WO2022222023A1 - User equipment (ue) capability information for frequency band combination conflict - Google Patents

User equipment (ue) capability information for frequency band combination conflict Download PDF

Info

Publication number
WO2022222023A1
WO2022222023A1 PCT/CN2021/088323 CN2021088323W WO2022222023A1 WO 2022222023 A1 WO2022222023 A1 WO 2022222023A1 CN 2021088323 W CN2021088323 W CN 2021088323W WO 2022222023 A1 WO2022222023 A1 WO 2022222023A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability information
multi connectivity
respect
signals
frequency band
Prior art date
Application number
PCT/CN2021/088323
Other languages
French (fr)
Inventor
Xuanfan SHEN
Hao ZHAO
Weikai ZHANG
Chunhua Liu
Dimeng WANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/088323 priority Critical patent/WO2022222023A1/en
Publication of WO2022222023A1 publication Critical patent/WO2022222023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to user equipment (UE) capability information with respect to frequency band combination conflict.
  • UE user equipment
  • Certain embodiments of the technology discussed below can enable and provide UE capability information regarding antenna ports available with respect to multi connectivity carrier aggregation (CA) frequency band combination conflict.
  • CA carrier aggregation
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks may be multiple access networks that support communications for multiple users by sharing the available network resources.
  • a wireless communication network may include several components. These components may include wireless communication devices, such as base stations (or node Bs) that may support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on a downlink to a UE or may receive data and control information on an uplink from the UE.
  • CA carrier aggregation
  • LTE long term evolution
  • eNB evolved node B
  • 5G NR 5th Generation new radio
  • gNB next generation eNB
  • the UE antenna ports used for receiving LTE signals may conflict with the UE antenna ports used for receiving 5G NR sounding reference signals (SRSs) .
  • SRSs 5G NR sounding reference signals
  • the LTE downlink is blanked for a subframe if there is any conflict in the antenna ports with 5G NR SRS.
  • a method of wireless communication may include receiving, from a user equipment (UE) , UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict.
  • the method may also include adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • UE user equipment
  • CA carrier aggregation
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor may be configured to receive, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the at least one processor may also be configured to adjust one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • an apparatus configured for wireless communication.
  • the apparatus may include means for receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the apparatus may also include means for adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • a non-transitory computer-readable medium stores instructions for wireless communication.
  • the instructions when executed by a processor, may cause the processor to perform operations including receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the instructions may also cause the processor to perform operations including adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • a method of wireless communication may include transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the method may also include communicating, between the UE and the base station, signals providing the multi connectivity CA.
  • One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the at least one processor.
  • the at least one processor may be configured to transmit, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the at least one processor may also be configured to communicate, between the UE and the base station, signals providing the multi connectivity CA.
  • One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
  • an apparatus configured for wireless communication.
  • the apparatus may include means for transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the apparats may also include means for communicating, between the UE and the base station, signals providing the multi connectivity CA.
  • One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
  • a non-transitory computer-readable medium stores instructions for wireless communication.
  • the instructions when executed by a processor, may cause the processor to perform operations including transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • the instructions may also cause the processor to perform operations including communicating, between the UE and the base station, signals providing the multi connectivity CA.
  • One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system according to one or more aspects.
  • FIG. 2 is a block diagram illustrating examples of a base station and a user equipment (UE) according to one or more aspects.
  • FIG. 3 is a block diagram illustrating a portion of a wireless communication system implementing multi connectivity carrier aggregation (CA) according to one or more aspects.
  • CA multi connectivity carrier aggregation
  • FIG. 4 is a flow diagram illustrating an example process, such as may be implemented by a user equipment (UE) , that supports UE capability information according to one or more aspects.
  • UE user equipment
  • FIG. 5 is a flow diagram illustrating an example process, such as may be implemented by a base station, that supports UE capability information according to one or more aspects.
  • FIG. 6 is a block diagram of an example UE configuration that supports UE capability information according to one or more aspects.
  • FIG. 7 is a block diagram of an example base station configuration that supports UE capability information according to one or more aspects.
  • Carrier aggregation (CA) techniques enable more than one carrier to be combined together with respect to the uplink and/or downlink to increase available bandwidth and provide increased link capacity. Conflicts may, however, be presented with respect to the use of frequency bands of various CA frequency band combinations which can lead to less than optimum throughput.
  • ENDC evolved-Universal Mobile Telecommunications Systems Terrestrial radio access network New Radio –Dual Connectivity
  • UE user equipment
  • eNB long term evolution
  • 5G NR 5th Generation new radio
  • gNB next generation eNB
  • SRS sounding reference signals
  • some of the same UE antenna ports may be designated for use both for receiving the 5G NR SRS and receiving LTE signals, thereby resulting in conflict at the UE with respect to these antenna ports implementing the CA communication.
  • both the LTE signal transmission/reception and the 5G NR SRS reception are active at the same time signal degradation of the 5G NR SRS and/or LTE signals, such as may result in decode errors, may be experienced.
  • An eNB operating according to ENDC blanks the LTE downlink for a subframe if there is any conflict in the antenna ports with 5G NR SRS when a CA frequency band combination with both LTE and 5G NR bands is used. Such blanking of the LTE downlink may result in an appreciable decrease in the throughput otherwise available through the ENDC CA technique.
  • UE capability information regarding antenna ports available with respect to multi (e.g., dual, triple, etc. ) connectivity CA frequency band combination conflict may be provided.
  • UE capability information may include information with respect to a number of antenna ports available at the UE for communicating signals of a first wireless technology (e.g., LTE uplink and/or downlink signals) of two wireless technologies providing multi connectivity CA in association with communicating signals of a second wireless technology (e.g., 5G NR uplink and/or downlink signals) of the two wireless technologies providing the multi connectivity CA.
  • a first wireless technology e.g., LTE uplink and/or downlink signals
  • a second wireless technology e.g., 5G NR uplink and/or downlink signals
  • UE capability information may be utilized in adjusting one or more aspects of communication scheduling (e.g., adjusting uplink and/or downlink scheduling with respect to the UE in accordance with to the UE capability information) .
  • UE capability information may be utilized to adjust a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, etc., or a combination thereof, with respect to communication of one or more signals for the multi connectivity CA.
  • MCS modulation and coding scheme
  • the present disclosure provides techniques for a base station referring to UE capability information uploaded by a UE being provided multi connectivity CA service and adjusting one or more aspects of a communication link (e.g., the MCS, downlink layers, beamforming, power control, etc. ) rather than blanking communication of a subframe (e.g., blanking transmission of a downlink subframe) . Accordingly, operation according to some aspects of the disclosure provide for continued communication where a frequency band combination conflict is experienced, resulting in improved or optimized throughput in these situations.
  • a communication link e.g., the MCS, downlink layers, beamforming, power control, etc.
  • the base station In operation according to existing ENDC CA techniques, for example, the base station would blank the LTE downlink to avoid decode error due to the antenna port conflict.
  • utilization of UE capability information in accordance with aspects of the present disclosure facilitates continued, although perhaps less robust or diminished throughput, communications without the blanking of existing solutions.
  • this disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks, systems, or devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) .
  • GSM Global System for Mobile Communication
  • 3GPP 3rd Generation Partnership Project
  • GSM EDGE enhanced data rates for GSM evolution
  • RAN radio access network
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs user equipments
  • a mobile phone operator's network may comprise one or more GERANs, which may be coupled with UTRANs in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, or one or more other networks.
  • the various different network types may use different radio access technologies (RATs) and RANs.
  • RATs radio access technologies
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification.
  • 3GPP LTE is a 3GPP project which was aimed at improving UMTS mobile phone standard.
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another technology. Additionally, one or more aspects of the present disclosure may be related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1 M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10 s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of
  • Devices, networks, and systems may be configured to communicate via one or more portions of the electromagnetic spectrum.
  • the electromagnetic spectrum is often subdivided, based on frequency or wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” (mmWave) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “mmWave” band.
  • EHF extremely high frequency
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • mmWave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) design or frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust mmWave transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • MIMO massive multiple input, multiple output
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink or downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink or downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more described aspects.
  • OEM original equipment manufacturer
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described aspects. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large devices or small devices, chip-level components, multi-component systems (e.g., radio frequency (RF) -chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • RF radio frequency
  • FIG. 1 is a block diagram illustrating details of an example wireless communication system according to one or more aspects.
  • the wireless communication system may include wireless network 100.
  • Wireless network 100 may, for example, include a 5G wireless network.
  • components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
  • Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” may refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) .
  • base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell, such as a pico cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • Wireless network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
  • UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a mobile apparatus is commonly referred to as a UE in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component, vehicular device, or vehicular module, or some other suitable terminology.
  • a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary.
  • Some non-limiting examples of a mobile apparatus such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • a mobile such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) .
  • PDA personal digital assistant
  • a mobile apparatus may additionally be an IoT or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a global navigation satellite system (GNSS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • IoE Internet of everything
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UEs that do not include UICCs may also be referred to as IoE devices.
  • UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
  • a mobile apparatus such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like.
  • a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • UEs may operate as base stations or other network nodes in some scenarios.
  • Backhaul communication between base stations of wireless network 100 may occur using wired or wireless communication links.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • wireless network 100 may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f.
  • base stations such as small cell base station 105f, and macro base station 105e
  • UE 115f communicating temperature measurement information to the smart meter
  • UE 115g which is then reported to the network through small cell base station 105f.
  • Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD communications or low-latency FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 is a block diagram illustrating examples of base station 105 and UE 115 according to one or more aspects.
  • Base station 105 and UE 115 may be any of the base stations and one of the UEs in FIG. 1.
  • base station 105 may be small cell base station 105f in FIG. 1
  • UE 115 may be UE 115c or 115d operating in a service area of base station 105f, which in order to access small cell base station 105f, would be included in a list of accessible UEs for small cell base station 105f.
  • Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • transmit processor 220 may receive data from data source 212 and control information from controller 240, such as a processor.
  • the control information may be for a physical broadcast channel (PBCH) , a physical control format indicator channel (PCFICH) , a physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , a physical downlink control channel (PDCCH) , an enhanced physical downlink control channel (EPDCCH) , an MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for a physical downlink shared channel (PDSCH) , etc.
  • transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal.
  • Transmit (TX) MIMO processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MIMO processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t.
  • MODs modulators
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller 280, such as a processor.
  • controller 280 such as a processor.
  • transmit processor 264 may receive and process data (e.g., for a physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for a physical uplink control channel (PUCCH) ) from controller 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105.
  • data e.g., for a physical uplink shared channel (PUSCH)
  • control information e.g., for a physical uplink control channel (PUCCH)
  • PUCCH physical uplink control channel
  • the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115.
  • Receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller 240.
  • Controllers 240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller 240 or other processors and modules at base station 105 or controller 280 or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 4 and 5, or other processes for the techniques described herein. Memories 242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink or the uplink.
  • Base stations 105 and UEs 115 of wireless network 100 may implement various CA techniques, such as to increase available bandwidth and provide increased link capacity.
  • various ones of base stations 105 and UEs 115 of wireless network 100 may implement CA provided according to an ENDC technique in which one or more UEs connect to a base station operating as a LTE eNB acting as a master node for the CA and to a base station operating as a 5G NR gNB acting as a secondary node for the CA.
  • Dual connectivity may, for example, be implemented to increase the per-user throughput by improving the utilization of radio resources across two base stations operating on different carrier frequencies.
  • FIG. 3 shows wireless network portion 300, such as may comprise a portion of wireless network 100 shown in FIG. 1, wherein multi connectivity CA operation is implemented with respect to a UE.
  • UE 315a e.g., such as may correspond to any UE of FIGS. 1 and 2
  • base stations 305a and 305b e.g., such as may correspond to various combinations of base stations of FIGS. 1 and 2 .
  • base stations 305a and 305b e.g., such as may correspond to various combinations of base stations of FIGS. 1 and 2 .
  • base stations 305a and 305b may be co-located or otherwise disposed other than shown in the illustrated example.
  • Base stations 305a and 305b may be operable using the same or different wireless technologies (e.g., wireless technologies from LTE, 4G, 5G NR, etc. ) .
  • base stations 305a and 305b are shown as being connected by backhaul link 340 (e.g., implementing an X2 interface) utilized in facilitating multi connectivity CA operation.
  • Backhaul link 340 may, for example, comprise a wired link and/or a wireless link, and may provide a direct or indirect (e.g., routed via one or more additional network nodes) link between base stations 305a and 305b.
  • base station 305a is operating as a master node (MN)
  • base station 305b is operating as a secondary node (SN)
  • UE 315a may initially be in communication with base station 305a using communication link 320, shown as comprising downlink 321 and uplink 322.
  • Communication link 320 facilitates communication between base station 305a and UE 315a with some upper limit on throughput and capacity.
  • base stations 305a and 305b may be hosting communication links with respect to a plurality of UEs and/or other network devices.
  • the downlink and uplink bearer resources available for and utilized with respect to UE 315a in providing communication link 320 may accommodate data throughput at a level appreciably less than that of an ideal throughput capability available from the base station.
  • data communicated from the network to UE 315a e.g., data carried by downlink 321 and/or data communicated from UE 315a to the network (e.g., data carried by uplink 322) may be such that resources of a respective communication link are unable to satisfactorily carry the traffic (e.g., failing to meet a required quality of service (QOS) , having noticeable jitter, resulting in dropped data packets, with unacceptable delay, etc. ) between base station 305a and UE 315a.
  • QOS quality of service
  • Multi connectivity operation makes it possible for UE 315a to maintain the connection to base station 305a, operable as a MN, while accessing extra capacity provided by base station 305b, operable as a SN.
  • base station 305a may comprise a macro base station (e.g., any of base stations 105a-105e of FIG. 1) such that communication link 320 is provided by a cell of the macro base station, while base station 305b may comprise a small cell base station (e.g., base station 105f of FIG. 1) such that extra capacity provided by the small cell layer is accessed by communication link 330.
  • a macro base station e.g., any of base stations 105a-105e of FIG. 1
  • base station 305b may comprise a small cell base station (e.g., base station 105f of FIG. 1) such that extra capacity provided by the small cell layer is accessed by communication link 330.
  • part of the data stream directed to UE 315a may be transmitted to UE 315a by base station 305a via downlink 321, while another part of the data stream may be forwarded to base station 305b for transmission to UE 315a by base station 305b via downlink 331.
  • part of the data stream directed to the network by UE 315a may be transmitted to base station 305a by UE 315a via uplink 322, while another part of the data stream directed to the network by UE 315a may be transmitted to base station 305b by UE 315a via uplink 332.
  • the load on the MN (base station 305a) for the bearer activities with respect to the UE are shared via the SN (base station 305b) , such as to provide split bearer operation.
  • a number of frequency band combinations may be possible in implementing a multi connectivity CA session.
  • a plurality of different combinations of LTE and 5G NR frequency bands may be utilized by a CA session between a UE and one or more base stations providing the LTE master node and the 5G NR secondary node.
  • a UE may upload one or more supported CA frequency band combinations using a BandCombinationList information element transmitted via radio resource control (RRC) signaling.
  • RRC radio resource control
  • An ENDC CA frequency band combination may comprise one or more LTE frequency band and one or more 5G NR frequency band.
  • a specific example of an ENDC CA frequency band combination comprising one 5G NR frequency band and two LTE frequency bands may be represented as (NR N78/LTE B3/LTE B1) , wherein B1 comprises the 2.1 GHz IMT core band utilized in LTE deployments, B3 comprises the 1.8 GHz frequency band utilized in LTE deployments, and N78 comprises the 3.5 GHz frequency band utilized in 5G NR deployments.
  • UE antenna ports utilized for LTE signal transmission and/or reception may conflict with UE antenna ports utilized for 5G NR SRS reception. That is, one or more same UE antenna ports may be designated for utilization both for LTE signal transmission/reception and for 5G NR SRS reception, whereby if both the LTE signal transmission/reception and the 5G NR SRS reception are active at the same time a conflict may be presented (e.g., wireless radio circuitry of the UE operable to transmit and/or receive LTE signals may communicate signals using a same UE antenna port simultaneously with wireless radio circuitry of the UE operable to receive 5G NR SRS signals) .
  • a UE may utilize antenna ports 2 and 3 with respect to N78 SRS, antenna ports 2, 4, 5, and 6 with respect to B3 receiving, and antenna ports 1, 3, 7, and 8 with respect to B1 receiving (e.g., presenting CA frequency band combination conflicts on antenna port 2 with respect to N78 and B3 and antenna port 3 with respect to N78 and B1 when both are in use) .
  • Such CA frequency band combination conflicts can result in poor or failed communications.
  • a UE may experience decoding errors with respect to a LTE downlink and/or 5G NR SRS due to the above described antenna port conflicts.
  • ENDC operation provides for blanking a subframe of the LTE downlink if there is any conflict in the antenna ports with 5G NR SRS.
  • a UE may upload the LTE frequency bands whose antenna ports conflict with the SRS via the BandCombinationList information element in order to facilitate the aforementioned blanking operation.
  • the txSwitchImpactToRx field of the BandCombinationList information element may be used to report if receiving for the given LTE band in a frequency band combination conflicts with a 5G NR SRS antenna port (e.g., txSwitchImpactToRx identifies the LTE frequency bands whose antenna ports used for receiving the LTE signals conflict with 5G NR SRS, without providing any information regarding particular antenna ports in conflict) .
  • the base station operating as a LTE eNB master node for the multi connectivity CA would blank the LTE downlink in any LTE subframes that collide with 5G NR SRS antenna switching to avoid decode error at the UE due to the antenna port conflict.
  • the txSwitchWithAnotherBand field of the BandCombinationList information element may be used to report if transmitting for the given LTE band in a frequency band combination is impacted by 5G NR SRS (e.g., txSwitchWithAnotherBand identifies the LTE frequency bands whose antenna ports used for transmitting the LTE signals conflict with 5G NR SRS, without providing any information regarding particular antenna ports in conflict) .
  • the base station operating as a LTE eNB master node for the multi connectivity CA would blank the UE uplink transmission in any LTE subframes that collide with 5G NR SRS antenna switching to maintain signal quality in the uplink.
  • the foregoing blanking presents a significant throughput cost by decreasing the throughput otherwise available through the ENDC CA technique.
  • antenna ports which are not subject to a conflict there may be four UE antenna ports utilized for receiving LTE signals and only a subset of those antenna ports may experience a conflict with the 5G NR SRS ports of any particular frequency band combination.
  • antenna port 2 corresponding to the LTE B3 signals conflicts with antenna port 2 corresponding to the 5G NR N78 SRS signals, antenna ports 4, 5, and 6 corresponding to the LTE B3 signals remain without conflict.
  • antenna port 3 corresponding to the LTE B1 signals conflicts with antenna port 3 corresponding to the 5G NR N78 SRS signals
  • antenna ports 1 7, and 8 corresponding to the LTE B1 signals remain without conflict. That is, there are three UE antenna ports available for receiving LTE B3 and B1 signals in this example.
  • aspects of the present disclosure facilitate the use of available UE antenna ports despite there being a frequency band combination conflict.
  • the LTE downlink would continue to operate using limited antenna ports (e.g., the three available antenna ports available with respect to B3 and/or the three antenna ports available with respect to B1) when the 5G NR SRS is active, rather than blanking the LTE downlink for any subframe in which the 5G NR SRS is active.
  • UEs report UE capability information for facilitating the use of available UE antenna ports despite there being one or more conflicts with respect to use of a frequency band combination.
  • UE capability information may, for example, comprise UE capability information with respect to multi connectivity CA frequency band combination conflict.
  • a UE may report UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict for one or more frequency band combinations.
  • UE capability information may provide the number of antenna ports available for receiving signals of a first wireless technology of two wireless technologies providing multi connectivity.
  • a UE may, for example, report the number of antenna ports available for receiving LTE downlink signals (e.g., UE LTE downlink capability) with respect to a conflict (e.g., when 5G NR SRS is active) .
  • UE capability information may be transmitted to a base station by a UE according to aspects of the disclosure using various means, such as RRC signaling, PUCCH, etc.
  • a base station may utilize UE capability information for facilitating the use of available UE antenna ports despite there being one or more conflicts with respect to use of a frequency band combination.
  • a base station may receive UE capability information with respect to multi connectivity CA frequency band combination conflict for facilitating limited or modified communications with respect to a conflict rather than blanking communications (e.g., blanking transmission of a subframe) .
  • a base station may receive reporting from a UE providing UE capability information regarding the number of antenna ports available for receiving signals of a first wireless technology of two wireless technologies providing multi connectivity.
  • UE capability information may be received from one or more UEs by a base station according to aspects of the disclosure using various means, such as RRC signaling, PUCCH, etc.
  • base stations adjust, alter, modify, or otherwise change one or more aspects of a communication link (e.g., aspects of communication scheduling) to facilitate use of available UE antenna ports by a UE implementing multi connectivity despite there being one or more conflicts with respect to use of a frequency band combination.
  • a base station referring to UE capability information received from a UE, may adjust the MCS, downlink layers, beamforming, power control, etc., or a combination thereof with respect to a communication link with the UE when a corresponding frequency band combination is called (e.g., a frequency band combination for which UE capability information is provided is implemented for multi connectivity CA with respect to the reporting UE) .
  • a base station referring to UE capability information received from a UE, may adjust the MCS, downlink layers, beamforming, power control, etc., or a combination thereof with respect to a communication link with the UE when a corresponding frequency band combination is called (e.g., a frequency band combination for which UE capability information is provided is implemented
  • FIGS. 4 and 5 show example operations providing for UE capability information with respect to frequency band combination conflict in accordance with some aspects of the present disclosure.
  • FIG. 4 illustrates example blocks executed by a UE with respect to an implementation providing UE capability information with respect to frequency band combination conflict.
  • FIG. 5 illustrates example blocks executed by a base station with respect to an implementation facilitating utilization of UE capability information with respect to frequency band combination conflict.
  • flow 400 of the illustrated example shows operation by a UE according to a UE implementing a capability information technique of some aspects of the present disclosure.
  • a UE may transmit UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • UE 315a may transmit (e.g., using transmit processor 264, TX MIMO processor 266, MODs 254a-254r, and antennas 252a-252r, such as under control of controller 280) UE capability information to one or more base stations, such as one or more of base station 305a (e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a) and/or base station 305b (e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a) .
  • base station 305a e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a
  • base station 305b e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a
  • the UE capability information is configured for utilization by one or more base stations in facilitating the use of available UE antenna ports despite there being a multi connectivity CA frequency band combination conflict.
  • the UE capability information may, for example, comprise information regarding a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing multi connectivity CA.
  • the UE capability information of some examples may include UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • logic implemented by a UE may generate the UE capability information for a selected multi connectivity CA frequency band combination from information regarding antenna ports to communicate signals (e.g., transmit and/or receive LTE signals) of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports to communicate signals (e.g., 5G NR SRS) of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • signals e.g., transmit and/or receive LTE signals
  • signals e.g., 5G NR SRS
  • logic implemented by a UE may analyze information regarding one or more frequency band combinations (e.g., multi connectivity CA frequency band combinations, as may be stored in a frequency band combination database stored by memory 282) to determine the multi connectivity CA frequency band combinations supported by the UE, identify the antenna ports utilized by the frequency bands of the supported multi connectivity CA frequency band combinations (e.g., the antenna ports for LTE receive and/or transmit bands, the antenna ports for 5G NR SRS, etc. ) , identify conflicts with respect to the use of the antenna ports associated with communications of first and second wireless technologies of a multi connectivity technique, and determine numbers of antenna ports available at the UE for communicating signals of the first wireless technology in light of the identified conflicts.
  • frequency band combinations e.g., multi connectivity CA frequency band combinations, as may be stored in a frequency band combination database stored by memory 282
  • identify the antenna ports utilized by the frequency bands of the supported multi connectivity CA frequency band combinations e.g., the antenna ports for LTE receive and/or transmit bands, the antenna ports for 5G NR SRS, etc.
  • the UE capability information may be transmitted by the UE by various means.
  • UE capability information may be transmitted as RRC information.
  • UE capability information may be transmitted with or in association with transmission of information regarding frequency band combinations supported by the UE.
  • UE capability information may be transmitted via a BandCombinationList information element, such as within an existing field (e.g., legacy dual connectivity CA parameter) originally provided for other purposes and/or a field (e.g., one or more parameters configured for UE capability information) added for supporting UE capability information.
  • UE capability information may be transmitted via another RRC information element, via other signaling (e.g., information carried by PUCCH) , etc.
  • the UE may communicate signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information.
  • UE 315a may communicate (e.g., using transmit processor 264, TX MIMO processor 266, MODs 254a-254r, and antennas 252a-252r with respect to uplink communications and/or antennas 234a-234t, DEMODs 254a-254r, MIMO detector 256, and receive processor 258, such as may be operable under control of controller 280) with one or more base stations (e.g., base stations 305a and 305b) in accordance with a multi connectivity CA technique.
  • base stations e.g., base stations 305a and 305b
  • one or more of the base stations may alter one or more aspects of a communication link (e.g., aspects of communication scheduling) to facilitate use of available UE antenna ports by the UE for a frequency band combination utilized in providing the multi connectivity CA.
  • the UE may thus communicate signals providing the multi connectivity CA in accordance with the altered aspects of scheduling that have been adjusted in accordance with the UE capability information.
  • flow 500 of the illustrated example shows operation by a base station implementing a capability information technique of some aspects of the present disclosure.
  • a base station may receive UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict.
  • base station 305a may receive (e.g., using antennas 234a-234t, DEMODs 232a-232t, MIMO detector 236, and receive processor 238, such as under control of controller 240) UE capability information from one or more UE, such as UE 315a.
  • MN such as an eNB for a ENDC CA implementation with respect to UE 315a
  • 305b e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a
  • receive e.g., using antennas 234a-234t, DEMODs 232a-232t, MIMO detector 236, and receive processor 238, such as under control of controller 240
  • UE capability information from one or more UE, such as UE 315a.
  • the UE capability information may be utilized by a base station for facilitating the use of available UE antenna ports despite there being a multi connectivity CA frequency band combination conflict.
  • UE capability information of some examples comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • the UE capability information may be received by the base station by various means.
  • UE capability information may be received as RRC information.
  • UE capability information may be received with or in association with information regarding frequency band combinations supported by the UE.
  • UE capability information may be received via a BandCombinationList information element, such as within an existing field (e.g., legacy dual connectivity CA parameter) originally provided for other purposes and/or a field (e.g., one or more parameters configured for UE capability information) added for supporting UE capability information.
  • UE capability information may be received via another RRC information element, via other signaling (e.g., information carried by PUCCH) , etc.
  • logic implemented by a base station may analyze signaling received from one or more UEs to parse UE capability information for use with respect to the UEs.
  • logic implemented by a base station may analyze RRC information received from a UE to extract UE capability information therefrom. Additionally or alternatively, logic implemented by a base station may analyze information carried via PUCCH to extract UE capability information therefrom.
  • a base station implementing a capability information technique of some aspects of the present disclosure may store (e.g., in a UE capability information database stored by memory 242) UE capability information for utilization in facilitating the use of available UE antenna ports despite there being a multi connectivity CA frequency band combination conflict.
  • a UE capability information database of some examples of a base station configured for implementing a UE capability information technique may, for example, store UE capability information for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by a UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • the base station adjusts one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • base station 305a e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a
  • 305b e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a
  • aspects of communication scheduling adjusted by a base station implementing a UE capability information technique may include altering, modifying, or otherwise changing one or more aspects of a communication link with a UE being provided multi connectivity CA based upon the UE capability information provided by the UE for the frequency band combination in use or to be used.
  • logic implemented by a base station e.g., UE capability information logic stored by memory 242 and executed by controller 240
  • CSI channel state information
  • BLER block error ratio
  • aspects of communication scheduling that may be adjusted according to some examples of the disclosure include a MCS, a number of downlink layers, beamforming, power control, etc., as well as combinations thereof.
  • adjusting the MCS, the rank, the number of downlink layers, the beamforming, the power control, or a combination thereof may be performed in association with a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE (e.g., a frequency band combination for which UE capability information is provided is implemented for multi connectivity CA with respect to the UE) .
  • FIG. 6 is a block diagram of an example UE 615 that supports UE capability information techniques according to one or more aspects of the disclosure.
  • UE 615 may be configured to perform operations of a UE capability information technique, including the blocks of flow 400 of FIG. 4.
  • UE 615 includes the structure, hardware, and components shown and described with reference to UE 115 of FIGS. 1 and 2 and UE 315 of FIG. 3.
  • controller 280 which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 615 that provide the features and functionality of UE 615.
  • UE 615 under control of controller 280, transmits and receives signals via wireless radios 601a-r and antennas 252a-r.
  • Wireless radios 601a-r include various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator and demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
  • memory 282 may include UE capability information logic 602 and frequency band combination database 603.
  • UE capability information logic 602 may be configured to generate UE capability information for one or more multi connectivity CA frequency band combinations, control transmission of UE capability information, and/or control communication signals adjusted in accordance with the UE capability information.
  • Frequency band combination database 603 may be configured to store various information, such as information regarding multi connectivity CA frequency band combinations, antenna ports utilized with respect to frequency bands, conflicts associated with particular frequency band combinations, etc., as may be utilized by UE capability information logic 602.
  • UE 615 may receive signals from or transmit signals to one or more network entities, such as base stations 105 of FIGS. 1 and 2, base stations 315 of FIG. 3, and/or a base station as illustrated in FIG. 7.
  • FIG. 7 is a block diagram of an example base station 705 that supports UE capability information techniques according to one or more aspects of the disclosure.
  • Base station 705 may be configured to perform operations of a UE capability information technique, including the blocks of flow 500 described with reference to FIG. 5.
  • base station 705 includes the structure, hardware, and components shown and described with reference to base stations 105 of FIGS. 1 and 2 and base stations 305 of FIG. 3.
  • base station 705 may include controller 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 705 that provide the features and functionality of base station 705.
  • Wireless radios 701a-t include various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator and demodulators 232a-t, transmit processor 220, TX MIMO processor 230, MIMO detector 236, and receive processor 238.
  • the memory 242 may include UE capability information logic 702 and UE capability information database 703.
  • UE capability information logic 702 may be configured to receive UE capability information and/or adjust one or more aspects of communication scheduling in accordance with the UE capability information.
  • UE capability information database logic 703 may be configured to store various information, such as information regarding UEs implementing multi connectivity CA, frequency band combinations supported by the UEs, UE capability information with respect to frequency band combinations supported by the UEs, etc., as may be utilized by UE capability information logic 702.
  • Base station 705 may receive signals from or transmit signals to one or more UEs, such as UEs 115 of FIGS. 1 and 2, UE 315 of FIG. 3, and/or UE 615 of FIG. 6.
  • one or more blocks (or operations) described with reference to FIGS. 4 and 5 may be combined with one or more blocks (or operations) described with reference to another of the figures.
  • one or more blocks (or operations) of FIG. 4 may be combined with one or more blocks (or operations) of FIG. 5.
  • one or more blocks associated with FIGS. 4 and 5 may be combined with one or more blocks (or operations) associated with FIGS. 1-3, 6, and/or 7.
  • one or more operations described above with reference to FIGS. 1-3 may be combined with one or more operations described with reference to FIGS. 6 and/or 7.
  • multi-slot transport block techniques may be implemented according to a multiplicity of combinations consistent with concepts described herein.
  • Non-limiting examples of combinations of some aspects of a multi-slot transport block technique are set forth in the example clauses below.
  • Methods, apparatuses, and articles for wireless communication may provide for receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict, and adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  • the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • the multi connectivity CA frequency band combination conflict comprises a conflict with respect antenna ports for receiving signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports for receiving sounding reference signals (SRS) of the second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • SRS sounding reference signals
  • adjusting one or more aspects of communication scheduling provides for adjusting, with respect to communication of one or more signals for the multi connectivity CA, a MCS, a number of downlink layers, beamforming, power control, or a combination thereof.
  • Methods, apparatuses, and articles for wireless communication may provide for transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict, and communicating, between the UE and the base station, signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information.
  • the UE capability information includes UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  • Components, the functional blocks, and the modules described herein with respect to FIGS. 1-7 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, among other examples, or any combination thereof.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular processes and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also may be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
  • Computer-readable media includes both computer storage media and communication media including any medium that may be enabled to transfer a computer program from one place to another.
  • a storage media may be any available media that may be accessed by a computer.
  • Such computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable read-only memory (EEPROM) , CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection may be properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • the term “or, ” when used in a list of two or more items means that any one of the listed items may be employed by itself, or any combination of two or more of the listed items may be employed. For example, if a composition is described as containing components A, B, or C, the composition may contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof.
  • the term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; for example, substantially 90 degrees includes 90 degrees and substantially parallel includes parallel) , as understood by a person of ordinary skill in the art. In any disclosed implementations, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes . 1, 1, 5, or 10 percent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Systems, methods, and devices for wireless communication that support user equipment (UE) capability information with respect to frequency band combination conflict are described. According to some aspects, UE capability information regarding antenna ports available with respect to multi connectivity carrier aggregation (CA) frequency band combination conflict may be provided. UE capability information may include information with respect to a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA. UE capability information may be utilized in adjusting one or more aspects of communication scheduling, such as to adjust a modulation and coding scheme (MCS), a number of downlink layers, beamforming, power control, etc., or a combination thereof. Other aspects and features are also claimed and described.

Description

USER EQUIPMENT (UE) CAPABILITY INFORMATION FOR FREQUENCY BAND COMBINATION CONFLICT TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to user equipment (UE) capability information with respect to frequency band combination conflict. Certain embodiments of the technology discussed below can enable and provide UE capability information regarding antenna ports available with respect to multi connectivity carrier aggregation (CA) frequency band combination conflict.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks may be multiple access networks that support communications for multiple users by sharing the available network resources.
A wireless communication network may include several components. These components may include wireless communication devices, such as base stations (or node Bs) that may support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station. A base station may transmit data and control information on a downlink to a UE or may receive data and control information on an uplink from the UE.
Various techniques, such as carrier aggregation (CA) in which more than one carrier are combined together, have been implemented to increase the available bandwidth and provide increased link capacity between wireless communication devices. Recently, ENDC (evolved-Universal Mobile Telecommunications Systems Terrestrial radio access network New Radio –Dual Connectivity) CA techniques have been proposed which allow UEs to connect to a long term evolution (LTE) evolved node B (eNB) that acts as a master node and a 5th Generation new radio (5G NR) next generation eNB (gNB) that acts as a secondary node. In ENDC, however, for CA frequency band combinations which involve both LTE and NR bands, the UE antenna ports used for receiving LTE signals may conflict with the UE antenna ports used for receiving 5G NR sounding reference signals (SRSs) . In operation according to ENDC with respect to CA frequency band combinations with both LTE and 5G NR bands, the LTE  downlink is blanked for a subframe if there is any conflict in the antenna ports with 5G NR SRS.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication is provided. The method may include receiving, from a user equipment (UE) , UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict. The method may also include adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is provided. The apparatus includes at least one processor, and a memory coupled to the at least one processor. The at least one processor may be configured to receive, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The at least one processor may also be configured to adjust one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is provided. The apparatus may include means for receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The apparatus may also include means for adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
In an additional aspect of the disclosure, a non-transitory computer-readable medium stores instructions for wireless communication. The instructions, when executed by a processor, may cause the processor to perform operations including receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The instructions may also cause the processor to  perform operations including adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
In an additional aspect of the disclosure, a method of wireless communication is provided. The method may include transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The method may also include communicating, between the UE and the base station, signals providing the multi connectivity CA. One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is provided. The apparatus includes at least one processor, and a memory coupled to the at least one processor. The at least one processor may be configured to transmit, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The at least one processor may also be configured to communicate, between the UE and the base station, signals providing the multi connectivity CA. One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is provided. The apparatus may include means for transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The apparats may also include means for communicating, between the UE and the base station, signals providing the multi connectivity CA. One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
In an additional aspect of the disclosure, a non-transitory computer-readable medium stores instructions for wireless communication. The instructions, when executed by a processor, may cause the processor to perform operations including transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. The instructions may also cause the processor to perform operations including communicating, between the UE and the base station, signals providing the multi connectivity CA. One or more aspects of scheduling with respect to the signals may be adjusted in accordance with the UE capability information.
Other aspects, features, and implementations will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary aspects in conjunction with the accompanying figures. While features may be discussed relative to certain aspects  and figures below, various aspects may include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects, the exemplary aspects may be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of an example wireless communication system according to one or more aspects.
FIG. 2 is a block diagram illustrating examples of a base station and a user equipment (UE) according to one or more aspects.
FIG. 3 is a block diagram illustrating a portion of a wireless communication system implementing multi connectivity carrier aggregation (CA) according to one or more aspects.
FIG. 4 is a flow diagram illustrating an example process, such as may be implemented by a user equipment (UE) , that supports UE capability information according to one or more aspects.
FIG. 5 is a flow diagram illustrating an example process, such as may be implemented by a base station, that supports UE capability information according to one or more aspects.
FIG. 6 is a block diagram of an example UE configuration that supports UE capability information according to one or more aspects.
FIG. 7 is a block diagram of an example base station configuration that supports UE capability information according to one or more aspects.
Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
Carrier aggregation (CA) techniques enable more than one carrier to be combined together with respect to the uplink and/or downlink to increase available bandwidth and provide increased link capacity. Conflicts may, however, be presented with respect to the use of frequency bands of various CA frequency band combinations which can lead to less than optimum throughput. For example, in an ENDC (evolved-Universal Mobile Telecommunications Systems Terrestrial radio access network New Radio –Dual Connectivity) CA technique, in which a user equipment (UE) connects to a long term evolution (LTE) evolved node B (eNB) that acts as a master node and a 5th Generation new radio (5G NR) next generation eNB (gNB) that acts as a secondary node, the antenna ports used for receiving LTE signals may conflict with the antenna ports used for receiving 5G NR sounding reference signals (SRS) . For example, of the antenna ports available for use at the UE, some of the same UE antenna ports may be designated for use both for receiving the 5G NR SRS and receiving LTE signals, thereby resulting in conflict at the UE with respect to these antenna ports implementing the CA communication. For example, if both the LTE signal transmission/reception and the 5G NR SRS reception are active at the same time signal degradation of the 5G NR SRS and/or LTE signals, such as may result in decode errors, may be experienced. An eNB operating according to ENDC blanks the LTE downlink for a subframe if there is any conflict in the antenna ports with 5G NR SRS when a CA frequency band combination with both LTE and 5G NR bands is used. Such blanking of the LTE downlink may result in an appreciable decrease in the throughput otherwise available through the ENDC CA technique.
The present disclosure provides systems, apparatus, methods, and computer-readable media that provide UE capability information with respect to frequency band combination conflict. According to some aspects of the disclosure, UE capability information regarding antenna ports available with respect to multi (e.g., dual, triple, etc. ) connectivity CA frequency band combination conflict may be provided. For example, UE capability information may include information with respect to a number of antenna ports available at the UE for communicating signals of a first wireless technology (e.g., LTE uplink and/or downlink signals) of two wireless  technologies providing multi connectivity CA in association with communicating signals of a second wireless technology (e.g., 5G NR uplink and/or downlink signals) of the two wireless technologies providing the multi connectivity CA.
UE capability information provided according to aspects of the disclosure may be utilized in adjusting one or more aspects of communication scheduling (e.g., adjusting uplink and/or downlink scheduling with respect to the UE in accordance with to the UE capability information) . For example, UE capability information may be utilized to adjust a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, etc., or a combination thereof, with respect to communication of one or more signals for the multi connectivity CA.
Particular implementations of the UE capability information described in this disclosure may be implemented to realize a variety of potential advantages or benefits. In some aspects, the present disclosure provides techniques for a base station referring to UE capability information uploaded by a UE being provided multi connectivity CA service and adjusting one or more aspects of a communication link (e.g., the MCS, downlink layers, beamforming, power control, etc. ) rather than blanking communication of a subframe (e.g., blanking transmission of a downlink subframe) . Accordingly, operation according to some aspects of the disclosure provide for continued communication where a frequency band combination conflict is experienced, resulting in improved or optimized throughput in these situations. In operation according to existing ENDC CA techniques, for example, the base station would blank the LTE downlink to avoid decode error due to the antenna port conflict. In contrast, utilization of UE capability information in accordance with aspects of the present disclosure facilitates continued, although perhaps less robust or diminished throughput, communications without the blanking of existing solutions.
As should be understood from the foregoing, this disclosure relates generally to providing or participating in authorized shared access between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various implementations, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks, systems, or devices) , as well as other  communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as Global System for Mobile Communication (GSM) . The 3rd Generation Partnership Project (3GPP) defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may comprise one or more GERANs, which may be coupled with UTRANs in the case of a UMTS/GSM network. Additionally, an operator network may also include one or more LTE networks, or one or more other networks. The various different network types may use different radio access technologies (RATs) and RANs.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3GPP is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP LTE is a 3GPP project which was aimed at improving UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure may describe certain aspects with reference to LTE, 4G, or 5G NR technologies; however, the description is not intended to be limited to a specific technology or application, and one or more aspects described with reference to one technology may be understood to be applicable to another  technology. Additionally, one or more aspects of the present disclosure may be related to shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1 M nodes/km 2) , ultra-low complexity (e.g., ~10 s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 millisecond (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
Devices, networks, and systems may be configured to communicate via one or more portions of the electromagnetic spectrum. The electromagnetic spectrum is often subdivided, based on frequency or wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” (mmWave) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “mmWave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “mmWave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) design or frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust mmWave transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3 GHz FDD or TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink or downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink or downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to example 5G NR implementations or in a 5G-centric way, and 5G terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to 5G applications.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to a person having ordinary skill in the art that the systems, apparatus and methods described  herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, implementations or uses may come about via integrated chip implementations or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail devices or purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described aspects. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large devices or small devices, chip-level components, multi-component systems (e.g., radio frequency (RF) -chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
FIG. 1 is a block diagram illustrating details of an example wireless communication system according to one or more aspects. The wireless communication system may include wireless network 100. Wireless network 100 may, for example, include a 5G wireless network. As appreciated by those skilled in the art, components appearing in FIG. 1 are likely to have related counterparts in other network arrangements including, for example, cellular-style network arrangements and non-cellular-style-network arrangements (e.g., device to device or peer to peer or ad hoc network arrangements, etc. ) .
Wireless network 100 illustrated in FIG. 1 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” may refer to this particular geographic coverage area of a base station or a base station subsystem serving the coverage area, depending on the  context in which the term is used. In implementations of wireless network 100 herein, base stations 105 may be associated with a same operator or different operators (e.g., wireless network 100 may include a plurality of operator wireless networks) . Additionally, in implementations of wireless network 100 herein, base station 105 may provide wireless communications using one or more of the same frequencies (e.g., one or more frequency bands in licensed spectrum, unlicensed spectrum, or a combination thereof) as a neighboring cell. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In some other examples, each base station 105 and UE 115 may be operated by a single network operating entity.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1,  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
Wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. In some scenarios, networks may be enabled or configured to handle dynamic switching between synchronous or asynchronous operations.
UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. It should be appreciated that, although a mobile apparatus is commonly referred to as a UE in standards and specifications promulgated by the 3GPP, such apparatus may additionally or otherwise be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, a gaming device, an augmented reality device, vehicular component, vehicular device, or vehicular module, or some other suitable terminology. Within the present document, a “mobile” apparatus or UE need not necessarily have a capability to move, and may be stationary. Some non-limiting examples of a mobile apparatus, such as may include implementations of one or more of UEs 115, include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a laptop, a personal computer (PC) , a notebook, a netbook, a smart book, a tablet, and a personal digital assistant (PDA) . A mobile apparatus may additionally be an IoT or “Internet of everything” (IoE) device such as an automotive or other transportation vehicle, a satellite radio, a global positioning system (GPS) device, a global navigation satellite system (GNSS) device, a logistics controller, a drone, a multi-copter, a quad-copter, a smart energy or security device, a solar panel or solar array, municipal lighting, water, or other infrastructure; industrial automation and enterprise devices; consumer and wearable devices, such as eyewear, a wearable camera, a smart watch, a health or fitness tracker, a mammal implantable device, gesture tracking device, medical device, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.; and digital home or smart home devices such as a home audio, video, and multimedia device, an appliance, a sensor, a vending machine, intelligent lighting, a home security system, a smart meter, etc. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as IoE devices. UEs 115a-115d of the implementation illustrated in FIG. 1 are examples of mobile smart phone-type devices accessing wireless network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k illustrated in FIG. 1 are examples of various machines configured for communication that access wireless network 100.
A mobile apparatus, such as UEs 115, may be able to communicate with any type of the base stations, whether macro base stations, pico base stations, femto base stations, relays, and the like. In FIG. 1, a communication link (represented as a lightning bolt) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink or uplink, or desired transmission between base stations, and backhaul transmissions between base stations. UEs may operate as base stations or other network nodes in some scenarios. Backhaul communication between base stations of wireless network 100 may occur using wired or wireless communication links.
In operation at wireless network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
Wireless network 100 of implementations supports mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through wireless network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. Wireless network 100 may also provide additional network efficiency through dynamic, low-latency TDD communications or low-latency FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 is a block diagram illustrating examples of base station 105 and UE 115 according to one or more aspects. Base station 105 and UE 115 may be any of the base stations and one of the UEs in FIG. 1. For a restricted association scenario (as mentioned above) , base station 105 may be small cell base station 105f in FIG. 1, and UE 115 may be  UE  115c or 115d operating in a service area of base station 105f, which in order to access small cell base station 105f,  would be included in a list of accessible UEs for small cell base station 105f. Base station 105 may also be a base station of some other type. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, transmit processor 220 may receive data from data source 212 and control information from controller 240, such as a processor. The control information may be for a physical broadcast channel (PBCH) , a physical control format indicator channel (PCFICH) , a physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , a physical downlink control channel (PDCCH) , an enhanced physical downlink control channel (EPDCCH) , an MTC physical downlink control channel (MPDCCH) , etc. The data may be for a physical downlink shared channel (PDSCH) , etc. Additionally, transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 220 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) and secondary synchronization signal (SSS) , and cell-specific reference signal. Transmit (TX) MIMO processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, or the reference symbols, if applicable, and may provide output symbol streams to modulators (MODs) 232a through 232t. For example, spatial processing performed on the data symbols, the control symbols, or the reference symbols may include precoding. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may additionally or alternatively process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via antennas 234a through 234t, respectively.
At UE 115, antennas 252a through 252r may receive the downlink signals from base station 105 and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. MIMO detector 256 may obtain received symbols from demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for UE 115 to data sink 260, and provide decoded control information to controller 280, such as a processor.
On the uplink, at UE 115, transmit processor 264 may receive and process data (e.g., for a physical uplink shared channel (PUSCH) ) from data source 262 and control information (e.g., for a physical uplink control channel (PUCCH) ) from controller 280. Additionally, transmit processor 264 may also generate reference symbols for a reference signal. The symbols from transmit processor 264 may be precoded by TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to base station 105. At base station 105, the uplink signals from UE 115 may be received by antennas 234, processed by demodulators 232, detected by MIMO detector 236 if applicable, and further processed by receive processor 238 to obtain decoded data and control information sent by UE 115. Receive processor 238 may provide the decoded data to data sink 239 and the decoded control information to controller 240.
Controllers  240 and 280 may direct the operation at base station 105 and UE 115, respectively. Controller 240 or other processors and modules at base station 105 or controller 280 or other processors and modules at UE 115 may perform or direct the execution of various processes for the techniques described herein, such as to perform or direct the execution illustrated in FIGS. 4 and 5, or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for base station 105 and UE 115, respectively. Scheduler 244 may schedule UEs for data transmission on the downlink or the uplink.
Base stations 105 and UEs 115 of wireless network 100 may implement various CA techniques, such as to increase available bandwidth and provide increased link capacity. In some examples, various ones of base stations 105 and UEs 115 of wireless network 100 may implement CA provided according to an ENDC technique in which one or more UEs connect to a base station operating as a LTE eNB acting as a master node for the CA and to a base station operating as a 5G NR gNB acting as a secondary node for the CA.
In a dual connectivity CA implementation, such as ENDC, multiple base stations may cooperate to provide the dual connectivity with respect to one or more UEs. Dual connectivity may, for example, be implemented to increase the per-user throughput by improving the utilization of radio resources across two base stations operating on different carrier frequencies.
FIG. 3 shows wireless network portion 300, such as may comprise a portion of wireless network 100 shown in FIG. 1, wherein multi connectivity CA operation is implemented with respect to a UE. In particular, UE 315a (e.g., such as may correspond to any UE of FIGS. 1 and 2) is operable in multi connectivity with respect to  base stations  305a and 305b (e.g., such as may correspond to various combinations of base stations of FIGS. 1 and 2) . Although the illustrated example shows  base stations  305a and 305b as being spatially separated,  base  stations  305a and 305b of some examples may be co-located or otherwise disposed other than shown in the illustrated example.
Base stations  305a and 305b may be operable using the same or different wireless technologies (e.g., wireless technologies from LTE, 4G, 5G NR, etc. ) . In the example illustrated in FIG. 3,  base stations  305a and 305b are shown as being connected by backhaul link 340 (e.g., implementing an X2 interface) utilized in facilitating multi connectivity CA operation. Backhaul link 340 may, for example, comprise a wired link and/or a wireless link, and may provide a direct or indirect (e.g., routed via one or more additional network nodes) link between  base stations  305a and 305b.
In the example illustrated in FIG. 3, base station 305a is operating as a master node (MN) , whereas base station 305b is operating as a secondary node (SN) , of the multi connectivity implementation. Accordingly, UE 315a may initially be in communication with base station 305a using communication link 320, shown as comprising downlink 321 and uplink 322. Communication link 320 facilitates communication between base station 305a and UE 315a with some upper limit on throughput and capacity. For example, although only a single UE is shown in FIG. 3 for simplicity, either or both of  base stations  305a and 305b may be hosting communication links with respect to a plurality of UEs and/or other network devices. Accordingly, the downlink and uplink bearer resources available for and utilized with respect to UE 315a in providing communication link 320 may accommodate data throughput at a level appreciably less than that of an ideal throughput capability available from the base station. Irrespective of the particular root cause, data communicated from the network to UE 315a (e.g., data carried by downlink 321) and/or data communicated from UE 315a to the network (e.g., data carried by uplink 322) may be such that resources of a respective communication link are unable to satisfactorily carry the traffic (e.g., failing to meet a required quality of service (QOS) , having noticeable jitter, resulting in dropped data packets, with unacceptable delay, etc. ) between base station 305a and UE 315a.
Multi connectivity operation according to the illustrated example makes it possible for UE 315a to maintain the connection to base station 305a, operable as a MN, while accessing extra capacity provided by base station 305b, operable as a SN. For example, base station 305a may comprise a macro base station (e.g., any of base stations 105a-105e of FIG. 1) such that communication link 320 is provided by a cell of the macro base station, while base station 305b may comprise a small cell base station (e.g., base station 105f of FIG. 1) such that extra capacity provided by the small cell layer is accessed by communication link 330. In operation of multi connectivity downlink communication, part of the data stream directed to UE 315a may be  transmitted to UE 315a by base station 305a via downlink 321, while another part of the data stream may be forwarded to base station 305b for transmission to UE 315a by base station 305b via downlink 331. Similarly, in operation of multi connectivity uplink communication, part of the data stream directed to the network by UE 315a may be transmitted to base station 305a by UE 315a via uplink 322, while another part of the data stream directed to the network by UE 315a may be transmitted to base station 305b by UE 315a via uplink 332. Accordingly, the load on the MN (base station 305a) for the bearer activities with respect to the UE are shared via the SN (base station 305b) , such as to provide split bearer operation.
A number of frequency band combinations may be possible in implementing a multi connectivity CA session. For example, in the case of a ENDC CA technique, a plurality of different combinations of LTE and 5G NR frequency bands may be utilized by a CA session between a UE and one or more base stations providing the LTE master node and the 5G NR secondary node. In operation according to the 3GPP standards relevant to ENDC (e.g., TS38.331-6.3.3, the disclosure of which is incorporated herein by reference) , a UE may upload one or more supported CA frequency band combinations using a BandCombinationList information element transmitted via radio resource control (RRC) signaling. An ENDC CA frequency band combination may comprise one or more LTE frequency band and one or more 5G NR frequency band. A specific example of an ENDC CA frequency band combination comprising one 5G NR frequency band and two LTE frequency bands may be represented as (NR N78/LTE B3/LTE B1) , wherein B1 comprises the 2.1 GHz IMT core band utilized in LTE deployments, B3 comprises the 1.8 GHz frequency band utilized in LTE deployments, and N78 comprises the 3.5 GHz frequency band utilized in 5G NR deployments.
In operation of ENDC in which the CA frequency band combinations involve both LTE and 5G NR frequency bands, UE antenna ports utilized for LTE signal transmission and/or reception may conflict with UE antenna ports utilized for 5G NR SRS reception. That is, one or more same UE antenna ports may be designated for utilization both for LTE signal transmission/reception and for 5G NR SRS reception, whereby if both the LTE signal transmission/reception and the 5G NR SRS reception are active at the same time a conflict may be presented (e.g., wireless radio circuitry of the UE operable to transmit and/or receive LTE signals may communicate signals using a same UE antenna port simultaneously with wireless radio circuitry of the UE operable to receive 5G NR SRS signals) . Continuing with the above ENDC CA frequency band combination example of (NR N78/LTE B3/LTE B1) , a UE may utilize antenna ports 2 and 3 with respect to N78 SRS, antenna ports 2, 4, 5, and 6 with respect to B3 receiving, and antenna ports 1, 3, 7, and 8 with respect to B1 receiving (e.g., presenting  CA frequency band combination conflicts on antenna port 2 with respect to N78 and B3 and antenna port 3 with respect to N78 and B1 when both are in use) . Such CA frequency band combination conflicts can result in poor or failed communications. For example, a UE may experience decoding errors with respect to a LTE downlink and/or 5G NR SRS due to the above described antenna port conflicts.
In order to avoid issues resulting from frequency band combination conflicts, for CA frequency band combinations with both LTE and 5G NR bands, ENDC operation provides for blanking a subframe of the LTE downlink if there is any conflict in the antenna ports with 5G NR SRS. A UE may upload the LTE frequency bands whose antenna ports conflict with the SRS via the BandCombinationList information element in order to facilitate the aforementioned blanking operation. For example, the txSwitchImpactToRx field of the BandCombinationList information element may be used to report if receiving for the given LTE band in a frequency band combination conflicts with a 5G NR SRS antenna port (e.g., txSwitchImpactToRx identifies the LTE frequency bands whose antenna ports used for receiving the LTE signals conflict with 5G NR SRS, without providing any information regarding particular antenna ports in conflict) . In response, the base station operating as a LTE eNB master node for the multi connectivity CA would blank the LTE downlink in any LTE subframes that collide with 5G NR SRS antenna switching to avoid decode error at the UE due to the antenna port conflict. As another example, the txSwitchWithAnotherBand field of the BandCombinationList information element may be used to report if transmitting for the given LTE band in a frequency band combination is impacted by 5G NR SRS (e.g., txSwitchWithAnotherBand identifies the LTE frequency bands whose antenna ports used for transmitting the LTE signals conflict with 5G NR SRS, without providing any information regarding particular antenna ports in conflict) . In response, the base station operating as a LTE eNB master node for the multi connectivity CA would blank the UE uplink transmission in any LTE subframes that collide with 5G NR SRS antenna switching to maintain signal quality in the uplink. The foregoing blanking presents a significant throughput cost by decreasing the throughput otherwise available through the ENDC CA technique.
In many situations in which a frequency band combination conflict is presented there may nevertheless remain one or more antenna ports which are not subject to a conflict. For example, there may be four UE antenna ports utilized for receiving LTE signals and only a subset of those antenna ports may experience a conflict with the 5G NR SRS ports of any particular frequency band combination. Continuing again with the above ENDC CA frequency band combination example of (NR N78/LTE B3/LTE B1) , although antenna port 2 corresponding  to the LTE B3 signals conflicts with antenna port 2 corresponding to the 5G NR N78 SRS signals, antenna ports 4, 5, and 6 corresponding to the LTE B3 signals remain without conflict. Similarly, although antenna port 3 corresponding to the LTE B1 signals conflicts with antenna port 3 corresponding to the 5G NR N78 SRS signals, antenna ports 1 7, and 8 corresponding to the LTE B1 signals remain without conflict. That is, there are three UE antenna ports available for receiving LTE B3 and B1 signals in this example.
Aspects of the present disclosure facilitate the use of available UE antenna ports despite there being a frequency band combination conflict. For example, in operation of ENDC CA using the above mentioned (NR N78/LTE B3/LTE B1) frequency band combination, the LTE downlink would continue to operate using limited antenna ports (e.g., the three available antenna ports available with respect to B3 and/or the three antenna ports available with respect to B1) when the 5G NR SRS is active, rather than blanking the LTE downlink for any subframe in which the 5G NR SRS is active.
In accordance with aspects of the disclosure, UEs report UE capability information for facilitating the use of available UE antenna ports despite there being one or more conflicts with respect to use of a frequency band combination. UE capability information according to some aspects of the disclosure may, for example, comprise UE capability information with respect to multi connectivity CA frequency band combination conflict. For example, a UE may report UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict for one or more frequency band combinations. In some examples, UE capability information may provide the number of antenna ports available for receiving signals of a first wireless technology of two wireless technologies providing multi connectivity. A UE may, for example, report the number of antenna ports available for receiving LTE downlink signals (e.g., UE LTE downlink capability) with respect to a conflict (e.g., when 5G NR SRS is active) . UE capability information may be transmitted to a base station by a UE according to aspects of the disclosure using various means, such as RRC signaling, PUCCH, etc.
A base station may utilize UE capability information for facilitating the use of available UE antenna ports despite there being one or more conflicts with respect to use of a frequency band combination. According to some aspects, a base station may receive UE capability information with respect to multi connectivity CA frequency band combination conflict for facilitating limited or modified communications with respect to a conflict rather than blanking communications (e.g., blanking transmission of a subframe) . For example, a base station may receive reporting from a UE providing UE capability information regarding the number of  antenna ports available for receiving signals of a first wireless technology of two wireless technologies providing multi connectivity. UE capability information may be received from one or more UEs by a base station according to aspects of the disclosure using various means, such as RRC signaling, PUCCH, etc.
In accordance with aspects of the disclosure, base stations adjust, alter, modify, or otherwise change one or more aspects of a communication link (e.g., aspects of communication scheduling) to facilitate use of available UE antenna ports by a UE implementing multi connectivity despite there being one or more conflicts with respect to use of a frequency band combination. For example, a base station, referring to UE capability information received from a UE, may adjust the MCS, downlink layers, beamforming, power control, etc., or a combination thereof with respect to a communication link with the UE when a corresponding frequency band combination is called (e.g., a frequency band combination for which UE capability information is provided is implemented for multi connectivity CA with respect to the reporting UE) . Accordingly, communication where a multi connectivity CA frequency band combination conflict is experienced may be continued or maintained (e.g., without blanking) , providing improved or optimized throughput.
FIGS. 4 and 5 show example operations providing for UE capability information with respect to frequency band combination conflict in accordance with some aspects of the present disclosure. In particular, FIG. 4 illustrates example blocks executed by a UE with respect to an implementation providing UE capability information with respect to frequency band combination conflict. FIG. 5 illustrates example blocks executed by a base station with respect to an implementation facilitating utilization of UE capability information with respect to frequency band combination conflict.
Referring first to FIG. 4, flow 400 of the illustrated example shows operation by a UE according to a UE implementing a capability information technique of some aspects of the present disclosure. At block 401 of flow 400, a UE may transmit UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. For example, UE 315a may transmit (e.g., using transmit processor 264, TX MIMO processor 266, MODs 254a-254r, and antennas 252a-252r, such as under control of controller 280) UE capability information to one or more base stations, such as one or more of base station 305a (e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a) and/or base station 305b (e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a) .
In accordance with aspects of the disclosure, the UE capability information is configured for utilization by one or more base stations in facilitating the use of available UE antenna ports despite there being a multi connectivity CA frequency band combination conflict. The UE capability information may, for example, comprise information regarding a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing multi connectivity CA. The UE capability information of some examples may include UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
In accordance with some aspects of the disclosure, logic implemented by a UE (e.g., UE capability information logic stored by memory 282 and executed by controller 280) may generate the UE capability information for a selected multi connectivity CA frequency band combination from information regarding antenna ports to communicate signals (e.g., transmit and/or receive LTE signals) of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports to communicate signals (e.g., 5G NR SRS) of a second wireless technology of the two wireless technologies providing the multi connectivity CA. According to some examples, logic implemented by a UE may analyze information regarding one or more frequency band combinations (e.g., multi connectivity CA frequency band combinations, as may be stored in a frequency band combination database stored by memory 282) to determine the multi connectivity CA frequency band combinations supported by the UE, identify the antenna ports utilized by the frequency bands of the supported multi connectivity CA frequency band combinations (e.g., the antenna ports for LTE receive and/or transmit bands, the antenna ports for 5G NR SRS, etc. ) , identify conflicts with respect to the use of the antenna ports associated with communications of first and second wireless technologies of a multi connectivity technique, and determine numbers of antenna ports available at the UE for communicating signals of the first wireless technology in light of the identified conflicts.
The UE capability information may be transmitted by the UE by various means. In accordance with some examples, UE capability information may be transmitted as RRC information. According to some aspects of the disclosure, UE capability information may be transmitted with or in association with transmission of information regarding frequency band combinations  supported by the UE. For example, UE capability information may be transmitted via a BandCombinationList information element, such as within an existing field (e.g., legacy dual connectivity CA parameter) originally provided for other purposes and/or a field (e.g., one or more parameters configured for UE capability information) added for supporting UE capability information. Additionally or alternatively, UE capability information may be transmitted via another RRC information element, via other signaling (e.g., information carried by PUCCH) , etc.
At block 402 of flow 400, the UE may communicate signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information. For example, UE 315a may communicate (e.g., using transmit processor 264, TX MIMO processor 266, MODs 254a-254r, and antennas 252a-252r with respect to uplink communications and/or antennas 234a-234t, DEMODs 254a-254r, MIMO detector 256, and receive processor 258, such as may be operable under control of controller 280) with one or more base stations (e.g.,  base stations  305a and 305b) in accordance with a multi connectivity CA technique. According to aspects of the disclosure, one or more of the base stations (e.g., base station 305a operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a) may alter one or more aspects of a communication link (e.g., aspects of communication scheduling) to facilitate use of available UE antenna ports by the UE for a frequency band combination utilized in providing the multi connectivity CA. The UE may thus communicate signals providing the multi connectivity CA in accordance with the altered aspects of scheduling that have been adjusted in accordance with the UE capability information.
Referring now to FIG. 5, flow 500 of the illustrated example shows operation by a base station implementing a capability information technique of some aspects of the present disclosure. At block 501 of flow 500, a base station may receive UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict. For example, base station 305a (e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a) and/or 305b (e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a) may receive (e.g., using antennas 234a-234t, DEMODs 232a-232t, MIMO detector 236, and receive processor 238, such as under control of controller 240) UE capability information from one or more UE, such as UE 315a.
In accordance with aspects of the disclosure, the UE capability information may be utilized by a base station for facilitating the use of available UE antenna ports despite there being a multi  connectivity CA frequency band combination conflict. Accordingly, UE capability information of some examples comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
The UE capability information may be received by the base station by various means. In accordance with some examples, UE capability information may be received as RRC information. According to some aspects of the disclosure, UE capability information may be received with or in association with information regarding frequency band combinations supported by the UE. For example, UE capability information may be received via a BandCombinationList information element, such as within an existing field (e.g., legacy dual connectivity CA parameter) originally provided for other purposes and/or a field (e.g., one or more parameters configured for UE capability information) added for supporting UE capability information. Additionally or alternatively, UE capability information may be received via another RRC information element, via other signaling (e.g., information carried by PUCCH) , etc.
In accordance with some aspects of the disclosure, logic implemented by a base station (e.g., UE capability information logic stored by memory 242 and executed by controller 240) may analyze signaling received from one or more UEs to parse UE capability information for use with respect to the UEs. According to some examples, logic implemented by a base station may analyze RRC information received from a UE to extract UE capability information therefrom. Additionally or alternatively, logic implemented by a base station may analyze information carried via PUCCH to extract UE capability information therefrom.
Irrespective of the means by which UE capability information is received by a base station, a base station implementing a capability information technique of some aspects of the present disclosure may store (e.g., in a UE capability information database stored by memory 242) UE capability information for utilization in facilitating the use of available UE antenna ports despite there being a multi connectivity CA frequency band combination conflict. A UE capability information database of some examples of a base station configured for implementing a UE capability information technique may, for example, store UE capability information for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by a UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing  the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
At block 502 of flow 500, the base station adjusts one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information. For example, base station 305a (e.g., operating as a MN, such as an eNB for a ENDC CA implementation with respect to UE 315a) and/or 305b (e.g., operating as a SN, such as a gNB for a ENDC CA implementation with respect to UE 315a) may adjust various aspects of communication scheduling with respect to UE 315a according to the UE capability information when a frequency combination corresponding to the UE capability information is implemented in multi connectivity CA communication between the base station (s) and the UE.
In accordance with aspects of the disclosure, aspects of communication scheduling adjusted by a base station implementing a UE capability information technique may include altering, modifying, or otherwise changing one or more aspects of a communication link with a UE being provided multi connectivity CA based upon the UE capability information provided by the UE for the frequency band combination in use or to be used. For example, logic implemented by a base station (e.g., UE capability information logic stored by memory 242 and executed by controller 240) may analyze the UE capability information corresponding to a frequency band combination to be used with respect to the UE, perhaps in combination with other information (e.g., channel state information (CSI) , relative position of the UE, block error ratio (BLER) , UE configuration, etc. ) , and select one or more aspects of communication scheduling for adjusting with respect to communication of one or more signals for multi connectivity CA communication with the UE. Aspects of communication scheduling that may be adjusted according to some examples of the disclosure include a MCS, a number of downlink layers, beamforming, power control, etc., as well as combinations thereof. For example, in operation according to some aspects of the disclosure, adjusting the MCS, the rank, the number of downlink layers, the beamforming, the power control, or a combination thereof may be performed in association with a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE (e.g., a frequency band combination for which UE capability information is provided is implemented for multi connectivity CA with respect to the UE) .
FIG. 6 is a block diagram of an example UE 615 that supports UE capability information techniques according to one or more aspects of the disclosure. UE 615 may be configured to perform operations of a UE capability information technique, including the blocks of flow 400 of FIG. 4. In some implementations, UE 615 includes the structure, hardware, and components  shown and described with reference to UE 115 of FIGS. 1 and 2 and UE 315 of FIG. 3. For example, UE 615 includes controller 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 615 that provide the features and functionality of UE 615. UE 615, under control of controller 280, transmits and receives signals via wireless radios 601a-r and antennas 252a-r. Wireless radios 601a-r include various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator and demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
As shown, memory 282 may include UE capability information logic 602 and frequency band combination database 603. UE capability information logic 602 may be configured to generate UE capability information for one or more multi connectivity CA frequency band combinations, control transmission of UE capability information, and/or control communication signals adjusted in accordance with the UE capability information. Frequency band combination database 603 may be configured to store various information, such as information regarding multi connectivity CA frequency band combinations, antenna ports utilized with respect to frequency bands, conflicts associated with particular frequency band combinations, etc., as may be utilized by UE capability information logic 602. UE 615 may receive signals from or transmit signals to one or more network entities, such as base stations 105 of FIGS. 1 and 2, base stations 315 of FIG. 3, and/or a base station as illustrated in FIG. 7.
FIG. 7 is a block diagram of an example base station 705 that supports UE capability information techniques according to one or more aspects of the disclosure. Base station 705 may be configured to perform operations of a UE capability information technique, including the blocks of flow 500 described with reference to FIG. 5. In some implementations, base station 705 includes the structure, hardware, and components shown and described with reference to base stations 105 of FIGS. 1 and 2 and base stations 305 of FIG. 3. For example, base station 705 may include controller 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 705 that provide the features and functionality of base station 705. Base station 705, under control of controller 240, transmits and receives signals via wireless radios 701a-t and antennas 734a-t. Wireless radios 701a-t include various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator and demodulators 232a-t, transmit processor 220, TX MIMO processor 230, MIMO detector 236, and receive processor 238.
As shown, the memory 242 may include UE capability information logic 702 and UE capability information database 703. UE capability information logic 702 may be configured to receive  UE capability information and/or adjust one or more aspects of communication scheduling in accordance with the UE capability information. UE capability information database logic 703 may be configured to store various information, such as information regarding UEs implementing multi connectivity CA, frequency band combinations supported by the UEs, UE capability information with respect to frequency band combinations supported by the UEs, etc., as may be utilized by UE capability information logic 702. Base station 705 may receive signals from or transmit signals to one or more UEs, such as UEs 115 of FIGS. 1 and 2, UE 315 of FIG. 3, and/or UE 615 of FIG. 6.
It is noted that one or more blocks (or operations) described with reference to FIGS. 4 and 5 may be combined with one or more blocks (or operations) described with reference to another of the figures. For example, one or more blocks (or operations) of FIG. 4 may be combined with one or more blocks (or operations) of FIG. 5. As another example, one or more blocks associated with FIGS. 4 and 5 may be combined with one or more blocks (or operations) associated with FIGS. 1-3, 6, and/or 7. Additionally, or alternatively, one or more operations described above with reference to FIGS. 1-3 may be combined with one or more operations described with reference to FIGS. 6 and/or 7.
In some examples of methods, apparatuses, and articles described herein, various aspects of multi-slot transport block techniques may be implemented according to a multiplicity of combinations consistent with concepts described herein. Non-limiting examples of combinations of some aspects of a multi-slot transport block technique are set forth in the example clauses below.
1. Methods, apparatuses, and articles for wireless communication may provide for receiving, from a UE, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict, and adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
2. The methods, apparatuses, and articles of clause 1, wherein the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
3. The methods, apparatuses, and articles of clause 2, wherein the multi connectivity CA frequency band combination conflict comprises a conflict with respect antenna ports for receiving signals of the first wireless technology of the two wireless technologies providing the  multi connectivity CA and antenna ports for receiving sounding reference signals (SRS) of the second wireless technology of the two wireless technologies providing the multi connectivity CA.
4. The methods, apparatuses, and articles of any of clauses 1-3, wherein the UE capability information is received as RRC information from the UE.
5. The methods, apparatuses, and articles of clause 4, wherein the UE capability information is received via a legacy dual connectivity CA parameter of the RRC information.
6. The methods, apparatuses, and articles of any of clauses 1-5, wherein the UE capability information is received via one or more parameters configured for the UE capability information.
7. The methods, apparatuses, and articles of any of clauses 1-6, wherein adjusting one or more aspects of communication scheduling provides for adjusting, with respect to communication of one or more signals for the multi connectivity CA, a MCS, a number of downlink layers, beamforming, power control, or a combination thereof.
8. The methods, apparatuses, and articles of clause 7, wherein adjusting the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof is performed in association with a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
9. Methods, apparatuses, and articles for wireless communication may provide for transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity CA frequency band combination conflict, and communicating, between the UE and the base station, signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information.
10. The methods, apparatuses, and articles of clause 9, further providing for generating the UE capability information for a selected multi connectivity CA frequency band combination from information regarding antenna ports to receive signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports to receive SRS of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
11. The methods, apparatuses, and articles of any of clauses 9-10, wherein the UE capability information is transmitted as RRC information.
12. The methods, apparatuses, and articles of clause 11, wherein the UE capability information is transmitted via a legacy dual connectivity CA parameter of the RRC information.
13. The methods, apparatuses, and articles of any of clauses 9-12, wherein the UE capability information is transmitted via one or more parameters configured for the UE capability information.
14. The methods, apparatuses, and articles of any of clauses 9-13, wherein the UE capability information includes UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
15. The methods, apparatuses, and articles of any of clauses 9-14, wherein the one or more aspects of scheduling with respect to the signals adjusted in accordance with the UE capability information comprise a MCS, a number of downlink layers, beamforming, power control, or a combination thereof.
16. The methods, apparatuses, and articles of clause 15, wherein the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof are adjusted in association with the a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Components, the functional blocks, and the modules described herein with respect to FIGS. 1-7 include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, among other examples, or any combination thereof. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description  language, or otherwise. In addition, features discussed herein may be implemented via specialized processor circuitry, via executable instructions, or combinations thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logics, logical blocks, modules, circuits and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single-or multi-chip processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. In some implementations, a processor may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In  some implementations, particular processes and methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also may be implemented as one or more computer programs, that is one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. The processes of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that may be enabled to transfer a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable read-only memory (EEPROM) , CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Also, any connection may be properly termed a computer-readable medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and instructions on a machine readable medium and computer-readable medium, which may be incorporated into a computer program product.
Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to some other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, a person having ordinary skill in the art will readily appreciate, the terms “upper” and “lower” are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of any device as implemented.
Certain features that are described in this specification in the context of separate implementations also may be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also may be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flow diagram. However, other operations that are not depicted may be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations may be performed before, after, simultaneously, or between any of the illustrated operations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products. Additionally, some other implementations are within the scope of the following claims. In some cases, the actions recited in the claims may be performed in a different order and still achieve desirable results.
As used herein, including in the claims, the term “or, ” when used in a list of two or more items, means that any one of the listed items may be employed by itself, or any combination of two or more of the listed items may be employed. For example, if a composition is described as containing components A, B, or C, the composition may contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least  one of A, B, or C” means A or B or C or AB or AC or BC or ABC (that is A and B and C) or any of these in any combination thereof. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; for example, substantially 90 degrees includes 90 degrees and substantially parallel includes parallel) , as understood by a person of ordinary skill in the art. In any disclosed implementations, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes . 1, 1, 5, or 10 percent.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method of wireless communication performed by one or more base stations, the method comprising:
    receiving, from a user equipment (UE) , UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict; and
    adjusting one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  2. The method of claim 1, wherein the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  3. The method of claim 2, wherein the multi connectivity CA frequency band combination conflict comprises a conflict with respect antenna ports for receiving signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports for receiving sounding reference signals (SRS) of the second wireless technology of the two wireless technologies providing the multi connectivity CA.
  4. The method of claim 1, wherein the UE capability information is received as radio resource control (RRC) information from the UE.
  5. The method of claim 4, wherein the UE capability information is received via a legacy dual connectivity CA parameter of the RRC information.
  6. The method of claim 1, wherein the UE capability information is received via one or more parameters configured for the UE capability information.
  7. The method of claim 1, wherein adjusting one or more aspects of communication scheduling comprises:
    adjusting, with respect to communication of one or more signals for the multi  connectivity CA, a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, or a combination thereof.
  8. The method of claim 7, wherein adjusting the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof is performed in association with a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
  9. A base station comprising:
    a memory storing processor-readable code; and
    at least one processor coupled to the memory, the at least one processor configured to execute the processor-readable code to cause the at least one processor to:
    receive, from a user equipment (UE) , UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict; and
    adjust one or more aspects of communication scheduling with respect to the UE in accordance with to the UE capability information.
  10. The base station of claim 9, wherein the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA in association with communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  11. The base station of claim 10, wherein the multi connectivity CA frequency band combination conflict comprises a conflict with respect antenna ports for receiving signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports for receiving sounding reference signals (SRS) of the second wireless technology of the two wireless technologies providing the multi connectivity CA.
  12. The base station of claim 9, wherein the UE capability information is received via one or more parameters configured for the UE capability information.
  13. The base station of claim 9, wherein the at least one processor configured to execute the processor-readable code to cause the at least one processor to adjust one or more  aspects of communication scheduling further causes the at least one processor to:
    adjust, with respect to communication of one or more signals for the multi connectivity CA, a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, or a combination thereof.
  14. The base station of claim 13, wherein adjusting the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof is performed in association with a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
  15. A method of wireless communication performed by a user equipment (UE) , the method comprising:
    transmitting, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict; and
    communicating, between the UE and the base station, signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information.
  16. The method of claim 15, wherein the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA.
  17. The method of claim 16, further comprising:
    generating the UE capability information for a selected multi connectivity CA frequency band combination from information regarding antenna ports to receive signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports to receive sounding reference signals (SRS) of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  18. The method of claim 15, wherein the UE capability information is transmitted as radio resource control (RRC) information.
  19. The method of claim 18, wherein the UE capability information is transmitted via a legacy dual connectivity CA parameter of the RRC information.
  20. The method of claim 15, wherein the UE capability information is transmitted via one or more parameters configured for the UE capability information.
  21. The method of claim 15, wherein the UE capability information includes UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  22. The method of claim 15, wherein the one or more aspects of scheduling with respect to the signals adjusted in accordance with the UE capability information comprise a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, or a combination thereof.
  23. The method of claim 22, wherein the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof are adjusted in association with the a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
  24. A user equipment (UE) comprising:
    a memory storing processor-readable code; and
    at least one processor coupled to the memory, the at least one processor configured to execute the processor-readable code to cause the at least one processor to:
    transmit, to a base station, UE capability information regarding one or more antenna ports available with respect to a multi connectivity carrier aggregation (CA) frequency band combination conflict; and
    communicate, between the UE and the base station, signals providing the multi connectivity CA, wherein one or more aspects of scheduling with respect to the signals are adjusted in accordance with the UE capability information.
  25. The user equipment of claim 24, wherein the UE capability information comprises a number of antenna ports available at the UE for communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA.
  26. The user equipment of claim 25, wherein the at least one processor is further configured to execute the processor-readable code to cause the at least one processor to:
    generate the UE capability information for a selected multi connectivity CA frequency band combination from information regarding antenna ports to receive signals of the first wireless technology of the two wireless technologies providing the multi connectivity CA and antenna ports to receive sounding reference signals (SRS) of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  27. The user equipment of claim 24, wherein the UE capability information is transmitted via one or more parameters configured for the UE capability information.
  28. The user equipment of claim 24, wherein the UE capability information includes UE capability for each multi connectivity CA frequency band combination of a plurality of multi connectivity CA frequency bands supported by the UE that present a conflict with respect to communicating signals of a first wireless technology of two wireless technologies providing the multi connectivity CA and communicating signals of a second wireless technology of the two wireless technologies providing the multi connectivity CA.
  29. The user equipment of claim 24, wherein the one or more aspects of scheduling with respect to the signals adjusted in accordance with the UE capability information comprise a modulation and coding scheme (MCS) , a number of downlink layers, beamforming, power control, or a combination thereof.
  30. The user equipment of claim 29, wherein the MCS, the rank, the number of downlink layers, the beamforming, the power control, or the combination thereof are adjusted in association with the a multi connectivity CA frequency band combination presenting the conflict being called with respect to the UE.
PCT/CN2021/088323 2021-04-20 2021-04-20 User equipment (ue) capability information for frequency band combination conflict WO2022222023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088323 WO2022222023A1 (en) 2021-04-20 2021-04-20 User equipment (ue) capability information for frequency band combination conflict

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088323 WO2022222023A1 (en) 2021-04-20 2021-04-20 User equipment (ue) capability information for frequency band combination conflict

Publications (1)

Publication Number Publication Date
WO2022222023A1 true WO2022222023A1 (en) 2022-10-27

Family

ID=76159216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088323 WO2022222023A1 (en) 2021-04-20 2021-04-20 User equipment (ue) capability information for frequency band combination conflict

Country Status (1)

Country Link
WO (1) WO2022222023A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281645A1 (en) * 2016-07-18 2019-09-12 Samsung Electronics Co., Ltd. Improvements in and relating to network interconnectivity
WO2020166086A1 (en) * 2019-02-15 2020-08-20 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281645A1 (en) * 2016-07-18 2019-09-12 Samsung Electronics Co., Ltd. Improvements in and relating to network interconnectivity
WO2020166086A1 (en) * 2019-02-15 2020-08-20 株式会社Nttドコモ User terminal and wireless communication method

Similar Documents

Publication Publication Date Title
US11864196B2 (en) Uplink configured grant configuration determination for a user equipment device
US20240205954A1 (en) Enabling remaining minimum system information (rmsi) repetition or rmsi slot aggregation
WO2023015051A1 (en) Enhancements for sidelink carrier aggregation feedback
US11653358B2 (en) Downlink control information transmission within a physical downlink shared channel
US11589252B2 (en) Configuration for a channel measurement resource (CMR) or an interference measurement resource (IMR) time restriction
WO2021068916A1 (en) Systems and methods for handling sidelink feedback signaling
WO2022041028A1 (en) Multiple supplemental uplink (sul) carriers
WO2022174201A1 (en) Backward cancellation indication for sidelink transmission
WO2022222023A1 (en) User equipment (ue) capability information for frequency band combination conflict
WO2024130687A1 (en) Acquiring timing advance (ta) information for a candidate cell using sounding reference signals (srs)
US20230198317A1 (en) Base station (gnb)-assisting-energy harvesting (eh) from nearby user equipments (ues)
US11792754B2 (en) Physical broadcast channel (PBCH) resource allocation for reduced bandwidth devices
WO2023201691A1 (en) Method of dual subscriber identity module (sim)-dual active (dsda) user equipment (ue) flexible transmission resource-sharing mode switching and uplink transmission protection
US11799567B2 (en) Beam-specific RSSI and CO for NR-U
US20230262619A1 (en) Power level signaling for a wireless communication system
US20240146383A1 (en) Enhanced group-based beam report for stxmp
US20230217451A1 (en) Non-coherent downlink (dl) control channel for higher bands
WO2024031420A1 (en) Remote offline sequential network node encoder training
WO2021237566A1 (en) Network service recovery from abnormal 5g (sa) networks
WO2021237589A1 (en) A method to accelerate ue return 5g from 4g
WO2021237576A1 (en) Network service recovery from abnormal 5g (sa) networks for a dual sim ue
US20230111312A1 (en) Receiver for processing multiple beams at a user equipment (ue) device
WO2021248507A1 (en) Stand alone (sa) 5g idle mobility extension
EP4147373A1 (en) Compensating for transmit-receive spatial filter asymmetries in upper millimeter wave bands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21728161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21728161

Country of ref document: EP

Kind code of ref document: A1