WO2022222967A1 - 触控检测装置、触控显示屏以及触控检测方法 - Google Patents

触控检测装置、触控显示屏以及触控检测方法 Download PDF

Info

Publication number
WO2022222967A1
WO2022222967A1 PCT/CN2022/087981 CN2022087981W WO2022222967A1 WO 2022222967 A1 WO2022222967 A1 WO 2022222967A1 CN 2022087981 W CN2022087981 W CN 2022087981W WO 2022222967 A1 WO2022222967 A1 WO 2022222967A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
transducers
ultrasonic guided
receiving
electrodes
Prior art date
Application number
PCT/CN2022/087981
Other languages
English (en)
French (fr)
Inventor
张小伟
刘登宽
张延海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222967A1 publication Critical patent/WO2022222967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0433Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which the acoustic waves are either generated by a movable member and propagated within a surface layer or propagated within a surface layer and captured by a movable member
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves

Definitions

  • the present application relates to the field of touch display, and in particular, to a touch detection device, a touch display screen, and a touch detection method.
  • the touch display integrates touch functions and display functions.
  • the touch display screen is the main human-computer interaction interface of consumer electronic devices. Through the touch display screen, electronic devices can sense and respond to operations such as clicks, slides, etc., which the user acts on the touch screen display.
  • the present application provides a touch detection device, a touch display screen, and a touch detection method, which can realize a low-cost large-size touch display screen to meet the needs of users.
  • an embodiment of the present application provides a touch detection device.
  • the touch detection device can be applied to a touch display screen.
  • the touch display screen can include a touch cover plate, and the touch cover plate can include a frame. area and touch area, the touch detection device may include: a control circuit, a plurality of transmitting transducers for transmitting ultrasonic guided waves (hereinafter may also be referred to as transmitting transducers), and a plurality of transmitting transducers for receiving ultrasonic guided waves
  • the receiving transducer hereinafter also referred to as receiving transducer
  • a plurality of transmitting transducers and a plurality of receiving transducers are respectively arranged in the frame area, and a plurality of transmitting transducers and a plurality of receiving transducers
  • the sensors are also electrically connected to the control circuit respectively; the control circuit is used to control the multiple transmitting transducers to continuously transmit ultrasonic guided waves of the same mode in sequence during operation.
  • the control circuit is also used to control a plurality of receiving transducers to receive the ultrasonic guided waves propagating in the touch cover , the user's touch operation is determined according to the characteristics of the guided ultrasonic waves received by the at least one receiving transducer.
  • the control circuit is also used to control a plurality of receiving transducers to receive the ultrasonic guided waves propagating in the touch cover , the user's touch operation is determined according to the characteristics of the guided ultrasonic waves received by the at least one receiving transducer.
  • the transmitting transducer and the receiving transducer are sparsely arranged in the frame area, so that the touch function of the touch display can be realized at a lower cost, and the flat design of the touch display is supported.
  • Active ultrasonic guided wave detection can support multi-touch, light force touch detection, and finger pad sliding detection, so as to meet the needs of users.
  • the control circuit is used to transmit the ultrasonic guided waves of the same mode in time-division by the multiple transmitting transducers, according to the respective transmitting transducers received by the at least one receiving transducer.
  • the characteristics of the emitted ultrasonic guided waves are used to determine the user's touch operation.
  • the ultrasonic guided waves of the same mode are transmitted by multiple transmitting transducers in a time-sharing manner, and the user is determined according to the characteristics of the ultrasonic guided waves transmitted by each transmitting transducer and received by at least one receiving transducer.
  • the touch operation can accurately identify the user's various touch operations, such as multi-touch, finger pad sliding, etc.
  • the shape of the touch area is a rectangle
  • the shape of the frame area is a rectangular ring
  • the frame area may include four partial areas
  • the four partial areas are respectively connected to one side of the touch area. adjacent.
  • a plurality of transmitting transducers are respectively arranged in at least two of the four partial regions.
  • the plurality of receiving transducers are respectively arranged in at least three of the four partial regions.
  • the transmitting transducer and the receiving transducer may be redundantly arranged, thereby improving the touch detection performance.
  • the number of multiple transmitting transducers is 4N
  • the number of multiple receiving transducers is k*4N
  • N is any integer greater than or equal to 1
  • k is greater than or equal to Any integer of 1.
  • the control circuit is used to time-divisionally control the transmitting transducers in the four partial regions to transmit ultrasonic guided waves.
  • the control circuit is used to control all the receiving transducers in the four partial areas, and respectively receive the ultrasonic guided waves transmitted by the transmitting transducers in the four partial areas in time division.
  • any one of the multiple transmit transducers may include an array electrode
  • any one of the multiple receive transducers may include an array electrode
  • the array electrode may include a negative electrode.
  • electrodes and M positive electrodes where M is any integer greater than 1.
  • the one negative electrode and the M positive electrodes are respectively electrically connected to the control circuit.
  • the transmitting transducer and the receiving transducer of the touch detection device are respectively provided with array electrodes.
  • the ultrasonic conduction in the touch panel can be realized. Wave mode control, selectively transmitting and receiving ultrasonic guided waves of specific modes, improving touch detection accuracy.
  • the array electrodes may include annular array electrodes, the annular array electrodes include M+1 annular electrodes, and the outermost ring of the M+1 annular electrodes is a negative electrode.
  • the array electrodes may include linear array electrodes, the linear array electrodes include M+1 linear electrodes, and a single-sided edge electrode in the M+1 linear electrodes is a negative electrode.
  • the annular array electrode or the linear array electrode includes M+1 array elements, one of the M+1 array elements is used as a negative electrode, and the other M array elements are used as M positive electrodes.
  • the control circuit can selectively excite the ultrasonic guided waves of the preset wavelength and the preset mode by adjusting the timing of the driving signals corresponding to the M positive electrodes, thereby realizing the modal control of the ultrasonic guided waves in the touch panel, Selectively transmit and receive ultrasonic guided waves in specific modes to improve touch detection accuracy.
  • any one of the multiple transmit transducers, or any one of the multiple receive transducers may also include a bottom electrode, a base material layer, a feedback electrode, and a flexible circuit. plate.
  • the bottom electrode is arranged on the first plane of the base material layer, and the first plane is the side facing the touch cover.
  • One negative electrode and M positive electrodes of the array electrodes are respectively arranged on the second plane of the base material layer. The second plane is opposite to the first plane.
  • One end of the feedback electrode is electrically connected to the bottom electrode, and the other end of the feedback electrode is electrically connected to the negative electrode of the array electrode.
  • One negative electrode and M positive electrodes of the array electrodes are respectively electrically connected to one of the M+1 conductive electrodes of the flexible circuit board, and the flexible circuit board is also electrically connected to the control circuit.
  • the array electrodes include linear array electrodes
  • one negative electrode and M positive electrodes included in the linear array electrodes are respectively disposed on the second plane of the base material layer along the length direction of the second plane.
  • control circuit includes a driving circuit and a receiving circuit, a plurality of transmitting transducers are respectively electrically connected to the driving circuit, and a plurality of receiving transducers are respectively electrically connected to the receiving circuit.
  • an embodiment of the present application provides a touch display screen, the touch display screen includes a touch cover plate and the touch detection device according to any one of the first aspects.
  • an embodiment of the present application provides a touch detection method.
  • the method is applied to the touch detection device described in any one of the first aspects.
  • the touch detection device is applied to a touch display screen.
  • the display screen includes a touch cover, and the touch cover includes a frame area and a touch area, and the method includes:
  • the transmitting transducer and the receiving transducer are sparsely arranged in the frame area, so that the touch function of the touch display can be realized at a lower cost, and the flat design of the touch display is supported.
  • Active ultrasonic guided wave detection can support multi-touch, light force touch detection, and finger pad sliding detection, so as to meet the needs of users.
  • determining the user's touch operation according to the characteristics of the ultrasonic guided waves received by at least one receiving transducer may include: transmitting the same mode after each of the multiple transmitting transducers in a time-sharing manner.
  • the touch operation of the user is determined according to the characteristics of the ultrasonic guided wave transmitted by each transmitting transducer and received by at least one of the receiving transducers.
  • the shape of the touch area is a rectangle
  • the shape of the frame area is a rectangular ring
  • the frame area may include four partial areas
  • the four partial areas are respectively connected to one side of the touch area. adjacent.
  • a plurality of transmitting transducers are respectively arranged in at least two of the four partial regions.
  • the plurality of receiving transducers are respectively arranged in at least three of the four partial regions.
  • Controlling a plurality of transmitting transducers to continuously transmit ultrasonic guided waves of the same mode in sequence during operation, and controlling a plurality of receiving transducers to receive ultrasonic guided waves propagating in the touch cover may include: time-sharing controlling the at least The transmitting transducers in the two partial areas respectively transmit ultrasonic guided waves of the same mode, and all the receiving transducers in the at least three partial areas are controlled to respectively receive the transmitting transducer components propagating in the touch cover.
  • guided ultrasonic waves emitted.
  • the number of multiple transmitting transducers is 4N
  • the number of multiple receiving transducers is k*4N
  • N is any integer greater than or equal to 1
  • k is greater than or equal to Any integer of 1.
  • Each of the four partial regions is provided with N transmitting transducers and k*N receiving transducers.
  • the transmitting transducers in the at least two partial areas are controlled in time-sharing to transmit ultrasonic guided waves of the same mode, respectively, and all the receiving transducers in the at least three partial areas are controlled to respectively receive the various waves propagating in the touch cover.
  • the ultrasonic guided waves transmitted by the transmitting transducers in a time-division manner include: time-division controlling the N transmitting transducers in the four partial areas to transmit ultrasonic guided waves of the same mode respectively, and the N transmitting transducers in one partial area transmit ultrasonic guided waves of the same mode respectively.
  • k*4N receiving transducers in the four partial regions are controlled to respectively receive the ultrasonic guided waves transmitted by the N transmitting transducers in time division.
  • Determining the user's touch operation according to the characteristics of the ultrasonic guided waves received by the at least one receiving transducer may include: determining the user's touch operation according to the characteristics of the received 4N*k*4N ultrasonic guided waves.
  • the method further includes: adjusting the timing of the respective driving signals of the M channels of at least one transmitting transducer in the plurality of transmitting transducers, where the timing of the respective driving signals of the M channels is used to control
  • the transmitting transducer excites ultrasonic guided waves of the same mode according to the preset frequency, and each of the M channels in the transmitting transducer corresponds to one positive electrode of the M positive electrodes of the transmitting transducer.
  • Adjust the timing of the ultrasonic guided waves received by the respective M channels of the multiple receiving transducers, and the timing of the ultrasonic guided wave signals received by the M channels is used to control the receiving transducers to receive the same mode.
  • the M channels of any one of the plurality of receiving transducers respectively correspond to one positive electrode of the M positive electrodes of the receiving transducer.
  • the selective excitation and selective reception of the ultrasonic guided wave mode are realized, the ultrasonic guided wave mode is controlled, and the multi-mode and high-frequency dispersion are solved.
  • the resulting problems of low time resolution, low signal-to-noise ratio, and high signal decomposition difficulty greatly improve the detection accuracy of touch position and touch force, and can achieve accurate detection of multi-touch position and multi-touch force. to enhance the touch experience.
  • p the transmission delay
  • v the wave speed of the ultrasonic guided wave
  • the distance between any two adjacent electrodes in the transducer, v is the wave speed of the ultrasonic guided wave.
  • any one of the transmitting transducers in the plurality of transmitting transducers includes an annular array electrode, and the annular array electrode includes M+1 annular electrodes, which is the innermost one of the M+1 annular electrodes.
  • the transmission delay of the channel corresponding to the positive electrode of the ring is 0, and any one of the receiving transducers in the plurality of receiving transducers includes an annular array electrode, and the annular array electrode includes M+1 annular electrodes.
  • the receiving delay of the channel corresponding to the positive electrode of the innermost ring among the ring electrodes is 0.
  • any one of the multiple transmitting transducers includes a linear array electrode, and the linear array electrode includes M+1 linear electrodes, and a single-sided edge in the M+1 linear electrodes.
  • the transmission delay of the channel corresponding to the positive electrode is 0, and any one of the multiple receiving transducers includes a linear array electrode, and the linear array electrode includes M+1 linear electrodes, and the M+1 linear electrodes
  • the receiving delay of the channel corresponding to the positive electrode at the outer edge of the linear electrode is 0.
  • an embodiment of the present application provides a processor, where the processor is configured to control a touch detection device to execute the method described in any one of the third aspects.
  • the processor may be connected to a memory, The memory stores executable instructions related to any one of the methods described in the third aspect, and the processor executes the corresponding method by reading the executable instructions.
  • an embodiment of the present application provides a chip, including a processor and a memory, where the memory is used to store executable instructions, and the processor is used to call and run the executable instructions stored in the memory to control a touch detection device A method as in any of the third aspects is performed.
  • an embodiment of the present application provides a transducer, the transducer may include an array electrode, and the array electrode may include M+1 electrodes, where M is any integer greater than 1.
  • the transducer is used to transmit or receive ultrasonic guided waves of the same mode through the M+1 electrodes.
  • the array electrodes may include annular array electrodes, the annular array electrodes may include M+1 annular electrodes, the outermost ring of the M+1 annular electrodes is a negative electrode, and the M+1 annular electrodes The other ring electrodes except the outermost ring among the ring electrodes are respectively positive electrodes.
  • the array electrodes may include linear array electrodes, the linear array electrodes may include M+1 linear electrodes, and the single-sided edge electrode in the M+1 linear electrodes is a negative electrode, and the M+1 linear electrodes Among the linear electrodes, other linear electrodes except the one-sided edge electrode are respectively positive electrodes.
  • the distance between any two adjacent electrodes in the array electrode is p, and the width of any electrode in the array electrode is w, and w is smaller than p.
  • the plurality of transducers may further include a bottom electrode, a base material layer, a feedback electrode and a flexible circuit board.
  • the bottom electrode is disposed on the first plane of the base material layer, and one negative electrode and M positive electrodes of the array electrode are respectively disposed on the second plane of the base material layer, and the second plane is opposite to the first plane.
  • One end of the feedback electrode is electrically connected to the bottom electrode, and the other end of the feedback electrode is electrically connected to the negative electrode of the array electrode.
  • One negative electrode and M positive electrodes of the array electrodes are respectively electrically connected to one conductive electrode of M+1 conductive electrodes of the flexible circuit board, and the flexible circuit board is also electrically connected to the control circuit.
  • the control circuit is used to control the M+1 electrodes to transmit or receive ultrasonic guided waves of the same mode.
  • the array electrode includes a linear array electrode
  • one negative electrode and M positive electrodes included in the linear array electrode are respectively disposed on the second side of the base material layer along the length direction of the second plane. flat.
  • the touch cover is realized by arranging a transmitting transducer and a receiving transducer in the frame area of the touch cover of the touch display screen.
  • the ultrasonic guided waves in the panel are transmitted and received, and the user's touch operation is determined by the control circuit according to the received ultrasonic guided waves propagating in the touch cover, so as to identify the user's touch operation and realize the touch of the touch screen.
  • control function The transmitting transducer and the receiving transducer are sparsely arranged in the frame area, so that the touch function of the touch display can be realized at a lower cost, and the flat design of the touch display is supported.
  • Active ultrasonic guided wave detection can support multi-touch, light force touch detection, and finger pad sliding detection, so as to meet the needs of users.
  • FIG. 1 is a schematic structural diagram of a touch detection device according to an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of a touch detection device according to an embodiment of the present application along the A-A direction shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of another touch detection device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an annular array transducer provided by an embodiment of the present application.
  • FIG. 5 is a schematic partial structure diagram of an annular array transducer provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of emission control of a ring array transducer provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of receiving control of a ring array transducer provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a linear array transducer provided by an embodiment of the present application.
  • FIG. 9 is a schematic partial structure diagram of a linear array transducer provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a touch detection method provided by an embodiment of the present application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the touch detection device provided by the embodiment of the present application can be applied to a touch display screen.
  • the touch detection device is used for providing the touch function of the touch display screen.
  • the touch display may include a touch cover.
  • the touch cover may include a frame area and a touch area.
  • the touch detection device may include a control circuit, a plurality of transmitting transducers, and a plurality of receiving transducers.
  • the transmitting transducer is used to transmit ultrasonic guided waves
  • the receiving transducer is used to receive ultrasonic guided waves.
  • the transmitting transducer and the receiving transducer are arranged in the frame area to detect the user's operation in the touch area, so that the touch display screen can sense and respond to the display function while providing the user with a display function.
  • the user acts on operations such as clicking and sliding in the touch area.
  • the touch display screen of the embodiment of the present application may be a touch display screen of any size, for example, a large-size touch display screen.
  • the large-size touch display may refer to a touch display larger than 23 inches. It can be understood that the touch display screen may also include a backlight assembly, a display panel, a casing, etc.
  • the embodiments of the present application mainly explain the touch detection device of the touch screen display screen. It is a component that controls the display screen, and the embodiment of the present application does not limit its specific form.
  • the touch display screen of the embodiments of the present application can be applied to any electronic device with display function and touch function.
  • the electronic device can be a smart TV, a human-computer interaction device for Or vehicle-mounted electronic equipment, etc., specific examples of the electronic equipment are not described one by one in the embodiments of the present application.
  • a large-size touch screen display screen using the touch detection device of the embodiment of the present application, a large-size touch screen display screen with a lower cost can be realized to meet the user's usage requirements.
  • FIG. 1 is a schematic structural diagram of a touch detection device provided by an embodiment of the present application.
  • the touch detection device may be applied to a touch display screen 100, and the touch display screen 100 may include a touch cover plate 101, as shown in FIG.
  • the touch cover 101 may include a frame area 1011 and a touch area 1012.
  • the frame area 1011 is surrounded outside the touch area 1012 .
  • the positional relationship between the frame area 1011 and the touch area 1012 may also be other positional relationships, for example, the frame area and the touch area are separated by a predetermined distance, etc., which are not described one by one in the embodiments of the present application.
  • the touch detection device may include: a plurality of transmitting transducers 201 , a plurality of receiving transducers 202 and a control circuit 203 .
  • the multiple transmitting transducers 201 and the multiple receiving transducers 202 are respectively disposed in the frame area 1011 , and the multiple transmitting transducers 201 and the multiple receiving transducers 202 are also electrically connected to the control circuit 203 respectively.
  • the control circuit 203 may be integrated on one circuit board, or may be integrated on multiple circuit boards.
  • the size of the touch area 1012 in this embodiment of the present application may be larger than 23 inches.
  • the area of the frame area 1011 is much smaller than that of the touch area 1012 .
  • the frame area 1011 is used to set multiple transmitting transducers 201 and multiple receiving transducers 202 of the touch detection device in the embodiment of the present application. By sparsely disposing a plurality of transmitting transducers 201 and a plurality of receiving transducers 202 in the frame area 1011 , it is possible to detect the user's operation in the touch area 1012 . In this way, the touch function of the touch display can be realized at a lower cost, and the flat design of the touch display is supported.
  • the shape of the touch area 1012 may be any shape such as a rectangle (square or rectangle), a circle, etc., which is not specifically limited in this embodiment of the present application. Taking the frame area 1011 surrounding the touch area 1012 as an example, correspondingly, the shape of the frame area 1011 may be any shape such as a rectangular ring (square ring or rectangular ring), a circular ring, etc. No specific limitation is made.
  • the shape of the frame area 1011 matches that of the touch area 1012 to surround the outside of the touch area 1012 .
  • the touch area 1012 is rectangular and the frame area 1011 is a rectangular ring.
  • the shape of the touch area 1012 is a rectangle
  • the shape of the frame area 1011 is a rectangular ring, as an example for schematic illustration, and the protection scope is not limited by this. .
  • the transmitting transducer 201 is used to transmit ultrasonic guided waves.
  • the receiving transducer 201 is used for receiving ultrasonic guided waves.
  • the control circuit 203 is used to control the multiple transmitting transducers 201 to continuously transmit ultrasonic guided waves of the same mode in sequence during operation. Wherein, when the user performs a touch operation on the touch cover 101 , the characteristics of the ultrasonic guided waves propagating in the touch cover 101 will change accordingly.
  • the control circuit 203 is also used for controlling the plurality of receiving transducers 202 to receive the ultrasonic guided waves propagating in the touch cover 101 .
  • the touch operation of the user is determined according to the guided ultrasonic waves received by the at least one receiving transducer 202 .
  • the ultrasonic guided waves propagating in the touch cover 101 are single mode ultrasonic guided waves.
  • the control circuit 203 generates a driving signal, and transmits the driving signal to each transmitting transducer 201 in sequence, and each transmitting transducer 201 transmits an ultrasonic conductor according to the driving signal in sequence.
  • Waves that is, convert electrical signals into sound wave signals, so as to realize the emission of ultrasonic guided waves. Since there are ultrasonic guided waves actively emitted in the touch area 1012 of the touch cover, when the user performs operations such as clicking or sliding in the touch area 1012, the touch detection device can receive the transducer 202 and control the The circuit 203 recognizes that the user performs operations such as clicking or sliding on the touch area 1012 .
  • each receiving transducer 202 can receive the ultrasonic guided wave propagating in the touch cover, convert the acoustic wave signal into an electrical signal, and transmit it to the control circuit 203 , and the control circuit 203 can receive according to each receiving transducer 202 .
  • the touch event information includes at least one of the following: touch position information, touch force information or touch mode information.
  • the touch position information may represent the position of the user's touch operation.
  • the touch force information may represent the force of the user's touch operation.
  • the touch mode information may represent a mode of a user's touch operation, and the mode may be click, slide, or the like.
  • control circuit 203 can respond to the user's operations such as clicking or sliding on the touch area 1012 according to the touch event information.
  • control circuit 203 can transmit the touch event information to
  • the processor electrically connected to the control circuit 203 is used to respond to operations such as clicking or sliding by the user on the touch area 1012 .
  • the processor may be a processor of the smart TV, and the processor may provide an operating system of the smart TV.
  • the touch detection device of the embodiment of the present application can realize the perception and response of the user's click, slide and other operations on the touch display screen.
  • the implementation manner of the control circuit 203 calculating the touch event information according to the signals received by the respective receiving transducers 202 may be as follows: the control circuit 203 transmits ultrasonic guided waves of the same mode in a time-sharing manner by the multiple transmitting transducers 201 respectively. At the time, the user's touch operation is determined according to the characteristics of the ultrasonic guided waves emitted by the respective transmitting transducers and received by the at least one receiving transducer 202 respectively.
  • the control circuit 203 can control one transmitting transducer 202 to transmit ultrasonic guided waves of the same mode in one transmitting and receiving cycle, In the transmitting and receiving period, the three receiving transducers 203 respectively receive the ultrasonic guided waves emitted by the transmitting transducers, that is, three ultrasonic guided waves. After that, the control circuit 203 can control another transmitting transducer 202 to transmit ultrasonic guided waves of the same mode in another transmitting and receiving period, and in this transmitting and receiving period, the three receiving transducers receive the transmitted ultrasonic waves respectively.
  • the ultrasonic guided waves emitted by the transducer are 3 ultrasonic guided waves.
  • the control circuit 203 determines the user's touch operation according to the characteristics of the ultrasonic guided waves (6 ultrasonic guided waves in total) transmitted by the respective transmitting transducers received by the three receiving transducers 203 respectively.
  • the user's operations such as clicking or sliding on the touch area 1012 may be the clicking or sliding on the touch area 1012 by the user's finger, a stylus, or other control objects that can be detected by the touch display screen. and so on.
  • the numbers of the transmitting transducers 201 and the receiving transducers 202 of the touch detection device can be flexibly set according to requirements. That is, a certain number of transmitting transducers 201 and receiving transducers 202 are provided, so that the touch detection device can correctly identify the operation performed by the user on the touch area.
  • the transmit transducer 201 and the receive transducer 202 may be redundantly arranged to improve touch detection performance.
  • the shape of the touch area 1012 is a rectangle
  • the shape of the frame area 1011 is a rectangular ring
  • the frame area 1011 includes four partial areas, each of which is adjacent to one side of the touch area 1012 .
  • the plurality of transmitting transducers 201 are respectively arranged in at least two of the four partial regions.
  • the plurality of receiving transducers 202 are respectively arranged in at least three of the four partial regions. In other words, the number of transmitting transducers may be at least two, and the number of receiving transducers may be at least three.
  • the shape of the touch area 1012 is a rectangle
  • the shape of the frame area 1011 is a rectangular ring
  • the number of transmitting transducers 201 is 4N
  • the number of receiving transducers 202 is k*4N
  • N is Any integer greater than or equal to 1
  • k is any integer greater than or equal to 1.
  • the frame area 1011 may include four partial areas, each of which is adjacent to one side of the touch area 1012, and each of the four partial areas is provided with N emitting transducers and k*N Receive transducer. That is, a group is set in each partial area.
  • the 4N transmitting transducers are used for time-sharing to transmit ultrasonic guided waves in the touch cover.
  • the k*4N receiving transducers are respectively used to receive the ultrasonic guided waves transmitted by the 4N transmitting transducers in time division. That is, when the N transmitting transducers in one group transmit ultrasonic guided waves, the k*N receiving transducers in the four groups respectively receive the ultrasonic guided waves transmitted by the transmitting transducers; When the transducer transmits ultrasonic guided waves, k*N receiving transducers in the 4 groups respectively receive the ultrasonic guided waves emitted by the transmitting transducers; when N transmitting transducers in another group transmit ultrasonic guided waves, The k*N receiving transducers in the 4 groups respectively receive the ultrasonic guided waves emitted by the transmitting transducers; when the N transmitting transducers in another group transmit the ultrasonic guided waves, the k*N receiving transducers in the 4 groups receive the ultrasonic guided waves respectively.
  • the transducers respectively receive the ultrasonic guided waves emitted by the transmitting transducers. That is, until all groups of transmitting transducers complete the transmission, the control circuit 203 calculates the touch event information according to the four ultrasonic guided waves received by each of the k*N receiving transducers in the four groups.
  • each transmitting transducer 201 cooperates with two receiving transducers 202 as a group.
  • Each group is located in a partial area of the frame area 1011 .
  • the frame area 1011 may include four partial areas ( 10111 , 10112 , 10113 and 10114 ), each of the four partial areas is adjacent to one side of the touch area 1012 , and in the four partial areas ( 10111 , 10112 , 10113 and 10114 )
  • the two receiving transducers in each of the four partial areas (10111, 10112, 10113 and 10114) receive the signals transmitted by the transmitting transducers in the partial area 10111 respectively.
  • Ultrasonic guided waves when one transmitting transducer in the partial area 10112 transmits ultrasonic guided waves, the two receiving transducers in each of the four partial areas (10111, 10112, 10113 and 10114) receive the transmitting transducers of the partial area 10112 respectively.
  • the two receiving transducers in each of the four partial areas (10111, 10112, 10113 and 10114) receive the partial area respectively Ultrasonic guided waves emitted by the transmitting transducer of 10113; when one transmitting transducer in partial area 10114 transmits ultrasonic guided waves, two receiving transducers in each of the four partial areas (10111, 10112, 10113 and 10114) The ultrasonic guided waves emitted by the transmitting transducers of the partial regions 10114 are respectively received.
  • the control circuit 203 calculates the touch event information according to the four ultrasonic guided waves received by each of the two receiving transducers in the four partial regions (10111, 10112, 10113 and 10114) respectively.
  • At least 4 transmitting transducers and 4 receiving transducers can be set to realize the calculation of touch event information, thereby reducing large-sized touch display screens. the cost of.
  • the transmitting transducer and the receiving transducer of the touch detection device according to the embodiments of the present application may be connected to the touch cover plate through an adhesive, respectively.
  • FIG. 2 is a cross-sectional view of a touch detection device according to an embodiment of the present application along the A-A direction shown in FIG. 1 .
  • the emitting transducer is connected to the touch cover through an adhesive layer.
  • the receiving transducer can also be connected to the touch cover in the manner shown in FIG. 2 .
  • the touch cover can also be connected to the touch cover in other ways, for example, by means of snap-fitting, and the embodiments of the present application will not illustrate them one by one.
  • the transmitting transducer 201 and the receiving transducer 202 can be connected to one end of the control circuit access line 205 through the transducer connection line 204 , and the other end of the control circuit access line 205 is connected to the control circuit 203 One end is connected, and the other end of the control circuit 203 can be connected to the system access line 206 .
  • control circuit 203 may include a driving circuit and a receiving circuit, the transmitting transducer 201 is connected to the driving circuit, and the receiving transducer 202 is connected to the receiving circuit.
  • the driving circuit and the receiving circuit can be integrated on one circuit board, or can be integrated on multiple circuit boards.
  • FIG. 3 is a schematic structural diagram of another touch detection device provided by an embodiment of the present application. As shown in FIG. 3 , the touch detection device is different from the touch detection device shown in FIG. 1 in that the touch detection The surfaces of the transmitting transducer 201 and the receiving transducer 202 of the device facing the touch cover are rectangular. Besides, the components and connection structures included in the touch detection device shown in FIG. 3 are the same as those of the touch detection device shown in FIG. 1 , and the specific explanation can refer to the specific explanation of the embodiment shown in FIG. 1 . , and will not be repeated here.
  • the transmission and reception of ultrasonic guided waves in the touch cover are realized.
  • the obtained characteristics of the ultrasonic guided waves propagating in the touch cover plate determine the user's touch operation, thereby realizing the touch function of the touch display screen.
  • the transmitting transducer and the receiving transducer are sparsely arranged in the frame area, so that the touch function of the touch display can be realized at a lower cost, and the flat design of the touch display is supported.
  • Active ultrasonic guided wave detection can support multi-touch, light force touch detection, and finger pad sliding detection, so as to meet the needs of users.
  • the transmitting transducer and the receiving transducer of the touch detection device are respectively provided with array electrodes.
  • the array electrodes of the transducer and the array electrodes of the receiving transducer can realize the modal control of the ultrasonic guided wave in the touch panel, selectively transmit and receive the ultrasonic guided wave of a specific mode, and improve the touch detection accuracy.
  • Transmitting transducer 201 may include annular array electrodes or linear array electrodes
  • receiving transducer 202 may include annular array electrodes or linear array electrodes
  • annular array electrodes or linear array electrodes include one negative electrode and M positive electrodes, where M is greater than Any integer of 1.
  • M is greater than Any integer of 1.
  • One negative electrode and M positive electrodes are respectively electrically connected to the control circuit.
  • M can be 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • the annular array electrode or the linear array electrode includes M+1 array elements, one of the M+1 array elements is used as a negative electrode, and the other M array elements are used as M positive electrodes.
  • the control circuit 203 can selectively excite the ultrasonic guided waves of the preset wavelength and the preset mode by adjusting the timings of the respective driving signals corresponding to the M positive electrodes.
  • the preset wavelength may be any wavelength
  • the preset mode may be any one of ultrasonic guided wave modes such as A0, S0, A1, S1, . . . , An, or Sn.
  • the transmitting transducer 201 and the receiving transducer 202 of the annular array electrode, and the transmitting transducer 201 and the receiving transducer 202 of the linear array electrode are respectively explained below.
  • FIG. 4 is a schematic structural diagram of an annular array transducer provided by an embodiment of the application
  • FIG. 5 is a partial structural schematic diagram of an annular array transducer provided by an embodiment of the application.
  • the annular array transducer can be used as the above-mentioned
  • the transmitting transducer 201 in the embodiment shown in FIG. 1 can also be used as the receiving transducer 202 in the above-mentioned embodiment shown in FIG. 1
  • FIG. 4 may be a schematic cross-sectional view of the transmitting transducer 201 shown in FIG. 1 along the A-A direction.
  • the annular array transducer may include 5 array elements ( 11 , 12 , 13 , 14 and 15 ), a bottom electrode 16 , and a base material layer 17 , a feedback electrode 18 and a flexible printed circuit (Flexible Printed Circuit, FPC) 19 .
  • FPC Flexible Printed Circuit
  • the five array elements are concentric rings with different radii, respectively.
  • the array elements (11, 12, 13, and 14) are used as positive electrodes, respectively, and the array element 15 is used as a negative electrode, as shown in Figure 4.
  • the array element 15 is located in the outermost ring of the five array elements. That is, the annular array electrodes of the annular array transducer include four positive electrodes and one negative electrode. The inner ring of the annular array electrode is the positive electrode.
  • the bottom electrode 16 is arranged on the first plane of the base material layer 17 , the first plane is the side facing the touch cover, and the five array elements ( 11 , 12 , 13 , 14 and 15 ) are respectively arranged on the base material layer 17 .
  • the second plane, the second plane is opposite to the first plane, that is, the second plane is the side of the base material layer 17 away from the control cover.
  • the base material layer 17 may be a piezoelectric material such as piezoelectric ceramics or piezoelectric thin films.
  • the respective radii of the first plane and the second plane of the base material layer 17 may be greater than or equal to the array The outer radius of element 15.
  • the feedback electrode 18 is used to lead the negative electrode of the bottom electrode 16 to the array element 15, so that the four positive electrodes and one negative electrode of the annular array transducer are located on the same plane, and then electrically connected to the control circuit 203 through the flexible circuit board 19. connect.
  • the bottom electrode 16 can be connected to the touch cover plate through the adhesive layer as shown in FIG. 2 , so as to fix the annular array transducer on the frame area of the touch cover plate.
  • One negative electrode and four positive electrodes of the annular array transducer are respectively electrically connected to one of the five conductive electrodes of the flexible circuit board 19 , and the flexible circuit board 19 is also electrically connected to the control circuit 203 .
  • one negative electrode and four positive electrodes can be respectively connected to one conductive electrode among the five conductive electrodes of the flexible circuit board 19 through conductive glue.
  • the flexible circuit board 19 can be electrically connected to the driving circuit in the control circuit 203, and the driving circuit is used to control the transmission of ultrasonic guided waves in the touch cover.
  • the flexible circuit board 19 can be electrically connected with the receiving circuit in the control circuit 203, and the receiving circuit is used to control the receiving ultrasonic guided waves in the touch cover.
  • the main parameters of the annular array transducer may include the outer diameter D of the annular array transducer, the array element spacing p, and the array element width w, etc.
  • the array element spacing p is the distance from the starting position of one array element to the starting position of the other array element in two adjacent array elements.
  • the array element width w is the annular width of the annular array element.
  • the outer diameter D determines the installation space of the annular array transducer, the sensitivity of the annular array transducer, etc.
  • the array element spacing p cooperates with the phase timing control strategy, which can realize the selective excitation or reception of the ultrasonic guided wave sound field.
  • the width w is smaller than the array element spacing p, and a larger array element width w can provide higher transducer sensitivity.
  • FIG. 6 is a schematic diagram of emission control of an annular array transducer provided by an embodiment of the present application.
  • the annular array transducer of this embodiment is used as a transmitting transducer.
  • each array element of the annular array transducer corresponds to a channel
  • the array element 11 of the annular array transducer in this embodiment corresponds to the channel ch1
  • the array element 12 corresponds to the channel ch2
  • the array element corresponds to the channel ch2.
  • 13 corresponds to channel ch3
  • array element 14 corresponds to channel ch4.
  • the frequency of the excited target ultrasonic guided wave mode is f
  • the wave speed is v
  • the wavelength is ⁇
  • the control circuit can make constructive physical superposition of ultrasonic guided wave modes with a certain wavelength by adjusting the timing of the drive signals of channel ch1, channel ch2, channel ch3, and channel ch4
  • the physical sound field superposition can selectively excite the ultrasonic guided wave mode with a certain wavelength, and adjust different delay parameters t0 to flexibly excite different modes.
  • control circuit can realize any ultrasonic guided wave modal excitation such as A0, S0, A1, S1, .
  • the problem of multi-modal signal interference is solved through single-modal detection, which greatly reduces the difficulty of signal processing and improves detection accuracy.
  • single-modal detection By selecting a series of modalities to transmit and receive individually, and detect them in sequence, richer and more accurate information can be obtained. In other words, using redundant multiple single-modality detection information to achieve high-precision and high-robust touch detection.
  • FIG. 7 is a schematic diagram of receiving control of a ring array transducer provided by an embodiment of the present application.
  • the ring array transducer of this embodiment is used as a receiving transducer, and the principles of receiving control and transmission control are similar, as shown in FIG.
  • the control circuit can adjust the delay of the channel ch1, channel ch2, channel ch3, channel ch4 to receive the signal, the delay of each channel's received signal is the same as the delay of the transmit signal of the respective channel , so that the ultrasonic guided wave modes with a certain wavelength can be digitally superimposed constructively, that is, after the digital signals of the same mode are delayed, the in-phase superposition can be realized, so that the ultrasonic guided wave modes with a certain wavelength can be selectively received.
  • Modal filtering effect adjusting different delay parameters t0, can flexibly receive different modes.
  • the control circuit can realize the reception of any ultrasonic guided wave modes such as A0, S0, A1, S1, .
  • Single-modal detection solves the problem of multi-modal signal interference, eliminates modal conversion interference signals, greatly reduces the difficulty of signal processing, and improves detection accuracy.
  • By selecting a series of modalities to transmit and receive individually, and detect them in sequence richer and more accurate information can be obtained. In other words, it utilizes redundant multiple single-modality detection information to achieve high-precision and high-robust touch detection.
  • FIG. 8 is a schematic structural diagram of a linear array transducer provided by an embodiment of the present application
  • FIG. 9 is a partial structural schematic diagram of a linear array transducer provided by an embodiment of the present application.
  • the linear array transducer can be used as the above-mentioned
  • the transmitting transducer 201 in the embodiment shown in FIG. 3 can also be used as the receiving transducer 202 in the above-mentioned embodiment shown in FIG. 3 .
  • the linear array transducer may include five array elements ( 21 , 22 , 23 , 24 and 25 ), A bottom electrode 26 , a base material layer 27 , a feedback electrode 28 and a flexible printed circuit (FPC) 29 .
  • FPC flexible printed circuit
  • the five array elements (21, 22, 23, 24, and 25) can be cuboids of the same length, respectively, and the five array elements (21, 22, 23, 24, and 25) are distributed in parallel on the In the base material layer 27, the array elements (21, 22, 23, 24) are respectively used as positive electrodes, and the array element 25 is used as a negative electrode.
  • the linear array electrodes of the linear array transducer include four positive electrodes and one negative electrode.
  • the bottom electrode 26 is disposed on the first plane of the base material layer 27, the first plane is the side facing the touch cover, and the five array elements (21, 22, 23, 24 and 25) are respectively along the length direction of the second plane.
  • the second plane is disposed on the second plane of the base material layer 27 , the second plane is opposite to the first plane, that is, the second plane is the side of the base material layer 27 away from the control cover.
  • the base material layer 27 may be a piezoelectric material such as piezoelectric ceramics or piezoelectric thin films.
  • One end of the feedback electrode 28 is electrically connected to the bottom electrode 26 , and the other end of the feedback electrode 28 is electrically connected to the array element 25 , that is, the feedback electrode 28 is electrically connected to the bottom electrode 26 and the array element 25 respectively.
  • the feedback electrode 28 is used to lead the negative electrode of the bottom electrode 26 to the array element 25, so that the four positive electrodes and one negative electrode of the linear array transducer are located on the same plane, and then electrically connected to the control circuit 203 through the flexible circuit board 29. connect.
  • the bottom electrode 26 can be connected to the touch cover plate through the adhesive layer as shown in FIG. 2 , so as to fix the linear array transducer on the frame area of the touch cover plate.
  • One negative electrode and four positive electrodes of the linear array transducer are respectively electrically connected to one of the five conductive electrodes of the flexible circuit board 29, and the flexible circuit board 29 is also electrically connected to the control circuit 203. Wherein, one negative electrode and four positive electrodes can be respectively connected to one conductive electrode among the five conductive electrodes of the flexible circuit board 29 through conductive glue.
  • the flexible circuit board 29 can be electrically connected to the driving circuit in the control circuit 203, and the driving circuit is used to control the transmission of ultrasonic guided waves in the touch cover.
  • the flexible circuit board 29 can be electrically connected to the receiving circuit in the control circuit 203, and the receiving circuit is used to control the receiving ultrasonic guided waves in the touch cover.
  • the main parameters of the linear array transducer may include the device length L of the linear array transducer, the array element spacing p, and the array element width w, etc.
  • the array element spacing p is the distance from the starting position of one array element to the starting position of the other array element in two adjacent array elements.
  • the array element width w is the width of the linear array element.
  • the device length L determines the installation space of the linear array transducer, the sensitivity of the linear array transducer, etc.
  • the array element spacing p cooperates with the phase timing control strategy, which can realize the selective excitation or reception of the ultrasonic guided wave sound field.
  • the width w is smaller than the array element spacing p, and a larger array element width w can provide higher transducer sensitivity.
  • the transmission control principle of the linear array transducer in this embodiment is the same as the transmission control principle of the annular array transducer. Please refer to the explanation of the embodiment shown in FIG. 6 above.
  • the reception control of the linear array transducer is the same as that of the annular array transducer.
  • the principle of receiving control of the array transducer is the same, and reference may be made to the explanation of the embodiment shown in FIG. 7 above, which will not be repeated here.
  • FIG. 10 is a flowchart of a touch detection method provided by an embodiment of the present application.
  • the method of this embodiment can be applied to the touch detection device shown in FIG. 1 or FIG. 3 .
  • the method of this embodiment may include:
  • Step 801 Control the transmitting transducers in the partial area 1011i to transmit ultrasonic guided waves of the same mode.
  • the emission control method of the embodiment shown in FIG. 6 can be used to control the emission of the emission transducers in the partial area 1011i, and the touch cover plate is excited to generate ultrasonic guided waves with preset frequencies and preset modes
  • the preset frequency may range from 20 kHz to 500 kHz
  • the preset mode may be any ultrasonic guided wave mode such as A0, S0, A1, S1, . . . , An, and Sn.
  • the specific implementation of the emission control of the transmitting transducer in the partial area 1011i may be: adjusting the timing of the respective driving signals of the four channels in the transmitting transducer in the partial area 1011i, and the timing of the respective driving signals of the four channels is used for
  • the transmitting transducer in the control part region 1011i excites the ultrasonic guided wave of the preset frequency and the preset mode.
  • the ultrasonic guided waves of preset frequencies and preset modes can be selectively transmitted by means of phase-controlled emission, so as to realize the modal control of the ultrasonic guided waves.
  • Step 802 Control the two receiving transducers of the four partial areas (10111, 10112, 10113 and 10114) to receive the guided ultrasonic waves emitted by the transmitting transducers of the partial area 1011i respectively.
  • the receiving control method of the embodiment shown in FIG. 7 can be used to perform receiving control on the two receiving transducers in each of the four partial areas (10111, 10112, 10113 and 10114), and selectively receive the signals in the touch cover.
  • Ultrasonic guided waves of preset frequency and preset mode that is, to selectively receive the ultrasonic guided waves emitted by the transmitting transducer.
  • a receiving transducer is taken as an example for illustration, and other receiving transducers may adopt the same implementation manner.
  • the specific implementation of receiving control by the receiving transducer may be: adjusting the timing of the ultrasonic guided wave signals received by each of the four channels in the receiving transducer, and the timing of the ultrasonic guided wave signals received by each of the four channels is used for control.
  • the receiving transducer selectively receives the ultrasonic guided wave of the preset frequency and the preset mode.
  • ultrasonic guided waves with preset frequencies and preset modes can be selectively received, thereby realizing modal control of ultrasonic guided waves.
  • the ultrasonic guided wave received by the receiving transducer carries the touch event information.
  • the transmitting transducers in the four partial regions (10111, 10112, 10113 and 10114) can transmit ultrasonic guided waves in the touch cover in a time-sharing manner.
  • Step 804 Determine the user's touch operation according to the characteristics of the four ultrasonic guided waves received by each of the two receiving transducers in the four partial regions (10111, 10112, 10113, and 10114) respectively. .
  • preprocessing and feature extraction may also be performed on the received ultrasonic guided wave signal.
  • Preprocessing may include, but is not limited to, filtering noise reduction, dispersion calibration, and other preprocessing.
  • the feature extraction may include, but is not limited to, extracting the time domain, spatial domain, frequency domain and other features carried by the ultrasonic guided wave signal.
  • Touch event information may be calculated according to the 32 preprocessed and feature-extracted ultrasonic guided wave signals, and the touch event information may include touch position, touch force, and/or touch mode, and the like.
  • steps 801 to 804 may be performed again to selectively excite and selectively receive another ultrasonic guided wave mode, and utilize redundant multiple mode detection information to achieve high Accurate and robust touch detection.
  • the ultrasonic guided wave mode is controlled through the selective excitation and selective reception of the ultrasonic guided wave mode, which solves the problems of low time resolution, low signal-to-noise ratio, and signal decomposition caused by multi-mode and high-frequency dispersion.
  • the detection accuracy of touch position and touch force can be greatly improved, and the accurate detection of multi-touch position and multi-touch force can be realized to improve the touch experience.
  • An embodiment of the present application further provides a processor, where the processor is configured to control the touch detection apparatus to execute the touch detection method as described in FIG. 10 .
  • An embodiment of the present application further provides a chip, including a processor and a memory, where the memory is used for storing executable instructions, and the processor is used for calling and running the executable instructions stored in the memory, so as to control the touch detection device to execute as shown in FIG. 10 The touch detection method.
  • the processor mentioned in the above embodiments may be an integrated circuit chip, which has signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly embodied as executed by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned in the above embodiments may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请实施例提供一种触控检测装置、触控显示屏以及触控检测方法,通过在触控显示屏的触控盖板的边框区域内设置发射换能器和接收换能器,实现触控盖板中的超声导波发射和接收,通过控制电路根据接收到的在触控盖板中传播的超声导波确定用户的触控操作,从而识别用户的触控操作,实现触控显示屏的触控功能。本申请实施例可以实现较低成本的大尺寸触控显示屏,以满足用户的使用需求。

Description

触控检测装置、触控显示屏以及触控检测方法
本申请要求于2021年04月22日提交中国专利局、申请号为202110437654.0、申请名称为“触控检测装置、触控显示屏以及触控检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控显示领域,尤其涉及一种触控检测装置、触控显示屏以及触控检测方法。
背景技术
触控显示屏集成有触控功能和显示功能。触控显示屏是消费电子设备的主要人机交互接口,电子设备通过触控显示屏可以实现感知和响应用户作用于触控显示屏上的点击、滑动等操作。
随着移动通信技术和物联网技术的快速发展,具有大屏显示功能的电子设备的需求在持续增长。例如,具有大屏显示功能的电子设备可以应用于电子政务、旅游、设施管理、医疗或新零售等众多领域。其中,具有大屏显示功能的电子设备的近场触控交互需求也日渐迫切。为了向用户提供近场触控交互功能,该具有大屏显示功能的电子设备需要集成触控功能,以实现大尺寸触控显示屏,从而在向用户提供大屏显示的同时,感知和响应用户作用于大尺寸触控显示屏上的点击、滑动等操作。
然而,当前主流的触控技术有电容式和红外式,但在适配具有大屏显示功能的电子设备方面,电容式和红外式均存在成本较高的问题。因此,如何实现较低成本的大尺寸触控显示屏,以满足用户的使用需求,成为一个亟需解决的技术问题。
发明内容
本申请提供一种触控检测装置、触控显示屏以及触控检测方法,可以实现较低成本的大尺寸触控显示屏,以满足用户的使用需求。
第一方面,本申请实施例提供一种触控检测装置,该触控检测装置可以应用于触控显示屏中,该触控显示屏可以包括触控盖板,该触控盖板可以包括边框区域和触控区域,该触控检测装置可以包括:控制电路、多个用于发射超声导波的发射换能器(以下也可以称为发射换能器)以及多个用于接收超声导波的接收换能器(以下也可以称为接收换能器);多个发射换能器和多个接收换能器分别设置在该边框区域内,多个发射换能器和多个接收换能器还分别与该控制电路电连接;该控制电路用于控制多个发射换能器在工作时不断地依次发射同一种模态的超声导波,其中,当用户在该触控盖板上进行触控操作时,在该触控盖板中传播的超声导波的特性会随之发生变化;该控制电路还用于控制多个接收换能器接收在触控盖板中传播的超声导波,根据至少一个接收换能器接收到的超声导波的特性来确定用户的触控操作。本实现方式,通过在触控显示屏的触控盖板的边框区域内设置发射 换能器和接收换能器,实现触控盖板中的超声导波发射和接收,通过控制电路根据接收到在触控盖板中传播的超声导波的特性确定用户的触控操作,从而识别用户的触控操作,实现触控显示屏的触控功能。边框区域内稀疏设置发射换能器和接收换能器,可以以较低成本实现触控显示屏的触控功能,且支持触控显示屏的纯平设计。主动式超声导波检测,可以支持多点触控,支持轻力度触控检测、且支持指腹滑动检测,从而满足用户的使用需求。
一种可能的设计中,该控制电路用于在多个发射换能器各自分时发射完同一种模态的超声导波时,根据至少一个接收换能器各自接收到的各个发射换能器发射的超声导波的特性来确定用户的触控操作。本实现方式,通过多个发射换能器各自分时发射同一种模态的超声导波,根据至少一个接收换能器各自接收到的各个发射换能器发射的超声导波的特性来确定用户的触控操作,可以准确识别用户的各种触控操作,例如,多点触控,指腹滑动等。
一种可能的设计中,该触控区域的形状为矩形,该边框区域的形状为矩形环,该边框区域可以包括四个部分区域,该四个部分区域各自分别与该触控区域的一条边相邻。多个发射换能器分别设置在该四个部分区域中的至少两个部分区域内。多个接收换能器分别设置在该四个部分区域中的至少三个部分区域内。本实现方式,对于矩形的触控显示屏,可以最少设置2个发射换能器和3个接收换能器,便可以实现对触控事件信息的解算,从而可以降低大尺寸触控显示屏的成本。
可选的,可以冗余设置发射换能器和接收换能器,从而提高触控检测性能。
一种可能的设计中,多个发射换能器的个数为4N个,多个接收换能器的个数为k*4N个,N为大于或等于1的任意整数,k为大于或等于1的任意整数。该四个部分区域中的每个部分区域设置有N个发射换能器和k*N个接收换能器。该控制电路用于分时控制四个部分区域的发射换能器发射超声导波。该控制电路用于控制四个部分区域的所有的接收换能器,分别接收该四个部分区域的发射换能器分时发射的超声导波。本实现方式,通过在边框区域的每个部分区域内设置N个发射换能器和k*N个接收换能器,基于此中分布的接收换能器所接收到的触控面板中的超声导波,解算触控事件信息,可以提升解算准确性,从而准确识别用户的触控操作。
一种可能的设计中,多个发射换能器中任意一个发射换能器可以包括阵列电极,多个接收换能器中任意一个接收换能器可以包括阵列电极,该阵列电极可以包括一个负电极和M个正电极,M为大于1的任意整数。该一个负电极和M个正电极分别与该控制电路电连接。本实现方式,触控检测装置的发射换能器和接收换能器分别设置有阵列电极,通过发射换能器的阵列电极和接收换能器的阵列电极,可以实现触控面板中的超声导波的模态控制,有选择性的发射和接收特定模态的超声导波,提升触控检测精度。
一种可能的设计中,该阵列电极可以包括环形阵列电极,该环形阵列电极包括M+1个环形电极,该M+1个环形电极中的最外环为负电极。一种可能的设计中,该阵列电极可以包括线性阵列电极,该线性阵列电极包括M+1个线性电极,该M+1个线性电极中的单侧边缘电极为负电极。本实现方式,环形阵列电极或线性阵列电极包括M+1个阵元,M+1个阵元中一个阵元作为负电极,其他M个阵元作为M个正电极。控制电路可以通过调整M个正电极各自对应的驱动信号的时序,可以选择性激励出预设波长和预设模态的超声导波,从而实现触控面板中的超声导波的模态控制,有选择性的发射和接收特定模态的超声导波, 提升触控检测精度。
一种可能的设计中,该环形阵列电极或线性阵列电极中任意相邻的两个电极之间的间距为p,该环形阵列电极或线性阵列电极中任意一个电极的宽度为w,w小于p。一种可能的设计中,多个发射换能器中任意一个发射换能器,或多个接收换能器中任意一个接收换能器还可以包括底电极、基底材料层、反馈电极和柔性电路板。该底电极设置在基底材料层的第一平面,该第一平面为面向触控盖板的一面,该阵列电极的一个负电极和M个正电极分别设置在基底材料层的第二平面,第二平面与第一平面相对。该反馈电极的一端与底电极电连接,该反馈电极的另一端与阵列电极的负电极电连接。该阵列电极的一个负电极和M个正电极分别该柔性电路板的M+1个导电电极中的一个导电电极电连接,该柔性电路板还与控制电路电连接。
一种可能的设计中,当阵列电极包括线性阵列电极时,该线性阵列电极所包括的一个负电极和M个正电极沿第二平面的长度方向分别设置在基底材料层的第二平面。
一种可能的设计中,该控制电路包括驱动电路和接收电路,多个发射换能器分别与驱动电路电连接,多个接收换能器分别与接收电路电连接。
第二方面,本申请实施例提供一种触控显示屏,该触控显示屏包括触控盖板和如第一方面任一项所述的触控检测装置。
第三方面,本申请实施例提供一种触控检测方法,该方法应用于第一方面任一项所述的触控检测装置,该触控检测装置应用于触控显示屏中,该触控显示屏包括触控盖板,该触控盖板包括边框区域和触控区域,该方法包括:
控制多个发射换能器在工作时不断地依次发射同一种模态的超声导波,其中,当用户在触控盖板上进行触控操作时,在触控盖板中传播的超声导波的特性会随之发生变化;控制多个接收换能器接收在触控盖板中传播的超声导波,根据至少一个接收换能器接收到的超声导波的特性来确定用户的触控操作;本实现方式,通过控制在触控显示屏的触控盖板的边框区域内设置的用于超声导波发射的发射换能器,和用于超声导波接收的接收换能器,根据接收到的在触控盖板传播中的超声导波确定用户的触控操作,从而识别用户的触控操作,实现触控显示屏的触控功能。边框区域内稀疏设置发射换能器和接收换能器,可以以较低成本实现触控显示屏的触控功能,且支持触控显示屏的纯平设计。主动式超声导波检测,可以支持多点触控,支持轻力度触控检测、且支持指腹滑动检测,从而满足用户的使用需求。
一种可能的设计中,根据至少一个接收换能器接收到的超声导波的特性来确定用户的所述触控操作,可以包括:在多个发射换能器各自分时发射完同一种模态的超声导波时,根据至少一个所述接收换能器各自接收到的各个发射换能器发射的超声导波的特性来确定用户的触控操作。
一种可能的设计中,该触控区域的形状为矩形,该边框区域的形状为矩形环,该边框区域可以包括四个部分区域,该四个部分区域各自分别与该触控区域的一条边相邻。多个发射换能器分别设置在该四个部分区域中的至少两个部分区域内。多个接收换能器分别设置在该四个部分区域中的至少三个部分区域内。控制多个发射换能器在工作时不断依次发射同一种模态的超声导波,控制多个接收换能器接收在触控盖板中传播的超声导波,可以包括:分时控制该至少两个部分区域的发射换能器分别发射同一种模态的超声导波,控制 该至少三个部分区域的所有的接收换能器分别接收在触控盖板中传播的各个发射换能器分时发射的超声导波。
一种可能的设计中,多个发射换能器的个数为4N个,多个接收换能器的个数为k*4N个,N为大于或等于1的任意整数,k为大于或等于1的任意整数。
四个部分区域中的每个部分区域设置有N个发射换能器和k*N个接收换能器。
分时控制该至少两个部分区域的发射换能器分别发射同一种模态的超声导波,控制该至少三个部分区域的所有的接收换能器分别接收在触控盖板中传播的各个发射换能器分时发射的超声导波,包括:分时控制该四个部分区域中的N个发射换能器分别发射同一种模态的超声导波,在一个部分区域中的N个发射换能器发射超声导波时,控制该四个部分区域中的k*4N个接收换能器分别接收该N个发射换能器分时发射的超声导波。
根据至少一个接收换能器接收到的超声导波的特性来确定用户的触控操作,可以包括:根据接收到的4N*k*4N个超声导波的特性来确定用户的触控操作。
一种可能的设计中,该方法还包括:调整多个发射换能器中至少一个发射换能器的M个通道各自的驱动信号的时序,该M个通道各自的驱动信号的时序用于控制发射换能器按照预设频率激励出同一种模态的超声导波,该发射换能器中M个通道各自与发射换能器的M个正电极中的一个正电极对应。调整该多个接收换能器各自的M个通道分别接收到的超声导波的时序,该M个通道分别接收到的超声导波信号的时序用于控制接收换能器接收同一种模态的超声导波,该多个接收换能器中任意一个接收换能器的M个通道分别与接收换能器的M个正电极中的一个正电极对应。
本实现方式,通过控制超声导波换能器的阵列电极的驱动信号,实现超声导波模态的选择性激励和选择性接收,控制超声导波模态,解决了多模态和高频散带来的时间分辨率低、信噪比低、信号分解难度高等问题,大幅度提升触控位置和触控力度的检测精度,并且可以实现多点触控位置和多点触控力度的精确检测,提升触控体验。
一种可能的设计中,该多个发射换能器中至少一个发射换能器的M个通道中相邻两个通道的发射延时相差t 0,t 0=p/v,p为该发射换能器中任意相邻的两个电极之间的间距,v为该超声导波的波速。
一种可能的设计中,该多个接收换能器中任意一个接收换能器的M个通道中相邻两个通道的接收延时相差t 0,t 0=p/v,p为该接收换能器中任意相邻的两个电极之间的间距,v为该超声导波的波速。
一种可能的设计中,该多个发射换能器中任意一个发射换能器包括环形阵列电极,该环形阵列电极包括M+1个环形电极,与该M+1个环形电极中的最内环的正电极对应的通道的发射延时为0,该多个接收换能器中任意一个接收换能器包括环形阵列电极,该环形阵列电极包括M+1个环形电极,与该M+1个环形电极中的最内环的正电极对应的通道的接收延时为0。
一种可能的设计中,该多个发射换能器中任意一个发射换能器包括线性阵列电极,该线性阵列电极包括M+1个线性电极,与M+1个线性电极中的单侧边缘的正电极对应的通道的发射延时为0,该多个接收换能器中任意一个接收换能器包括线性阵列电极,该线性阵列电极包括M+1个线性电极,与该M+1个线性电极中的单侧外缘的正电极对应的通道的接收延时为0。
第四方面,本申请实施例提供一种处理器,该处理器被配置为控制触控检测装置执行如第三方面任一项所述的方法,具体的,该处理器可以与一个存储器相连,存储器中存储有跟第三方面任一项所述的方法相关的可执行指令,处理器通过读取可执行指令来执行对应的方法。
第五方面,本申请实施例提供一种芯片,包括处理器和存储器,该存储器用于存储可执行指令,该处理器用于调用并运行该存储器中存储的可执行指令,以控制触控检测装置执行如第三方面任一项所述的方法。
第六方面,本申请实施例提供一种换能器,该换能器可以包括阵列电极,该阵列电极可以包括M+1个电极,M为大于1的任意整数。该换能器用于通过该M+1个电极发射或接收同一种模态的超声导波。
一种可能的设计中,该阵列电极可以包括环形阵列电极,该环形阵列电极可以包括M+1个环形电极,该M+1个环形电极中的最外环为负电极,该M+1个环形电极中除该最外环之外的其他环形电极分别为正电极。
一种可能的设计中,该阵列电极可以包括线性阵列电极,该线性阵列电极可以包括M+1个线性电极,该M+1个线性电极中的单侧边缘电极为负电极,该M+1个线性电极中除该单侧边缘电极之外的其他线性电极分别为正电极。
一种可能的设计中,该阵列电极中任意相邻的两个电极之间的间距为p,该阵列电极中任意一个电极的宽度为w,w小于p。
一种可能的设计中,该多个换能器还可以包括底电极、基底材料层、反馈电极和柔性电路板。该底电极设置在该基底材料层的第一平面,该阵列电极的一个负电极和M个正电极分别设置在该基底材料层的第二平面,该第二平面与该第一平面相对。该反馈电极的一端与该底电极电连接,该反馈电极的另一端与该阵列电极的负电极电连接。该阵列电极的一个负电极和M个正电极分别与该柔性电路板的M+1个导电电极中的一个导电电极电连接,该柔性电路板还与控制电路电连接。该控制电路用于控制该M+1个电极发射或接收同一种模态的超声导波。
一种可能的设计中,当该阵列电极包括线性阵列电极时,该线性阵列电极所包括的一个负电极和M个正电极沿该第二平面的长度方向分别设置在该基底材料层的第二平面。
本申请实施例的触控检测装置、触控显示屏以及触控检测方法,通过在触控显示屏的触控盖板的边框区域内设置发射换能器和接收换能器,实现触控盖板中的超声导波发射和接收,通过控制电路根据接收到的在触控盖板中传播的超声导波确定用户的触控操作,从而识别用户的触控操作,实现触控显示屏的触控功能。边框区域内稀疏设置发射换能器和接收换能器,可以以较低成本实现触控显示屏的触控功能,且支持触控显示屏的纯平设计。主动式超声导波检测,可以支持多点触控,支持轻力度触控检测、且支持指腹滑动检测,从而满足用户的使用需求。
附图说明
图1为本申请实施例提供的一种触控检测装置的结构示意图;
图2为本申请实施例提供的一种触控检测装置沿图1所示的A-A方向的剖视图;
图3为本申请实施例提供的另一种触控检测装置的结构示意图;
图4为本申请实施例提供的一种环形阵列换能器的结构示意图;
图5为本申请实施例提供的一种环形阵列换能器的局部结构示意图;
图6为本申请实施例提供的一种环形阵列换能器的发射控制的示意图;
图7为本申请实施例提供的一种环形阵列换能器的接收控制的示意图;
图8为本申请实施例提供的一种线性阵列换能器的结构示意图;
图9为本申请实施例提供的一种线性阵列换能器的局部结构示意图;
图10为本申请实施例提供的一种触控检测方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例涉及的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请实施例中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的触控检测装置,该触控检测装置可以应用于触控显示屏中。该触控检测装置用于提供触控显示屏的触控功能。触控显示屏可以包括触控盖板。该触控盖板可以包括边框区域和触控区域。触控检测装置可以包括控制电路、多个发射换能器以及多个接收换能器。发射换能器用于发射超声导波,接收换能器用于接收超声导波。其中,发射换能器和接收换能器设置在该边框区域内,以对用户在该触控区域内的操作进行检测,使得该触控显示屏在向用户提供显示功能的同时,感知和响应用户作用于触控区域内的点击、滑动等操作。
本申请实施例的触控显示屏可以是任意尺寸的触控显示屏,例如,大尺寸触控显示屏。该大尺寸触控显示屏可以指大于23英寸的触控显示屏。可以理解的,触控显示屏还可以包括背光组件、显示面板、外壳等,本申请实施例主要对触控显示屏的触控检测装置进行解释说明,对于背光组件、显示面板、外壳等其他触控显示屏的部件,本申请实施例不限定其具体形态。
本申请实施例的触控显示屏可以应用于任意具有显示功能和触控功能的电子设备,例如,该电子设备可以是智能电视、电子政务的人机交互设备、自动售货机、自动售票机、或车载电子设备等等,本申请实施例对电子设备的具体示例不一一举例说明。
对于大尺寸触控显示屏,使用本申请实施例的触控检测装置,可以实现较低成本的大 尺寸触控显示屏,以满足用户的使用需求。本申请实施例的触控检测装置的具体结构可以参见下述实施例的解释说明。
下面采用几个具体的实施例对本申请实施例的触控检测装置进行解释说明。
图1为本申请实施例提供的一种触控检测装置的结构示意图,该触控检测装置可以应用于触控显示屏100中,该触控显示屏100可以包括触控盖板101,如图1所示,该触控盖板101可以包括边框区域1011和触控区域1012。作为一种示例,如图1所示,该边框区域1011围设在触控区域1012之外。边框区域1011和触控区域1012的位置关系还可以是其他位置关系,例如,边框区域与触控区域间隔有预设距离等,本申请实施例不一一举例说明。该触控检测装置可以包括:多个发射换能器201、多个接收换能器202和控制电路203。
其中,多个发射换能器201和多个接收换能器202分别设置在边框区域1011内,多个发射换能器201和多个接收换能器202还分别与控制电路203电连接。控制电路203可以集成在一个电路板上,也可以集成在多个电路板上。
本申请实施例的触控区域1012的尺寸可以大于23英寸。边框区域1011的面积远小于触控区域1012的面积。边框区域1011用于设置本申请实施例的触控检测装置的多个发射换能器201和多个接收换能器202。通过在边框区域1011内稀疏设置多个发射换能器201和多个接收换能器202,可以实现对用户在触控区域1012内的操作进行检测。这样可以以较低成本实现触控显示屏的触控功能,且支持触控显示屏的纯平设计。
触控区域1012的形状可以是矩形(正方形或长方形)、圆形等任意形状,本申请实施例对此不做具体限定。以该边框区域1011围设在触控区域1012之外为例,相应的,边框区域1011的形状可以是矩形环(正方形环或长方形环)、圆形环等任意形状,本申请实施例对此不做具体限定。边框区域1011的形状与触控区域1012的形状相匹配,以围设于触控区域1012的外侧,例如,触控区域1012的形状为矩形,边框区域1011的形状为矩形环。需要说明的是,如图1所示,本申请实施例以触控区域1012的形状是矩形,边框区域1011的形状是矩形环,为例进行示意性举例说明,其保护范围不以此作为限制。
发射换能器201用于发射超声导波。接收换能器201用于接收超声导波。控制电路203用于控制多个发射换能器201在工作时不断地依次发射同一种模态的超声导波。其中,当用户在触控盖板101上进行触控操作时,在触控盖板101中传播的超声导波的特性会随之发生变化。控制电路203还用于控制多个接收换能器202接收在触控盖板101中传播的超声导波。根据至少一个接收换能器202接收到的超声导波来确定用户的触控操作。触控盖板101中传播的超声导波为单一模态的超声导波。
对本申请实施例的触控检测装置的检测原理进行解释说明:控制电路203产生驱动信号,将驱动信号依次传递至各个发射换能器201,各个发射换能器201依次根据该驱动信号发射超声导波,即将电信号转换为声波信号,从而实现发射超声导波。由于触控盖板的触控区域1012中存在主动发射的超声导波,所以当用户在触控区域1012进行点击或滑动等操作时,触控检测装置可以通过至少一个接收换能器202和控制电路203识别到用户在触控区域1012进行点击或滑动等操作。其中,各个接收换能器202可以接收在触控盖板中传播的超声导波,将声波信号转换为电信号,并传递给控制电路203,控制电路203可 以根据各个接收换能器202接收到的信号解算触控事件信息。该触控事件信息包括以下至少一项:触控位置信息、触控力度信息或触控模式信息。该触控位置信息可以表示用户的触控操作的位置。该触控力度信息可以表示用户的触控操作的力度。该触控模式信息可以表示用户的触控操作的模式,模式可以是点击、滑动等。一种可实现方式,控制电路203可以根据触控事件信息,对用户在触控区域1012的点击或滑动等操作进行响应,另一种可实现方式,控制电路203可以将触控事件信息传递给与控制电路203电连接的处理器,由该处理器对用户在触控区域1012的点击或滑动等操作进行响应。例如,以智能电视的触控显示屏为例,该处理器可以是智能电视的处理器,该处理器可以提供智能电视的操作系统。通过本申请实施例的触控检测装置可以实现对用户作用于触控显示屏上的点击、滑动等操作的感知和响应。
控制电路203根据各个接收换能器202接收到的信号解算触控事件信息的实现方式可以为,控制电路203在多个发射换能器201各自分时发射完同一种模态的超声导波时,根据至少一个接收换能器202各自接收到的各个发射换能器发射的超声导波的特性来确定用户的触控操作。
以两个发射换能器202和三个接收换能器203为例进行举例说明,控制电路203可以控制一个发射换能器202在一个发射接收周期内,发射同一种模态的超声导波,在该发射接收周期内,三个接收换能器203各自分别接收该发射换能器发射的超声导波,即3个超声导波。之后,控制电路203可以控制另一个发射换能器202在另一个发射接收周期内,发射同一种模态的超声导波,在该发射接收周期内,三个接收换能器各自分别接收该发射换能器发射的超声导波,即3个超声导波。之后,控制电路203根据三个接收换能器203各自接收到的各个发射换能器发射的超声导波(共6个超声导波)的特性来确定用户的触控操作。
需要说明的是,用户在触控区域1012进行点击或滑动等操作可以是用户的手指、触控笔或其它可以被触控显示屏所检测到的控制物体作用在触控区域1012的点击或滑动等操作。
触控检测装置的发射换能器201和接收换能器202的个数可以根据需求进行灵活设置。即设置一定个数的发射换能器201和接收换能器202,使得触控检测装置可以对用户作用在触控区域的操作进行正确识别。在一些实施例中,可以冗余设置发射换能器201和接收换能器202,从而提高触控检测性能。
例如,触控区域1012的形状是矩形,边框区域1011的形状是矩形环,边框区域1011包括四个部分区域,该四个部分区域各自分别与触控区域1012的一条边相邻。多个发射换能器201分别设置在四个部分区域中的至少两个部分区域内。多个接收换能器202分别设置在四个部分区域中的至少三个部分区域内。换言之,发射换能器的个数可以是至少两个,接收换能器的个数可以是至少三个。
一种示例,触控区域1012的形状是矩形,边框区域1011的形状是矩形环,发射换能器201的个数为4N个,接收换能器202的个数为k*4N个,N为大于或等于1的任意整数,k为大于或等于1的任意整数。换言之,N个发射换能器201配合k*N个接收换能器202作为一组,触控检测装置设置有4组。边框区域1011可以包括四个部分区域,四个部分区域各自与触控区域1012的一条边相邻的,四个部分区域中的每个部分区域设置有N 个发射换能器和k*N个接收换能器。即每个部分区域中设置一组。
4N个发射换能器用于分时发射触控盖板中的超声导波。k*4N个接收换能器分别用于接收4N个发射换能器分时发射的超声导波。即,一组中的N个发射换能器发射超声导波时,4组中的k*N个接收换能器分别接收发射换能器发射的超声导波;另一组中的N个发射换能器发射超声导波时,4组中的k*N个接收换能器分别接收发射换能器发射的超声导波;再一组中的N个发射换能器发射超声导波时,4组中的k*N个接收换能器分别接收发射换能器发射的超声导波;又一组中的N个发射换能器发射超声导波时,4组中的k*N个接收换能器分别接收发射换能器发射的超声导波。即直到所有组的发射换能器发射完成,控制电路203根据4组中的k*N个接收换能器各自接收到的4个超声导波解算触控事件信息。
例如,N=1,k=2时,即如图1所示,一个发射换能器201配合2个接收换能器202作为一组。每一组各自位于边框区域1011的一个部分区域。边框区域1011可以包括四个部分区域(10111、10112、10113和10114),四个部分区域各自与触控区域1012的一条边相邻的,四个部分区域(10111、10112、10113和10114)中的每个部分区域设置有1(N=1)个发射换能器201和2(k=2)个接收换能器202。部分区域10111中的1个发射换能器发射超声导波时,四个部分区域(10111、10112、10113和10114)各自的2个接收换能器分别接收部分区域10111的发射换能器发射的超声导波;部分区域10112中的1个发射换能器发射超声导波时,四个部分区域(10111、10112、10113和10114)各自的2个接收换能器分别接收部分区域10112的发射换能器发射的超声导波;部分区域10113中的1个发射换能器发射超声导波时,四个部分区域(10111、10112、10113和10114)各自的2个接收换能器分别接收部分区域10113的发射换能器发射的超声导波;部分区域10114中的1个发射换能器发射超声导波时,四个部分区域(10111、10112、10113和10114)各自的2个接收换能器分别接收部分区域10114的发射换能器发射的超声导波。控制电路203根据四个部分区域(10111、10112、10113和10114)各自的2个接收换能器中,每个接收换能器各自接收到的4个超声导波解算触控事件信息。
由此可见,对于矩形的触控显示屏,可以最少设置4个发射换能器和4个接收换能器,便可以实现对触控事件信息的解算,从而可以降低大尺寸触控显示屏的成本。
在一些实施例中,本申请实施例的触控检测装置的发射换能器和接收换能器可以分别通过胶黏剂与触控盖板连接。例如,图2为本申请实施例提供的一种触控检测装置沿图1所示的A-A方向的剖视图,如图2所示,发射换能器通过贴合胶层与触控盖板连接。对于接收换能器也可以通过如图2所示的方式与触控盖板连接。当然可以理解的,也可以通过其他方式与触控盖板连接,例如,卡扣卡合等方式,本申请实施例不一一举例说明。
在一些实施例中,发射换能器201和接收换能器202可以通过换能器连接线204与控制电路接入线205的一端连接,控制电路接入线205的另一端与控制电路203的一端连接,控制电路203的另一端可以与系统接入线206连接。
在一些实施例中,控制电路203可以包括驱动电路和接收电路,发射换能器201与驱动电路连接,接收换能器202与接收电路连接。驱动电路和接收电路可以集成在一个电路板,也可以集成在多个电路板。
还需要说明的是,图1中以发射换能器201和接收换能器202的面向触控盖板的一面 为圆形为例进行举例说明,其还可以是其他形状,例如,椭圆形,矩形等。例如,图3为本申请实施例提供的另一种触控检测装置的结构示意图,如图3所示,该触控检测装置与图1所示触控检测装置的区别在于,该触控检测装置的发射换能器201和接收换能器202的面向触控盖板的一面为矩形。除此之外,图3所示的触控检测装置所包括的组件和连接结构均与图1所示的触控检测装置相同,其具体解释说明可以参见图1所示实施例的具体解释说明,此处不再赘述。
本申请实施例,通过在触控显示屏的触控盖板的边框区域内设置发射换能器和接收换能器,实现触控盖板中的超声导波发射和接收,通过控制电路根据接收到的在触控盖板中传播的超声导波的特性确定用户的触控操作,从而实现触控显示屏的触控功能。边框区域内稀疏设置发射换能器和接收换能器,可以以较低成本实现触控显示屏的触控功能,且支持触控显示屏的纯平设计。主动式超声导波检测,可以支持多点触控,支持轻力度触控检测、且支持指腹滑动检测,从而满足用户的使用需求。
为了避免超声导波的频散和多模态物理特性对触控检测的负面影响,本申请实施例的触控检测装置的发射换能器和接收换能器分别设置有阵列电极,通过发射换能器的阵列电极和接收换能器的阵列电极,可以实现触控面板中的超声导波的模态控制,有选择性的发射和接收特定模态的超声导波,提升触控检测精度。
发射换能器201可以包括环形阵列电极或线性阵列电极,接收换能器202可以包括环形阵列电极或线性阵列电极,环形阵列电极或线性阵列电极包括一个负电极和M个正电极,M为大于1的任意整数。一个负电极和M个正电极分别与控制电路电连接。例如,M可以为2、3、4、5、6、7、8、9或10。
换言之,环形阵列电极或线性阵列电极包括M+1个阵元,M+1个阵元中一个阵元作为负电极,其他M个阵元作为M个正电极。控制电路203可以通过调整M个正电极各自对应的驱动信号的时序,可以选择性激励出预设波长和预设模态的超声导波。该预设波长可以是任意波长,该预设模态可以是A0、S0、A1、S1、…、An、或Sn等超声导波模态中任意一种。
下面分别对环形阵列电极的发射换能器201和接收换能器202,以及线性阵列电极的发射换能器201和接收换能器202进行解释说明。
图4为本申请实施例提供的一种环形阵列换能器的结构示意图,图5为本申请实施例提供的一种环形阵列换能器的局部结构示意图,该环形阵列换能器可以作为上述图1所示实施例的发射换能器201,也可以作为上述图1所示实施例的接收换能器202。图4可以是如图1所示的发射换能器201沿A-A方向的剖面示意图。
本实施例以M=4为例进行举例说明,如图4所示,环形阵列换能器可以包括5个阵元(11、12、13、14和15)、底电极16、基底材料层17、反馈电极18和柔性电路板(Flexible Printed Circuit,FPC)19。
5个阵元(11、12、13、14和15)分别为不同半径的同心圆环,阵元(11、12、13、14)分别作为正电极,阵元15作为负电极,如图4所示,阵元15位于5个阵元的最外环。即环形阵列换能器的环形阵列电极包括4个正电极和一个负电极。环形阵列电极的内环为正极。
底电极16设置在基底材料层17的第一平面,该第一平面为面向触控盖板的一面,5个阵元(11、12、13、14和15)分别设置在基底材料层17的第二平面,该第二平面与该第一平面相对,即第二平面为基底材料层17的远离控制盖板的一面。基底材料层17可以为压电材料,例如,压电陶瓷或压电薄膜。例如,如图5所示的基底材料层17和5个阵元(11、12、13、14和15),该基底材料层17的第一平面和第二平面各自的半径可以大于或等于阵元15的外半径。
反馈电极18的一端与底电极16电连接,反馈电极18的另一端与阵元15电连接,即反馈电极18分别与底电极16和阵元15电连接。该反馈电极18用于将底电极16的负电极引到阵元15,从而使得环形阵列换能器的4个正电极和一个负电极位于同一平面,进而通过柔性电路板19与控制电路203电连接。
底电极16可以通过如图2所示的贴合胶层与触控盖板连接,从而将环形阵列换能器固定在触控盖板的边框区域。
环形阵列换能器的一个负电极和4个正电极分别与柔性电路板19的5个导电电极中的一个导电电极电连接,柔性电路板19还与控制电路203电连接。其中,一个负电极和4个正电极分别可以通过导电胶与柔性电路板19的5个导电电极中的一个导电电极连接。
当环形阵列换能器作为发射换能器时,柔性电路板19可以与控制电路203中的驱动电路电连接,驱动电路用于控制发射触控盖板中的超声导波。当环形阵列换能器作为接收换能器时,柔性电路板19可以与控制电路203中的接收电路电连接,接收电路用于控制接收触控盖板中的超声导波。
如图4所示,环形阵列换能器的主要参数可以包括环形阵列换能器的外直径D,阵元间距p,以及阵元宽度w等。阵元间距p为相邻两个阵元中的一个阵元的起始位置到另一个阵元的起始位置之间的距离。阵元宽度w为环形阵元的圆环宽度。其中,外直径D决定了环形阵列换能器的安装空间、环形阵列换能器的灵敏度等,阵元间距p配合相位时序控制策略,可实现超声导波声场的选择性激发或接收,阵元宽度w小于阵元间距p,较大的阵元宽度w可提供更高的换能器灵敏度。
图6为本申请实施例提供的一种环形阵列换能器的发射控制的示意图,本实施例的环形阵列换能器的具体结构可以参见图4和图5所示实施例的解释说明,此处不再赘述。本实施例的环形阵列换能器作为发射换能器。如图6中的(a)图,环形阵列换能器的每个阵元对应一个通道,本实施例的环形阵列换能器的阵元11对应通道ch1,阵元12对应通道ch2,阵元13对应通道ch3,阵元14对应通道ch4。激励的目标超声导波模态的频率为f、波速为v、波长为λ,则阵元n的发射延时为τ n=(n-1)*p/v,n=1,2,3,4。
例如,可取τ 1=0,τ 2=t0,τ 3=2*t0,τ 4=3*t0,则激励产生的目标超声导波模态的波长λ=(D/2)/(t0*f)。
因此,如图6中的(b)图,控制电路可以通过调整通道ch1、通道ch2、通道ch3、通道ch4的驱动信号的时序,使具有一定波长的超声导波模态建设性物理叠加(指物理上的声场叠加),可以选择性激励出具有一定波长的超声导波模态,调整不同的延时参数t0,可以灵活的激励不同的模态。
本实施例,控制电路可以通过对环形阵列换能器的时序控制,实现触控盖板中A0、S0、A1、S1、…、An、Sn等任意一种超声导波模态激励。通过单模态检测解决多模态信号干 扰问题,大幅降低信号处理难度,提升检测精度。通过选择一系列模态单独发射和接收,依次检测,从而获取更丰富和准确的信息。换言之,利用冗余的多个单模态检测信息实现高精度、高鲁棒性的触控检测。
图7为本申请实施例提供的一种环形阵列换能器的接收控制的示意图,本实施例的环形阵列换能器作为接收换能器,接收控制和发射控制原理是类似的,如图7中的(a)和(b)图,控制电路可以通过调整通道ch1、通道ch2、通道ch3、通道ch4接收信号的延时,每个通道接收信号的延时与各自通道发射信号的延时相同,使具有一定波长的超声导波模态建设性数字叠加,即相同模态的数字信号经过延时后,可以实现同相位叠加,从而可以选择性接收具有一定波长的超声导波模态,实现模态滤波效果,调整不同的延时参数t0,可以灵活的接收不同的模态。
例如,与上述发射控制相同,可取τ 1=0,τ 2=t0,τ 3=2*t0,τ 4=3*t0,则激励产生的超声导波模态的波长λ=(D/2)/(t0*f)。
本实施例,控制电路可以通过对环形阵列换能器的时序控制,实现触控盖板中A0、S0、A1、S1、…、An、Sn等任意一种超声导波模态的接收,通过单模态检测解决多模态信号干扰问题、消除模态转换干扰信号,大幅降低信号处理难度,提升检测精度。通过选择一系列模态单独发射和接收,依次检测,从而获取更丰富和准确的信息。换言之,并利用冗余的多个单模态检测信息实现高精度、高鲁棒性的触控检测。
图8为本申请实施例提供的一种线性阵列换能器的结构示意图,图9为本申请实施例提供的一种线性阵列换能器的局部结构示意图,该线性阵列换能器可以作为上述图3所示实施例的发射换能器201,也可以作为上述图3所示实施例的接收换能器202。
本实施例以M=4为例进行举例说明,如图8所示,与环形阵列换能器类似,线性阵列换能器可以包括5个阵元(21、22、23、24和25)、底电极26、基底材料层27、反馈电极28和柔性电路板(Flexible Printed Circuit,FPC)29。
结合图8和图9所示,5个阵元(21、22、23、24和25)分别可以为相同长度的长方体,5个阵元(21、22、23、24和25)平行分布在基底材料层27,阵元(21、22、23、24)分别作为正电极,阵元25作为负电极,如图8所示,阵元25位于5个阵元的单侧边缘。即线性阵列换能器的线性阵列电极包括4个正电极和一个负电极。
底电极26设置在基底材料层27的第一平面,该第一平面为面向触控盖板的一面,5个阵元(21、22、23、24和25)沿第二平面的长度方向分别设置在基底材料层27的第二平面,该第二平面与该第一平面相对,即第二平面为基底材料层27的远离控制盖板的一面。基底材料层27可以为压电材料,例如,压电陶瓷或压电薄膜。
反馈电极28的一端与底电极26电连接,反馈电极28的另一端与阵元25电连接,即反馈电极28分别与底电极26和阵元25电连接。该反馈电极28用于将底电极26的负电极引到阵元25,从而使得线性阵列换能器的4个正电极和一个负电极位于同一平面,进而通过柔性电路板29与控制电路203电连接。
底电极26可以通过如图2所示的贴合胶层与触控盖板连接,从而将线性阵列换能器固定在触控盖板的边框区域。
线性阵列换能器的一个负电极和4个正电极分别与柔性电路板29的5个导电电极中 的一个导电电极电连接,柔性电路板29还与控制电路203电连接。其中,一个负电极和4个正电极分别可以通过导电胶与柔性电路板29的5个导电电极中的一个导电电极连接。
当线性阵列换能器作为发射换能器时,柔性电路板29可以与控制电路203中的驱动电路电连接,驱动电路用于控制发射触控盖板中的超声导波。当线性阵列换能器作为接收换能器时,柔性电路板29可以与控制电路203中的接收电路电连接,接收电路用于控制接收触控盖板中的超声导波。
如图8所示,线性阵列换能器的主要参数可以包括线性阵列换能器的器件长度L,阵元间距p,以及阵元宽度w等。阵元间距p为相邻两个阵元中的一个阵元的起始位置到另一个阵元的起始位置之间的距离。阵元宽度w为线性阵元的宽度。其中,器件长度L决定了线性阵列换能器的安装空间、线性阵列换能器的灵敏度等,阵元间距p配合相位时序控制策略,可实现超声导波声场的选择性激发或接收,阵元宽度w小于阵元间距p,较大的阵元宽度w可提供更高的换能器灵敏度。
本实施例的线性阵列换能器的发射控制的原理与环形阵列换能器的发射控制的原理相同,可以参见上述图6所示实施例的解释说明,线性阵列换能器的接收控制与环形阵列换能器的接收控制的原理相同,可以参见上述图7所示实施例的解释说明,此处不再赘述。
图10为本申请实施例提供的一种触控检测方法的流程图,本实施例的方法可以应用于如图1或图3所示的触控检测装置,本实施例以N=1,k=2,M=4为例进行举例说明,如图10所示,本实施例的方法可以包括:
步骤801、控制部分区域1011i中的发射换能器发射同一种模态的超声导波。
其中,可以采用图6所示实施例的发射控制方式,对部分区域1011i中的发射换能器进行发射控制,在触控盖板中激励产生预设频率、预设模态的超声导波,该预设频率的范围可以是20kHz~500kHz,该预设模态可以是A0、S0、A1、S1、…、An、Sn等任意一种超声导波模态。
对部分区域1011i中的发射换能器进行发射控制的具体实现方式可以为,调整部分区域1011i中的发射换能器中4个通道各自驱动信号的时序,4个通道各自驱动信号的时序用于控制部分区域1011i中的发射换能器激励出预设频率、预设模态的超声导波。其中,部分区域1011i中的发射换能器的4个通道中相邻两个通道的发射延时相差t 0,t 0=p/v。
由此可见,可以通过相控发射的方式,可以有选择性的发射预设频率、预设模态的超声导波,从而实现超声导波的模态控制。
步骤802、控制四个部分区域(10111、10112、10113和10114)各自的2个接收换能器分别接收部分区域1011i的发射换能器发射的超声导波。
其中,可以采用图7所示实施例的接收控制方式,对四个部分区域(10111、10112、10113和10114)各自的2个接收换能器进行接收控制,选择性接收触控盖板中的预设频率、预设模态的超声导波,即选择性接收发射换能器发射的超声导波。
这里以对一个接收换能器为例进行举例说明,其他接收换能器可以采用相同的实现方式。接收换能器进行接收控制的具体实现方式可以为,调整接收换能器中4个通道各自接收到的超声导波信号的时序,4个通道各自接收到的超声导波信号的时序用于控制接收换能器选择性接收该预设频率、预设模态的超声导波。其中,接收换能器的4个通道中相邻 两个通道的接收延时相差t 0,t 0=p/v。
由此可见,可以通过相控接收的方式,可以有选择性的接收预设频率、预设模态的超声导波,从而实现超声导波的模态控制。
当用户在触控区域进行点击或滑动等操作时,即触控事件发生时,接收换能器接收到的超声导波携带有触控事件信息。
步骤803、i=i+1,判断i是否小于或等于4,若是,则执行步骤801,若否,则执行步骤804。
通过本步骤可以实现四个部分区域(10111、10112、10113和10114)的发射换能器分时发射触控盖板中的超声导波。
步骤804、根据四个部分区域(10111、10112、10113和10114)各自的2个接收换能器中,每个接收换能器各自接收到的4个超声导波的特性确定用户的触控操作。
在确定用户的触控操作(例如,解算触控事件信息)之前,还可以对接收到的超声导波信号进行预处理和特征提取。预处理可以包括但不限于滤波降噪、频散校准等预处理。特征提取可以包括但不限于提取超声导波信号携带的时域、空域、频域等特征。可以根据32个预处理和特征提取后的超声导波信号解算触控事件信息,该触控事件信息可以包括触控位置、触控力度、和/或触控模式等。
需要说明的是,在执行步骤804之后,还可以再次执行步骤801至步骤804,以选择性激励和选择性接收另一种超声导波模态,利用冗余的多个模态检测信息实现高精度、高鲁棒性的触控检测。
本实施例,通过超声导波模态的选择性激励和选择性接收,控制超声导波模态,解决了多模态和高频散带来的时间分辨率低、信噪比低、信号分解难度高等问题,大幅度提升触控位置和触控力度的检测精度,并且可以实现多点触控位置和多点触控力度的精确检测,提升触控体验。
本申请实施例还提供一种处理器,该处理器被配置为控制触控检测装置执行如图10所述的触控检测方法。
本申请实施例还提供一种芯片,包括处理器和存储器,该存储器用于存储可执行指令,该处理器用于调用并运行存储器中存储的可执行指令,以控制触控检测装置执行如图10所述的触控检测方法。
以上各实施例中提及的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、特定应用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述各实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种触控检测装置,其特征在于,所述触控检测装置应用于触控显示屏中,所述触控显示屏包括触控盖板,所述触控盖板包括边框区域和触控区域,所述触控检测装置包括:
    控制电路、多个用于发射超声导波的发射换能器以及多个用于接收超声导波的接收换能器;
    多个所述发射换能器和多个所述接收换能器分别设置在所述边框区域内,多个所述发射换能器和多个所述接收换能器还分别与所述控制电路电连接;
    所述控制电路用于控制多个所述发射换能器在工作时不断地依次发射同一种模态的超声导波,其中,当用户在所述触控盖板上进行触控操作时,在所述触控盖板中传播的超声导波的特性会随之发生变化;
    所述控制电路还用于控制多个所述接收换能器接收在所述触控盖板中传播的超声导波,根据至少一个所述接收换能器接收到的超声导波的特性来确定用户的所述触控操作。
  2. 根据权利要求1所述的装置,其特征在于,所述控制电路用于在多个发射换能器各自分时发射完同一种模态的超声导波时,根据至少一个所述接收换能器各自接收到的各个发射换能器发射的超声导波的特性来确定用户的所述触控操作。
  3. 根据权利要求1或2所述的装置,其特征在于,所述触控区域的形状为矩形,所述边框区域的形状为矩形环,所述边框区域包括四个部分区域,所述四个部分区域各自分别与所述触控区域的一条边相邻;
    多个所述发射换能器分别设置在所述四个部分区域中的至少两个部分区域内;
    多个所述接收换能器分别设置在所述四个部分区域中的至少三个部分区域内。
  4. 根据权利要求3所述的装置,其特征在于,多个所述发射换能器的个数为4N个,多个所述接收换能器的个数为k*4N个,N为大于或等于1的任意整数,k为大于或等于1的任意整数;
    所述四个部分区域中的每个部分区域设置有N个所述发射换能器和k*N个所述接收换能器。
  5. 根据权利要求4所述的装置,其特征在于,所述控制电路用于分时控制所述四个部分区域的发射换能器发射超声导波;
    所述控制电路用于控制所述四个部分区域的所有接收换能器,分别接收所述四个部分区域的发射换能器分时发射的超声导波。
  6. 根据权利要求1至5任一项所述的装置,其特征在于,多个所述发射换能器中的任意一个发射换能器包括阵列电极,多个所述接收换能器中的任意一个接收换能器包括阵列电极,所述阵列电极包括一个负电极和M个正电极,M为大于1的任意整数;
    所述一个负电极和M个正电极分别与所述控制电路电连接。
  7. 根据权利要求6所述的装置,其特征在于,所述阵列电极包括环形阵列电极,所述环形阵列电极包括M+1个环形电极,所述M+1个环形电极中的最外环为所述负电极。
  8. 根据权利要求6所述的装置,其特征在于,所述阵列电极包括线性阵列电极,所述线性阵列电极包括M+1个线性电极,所述M+1个线性电极中的单侧边缘电极为所述负电极。
  9. 根据权利要求6至8任一项所述的装置,其特征在于,所述阵列电极中任意相邻的 两个电极之间的间距为p,所述阵列电极中任意一个电极的宽度为w,w小于p。
  10. 根据权利要求6至9任一项所述的装置,其特征在于,多个所述发射换能器中的任意一个发射换能器,或多个所述接收换能器中的任意一个接收换能器还包括底电极、基底材料层、反馈电极和柔性电路板;
    所述底电极设置在所述基底材料层的第一平面,所述第一平面为面向所述触控盖板的一面,所述阵列电极的一个负电极和M个正电极分别设置在所述基底材料层的第二平面,所述第二平面与所述第一平面相对;
    所述反馈电极的一端与所述底电极电连接,所述反馈电极的另一端与所述阵列电极的负电极电连接;
    所述阵列电极的一个负电极和M个正电极分别与所述柔性电路板的M+1个导电电极中的一个导电电极电连接,所述柔性电路板还与所述控制电路电连接。
  11. 根据权利要求10所述的装置,其特征在于,当所述阵列电极包括线性阵列电极时,所述线性阵列电极所包括的一个负电极和M个正电极沿所述第二平面的长度方向分别设置在所述基底材料层的第二平面。
  12. 根据权利要求1至11任一项所述的装置,其特征在于,所述控制电路包括驱动电路和接收电路,多个所述发射换能器分别与所述驱动电路电连接,多个所述接收换能器分别与所述接收电路电连接。
  13. 一种触控显示屏,其特征在于,所述触控显示屏包括触控盖板和如权利要求1至12任一项所述的触控检测装置。
  14. 一种触控检测方法,其特征在于,所述方法应用于如权利要求1至12任一项所述的触控检测装置,所述触控检测装置应用于触控显示屏中,所述触控显示屏包括触控盖板,所述触控盖板包括边框区域和触控区域,所述方法包括:
    控制多个发射换能器在工作时不断地依次发射同一种模态的超声导波,其中,当用户在所述触控盖板上进行触控操作时,所述超声导波的特性会随之发生变化;控制多个接收换能器接收在所述触控盖板中传播的超声导波;
    根据至少一个所述接收换能器接收到的超声导波的特性来确定用户的所述触控操作。
  15. 根据权利要求14所述的方法,其特征在于,所述根据至少一个所述接收换能器接收到的超声导波的特性来确定用户的所述触控操作,包括:
    在多个发射换能器各自分时发射完同一种模态的超声导波时,根据至少一个所述接收换能器各自接收到的各个发射换能器发射的超声导波的特性来确定用户的所述触控操作。
  16. 根据权利要求14或15所述的方法,其特征在于,所述触控区域的形状为矩形,所述边框区域的形状为矩形环,所述边框区域包括四个部分区域,所述四个部分区域各自分别与所述触控区域的一条边相邻;多个发射换能器分别设置在所述四个部分区域中的至少两个部分区域内;多个接收换能器分别设置在所述四个部分区域中的至少三个部分区域内;
    所述控制多个发射换能器在工作时不断依次发射同一种模态的超声导波,控制多个接收换能器接收在所述触控盖板中传播的超声导波,包括:
    分时控制所述至少两个部分区域的发射换能器分别发射所述同一种模态的超声导波,控制所述至少三个部分区域的所有的接收换能器分别接收在触控盖板中传播的各个发射换能器分时发射的超声导波。
  17. 根据权利要求16所述的方法,其特征在于,多个发射换能器的个数为4N个,多个接收换能器的个数为k*4N个,N为大于或等于1的任意整数,k为大于或等于1的任意整数;
    所述四个部分区域中的每个部分区域设置有N个发射换能器和k*N个接收换能器;
    所述分时控制所述至少两个部分区域的发射换能器分别发射所述同一种模态的超声导波,控制所述至少三个部分区域的所有的接收换能器分别接收在触控盖板中传播的各个发射换能器分时发射的超声导波,包括:
    分时控制所述四个部分区域中的N个发射换能器分别发射所述同一种模态的超声导波,在一个部分区域中的N个发射换能器发射超声导波时,控制所述四个部分区域中的k*4N个接收换能器分别接收所述N个发射换能器分时发射的超声导波;
    所述根据至少一个所述接收换能器接收到的超声导波的特性来确定用户的所述触控操作,包括:根据接收到的4N*k*4N个超声导波的特性来确定用户的所述触控操作。
  18. 根据权利要求14至17任一项所述的方法,其特征在于,所述方法还包括:
    调整所述多个发射换能器中至少一个发射换能器的M个通道各自的驱动信号的时序,所述M个通道各自的驱动信号的时序用于控制所述发射换能器按照预设频率激励出同一种模态的超声导波,所述发射换能器中M个通道各自与所述发射换能器的M个正电极中的一个正电极对应;
    调整所述多个接收换能器各自的M个通道分别接收到的超声导波的时序,所述M个通道分别接收到的超声导波的时序用于控制所述接收换能器接收同一种模态的超声导波,所述多个接收换能器中任意一个接收换能器的M个通道分别与所述接收换能器的M个正电极中的一个正电极对应。
  19. 根据权利要求18所述的方法,其特征在于,所述多个发射换能器中至少一个发射换能器的M个通道中相邻两个通道的发射延时相差t 0,t 0=p/v,p为所述发射换能器中任意相邻的两个电极之间的间距,v为所述超声导波的波速。
  20. 根据权利要求18所述的方法,其特征在于,所述多个接收换能器中任意一个接收换能器的M个通道中相邻两个通道的接收延时相差t 0,t 0=p/v,p为所述接收换能器中任意相邻的两个电极之间的间距,v为所述超声导波的波速。
  21. 根据权利要求19或20所述的方法,其特征在于,所述多个发射换能器中任意一个发射换能器包括环形阵列电极,所述环形阵列电极包括M+1个环形电极,与所述M+1个环形电极中的最内环的正电极对应的通道的发射延时为0,所述多个接收换能器中任意一个接收换能器包括环形阵列电极,所述环形阵列电极包括M+1个环形电极,与所述M+1个环形电极中的最内环的正电极对应的通道的接收延时为0。
  22. 根据权利要求19或20所述的方法,其特征在于,所述多个发射换能器中任意一个发射换能器包括线性阵列电极,所述线性阵列电极包括M+1个线性电极,与所述M+1个线性电极中的单侧边缘的正电极对应的通道的发射延时为0,所述多个接收换能器中任意一个接收换能器包括线性阵列电极,所述线性阵列电极包括M+1个线性电极,与所述M+1个线性电极中的单侧外缘的正电极对应的通道的接收延时为0。
PCT/CN2022/087981 2021-04-22 2022-04-20 触控检测装置、触控显示屏以及触控检测方法 WO2022222967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110437654.0 2021-04-22
CN202110437654.0A CN115237270A (zh) 2021-04-22 2021-04-22 触控检测装置、触控显示屏以及触控检测方法

Publications (1)

Publication Number Publication Date
WO2022222967A1 true WO2022222967A1 (zh) 2022-10-27

Family

ID=83666220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087981 WO2022222967A1 (zh) 2021-04-22 2022-04-20 触控检测装置、触控显示屏以及触控检测方法

Country Status (2)

Country Link
CN (1) CN115237270A (zh)
WO (1) WO2022222967A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472960A (zh) * 2013-06-14 2013-12-25 成都吉锐触摸技术股份有限公司 一种实现在表面声波触摸屏多点真实触摸的方法
US20150009185A1 (en) * 2013-07-08 2015-01-08 Corning Incorporated Touch systems and methods employing acoustic sensing in a thin cover glass
WO2015041640A2 (en) * 2013-09-18 2015-03-26 Empire Technology Development Llc Flexible surface acoustic wave touchscreen
US20150189136A1 (en) * 2014-01-02 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Fingerprint sensor and electronic device including the same
CN110121714A (zh) * 2017-10-31 2019-08-13 指纹卡有限公司 可控制的超声波指纹感测系统及用于控制该系统的方法
CN110633601A (zh) * 2018-06-22 2019-12-31 华为技术有限公司 一种超声导波换能器、终端设备和指纹识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472960A (zh) * 2013-06-14 2013-12-25 成都吉锐触摸技术股份有限公司 一种实现在表面声波触摸屏多点真实触摸的方法
US20150009185A1 (en) * 2013-07-08 2015-01-08 Corning Incorporated Touch systems and methods employing acoustic sensing in a thin cover glass
WO2015041640A2 (en) * 2013-09-18 2015-03-26 Empire Technology Development Llc Flexible surface acoustic wave touchscreen
US20150189136A1 (en) * 2014-01-02 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Fingerprint sensor and electronic device including the same
CN110121714A (zh) * 2017-10-31 2019-08-13 指纹卡有限公司 可控制的超声波指纹感测系统及用于控制该系统的方法
CN110633601A (zh) * 2018-06-22 2019-12-31 华为技术有限公司 一种超声导波换能器、终端设备和指纹识别方法

Also Published As

Publication number Publication date
CN115237270A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US9285900B2 (en) Touch pen using delay device and touch input method thereof and touch input system and method thereof
CN107111409B (zh) 触控笔、触摸面板以及具有上述装置的坐标指示系统
US8743091B2 (en) Acoustic multi-touch sensor panel
CN104169848B (zh) 检测触摸输入力
WO2018128912A1 (en) Position, tilt, and twist detection for stylus
US11334196B2 (en) System and method for acoustic touch and force sensing
EP3577545B1 (en) Active stylus differential synchronization
KR102561696B1 (ko) 초음파 워터-애그노스틱 터치 검출 센서
US10802651B2 (en) Ultrasonic touch detection through display
WO2017062168A1 (en) Touch sense intervals in multiple drive states
US20210397801A1 (en) Techniques for beamforming pressure waves
WO2018085160A1 (en) Active stylus velocity correction
EP4184294A1 (en) Peripheral device with acoustic resonator
EP3566118B1 (en) Transparent touchscreen parametric emitter
WO2022222967A1 (zh) 触控检测装置、触控显示屏以及触控检测方法
CN1199889A (zh) 显示表面上触摸点位置参数传感装置
CN102609122B (zh) 具有压电触控与电磁触控的双触控装置及方法
US20240126394A1 (en) Piezoelectric transducers for detection of touch on a surface
JPH1115592A (ja) 位置入力装置
US11422113B2 (en) Ultrasonic water-agnostic touch detection sensor
JPH09167046A (ja) 超音波スタイラスペン
US10235004B1 (en) Touch input detector with an integrated antenna
WO2022099035A1 (en) Piezoelectric transducer array
CN118502613A (zh) 一种显示设备及界面波检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791073

Country of ref document: EP

Kind code of ref document: A1