WO2022222506A1 - 一种带有自适应绑缚的外骨骼机器人膝关节 - Google Patents

一种带有自适应绑缚的外骨骼机器人膝关节 Download PDF

Info

Publication number
WO2022222506A1
WO2022222506A1 PCT/CN2021/138029 CN2021138029W WO2022222506A1 WO 2022222506 A1 WO2022222506 A1 WO 2022222506A1 CN 2021138029 W CN2021138029 W CN 2021138029W WO 2022222506 A1 WO2022222506 A1 WO 2022222506A1
Authority
WO
WIPO (PCT)
Prior art keywords
support plate
knee joint
calf
rod
fixing seat
Prior art date
Application number
PCT/CN2021/138029
Other languages
English (en)
French (fr)
Inventor
吴新宇
刘静帅
何勇
李金科
马跃
李锋
孙健铨
曹武警
王大帅
董遥
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022222506A1 publication Critical patent/WO2022222506A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/024Knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/005Appliances for aiding patients or disabled persons to walk about with knee, leg or stump rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the technical field of robots, and relates to an exoskeleton robot knee joint with self-adaptive binding.
  • the lower extremity exoskeleton is a wearable bionic robot similar in structure to the lower extremities of the human body. It can assist the wearer to achieve lower extremity rehabilitation, assist walking, and enhance weight-bearing functions. It has broad application prospects in the fields of rehabilitation, civil and military.
  • the knee joint is composed of the medial and lateral condyle articular surface of the femur, the patellar surface, the medial and lateral tibial condyle articular surface and the back of the patella.
  • the structure of the human knee joint is very complex.
  • the joint contact surface both rolls and slides.
  • it is generally simplified as a uniaxial hinge joint, which is connected to the human leg through a binding device. fixed.
  • the leg support plate and the exoskeleton are usually rigidly fixed, or only have a small degree of rotational freedom, which cannot adapt to the physiological parameters of the legs of different wearers, and cannot compensate for the occurrence of wear during the exercise process.
  • the deviation of the man-machine axis leads to poor wearing comfort.
  • the present invention proposes an exoskeleton robot knee joint with self-adaptive binding, which adopts a remote-driven exoskeleton knee joint design that can reduce the inertia of the legs, and has a large force transmission capacity.
  • the self-adaptive leg binding device design that can compensate for the movement deviation of the axis of the knee joint improves the movement compatibility between the exoskeleton and the wearer, as well as the wearing comfort, convenience and safety.
  • the knee joint drive and transmission assembly includes a thigh rod, a calf rod, a flexion and extension transmission rod, and a knee joint fixing seat,
  • the thigh rod and the calf rod are connected by the upper and lower leg fixed hinges, and the knee joint drive unit is arranged on the thigh rod near the hip joint.
  • the power output end of the knee joint drive unit is the flexion and extension movement output end cover, the output end of the flexion and extension movement output end cover is hinged with one end of the flexion and extension transmission rod, the other end of the flexion and extension transmission rod is hinged with one end of the knee joint fixing seat, and the knee joint fixing seat is hinged.
  • the other end of the shank is fastened to the calf rod.
  • the knee joint drive is installed on the exoskeleton thigh rod, the position of the center of gravity is raised, and the knee joint flexion and extension motion is transmitted through the flexion and extension transmission rod, so a larger drive output torque can be selected without greatly increasing the leg inertia.
  • the output end of the above-mentioned flexion and extension movement output end cover is hinged with one end of the flexion and extension transmission rod through an active end hinge.
  • the other end of the flexion and extension transmission rod is hinged with one end of the knee joint fixing seat through the driven end hinge.
  • the above-mentioned thigh bar self-adaptive leg binding assembly includes an up and down movement compensation mechanism, a front and rear movement compensation mechanism, a left and right movement compensation mechanism and a rotation compensation function mechanism;
  • the rotation compensation function mechanism includes a thigh support plate,
  • the up and down movement compensation mechanism is fixed on the thigh rod of the exoskeleton.
  • the up and down movement compensation mechanism is used to compensate the up and down movement of the thigh support plate in the vertical direction.
  • the movement compensation mechanism is used to realize the left and right movement compensation of the thigh support plate in the horizontal direction, and the rotation compensation function mechanism is used to realize the rotation compensation of the thigh support plate around the radial movement axis.
  • the above-mentioned up-and-down movement compensation mechanism includes a vertical guide rod, a vertically moving slider, and two fixed ends for fixing the vertical guide rod.
  • the vertically moving slider can move along the vertical guide rod, and the vertical movement There are damping springs on both sides of the slider;
  • the front and rear movement compensation mechanism includes front and rear radial guide rods. One end of the front and rear radial guide rods is fixed on the vertical moving slider. The front and rear radial guide rods are provided with front and rear radial moving sliders. damping spring;
  • the left and right movement compensation mechanism includes a horizontal guide rod and an end cover of a radially movable slider.
  • the end cover of the radially movable slider is fixed on the front and rear radially movable sliders, and a sliding cavity is arranged in the front and rear radially movable sliders;
  • the part is located in the sliding cavity, one end of the horizontal guide rod passes through the front and rear radially moving sliders, the middle of the horizontal cylindrical guide rod is provided with a shoulder, and the two sides of the shoulder of the horizontal cylindrical guide rod are respectively provided with damping springs.
  • the horizontal cylindrical guide rod can move in the sliding cavity formed by the front and rear radial moving sliders.
  • the rotation compensation function mechanism includes the hinge pin of the thigh support plate fixing seat and the thigh support plate fixing seat; the thigh support plate fixing seat is hinged on the horizontal cylindrical guide rod through the hinge pin of the thigh support plate fixing seat, and the thigh support plate is fixed on the thigh support plate. seat.
  • the above-mentioned calf rod self-adaptive leg binding assembly includes a calf support plate, a left-right movement compensation mechanism, a rotation compensation mechanism and an up-down movement compensation mechanism;
  • the left and right movement compensation mechanism is used to compensate the left and right movement of the calf support plate in the horizontal direction
  • the rotation compensation mechanism is used to realize the rotation compensation of the calf support plate around the horizontal movement axis
  • the up and down movement compensation mechanism is used to realize the vertical direction of the calf support plate. Up and down movement compensation function.
  • the above-mentioned left and right movement compensation mechanism includes a calf support plate fixing seat and a calf supporting plate bracket, the calf supporting plate fixing seat can move along the calf supporting plate bracket, and damping springs are provided on both sides of the calf supporting plate fixing seat;
  • the calf support plate fixing seat can also rotate around the calf support plate bracket to form a rotation compensation mechanism
  • the up-and-down movement compensation mechanism includes a chute arranged on the lower leg support plate, and the lower leg support plate fixing seat can move up and down along the chute.
  • limit screws are provided on the chute on the calf support plate.
  • one end of the above-mentioned calf support plate bracket is hinged with the calf bracket fixing seat through the bracket hinge pin, and the calf support plate bracket and the calf bracket fixing seat are also fixed by a pull ring spring pin; the calf bracket fixing seat is fixed on the calf rod.
  • the knee joint drive is installed on the thigh rod, which improves the center of gravity and reduces the inertia of the legs;
  • a knee joint driver with a larger torque can be selected to improve the active motion assistance capability of the knee joint;
  • the leg binding adopts more passive degrees of freedom, including up and down movement, front and rear movement, horizontal movement and radial rotation, which improves the adaptive axis deviation compensation ability;
  • the adaptive leg binding device can perform dynamic axis deviation compensation during the movement process
  • the open-close calf binding design can be quickly opened and locked during wearing, which is more convenient to wear than the fixed cantilever beam structure.
  • Fig. 1 is a schematic diagram of exoskeleton robot knee joint human body wearing
  • Figure 2 is a schematic diagram of the overall structure of the knee joint of an exoskeleton robot with adaptive binding
  • Figure 3 is a schematic diagram of the composition of the knee joint drive and transmission structure of the exoskeleton robot
  • FIG. 4 is a schematic diagram of the overall structure of the thigh binding device
  • Fig. 5 is a schematic diagram of the structure decomposition of the thigh binding device
  • FIG. 6 is a schematic diagram of the overall structure of the calf binding device in a locked state
  • FIG. 7 is a schematic diagram of the overall structure of the calf binding device in an open state
  • FIG. 8 is a schematic exploded view of the structure of the calf binding device
  • Fig. 9 is a schematic diagram of an exoskeleton robot knee joint in a standing motion state
  • FIG. 10 is a schematic diagram of the knee joint of the exoskeleton robot in a state of flexion of the knee.
  • Knee joint drive and transmission components 1. Knee joint drive and transmission components;
  • the present invention provides an exoskeleton robot knee joint with self-adaptive binding.
  • the human body wearing effect is shown in the figure 1 shown.
  • the exoskeleton robot knee joint includes a knee joint drive and transmission assembly 1 , a thigh rod adaptive leg binding assembly 2 and a lower leg rod adaptive leg binding assembly 3 .
  • the knee joint drive and transmission assembly 1 includes a thigh rod 11 , a calf rod 19 , a flexion and extension transmission rod 15 , and a knee joint fixing seat 17 .
  • the thigh rod 11 and the calf rod 19 are connected by the upper and lower leg fixed hinges 18 , and the knee joint driving unit 12 is arranged on the thigh rod 11 near the hip joint.
  • the power output end of the knee joint drive unit 12 is the flexion and extension movement output end cover 13 .
  • Hinged, the other end of the knee joint fixing seat 17 is fixed on the calf rod 19 .
  • the knee joint drive 12 is installed on the exoskeleton thigh rod 11, the position of the center of gravity is raised, and the knee joint flexion and extension motion is transmitted through the flexion and extension transmission rod 15, so a larger drive output torque can be selected without greatly increasing the leg inertia.
  • the output end of the output end cover 13 for the flexion and extension movement is hinged with one end of the flexion and extension transmission rod 15 through the active end hinge 14 .
  • the other end of the flexion and extension transmission rod 15 is hinged with one end of the knee joint fixing seat 17 through the driven end hinge 16 .
  • the thigh rod 11 , the flexion and extension output end cover 13 , the flexion and extension transmission rod 15 and the knee joint fixing seat 17 form a parallelogram mechanism ABCD with a transmission ratio of 1, which is equivalent to a direct drive. Since the knee joint drive 12 is installed on the exoskeleton thigh rod 11, the position of the center of gravity is raised, and the knee joint flexion and extension motion is transmitted through the flexion and extension transmission rod 15, so a larger drive output torque can be selected without greatly increasing the leg inertia.
  • the above-mentioned thigh bar adaptive leg binding assembly 2 has 4 passive degrees of freedom, and the 4 passive degrees of freedom are respectively composed of an up and down movement compensation mechanism, a forward and backward movement compensation mechanism, and a left and right movement.
  • the compensation mechanism and the rotation compensation function mechanism are realized.
  • the up and down movement compensation mechanism is fixed on the exoskeleton thigh rod 11, the up and down movement compensation mechanism is used to realize the vertical movement compensation for the thigh support plate 220, and the forward and backward movement compensation mechanism is used for the thigh support plate 220 to realize the back and forth movement in the radial direction. Compensation, the left and right movement compensation mechanism is used to compensate the left and right movement of the thigh support plate 220 in the horizontal direction, and the rotation compensation function mechanism is used to realize the rotation compensation of the thigh support plate 220 around the radial movement axis.
  • the above-mentioned vertical movement compensation mechanism includes an upper L-shaped fixing plate 22, a lower L-shaped fixing plate 26, a vertically moving slider 28, an upper L-shaped fixing plate 22, A vertical cylindrical guide rod 24 is arranged between the lower end L-shaped fixing plate 26 , and the two ends of the vertical cylindrical guide rod 24 are respectively fastened by the upper guide rod circlip 21 and the lower guide rod circlip 27 .
  • the upper end damping spring 23 , the vertically moving slider 28 , and the lower end damping spring 25 are sequentially sleeved on the vertical cylindrical guide rod 24 .
  • the front and rear movement compensation mechanism includes a front and rear radial cylindrical guide rod 210, a rear side damping spring 29, a front side damping spring 211, and a front side guide rod fixing plate 212.
  • On the block 28 and the front side guide rod fixing plate 212, and on the front and rear radial cylindrical guide rods 210 are sequentially sleeved a rear side damping spring 29, a front and rear radial moving slider 214, and a front side damping spring 211.
  • the left and right movement compensation mechanism includes a horizontal cylindrical guide rod 215 and a radially moving slider end cover 217.
  • the radially moving slider end cover 217 is fixed on the front and rear radially moving sliders 214, and the horizontal cylindrical guide rod 215 passes through the radial direction.
  • the horizontal cylindrical guide rod 215 can move in the sliding cavity formed by the radially moving slider end cover 217 and the front and rear radially moving sliders 214 .
  • the rotation compensation function mechanism includes a thigh support plate fixing seat hinge pin 218 and a thigh support plate fixing seat 219; the thigh support plate fixing seat 219 is hinged on the horizontal cylindrical guide rod 215 through the thigh support plate fixing seat hinge pin 218, and the thigh support plate 220 It is fixed on the thigh support plate fixing seat 219 .
  • the thigh binding device forms three mutually perpendicular movement degrees of freedom through the vertical cylindrical guide rod 24, the front and rear radial cylindrical guide rods 210 and the horizontal cylindrical guide rod 215, and the support plate fixing seat 219 is in the horizontal cylindrical guide rod 215.
  • One rotational degree of freedom around the radial axis enables the support plate 220 to have four passive degrees of freedom, and has better adaptive capacity for thigh binding.
  • the above-mentioned calf bar adaptive leg binding assembly 3 has 3 passive degrees of freedom, and the 3 passive degrees of freedom are specifically composed of a left-right movement compensation mechanism, a rotation compensation mechanism, and an up-down movement compensation mechanism. Institutional realization.
  • the left and right movement compensation mechanism is used to compensate the left and right movement of the calf support plate 310 in the horizontal direction
  • the rotation compensation mechanism is used to realize the rotation compensation of the calf support plate 310 around the horizontal movement axis
  • the up and down movement compensation mechanism is used to realize the compensation of the calf support plate 310 Vertical movement compensation function.
  • the above-mentioned left-right movement compensation mechanism includes a calf support plate fixing seat 36 and a calf supporting plate bracket 34, the calf supporting plate fixing seat 36 can move along the calf supporting plate bracket 34, and damping is provided on both sides of the calf supporting plate fixing seat 36
  • the calf support plate fixing seat 36 can also rotate around the calf support plate bracket 34 to form a rotation compensation mechanism;
  • the up-and-down movement compensation mechanism includes a chute provided on the calf support plate 310, and the calf support plate fixing seat 36 can Move up and down along the chute.
  • Limit screws 39 are respectively provided at both ends of the chute on the lower leg support plate 310 .
  • the adaptive binding component has two-way spring damping and is installed on the thigh rod and the calf rod respectively, it can not only adapt to the binding requirements of different patient's leg sizes, but also compensate for the movement caused by the deviation of the exoskeleton knee joint from the axis of the human knee joint. dislocation, thereby improving ergonomic compatibility.
  • the calf binding device forms two mutually perpendicular movement degrees of freedom through the calf support plate fixing seat 36, the calf support plate bracket 34 and the support plate 310, and one rotational freedom degree of the fixed seat 36 around the support plate bracket 34, so that the support plate
  • the 310 has 3 passive degrees of freedom, and has good calf binding adaptability.
  • one end of the calf support plate bracket 34 is hinged to the calf bracket fixing seat 31 through the bracket hinge pin 32, and the calf support plate bracket 34 and the calf bracket fixing seat 31 also pass through The pull ring spring pin 33 is fixed.
  • the calf support fixing seat 31 , the stand hinge pin 32 , the pull ring spring pin 33 and the calf support plate bracket 34 form a rotating opening/locking mechanism, which is convenient for moving the legs when wearing.
  • the overall structure of the knee joint of the exoskeleton robot with adaptive leg binding is shown in Figure 2. Since the structure of the left and right legs is symmetrical on both sides, the left side is taken as an example for detailed description.
  • the knee joint exoskeleton When wearing and using, the knee joint exoskeleton is placed parallel to the outside of the human leg, and is connected to the human thigh and calf through the thigh rod adaptive leg binding component 2 and the calf rod adaptive leg binding component 3 respectively; Adaptive compensation for different types of passive degrees of freedom in multiple directions, the thigh bar adaptive leg binding component 2 can fit on the outer thighs of different wearers, and the calf bar adaptive leg binding component 3 fits the wearer's calf
  • the front part is then fixed by the straps, which improves the wearing comfort; in addition, during the wearing process, the calf rod adaptive leg binding assembly 3 can also unlock the calf support plate bracket 34 and the calf through the pull-ring spring pin 33
  • the pin holes between the bracket fixing bases 31 are limited
  • the knee joint drive unit 12 rotates the flexion and extension motion output end cover 13 clockwise, the flexion and extension motion is transmitted to the knee joint fixing seat 17 through the flexion and extension transmission rod 15, and the knee joint fixing seat 17 is fixedly connected with the calf rod 19.
  • the lower leg at the knee joint is assisted in the backward extension movement, as shown in FIGS. 9 and 10 ; on the contrary, when the knee joint driving unit 12 rotates the flexion and extension movement output end cover 13 counterclockwise, the knee joint forward flexion movement assistance can be produced.
  • the overall center of gravity of the exoskeleton leg is raised, thereby reducing the additional inertia, which is beneficial to the dynamic and flexible movement of the exoskeleton knee joint.
  • the passive degree of freedom of the leg binding device can dynamically release and eliminate the human-machine pulling force and torsion force caused by the misalignment of the axis.
  • the thigh binding device moves up and down on the vertical cylindrical guide rod 24 by vertically moving the slider 28
  • the front and rear radial moving slider 214 moves back and forth on the front and rear radial cylindrical guide rods 210
  • the horizontal cylindrical guide rod 215 Dynamic adaptive compensation is performed on the left and right movement of the radially moving slider 214 and the radial rotation of the thigh support plate fixing seat 219 on the horizontal cylindrical guide rod 215 .
  • the left and right movement and rotation of 34 and the dovetail groove-shaped calf support plate fixing seat 36 perform dynamic adaptive compensation for the up and down movement of the calf support plate 310, thereby improving the wearing comfort and safety of the exoskeleton.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

一种带有自适应绑缚的外骨骼机器人膝关节,包括膝关节驱动和传动组件(1)、大腿杆自适应腿部绑缚组件(2)和小腿杆自适应腿部绑缚组件(3),膝关节驱动和传动组件包括大腿杆(11)、小腿杆(19)、屈伸传动杆(15)、膝关节固定座(17),大腿杆、小腿杆之间通过大小腿固定铰链(18)连接。该装置可提高外骨骼与穿戴者的运动相容性及穿戴舒适性、便捷性和安全性。

Description

一种带有自适应绑缚的外骨骼机器人膝关节 技术领域
本发明属于机器人技术领域,涉及一种带有自适应绑缚的外骨骼机器人膝关节。
背景技术
下肢外骨骼是一种与人体下肢结构相似的可穿戴仿生机器人,能够辅助穿戴者实现下肢康复、助力行走以及增强负重等功能,在康复、民用和军事等领域有着广泛的应用前景。
根据人体关节运动机理研究,膝关节是由股骨内外侧的髁关节面、髌面、胫骨内外侧的髁关节面和髌骨的后面构成,能够围绕额状轴作屈/伸运动,并且在屈/伸过程中能够绕垂直轴作微小的旋转运动。因此,人体膝关节结构十分复杂,在膝关节屈伸运动时,关节接触表面既有滚动又有滑动,但在外骨骼设计中,一般将其简化为单轴铰链式关节,通过绑缚装置与人体腿部固定。这就导致外骨骼膝关节轴线难以与人体膝关节轴线对齐,出现不期望的负载力和运动约束,使绑带与人腿之间产生相对滑移,进而影响人体关节和软组织内力,穿戴者在长时间使用后轻则皮肤擦伤、重则肌肉损伤。
对现有下肢外骨骼进行分析后可以发现,在膝关节的设计中,部分采用了欠驱动结构,不具备主动运动辅助能力;部分采用了驱动与膝关节直接连接的方式,虽然结构简单,但会导致腿部重心位置较低,腿部惯量较大,难以采用输出力矩较大的关节驱动;部分外骨骼将膝关节驱动安装于大腿杆上,通过齿轮或丝杠等进行传动,提高了腿部重心,但存在效率和润滑等问题。在腿部绑缚装置设计中,腿部支撑板与外骨骼之间通常采用刚性固定方式,或者仅有少量旋转自由度,不能适应不同穿戴者腿部生理参数,也无法补偿穿戴运动过程中产生的人机轴线偏差,导致穿戴舒适性较差。
技术问题
为了克服现有技术的不足,本发明提出一种带有自适应绑缚的外骨骼机器人膝关节,采用可减小腿部惯量的远程驱动式外骨骼膝关节设计,具有较大的力传递能力;可补偿膝关节轴线运动偏差的自适应腿部绑缚装置设计,提高外骨骼与穿戴者的运动相容性及其穿戴舒适性、便捷性和安全性。
本发明解决上述问题的技术方案是:一种带有自适应绑缚的外骨骼机器人膝关节,其特殊之处在于,
包括膝关节驱动和传动组件、大腿杆自适应腿部绑缚组件和小腿杆自适应腿部绑缚组件;
所述膝关节驱动和传动组件包括大腿杆、小腿杆、屈伸传动杆、膝关节固定座,
大腿杆、小腿杆之间通过大小腿固定铰链连接,膝关节驱动单元设置在大腿杆上靠近髋关节位置,
膝关节驱动单元的动力输出端为屈伸运动输出端盖,屈伸运动输出端盖的输出端与屈伸传动杆的一端铰接,屈伸传动杆的另一端与膝关节固定座的一端铰接,膝关节固定座的另一端固定在小腿杆上。
由于膝关节驱动安装在外骨骼大腿杆上,提高了重心位置,通过屈伸传动杆传递膝关节屈伸运动,因此可选用较大的驱动输出力矩而不会大幅增加腿部惯量。
进一步地,上述屈伸运动输出端盖的输出端通过主动端铰链与屈伸传动杆的一端铰接。
进一步地,上述屈伸传动杆的另一端通过从动端铰链与膝关节固定座的一端铰接。
进一步地,上述大腿杆自适应腿部绑缚组件包括上下移动补偿机构、前后移动补偿机构、左右移动补偿机构以及转动补偿功能机构;转动补偿功能机构包括大腿支撑板,
上下移动补偿机构固定在外骨骼大腿杆上,上下移动补偿机构用于对大腿支撑板实现在垂直方向的上下移动补偿,前后移动补偿机构用于对大腿支撑板实现径向方向的前后移动补偿,左右移动补偿机构用于对大腿支撑板实现水平方向的左右移动补偿,转动补偿功能机构用于对大腿支撑板实现绕径向移动轴的转动补偿。
进一步地,上述上下移动补偿机构包括垂直向导杆、垂直向移动滑块以及用于固定垂直向导杆的两个固定端,所述垂直向移动滑块可沿垂直向导杆移动,所述垂直向移动滑块两侧均设有阻尼弹簧;
前后移动补偿机构包括前后径向导杆,前后径向导杆的一端固定在垂直向移动滑块上,前后径向导杆上设有前后径向移动滑块,前后径向移动滑块两侧均设有阻尼弹簧;
左右移动补偿机构包括水平向导杆、径向移动滑块端盖,径向移动滑块端盖固定在前后径向移动滑块上,前后径向移动滑块内设有滑动腔;水平向导杆的部分位于滑动腔内,水平向导杆一端并穿过前后径向移动滑块,水平向圆柱导杆中间设有轴肩,水平向圆柱导杆的轴肩两侧分别设有阻尼弹簧。水平向圆柱导杆可在前后径向移动滑块形成的滑动腔内移动。
转动补偿功能机构包括大腿支撑板固定座铰链销、大腿支撑板固定座;大腿支撑板固定座通过大腿支撑板固定座铰链销铰接在水平向圆柱导杆上,大腿支撑板固定在大腿支撑板固定座上。
进一步地,上述小腿杆自适应腿部绑缚组件包括小腿支撑板、左右移动补偿机构、转动补偿机构和上下移动补偿机构;
左右移动补偿机构用于对小腿支撑板实现水平方向的左右移动补偿,转动补偿机构用于对小腿支撑板实现绕水平移动轴的转动补偿,上下移动补偿机构用于对小腿支撑板实现垂直方向的上下移动补偿功能。
进一步地,上述左右移动补偿机构包括小腿支撑板固定座、小腿支撑板支架,小腿支撑板固定座可沿小腿支撑板支架进行移动,小腿支撑板固定座的两侧设有阻尼弹簧;
所述小腿支撑板固定座还可绕小腿支撑板支架转动,构成转动补偿机构;
上下移动补偿机构包括设置在小腿支撑板上的滑槽,所述小腿支撑板固定座可沿滑槽上下移动。
进一步地,上述小腿支撑板上的滑槽上设有限位螺钉。
进一步地,上述小腿支撑板支架的一端通过支架铰链销与小腿支架固定座铰接,小腿支撑板支架与小腿支架固定座还通过拉环弹簧销进行固定;小腿支架固定座固定在小腿杆上。
本发明的优点:
1)膝关节驱动安装于大腿杆上,提高了重心,减小了腿部惯量;
2)通过传动比为1的平行四边形机构传递屈伸运动,等价于直接驱动,相较于齿轮、丝杠等传动方式效率高;
3)相较于驱动和关节直接连接的方式,在不增加髋关节驱动负载的情况下,可选用扭矩较大的膝关节驱动器,提高膝关节主动运动辅助能力;
4)腿部绑缚采用更多的被动自由度,包括上下移动、前后移动、水平移动和径向旋转,提高了自适应轴线偏差补偿能力;
5)相较于采用初始位置偏差补偿的手动调整方式,自适应腿部绑缚装置能够在运动过程中进行动态轴线偏差补偿;
采用开合式小腿绑缚设计,穿戴过程中可快速打开和锁止,相较于固定式悬臂梁结构,穿戴更加便捷。
附图说明
图1是外骨骼机器人膝关节人体穿戴示意图;
图2是带有自适应绑缚的外骨骼机器人膝关节整体结构示意图;
图3是外骨骼机器人膝关节驱动与传动结构组成示意图;
图4是大腿绑缚装置整体结构示意图;
图5是大腿绑缚装置结构分解示意图;
图6是小腿绑缚装置在锁止状态的整体结构示意图;
图7是小腿绑缚装置在打开状态的整体结构示意图;
图8是小腿绑缚装置结构分解示意图;
图9是外骨骼机器人膝关节在站立运动状态的示意图;
图10是外骨骼机器人膝关节在屈膝运动状态的示意图。
其中:1、膝关节驱动和传动组件;
11、大腿杆;12、膝关节驱动单元;13、屈伸运动输出端盖;14、主动端铰链;15、屈伸传动杆;16、从动端铰链;17、膝关节固定座;18、大小腿固定铰链;19、小腿杆;
2、大腿杆自适应腿部绑缚组件;
21、上端导杆卡簧;22、上端L形固定板;23、上端阻尼弹簧;24、垂直向圆柱导杆;25、下端阻尼弹簧;26、下端L形固定板;27下端导杆卡簧;28、垂直向移动滑块;29、后侧阻尼弹簧;210前后径向圆柱导杆;211、前侧阻尼弹簧;212、前侧导杆固定板;213、左端阻尼弹簧;214、前后径向移动滑块;215、水平向圆柱导杆;216、右端阻尼弹簧;217、径向移动滑块端盖;218、大腿支撑板固定座铰链销;219、大腿支撑板固定座;220大腿支撑板;
3、小腿杆自适应腿部绑缚组件;
31、小腿支架固定座;32、支架铰链销;33、拉环弹簧销;34、小腿支撑板支架;35、右侧阻尼弹簧;36、小腿支撑板固定座;37、左侧阻尼弹簧;38、支架端盖;39、限位螺钉;310小腿支撑板。
本发明的实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
为了给人体膝关节提供前屈/后伸主动运动辅助,以及良好的穿戴舒适性、安全性,本发明提供了一种带有自适应绑缚的外骨骼机器人膝关节,其人体穿戴效果如图1所示。参见图2,外骨骼机器人膝关节包括膝关节驱动和传动组件1、大腿杆自适应腿部绑缚组件2和小腿杆自适应腿部绑缚组件3。
参见图3,所述膝关节驱动和传动组件1包括大腿杆11、小腿杆19、屈伸传动杆15、膝关节固定座17。大腿杆11、小腿杆19之间通过大小腿固定铰链18连接,膝关节驱动单元12设置在大腿杆11上靠近髋关节位置。膝关节驱动单元12的动力输出端为屈伸运动输出端盖13,屈伸运动输出端盖13的输出端与屈伸传动杆15的一端铰接,屈伸传动杆15的另一端与膝关节固定座17的一端铰接,膝关节固定座17的另一端固定在小腿杆19上。
由于膝关节驱动12安装在外骨骼大腿杆11上,提高了重心位置,通过屈伸传动杆15传递膝关节屈伸运动,因此可选用较大的驱动输出力矩而不会大幅增加腿部惯量。
作为本发明的一个优选实施例,参见图3,上述屈伸运动输出端盖13的输出端通过主动端铰链14与屈伸传动杆15的一端铰接。
作为本发明的一个优选实施例,参见图3,上述屈伸传动杆15的另一端通过从动端铰链16与膝关节固定座17的一端铰接。
如图3所示,大腿杆11、屈伸运动输出端盖13、屈伸传动杆15和膝关节固定座17组成了平行四边形机构 ABCD,其传动比为1,因而等价于直接驱动。由于膝关节驱动12安装在外骨骼大腿杆11上,提高了重心位置,通过屈伸传动杆15传递膝关节屈伸运动,因此可选用较大的驱动输出力矩而不会大幅增加腿部惯量。
作为本发明的一个优选实施例,参见图4,上述大腿杆自适应腿部绑缚组件2具有4个被动自由度,4个被动自由度分别由上下移动补偿机构、前后移动补偿机构、左右移动补偿机构以及转动补偿功能机构实现。
上下移动补偿机构固定在外骨骼大腿杆11上,上下移动补偿机构用于对大腿支撑板220实现在垂直方向的上下移动补偿,前后移动补偿机构用于对大腿支撑板220实现径向方向的前后移动补偿,左右移动补偿机构用于对大腿支撑板220实现水平方向的左右移动补偿,转动补偿功能机构用于对大腿支撑板220实现绕径向移动轴的转动补偿。
作为本发明的一个优选实施例,参见图5,具体地,上述上下移动补偿机构包括上端L形固定板22、下端L形固定板26、垂直向移动滑块28,上端L形固定板22、下端L形固定板26之间设有垂直向圆柱导杆24,垂直向圆柱导杆24的两端分别通过上端导杆卡簧21、下端导杆卡簧27进行紧固。垂直向圆柱导杆24上依次套设上端阻尼弹簧23、垂直向移动滑块28、下端阻尼弹簧25。
前后移动补偿机构包括前后径向圆柱导杆210、后侧阻尼弹簧29、前侧阻尼弹簧211、前侧导杆固定板212,前后径向圆柱导杆210的两端分别固定在垂直向移动滑块28和前侧导杆固定板212上,前后径向圆柱导杆210上依次套设后侧阻尼弹簧29、前后径向移动滑块214、前侧阻尼弹簧211。
左右移动补偿机构包括水平向圆柱导杆215、径向移动滑块端盖217,径向移动滑块端盖217固定在前后径向移动滑块214上,水平向圆柱导杆215穿过径向移动滑块端盖217、前后径向移动滑块214,水平向圆柱导杆215中间设有轴肩,水平向圆柱导杆215的轴肩两侧设有213、左端阻尼弹簧213、右端阻尼弹簧216。水平向圆柱导杆215可在径向移动滑块端盖217和前后径向移动滑块214形成的滑动腔内移动。
转动补偿功能机构包括大腿支撑板固定座铰链销218、大腿支撑板固定座219;大腿支撑板固定座219通过大腿支撑板固定座铰链销218铰接在水平向圆柱导杆215上,大腿支撑板220固定在大腿支撑板固定座219上。
大腿绑缚装置通过垂直向圆柱导杆24、前后径向圆柱导杆210和水平向圆柱导杆215形成3个相互垂直的移动自由度,以及支撑板固定座219在水平向圆柱导杆215中绕径向轴的1个旋转自由度,使支撑板220具有4个被动自由度,具有较好的大腿绑缚自适应能力。
作为本发明的一个优选实施例,参见图7,上述小腿杆自适应腿部绑缚组件3具有3个被动自由度,3个被动自由度具体由左右移动补偿机构、转动补偿机构和上下移动补偿机构实现。
左右移动补偿机构用于对小腿支撑板310实现水平方向的左右移动补偿,转动补偿机构用于对小腿支撑板310实现绕水平移动轴的转动补偿,上下移动补偿机构用于对小腿支撑板310实现垂直方向的上下移动补偿功能。
具体地,上述左右移动补偿机构包括小腿支撑板固定座36、小腿支撑板支架34,小腿支撑板固定座36可沿小腿支撑板支架34进行移动,小腿支撑板固定座36的两侧设有阻尼弹簧;所述小腿支撑板固定座36还可绕小腿支撑板支架34转动,构成转动补偿机构;上下移动补偿机构包括设置在小腿支撑板310上的滑槽,所述小腿支撑板固定座36可沿滑槽上下移动。在小腿支撑板310上的滑槽的两端,分别设有限位螺钉39。
由于自适应绑缚组件具有双向弹簧阻尼,分别安装于大腿杆和小腿杆上,既能够适应不同患者腿部尺寸的绑缚要求,也可以补偿外骨骼膝关节与人体膝关节轴线偏差引起的运动错位,从而提高人机运动学相容性。
小腿绑缚装置通过小腿支撑板固定座36与小腿支撑板支架34、支撑板310形成2个相互垂直的移动自由度,以及固定座36绕支撑板支架34的1个旋转自由度,使支撑板310具有3个被动自由度,具有较好的小腿绑缚自适应能力。
作为本发明的一个优选实施例,参见图6~图8,上述小腿支撑板支架34的一端通过支架铰链销32与小腿支架固定座31铰接,小腿支撑板支架34与小腿支架固定座31还通过拉环弹簧销33进行固定。小腿支架固定座31、支架铰链销32、拉环弹簧销33和小腿支撑板支架34形成旋转打开/锁止机构,便于穿戴时挪动腿部。
带有腿部自适应绑缚外骨骼机器人膝关节的总体结构如图2所示,由于左右腿两侧结构对称,以左侧为例进行详细描述。在穿戴使用时,膝关节外骨骼平行置于人体腿部外侧,分别通过大腿杆自适应腿部绑缚组件2、小腿杆自适应腿部绑缚组件3与人体大腿和小腿连接;同时,通过多方向不同类型被动自由度的自适应补偿,大腿杆自适应腿部绑缚组件2可贴合于不同穿戴者大腿外侧,小腿杆自适应腿部绑缚组件3则贴合于穿戴者的小腿前部,然后由绑带进行固定,提高了穿戴的舒适性;此外,在穿戴过程中,小腿杆自适应腿部绑缚组件3还可通过拉环弹簧销33解锁小腿支撑板支架34与小腿支架固定座31之间的销孔限位,旋转打开小腿绑缚装置以便于穿戴,当穿戴者腿部挪到固定位置后再旋转小腿绑缚装置通过拉环弹簧销33锁定限位,提高了穿戴的便捷性。
在工作时,当膝关节驱动单元12顺时针旋转屈伸运动输出端盖13时,经过屈伸传动杆15将屈伸运动传递给膝关节固定座17,而膝关节固定座17与小腿杆19固定连接,从而产生小腿在膝关节处的后伸运动辅助,如图9、10所示;反之,当膝关节驱动单元12逆时针旋转屈伸运动输出端盖13时,可产生膝关节前屈运动辅助。此外,由于膝关节驱动单元12的物理位置较高,提高了外骨骼腿部整体重心,从而减小了附加惯量,有利于外骨骼膝关节的动态灵活运动。
在运动过程中,由于简化后的外骨骼膝关节仅存在一个单轴转动自由度,而人体膝关节在运动过程中同步存在微小滑动,导致人体膝关节轴线与外骨骼膝关节轴线出现偏差,可通过腿部绑缚装置的被动自由度能够动态释放和消除因轴线错位而产生的人机牵扯力和扭转力。具体包括:大腿绑缚装置通过垂直向移动滑块28在垂直向圆柱导杆24的上下移动、前后径向移动滑块214在前后径向圆柱导杆210的前后移动、水平向圆柱导杆215在径向移动滑块214的左右移动以及大腿支撑板固定座219在水平向圆柱导杆215的径向旋转进行动态自适应补偿,小腿绑缚装置通过小腿支撑板固定座36在小腿支撑板支架34的左右移动和旋转、燕尾槽形小腿支撑板固定座36在小腿支撑板310的上下移动进行动态自适应补偿,从而提高外骨骼的穿戴舒适性和安全性。
以上所述仅为本发明的实施例,并非以此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的保护范围内。

Claims (9)

  1. 一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    包括膝关节驱动和传动组件(1)、大腿杆自适应腿部绑缚组件(2)和小腿杆自适应腿部绑缚组件(3);
    所述膝关节驱动和传动组件(1)包括大腿杆(11)、小腿杆(19)、屈伸传动杆(15)、膝关节固定座(17),
    大腿杆(11)、小腿杆(19)之间通过大小腿固定铰链(18)连接,膝关节驱动单元(12)设置在大腿杆(11)上靠近髋关节位置,
    膝关节驱动单元(12)的动力输出端为屈伸运动输出端盖(13),屈伸运动输出端盖(13)的输出端与屈伸传动杆(15)的一端铰接,屈伸传动杆(15)的另一端与膝关节固定座(17)的一端铰接,膝关节固定座(17)的另一端固定在小腿杆(19)上。
  2. 根据权利要求1所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述屈伸运动输出端盖(13)的输出端通过主动端铰链(14)与屈伸传动杆(15)的一端铰接。
  3. 根据权利要求2所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述屈伸传动杆(15)的另一端通过从动端铰链(16)与膝关节固定座(17)的一端铰接。
  4. 根据权利要求3所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述大腿杆自适应腿部绑缚组件(2)包括上下移动补偿机构、前后移动补偿机构、左右移动补偿机构以及转动补偿功能机构;转动补偿功能机构包括大腿支撑板(220),
    上下移动补偿机构固定在外骨骼大腿杆(11)上,上下移动补偿机构用于对大腿支撑板(220)实现在垂直方向的上下移动补偿,前后移动补偿机构用于对大腿支撑板(220)实现径向方向的前后移动补偿,左右移动补偿机构用于对大腿支撑板(220)实现水平方向的左右移动补偿,转动补偿功能机构用于对大腿支撑板(220)实现绕径向移动轴的转动补偿。
  5. 根据权利要求4所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述上下移动补偿机构包括垂直向导杆、垂直向移动滑块(28)以及用于固定垂直向导杆的两个固定端,所述垂直向移动滑块(28)可沿垂直向导杆移动,所述垂直向移动滑块(28)两侧均设有阻尼弹簧;
    前后移动补偿机构包括前后径向导杆,前后径向导杆的一端固定在垂直向移动滑块(28)上,前后径向导杆上设有前后径向移动滑块(214),前后径向移动滑块(214)两侧均设有阻尼弹簧;
    左右移动补偿机构包括水平向导杆、径向移动滑块端盖(217),径向移动滑块端盖(217)固定在前后径向移动滑块(214)上,前后径向移动滑块(214)内设有滑动腔;水平向导杆的部分位于滑动腔内,水平向导杆一端并穿过前后径向移动滑块(214),水平向圆柱导杆(215)中间设有轴肩,水平向圆柱导杆(215)的轴肩两侧分别设有阻尼弹簧;水平向圆柱导杆(215)可在前后径向移动滑块(214)形成的滑动腔内移动;
    转动补偿功能机构包括大腿支撑板固定座铰链销(218)、大腿支撑板固定座(219);大腿支撑板固定座(219)通过大腿支撑板固定座铰链销(218)铰接在水平向圆柱导杆(215)上,大腿支撑板(220)固定在大腿支撑板固定座(219)上。
  6. 根据权利要求5所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述小腿杆自适应腿部绑缚组件(3)包括小腿支撑板(310)、左右移动补偿机构、转动补偿机构和上下移动补偿机构;
    左右移动补偿机构用于对小腿支撑板(310)实现水平方向的左右移动补偿,转动补偿机构用于对小腿支撑板(310)实现绕水平移动轴的转动补偿,上下移动补偿机构用于对小腿支撑板(310)实现垂直方向的上下移动补偿功能。
  7. 根据权利要求6所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述左右移动补偿机构包括小腿支撑板固定座(36)、小腿支撑板支架(34),小腿支撑板固定座(36)可沿小腿支撑板支架(34)进行移动,小腿支撑板固定座(36)的两侧设有阻尼弹簧;
    所述小腿支撑板固定座(36)还可绕小腿支撑板支架(34)转动,构成转动补偿机构;
    上下移动补偿机构包括设置在小腿支撑板(310)上的滑槽,所述小腿支撑板固定座(36)可沿滑槽上下移动。
  8. 根据权利要求7所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述小腿支撑板(310)上的滑槽上设有限位螺钉(39)。
  9. 根据权利要求7所述的一种带有自适应绑缚的外骨骼机器人膝关节,其特征在于:
    所述小腿支撑板支架(34)的一端通过支架铰链销(32)与小腿支架固定座(31)铰接,小腿支撑板支架(34)与小腿支架固定座(31)还通过拉环弹簧销(33)进行固定;小腿支架固定座(31)固定在小腿杆(19)上。
PCT/CN2021/138029 2021-04-23 2021-12-14 一种带有自适应绑缚的外骨骼机器人膝关节 WO2022222506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110442718.6A CN113183177B (zh) 2021-04-23 2021-04-23 一种带有自适应绑缚的外骨骼机器人膝关节
CN202110442718.6 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022222506A1 true WO2022222506A1 (zh) 2022-10-27

Family

ID=76978267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138029 WO2022222506A1 (zh) 2021-04-23 2021-12-14 一种带有自适应绑缚的外骨骼机器人膝关节

Country Status (2)

Country Link
CN (1) CN113183177B (zh)
WO (1) WO2022222506A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183177B (zh) * 2021-04-23 2023-10-20 中国科学院深圳先进技术研究院 一种带有自适应绑缚的外骨骼机器人膝关节
CN113771084A (zh) * 2021-08-16 2021-12-10 迈宝智能科技(苏州)有限公司 膝关节弹性驱动装置及外骨骼机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140100493A1 (en) * 2012-10-04 2014-04-10 Travis Craig Bipedal Exoskeleton and Methods of Use
CN104825312A (zh) * 2015-05-06 2015-08-12 电子科技大学 一种外骨骼机器人小腿自适应绑缚设计
CN107320286A (zh) * 2017-08-09 2017-11-07 北京航空航天大学 一种可弹性补偿轴线位移的膝关节外骨骼装置
US20180200135A1 (en) * 2015-06-26 2018-07-19 The Regents Of The University Of California Exoskeleton legs to reduce fatigue during repetitive and prolonged squatting
US20190030707A1 (en) * 2016-11-10 2019-01-31 Shenzhen Milebot Robotics Co., Ltd. Flexible driver, robot joint, robot and exoskeleton robot
CN110193819A (zh) * 2019-06-27 2019-09-03 迈宝智能科技(苏州)有限公司 用于可穿戴外骨骼的自适应膝关节机构及装置
US20200155264A1 (en) * 2018-11-15 2020-05-21 Stemrad Ltd. Weight distribution exoskeleton
CN113183177A (zh) * 2021-04-23 2021-07-30 中国科学院深圳先进技术研究院 一种带有自适应绑缚的外骨骼机器人膝关节

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332136B2 (ja) * 2005-06-03 2009-09-16 本田技研工業株式会社 肢体アシスト装置および肢体アシストプログラム
US9198821B2 (en) * 2011-09-28 2015-12-01 Northeastern University Lower extremity exoskeleton for gait retraining
CN104490568B (zh) * 2014-12-25 2017-02-01 北京航空航天大学 人体下肢外骨骼助行康复机器人
CN106539665B (zh) * 2015-09-17 2019-02-01 山东经典医疗器械科技有限公司 下肢外骨骼康复训练机器人的腿托
CN106074094B (zh) * 2016-08-17 2018-06-15 电子科技大学 一种可解锁的自适应外骨骼膝关节支撑板
CN109199799A (zh) * 2018-09-18 2019-01-15 内蒙古工业大学 一种基于连杆驱动的膝关节外骨骼机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140100493A1 (en) * 2012-10-04 2014-04-10 Travis Craig Bipedal Exoskeleton and Methods of Use
CN104825312A (zh) * 2015-05-06 2015-08-12 电子科技大学 一种外骨骼机器人小腿自适应绑缚设计
US20180200135A1 (en) * 2015-06-26 2018-07-19 The Regents Of The University Of California Exoskeleton legs to reduce fatigue during repetitive and prolonged squatting
US20190030707A1 (en) * 2016-11-10 2019-01-31 Shenzhen Milebot Robotics Co., Ltd. Flexible driver, robot joint, robot and exoskeleton robot
CN107320286A (zh) * 2017-08-09 2017-11-07 北京航空航天大学 一种可弹性补偿轴线位移的膝关节外骨骼装置
US20200155264A1 (en) * 2018-11-15 2020-05-21 Stemrad Ltd. Weight distribution exoskeleton
CN110193819A (zh) * 2019-06-27 2019-09-03 迈宝智能科技(苏州)有限公司 用于可穿戴外骨骼的自适应膝关节机构及装置
CN113183177A (zh) * 2021-04-23 2021-07-30 中国科学院深圳先进技术研究院 一种带有自适应绑缚的外骨骼机器人膝关节

Also Published As

Publication number Publication date
CN113183177A (zh) 2021-07-30
CN113183177B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN109009866B (zh) 可坐式下肢外骨骼康复机器人
CN107773384B (zh) 一种变刚度下肢外骨骼机器人
US10524972B2 (en) Machine to human interfaces for communication from a lower extremity orthotic
US10327975B2 (en) Reconfigurable exoskeleton
WO2022222506A1 (zh) 一种带有自适应绑缚的外骨骼机器人膝关节
CN110897834A (zh) 一种适用于脑瘫患儿步态训练的可调节下肢外骨骼装置
CN115300864B (zh) 一种用于横向行走康复的髋关节外骨骼
WO2022222503A1 (zh) 一种运动解耦并联驱动型外骨骼机器人踝关节
CN209036530U (zh) 一种多自由度自适应膝关节康复训练外骨骼
WO2022222501A1 (zh) 一种新型自平衡外骨骼机器人
CN105105897A (zh) 一种用于穿戴式下肢外骨骼机器人的足部装置
CN110787024B (zh) 一种采用无动力补偿关节的肩关节康复外骨骼机构
CN113771005B (zh) 穿戴型随动控制电力驱动助力外骨骼装置
CN215132743U (zh) 一种多运动轴膝关节外骨骼结构
CN113771003B (zh) 穿戴型电动智能助残外骨骼身体姿态控制装置
CN114392139B (zh) 一种脑瘫儿童用下肢外骨骼康复机器人
CN211272090U (zh) 一种下肢外骨骼康复机器人
CN114952795A (zh) 可穿戴式有源上肢托举助力外骨骼
Sun et al. Dynamic analysis of horizontal lower limbs rehabilitative robot
CN209548333U (zh) 一种无动力髋关节储能助行外骨骼
CN114750135B (zh) 一种机器人关节结构
CN113799100B (zh) 具备载荷传导功能的上肢多关节主动助力外骨骼
CN113908014B (zh) 一种手部功能康复机器人
Gao et al. Design of Knee Exoskeleton Robot Based on Human Physiology
CN117919061B (zh) 基于主动变刚度关节的下肢外骨骼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937728

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21937728

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2024)