USB HUB(集线器)、USB切换开关、USB Redriver(讯号中继器)等,主机控制器400可作为HID(Human Interface Device,人机接口设备),触控控制器410与主机控制器400之间通过USB组件通信。
触控控制器410提供触控处理功能,接收光学触控传感器接收到的光信号,并对该光信号进行分析、从而对用户的触控操作生成触控数据包,通过标准的USB协议传输至主机控制器400,主机控制器400解析触控数据包中的信息,对触控操作进行响应。
或者,主机控制器400提供触控处理功能,接收光学触控传感器接收到的光信号,并对该光信号进行分析、从而对用户的触控操作生成触控数据包,解析触控数据包中的信息,对 触控操作进行响应。
4.3、触碰传感器与触控控制器或主机控制器电连接。
在一些设计中,如图4A所示,在触控控制器410中提供处理触碰信号的功能,处理触碰信号的计算量较低,触控控制器410的性能可支持处理触碰信号,此时,触碰传感器450可以通过串口、I2C(Inter-Integrated Circuit,集成电路总线)、SPI(Serial Peripheral Interface,串行外设接口)等方式连接触控控制器410,触碰传感器450可将检测到的触碰信号传输至触控控制器410,触控控制器410将触碰信号作为触控操作的部分数据处理。
进一步而言,触碰传感器450的触碰控制器420可与触控控制器410电连接,触碰传感器450的触碰控制器420可将触碰信号传输至触控控制器410进行处理。
在此设计中,生产交互平板的显示屏的厂商将触碰信号作为触控操作的规范之一,将触碰传感器450封装在交互平板的显示屏中,显示屏内部处理触碰信号之后可向外部提供统一的触控数据包,生产交互平板的厂商可以不用关心触碰传感器450,相应地调整专用的软件系统、以处理触碰信号即可,减少对硬件设计、生产的影响,降低生产、开发成本。
在另一些设计中,如图4B、图4C所示,触碰传感器450可以通过串口、I2C、SPI等方式连接主机控制器400,触碰传感器450可将检测到的触碰信号传输至主机控制器400,主机控制器400将触碰信号作为触控操作的部分数据处理。
进一步而言,触碰传感器450的触碰控制器420可与主机控制器400电连接,触碰传感器450的触碰控制器420可将触碰信号传输至主机控制器400进行处理。
需要说明的是,尽管图4A、图4B、图4C示出,触碰控制器420可以作为触碰传感器450的组件、配置在触碰传感器450中,也可以为独立于触碰传感器450的组件、集成中其他芯片中,本实施例对此不加以限制。
在此设计中,生产交互平板的厂商可以根据不同的业务场景(如教育、企业办公、家庭娱乐等)选择合适的触碰传感器450,整合至交互平板中、并定制基于触碰信号的功能、服务,保持生产、设计的灵活性,用以降低生产、开发成本,并且,适配业务场景的触碰传感器450可提高交互平板整体性能的表现。
实施例一
图5为本发明实施例一提供的一种触控信号的校验方法的流程图,本实施例可适用于在一点或多点触控的场景中、依据触碰信号校验触控信号的有效性的情况,该方法可以由触控信号的校验装置来执行,该触控信号的校验装置可以由软件和/或硬件实现,可配置在交互平板中,尤其配置在交互平板的处理器中,该处理器可以为触控控制器或主机控制器,在交互平板中分别设置有光学触控传感器、触碰传感器,该处理器分别与光学触控传感器、触碰传感器电连接,因此,该处理器可在本地直接或间接接收到光学触控传感器产生的触控信号、触碰传感器产生的触碰信号,如图5所示,该方法具体包括如下步骤:
步骤501、启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个光学触控传感器620,在交互平板启动、运行期间,处理器可启动光学触控传感器620,光学触控传感器620在交互平板的显示屏表面扫描光信号,触摸物可阻挡光信号,从而根据光信号的传输情况检测显示屏表面是否出现触摸物,在检测到触摸物时,对该触摸物生成触控信号。
光学触控传感器620在交互平板的显示屏610表面扫描光信号是具有一定有效的空间范围的,超出该空间范围,触摸物在该空间范围可阻挡光信号,则光学触控传感器620并不能检测到触摸物,在该空间范围内,则光学触控传感器620可以检测到触摸物,该空间范围称之为触控区域,该触控区域在显示屏610显示平面的垂直方向具有一定的高度,该高度记为H。
进一步而言,若处理器为主机控制器,则主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动光学触控传感器,或者,主机控制器直接向光学触控传感器发送启动信号,光学触控传感器响应该启动信号,上电启动。
若处理器为触控控制器,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动光学触控传感器。
如图6A所示,在用户并未触发触控操作时,在交互平板的显示屏610的表面未有触摸物时,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
在用户触发触控操作时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
触摸物处于状态645,即,触摸物离开光学触控传感器的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,在多点触控的场景下,为便于触碰传感器630识别不同的触摸物产生的触碰信号,触摸物的类型(材质)一般不同,例如,一个触摸物为手指、另一个触摸物为触控笔,又例如,一个触摸物为塑料制作的触控笔、另一个触摸物为合金制作的触控笔,等等。
假设触摸物650与触摸物660在不同的位置同时接近显示屏610的表面,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,光学触控传感器620并不产生触控信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650、触摸物660)产生触控信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的所有触摸物(如触摸物650、触摸物660)产生触控信号。
步骤502、启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个触碰传感器630,在交互平板启动、运行期间,处理器可启动触碰传感器630,触碰传感器630检测在交互平板的显示屏发生触碰的事件,对该事件生成触碰信号。
触碰传感器在交互平板的显示屏上检测触碰的事件是具有一定有效的平面范围的,超出该平面范围,则触碰传感器并不能检测到触碰的事件,在该平面范围内,则触碰传感器可以检测到触碰的事件,该平面范围称之为触碰区域,在同一个交互平板中可安装一个或多个触碰传感器,一个触碰传感器独立的触碰区域或者一个触碰传感器的触碰区域合并之后的区域可覆盖交互平板。
对于在同一个交互平板中安装多个触碰传感器的情形,在同一个时间点内任意一个触碰传感器生成触碰信号,则可以认为该触碰信号有效、为该时间点对应的触碰信号,在同一个时间内所有触碰传感器并未生成触碰信号,则该时间点并无触碰信号。
进一步而言,若处理器为主机控制器,对于触碰传感器与主机控制器电连接的情形,主机控制器在交互平板上电启动时,启动触碰传感器,对于触碰传感器与触控控制器电连接的情形,主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动触碰传感器。
若处理器为触控控制器、且触碰传感器与触控控制器电连接,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动触碰传感器。
如图6A所示,在用户并未触发触控操作时,在交互平板的显示屏610的表面未有触摸物时,触碰传感器630并不产生触碰信号。
在用户触发触控操作时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,触碰传感器630产生触碰信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态645,即,触摸物离开光学触控传感器620的触控区域内,触摸物与显 示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
对于光学触控传感器、触碰传感器的操作整体而言,如图6A所示,对于用户正常触发的触控操作,对触摸物存在按下、移动、抬起的过程,触摸物会接近或触碰显示屏的表面,由于光学触控传感器620的触控区域存在高度H,一般情况下,在触摸物存在按下、移动、抬起的过程中,触摸物首先进入光学触控传感器620的触控区域,然后与触碰显示屏610触碰、从而触发触碰传感器630,最后离开光学触控传感器620的触控区域,因此,正常情况下,光学触控传感器620先产生触控信号,触碰传感器630再产生触碰信号,触碰传感器630先停止触碰信号,光学触控传感器620再停止触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,假设触摸物650与触摸物660在不同的位置同时接近显示屏610的表面,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,触碰传感器630并不产生触碰信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,触碰传感器630并不产生触碰信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,触碰传感器630并不产生触碰信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,触碰传感器630对触碰显示屏610的表面的部分触摸物(如触摸物650)产生触碰信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,触碰传感器630针对触碰显示屏610的表面的所有触摸物(如触摸物650、触摸物660)产生触碰信号。
如果存在光学触控传感器并未产生触控信号、而触碰传感器产生触碰信号的情况,可能是发生物体在侧边碰撞到交互平板而触发触碰传感器、安装交互平板的位置摇晃而触发触碰传感器、交互平板中的元件(如风扇)运行异常导致噪声过大影响触碰传感器等问题,本实施例均可忽略这些情况。
一般情况下,光学触控传感器与触碰传感器是相互独立的,相互不受对方影响,即光学触控传感器独立启动、运行、关闭,并不受触碰传感器影响,触碰传感器独立启动、运行、关闭,光学触控传感器并不受影响。
考虑到正常的触控操作,光学触控传感器先产生触控信号,触碰传感器再产生触碰信号,触碰传感器先停止触碰信号,光学触控传感器再停止触控信号,即,触碰传感器首次针对触摸物产生触碰信号,表示触摸物首次触摸到显示屏,因此,在部分业务场景下,例如,冻结课件从而在课件的上层书写批注、会议书写板书,等等,在交互平板启动、运行时,一方面,处理器可启动触碰传感器,另一方面,处理器可控制光学触控传感器休眠,即控制光学触控传感器停止在交互平板的表面扫描光信号,或者,以低功耗的模式(如非逐个扫描、扫描的频率低,从而达到节省功耗的作用)在交互平板的表面扫描光信号,此时,即便触摸物进入光学触控传感器的触控区域,光学触控传感器也不会产生触控信号,在这些业务场景下,在触摸物进入触控区域但未触碰到交互平板的显示屏时,光学触控传感器所检测到的触控信号 对于业务场景而言意义较低、甚至是负向效果(如笔迹的连笔),因此,当触摸物进入触控区域但未触碰到交互平板的显示屏时,丢失光学触控传感器所检测到的触控信号,对于触控操作(如书写笔迹)而言,基本不存在影响、甚至保证触控操作的正常执行。
在确定光学触控传感器休眠的情况下,处理器可检测是否接收到触碰传感器产生的触碰信号。
若未接收到触碰信号,则处理器可维持光学触控传感器休眠。
若接收到触碰信号,则处理器可激活(又称唤醒)光学触控传感器、退出休眠,光学触控传感器重新在交互平板的表面扫描光信号,此时,光学触控传感器在显示屏的表面(即触控区域中)检测到触摸物时、产生触控信号,在多个触摸物接近或触碰显示屏的表面时、产生多个触控信号。
此后,若触控信号中断,则处理器可重新控制光学触控传感器休眠,等待触碰传感器的触碰信号唤醒,对于触碰传感器而言,在光学触控传感器休眠期间,触碰传感器第一次产生的触碰信号可称之为首次针对触摸物产生触碰信号。
进一步而言,检测触控信号是否中断的条件,可以由本领域技术人员设定,例如,在超过预设的时间段未接收到触控信号时,认为触控信号中断,或者,在交互平板的显示屏显示适于触控操作的业务场景(如书写笔迹)时,确定触控信号持续,在交互平板的显示屏显示不依赖触控操作的业务场景(如播放视频)时,确定触控信号中断,等等,本实施例对此不加以限制。
在本实施例中,通过对正常的触控操作下光学触控传感器产生触控信号、触碰传感器产生触碰信号的规律进行分析,在某些业务场景下,可控制光学触控传感器休眠、由触碰传感器的触碰信号唤醒,在保证在该业务场景下、可保证正常检测触摸物、从而保证触控操作的正常响应,并且,可降低光学触控传感器的功耗、从而降低交互平板的功耗。
步骤503、确定各触碰信号与各触控信号的关联性。
一般情况下,光学触控传感器扫描光信号是一个持续性的操作,即,一段时间内,光学触控传感器可持续产生多帧触控信号,当然,在该段时间内,多帧触控信号可以是连续的、也可以是间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听光学触控传感器,从而连续或间断地接收光学触控传感器传输的多帧触控信号。
此外,触碰传感器检测触碰的事件也是一个持续性的操作,即,一段时间内,触碰传感器可持续产生多帧触碰信号,当然,在该段时间内,多帧触碰信号可以是连续的、也可以间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听触碰传感器,从而连续或间断地接收触碰传感器传输的多帧触碰信号。
如图6A所示,由于触摸物是单一的,因此,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,在处理器接收到光学触控传感器传输的触控信号时,检测在同一时间点内、触碰信号与触控信号的关联性,即,同一时间点内是否接收到到触控信号、触碰信号,从而识别触摸物在该时间点所处的状态。
具体而言,若同一时间点接收到触控信号、而未接收到触碰信号,则可以确定同一时间点触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,即同一时间点单独接收到触控信号。
若同一时间点接收到触控信号,且接收到触碰信号,则可以确定同一时间点触碰信号与 触控信号存在关联性,触控信号已关联触碰信号,即同一时间点同时接收到触控信号与触碰信号。
在一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内未接收到触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
在另一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延 也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。并且,如果存在触碰的事件时,触碰信号是连续的多帧触碰信号。
在此方式中,触碰传感器在检测到触碰的事件的起始、结束时,产生触碰信号,并将该帧触碰信号传输至处理器,其他时间并不产生触碰信号,表示如下:
触碰的事件 触碰信号
×
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
此外,在触碰传感器与处理器之间连接一根线路,作为状态线路,在该状态线路中,将触碰传感器的GPIO(General-purpose input/output,通用型之输入输出)设置为输出信号,处理器的GPIO设定为中断输入模式。
在此方式中,参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰传感器之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物初始触碰显示屏(即表示“1”的触控信号,此时,触碰传感器将状态线路的输出高电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号的存在关联性,触控信号已关联触碰信号,此外,针对触摸物初始触碰显示屏的触碰信号,在处理器的固件程序等区域设置标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域具有标志位Flag时,在存 在标志位Flag期间,触摸物持续触碰显示屏,标志位Flag可以替代触碰信号,表示较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,通过标志位Flag替代触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量,而且由于标志位Flag可在处理器直接检测到,可减少生成触碰信号、传输触碰信号中的延时所带来的影响。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物结束触碰显示屏(即表示“0”的触控信号,此时,触碰传感器将状态线路的输出低电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号的存在关联性,触控信号已关联触碰信号,此外,针对触摸物结束触碰显示屏的触碰信号,在处理器的固件程序等区域清除标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域没有标志位Flag时,较短的时间内单独接收到触控信号、而未接收到触碰信号,确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号。
针对一个独立的触碰操作,触摸物连续触碰显示屏,所谓连续触碰,可以指触摸物按下并触碰到显示屏,此后触摸物在显示屏上移动,在触摸物完成移动之后触摸物抬起,此方式可应用两帧触碰信号即可确定触碰信号与触控信号的关联性,即,在触摸物连续触碰显示屏时,触碰传感器在第一目标信号与第二目标信号之间可停止产生其他触碰信号,其中,第一目标信号为表示触摸物初始触碰所述显示屏的触碰信号,第二目标信号为表示触摸物结束触碰显示屏的触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量。
当然,上述确定触碰信号与触控信号的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定触碰信号对于触控信号的关联性的方式,例如,在接收到触碰信号时,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,在有效期内未接收到触控信号时,确定触碰信号与触控信号存在关联性,触控信号未关联触碰信号,等等,本发明实施例对此不加以限制。另外,除了上述确定触碰信号与触控信号的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定触碰信号与触控信号的关联性的方式,本发明实施例对此也不加以限制。
当触控信号为多个或触碰信号为多个时,针对同一触摸物,由该触摸物在触碰显示屏的表面时所引发的触控信号与触碰信号应该在时间、位置等维度上是关联的,即同一触摸物在同一时间点、同一位置引发触控信号与触碰信号,因此,针对多个触摸物同时接近或触碰显示屏的表面时引起的触控信号与触碰信号,可以在时间、位置等维度上检测这些触控信号与触碰信号的关联性,从而区分不同触摸物的不同状态。
在具体实现中,如图6A所示,针对单一的触摸物,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,当处理器接收到光学触控传感器传输的触控信号时,识别触控信号与触碰信号在时间上的关联性,即,同一时间点内是否接收到触控信号、触碰信号。
具体而言,若同一时间点接收到触控信号、而未接收到触碰信号,即同一时间点单独产生触控信号,则可以确定触控信号与触碰信号在时间上不存在关联性。
若同一时间点接收到触控信号,且接收到触碰信号,即同一时间点同时产生触控信号与触碰信号,则可以确定触控信号与触碰信号在时间上存在关联性。
若触控信号与触碰信号在时间上存在关联性,则识别触控信号与触碰信号在位置上的关联性,即,同一位置内是否接收到触控信号、触碰信号。
具体而言,若同一位置接收到触控信号、而未接收到触碰信号,即同一位置单独产生触控信号,则可以确定触控信号与触碰信号在时间上不存在关联性。
若同一位置接收到触控信号,且接收到触碰信号,即同一位置同时产生触控信号与触碰信号,则可以确定触控信号与触碰信号在位置上存在关联性。
对于触控信号与触碰信号在时间上的关联性,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对触控操作的当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触控操作的触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触控信号与触碰信号在时间上存在关联性。
在有效期内未接收到触控操作的触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触控信号与触碰信号在时间上不存在关联性。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并 不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
对于触控信号与触碰信号在位置上的关联性,一方面,确定与触控信号关联的触控位置,该触控位置表示触摸物接近或触碰显示屏的表面时的位置,可由处理器根据光学触控传感器扫描的光信号计算得到。
另一方面,确定与触碰信号关联的触碰位置,该触碰位置表示触摸物触碰显示屏的表面时的位置,可由触碰传感器计算得到。
针对同一触摸物真实的位置是恒定的,即,同一触摸物产生的触控信号与触碰信号来源于同一位置,考虑到处理器计算触控位置的方式与触碰传感器计算触碰位置的方式有所不同,而红外触控传感器、触碰传感器的精度一般较高,因此,同一触摸物的触控位置与触碰位置可能存在差异,但该差异一般较小、在可接受的误差范围内,对此,可预先设置阈值,该阈值表示可接受的误差范围。
针对当前的触控位置与触碰位置,可使用欧氏距离等方式计算触控位置与触碰位置之间的距离,将该距离与预设的阈值进行比较。
若触控位置与触碰位置之间的距离小于或等于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围内,可确定触控信号与触碰信号在位置上存在关联性。
若触控位置与触碰位置之间的距离大于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围外,可确定触控信号与触碰信号在位置上不存在关联性。
当然,上述确定在时间与位置上的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定在时间与位置上的关联性,例如,在接收到触碰信号时,识别触控信号与触碰信号在时间上的关联性,若触控信号与触碰信号在时间上存在关联性,则识别触控信号与触碰信号在位置上的关联性,或者,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触控信号与触碰信号在时间上存在关联性,在有效期内未接收到触控信号时,确定触控信号与触碰信号在时间上存在关联性,等等,本发明实施例对此不加以限制。另外,除了上述确定在时间与位置上的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定在时间与位置上的关联性的方式,本发明实施例对此也不加以限制。
步骤504、根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性。
当触控信号为一个且触碰信号为一个时,若在同一时间点内,已确定触碰信号与触控信号的关联性,即,同一时间点内是否接收到触碰信号,从而确定触控信号对于触碰显示屏的有效性,即确认该触控信号关联触摸物触碰到显示屏,或者是,该触控信号关联触摸物未触碰到显示屏。
如图6A所示,在一种情况中,若触碰信号与触控信号存在关联性,触控信号已关联触碰信号,即同时存在触控信号与触碰信号,则确定触控信号对于触碰显示屏的有效性为有效,该触控信号关联的触摸物触碰到显示屏。
在另一种情况中,若触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,即单独存在触控信号、并不存在触碰信号,则确定触控信号对于触碰显示屏的有效性为无效,该触控信号关联的触摸物未触碰到显示屏。
当触控信号为多个或触碰信号为多个时,若在同一时间、同一位置上,已确定触控信号与触碰信号的关联性,即,同一时间、同一位置上是否同时接收到触控信号与触碰信号,从而确定触控信号对于触碰显示屏的表面的有效性,即确认该触控信号关联的触摸物触碰显示屏的表面(有效),或者是,该触控信号关联的触摸物接近显示屏的表面、但并未触碰到显示屏的表面(无效)。
在一种情况中,若触控信号与触碰信号在时间与位置上均存在关联性,即,在同一时间、同一位置同时产生触控信号与触碰信号,则可以确定触控信号表示触碰显示屏的表面有效, 该触控信号与该触碰信号所属的触摸物触碰到显示屏的表面。
在另一种情况中,若触控信号与触碰信号在时间或位置上不存在关联性,即在同一时间或同一位置单独产生触控信号或触碰信号,对于触控信号与触碰信号在时间上不存在关联性,可能是多个触摸物均是接近显示屏的表面,并未触碰显示屏的表面,对于触控信号与触碰信号在位置上不存在关联性,可能是部分触摸物接近显示屏的表面,部分触摸物触碰显示屏的表面,此时,则可以确定触控信号表示触碰显示屏的表面无效,该触控信号或该触碰信号所属的触摸物未触碰到显示屏的表面。
在本实施例中,启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号,启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号,当接收到触控信号时,确定各触碰信号与各触控信号的关联性,根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性,触碰信号可检测到触碰显示屏的事件,以触碰信号与触控信号的关联性,可识别确定触控信号对于触碰显示屏的有效性,在多点触控的场景下,每个触摸物独立触控、相互不干扰,赋予触控信号更多一个维度的特征,丰富触控信号的含义,在部分业务场景下,如果是否触碰到显示屏对于该业务场景具有更加积极的意义,那么,本实施例基于触控信号对于触碰显示屏的有效性可对触控信号的响应方式进行区分,使得响应触控操作的方式更加适配业务场景的需求,从而提高触控操作在该业务场景的表现,在书写的场景中,可以解决零高度书写的问题。
其次,在书写等场景下,用户可以维持使用电阻式或电容式的触控操作,无需针对交互平板上额外学习新的触控操作的技巧,降低在交互平板上使用触控操作的成本。
再者,光学触控传感器可以维持凸出的设置,减缓或避免将光学触控传感器埋入在交互平板内,减缓或避免对交互平板的结构(如显示屏的玻璃、背板等)要求内凹管控,降低成本和管控难度,由于光学触控器可维持触控区域,可维持扫描到的信息,保持触控检测的精度。
以书写笔迹为例,如图7A所示,若用户书写“正”字,将书写时产生的触控信号,区分为对于触碰显示屏的有效性为有效的触控信号(显示为实线)、对于触碰显示屏的有效性为无效的触控信号(显示为虚线),可见,在书写第一横与第一竖之间存在连续的起笔与落笔711、在书写第二横结束时存在起笔712、在书写第二竖与第三横之间存在连续的起笔与落笔713,均存在较为明显的连笔,这些连笔对应的触控信号多为对于触碰显示屏的有效性为无效的触控信号(显示为虚线)。
如图7B所示,响应对于触碰显示屏的有效性为有效的触控信号、绘制相应的笔迹,忽略对于触碰显示屏的有效性为无效的触控信号、并不绘制相应的笔迹,此时,对于在书写第一横与第一竖之间存在连续的起笔与落笔711、在书写第二横结束时存在起笔712、在书写第二竖与第三横之间存在连续的起笔与落笔713,均可消除较为明显的连笔,使得“正”较为工整。
进一步地,如图7C所示,在区域741中,应用本实施例的方法,响应对于触碰显示屏的有效性为有效的触控信号、绘制相应的笔迹,忽略对于触碰显示屏的有效性为无效的触控信号、并不绘制相应的笔迹,书写多个“正”字,在区域742中,应用在先的技术,直接响应触控信号绘制相应的笔迹,书写多个“正”字。
对比可见,区域741中的多个“正”字,连笔的情况大幅度减少,整体显得更加工整,而区域742中的多个“正”字,连笔的情况较为明显,整体显得更加潦草。
而且,在多点触控的场景下,可区分不同用户的书写操作,即,一个用户的书写操作对另一个用户的书写操作不构成影响,均可应用本实施例的方法,全面提高笔迹的质量。
实施例二
图8为本发明实施例二提供的一种触控信号的校验方法的流程图,本实施例以前述实施例为基础,进一步增加在触控控制器或主机控制器连接触碰传感器时的业务操作,该方法具 体包括如下步骤:
步骤801、启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号。
步骤802、启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号。
步骤803、确定各触碰信号与各触控信号的关联性。
步骤804、根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性。
步骤805、根据触控信号对于触碰显示屏的有效性,对触控信号生成触控数据包。
步骤806、根据触控数据包执行业务操作。
在本实施例中,一方面,光学触控传感器与处理器(如主机控制器、触控控制器)电连接,光学触控传感器将触控信号传输至处理器(如主机控制器、触控控制器),另一方面,触碰传感器与处理器(如主机控制器、触控控制器)电连接,触碰传感器将触碰信号传输至处理器(如主机控制器、触控控制器),此时,处理器(如主机控制器、触控控制器)识别触碰信号对于触控信号的关联性。
此时,处理器(如主机控制器、触控控制器)可参考触控信号对于触碰显示屏的有效性、对触控信号生成触控数据包,在触控数据包记录触控信号的信息,其中,该触控数据包在原有的数据的基础上,可反映出触控信号对于触碰显示屏的有效性。
在一种生成触控数据包的方式中,若触控信号对于触碰显示屏的有效性为无效,则禁止生成触控数据包;若触控信号对于触碰显示屏的有效性为有效,则允许生成触控数据包。
如果触碰到显示屏的触控操作对于交互平板的整体应用更加具有意义,例如,交互平板应用于教育、触控操作多为书写笔迹(即板书、答题信息、批注等),此时,在底层以触控信号对于触碰显示屏的有效性作为过滤触控数据包的条件,对于触摸物接近显示屏的表面的情况,禁止对触控信号生成触控数据包,对于触摸物触碰显示屏的表面的情况,允许对触控信号生成触控数据包,可减少生成触控数据包的数量,从而降低处理触控操作的资源占用。
进一步而言,所谓禁止生成触控数据包,可以是生成触控数据包,但触控数据包并不包含触摸点数据,即,触控数据包为空数据包,用于维持触控控制器与主机控制器之间的通信,但并不上报触摸点数据,也可以是并不生成触摸点数据,包括并不生成空数据包,本实施例对此不加以限制。
此外,所谓允许生成触控数据包,可以指在数据包中封装与触控操作相关的触摸点数据。
在一个示例中,触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000003
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
可选地,状态可以包括如下至少一项数据:
第一标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第一标识数据与第二标识数据表示,第一标识数据用于记录触碰信号在某个时间、某个位置上的存在性;
第二标识数据用于记录触控信号在某个时间、某个位置上的存在性;
第一标识数据与第二标识数据结合表示触控信号对于触碰显示屏的有效性;
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000004
或者,状态可以包括如下至少一项数据:
第三标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第三标识数据表示,第三标识数据表示触控信号对于触碰显示屏的有效性。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000005
在一种情况中,触控数据包中的状态同时携带第一标识数据、第二标识数据,此时,在触控信号对于触碰显示屏无效的情况下,生成的触控数据包为空数据包。
示例性地,针对同一触摸物,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000006
Figure PCTCN2022088069-appb-000007
在一种情况中,触控数据包中的状态同时携带第三标识数据此时,在触控信号对于触碰显示屏无效的情况下,生成的触控数据包为空数据包。
示例性地,针对同一触摸物,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000008
Figure PCTCN2022088069-appb-000009
在又一种情况中,触控数据包中的状态并不携带第一标识数据、第二标识数据,或者是,并不携带第三标识数据,此时,在触控信号对于触碰显示屏无效的情况下,并不生成触控数据包。
示例性地,针对同一触摸物,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000010
Figure PCTCN2022088069-appb-000011
在另一种生成触控数据包的方式中,当触控信号对于触碰显示屏的有效性为有效或无效时,均允许生成触控数据包,因此,可以以区分有效性为条件,对触控信号生成触控数据包,即无论触控信号是表示触碰显示屏的表面有效或是表示触碰显示屏的表面无效,均生成触控数据包,生成的触控数据包可区分触控信号是表示触摸物接近显示屏的表面或是触碰显示屏。
如果是否触碰到显示屏的触控操作对于交互平板的整体应用均具有积极的意义,例如,在触控信号对于触碰显示屏的有效性为有效时定义触碰触控、在触控信号对于触碰显示屏的有效性为无效时定义悬浮触控,此时,可丰富触控操作的含义,触控操作会赋予触摸屏更多的表现力,从而提高触控操作的灵活性。
所谓允许生成触控数据包,可以指在数据包中封装与触控操作相关的触摸点数据。
在一个示例中,触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
Figure PCTCN2022088069-appb-000012
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
第一标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第一标识数据与第二标识数据表示,第一标识数据用于记录触碰信号在某个时间、某个位置上的关联性;
第二标识数据用于记录触控信号在某个时间、某个位置上的关联性;
第一标识数据与第二标识数据结合表示触控信号对于触碰显示屏的有效性;
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000013
或者,状态包括如下至少一项数据:
第三标识数据、第二标识数据、可信度、保留参数。
第三标识数据表示触控信号对于触碰显示屏的有效性。
需要说明的是,由于区分触控信号对于触碰显示屏的有效性的需求,因此,触控数据包中的状态同时携带第一标识数据、第二标识数据,或者,触控数据包中的状态携带第三标识数据。
示例性地,针对同一触摸物,假设光学触控传感器第3帧开始产生触控信号、在第26帧结束,触碰传感器第8帧开始产生触碰信号、在第22帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000014
Figure PCTCN2022088069-appb-000015
在另一个示例中,针对同一触摸物,假设光学触控传感器第4帧开始产生触控信号、在第27帧结束,触碰控传感器第8帧开始产生触碰信号、在第22帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000016
Figure PCTCN2022088069-appb-000017
步骤806、根据触控数据包执行业务操作。
若由触控控制器生成触控数据包,则触控控制器可将触控数据包传输至主机控制器的上层应用,若在先由主机控制器的底层应用生成触控数据包,则底层应用可以将触控数据包传输至上层应用。
在主机控制器的上层应用接收到触控控制器的触控数据包之后,则可以解析触控数据包,从而在当前的业务场景中执行相应的业务操作,例如,冻结课件书写批注、启动某个应用程序、使用橡皮檫擦拭笔迹,等等。
如果触控控制器在触控信号对于触碰显示屏的有效性为无效时,禁止生成触控数据包,在触控信号对于触碰显示屏的有效性为有效时,允许生成触控数据包。
那么,主机控制器接收到触控数据包时,默认触控信号对于触碰显示屏的有效性为有效,读取有效的触控数据包(即非空数据包)中的触摸点数据,如X坐标、Y坐标、宽、高等,定位触控操作发生的位置,从而按照触摸点数据(如位置)执行相应的业务操作。
如果触控控制器在触控信号对于触碰显示屏的有效性为有效或无效时,均允许生成触控数据包。
那么,主机控制器接收到触控数据包时,可读取触控数据包中的触摸点数据,触摸点数据包括状态。
若该状态表示触控信号对于触碰显示屏的有效性为无效,可以根据业务需求选择处理该 触摸点数据的方式。
其中一种处理方式是,忽略触摸点数据,即并不响应用户的触控操作。
另外一种处理方式是,按照触摸点数据执行第一类型的业务操作。
若该状态表示触控信号对于触碰显示屏的有效性为有效,则按照触摸点数据执行第二类型的业务操作。
具体而言,第一类型的业务操作与第二类型的业务操作并不相同,忽略触摸点数据,第一类型的业务操作、第二类型的业务操作之间的组合关系可以根据业务场景的需求而选择,从而提高业务操作的多样性、灵活性,本实施例对此不加以限制。
例如,针对冻结课件、书写批注的业务场景,若第一标识数据与第二标识数据结合表示触控信号对于触碰显示屏的有效性为无效,则忽略触摸点数据,并不绘制笔迹,若第一标识数据与第二标识数据结合表示触控信号对于触碰显示屏的有效性为有效,则按照触摸点数据执行第二类型的业务操作,绘制正常的笔迹。
又例如,针对绘画的业务场景,若状态表示触控信号对于触碰显示屏的有效性为无效,则按照触摸点数据执行第一类型的业务操作,绘制颜色较浅的笔迹,等等,若状态表示触控信号对于触碰显示屏的有效性为有效,则按照触摸点数据执行第二类型的业务操作,绘制颜色较深的笔迹。
实施例三
图9为本发明实施例二提供的一种触控信号的校验方法的流程图,本实施例以前述实施例为基础,进一步增加在主机控制器连接触碰传感器时的业务操作,该方法具体包括如下步骤:
步骤901、启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号。
步骤902、启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号。
步骤903、确定各触碰信号与各触控信号的关联性。
步骤904、根据各触碰信号与各触控信号的关联性、确定各触控信号对于触碰显示屏的有效性。
一方面,光学触控传感器与触控控制器电连接、触控控制器与主机控制器电连接,光学触控传感器将触控信号传输至触控控制器,触控控制器生成触控数据包,以及,将触控数据包传输至主机控制器。
在一个示例中,触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000018
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
可信度、保留参数。
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000019
因此,对于主机控制器而言,触碰信号以触控数据包表示,即主机控制器接收到有效的触控数据包(即非空数据包)时,相当于接收到一帧触控信号。
另一方面,触碰传感器与主机控制器电连接,此时,触碰传感器将触碰信号传输至主机控制器,主机控制器识别触碰信号对于触控信号的关联性。
具体而言,主机控制器可通过对比同一时间点、同一位置上触碰信号与触控信号的关联性,从而确定触控信号对于触碰显示屏的有效性。
示例性地,假设光学触碰传感器第3帧开始产生触控信号、在第26帧结束,触碰传感器第8帧开始产生触碰信号、在第22帧结束,则触碰信号与触控数据包之间的关系如下所示:
Figure PCTCN2022088069-appb-000020
Figure PCTCN2022088069-appb-000021
步骤905、若触控信号对于触碰显示屏的有效性为无效,则忽略触控信号,或者,从触控信号中读取触摸点数据,按照触摸点数据执行第一类型的业务操作。
步骤906、若触控信号对于触碰显示屏的有效性为有效,则从触控信号中读取触摸点数据,按照触摸点数据执行第二类型的业务操作。
如果主机控制器确定触控信号对于触碰显示屏的有效性为无效,则主机控制器可以根据业务需求选择处理该触控信号(即触控数据包)的方式。
其中一种处理方式是,忽略触控数据包,即并不响应用户的触控操作。
另外一种处理方式是,读取有效的触控信号(即非空的触控数据包)中的触摸点数据,如X坐标、Y坐标、宽、高等,定位触控操作发生的位置,按照触摸点数据(如位置)执行第一类型的业务操作。
如果主机控制器确定触控信号对于触碰显示屏的有效性为有效,则主机控制器读取有效的触控信号(即非空的触控数据包)中的触摸点数据,按照触摸点数据执行第二类型的业务操作。
具体而言,第一类型的业务操作与第二类型的业务操作并不相同,忽略触摸点数据、第一类型的业务操作、第二类型的业务操作之间的组合关系可以根据业务场景的需求而选择,从而提高业务操作的多样性、灵活性,本实施例对此不加以限制。
例如,针对冻结课件、书写批注的业务场景,若触碰信号与触控信号(即触控数据包)结合表示触控信号对于触碰显示屏的有效性为无效,则忽略触控信号(即触控数据包)中的触摸点数据,并不绘制笔迹,若触碰信号与触控信号(即触控数据包)结合表示触控信号对于触碰显示屏的有效性为有效,则按照触控信号(即触控数据包)中的触摸点数据执行第二类型的业务操作,绘制正常的笔迹。
又例如,针对绘画的业务场景,若触碰信号与触控信号(即触控数据包)结合表示触控信号对于触碰显示屏的有效性为无效,则按照触控信号(即触控数据包)中的触摸点数据执行第一类型的业务操作,绘制颜色较浅的笔迹,等等,若触碰信号与触控信号(即触控数据包)结合表示触控信号对于触碰显示屏的有效性为有效,则按照触控信号(即触控数据包)中的触摸点数据执行第二类型的业务操作,绘制颜色较深的笔迹。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
实施例四
图10为本发明实施例四提供的一种人机交互方法的流程图,本实施例可适用于依据触碰操作与显示屏之间的触碰关系划分触控类型、从而触发相应的交互操作的情况,该方法可以由人机交互装置来执行,该人机交互装置可以由软件和/或硬件实现,可应用于交互平板,尤其配置在交互平板的处理器中,该处理器可以为触控控制器或主机控制器,该方法具体包括如下步骤:
步骤1001、检测至少一个触摸物在显示屏的表面触发的至少一个触控操作。
在本实施例中,当一个触摸物在接近或触碰显示屏的表面并触发触控操作,意图实现人机交互,此时,可对该触控操作的信息进行检测。多个触摸物在接近或触碰显示屏的表面并 触发触控操作,意图实现人机交互,此时,可分别对每个触摸物的触控操作进行检测,记录该触控操作的相关信息。
在具体实现中,在交互平板中分别设置有光学触控传感器、触碰传感器,该处理器分别与光学触控传感器、触碰传感器电连接,因此,该处理器可在本地直接或间接接收到光学触控传感器产生的触控信号、触碰传感器产生的触碰信号。
一方面,可启动光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并触发触控操作时、产生至少一个触控信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个光学触控传感器620,在交互平板启动、运行期间,处理器可启动光学触控传感器620,光学触控传感器620在交互平板的显示屏表面扫描光信号,根据光信号的传输情况检测显示屏表面是否出现触摸物触发触控操作,在检测到触摸物触发触控操作时,对该触摸物触发的触控操作生成触控信号。
光学触控传感器620在交互平板的显示屏610上面扫描光信号是具有一定有效的空间范围的,超出该空间范围,则光学触控传感器620并不能检测到触摸物,在该空间范围内,则光学触控传感器620可以检测到触摸物,该空间范围称之为触控区域,该触控区域在显示屏610显示平面的垂直方向具有一定的高度,该高度记为H。
进一步而言,若处理器为主机控制器,则主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动光学触控传感器,或者,主机控制器直接向光学触控传感器发送启动信号,光学触控传感器响应该启动信号,上电启动。
若处理器为触控控制器,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动光学触控传感器。
如图6A所示,在用户并未触发触控操作时,在交互平板的显示屏610的表面未有触摸物时,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
在用户触发触控操作时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
触摸物处于状态645,即,触摸物离开光学触控传感器的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,假设触摸物650与触摸物660在不同的位置同时接近显示屏610 时,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,光学触控传感器620并不产生触控信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650、触摸物660)产生触控信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的所有触摸物(如触摸物650、触摸物660)产生触控信号。
另一方面,启动触碰传感器,以当至少一个触摸物触碰显示屏并触发触控操作时、产生至少一个触碰信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个触碰传感器630,在交互平板启动、运行期间,处理器可启动触碰传感器630,触碰传感器630检测在交互平板的显示屏发生触碰的事件,对该事件生成触碰信号。
对于触摸物触碰显示屏并触发触控操作的情况,触碰传感器可对该情况产生触碰信号。
触碰传感器在交互平板的显示屏上检测触碰的事件是具有一定有效的平面范围的,超出该平面范围,则触碰传感器并不能检测到触碰的事件,在该平面范围内,则触碰传感器可以检测到触碰的事件,该平面范围称之为触碰区域,在同一个交互平板中可安装一个或多个触碰传感器,一个触碰传感器独立的触碰区域或者一个触碰传感器的触碰区域合并之后的区域可覆盖交互平板。
对于在同一个交互平板中安装多个触碰传感器的情形,在同一个时间点内任意一个触碰传感器生成触碰信号,则可以认为该触碰信号有效、为该时间点对应的触碰信号,在同一个时间内所有触碰传感器并未生成触碰信号,则该时间点并无触碰信号。
进一步而言,若处理器为主机控制器,对于触碰传感器与主机控制器电连接的情形,主机控制器在交互平板上电启动时,启动触碰传感器,对于触碰传感器与触控控制器电连接的情形,主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动触碰传感器。
若处理器为触控控制器、且触碰传感器与触控控制器电连接,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动触碰传感器。
如图6A所示,在用户并未触发触控操作时,在交互平板的显示屏610的表面未有触摸物时,触碰传感器630并不产生触碰信号。
在用户触发触控操作时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,触碰传感器630产生触碰信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态645,即,触摸物离开光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
对于光学触控传感器、触碰传感器的操作整体而言,如图6A所示,对于用户正常触发的触控操作,对触摸物存在按下、移动、抬起的过程,触摸物会接近或触碰显示屏的表面,由于光学触控传感器620的触控区域存在高度H,一般情况下,在触摸物存在按下、移动、抬起的过程中,触摸物首先进入光学触控传感器620的触控区域,然后与触碰显示屏610触碰、从而触发触碰传感器630,最后离开光学触控传感器620的触控区域,因此,正常情况下,光学触控传感器620先产生触控信号,触碰传感器630再产生触碰信号,触碰传感器630先停止触碰信号,光学触控传感器620再停止触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,假设触摸物650与触摸物660在不同的位置同时接近显示屏610时,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,光学触控传感器620并不产生触控信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650、触摸物660)产生触控信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的所有触摸物(如触摸物650、触摸物660)产生触控信号。
如果存在光学触控传感器并未产生触控信号、而触碰传感器产生触碰信号的情况,可能是发生物体在侧边碰撞到交互平板而触发触碰传感器、安装交互平板的位置摇晃而触发触碰传感器、交互平板中的元件(如风扇)运行异常导致噪声过大影响触碰传感器等问题,本实 施例均可忽略这些情况。
一般情况下,光学触控传感器与触碰传感器是相互独立的,相互不受对方影响,即光学触控传感器独立启动、运行、关闭,并不受触碰传感器影响,触碰传感器独立启动、运行、关闭,光学触控传感器并不受影响。
步骤1002、在触发各触控操作的期间,识别各触摸物与显示屏之间在触碰上的关系、作为触碰关系。
在触摸物触发触控操作的期间,可以分别检测每个触摸物与显示屏之间在触碰上的关系、作为触碰关系,即该触碰关系表示触摸物已触碰到显示屏,或者,触摸物未触碰到显示屏。
在本发明的一个实施例中,当所述触控操作为一个时,步骤1002可以包括如下步骤:
步骤100211、若触控操作以触控信号与触碰信号表示,则在接收到触控信号时,确定触碰信号与触控信号的关联性。
在本实施例中,以光学触控传感器、触碰传感器同时检测触控操作,其中,光学触控传感器用于当触摸物在接近或触碰显示屏的表面并触发触控操作时、产生触控信号,触碰传感器用于当触摸物触碰显示屏并触发触控操作时、产生触碰信号。
一般情况下,光学触控传感器扫描光信号是一个持续性的操作,即,一段时间内,光学触控传感器可持续产生多帧触控信号,当然,在该段时间内,多帧触控信号可以是连续的、也可以是间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听光学触控传感器,从而连续或间断地接收光学触控传感器传输的多帧触控信号。
此外,触碰传感器检测触碰的事件也是一个持续性的操作,即,一段时间内,触碰传感器可持续产生多帧触碰信号,当然,在该段时间内,多帧触碰信号可以是连续的、也可以间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听触碰传感器,从而连续或间断地接收触碰传感器传输的多帧触碰信号。
如图6A所示,由于触摸物是单一的,因此,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,在处理器接收到光学触控传感器传输的触控信号时,检测在同一时间点内、触碰信号与触控信号的关联性,即,同一时间点内是否接收到触碰信号,从而识别触摸物在该时间点所处的状态。
具体而言,若同一时间点接收到触控信号、而未接收到触碰信号,则可以确定同一时间点触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,即同一时间点单独接收到触控信号。
若同一时间点接收到触控信号,且接收到触碰信号,则可以确定同一时间点触碰信号与触控信号存在关联性,触控信号已关联触碰信号,即同一时间点同时接收到触控信号与触碰信号。
在一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前, 结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内未接收到触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
在另一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。并且,如果存在触碰的事件时,触碰信号是连续的多帧触碰信号。
在此方式中,触碰传感器在检测到触碰的事件的起始、结束时,产生触碰信号,并将该帧触碰信号传输至处理器,其他时间并不产生触碰信号,表示如下:
触碰的事件 触碰信号
×
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
此外,在触碰传感器与处理器之间连接一根线路,作为状态线路,在该状态线路中,将触碰传感器的GPIO(General-purpose input/output,通用型之输入输出)设置为输出信号,处理器的GPIO设定为中断输入模式。
在此方式中,参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰传感器之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物初始触碰显示屏(即表示“1”的触控信号,此时,触碰传感器将状态线路的输出高电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,此外,针对触摸物初始触碰显示屏的触碰信号,在处理器的固件程序等区域设置标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域具有标志位Flag时,在存在标志位Flag期间,触摸物持续触碰显示屏,标志位Flag可以替代触碰信号,表示较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,通过标志位Flag替代触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量,而且由于标志位Flag可在处理器直接检测到,可减少生成触碰信号、传输触碰信号中的延时所带来的影响。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物结束触碰显示屏(即表示“0”的触控信号,此时,触碰传感器将状态线路的输出低电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,此外,针对触摸物结束触碰显示屏的触碰信号,在处理器的固件程序等区域清除标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域没有标志位Flag时,较短 的时间内单独接收到触控信号、而未接收到触碰信号,确定触碰信号不触控信号不存在关联性,触控信号未关联触碰信号。
针对一个独立的触碰操作,触摸物连续触碰显示屏,所谓连续触碰,可以指触摸物按下并触碰到显示屏,此后触摸物在显示屏上移动,在触摸物完成移动之后触摸物抬起,此方式可应用两帧触碰信号即可确定触碰信号与触控信号的关联性,即,在触摸物连续触碰显示屏时,触碰传感器在第一目标信号与第二目标信号之间可停止产生其他触碰信号,其中,第一目标信号为表示触摸物初始触碰所述显示屏的触碰信号,第二目标信号为表示触摸物结束触碰显示屏的触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量。
当然,上述确定触碰信号与触控信号的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定触碰信号与触控信号的关联性的方式,例如,在接收到触碰信号时,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,在有效期内未接收到触控信号时,确定触碰信号与触控信号不不存在关联性,触控信号未关联触碰信号,等等,本发明实施例对此不加以限制。另外,除了上述确定触碰信号与触控信号的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定触碰信号与触控信号的关联性的方式,本发明实施例对此也不加以限制。
步骤100212、根据触碰信号与触控信号的关联性、确定触摸物与显示屏之间在触碰上的关系、作为触碰关系。
若在同一时间点内,已确定触碰信号与触控信号的关联性,即,同一时间点内是否接收到触碰信号,从而确定触摸物与显示屏之间在触碰上的关系、作为触碰关系,即确认该触控信号关联触摸物触碰到显示屏,或者是,该触控信号关联触摸物未触碰到显示屏。
如图6A所示,在一种情况中,若触控信号与触碰信号存在关联性,则确定触摸物与显示屏之间在触碰上的关系为触摸物已触碰到显示屏,用以作为触碰关系,即同时存在触控信号与触碰信号,该触控信号关联的触摸物触碰到显示屏。
若触控信号与触碰信号不存在关联性,则确定触摸物与显示屏之间在触碰上的关系为触摸物未触碰到显示屏,用以作为触碰关系,即单独存在触控信号、并不存在触碰信号,则该触控信号关联的触摸物未触碰到显示屏。
在本发明的一个实施例中,当触控操作为多个时,步骤1002可以包括如下步骤:
步骤100221、确定多个触控操作的触控信号与多个触控操作的触碰信号在时间与位置上的关联性。
在本实施例中,以光学触控传感器、触碰传感器同时检测多个触摸物的多个触控操作,其中,光学触控传感器用于在多个触摸物在接近或触碰显示屏的表面并触发触控操作时、产生触控信号,触碰传感器用于在多个触摸物触碰显示屏的表面并触发触控操作时、产生触碰信号。
一般情况下,光学触控传感器扫描光信号是一个持续性的操作,即,一段时间内,光学触控传感器可持续产生多帧触控信号,当然,在该段时间内,多帧触控信号可以是连续的、也可以是间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听光学触控传感器,从而连续或间断地接收光学触控传感器传输的多帧触控信号。
此外,触碰传感器检测触碰的事件也是一个持续性的操作,即,一段时间内,触碰传感器可持续产生多帧触碰信号,当然,在该段时间内,多帧触碰信号可以是连续的、也可以间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听触碰传感器,从而连续或间断地接收触碰传感器传输的多帧触碰信号。
针对同一触摸物,由该触摸物在触碰显示屏的表面时所引发的触控信号与触碰信号应该在时间、位置等维度上是关联的,即同一触摸物在同一时间点、同一位置引发触控信号与触碰信号,因此,针对多个触摸物同时接近或触碰显示屏的表面时引起的触控信号与触碰信号,可以在时间、位置等维度上检测这些触控信号与触碰信号的关联性,从而区分不同触摸物的不同状态。
在具体实现中,如图6A所示,针对单一的触摸物,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,当处理器接收到光学触控传感器传输的触控操作的触控信号时,识别触控信号与触控操作的触碰信号在时间上的关联性,即,同一时间点内是否接收到触控信号、触碰信号。
具体而言,若同一时间点接收到触控信号、而未接收到触碰信号,即同一时间点单独产生触控信号,则可以确定触控信号与触碰信号在时间上不存在关联性。
若同一时间点接收到触控信号,且接收到触碰信号,即同一时间点同时产生触控信号与触碰信号,则可以确定触控信号与触碰信号在时间上存在关联性。
若触控信号与触碰信号在时间上存在关联性,则识别触控信号与触碰信号在位置上的关联性,即,同一位置内是否接收到触控信号、触碰信号。
具体而言,若同一位置接收到触控信号、而未接收到触碰信号,即同一位置单独产生触控信号,则可以确定触控信号与触碰信号在时间上不存在关联性。
若同一位置接收到触控信号,且接收到触碰信号,即同一位置同时产生触控信号与触碰信号,则可以确定触控信号与触碰信号在位置上存在关联性。
对于触控信号与触碰信号在时间上的关联性,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对触控操作的当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触控操作的触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触控信号与触碰信号在时间上存在关联性。
在有效期内未接收到触控操作的触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触控信号与触碰信号在时间上不存在关联性。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
对于触控信号与触碰信号在位置上的关联性,一方面,确定与触控操作的触控信号关联的触控位置,该触控位置表示触摸物接近或触碰显示屏的表面时的位置,可由处理器根据光学触控传感器扫描的光信号计算得到。
另一方面,确定与触控操作的触碰信号关联的触碰位置,该触碰位置表示触摸物触碰显示屏的表面时的位置,可由触碰传感器计算得到。
针对同一触摸物的触控操作的真实的位置是恒定的,即,同一触摸物的触控操作产生的触控信号与触碰信号来源于同一位置,考虑到处理器计算触控位置的方式与触碰传感器计算触碰位置的方式有所不同,而红外触控传感器、触碰传感器的精度一般较高,因此,同一触摸物的触控位置与触碰位置可能存在差异,但该差异一般较小、在可接受的误差范围内,对此,可预先设置阈值,该阈值表示可接受的误差范围。
针对当前的触控位置与触碰位置,可使用欧氏距离等方式计算触控位置与触碰位置之间的距离,将该距离与预设的阈值进行比较。
若触控位置与触碰位置之间的距离小于或等于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围内,可确定触控信号与触碰信号在位置上存在关联性。
若触控位置与触碰位置之间的距离大于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围外,可确定触控信号与触碰信号在位置上不存在关联性。
当然,上述确定在时间与位置上的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定在时间与位置上的关联性,例如,在接收到触碰信号时,识别触控信号与触碰信号在时间上的关联性,若触控信号与触碰信号在时间上存在关联性,则识别触控信号与触碰信号在位置上的关联性,或者,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触控信号与触碰信号存在关联性,触控信号已关联触碰信号,在有效期内未接收到触控信号时,确定触控信号与触碰信号存在关联性,触控信号未关联触碰信号,等等,本发明实施例对此不加以限制。另外,除了上述确定在时间与位置上的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定在时间与位置上的关联性的方式,本发明实施例对此也不加以限制。
步骤100222、根据关联性确定多个触摸物与显示屏的表面之间在触碰上的关系、作为触 碰关系。
若在同一时间、同一位置上,已确定触控信号与触碰信号的关联性,即,同一时间、同一位置上是否同时接收到触控信号与触碰信号,从而确定触控信号对于触碰显示屏的表面的有效性,即确认该触控信号关联触摸物触碰到显示屏,或者是,该触控信号关联触摸物未触碰到显示屏。
在一种情况中,若触控信号与触碰信号在时间与位置上均存在关联性,即,在同一时间、同一位置同时产生触控信号与触碰信号,则可以确定触摸物触碰显示屏的表面、作为触碰关系。
在另一种情况中,若触控信号与触碰信号在时间或位置上不存在关联性,即在同一时间或同一位置单独产生触控信号或触碰信号,对于触控信号与触碰信号在时间上不存在关联性,可能是多个触摸物均是接近显示屏的表面,并未触碰显示屏的表面,对于触控信号与触碰信号在位置上不存在关联性,可能是部分触摸物接近显示屏的表面,部分触摸物触碰显示屏的表面,此时,则可以确定触摸物接近显示屏的表面、作为触碰关系。
步骤1003、根据触碰关系分别对各触控操作划分触控类型。
在本实施例中,触碰关系表示触摸物与显示屏之间在触碰上的关系,即该触碰关系表示触摸物已触碰到显示屏,或者,触摸物未触碰到显示屏,据此可将触控操作在触碰的维度上划分不同的触控类型。
若触碰关系为触摸物已触碰到显示屏,则确定触控操作的触控类型为触碰触控。
若触碰关系为触摸物未触碰到显示屏,则确定触控操作的触控类型为悬浮触控。
步骤1004、分别对各触控操作执行与触控类型适配的交互操作。
对于不同触控类型的触控操作,可按照交互平板中预设的逻辑执行相应的交互操作。
在本发明的一个实施例中,步骤1004包括如下步骤:
步骤10041、对触控操作生成与触控类型适配的触控数据包。
一方面,光学触控传感器与处理器(如主机控制器、触控控制器)电连接,光学触控传感器将触控信号传输至处理器(如主机控制器、触控控制器),另一方面,触碰传感器与处理器(如主机控制器、触控控制器)电连接,触碰传感器将触碰信号传输至处理器(如主机控制器、触控控制器),此时,处理器(如主机控制器、触控控制器)识别触碰信号对于触控信号在时间与位置上的关联性、从而确定触控操作的触控类型。
此时,处理器(如主机控制器、触控控制器)可参考触控操作的触控类型、对触控操作生成触控数据包,在触控数据包记录触控操作的信息,其中,该触控数据包在原有的触摸点数据的基础上,可反映出触控操作的触控类型。
在生成触控数据包时,可以指在数据包中封装与触控操作相关的触摸点数据。
在一个示例中,触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000022
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
第一标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该 触碰信号的信息写入同一个触控数据包中、以第一标识数据与第二标识数据表示,第一标识数据用于记录触碰信号在某个时间、某个位置上的关联性;
第二标识数据用于记录触控信号在某个时间、某个位置上的关联性;
第一标识数据与第二标识数据结合表示触控操作的触控类型;
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000023
或者,状态包括如下至少一项数据:
第三标识数据、第二标识数据、可信度、保留参数。
第三标识数据表示触控操作的触控类型。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000024
需要说明的是,由于区分触控操作的触控类型的需求,因此,触控数据包中的状态同时携带第一标识数据、第二标识数据,或者,触控数据包中的状态携带第三标识数据。
示例性地,假设光学触控传感器第4帧开始产生触控信号、在第27帧结束,触碰传感器第8帧开始产生触碰信号、在第23帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000025
Figure PCTCN2022088069-appb-000026
示例性地,针对同一触摸物,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000027
Figure PCTCN2022088069-appb-000028
步骤10042、解析触控数据包,用以执行与触控类型适配的交互操作。
若在先由触控控制器生成触控数据包,则触控控制器可将触控数据包传输至主机控制器的上层应用,若在先由主机控制器的底层应用生成触控数据包,则底层应用可以将触控数据包传输至上层应用。
在主机控制器的上层应用接收到触控控制器的触控数据包之后,则可以解析触控数据包,从而在当前的业务场景中执行与触控类型相应的交互操作,例如,冻结课件书写批注、启动某个应用程序、使用橡皮檫擦拭笔迹,等等。
主机控制器接收到触控数据包时,可读取触控数据包中的触摸点数据,触摸点数据包括状态。
若该状态表示触控类型为悬浮触控,则按照触摸点数据执行第一类型的交互操作。
若该状态表示触控类型为触碰触控,则按照触摸点数据执行第二类型的交互操作。
具体而言,第一类型的交互操作与第二类型的交互操作并不相同,第一类型的交互操作、第二类型的交互操作之间的组合关系可以根据业务场景的需求而选择,从而提高业务操作的多样性、灵活性,本实施例对此不加以限制。
例如,针对绘画的业务场景,状态表示触控类型为悬浮触控,则按照触摸点数据执行第一类型的交互操作,绘制颜色较浅的笔迹,若状态表示触控类型为触碰触控,则按照触摸点数据执行第二类型的交互操作,绘制颜色较深的笔迹。
在本发明的另一个实施例中,触控操作以触控信号与触碰信号表示,即触控操作包含触控信号与触碰信号,则步骤1004包括如下步骤:
步骤10043、从触控信号中读取触摸点数据。
一方面,光学触控传感器与触控控制器电连接、触控控制器与主机控制器电连接,光学触控传感器将触控信号传输至触控控制器,触控控制器生成触控数据包,以及,将触控数据包传输至主机控制器。
在一个示例中,触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000029
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
可信度、保留参数。
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000030
因此,对于主机控制器而言,触碰信号以触控数据包表示,即主机控制器接收到有效的触控数据包(即非空数据包)时,相当于接收到一帧触控信号。
另一方面,触碰传感器与主机控制器电连接,此时,触碰传感器将触碰信号传输至主机控制器,主机控制器识别触碰信号对于触控信号的关联性、从而确定触控操作的触控类型。
具体而言,主机控制器可通过对比同一时间点、同一位置、触碰信号对于触控信号的关联性,从而确定触控操作的触控类型。
示例性地,假设光学触碰传感器第4帧开始产生触控信号、在第27帧结束,触碰传感器第8帧开始产生触碰信号、在第23帧结束,则触碰信号与触控数据包之间的关系如下所示:
Figure PCTCN2022088069-appb-000031
步骤10044、若触控类型为悬浮触控,则按照触摸点数据执行第一类型的交互操作。
步骤10045、若触控类型为触碰触控,则按照触摸点数据执行第二类型的交互操作。
如果主机控制器确定触控操作的触控类型为悬浮触控,则主机控制器可以读取有效的触控数据包(即非空数据包)中的触摸点数据,如X坐标、Y坐标、宽、高等,定位触控操作发生的位置,按照触摸点数据(如位置)执行第一类型的交互操作。
如果主机控制器确定触控操作的触控类型为触碰触控,则主机控制器读取有效的触控数据包(即非空数据包)中的触摸点数据,按照触摸点数据执行第二类型的交互操作。
具体而言,第一类型的交互操作与第二类型的交互操作并不相同,第一类型的交互操作、第二类型的交互操作之间的组合关系可以根据业务场景的需求而选择,从而提高业务操作的多样性、灵活性,本实施例对此不加以限制。
例如,针对绘画的业务场景,状态表示触控类型为悬浮触控,则按照触摸点数据执行第一类型的交互操作,绘制颜色较浅的笔迹,若状态表示触控类型为触碰触控,则按照触摸点数据执行第二类型的交互操作,绘制颜色较深的笔迹。
在本实施例中,检测至少一个触摸物在显示屏的表面触发的至少一个触控操作,在各触发触控操作的期间,识别各触摸物与显示屏之间在触碰上的关系、作为触碰关系,根据触碰关系分别对各触控操作划分触控类型,分别对各触控操作执行与触控类型适配的交互操作,通过检测触摸物与显示屏在触碰上的关系,可识别在触发触控操作的器件、触摸物是否触碰到显示屏,每个触摸物独立识别触控操作、相互不干扰,赋予触控操作更多一个维度的特征,可丰富触控操作的含义,触控操作会赋予触摸屏更多的表现力,从而提高触控操作的灵活性。
进一步地,对于书写的场景,若交互操作为书写笔迹,对于触碰到显示屏的触控操作,可书写笔迹,对于并未触碰到显示屏的触控操作、并不书写笔迹,从而解决零高度书写的问题。
实施例五
图11为本发明实施例五提供的一种笔迹的显示方法的流程图,本实施例可适用于在一个或多点触控的场景中、依据触碰轨迹与显示屏之间的触碰关系划分区分显示笔迹的情况,该方法可以由笔迹的显示装置来执行,该人机交互装置可以由软件和/或硬件实现,可应用于交互平板,尤其配置在交互平板的处理器中,该处理器可以为触控控制器或主机控制器,该方法具体包括如下步骤:
步骤1101、显示书写界面。
交互设备中设置有GPU(Graphics Processing Unit,图形处理器),可提供视频处理功能,具体而言,接收来自主机控制器的信息,置入帧存储器,按分区驱动方式针对视频信号生成显示屏所需的串行显示数据和扫描控制时序,显示屏按照串行显示数据和扫描控制时序进行播放,从而在显示屏显示各种画面。
在交互平板中,用户触发书写模式,此时,在书写模式中,可在显示屏上显示一界面,用户可以选择笔迹的配置参数,如颜色、宽度等,从而按照该配置参数在该界面上书写笔迹,因此,该界面称之为书写界面。
在实际应用中,该书写界面可以为独立的界面,示例性地,交互平板提供电子白板,用户在交互平板中触发显示该电子白板的控制操作,交互平板接收该控制操作,显示电子白板,作为书写界面,此时,用户可在电子白板上触发触控操作,该触控操作以轨迹的形式表示,因此,可称之为触控轨迹,则交互平板可在该交互平板的屏幕上显示与该触控轨迹相应的,其中,该显示该电子白板的控制操作包括但不限于触控操作、键盘操作、鼠标操作、物理按键操作。
此外,该书写界面也可以为具有背景的界面,示例性地,交互平板显示本地的课件、显示传屏设备(USB Dongle,USB软件保护器)传输的、属于源设备(如笔记本电脑等)的屏幕画面等数据,用户在交互平板中触发批注操作,交互平板接收该批注操作,冻结课件、屏幕画面等数据,使之成为背景,即维持显示课件、屏幕画面等数据的当前帧画面,并在课件、 屏幕画面等数据之上生成蒙层,从而作为书写界面,此时,用户可在交互平板的屏幕上触发触控操作,该触控操作以轨迹的形式表示,因此,可称之为触控轨迹,交互平板可在该蒙层上显示与该触控轨迹相应的笔迹。
其中,所谓课件,可以指是根据教学的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程文档,例如,该课件可以为Word文档、PPT(PowerPoint,演示文稿)等公用格式的文件,也可以为文字、表格、图片等元素组合而成的自定义页面,本实施例对此不加以限制。
步骤1102、确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹。
在具体实现中,用户可以使用手指、触摸笔等触摸物在交互平板的显示屏的表面触发指定的触控轨迹,其中,该指定的触控轨迹可用于书写笔迹,如单点触控手势中的滑动操作。交互平板接收该指定的触控轨迹,以及,响应于该触控轨迹,按照该配置参数在发生该指定的触控轨迹的位置显示笔迹。在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时书写笔迹,交互平板可接收该每个触摸物触发的触控轨迹,以及,响应于该触控轨迹,按照该配置参数在发生该指定的触控轨迹的位置显示笔迹
在交互平板中分别设置有光学触控传感器、触碰传感器,该处理器分别与光学触控传感器、触碰传感器电连接,因此,该处理器可在本地直接或间接接收到光学触控传感器产生的触控信号、触碰传感器产生的触碰信号。
一方面,启动光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、分别对各触控轨迹产生触控信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个光学触控传感器620,在交互平板启动、运行期间,处理器可启动光学触控传感器620,光学触控传感器620在交互平板的显示屏表面扫描光信号,根据光信号的传输情况检测显示屏表面是否出现触摸物,在检测到触摸物时,对该触摸物在移动时生成的触控轨迹产生触控信号。
光学触控传感器620在交互平板的显示屏610上面扫描光信号是具有一定有效的空间范围的,超出该空间范围,则光学触控传感器620并不能检测到触摸物,在该空间范围内,则光学触控传感器620可以检测到触摸物,该空间范围称之为触控区域,该触控区域在显示屏610显示平面的垂直方向具有一定的高度,该高度记为H。
进一步而言,若处理器为主机控制器,则主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动光学触控传感器,或者,主机控制器直接向光学触控传感器发送启动信号,光学触控传感器响应该启动信号,上电启动。
若处理器为触控控制器,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动光学触控传感器。
如图6A所示,在用户并未触发触控轨迹时,在交互平板的显示屏610的表面未有触摸物时,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
在用户触发触控轨迹时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示 屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,光信号被触摸物阻挡,光学触控传感器620产生触控信号。
触摸物处于状态645,即,触摸物离开光学触控传感器的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,光信号正常传输、未被阻挡,光学触控传感器620并不产生触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,假设触摸物650与触摸物660在不同的位置同时接近显示屏610时,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,光学触控传感器620并不产生触控信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650、触摸物660)产生触控信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的所有触摸物(如触摸物650、触摸物660)产生触控信号。
另一方面,启动触碰传感器,以当触摸物触碰显示屏并移动时、对触控轨迹产生触碰信号。
如图6A所示,在交互平板的显示屏610中安装有一个或多个触碰传感器630,在交互平板启动、运行期间,处理器可启动触碰传感器630,触碰传感器630检测在交互平板的显示屏发生触碰的事件,对该事件生成触碰信号。
对于触摸物而言,若触摸物在移动时触碰到显示屏,此时,可对触摸物移动时生成的触控轨迹产生触碰信号。
触碰传感器在交互平板的显示屏上检测触碰的事件是具有一定有效的平面范围的,超出该平面范围,则触碰传感器并不能检测到触碰的事件,在该平面范围内,则触碰传感器可以检测到触碰的事件,该平面范围称之为触碰区域,在同一个交互平板中可安装一个或多个触碰传感器,一个触碰传感器独立的触碰区域或者一个触碰传感器的触碰区域合并之后的区域可覆盖交互平板。
对于在同一个交互平板中安装多个触碰传感器的情形,在同一个时间点内任意一个触碰传感器生成触碰信号,则可以认为该触碰信号有效、为该时间点对应的触碰信号,在同一个 时间内所有触碰传感器并未生成触碰信号,则该时间点并无触碰信号。
进一步而言,若处理器为主机控制器,对于触碰传感器与主机控制器电连接的情形,主机控制器在交互平板上电启动时,启动触碰传感器,对于触碰传感器与触控控制器电连接的情形,主机控制器在交互平板上电启动时,可向触控控制器发送启动信号,触控控制器响应该启动信号,启动触碰传感器。
若处理器为触控控制器、且触碰传感器与触控控制器电连接,则触控控制器接收主机控制器在交互平板上电启动时发送的启动信号,触控控制器响应该启动信号,启动触碰传感器。
如图6A所示,在用户并未触发触控轨迹时,在交互平板的显示屏610的表面未有触摸物时,触碰传感器630并不产生触碰信号。
在用户触发触控轨迹时,一般发生如下过程:
1、用户按下触摸物的过程:
交互平板的显示屏610的表面出现触摸物、并处于状态641,即,触摸物并未进入光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态642,即,触摸物进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
2、用户在显示屏110的上表面移动触摸物的过程:
触摸物处于状态643,即触摸物进入光学触控传感器620的触控区域内、且触碰到显示屏610,触摸物与显示屏610之间在垂直方向上的距离等于0或者小于0(即由于按压、玻璃产生了内向的形变),此时,触碰传感器630产生触碰信号。
3、用户抬起触摸物的过程:
触摸物处于状态644,即触摸物离开显示屏610,但仍在光学触控传感器620的触控区域内、仍处于接近显示屏610的状态,触摸物与显示屏610之间在垂直方向上的距离大于0、且小于高度H,此时,触碰传感器630并不产生触碰信号。
触摸物处于状态645,即,触摸物离开光学触控传感器620的触控区域内,触摸物与显示屏610之间在垂直方向上的距离大于高度H,此时,触碰传感器630并不产生触碰信号。
对于光学触控传感器、触碰传感器的操作整体而言,如图6A所示,对于用户正常触发的触控轨迹,对触摸物存在按下、移动、抬起的过程,触摸物会接近或触碰显示屏的表面,由于光学触控传感器620的触控区域存在高度H,一般情况下,在触摸物存在按下、移动、抬起的过程中,触摸物首先进入光学触控传感器620的触控区域,然后与触碰显示屏610触碰、从而触发触碰传感器630,最后离开光学触控传感器620的触控区域,因此,正常情况下,光学触控传感器620先产生触控信号,触碰传感器630再产生触碰信号,触碰传感器630先停止触碰信号,光学触控传感器620再停止触控信号。
进一步而言,在教育、会议等场景,可能会存在多人同时作答习题、多人同时记录会议纪要等情况,此时,多个(至少两个)触摸物在不同的位置同时接近或触碰显示屏的表面,光学触控传感器可分别对多个触摸物进行检测,以相应产生多个触控信号。
如图6B至图6G所示,假设触摸物650与触摸物660在不同的位置同时接近显示屏610时,可能会存在如下情况:
1、无触摸物接近或触碰显示屏610的表面
如图6C所示,所有触摸物(如触摸物650、触摸物660)并未进入光学触控传感器620的触控区域内,此时,光学触控传感器620并不产生触控信号。
2、至少一个触摸物接近显示屏610的表面
如图6D所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、接近显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触 摸物650)产生触控信号。
如图6E所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、接近显示屏610的表面,但并未触碰到显示屏610,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650、触摸物660)产生触控信号。
3、至少一个触摸物触碰显示屏610的表面
如图6F所示,部分触摸物(如触摸物650)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的部分触摸物(如触摸物650)产生触控信号。
如图6G所示,所有触摸物(如触摸物650、触摸物660)进入光学触控传感器620的触控区域内、且触碰显示屏610的表面,此时,光学触控传感器620针对进入触控区域内的所有触摸物(如触摸物650、触摸物660)产生触控信号。
如果存在光学触控传感器并未产生触控信号、而触碰传感器产生触碰信号的情况,可能是发生物体在侧边碰撞到交互平板而触发触碰传感器、安装交互平板的位置摇晃而触发触碰传感器、交互平板中的元件(如风扇)运行异常导致噪声过大影响触碰传感器等问题,本实施例均可忽略这些情况。
一般情况下,光学触控传感器与触碰传感器是相互独立的,相互不受对方影响,即光学触控传感器独立启动、运行、关闭,并不受触碰传感器影响,触碰传感器独立启动、运行、关闭,光学触控传感器并不受影响。
考虑到正常的触控轨迹,光学触控传感器先产生触控信号,触碰传感器再产生触碰信号,触碰传感器先停止触碰信号,光学触控传感器再停止触控信号,即,触碰传感器首次针对触摸物产生触碰信号,表示触摸物首次触摸到显示屏,因此,在部分业务场景下,例如,冻结课件从而在课件的上层书写批注、会议书写板书,等等,在交互平板启动、运行时,一方面,处理器可启动触碰传感器,另一方面,处理器可控制光学触控传感器休眠,即控制光学触控传感器停止在交互平板的表面扫描光信号,或者,以低功耗的模式(如非逐个扫描、扫描的频率低,从而达到节省功耗的作用)在交互平板的表面扫描光信号,此时,即便触摸物进入光学触控传感器的触控区域,光学触控传感器也不会产生触控信号,在这些业务场景下,在触摸物进入触控区域但未触碰到交互平板的显示屏时,光学触控传感器所检测到的触控信号对于书写笔迹的场景而言意义较低、甚至是负向效果(如笔迹的连笔),因此,丢失触摸物进入触控区域但未触碰到交互平板的显示屏时、光学触控传感器所检测到的触控信号,对于触控轨迹而言,基本不存在影响、甚至保证触控轨迹的正常绘制笔迹。
在确定光学触控传感器休眠的情况下,处理器可检测是否接收到触碰传感器产生的触碰信号。
若未接收到触碰信号,则处理器可维持光学触控传感器休眠。
若接收到触碰信号,则处理器可激活(又称唤醒)光学触控传感器、退出休眠,光学触控传感器重新在交互平板的表面扫描光信号,当至少一个触摸物在显示屏的表面(即触控区域中)移动时、光学触控传感器对触控轨迹产生至少一个触控信号。
此后,若触控信号中断,则处理器可重新控制光学触控传感器休眠,等待触碰传感器的触碰信号唤醒,对于触碰传感器而言,在光学触控传感器休眠期间,触碰传感器第一次产生的触碰信号可称之为首次针对触摸物产生触碰信号。
进一步而言,检测触控信号是否中断的条件,可以由本领域技术人员设定,例如,在超过预设的时间段未接收到触控信号时,认为触控信号中断,或者,在交互平板的显示屏显示适于触控轨迹的书写场景时,确定触控信号持续,在交互平板的显示屏显示不依赖触控轨迹的业务场景(如播放视频)时,确定触控信号中断,等等,本实施例对此不加以限制。
在本实施例中,通过对正常的触控轨迹下光学触控传感器产生触控信号、触碰传感器产生触碰信号的规律进行分析,在某些业务场景下,可控制光学触控传感器休眠、由触碰传感 器的触碰信号唤醒,在保证在该业务场景下、可保证正常检测触摸物、从而保证触控轨迹的正常响应,并且,可降低光学触控传感器的功耗、从而降低交互平板的功耗。
步骤1103、对各触摸物确定第一子轨迹、第二子轨迹。
在本实施例中,可以依赖触摸物是否触碰到显示屏将触控轨迹划分为第一子轨迹、第二字轨迹,其中,第一子轨迹为触摸物接近但未触碰到显示屏的触控轨迹、第二子轨迹为触摸物已触碰到显示屏的触控轨迹。
在本发明的一个实施例中,当触摸物为一个时,步骤1103包括如下步骤:
步骤110311、当接收到触控信号时,确定触碰信号与触控信号的关联性。
一般情况下,光学触控传感器扫描光信号是一个持续性的操作,即,一段时间内,光学触控传感器可持续产生多帧触控信号,当然,在该段时间内,多帧触控信号可以是连续的、也可以是间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听光学触控传感器,从而连续或间断地接收光学触控传感器传输的多帧触控信号。
此外,触碰传感器检测触碰的事件也是一个持续性的操作,即,一段时间内,触碰传感器可持续产生多帧触碰信号,当然,在该段时间内,多帧触碰信号可以是连续的、也可以间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听触碰传感器,从而连续或间断地接收触碰传感器传输的多帧触碰信号。
如图6A所示,由于触摸物是单一的,因此,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,在处理器接收到光学触控传感器传输的触控信号时,检测在同一时间点内、触碰信号对于触控信号的关联性,即,同一时间点内是否接收到触碰信号,从而识别触摸物在该时间点所处的状态。
具体而言,若同一时间点接收到触控信号、而未接收到触碰信号,则可以确定同一时间点触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,即同一时间点单独接收到触控信号。
若同一时间点接收到触控信号,且接收到触碰信号,则可以确定同一时间点触碰信号与触控信号存在关联性,触控信号已关联触碰信号,即同一时间点同时接收到触控信号与触碰信号。
在一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信 号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内未接收到触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
在另一种确定触碰信号与触控信号的关联性的方式,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。并且,如果存在触碰的事件时,触碰信号是连续的多帧触碰信号。
在此方式中,触碰传感器在检测到触碰的事件的起始、结束时,产生触碰信号,并将该帧触碰信号传输至处理器,其他时间并不产生触碰信号,表示如下:
触碰的事件 触碰信号
×
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
此外,在触碰传感器与处理器之间连接一根线路,作为状态线路,在该状态线路中,将触碰传感器的GPIO(General-purpose input/output,通用型之输入输出)设置为输出信号,处理器的GPIO设定为中断输入模式。
在此方式中,参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰传感器之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物初始触碰显示屏(即表示“1”的触控信号,此时,触碰传感器将状态线路的输出高电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号对于触控信号存在关联性,触控信号已关联触碰信号,此外,针对触摸物初始触碰显示屏的触碰信号,在处理器的固件程序等区域设置标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域具有标志位Flag时,在存在标志位Flag期间,触摸物持续触碰显示屏,标志位Flag可以替代触碰信号,表示较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,通过标志位Flag替代触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量,而且由于标志位Flag可在处理器直接检测到,可减少生成触碰信号、传输触碰信号中的延时所带来的影响。
在有效期内接收到表示触碰信号、且触碰信号表示触摸物结束触碰显示屏(即表示“0”的触控信号,此时,触碰传感器将状态线路的输出低电平信号)时,即较短的时间内连续接收到触控信号与触碰信号,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,此外,针对触摸物结束触碰显示屏的触碰信号,在处理器的固件程序等区域清除标志位Flag。
在有效期内未接收到触碰信号、且在处理器的固件程序等区域没有标志位Flag时,较短的时间内单独接收到触控信号、而未接收到触碰信号,确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号。
针对一个独立的触碰操作,触摸物连续触碰显示屏,所谓连续触碰,可以指触摸物按下 并触碰到显示屏,此后触摸物在显示屏上移动,在触摸物完成移动之后触摸物抬起,此方式可应用两帧触碰信号即可确定触碰信号与触控信号的关联性,即,在触摸物连续触碰显示屏时,触碰传感器在第一目标信号与第二目标信号之间可停止产生其他触碰信号,其中,第一目标信号为表示触摸物初始触碰所述显示屏的触碰信号,第二目标信号为表示触摸物结束触碰显示屏的触碰信号,不仅大大减少触碰传感器产生触碰信号的数量,从而减少触碰传感器的计算量。
当然,上述确定触碰信号与触控信号的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定触碰信号与触控信号的关联性的方式,例如,在接收到触碰信号时,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触碰信号与触控信号存在关联性,触控信号已关联触碰信号,在有效期内未接收到触控信号时,确定触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,等等,本发明实施例对此不加以限制。另外,除了上述确定触碰信号与触控信号的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定触碰信号与触控信号的关联性的方式,本发明实施例对此也不加以限制。
步骤110312、若触控信号与触碰信号不存在关联性,则确定触摸物未触碰到显示屏,触控轨迹为第一子轨迹。
如图6A所示,若触碰信号与触控信号不存在关联性,触控信号未关联触碰信号,即单独存在触控信号、并不存在触碰信号,则确定该触控信号关联的触摸物未触碰到显示屏,此时,划分触控轨迹为第一子轨迹。
步骤110313、若触控信号与触碰信号存在关联性,则确定触摸物已触碰到显示屏,触控轨迹为第二子轨迹。
如图6A所示,若触碰信号与触控信号存在关联性,触控信号已关联触碰信号,即同时存在触控信号与触碰信号,则该触控信号关联的触摸物触碰到显示屏,此时,划分触控轨迹为第二子轨迹。
在本发明的一个实施例中,当触摸物为多个时,步骤1103包括如下步骤:
步骤110321、确定触控轨迹的触碰信号与触控轨迹的触控信号在时间与位置上的关联性。
般情况下,光学触控传感器扫描光信号是一个持续性的操作,即,一段时间内,光学触控传感器可持续产生多帧触控信号,当然,在该段时间内,多帧触控信号可以是连续的、也可以是间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听光学触控传感器,从而连续或间断地接收光学触控传感器传输的多帧触控信号。
此外,触碰传感器检测触碰的事件也是一个持续性的操作,即,一段时间内,触碰传感器可持续产生多帧触碰信号,当然,在该段时间内,多帧触碰信号可以是连续的、也可以间断的,本实施例对此不加以限制。
因此,在该段时间内,处理器可持续监听触碰传感器,从而连续或间断地接收触碰传感器传输的多帧触碰信号。
针对同一触摸物,由该触摸物触发的触控轨迹在触碰显示屏的表面时所引发的触控信号与触碰信号应该在时间、位置等维度上是关联的,即同一触摸物触发的触控轨迹在同一时间点、同一位置引发触控信号与触碰信号,因此,针对多个触摸物触发的触控轨迹同时接近或触碰显示屏的表面时引起的触控信号与触碰信号,可以在时间、位置等维度上检测这些触控信号与触碰信号的关联性,从而区分不同触摸物触发的触控轨迹的不同状态。
在具体实现中,如图6A所示,针对单一的触摸物,在状态642、状态644中,即触摸物位于光学触控传感器620的触控区域内、但并未触碰到显示屏610,此时,光学触控传感器620针对该触摸物生成触控信号,触碰传感器630并不针对该触摸物产生触碰信号,在状态643中,即触摸物位于光学触控传感器620的触控区域内、且触碰到显示屏610,此时,光学 触控传感器620针对该触摸物生成触控信号,触碰传感器630针对该触摸物产生触碰信号。
因此,可以以触控信号作为基准,当处理器接收到光学触控传感器传输的触控轨迹的触控信号时,识别触控轨迹的触控信号与触控轨迹的触碰信号在时间上的关联性,即,同一时间点内是否接收到触控轨迹的触控信号、触控轨迹的触碰信号。
具体而言,若同一时间点接收到触控轨迹的触控信号、而未接收到触控轨迹的触碰信号,即同一时间点单独产生触控轨迹的触控信号,则可以确定触控轨迹的触控信号与触控轨迹的触碰信号在时间上不存在关联性。
若同一时间点接收到触控轨迹的触控信号,且接收到触控轨迹的触碰信号,即同一时间点同时产生触控轨迹的触控信号与触控轨迹的触碰信号,则可以确定触控轨迹的触控信号与触控轨迹的触碰信号在时间上存在关联性。
若触控轨迹的触控信号与触控轨迹的触碰信号在时间上存在关联性,则识别触控轨迹的触控信号与触控轨迹的触碰信号在位置上的关联性,即,同一位置内是否接收到触控轨迹的触控信号、触控轨迹的触碰信号。
具体而言,若同一位置接收到触控轨迹的触控信号、而未接收到触控轨迹的触碰信号,即同一位置单独产生触控轨迹的触控信号,则可以确定触控轨迹的触控信号与触控轨迹的触碰信号在时间上不存在关联性。
若同一位置接收到触控轨迹的触控信号,且接收到触控轨迹的触碰信号,即同一位置同时产生触控轨迹的触控信号与触控轨迹的触碰信号,则可以确定触控轨迹的触控信号与触控轨迹的触碰信号在位置上存在关联性。
对于触控信号与触碰信号在时间上的关联性,考虑到光学触控传感器产生触控信号的频率与触碰传感器产生触碰信号的频率一般不同,以及,光学触控传感器传输触控信号至处理器存在一定的时延,触碰传感器传输触碰信号至处理器存在一定的时延,两者的时延也并不一致,导致针对同一触摸物产生的触控信号与触碰信号也并不一定同步。
在此方式中,可参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率等因素,针对触控轨迹的当前帧触控信号设置有效期,一方面,参照光学触控传感器产生触控信号的频率,该有效期小于或等于每两帧触控信号之间的时间间隔,在下一帧触控信号到来之前,结束本帧触控信号的处理,从而保证当前帧触控信号并不影响下一帧触控信号的处理,另一方面,同时参照光学触控传感器产生触控信号的频率、触碰传感器产生触碰信号的频率,该有效期大于或等于触控信号与触碰信号之间的时间间隔,从而保证可以接收到同一时间点内、触碰传感器产生的触碰信号。
示例性地,由于光学触控传感器传输触控信号至处理器的时延、触碰传感器传输触碰信号至处理器的时延均较小、可忽略,光学触控传感器产生触控信号的频率中、每两帧触控信号之间的时间间隔为20ms,光学触控传感器传输触控信号至处理器的时间比触碰传感器传输触碰信号至处理器的时间最多早10ms(即触控信号与触碰信号之间最大的时间间隔为10ms),则可以设置有效期为20ms。
在有效期内接收到触控轨迹的触碰信号时,即较短的时间内连续接收到触控信号与触碰信号,可以确定触控轨迹的触控信号与触控轨迹的触碰信号在时间上存在关联性。
在有效期内未接收到触控轨迹的触碰信号时,即较短的时间内单独接收到触控信号、而未接收到触碰信号,可以确定触控轨迹的触控信号与触控轨迹的触碰信号在时间上不存在关联性。
在此方式中,触碰传感器每检测到触碰的事件,即正常产生一帧触碰信号,并将该帧触碰信号传输至处理器,表示如下:
触碰的事件 触碰信号
×
1
1
1
1
1
1
1
1
1
× 0
×
其中,“×”表示未检测到触碰的事件,“√”表示检测到触碰的事件,“无”表示并不产生触碰信号,“1”表示产生包含触碰的信息的触碰信号,“0”表示产生表示触碰结束的触碰信号。
对于触控信号与触碰信号在位置上的关联性,一方面,确定与触控轨迹的触控信号关联的触控位置,该触控位置表示触摸物接近或触碰显示屏的表面时的位置,可由处理器根据光学触控传感器扫描的光信号计算得到。
另一方面,确定与触碰信号关联的触控轨迹的触碰位置,该触碰位置表示触摸物触碰显示屏的表面时的位置,可由触碰传感器计算得到。
针对同一触摸物真实的位置是恒定的,即,同一触摸物的触控轨迹产生的触控信号与触碰信号来源于同一位置,考虑到处理器计算触控位置的方式与触碰传感器计算触碰位置的方式有所不同,而红外触控传感器、触碰传感器的精度一般较高,因此,同一触摸物的触控位置与触碰位置可能存在差异,但该差异一般较小、在可接受的误差范围内,对此,可预先设置阈值,该阈值表示可接受的误差范围。
针对当前的触控位置与触碰位置,可使用欧氏距离等方式计算触控位置与触碰位置之间的距离,将该距离与预设的阈值进行比较。
若触控位置与触碰位置之间的距离小于或等于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围内,可确定触控信号与触碰信号在位置上存在关联性。
若触控位置与触碰位置之间的距离大于预设的阈值,则表示触控位置与触碰位置之间的差异在误差范围外,可确定触控信号与触碰信号在位置上不存在关联性。
当然,上述确定在时间与位置上的关联性的方式只是作为示例,在实施本发明实施例时,可以根据实际情况设置其它确定在时间与位置上的关联性,例如,在接收到触碰信号时,识别触控信号与触碰信号在时间上的关联性,若触控信号与触碰信号在时间上存在关联性,则识别触控信号与触碰信号在位置上的关联性,或者,针对触碰信号设置有效期,在有效期内接收到触控信号时,确定触控信号与触碰信号存在关联性,触控信号已关联触碰信号,在有效期内未接收到触控信号时,确定触控信号与触碰信号存在关联性,触控信号未关联触碰信号,等等,本发明实施例对此不加以限制。另外,除了上述确定在时间与位置上的关联性的方式外,本领域技术人员还可以根据实际需要采用其它确定在时间与位置上的关联性的方式,本发明实施例对此也不加以限制。
步骤110322、若触控信号与触碰信号在时间或位置上不存在关联性,则确定触摸物接近显示屏的表面、触控轨迹为第一子轨迹。
若触控信号与触碰信号在时间或位置上不存在关联性,即在同一时间或同一位置单独产生触控信号或触碰信号,对于触控信号与触碰信号在时间上不存在关联性,可能是多个触摸物均是接近显示屏的表面,并未触碰显示屏的表面,对于触控信号与触碰信号在位置上不存 在关联性,可能是部分触摸物接近显示屏的表面,部分触摸物触碰显示屏的表面,此时,划分触控轨迹为第一子轨迹。
步骤110323、若触控信号与触碰信号在时间与位置上均存在关联性,则确定触摸物触碰显示屏的表面、触控轨迹为第二子轨迹。
若触控信号与触碰信号在时间与位置上均存在关联性,即,在同一时间、同一位置同时产生触控信号与触碰信号,则可以确定触控信号表示触碰显示屏的表面有效,该触控信号与该触碰信号所属的触摸物触碰到显示屏的表面。
步骤1104、忽略第一子轨迹,在书写界面上绘制与第二子轨迹匹配的笔迹。
在书写第一子轨迹时,触摸物悬空在显示屏的表面,一般不是用户意图的笔迹,因此,可忽略第一子轨迹。
在书写第二子轨迹时,触摸物触碰在显示屏的表面,一般是用户意图的笔迹,因此,在书写界面上沿第二子轨迹绘制笔迹。如图7A所示,若用户书写“正”字,将书写时产生的触控轨迹,区分为已触碰显示屏的第二字轨迹(显示为实线)、未触碰显示屏的第一子轨迹(显示为虚线),可见,在书写第一横与第一竖之间存在连续的起笔与落笔711、在书写第二横结束时存在起笔712、在书写第二竖与第三横之间存在连续的起笔与落笔713,均存在较为明显的连笔,这些连笔多为第一子轨迹(显示为虚线)。
如图7B所示,绘制第二子轨迹对应的笔迹,忽略第一子轨迹、并不绘制相应的笔迹,此时,对于在书写第一横与第一竖之间存在连续的起笔与落笔711、在书写第二横结束时存在起笔712、在书写第二竖与第三横之间存在连续的起笔与落笔713,均可消除较为明显的连笔,使得“正”较为工整。
进一步地,如图7C所示,在区域741中,应用本实施例的方法,绘制与第二子轨迹相应的笔迹,忽略第一子轨迹、并不绘制相应的笔迹,书写多个“正”字,在区域742中,应用在先的技术,直接绘制触控轨迹相应的笔迹,书写多个“正”字。
对比可见,区域741中的多个“正”字,连笔的情况大幅度减少,整体显得更加工整,而区域742中的多个“正”字,连笔的情况较为明显,整体显得更加潦草。
在本发明的一个实施例中,步骤1104包括如下步骤:
步骤11041、对触控轨迹生成触控数据包,用以区分第一子轨迹、第二子轨迹。
在本实施例中,一方面,光学触控传感器与处理器(如主机控制器、触控控制器)电连接,光学触控传感器将触控信号传输至处理器(如主机控制器、触控控制器),另一方面,触碰传感器与处理器(如主机控制器、触控控制器)电连接,触碰传感器将触碰信号传输至处理器(如主机控制器、触控控制器),此时,处理器(如主机控制器、触控控制器)识别触碰信号对于触控信号在时间与位置上的关联性。
此时,处理器(如主机控制器、触控控制器)可参考触摸物是否触碰到显示屏、对触控轨迹生成触控数据包,在触控数据包记录触控信号的信息,其中,该触控数据包在原有的数据的基础上,可反映出触摸物是否触碰到显示屏,从而区分第一子轨迹、第二子轨迹。
在一种生成触控数据包的方式中,若触控轨迹为第一子轨迹,则禁止对触控轨迹生成触控数据包;若触控轨迹为第二子轨迹,则允许对触控轨迹生成触控数据包。
如果触碰到显示屏的触控轨迹对于交互平板的整体应用更加具有意义,例如,交互平板应用于教育、触控轨迹多为书写笔迹(即板书、答题信息、批注等),此时,在底层以触控信号对于触碰显示屏的有效性作为过滤触控数据包的条件,对于触摸物接近显示屏的表面的情况,禁止对触控轨迹生成触控数据包,对于触摸物触碰显示屏的表面的情况,允许对触控轨迹生成触控数据包,可减少生成触控数据包的数量,从而降低处理触控轨迹的资源占用。
进一步而言,所谓禁止生成触控数据包,可以是生成触控数据包,但触控数据包并不包含触摸点数据,即,触控数据包为空数据包,用于维持触控控制器与主机控制器之间的通信,但并不上报触摸点数据,也可以是并不生成触摸点数据,包括并不生成空数据包,本实施例 对此不加以限制。
此外,所谓允许生成触控数据包,可以指在数据包中封装与触控轨迹相关的触摸点数据。
在一个示例中,触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000032
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
第一标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第一标识数据与第二标识数据表示,第一标识数据用于记录在某个时间、某个位置上触碰信号的存在性;
第二标识数据用于记录在某个时间、某个位置上触控信号的存在性;
第一标识数据与第二标识数据结合表示触控轨迹为第一子轨迹或第二子轨迹;
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000033
或者,状态可以包括如下至少一项数据:
第三标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第三标识数据表示,第三标识数据表示触控轨迹第一子轨迹或第二子轨迹。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000034
在一种情况中,触控数据包中的状态同时携带第一标识数据、第二标识数据,此时,在触控信号对于触碰显示屏无效的情况下,生成的触控数据包为空数据包。
示例性地,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000035
Figure PCTCN2022088069-appb-000036
在一种情况中,触控数据包中的状态同时携带第三标识数据此时,在触控轨迹为第一子轨迹的情况下,生成的触控数据包为空数据包。
示例性地,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000037
Figure PCTCN2022088069-appb-000038
在又一种情况中,触控数据包中的状态并不携带第一标识数据、第二标识数据,此时,在触控轨迹为第一子轨迹的情况下,并不生成触控数据包。
示例性地,假设触碰传感器第8帧开始产生触碰信号、在第23帧结束,光学触控传感器第4帧开始产生触控信号、在第26帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000039
Figure PCTCN2022088069-appb-000040
在另一种生成触控数据包的方式中,当触控轨迹为第一子轨迹或第二子轨迹时,均允许生成触控数据包,因此,可以以区分有效性为条件,对触控信号生成触控数据包,即无论触控信号是表示触碰显示屏的表面有效或是表示触碰显示屏的表面无效,均生成触控数据包,生成的触控数据包可区分触控信号是表示触摸物接近显示屏的表面或是触碰显示屏。
如果是否触碰到显示屏的表面的触控操作对于交互平板的整体应用均具有积极的意义,例如,在触控信号表示触碰显示屏的表面有效时定义触碰触控、在触控信号表示触碰显示屏的表面无效时定义悬浮触控,此时,可丰富触控操作的含义,触控操作会赋予触摸屏更多的表现力,从而提高触控操作的灵活性。
所谓允许生成触控数据包,可以指在数据包中封装与触控轨迹相关的触摸点数据。
在一个示例中,触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
Figure PCTCN2022088069-appb-000041
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可用于区分触控轨迹为第一子轨迹或第二子轨迹,可以包括如下至少一项数据:
第一标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第一标识数据与第二标识数据表示,第一标识数据用于记录触碰信号的关联性;
第二标识数据用于记录触控信号的关联性;
第一标识数据与第二标识数据结合表示触控轨迹为第一子轨迹或第二子轨迹;
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000042
或者,状态包括如下至少一项数据:
第三标识数据、第二标识数据、可信度、保留参数。
其中,本示例可区分属于同一个触摸物的触控信号与触碰信号,从而将该触控信号与该触碰信号的信息写入同一个触控数据包中、以第三标识数据表示,第三标识数据表示触控轨迹为第一子轨迹或第二子轨迹。
需要说明的是,由于区分触控信号对于触碰显示屏的有效性的需求,因此,触控数据包中的状态同时携带第一标识数据、第二标识数据,或者,触控数据包中的状态携带第三标识数据。
示例性地,针对同一触摸物,假设光学触控传感器第3帧开始产生触控信号、在第26帧结束,触碰传感器第8帧开始产生触碰信号、在第22帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000043
Figure PCTCN2022088069-appb-000044
在另一个示例中,针对同一触摸物,假设光学触控传感器第4帧开始产生触控信号、在第27帧结束,触碰控传感器第8帧开始产生触碰信号、在第22帧结束,则触控数据包如下所示:
Figure PCTCN2022088069-appb-000045
步骤11042、解析属于第二子轨迹的触控数据包,以在书写界面上绘制与第二子轨迹匹配的笔迹。
若在先由触控控制器生成触控数据包,则触控控制器可将触控数据包传输至主机控制器的上层应用,若在先由主机控制器的底层应用生成触控数据包,则底层应用可以将触控数据包传输至上层应用。
在主机控制器的上层应用接收到触控控制器的触控数据包之后,则可以解析触控数据包,从而在当前的业务场景中书写与第二子轨迹相应的笔迹。
如果触控控制器在触控轨迹为第一子轨迹时时,禁止生成触控数据包,在触控轨迹为第二子轨迹时,允许生成触控数据包。
那么,主机控制器接收到触控数据包时,默认属于第二子轨迹,读取触控数据包(即非空数据包)中的触摸点数据,其中,触摸点数据包括X坐标、Y坐标,可以在书写界面上沿X坐标与Y坐标绘制笔迹。
如果触控控制器在触控轨迹为第一子轨迹或第二子轨迹时,均允许生成触控数据包。
那么,主机控制器接收到触控数据包时,可读取触控数据包中的触摸点数据,触摸点数据包括状态、X坐标、Y坐标。
若状态表示触控轨迹为第一子轨迹,则忽略触摸点数据,即并不在书写界面上绘制相应的笔迹。
若状态表示触控轨迹为第二子轨迹,则在书写界面上沿X坐标与Y坐标绘制笔迹。
在本发明的另一个实施例中,触控轨迹以触控信号与触碰信号表示,即触控轨迹包含触控信号与触碰信号,步骤1104包括如下步骤:步骤11043、若触控轨迹为第一子轨迹,则忽略触控轨迹。
步骤11044、若触控轨迹为第二子轨迹,则从第二子轨迹的触控信号中读取触摸点数据。
步骤11045、在书写界面上沿X坐标与Y坐标绘制笔迹。
一方面,光学触控传感器与触控控制器电连接、触控控制器与主机控制器电连接,光学触控传感器将触控信号传输至触控控制器,触控控制器生成触控数据包,以及,将触控数据包传输至主机控制器。
在一个示例中,触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本示例中,触控数据包的数据格式如下:
Figure PCTCN2022088069-appb-000046
在本示例中,X坐标、Y坐标可以为根据光学触控传感器扫描的光信号计算的触控位置,也可以为触碰传感器计算的触碰位置,还可以为对触控位置与触碰位置通过计算平均值、加权求和等方式计算的位置,本实施例对此不加以限制。
其中,状态可以包括如下至少一项数据:
可信度、保留参数。
可信度为可选的参数;
保留参数为保留的字段,可以根据业务场景的需求而添加所需的参数。
在本示例中,状态的数据格式如下:
Figure PCTCN2022088069-appb-000047
因此,对于主机控制器而言,触碰信号以触控数据包表示,即主机控制器接收到有效的触控数据包(即非空数据包)时,相当于接收到一帧触控信号。
另一方面,触碰传感器与主机控制器电连接,此时,触碰传感器将触碰信号传输至主机控制器,主机控制器识别触碰信号对于触控信号的关联性。
具体而言,主机控制器可通过对比同一时间点、触碰信号对于触控信号的关联性,从而确定触控轨迹为第一子轨迹或是第二子轨迹。
示例性地,假设光学触碰传感器第3帧开始产生触控信号、在第26帧结束,触碰传感器第8帧开始产生触碰信号、在第22帧结束,则触碰信号与触控数据包之间的关系如下所示:
Figure PCTCN2022088069-appb-000048
在确定触控轨迹为第一子轨迹时,则可以忽略当前的触控轨迹,并不在书写界面上绘制相应的笔迹,在确定触控轨迹为第二子轨迹时,则可以从第二子轨迹的触控信号中读取触摸点数据,该触摸点数据包括X坐标、Y坐标,从而在书写界面上沿X坐标与Y坐标绘制笔迹。
在本实施例中,显示书写界面,确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹,对各所述触摸物确定第一子轨迹、第二子轨迹,第一子轨迹为触摸物接近显示屏的触控轨迹、第二子轨迹为触摸物已触碰到显示屏的触控轨迹,忽略第一子轨迹,在书写界面上绘制与第二子轨迹匹配的笔迹,在多点触控的场景中,通过独立识别每个触摸物是否触碰显示屏,每个触摸物独立识别触控操作、相互不干扰,赋予触控轨迹更多一个维度的特征,丰富触控轨迹的含义,在书写笔迹的业务场景下,是否触碰到显示屏对于该业务场景具有更加积极的意义,那么,本实施例基于将触控轨迹区分为第一子轨迹、第二子轨迹,使得响应 书写的笔迹更加适配业务场景的需求,从而提高书写笔迹在该业务场景的表现,解决零高度书写的问题。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
实施例六
图12为本发明实施例六提供的一种触控信号的校验装置的结构框图,应用于交互平板,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述装置具体可以包括如下模块:
光学触控传感器启动模块1201,用于启动光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
触碰传感器启动模块1202,用于启动触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
关联性确定模块1203,用于确定各所述触碰信号与各所述触控信号的关联性;
有效性确定模块1204,用于根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
在本发明的一个实施例中,所述光学触控传感器启动模块1001包括:
休眠确定模块,用于确定光学触控传感器休眠;
休眠维持模块,用于若未接收到所述触碰信号,则维持所述光学触控传感器休眠;
传感器激活模块,用于若接收到所述触碰信号,则激活所述光学触控传感器,以在至少一个触摸物接近显示屏接近或触碰显示屏表面时、产生至少一个触控信号。
在本发明的一个实施例中,所述光学触控传感器启动模块1001还包括:
休眠控制模块,用于若所述触控信号中断,则控制所述光学触控传感器休眠。
在本发明的一个实施例中,所述关联性确定模块1003包括:
单触摸关联性确定模块,用于当所述触控信号为一个且所述触碰信号为一个时,确定所述触碰信号与所述触控信号的关联性;
多触摸关联性确定模块,用于当所述触控信号为多个或所述触碰信号为多个时,确定多个所述触控信号与多个所述触碰信号在时间与位置上的关联性。
在本发明的一个实施例中,所述单触摸关联性确定模块包括:
单触摸第一有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第一关联性确定模块,用于在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第二关联性确定模块,用于在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的另一个实施例中,所述单触摸关联性确定模块包括:
单触摸第二有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第三关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
单触摸第四关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性, 针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
单触摸第五关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第六关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
在本发明的一个实施例中,所述多触摸关联性确定模块包括:
多触摸时间关联性识别模块,用于当接收到所述触控信号时,识别所述触控信号与所述触碰信号在时间上的关联性;
多触摸位置关联性识别模块,用于若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的一个实施例中,所述多触摸关联性确定模块包括:
多触摸有效期设置模块,用于针对所述触控信号设置有效期;
多触摸第一关联性确定模块,用于在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
多触摸第二关联性确定模块,用于在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,所述多触摸关联性确定模块包括:
多触摸触控位置确定模块,用于确定与所述触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
多触摸触碰位置确定模块,用于确定与所述触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
多触摸第三关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
多触摸第四关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述有效性确定模块1004包括:
有效确定模块,用于若所述触控信号与所述触碰信号存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为有效;
无效确定模块,用于若所述触控信号与所述触碰信号不存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为无效。
在本发明的一个实施例中,还包括:
触控数据包生成模块,用于根据所述触控信号对于触碰所述显示屏的有效性,对所述触控信号生成触控数据包;
第一业务操作执行模块,用于根据所述触控数据包执行业务操作。
在本发明的一个实施例中,所述生成触控数据包生成模块包括:
禁止生成模块,用于若所述触控信号对于触碰所述显示屏的有效性为无效,则禁止生成触控数据包;
第一允许生成模块,用于若所述触控信号对于触碰所述显示屏的有效性为有效,则允许生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
进一步地,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性。
或者,所述状态包括第三标识数据;
所述第三标识数据表示所述触控信号对于触碰所述显示屏的有效性。
在本实施例中,所述第一业务操作执行模块包括:
第一触摸点数据读取模块,用于读取所述触控数据包中的触摸点数据;
触摸点执行模块,用于按照所述触摸点数据执行业务操作。
在本发明的另一个实施例中,所述触控数据包生成模块包括:
第二允许生成模块,用于当所述触控信号对于触碰所述显示屏的有效性为有效或无效时,均允许生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;
其中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性;
或者,
所述状态包括第三标识数据;
所述第三标识数据表示所述触控信号对于触碰所述显示屏的有效性。
在本实施例中,所述第一业务操作执行模块包括:
第二触摸点数据读取模块,用于读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态;
第一无效操作执行模块,用于若所述状态表示所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触摸点数据,或者,按照所述触摸点数据执行第一类型的业务操作;
第一有效操作执行模块,用于若所述状态表示所述触控信号对于触碰所述显示屏的有效性为有效,则按照所述触摸点数据执行第二类型的业务操作。
在本发明的一个实施例中,所述装置还包括:
第二无效操作执行模块,用于若所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触控信号,或者,从所述触控信号中读取触摸点数据,按照所述触摸点数据执行第一类型的业务操作;
第二有效操作执行模块,用于若所述触控信号对于触碰所述显示屏的有效性为有效,则从所述触控信号中读取触摸点数据,按照所述触摸点数据执行第二类型的业务操作。
在本发明实施例的一个示例中,所述触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
本发明实施例所提供的触控信号的校验装置可执行本发明任意实施例所提供的触控信号的校验方法,具备执行方法相应的功能模块和有益效果。
实施例七
图13为本发明实施例七提供的一种人机交互装置的结构框图,应用于交互平板,所述装置具体可以包括如下模块:
触控操作检测模块1301,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
触碰关系识别模块1302,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
触控类型划分模块1303,用于根据所述触碰关系分别对各所述触控操作划分触控类型;
交互操作执行模块1304,用于分别对各所述触控操作执行与所述触控类型适配的交互操作。
在本发明的一个实施例中,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述触控操作检测模块1301包括:
光学触控传感器启动模块,用于启动光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并触发触控操作时、产生至少一个触控信号;
触碰传感器启动模块,用于启动触碰传感器,以当至少一个触摸物触碰显示屏并触发触控操作时、产生至少一个触碰信号。
在本发明的一个实施例中,所述触碰关系识别模块1302包括:
单触摸关联性确定模块,用于当所述触控操作为一个时,若所述触控操作以触控信号与触碰信号表示,则在接收到所述触控信号时,确定所述触碰信号与所述触控信号的关联性;
单触摸触碰关系确定模块,用于根据所述触碰信号与所述触控信号的关联性、确定所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
多触摸关联性确定模块,用于确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性;
多触碰关系确定模块,用于根据所关联性确定多个所述触摸物与所述显示屏的表面之间在触碰上的关系、作为触碰关系。
在本发明的一个实施例中,所述单触摸关联性确定模块包括:
单触摸第一有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第一关联性确定模块,用于在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第二关联性确定模块,用于在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的另一个实施例中,所述单触摸关联性确定模块包括:
单触摸第二有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第三关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
单触摸第四关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
单触摸第五关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且具有所述 标志位时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第六关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。在本发明的一个实施例中,所述触碰关系确定模块包括:
已触碰确定模块,用于若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物已触碰到所述显示屏,用以作为触碰关系;
未触碰确定模块,用于若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物未触碰到所述显示屏,用以作为触碰关系。
在本发明的一个实施例中,所述多触摸关联性确定模块包括:
多触摸时间关联性识别模块,用于当接收到所述触控操作的触控信号时,识别所述触控信号与所述触控操作的触碰信号在时间上的关联性;
多触摸位置关联性识别模块,用于若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的另一个实施例中,所述多触摸关联性确定模块包括:
多触摸有效期设置模块,用于针对所述触控操作的触控信号设置有效期;
多触摸第一关联性确定模块,用于在所述有效期内接收到所述触控操作的触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
多触摸第二关联性确定模块,用于在所述有效期内未接收到所述触控操作的触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的又一个实施例中,所述多触摸关联性确定模块包括:
多触摸触控位置确定模块,用于确定与所述触控操作的触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
多触摸触碰位置确定模块,用于确定与所述触控操作的触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
多触摸第三关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
多触摸第四关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述多触摸触碰关系确定模块包括:
触碰确定模块,用于若所述触控信号与所述触碰信号在时间与位置上存在关联性,则确定所述触摸物触碰所述显示屏的表面、作为触碰关系;
接近确定模块,用于若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、作为触碰关系。
在本发明的一个实施例中,所述触控类型划分模块1303包括:
触碰触控确定模块,用于若所述触碰关系为所述触摸物已触碰到所述显示屏,则确定所述触控操作的触控类型为触碰触控;
悬浮触控确定模块,用于若所述触碰关系为所述触摸物未触碰到所述显示屏,则确定所述触控操作的触控类型为悬浮触控。
在本发明的一个实施例中,所述交互操作执行模块1304包括:
触控数据包生成模块,用于对所述触控操作生成与所述触控类型适配的触控数据包;
触控数据包解析模块,用于解析所述触控数据包,用以执行与所述触控类型适配的交互操作。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;
其中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控操作的触控类型;
或者,
所述状态包括第三标识数据,所述第三标识数据表示所述触控操作的触控类型。
在本发明的一个实施例中,所述触控数据包解析模块包括:
第一触摸点数据读取模块,用于读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态;
第一操作执行模块,用于若所述状态表示所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
第二操作执行模块,用于若所述状态表示所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
在本发明的另一个实施例中,所述触控操作包含触控信号,所述交互操作执行模块1304包括:
第二触摸点数据读取模块,用于从所述触控操作的触控信号中读取触摸点数据;
第三操作执行模块,用于若所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
第四操作执行模块,用于若所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
在本发明实施例的一个示例中,所述触摸点数据包括如下至少一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
本发明实施例所提供的人机交互装置可执行本发明任意实施例所提供的人机交互方法,具备执行方法相应的功能模块和有益效果。
实施例八
图14为本发明实施例八提供的一种笔迹的显示装置的结构框图,应用于交互平板,所述装置具体可以包括如下模块:
书写界面显示模块1401,用于显示书写界面;
触控轨迹确定模块1402,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
触控轨迹区分模块1403,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;
笔迹绘制模块1404,用于忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
在本发明的一个实施例中,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述触控轨迹确定模块1402包括:
光学触控传感器启动模块,用于启动光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号;
触碰传感器启动模块,用于启动触碰传感器,以当至少一个触摸物触碰显示屏并移动时、对触控轨迹产生至少一个触碰信号。
在本发明的一个实施例中,所述光学触控传感器启动模块包括:
休眠确定模块,用于确定光学触控传感器休眠;
休眠维持模块,用于若未接收到所述触碰信号,则维持所述光学触控传感器休眠;
传感器激活模块,用于若接收到所述触碰信号,则激活光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号。
在本发明的一个实施例中,所述光学触控传感器启动模块还包括:
休眠控制模块,用于若所述触控信号中断,则控制所述光学触控传感器休眠。
在本发明的一个实施例中,所述触控轨迹区分模块1403包括:
单触摸触控轨迹区分模块,用于当所述触摸物为一个时,确定第一子轨迹、第二子轨迹;
多触摸触控轨迹区分模块,用于当所述触摸物为多个时,分别对多个所述触摸物确定第一子轨迹、第二子轨迹。
在本发明的一个实施例中,所述单触摸触控轨迹区分模块包括:
单触摸关联性确定模块,用于当接收到所述触控信号时,确定所述触碰信号与所述触控信号的关联性;
单触摸第一子轨迹确定模块,用于若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物未触碰到所述显示屏,所述触控轨迹为第一子轨迹;
单触摸第二子轨迹确定模块,用于若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物已触碰到所述显示屏,所述触控轨迹为第二子轨迹。
在本发明的一个实施例中,所述单触摸关联性确定模块包括:
单触摸第一有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第一关联性确定模块,用于在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第二关联性确定模块,用于在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的另一个实施例中,所述单触摸关联性确定模块包括:
单触摸第二有效期设置模块,用于针对所述触控信号设置有效期;
单触摸第三关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
单触摸第四关联性确定模块,用于在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
单触摸第五关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
单触摸第六关联性确定模块,用于在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第 一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
在本发明的一个实施例中,所述多触摸触控轨迹区分模块包括:
多触摸关联性确定模块,用于确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性;
多触摸第一子轨迹确定模块,用于若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、所述触控轨迹为第一子轨迹;
多触摸第二子轨迹确定模块,用于若所述触控信号与所述触碰信号在时间与位置上均存在关联性,则确定所述触摸物触碰所述显示屏的表面、所述触控轨迹为第二子轨迹。
在本发明的一个实施例中,所述多触摸关联性确定模块包括:
多触摸时间关联性识别模块,用于当接收到所述触控轨迹的触控信号时,识别所述触控信号与所述触控轨迹的触碰信号在时间上的关联性;
多触摸位置关联性识别模块,用于若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的另一个实施例中,所述多触摸关联性确定模块包括:
多触摸第一有效期设置模块,用于针对所述触控轨迹的触控信号设置有效期;
多触摸第一关联性确定模块,用于在所述有效期内接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
多触摸第二关联性确定模块,用于在所述有效期内未接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
在本发明的又一个实施例中,所述多触摸关联性确定模块包括:
多触摸触控位置确定模块,用于确定与所述触控轨迹的触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
多触摸触碰位置确定模块,用于确定与所述触控轨迹的触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
多触摸第三关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
多触摸第四关联性确定模块,用于若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述笔迹绘制模块1404包括:
触控数据包生成模块,用于对所述触控轨迹生成触控数据包,用以区分所述第一子轨迹、所述第二子轨迹;
触控数据包解析模块,用于解析属于所述第二子轨迹的所述触控数据包,以在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
在本发明的一个实施例中,所述触控数据包生成模块包括:
禁止生成模块,用于若所述触控轨迹为所述第一子轨迹,则禁止对所述触控轨迹生成触控数据包;
第一允许生成模块,用于若所述触控轨迹为所述第二子轨迹,则允许对所述触控轨迹生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
进一步地,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
或者,所述状态包括第三标识数据;
所述第三标识数据表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
在本发明的一个实施例中,所述触控数据包解析模块包括:
第一触摸点数据读取模块,用于读取所述触控数据包中的触摸点数据,所述触摸点数据包括X坐标、Y坐标;
第一坐标绘制模块,用于在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明的另一个实施例中,所述触控数据包生成模块包括:
第二允许生成模块,用于当所述触控轨迹为所述第一子轨迹或所述第二子轨迹时,均允许生成触控数据包;
其中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;所述状态用于区分所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
在本发明实施例的一个示例中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹;
或者,
所述状态包括第三标识数据;
所述第三标识数据表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
在本发明的另一个实施例中,所述触控数据包解析模块包括:
第二触摸点数据读取模块,用于读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态、X坐标、Y坐标;
触摸点数据忽略模块,用于若所述状态表示所述触控轨迹为所述第一子轨迹,则忽略所述触摸点数据;
第二坐标绘制模块,用于若所述状态表示所述触控轨迹为所述第二子轨迹,则在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明的另一个实施例中,所述笔迹绘制模块1404包括:
触控轨迹忽略模块,用于若所述触控轨迹为所述第一子轨迹,则忽略所述触控轨迹;
第三触摸点数据读取模块,用于若所述触控轨迹为所述第二子轨迹,则从所述第二子轨迹的触控信号中读取触摸点数据,所述触摸点数据包括X坐标、Y坐标;
第三坐标绘制模块,用于在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明实施例的一个示例中,所述触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
本发明实施例所提供的笔迹的显示装置可执行本发明任意实施例所提供的笔迹的显示方法,具备执行方法相应的功能模块和有益效果。
实施例九
图15为本发明实施例九提供的一种交互平板的结构框图,具体可以包括如下模块:
光学触控传感器1501,用于在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
触碰传感器1502,用于在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
处理器1503,用于当接收到所述触控信号时,确定各所述触碰信号与各所述触控信号的关联性;根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
在本发明的一个实施例中,在所述触碰传感器1502未产生所述触碰信号时,所述光学触控传感器1502休眠;
在所述触碰传感器1502产生所述触碰信号时,则所述光学触控传感器1502激活,以在至少一个触摸物接近显示屏接近或触碰显示屏表面时、产生至少一个触控信号。
在本发明的一个实施例中,所述光学触控传感器1502在所述触控信号中断时休眠。
在本发明的一个实施例中,所述处理器1503还用于:
当所述触控信号为一个且所述触碰信号为一个时,确定所述触碰信号与所述触控信号的关联性;
当所述触控信号为多个或所述触碰信号为多个时,确定多个所述触控信号与多个所述触碰信号在时间与位置上的关联性。
在本发明的一个实施例中,所述处理器1503还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号时,确定所述触碰信号与所述触控信号存在关联性;
在所述有效期内未接收到所述触碰信号时,确定所述触碰信号与所述触控信号不存在关联性。
在本发明的另一个实施例中,所述处理器1503还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示起始触碰时,确定所述触碰信号与所述触控信号存在关联性,针对述触摸物初始触碰所述显示屏的触碰信号设置标志位;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示结束触碰时,确定所述触碰信号与所述触控信号存在关联性,对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触碰信号与所述触控信号存在关联性;
在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触碰信号与所述触控信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器1501还用于在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
在本发明的一个实施例中,所述处理器1503还用于:
当接收到所述触控信号时,识别所述触控信号与所述触碰信号在时间上的关联性;
若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的一个实施例中,所述处理器1503还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
在本发明的一个实施例中,所述处理器1503还用于:
确定与所述触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
确定与所述触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述处理器1503还用于:
若所述触碰信号与所述触控信号存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为有效;
若所述触碰信号与所述触控信号不存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为无效。
在本发明的一个实施例中,所述处理器1503包括触控控制器、主机控制器,所述触控控制器与所述触碰传感器、所述光学触控传感器电连接;
所述触控控制器,用于根据所述触控信号对于触碰所述显示屏的有效性,对所述触控信号生成触控数据包;
所述主机控制器,用于根据所述触控数据包执行业务操作。
在本发明的一个实施例中,所述触控控制器还用于:
若所述触控信号对于触碰所述显示屏的有效性为无效,则禁止生成触控数据包;
若所述触控信号对于触碰所述显示屏的有效性为有效,则允许生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
进一步地,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的关联性;
所述第二标识数据用于记录所述触控信号的关联性;
所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性。
在本实施例中,所述主机控制器还用于:
读取所述触控数据包中的触摸点数据;
按照所述触摸点数据执行业务操作。
在本发明的另一个实施例中,所述触控控制器还用于:
当所述触控信号对于触碰所述显示屏的有效性为有效或无效时,均允许生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;
其中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性。
在本实施例中,所述主机控制器还用于:
读取所述触控数据包中的触摸点数据,所述触摸点数据包括第一标识数据与第二标识数据;
若所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触摸点数据,或者,按照所述触摸点数据执行第一类型的业务操作;
若所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性为有效,则按照所述触摸点数据执行第二类型的业务操作。
在本发明的另一个实施例中,所述处理器1503包括触控控制器、主机控制器,所述触控控制器与所述光学触控传感器电连接,所述触碰信号以触控数据包表示,所述主机控制器与所述触碰传感器电连接;
所述主机控制器还用于:
若所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触控数据包,或者,从所述触控数据包中读取触摸点数据,按照所述触摸点数据执行第一类型的业务操作;
若所述触控信号对于触碰所述显示屏的有效性为有效,则从所述触控数据包中读取触摸点数据,按照所述触摸点数据执行第二类型的业务操作。
在本发明实施例的一个示例中,所述触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面,和/或,所述触碰传感器安装所述显示屏的边框内。
本发明实施例所提供的交互平板可执行本发明任意实施例所提供的触控信号的校验方法,具备执行方法相应的功能模块和有益效果。
实施例十
图16为本发明实施例九提供的一种交互平板的结构框图,具体可以包括如下模块:
触控传感器1601,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
处理器1602,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;根据所述触碰关系分别对各所述触控操作划分触控类型;分别对各所述触控操作执行与所述触控类型适配的交互操作。
在本发明的一个实施例中,所述触控传感器1601包括:
光学触控传感器,用于当至少一个触摸物在接近或触碰显示屏的表面并触发触控操作时、产生至少一个触控信号;
触碰传感器,用于当至少一个触摸物触碰显示屏并触发触控操作时、产生至少一个触碰信号。
在本发明的一个实施例中,所述处理器1602还用于:
当所述触控操作为一个时,若所述触控操作以触控信号与触碰信号表示,则在接收到所 述触控信号时,确定所述触碰信号与所述触控信号的关联性;根据所述触碰信号与所述触控信号的关联性、确定所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
当所述触控操作为多个时,确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性;根据所述关联性确定多个所述触摸物与所述显示屏的表面之间在触碰上的关系、作为触碰关系。
在本发明的一个实施例中,所述处理器1602:
还用于针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,所述处理器1602:
还用于针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器还用于在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
在本发明的一个实施例中,所述处理器1602还用于:
若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物已触碰到所述显示屏,用以作为触碰关系;
若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物未触碰到所述显示屏,用以作为触碰关系。
在本发明的一个实施例中,所述处理器1503还用于:
当接收到所述触控操作的触控信号时,识别所述触控信号与所述触控操作的触碰信号在时间上的关联性;
若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的另一个实施例中,所述处理器1503还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
在本发明的又一个实施例中,所述处理器1503还用于:
确定与所述触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
确定与所述触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述处理器1503还用于:
若所述触控信号与所述触碰信号在时间与位置上存在关联性,则确定所述触摸物触碰所述显示屏的表面、作为触碰关系;
若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、作为触碰关系。
在本发明的一个实施例中,所述处理器1602:
若所述触碰关系为所述触摸物已触碰到所述显示屏,则确定所述触控操作的触控类型为触碰触控;
若所述触碰关系为所述触摸物未触碰到所述显示屏,则确定所述触控操作的触控类型为悬浮触控。
在本发明的一个实施例中,所述处理器1602包括触控控制器、主机控制器,所述触控控制器与所述触碰传感器、所述光学触控传感器电连接;
所述触控控制器,用于对所述触控操作生成与所述触控类型适配的触控数据包;
所述主机控制器,用于解析所述触控数据包,用以执行与所述触控类型适配的交互操作。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;
其中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控操的触控类型;
或者,
所述状态包括第三标识数据,所述第三标识数据表示所述触控操的触控类型。
在本发明的一个实施例中,所述主机控制器还用于:
读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态;
若所述状态表示所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
若所述状态表示所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
在本发明的一个实施例中,所述主机控制器还用于:
从所述触控信号中读取触摸点数据;
若所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
若所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
在本发明实施例的一个示例中,所述触摸点数据包括如下至少一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
本发明实施例所提供的交互平板可执行本发明任意实施例所提供的人机交互方法,具备执行方法相应的功能模块和有益效果。
实施例十一
图17为本发明实施例九提供的一种交互平板的结构框图,具体可以包括如下模块:
显示屏1701,用于显示书写界面;
触控传感器1702,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
处理器1703,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
在本发明的一个实施例中,所述触控传感器1702包括:
光学触控传感器,用于当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号;
触碰传感器,用于当至少一个触摸物触碰显示屏并移动时、对触控轨迹产生至少一个触碰信号。
在本发明的一个实施例中,在所述触碰传感器未产生所述触碰信号时,所述光学触控传感器休眠;
在所述触碰传感器产生所述触碰信号时,则所述光学触控传感器激活,以在至少一个触摸物接近显示屏接近或触碰显示屏表面表面时、产生至少一个触控信号。
在本发明的一个实施例中,所述光学触控传感器在所述触控信号中断时休眠。
在本发明的一个实施例中,所述处理器1703还用于:
当所述触摸物为一个时,确定第一子轨迹、第二子轨迹;
当所述触摸物为多个时,分别对多个所述触摸物确定第一子轨迹、第二子轨迹
在本发明的一个实施例中,所述处理器1703还用于:
当接收到所述触控信号时,确定所述触碰信号与所述触控信号的关联性;
若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物未触碰到所述显示屏,所述触控轨迹为第一子轨迹;
若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物已触碰到所述显示屏,所述触控轨迹为第二子轨迹。
在本发明的一个实施例中,所述处理器1703还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,所述处理器1703还用于:
针对所述触控信号设置有效期;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示 屏的所述触碰信号清除所述标志位;
在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
在本发明的一个实施例中,在所述触摸物连续触碰所述显示屏时,所述触碰传感器还用于在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
在本发明的一个实施例中,所述处理器1703还用于:
确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性;
若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、所述触控轨迹为第一子轨迹;
若所述触控信号与所述触碰信号在时间与位置上均存在关联性,则确定所述触摸物触碰所述显示屏的表面、所述触控轨迹为第二子轨迹。
在本发明的一个实施例中,所述处理器1703还用于:
当接收到所述触控轨迹的触控信号时,识别所述触控信号与所述触控轨迹的触碰信号在时间上的关联性;
若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
在本发明的另一个实施例中,所述处理器1703还用于:
针对所述触控轨迹的触控信号设置有效期;
在所述有效期内接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
在所述有效期内未接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
在本发明的又一个实施例中,所述处理器1703还用于:
确定与所述触控轨迹的触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
确定与所述触控轨迹的触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
在本发明的一个实施例中,所述处理器1703包括触控控制器、主机控制器,所述触控控制器与所述触碰传感器、所述光学触控传感器电连接;
所述触控控制器,用于对所述触控轨迹生成触控数据包,用以区分所述第一子轨迹、所述第二子轨迹;
所述主机控制器,用于解析属于所述第二子轨迹的所述触控数据包,以在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
在本发明的一个实施例中,所述触控控制器还用于:
若所述触控轨迹为所述第一子轨迹,则禁止对所述触控轨迹生成触控数据包;
若所述触控轨迹为所述第二子轨迹,则允许对所述触控轨迹生成触控数据包。
在本发明实施例的一个示例中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
进一步地,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控轨迹所述第一子轨迹或所述第二子轨迹。
或者,所述状态包括第三标识数据;
所述第三标识数据表示所述触控轨迹所述第一子轨迹或所述第二子轨迹。
在本发明的一个实施例中,所述主机控制器还用于:
读取所述触控数据包中的触摸点数据,所述触摸点数据包括X坐标、Y坐标;
在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明的一个实施例中,所述触控控制器还用于:
当所述触控轨迹为所述第一子轨迹或所述第二子轨迹时,均允许生成触控数据包;
其中,所述触控数据包包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高;所述状态用于区分所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
在本发明实施例的一个示例中,所述状态包括第一标识数据、第二标识数据;
所述第一标识数据用于记录所述触碰信号的存在性;
所述第二标识数据用于记录所述触控信号的存在性;
所述第一标识数据与所述第二标识数据结合表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹;
或者,
所述状态包括第三标识数据;
所述第三标识数据表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
在本发明的一个实施例中,所述主机控制器还用于:
读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态、X坐标、Y坐标;
若所述状态表示所述触控轨迹为所述第二子轨迹,则在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明的一个实施例中,所述处理器包括触控控制器、主机控制器,所述触控控制器与所述光学触控传感器电连接,所述主机控制器与所述触碰传感器电连接;
所述主机控制器还用于:
若所述触控轨迹为所述第一子轨迹,则忽略所述触控轨迹;
若所述触控轨迹为所述第二子轨迹,则从所述第二子轨迹的触控信号中读取触摸点数据,所述触摸点数据包括X坐标、Y坐标,在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
在本发明实施例的一个示例中,所述触控数据包括的触摸点数据至少有如下一项:
状态、触控ID、X坐标、Y坐标、宽、高。
在本发明的一个实施例中,所述光学触控传感器包括红外发射器与红外接收器;
所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
在本发明的一个实施例中,所述触碰传感器为弹性波传感器。
在本发明的一个实施例中,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
在本发明的一个实施例中,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传 感器位于所述显示屏的边框内。
本发明实施例所提供的交互平板可执行本发明任意实施例所提供的笔迹的显示方法,具备执行方法相应的功能模块和有益效果。
实施例十二
图18为本发明实施例十二提供的一种交互平板的结构示意图。图18示出了适于用来实现本发明实施方式的示例性交互平板12的框图。图18显示的交互平板12仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图18所示,交互平板12以通用计算设备的形式表现。交互平板12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
交互平板12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被交互平板12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。交互平板12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图18未显示,通常称为“硬盘驱动器”)。尽管图18中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本发明所描述的实施例中的功能和/或方法。
交互平板12也可以与一个或多个外部设备14(例如键盘、指向设备、显示屏24等)通信,还可与一个或者多个使得用户能与该交互平板12交互的设备通信,和/或与使得该交互平板12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,交互平板12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与交互平板12的其它模块通信。应当明白,尽管图中未示出,可以结合交互平板12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的触控信号的校验方法、人机交互方法、笔迹的显示方法。
实施例十三
本发明实施例七还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机 程序,该计算机程序被处理器执行时实现上述触控信号的校验方法、人机交互方法、笔迹的显示方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,计算机可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (83)

  1. 一种触控信号的校验方法,其特征在于,应用于交互平板,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述方法包括:
    启动所述光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
    启动所述触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
    确定各所述触碰信号与各所述触控信号的关联性;
    根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
  2. 根据权利要求1所述的方法,其特征在于,所述启动所述光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号,包括:
    确定所述光学触控传感器休眠;
    若未接收到所述触碰信号,则维持所述光学触控传感器休眠;
    若接收到所述触碰信号,则激活所述光学触控传感器,以在至少一个触摸物接近显示屏接近或触碰显示屏表面时、产生至少一个触控信号。
  3. 根据权利要求2所述的方法,其特征在于,所述启动所述光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号,还包括:
    若所述触控信号中断,则控制所述光学触控传感器休眠。
  4. 根据权利要求1所述的方法,其特征在于,所述确定各所述触碰信号与各所述触控信号的关联性,包括:
    当所述触控信号为一个且所述触碰信号为一个时,确定所述触碰信号与所述触控信号的关联性;
    当所述触控信号为多个或所述触碰信号为多个时,确定多个所述触控信号与多个所述触碰信号在时间与位置上的关联性。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
  6. 根据权利要求4所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的触碰信号设置标志位;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
    在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
  7. 根据权利要求6所述的方法,其特征在于,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所 述触摸物结束触碰所述显示屏的所述触碰信号。
  8. 根据权利要求4所述的方法,其特征在于,所述多个所述触控信号与多个所述触碰信号在时间与位置上的关联性,包括:
    当接收到所述触控信号时,识别所述触控信号与所述触碰信号在时间上的关联性;
    若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
  9. 根据权利要求4所述的方法,其特征在于,所述确定多个所述触控信号与多个所述触碰信号在时间与位置上的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
    在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
  10. 根据权利要求4所述的方法,其特征在于,所述确定多个所述触控信号与多个所述触碰信号在时间与位置上的关联性,包括:
    确定与所述触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
    确定与所述触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
    若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
    若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
  11. 根据权利要求1所述的方法,其特征在于,所述根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性,包括:
    若所述触控信号与所述触碰信号存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为有效;
    若所述触控信号与所述触碰信号不存在关联性,则确定所述触控信号对于触碰所述显示屏的有效性为无效。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,还包括:
    根据所述触控信号对于触碰所述显示屏的有效性,对所述触控信号生成触控数据包;
    根据所述触控数据包执行业务操作。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述触控信号对于触碰所述显示屏的有效性,对所述触控信号生成触控数据包,包括:
    若所述触控信号对于触碰所述显示屏的有效性为无效,则禁止生成触控数据包;
    若所述触控信号对于触碰所述显示屏的有效性为有效,则允许生成触控数据包。
  14. 根据权利要求13所述的方法,其特征在于,所述触控数据包包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高。
  15. 根据权利要求14所述的方法,其特征在于,所述状态包括第一标识数据、第二标识数据;
    所述第一标识数据用于记录所述触碰信号的存在性;
    所述第二标识数据用于记录所述触控信号的存在性;
    所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性。
  16. 根据权利要求14所述的方法,其特征在于,所述状态包括第三标识数据;
    所述第三标识数据表示所述触控信号对于触碰所述显示屏的有效性。
  17. 根据权利要求14所述的方法,其特征在于,所述根据所述触控数据包执行业务操作,包括:
    读取所述触控数据包中的触摸点数据;
    按照所述触摸点数据执行业务操作。
  18. 根据权利要求12所述的方法,其特征在于,所述根据所述触控信号对于触碰所述显示屏的有效性,对所述触控信号生成触控数据包,包括:
    当所述触控信号对于触碰所述显示屏的有效性为有效或无效时,均允许生成触控数据包。
  19. 根据权利要求18所述的方法,其特征在于,所述触控数据包包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高;
    其中,所述状态包括第一标识数据、第二标识数据;
    所述第一标识数据用于记录所述触碰信号的存在性;
    所述第二标识数据用于记录所述触控信号的存在性;
    所述第一标识数据与所述第二标识数据结合表示所述触控信号对于触碰所述显示屏的有效性;
    或者,
    所述状态包括第三标识数据;
    所述第三标识数据表示所述触控信号对于触碰所述显示屏的有效性。
  20. 根据权利要求18所述的方法,其特征在于,所述根据所述触控数据包执行业务操作,包括:
    读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态;
    若所述状态表示所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触摸点数据,或者,按照所述触摸点数据执行第一类型的业务操作;
    若所述状态表示所述触控信号对于触碰所述显示屏的有效性为有效,则按照所述触摸点数据执行第二类型的业务操作。
  21. 根据权利要求1-11任一项所述的方法,其特征在于,还包括:
    若所述触控信号对于触碰所述显示屏的有效性为无效,则忽略所述触控信号,或者,从所述触控信号中读取触摸点数据,按照所述触摸点数据执行第一类型的业务操作;
    若所述触控信号对于触碰所述显示屏的有效性为有效,则从所述触控信号中读取触摸点数据,按照所述触摸点数据执行第二类型的业务操作。
  22. 根据权利要求21所述的方法,其特征在于,所述触控信号包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高。
  23. 根据权利要求1-11、13-20、22中任一项所述的方法,其特征在于,所述光学触控传感器包括红外发射器与红外接收器;
    所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
    所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
  24. 根据权利要求1-11、13-20、22中任一项所述的方法,其特征在于,所述触碰传感器为弹性波传感器。
  25. 根据权利要求1-11、13-20、22中任一项所述的方法,其特征在于,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
  26. 根据权利要求25所述的方法,其特征在于,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
  27. 一种人机交互方法,其特征在于,应用于交互平板,所述方法包括:
    检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
    在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
    根据所述触碰关系分别对各所述触控操作划分触控类型;
    分别对各所述触控操作执行与所述触控类型适配的交互操作。
  28. 根据权利要求27所述的方法,其特征在于,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述检测至少一个触摸物在显示屏的表面触发的至少一个触控操作,包括:
    启动所述光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并触发触控操作时、产生触控信号;
    启动所述触碰传感器,以当至少一个触摸物触碰显示屏并触发触控操作时、产生至少一个触碰信号。
  29. 根据权利要求27所述的方法,其特征在于,所述在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系,包括:
    当所述触控操作为一个时,若所述触控操作以触控信号与触碰信号表示,则在接收到所述触控信号时,确定所述触碰信号与所述触控信号的关联性;根据所述触碰信号与所述触控信号的关联性、确定所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
    当所述触控操作为多个时,确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性;根据所述关联性确定多个所述触摸物与所述显示屏的表面之间在触碰上的关系、作为触碰关系。
  30. 根据权利要求29所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
  31. 根据权利要求29所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的触碰信号清除所述标志位;
    在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
  32. 根据权利要求31所述的方法,其特征在于,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一 目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
  33. 根据权利要求29所述的方法,其特征在于,所述根据所述触碰信号与所述触控信号的关联性、确定所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系,包括:
    若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物已触碰到所述显示屏;
    若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物与所述显示屏之间在触碰上的关系为所述触摸物未触碰到所述显示屏。
  34. 根据权利要求29所述的方法,其特征在于,所述确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性,包括:
    当接收到所述触控操作的触控信号时,识别所述触控信号与所述触控操作的触碰信号在时间上的关联性;
    若所述触控信号与所述触碰信号在时间上存在关联性,则识别所述触控信号与所述触碰信号在位置上的关联性。
  35. 根据权利要求29所述的方法,其特征在于,所述确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性,包括:
    针对所述触控操作的触控信号设置有效期;
    在所述有效期内接收到所述触控操作的触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触控操作的触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
  36. 根据权利要求29所述的方法,其特征在于,所述确定多个所述触控操作的触控信号与多个所述触控操作的触碰信号在时间与位置上的关联性,包括:
    确定与所述触控操作的触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
    确定与所述触控操作的触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
    若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
    若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
  37. 根据权利要求29所述的方法,其特征在于,所述根据所述关联性确定多个所述触摸物与所述显示屏的表面之间在触碰上的关系、作为触碰关系,包括:
    若所述触控信号与所述触碰信号在时间与位置上存在关联性,则确定所述触摸物触碰所述显示屏的表面、作为触碰关系;
    若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、作为触碰关系。
  38. 根据权利要求27所述的方法,其特征在于,所述根据所述触碰关系分别对各所述触控操作划分触控类型,包括:
    若所述触碰关系为所述触摸物已触碰到所述显示屏,则确定所述触控操作的触控类型为触碰触控;
    若所述触碰关系为所述触摸物未触碰到所述显示屏,则确定所述触控操作的触控类型为悬浮触控。
  39. 根据权利要求27-38任一项所述的方法,其特征在于,所述分别对各所述触控操作执行与所述触控类型适配的交互操作,包括:
    对所述触控操作生成与所述触控类型适配的触控数据包;
    解析所述触控数据包,用以执行与所述触控类型适配的交互操作。
  40. 根据权利要求39所述的方法,其特征在于,所述触控数据包包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高;
    其中,所述状态包括第一标识数据、第二标识数据;
    所述第一标识数据用于记录所述触碰信号的存在性;
    所述第二标识数据用于记录所述触控信号的存在性;
    所述第一标识数据与所述第二标识数据结合表示所述触控操作的触控类型;
    或者,
    所述状态包括第三标识数据,所述第三标识数据表示所述触控操作的触控类型。
  41. 根据权利要求39所述的方法,其特征在于,所述解析所述触控数据包,用以执行与所述触控类型适配的交互操作,包括:
    读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态;
    若所述状态表示所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
    若所述状态表示所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
  42. 根据权利要求27-38任一项所述的方法,其特征在于,所述分别对各所述触控操作执行与所述触控类型适配的交互操作,包括:
    从所述触控操作的触控信号中读取触摸点数据;
    若所述触控类型为悬浮触控,则按照所述触摸点数据执行第一类型的交互操作;
    若所述触控类型为触碰触控,则按照所述触摸点数据执行第二类型的交互操作。
  43. 根据权利要求42所述的方法,其特征在于,所述触摸点数据包括如下至少一项:
    状态、触控ID、X坐标、Y坐标、宽、高。
  44. 根据权利要求28所述的方法,其特征在于,所述光学触控传感器包括红外发射器与红外接收器;
    所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
    所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏的边框的第二侧,所述第一侧与所述第二侧位置相对。
  45. 根据权利要求28所述的方法,其特征在于,所述触碰传感器为弹性波传感器。
  46. 根据权利要求28所述的方法,其特征在于,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
  47. 根据权利要求28所述的方法,其特征在于,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
  48. 一种笔迹的显示方法,其特征在于,应用于交互平板,所述方法包括:
    显示书写界面;
    确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
    对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;
    忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
  49. 根据权利要求48所述的方法,其特征在于,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹,包括:
    启动所述光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号;
    启动所述触碰传感器,以当至少一个触摸物触碰显示屏并移动时、对触控轨迹产生至少一个触碰信号。
  50. 根据权利要求49所述的方法,其特征在于,所述启动所述光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号,包括:
    确定所述光学触控传感器休眠;
    若未接收到所述触碰信号,则维持所述光学触控传感器休眠;
    若接收到所述触碰信号,则激活光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号。
  51. 根据权利要求50所述的方法,其特征在于,所述启动所述光学触控传感器,以当至少一个触摸物在接近或触碰显示屏的表面并移动时、对触控轨迹产生至少一个触控信号,还包括:
    若所述触控信号中断,则控制所述光学触控传感器休眠。
  52. 根据权利要求49所述的方法,其特征在于,所述对各所述触摸物确定第一子轨迹、第二子轨迹,包括:
    当所述触摸物为一个时,确定第一子轨迹、第二子轨迹;
    当所述触摸物为多个时,分别对多个所述触摸物确定第一子轨迹、第二子轨迹。
  53. 根据权利要求52所述的方法,其特征在于,所述确定第一子轨迹、第二子轨迹,包括:
    当接收到所述触控信号时,确定所述触碰信号与所述触控信号的关联性;
    若所述触控信号与所述触碰信号不存在关联性,则确定所述触摸物未触碰到所述显示屏,所述触控轨迹为第一子轨迹;
    若所述触控信号与所述触碰信号存在关联性,则确定所述触摸物已触碰到所述显示屏,所述触控轨迹为第二子轨迹。
  54. 根据权利要求53所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号时,确定所述触控信号与所述触碰信号不存在关联性。
  55. 根据权利要求53所述的方法,其特征在于,所述确定所述触碰信号与所述触控信号的关联性,包括:
    针对所述触控信号设置有效期;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物初始触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物初始触碰所述显示屏的所述触碰信号设置标志位;
    在所述有效期内接收到所述触碰信号、且所述触碰信号表示所述触摸物结束触碰所述显示屏时,确定所述触控信号与所述触碰信号存在关联性,针对所述触摸物结束触碰所述显示屏的所述触碰信号清除所述标志位;
    在所述有效期内未接收到所述触碰信号、且具有所述标志位时,确定所述触控信号与所述触碰信号存在关联性;
    在所述有效期内未接收到所述触碰信号、且没有所述标志位时,确定所述触控信号与所述触碰信号不存在关联性。
  56. 根据权利要求55所述的方法,其特征在于,在所述触摸物连续触碰所述显示屏时,所述触碰传感器在第一目标信号与第二目标信号之间停止产生其他所述触碰信号,所述第一目标信号为表示所述触摸物初始触碰所述显示屏的所述触碰信号,所述第二目标信号为表示所述触摸物结束触碰所述显示屏的所述触碰信号。
  57. 根据权利要求52所述的方法,其特征在于,所述分别对多个所述触摸物确定第一子轨迹、第二子轨迹,包括:
    确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性;
    若所述触控信号与所述触碰信号在时间或位置上不存在关联性,则确定所述触摸物接近所述显示屏的表面、所述触控轨迹为第一子轨迹;
    若所述触控信号与所述触碰信号在时间与位置上均存在关联性,则确定所述触摸物触碰所述显示屏的表面、所述触控轨迹为第二子轨迹。
  58. 根据权利要求57所述的方法,其特征在于,所述确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性,包括:
    当接收到所述触控轨迹的触控信号时,识别所述触控轨迹的触控信号与所述触控轨迹的触碰信号在时间上的关联性;
    若所述触控轨迹的触控信号与所述触控轨迹的触碰信号在时间上存在关联性,则识别所述触控轨迹的触控信号与所述触控轨迹的触碰信号在位置上的关联性。
  59. 根据权利要求57所述的方法,其特征在于,所述确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性,包括:
    针对所述触控轨迹的触控信号设置有效期;
    在所述有效期内接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上存在关联性;
    在所述有效期内未接收到所述触控轨迹的触碰信号时,确定所述触控信号与所述触碰信号在时间上不存在关联性。
  60. 根据权利要求57所述的方法,其特征在于,所述确定所述触控轨迹的触碰信号与所述触控轨迹的触控信号在时间与位置上的关联性,包括:
    确定与所述触控轨迹的触控信号关联的触控位置,所述触控位置表示所述触摸物接近或触碰所述显示屏的表面时的位置;
    确定与所述触控轨迹的触碰信号关联的触碰位置,所述触碰位置表示所述触摸物触碰所述显示屏的表面时的位置;
    若所述触控位置与所述触碰位置之间的距离小于或等于预设的阈值,则确定所述触控信号与所述触碰信号在位置上存在关联性;
    若所述触控位置与所述触碰位置之间的距离大于预设的阈值,则确定所述触控信号与所述触碰信号在位置上不存在关联性。
  61. 根据权利要求48-60任一项所述的方法,其特征在于,所述忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹,包括:
    对所述触控轨迹生成触控数据包,用以区分所述第一子轨迹、所述第二子轨迹;
    解析属于所述第二子轨迹的所述触控数据包,以在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
  62. 根据权利要求61所述的方法,其特征在于,所述对所述触控轨迹生成触控数据包,用以区分所述第一子轨迹、所述第二子轨迹,包括:
    若所述触控轨迹为所述第一子轨迹,则禁止对所述触控轨迹生成触控数据包;
    若所述触控轨迹为所述第二子轨迹,则允许对所述触控轨迹生成触控数据包。
  63. 根据权利要求62所述的方法,其特征在于,所述触控数据包包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高。
  64. 根据权利要求63所述的方法,其特征在于,所述状态包括第一标识数据、第二标识数据;
    所述第一标识数据用于记录所述触碰信号的存在性;
    所述第二标识数据用于记录所述触控信号的存在性;
    所述第一标识数据与所述第二标识数据结合表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
  65. 根据权利要求63所述的方法,其特征在于,所述状态包括第三标识数据;
    所述第三标识数据表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
  66. 根据权利要求61所述的方法,其特征在于,所述解析属于所述第二子轨迹的所述触控数据包,以在所述书写界面上绘制与所述第二子轨迹匹配的笔迹,包括:
    读取所述触控数据包中的触摸点数据,所述触摸点数据包括X坐标、Y坐标;
    在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
  67. 根据权利要求61所述的方法,其特征在于,所述对所述触控轨迹生成触控数据包,用以区分所述第一子轨迹、所述第二子轨迹,包括:
    当所述触控轨迹为所述第一子轨迹或所述第二子轨迹时,均允许生成触控数据包;
    其中,所述触控数据包包括的触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高;所述状态用于区分所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
  68. 根据权利要求67所述的方法,其特征在于,所述状态包括第一标识数据、第二标识数据;
    所述第一标识数据用于记录所述触碰信号的存在性;
    所述第二标识数据用于记录所述触控信号的存在性;
    所述第一标识数据与所述第二标识数据结合表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹;
    或者,
    所述状态包括第三标识数据;
    所述第三标识数据表示所述触控轨迹为所述第一子轨迹或所述第二子轨迹。
  69. 根据权利要求67所述的方法,其特征在于,所述解析属于所述第二子轨迹的所述触控数据包,以在所述书写界面上绘制与所述第二子轨迹匹配的笔迹,包括:
    读取所述触控数据包中的触摸点数据,所述触摸点数据包括状态、X坐标、Y坐标;
    若所述状态表示所述触控轨迹为所述第二子轨迹,则在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
  70. 根据权利要求48-60任一项所述的方法,其特征在于,所述忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹,包括:
    若所述触控轨迹为所述第一子轨迹,则忽略所述触控轨迹;
    若所述触控轨迹为所述第二子轨迹,则从所述第二子轨迹的触控信号中读取触摸点数据,所述触摸点数据包括X坐标、Y坐标,在所述书写界面上沿所述X坐标与所述Y坐标绘制笔迹。
  71. 根据权利要求70所述的方法,其特征在于,所述触摸点数据至少有如下一项:
    状态、触控ID、X坐标、Y坐标、宽、高。
  72. 根据权利要求49-60中任一项所述的方法,其特征在于,所述光学触控传感器包括红外发射器与红外接收器;
    所述红外发射器用于发射红外信号,所述红外接收器用于接收红外信号;
    所述红外发射器安装在所述显示屏的边框的第一侧,所述红外接收器安装在所述显示屏 的边框的第二侧,所述第一侧与所述第二侧位置相对。
  73. 根据权利要求49-60中任一项所述的方法,其特征在于,所述触碰传感器为弹性波传感器。
  74. 根据权利要求49-60中任一项所述的方法,其特征在于,所述触碰传感器的数量与所述显示屏的面积正相关,所述触碰传感器安装在可传递所述显示屏发生的振动的位置。
  75. 根据权利要求74所述的方法,其特征在于,所述触碰传感器安装在所述显示屏的表面上,且所述触碰传感器位于所述显示屏的边框内。
  76. 一种触控信号的校验装置,其特征在于,应用于交互平板,在所述交互平板中分别设置有光学触控传感器、触碰传感器,所述装置包括:
    光学触控传感器启动模块,用于启动所述光学触控传感器,以在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
    触碰传感器启动模块,用于启动所述触碰传感器,以在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
    关联性确定模块,用于确定各所述触碰信号与各所述触控信号的关联性;
    有效性确定模块,用于根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
  77. 一种人机交互装置,其特征在于,应用于交互平板,所述装置包括:
    触控操作检测模块,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
    触碰关系识别模块,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触碰上的关系、作为触碰关系;
    触控类型划分模块,用于根据所述触碰关系分别对各所述触控操作划分触控类型;
    交互操作执行模块,用于分别对各所述触控操作执行与所述触控类型适配的交互操作。
  78. 一种笔迹的显示装置,其特征在于,应用于交互平板,所述装置包括:
    书写界面显示模块,用于显示书写界面;
    触控轨迹确定模块,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
    触控轨迹区分模块,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;
    笔迹绘制模块,用于忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
  79. 一种交互平板,其特征在于,包括:
    光学触控传感器,用于在至少一个触摸物接近或触碰显示屏表面时、产生至少一个触控信号;
    触碰传感器,用于在至少一个触摸物触碰到显示屏时、产生至少一个触碰信号;
    处理器,用于确定各所述触碰信号与各所述触控信号的关联性;根据各所述触碰信号与各所述触控信号的关联性、确定各所述触控信号对于触碰所述显示屏的有效性。
  80. 一种交互平板,其特征在于,包括:
    触控传感器,用于检测至少一个触摸物在显示屏的表面触发的至少一个触控操作;
    处理器,用于在触发各所述触控操作的期间,识别各所述触摸物与所述显示屏之间在触 碰上的关系、作为触碰关系;根据所述触碰关系分别对各所述触控操作划分触控类型;分别对各所述触控操作执行与所述触控类型适配的交互操作。
  81. 一种交互平板,其特征在于,包括:
    显示屏,用于显示书写界面;
    触控传感器,用于确定至少一个触摸物在显示屏的表面移动时的至少一个触控轨迹;
    处理器,用于对各所述触摸物确定第一子轨迹、第二子轨迹,所述第一子轨迹为所述触摸物接近所述显示屏的触控轨迹、所述第二子轨迹为所述触摸物已触碰到所述显示屏的触控轨迹;忽略所述第一子轨迹,在所述书写界面上绘制与所述第二子轨迹匹配的笔迹。
  82. 一种交互平板,其特征在于,所述交互平板包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-26中任一项所述的触控信号的校验方法,或者,如权利要求27-47中任一项所述的人机交互方法,或者,如权利要求48-75中任一项所述的笔迹的显示方法。
  83. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1-26中任一项所述的触控信号的校验方法,或者,如权利要求27-47中任一项所述的人机交互方法,或者,如权利要求48-75中任一项所述的笔迹的显示方法。
PCT/CN2022/088069 2021-04-22 2022-04-21 触控信号的校验、人机交互、笔迹的显示方法及相关装置 WO2022222982A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110438358 2021-04-22
CN202110438346.X 2021-04-22
CN202110438358.2 2021-04-22
CN202110438346 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222982A1 true WO2022222982A1 (zh) 2022-10-27

Family

ID=83723526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088069 WO2022222982A1 (zh) 2021-04-22 2022-04-21 触控信号的校验、人机交互、笔迹的显示方法及相关装置

Country Status (1)

Country Link
WO (1) WO2022222982A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256845A1 (en) * 2011-04-05 2012-10-11 International Business Machines Corporation Verifying input to a touch-sensitive display screen according to timing of multiple signals
CN103713755A (zh) * 2012-09-29 2014-04-09 北京汇冠新技术股份有限公司 一种触摸识别装置及识别方法
CN103809819A (zh) * 2012-11-15 2014-05-21 纬创资通股份有限公司 光学式触控装置和其触控方法
CN103914668A (zh) * 2012-12-29 2014-07-09 北京汇冠新技术股份有限公司 一种防止误触摸的触摸识别装置及识别方法
CN106502477A (zh) * 2016-11-30 2017-03-15 上海创功通讯技术有限公司 一种具有压力感应层的终端的触控方法及装置
CN107272955A (zh) * 2017-06-19 2017-10-20 广州视源电子科技股份有限公司 一种触摸响应的方法、人机交互设备、芯片和智能设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256845A1 (en) * 2011-04-05 2012-10-11 International Business Machines Corporation Verifying input to a touch-sensitive display screen according to timing of multiple signals
CN103713755A (zh) * 2012-09-29 2014-04-09 北京汇冠新技术股份有限公司 一种触摸识别装置及识别方法
CN103809819A (zh) * 2012-11-15 2014-05-21 纬创资通股份有限公司 光学式触控装置和其触控方法
CN103914668A (zh) * 2012-12-29 2014-07-09 北京汇冠新技术股份有限公司 一种防止误触摸的触摸识别装置及识别方法
CN106502477A (zh) * 2016-11-30 2017-03-15 上海创功通讯技术有限公司 一种具有压力感应层的终端的触控方法及装置
CN107272955A (zh) * 2017-06-19 2017-10-20 广州视源电子科技股份有限公司 一种触摸响应的方法、人机交互设备、芯片和智能设备

Similar Documents

Publication Publication Date Title
US10296136B2 (en) Touch-sensitive button with two levels
US9946357B2 (en) Control using movements
US8572514B2 (en) Methods and apparatus to provide a handheld pointer-based user interface
US8659566B2 (en) Touch sensing method and electronic apparatus using the same
US9552073B2 (en) Electronic device
WO2019019606A1 (zh) 超声波触控装置及方法、显示装置
US20150128031A1 (en) Contents display method and electronic device implementing the same
TW200910167A (en) Computer system with multi-touch screen
US11669204B2 (en) Data processing method and apparatus, and smart interaction device
US9001063B2 (en) Electronic apparatus, touch input control method, and storage medium
US20230057020A1 (en) Meeting interaction system
US20130257750A1 (en) Establishing an input region for sensor input
WO2022222982A1 (zh) 触控信号的校验、人机交互、笔迹的显示方法及相关装置
WO2022222981A1 (zh) 一种触控校验方法、装置、交互平板和存储介质
WO2022222980A1 (zh) 一种触控校验方法、装置、交互平板和存储介质
WO2021179960A1 (zh) 主动笔触控位置的检测方法和电子终端
CN110989844A (zh) 一种基于超声波的输入方法、手表、系统及存储介质
JP7508916B2 (ja) 表示装置、表示方法およびプログラム
CN111327822B (zh) 一种控制摄像头移动的方法及电子设备
WO2022222384A1 (zh) 触摸数据处理方法及交互平板
CN116795231A (zh) 一种基于弹性波的书写材质识别方法及交互平板
TWI438651B (zh) 光學式手寫輸入裝置
JP2013174935A (ja) 情報処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791088

Country of ref document: EP

Kind code of ref document: A1