WO2022220789A1 - Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile - Google Patents

Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile Download PDF

Info

Publication number
WO2022220789A1
WO2022220789A1 PCT/US2021/026866 US2021026866W WO2022220789A1 WO 2022220789 A1 WO2022220789 A1 WO 2022220789A1 US 2021026866 W US2021026866 W US 2021026866W WO 2022220789 A1 WO2022220789 A1 WO 2022220789A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber optic
mobile robot
robot system
connector
rfid
Prior art date
Application number
PCT/US2021/026866
Other languages
English (en)
Inventor
Anthony Kewitsch
Original Assignee
Telescent Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telescent Inc. filed Critical Telescent Inc.
Priority to EP21937126.7A priority Critical patent/EP4323156A1/fr
Priority claimed from US17/227,883 external-priority patent/US11650598B2/en
Publication of WO2022220789A1 publication Critical patent/WO2022220789A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3817Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres containing optical and electrical conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/162Mobile manipulator, movable base with manipulator arm mounted on it
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39527Workpiece detector, sensor mounted in, near hand, gripper
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45066Inspection robot

Definitions

  • This invention relates to methods and apparatus for managing and automating the physical connectivity of optical fiber networks, in particular, automated systems to inventory, locate, discover and test a network with a large number of physical communication links comprised of optical and electronic network elements joined by network cables.
  • High bandwidth fiber optic communication networks comprise of multiple interconnected physical network links, each link including a length of optical fiber cable, a multiplicity of network elements with optical network interfaces, and potentially a multiplicity of network elements with electronic network interfaces.
  • Typical optical interfaces utilize fiber optic cables with LC or MPO connectors and support lOGbps to 100Gbps+ data rates, and typical electronic interfaces utilize copper cabling and lGbps to lOGbps data rates.
  • Large scale data center networks are enormously complex and are comprised of 100 thousand to 1 million links, generally arranged in a hierarchical tree, interconnected mesh, ring, or a hub and spoke type arrangement.
  • Standard Low Frequency (LF) passive RFID tags operate at frequencies of 125 kHz and 134.3 kHz and provide a read distance of 10 cm.
  • RFID integrated circuit chips have been developed (e.g. NXP Semiconductor) for low-frequency (LF) passive RFID transponders compliant with the ISO 11784 and 11785 standards, including an anti collision algorithm that can be used to read more than one tag in the same reader's field.
  • Alternative approaches include High Frequency (HF) passive RFID tags that operate at 13.56 MHz and have a maximum read distance of typically one to a few meters. However, these approaches do not provide accurate determination of position or the physical relationships between interconnections (e.g. what cable is plugged into what port).
  • a technology to improve the spatial resolution in which the three-dimensional location of miniature RFID tags ( ⁇ 5 mm per side) can be measured with high accuracy (to within ⁇ 5 mm) is of great importance to extend the application of RFID tags to network connectivity discovery.
  • Today’s state-of-the-art RFID tag scanning technologies use active ultra-wideband (UWB) RFID systems and are able to discriminate the location of a tagged object in three dimensions to within a few tens of cm. For example, a system that pinpoints a tag's location to within 10 cm has been described [RFID Journal, June 30, 2014, “DecaWave Intros Ultra-wideband Active RFID Module”].
  • these active UWB tags are costly (>$10), require power (i.e.
  • the present invention is comprised of a highly scalable network cable configuration-tracking system, utilizing a network of unique, miniature RFID tags that can be read out with spatial resolution of ⁇ 5 mm.
  • the data generated by these RFID scans is augmented by three-dimensional optical scans, then merged and processed to construct an accurate and complete representation of the physical state of the network.
  • inexpensive, networked RFID readers with multiplexed antenna arrays are integrated with or added externally to fiber optic patch-panels and networking apparatus.
  • Miniature, high resolution RFID tags typically less than about 50 mm 3 in size, are attached to the ports, transceivers, and line cards of network elements, and are read back through an antenna array with high spatial discrimination.
  • RFID scanning uses a compact RFID probe operating in proximity mode, which is attached to the end of a remotely actuable robotic arm, with the arm being able to be transported to precise locations throughout the data center on a guided motorized platform.
  • a controller processes RF and optical scans to determine tag location and correspondence to a physical asset. This configuration data is saved within a database of physical configuration records. The precise physical location of each asset, as well as its location and connectivity relationships within the physical network topology, is automatically discovered.
  • a single large data center is typically comprised of hundreds of thousands of network cables connecting tens of thousands of network elements.
  • fiber optic connectors, transceivers, pluggable optics, and related devices continue to undergo significant advances leading to increased bandwidth, density, and reduced size. This places unique demands when applying RFID labeling and interrogation techniques to these miniature devices, compared to traditional warehouse inventory tracking of large packages, etc.
  • RFID labeling and interrogation techniques to these miniature devices, compared to traditional warehouse inventory tracking of large packages, etc.
  • the present invention includes a mobile robot system comprised of a moveable robotic platform with a multiplicity of tools therein to assist in the automated operations of a data center or telecommunications office.
  • the system uses RFID tags (and potentially alignment markers for use by a vision system) attached to fiber optic connector ports on network elements such as routers, switches, patch-panels, and cross-connects. These tags and markers may be used to precisely guide the mobile robot’s extendable arm, which is equipped with various tools to enable manual installation and maintenance functions to be automated.
  • the mobile robot is comprised of a moveable, wheeled robot transport platform that is able to navigate throughout the office or data center with a payload comprised of the various tools whose operation depends on the precise registration of the connector gripper relative to the connector ports of the network elements as well as a software system to control its operation.
  • This moveable platform is able to position the tools with precise registration relative to the positions of pre-discovered and mapped connector ports.
  • the mobile robot’s extendable arm with RFID probe antenna attached thereto is able to identify cables and locate their associated connectors with millimeter accuracy based on proximity readout of RFID tags and sub- millimeter accuracy with machine vision alignment enabled by an integrated camera system.
  • the mobile robot is able to clean connectors, using for example a dry fabric cleaner which is swiped across the connector ferrule(s) endface(s).
  • the mobile robot is able to inspect endface of connectors using a high resolution optical microscope and contamination classification system.
  • the mobile robot is able to test cables and optical links using, for example, an OTDR, Optical Loss Meter, or Packet Analyzer.
  • the mobile robot is able to swap transmit and receive connectors on a duplex cable link for improperly installed cables.
  • the mobile robot is able to reconfigure cable connections among a subset of ports within a limited region. In a further example, the mobile robot is able to identify and disconnect unused cable and potentially remove or mark the corresponding unused connector to avoid potential inventory and cable clutter issues.
  • the mobile robot is able to apply an RFID tag or label to a cable.
  • the mobile robot is able to extract, replace, install fiber optic cables and pluggable optics such as SFR, QSFT, CFP, XENPAK, XPAK, X2, XFP, etc. into corresponding ports in network elements.
  • the mobile robot is able to fusion splice a cable and/or connector.
  • the mobile robot is able to replace a damaged connector on a cable by fusion splicing a field-installable connector onto the cable to automate the repair and service restoration processes.
  • One general aspect includes a mobile robot system for automated operation of a data center or telecommunications office.
  • the mobile robot system also includes the mobile robot system is constructed and adapted to position a robot probe arm with an RFID probe for proximity detection to identify a cable and associated fiber optic connector based on a unique RF identifier of a tag on the fiber optic connector, and where.
  • the system also includes the robot probe arm further includes a connector gripper is constructed and adapted to engage and unplug the associated fiber optic connector.
  • Embodiments and/or implementations may include one or more of the following features, alone and/or in combination(s):
  • the mobile robot system where the mobile robot system is constructed and adapted to clean fiber optic connectors.
  • the mobile robot system cleans a fiber optic connector with a dry fabric cleaner that is swiped across a ferrule endface of the fiber optic connector.
  • the mobile robot system is constructed and adapted to inspect endfaces of fiber optic connectors using a high-resolution optical microscope and/or a contamination classification system.
  • the mobile robot system is constructed and adapted to test cables and optical links using one or more of: an optical time-domain reflectometer (OTDR), an optical loss meter, and/or a packet analyzer.
  • the mobile robot system is constructed and adapted to swap transmit and receive fiber optic connectors on a duplex cable link for improperly installed cables.
  • the mobile robot system is constructed and adapted to reconfigure cable connections among a subset of ports within the bay.
  • the mobile robot system is constructed and adapted to identify and disconnect unused cables.
  • the mobile robot system is constructed and adapted to cut-off one or more unused fiber optic connectors corresponding to the unused cables.
  • the mobile robot system is constructed and adapted to attach an RFID tag or label to a cable.
  • the mobile robot system is constructed and adapted to extract, replace, and/or install fiber optic cables and pluggable optics in network elements.
  • the mobile robot system is constructed and adapted to fusion splice a cable and/or fiber optic connector.
  • the mobile robot system is constructed and adapted to replace a damaged fiber optic connector on a cable by fusion splicing a splice-on fiber optic connector.
  • Another general aspect includes a mobile robot system to perform automated installation and maintenance tasks in a data center or telecommunications office having multiple bays with networked equipment.
  • the system may include of a moveable robotic platform with one or more robot arms to position one or more robotic hands including actuable fingers to locations across a front face of the networked equipment within the bay, the positioning of the one or more robotic hands may be determined based on spatially localized readout of integrated RFID (radio-frequency identification) tags attached to fiber optic connectors and/or ports of the networked equipment, where the positioning is augmented by visual alignment markers to position the one or more robotic hands relative to the fiber optic connectors and ports.
  • RFID radio-frequency identification
  • Embodiments and/or implementations may include one or more of the following features, alone and/or in combination(s):
  • the system where a machine vision system is used to precisely position the one or more robotic hands relative to the fiber optic connectors and ports.
  • the system where the one or more robotic hands are instructed by a controller system that has been previously trained to perform one or more sequences of movements.
  • the system where the controller system was previously trained by an operator with one or more a sensor gloves that record one or more sequences of movements to complete a task, enabling the controller to subsequently perform the task using the one or more robotic hands.
  • the system additionally including a fiber optic connector cleaner and fiber optic connector inspection microscope.
  • the system with the robotic hands being sized to enable the actuable fingers to grasp, un-plug and plug-in fiber optic connectors.
  • the system where one or more fingers of the one or more robotic hands are able to access, press, and/or actuate manual switches.
  • the system where manual switches include power switches and/or reset switches.
  • Another general aspect includes a method of operation of a data center or telecommunications office.
  • the method of operation also includes the mobile robot system positioning a robot probe arm with an RFID probe for proximity detection to identify a cable and associated fiber optic connector based on a unique RF identifier of a tag on the fiber optic connector.
  • the operation also includes a connector gripper of the robot probe arm engaging and unplugging the associated fiber optic connector.
  • Embodiments may include one or more of the following features, alone and/or in combination(s):
  • the method may include the mobile robot system performing one or more of: (i) inspecting endfaces of fiber optic connectors using a high-resolution optical microscope and/or a contamination classification system; and/or (ii) testing cables and optical links using one or more of: an optical time domain reflectometer (OTDR) , an optical loss meter, and/or a packet analyzer; (iii) swapping transmit and receive fiber optic connectors on a duplex cable link for improperly installed cables; and/or (iv) reconfiguring cable connections among a subset of ports within the bay; and/or (v) identifying and disconnecting unused cables; and/or (vi) cutting off one or more unused fiber optic connectors corresponding to unused cables; and/or (vii) attaching an RFID tag or label to a cable; and/or (viii) extracting, replacing, and/or installing fiber optic cables and pluggable optics in network elements; and/or (ix) fusion splicing a cable and/or fiber optic connector; and/or (OTDR)
  • a mobile robot system for automated operation of a data center or telecommunications office comprised of a moveable robotic platform with a multiplicity of tools integrated therein, to operate on a network element within a bay, with integrated RFID (radio-frequency identification) tags and visual alignment markers attached to fiber optic connectors and ports of the network elements, wherein: the mobile robot system is constructed and adapted to position a robot probe arm with an RFID probe for proximity detection to identify a cable and associated fiber optic connector based on a unique RF identifier of a tag on the fiber optic connector, and wherein the robot probe arm further includes a connector gripper is constructed and adapted to engage and unplug the associated fiber optic connector.
  • the mobile robot system of any of the system embodiments wherein the mobile robot system is constructed and adapted to test cables and optical links using one or more of: an Optical Time Domain Reflectometer (OTDR), an optical Loss Meter, and/or a packet analyzer.
  • OTDR Optical Time Domain Reflectometer
  • optical Loss Meter optical Loss Meter
  • packet analyzer a packet analyzer
  • a mobile robot system to perform automated installation and maintenance tasks in a data center or telecommunications office having multiple bays with networked equipment comprised of a moveable robotic platform with one or more robot arms to position one or more robotic hands including actuable fingers to locations across a front face of the networked equipment within the bay, the positioning of the one or more robotic hands determined based on spatially localized readout of integrated RFID (radio- frequency identification) tags attached to fiber optic connectors and ports of the networked equipment, wherein the positioning is augmented by visual alignment markers to position the one or more robotic hands relative to the fiber optic connectors and ports.
  • RFID radio- frequency identification
  • the mobile robot system of any of the system embodiments wherein the one or more robotic hands are instructed by a controller system that has been previously trained to perform one or more sequences of movements.
  • S17. The mobile robot system of any of the system embodiments, wherein the controller system was previously trained by an operator with one or more a sensor gloves that record one or more sequences of movements to complete a task, enabling the controller to subsequently perform the task using the one or more robotic hands.
  • S18. The mobile robot system of any of the system embodiments, additionally including a fiber optic connector cleaner and fiber optic connector inspection microscope.
  • the mobile robot system of any of the system embodiments the robotic hands being sized to enable the actuable fingers to grasp, un-plug and plug-in fiber optic connectors.
  • a method of operation of a data center or telecommunications office having a mobile robot system including moveable robotic platform with a multiplicity of tools integrated therein, to operate on a network element within a bay, with integrated RFID (radio-frequency identification) tags and visual alignment markers attached to fiber optic connectors and ports of the network elements, the method comprising: the mobile robot system positioning a robot probe arm with an RFID probe for proximity detection to identify a cable and associated fiber optic connector based on a unique RF identifier of a tag on the fiber optic connector; and a connector gripper of the robot probe arm engaging and unplugging the associated fiber optic connector.
  • RFID radio-frequency identification
  • cleaning a fiber optic connector comprises swiping a dry fabric cleaner across a ferrule endface of the fiber optic connector.
  • FIG. l is a block diagram of a robotic scanning system, as well as the subsystems providing the processing backend of an automated RFID physical link discovery, management and test system constructed in accordance with a preferred embodiment of the present invention.
  • FIG. 2 illustrates a mobile RFID and optical scanning robotic system, wherein the robot is able to traverse each aisle of a data center, position itself adjacent a rack and capture RFID scans of equipment racks.
  • FIG. 3 illustrates an equipment rack with a multiplicity of network ports requiring RFID identification and tracking, which is equipped with a local RFID reader module and instrumented with a multiplicity of RFID reader antenna, each antenna adjacent a particular port.
  • FIG. 4 illustrates the mobile RFID and optical scanning robotic system, wherein the robot is configured to capture optical scans of equipment racks.
  • FIG. 5 illustrates a compact implementation of the passive RFID tag, which is folded to form a three-level stacked circuit.
  • FIG. 6 illustrates RFID tags integrated with common LC fiber optic components, namely LC simplex and duplex connectors.
  • FIG. 7 illustrates a detailed example of a network equipment chassis requiring RFID port identification and tracking instrumented with an array of RFID reader antenna to read RFID tags associated with an array of network ports.
  • FIG. 8 illustrates a detailed example of a network device incorporating RFID port identification and tracking, instrumented with a distributed array of RFID reader antenna loops for complete coverage RF scanning coverage across an interface panel of the network device.
  • FIG. 9 illustrates a distributed network diagram including relationships between automated robotic cross-connects, network elements and the physical interconnections therebetween.
  • FIG. 10 is a flow chart of the process of training the system in accordance with the preferred embodiment of the present invention to discover initial RFID port locations and identifiers;
  • FIG. 11 is a flow chart of the process in accordance with the preferred embodiment of the present invention of monitoring of the physical network topology
  • FIG. 12 is a block diagram of the multi-functional robot probe arm comprised of multiple tools according to exemplary embodiments hereof;
  • FIG. 13 is a flow chart of a robotic process to unplug, clean, inspect, and test a connector according to exemplary embodiments hereof;
  • FIG. 14 is a flow chart of an exemplary robotic process to swap mis-installed Tx and
  • FIG. 15 is a flow chart of a robotic process according to exemplary embodiments hereof to fusion splice a replacement connector
  • FIG. 16 depicts aspects of a robotic system according to exemplary embodiments hereof.
  • the present invention comprises systems, apparatus, and methods for automatically discovering and tracking changes to the physical network topology of cables between all network devices in an optical fiber network.
  • the system a preferred embodiment of which is illustrated in block diagram form in FIG. 1, is controlled by one or more management servers 415 that communicate with one or more scanning robots 327, each robot having RFID and optical scanning capability.
  • the system is used to monitor the connectivity state of a multiplicity of network elements 115 each with a multiplicity of RFID tags 214, and potentially one or more fixed location RFID readers 313 and automated cross-connects 200 (such as those described in Kewitsch et al., US Patent No. 8,068,715).
  • Each scanning robot 327 is comprised of a wireless communication module 311, embedded control module 405, battery and charging module 406, RFID probe module 314, robot probe arm 307, optical scanning module 308, and robot transport platform 309.
  • Multiple software modules operate in coordination with the robotic scanning subsystem 327 and reside on the management server 415, including a computational engine 101 comprised of routing optimization 103, physical link search 104, provisioning automation 105, network visualization 106, processing of optical/RFID scans 107, as well as a database 114 comprised of cable records 110, network element records 111, connectivity records 112, optical scans 113, and RFID scans 119
  • FIG. 2 illustrates the scanning robot 327 in the process of interrogating an equipment rack 300 containing a multiplicity of network elements 115 with a further multiplicity of network ports 320.
  • the RFID reader module 314 located at the end of the robot probe arm 307 is positioned in the vicinity of a selected RFID tag 214 based on stored position coordinates in network element database record 111.
  • the RFID reader emits an RF signal 310 that energizes a local tag 214, enabling the tag to send back a return signal with its unique identifier, the identifier being phase or amplitude encoded in the return signal.
  • the robot arm 307 includes a robot end effector capable of opening the door of rack to gain access to the multiplicity of ports 320 and tags 214 therein.
  • the scanning arm 307 includes encoder sensing means, which in combination with precise locating capability of robot platform, is used to determine door latch and the tag location in three-dimensional space with relatively high accuracy ( ⁇ 1 mm). This level of accuracy is necessary to properly open the door and to position the scanning RFID probe 314 in close proximity to the tag 214.
  • each rack 300 includes an RFID reader unit 313, which interfaces to, for example, an RFID antenna harness comprised of a multiplicity of separate and individually addressable, miniature antenna elements 321 located on or in the vicinity of an interface surface 323 of a network element containing one or more network ports 320.
  • each interface surface 323 depends on the particulars of the network device.
  • the surface geometry is stored in the database as a solid model associated with the corresponding network element record 111.
  • the antenna element is sufficiently small that it is located at one or about a small number of numbered connector receptacle ports 320.
  • the correspondence between numbered antenna elements and numbered ports is recorded at the time the antenna elements are installed.
  • This configuration information is stored within the network element records database 111 and this correspondence will typically be fixed over the lifecycle of the network element.
  • the RFID tag data is dynamic and changes during the lifecycle of the network element because of updates to the network connectivity resulting from data center migration, load balancing, etc.
  • the stored RFID scan data 119 is used to update the connectivity records database 112, so that the database accurately represents the current inventory of physical connections.
  • a Low Frequency (LF) RFID reader module emits an RF tag excitation signal at the extended RFID probe 314.
  • the probe comprises electrical components including an inductor and capacitor in parallel, launching the excitation signal with sufficient electromagnetic coupling efficiency to energize and activate any passive RFID tags 214 in close proximity.
  • the selection of the inductor dictates the maximum readout range between tag and reader based upon the mutual inductance between tag and reader.
  • Each RFID tag 214 includes its own antenna/coil with substantially similar inductance and capacitance. It is generally desirable that the inductors for both the reader and tag are large in terms of their inductance ( ⁇ mH), utilize a ferrite core, and are unshielded to maximize the electromagnetic coupling efficiency/mutual inductance between tag and reader.
  • the tag assembly utilizes a substantially matched LC oscillator that is resonantly coupled to the reader excitation signal and produces a reflected RF signal, with the addition of an amplitude or phase modulation envelop on the 125 kHz carrier signal that carries the unique RFID identifier.
  • the electromagnetic coupling for a system of two coils with a given mutual inductance is highly dependent on the separation, relative field orientation and inductance of the coils.
  • Mutual inductance falls off rapidly with distance between the reader antenna and tag inductor 212, and is significantly reduced once this separation exceeds the physical size of the inductors. At distances less than this size, electromagnetic signals at the 125 kHz resonance frequency are efficiently transferred from the reader to the tag, as well as from the tag to the reader.
  • a multiplexed, multi-channel RFID reader 313 with a multiplexed antenna array 305 may be utilized instead of or in addition to the RFID probe subsystem of mobile robot 327.
  • Multiplexing of individual antenna elements 304 within the array 305 enables any one of a multiplicity of tags 214 on a multiplicity of cables 326 to be interrogated in rapid time succession by a reader 313 connected to network management server 415. This enables near real-time updates of the physical cabling connectivity for the particular equipment rack 300 served by the particular reader 313.
  • the antenna array's individual antennas 304 are distributed to port locations 320 by running the individual antenna wire pairs and antenna along the interface panel 327 to the vicinity of each port 320 receiving a fiber optic cable 326, or to each physical asset that is tagged.
  • the locations of tags 214 are measured and stored along with the three-dimensional model of the particular network device, the model suitably detailed to distinguish individual ports 320 therein.
  • the antenna elements of the array can be integrated on a flexible substrate overlaid on the equipment front panel.
  • the number of antenna elements 304 may total several hundred, for example, within a single equipment rack 300.
  • the RFID data measured by the aforementioned techniques are augmented as shown in FIG. 4 by an optical scanner head 308 on scanning robot 327.
  • the three-dimensional geometry of each network interface panel 323 is captured by optical scanning and by potentially stitching together multiple optical scans to cover the entire rack.
  • Optical scanning allows the location of the connector ports 320 to be determined, referenced, and stored within the database, enabling comparison to future measurements at the same port to determine if the connection status has changed. This location information is used to position the RFID probe arm 323 in the vicinity of the tag during readout.
  • three-dimensional optical scanning systems 308 use various techniques, such as LIDAR (Light Detection and Ranging), structured light, scanning lasers and stereoscopic cameras.
  • any of these techniques can be used, as long as they have sufficient spatial resolution of at least 1 mm.
  • suitable cameras include the FARO EDGE SCANARM HD with ⁇ 25pm ( ⁇ 0.001 in) accuracy and a fast scan rate of 560,000 points/sec.
  • the apparatus comprised of the passive RFID receiver integrated circuit 210, ferrite core inductor 212 and ceramic capacitor 211 (FIG. 6) is designed to achieve the following unique functional characteristics:
  • the RFID integrated circuit 210, inductor 212, and capacitor 211 are surface mounted on a miniature flex circuit 213 that can be folded to a compact size and encapsulated to produce the final packaged RFID tag 214.
  • These tags are provided in a variety of packaging (i.e. housing) configurations, including an RFID tag that clips onto standard LC simplex 215 and duplex 216 fiber connectors, as shown in FIG. 7.
  • the plastic tag housing is selected to accommodate attachment methods to the connector.
  • the tag housing includes a magnetic element enabling magnetic attachment of the antenna array or RFID probe tip to the RFID tag.
  • the magnetic element may be a Neodymium permanent magnet or steel element.
  • the packaged RFID tag can clip onto small form factor LC and MTP/MPO fiber optic connectors.
  • each tag 214 may include an infrared (IR) or optical reflective location marker (e.g. IR reflective tape or coating) that is visible and readily distinguished by an optical scanner.
  • IR infrared
  • optical reflective location marker e.g. IR reflective tape or coating
  • each passive tag reflects illumination to assist in high-resolution location determination, and each tag reflects the RF signal carrier with a unique amplitude or phase modulation signature impressed therein on the carrier for identification purposes.
  • IR or visible wavelength reflectors may be incorporated one the housing of passive RFID tags 214.
  • a multiplexed, multi-channel RFID reader 313 with individually addressable antenna array 305 can be utilized to provide in-situ, real time monitoring of RFID tags on a network device (in contrast to deploying the scanning robot system 327 to the network device). Multiplexing of individual antenna elements 304 within the array 305 enables hundreds of tags 214 on cables 326 to be interrogated in rapid time succession by a single reader 313, for near real-time update rates and low upfront cost.
  • An antenna array 305 of individual antenna elements 304, all elements connected to a single multiplexed LF-RFID reader 313, are distributed to the port locations by running the individual antenna wire pairs and attaching each antenna element to the interface panel 327 in the vicinity of each port 320 receiving a fiber optic cable 326, or to each physical asset that is tagged.
  • compact passive RFID tags may be applied not only to the connectors at the ends of cables, but to the connector ports/receptacles online cards, pluggable optics, etc. This data is processed and automatically entered into a database of physical network links, so that the robot is able to also determine the location of additional data center assets such as transceivers.
  • the RFID discovery system enables several additional high-level functions to be performed by software residing on the management server 415. These functions are described next.
  • the consolidation and processing of spatially overlapping RF and optical scans provide full visibility into the physical link configuration.
  • This enables the software management system (FIG. 1) to provide a physical cable inventory and connectivity search function.
  • the search function accesses the stored database of network resources 111, such as type of circuit pack, router port, cross-connect port, wavelength, etc., all of which are identified by unique RFID serial numbers.
  • the system is aware of which existing resources are available to establish connectivity along a target path and achieves high accuracy by eliminating human intervention. For example, if one or more ends of the different cable connections are attached to automated patch-panels, the system can switch connections automatically to provision, validate and transfer the necessary resources to support production workflows. In accordance with this invention, an error free, no-touch, automated process performs these steps.
  • a path or network visualization function 106 presents an accurate and updated representation of the links between tagged network elements and network resources, to aid in mapping or in selecting network resources. This is analogous to physical mapping features and representations provided for highways, which are based on prior scanning using satellite imagery, GPS, and automobiles equipment with sensors to collect image and position data.
  • FIG. 9 schematically represents a fiber network map to identify potential links between a location A and a location B.
  • the solid lines represent optical links and the dashed lines represent electronic links.
  • the distances between offices 117-1, 117-2, 117-3 are not to scale here, to more clearly illustrate the inter-relationships between connections.
  • This map includes optical network elements such as the automated fiber cross-connects or patch-panels 200 and test equipment 116 to help visualize the available network resources.
  • the shortest path or highest bandwidth path may be determined using the Dijkstra algorithm, for example.
  • the provisioning automation function 105 in FIG. 1 enables the network to be configured and/or tested in an automatic fashion from a distant, centralized facility such as a network operations center, using existing testing resources for network link connectivity and various network elements.
  • Asset records in database 114 associated with each physical asset may include the functional characteristics, status, identifiers, and locations of the particular network elements.
  • the cabling records 110 in the database 114 may include fiber optic patch cords classified according to their particular fiber types (Single Mode Fiber SMF-28, bend insensitive SM fiber, dispersion shifted fiber, etc.), endpoint locations A and B, and termination types (splice, FC-APC connector, SC-UPC connector, LC-PC connector, etc.).
  • Locations A and B can be described in terms of a particular physical port location within a particular rack, for example.
  • Typical network elements with physical ports include patch-panels, automated fiber cross-connects 200, optical switches, servers, storage devices and other devices that re-direct signals in the optical domain.
  • Remote routing and process automation is achieved by transmitting interconnect reconfiguration commands to a cross-connect 200 control interface that sends commands to remote, automated fiber optic cross-connects deployed across the network. For example, after the user enters a start and destination location for the establishment of communication services, the processor’s routing optimization software module determines one or more alternative paths that meet the selection criteria based on the accurate data ensured by the present invention.
  • the process automation software directs the one or more fiber optic cross-connects along the path to switch, such that the path of fiber links joined end-to-end form a contiguous communication path meeting the user’s selection criteria.
  • network elements may include pluggable optics or transceivers, common network interfaces on packet switches and routers, operating at specific data rates, transmission protocols, wavelengths, and formats.
  • the physical interconnection discovery and management system disclosed herein offers significant advantages to providers of high bandwidth telecommunications services, including same-day and one-touch provisioning of high bandwidth fiber optic services.
  • the ability to dynamically update an accurate map of the physical network topology, coupled with the ability of physical network interconnections to be reconfigured from a remote network operations center, enables the labor and time intensive provisioning and maintenance processes to be fully automated.
  • the process to implement automated physical network configuration management is disclosed.
  • the information from multiple RFID scans 119, as well as registered and calibrated optical scans 113, and the stored database of annotated solid models of network equipment, is processed by the analysis module 107 on server 415, and then merged to create a virtual physical model of data center in 112.
  • This process utilizes the following steps:
  • the network device is optically scanned in three dimensions to produce a solid model of its interface panel.
  • a solid model is created for at least the interface panel of the device, with location of each port within the three-dimensional model of the device identified;
  • An annotated solid model is stored in network element port module 111 of database 114;
  • step one 500 3D optical scans of the network device are captured by the scanning robot to calibrate its position relative to rack 300.
  • step two 501 the locations of ports across panel 237 are extracted by comparison to three- dimensional annotated models stored after an initial data collection process.
  • step three 502 the robot moves arm to position RFID probe adjacent to each port location, within the detection range of a few mm.
  • step four 503 the RFID identifier of any tag associated with that port is read out and stored in connectivity database. This process is then repeated for each network device in step five 504. The detailed process is described below:
  • 3D optical and RF scans are performed by dual mode robot system 327, scans are calibrated based on known reference locations;
  • Location of each RFID tag on network device model is determined by processing data performed using collected data
  • FIG. 11 A flow chart of the physical network topology monitoring process is illustrated in FIG. 11 and is summarized below:
  • step two 511 Read in location of port or device from the database, to get, for example, the aisle, rack number, and coordinates relative to a given reference location, in step two 511;
  • the network configuration management system disclosed herein enables the physical network connectivity to be discovered and tracked in a fully automated way.
  • the physical location of any of a multiplicity of densely distributed RFID tags 214 is determined by a mobile RFID robot’s three-dimensional optical scanner module 308.
  • the scanner creates the three-dimensional model of the particular equipment rack fiber optic interface surface and the location of tags 214 corresponding to ports 320 are stored along with the model.
  • the port locations from the scan are used to position the RFID probe 314 to within several mm of any of the multiplicity of RFID tags for close range readout.
  • Passive RFID tags are located at connector ports, line cards, etc. and are automatically entered into a database of physical network links.
  • the navigation of the robotic RFID and optical scanning system 327 through the data center can be guided by reference markers or fiducials on the floor, network elements, bays or racks.
  • the robot includes a motorized, wheeled drive platform 309 that transports it along the floor.
  • a floor grid-sensing device and/or gyroscope are used to determine the position of the robot within the data center while also providing sensing for collision avoidance.
  • the robot navigation may be associated with a training process in tandem with a technician, to assist in avoiding obstacles (e.g. stray cables, boxes, open door of enclosure, etc.) while scanning the tags. This is typically done at the time each network device is installed.
  • the robot RFID reader probe 314 is attached to the distal end of an actuated probe arm 307 and is sufficiently compact to be able to access each port in the network device's interface panel despite any surrounding obstructions such as network cables, etc.
  • the optical scanning module locates the tags based on the stored database of coordinates, so that the RFID probe 314 can be driven to the correct physical location for tag readout. This stored location is subsequently used to guide the probe arm 307 and the RFID probe attached therein to the vicinity of the RFID tag 214 for proximity readout.
  • the robot scanning system 327 includes both RF and optical scanning capabilities.
  • a centralized server 415 processes the scan data and communicates with the controller module 405 of the robot scanning system 327 through a wireless communications link.
  • a battery and charging module 406 powers the system 327.
  • the wireless module 311 is used to establish communication between the robot system 327 and the server 415.
  • the three-dimensional camera 308 is used to scan the equipment and locate the tags so that the RFID probe can be properly positioned next to any tag.
  • the RFID probe module 314 comprises the high spatial resolution/close range RFID probe antenna and the associated RFID demodulation electronics.
  • FIG. 12 is a block diagram of the multi-function robot probe arm 307 with RFID probe 314 and connector gripper 401, including one or more tools from the set including a connector cleaner 402, vision probe 403, connector endface inspection probe 404, OTDR/Insertion loss probe 408, fusion splicing device 406, and fiber cable cutter 407.
  • This multi -function robot probe arm 307 may include any combination of these end-effector “tools” under the control of the robot controller module 405 (FIG. 1) receiving instructions from the management server 415 (FIG. 1).
  • the robot arm 307 is able to precisely position any of these tools relative to the connectors of network elements 115 to perform the selected function.
  • the connector gripper 401 is able to latch onto a connector, unplug it from the port, direct the connector end with its corresponding free length of cable (i.e. providing a service loop), and engage the connector into one of many devices, including the connector cleaner 402, OTDR/insertion loss measurement system 405, fiber cable cutter 407, or fusion splicing system 406.
  • the gripper 401 includes electronic sensors such as photointerrupters, proximity switches, and microswitches to detect the proper engagement of the connector into the gripper.
  • the gripper is actuated to unplug or plug-in along a longitudinal axis defined by the mating adapter and produce a plug-in and unplug force of about 5 N or more.
  • the connector cleaner 402 dispenses a section of cleaning fabric so that the connector gripper 401 can swipe a connector endface across the cleaning fabric to remove any debris or contaminants.
  • the connector ferrule is typically 1.25 mm or 2.5 mm in diameter or is a rectangular MT ferrule.
  • the length of swipe across the cleaning fabric is typically 2 to 5 times the ferrule diameter or width.
  • the fiber connector ferrule endface inspection probe 404 includes a high resolution autofocus microscope, CCD or CMOS camera, frame grabber and machine vision system with magnification lens system to capture images of the fiber endface of a connector, including for those connectors plugged into the backside of a mating adapter.
  • the system is able to see particulates and contamination on the ferrule endface, particularly in the center 50 micron diameter region centered on the optical fiber core.
  • the probe 404 can receive a male fiber optic connector ferrule (1.25 mm or 2.5 mm diameter) of the external cable, or it can be inserted into the female receptacle of a mating adapter with the opposing internal connector ferrule at a central location within the split sleeve of the adapter.
  • Patch-panels typically comprises of an array of such mating adapters with female receptacles and cables preinstalled on the backsides of the adapters.
  • the mobile robot 327 is able to manipulate the connector(s) 215 or 216 installed on the front side of the patch-panel or network element 115 so that the external and internal connector endfaces can be cleaned and inspected.
  • the vision probe 403 includes a CCD or CMOS camera, frame grabber and machine vision system to accurately determine identity and location of connectors 215, 216 and ports 320. This enables to connector gripper 401 to properly align with and engage the connector without jamming. Suitable connectors include industry standards such as LC, SC, FC, CS, SN, MDC, MPO, MTP and MU with PC, UPC or APC endface polish.
  • the OTDR/insertion loss probe 408 includes a fiber optic connector and cable which is robotically connected to the device or link under test at the cable’s distal end. The cable is connected to optical measurement instrument s) at its proximal end.
  • Optical measurement instruments may include an Optical Time Doman Reflectometer (OTDR) to measure backreflection and insertion loss along the length of the cable. It may also include a light source (e.g. 1550, 1310, 850 nm visible laser) and optical power meter.
  • OTDR Optical Time Doman Reflectometer
  • the robot arm can be used to repair damaged fibers and replace damaged connectors.
  • the fusion splicing system 406 includes chucks to receive and manipulate ends of fiber, as well as a fusion splicer to cut, clean, cleave and splice fibers and/or fibers with connectors.
  • the fiber cable cutter 407 an electrically actuated device, can be used to cut through the fiber optic cable, including the Kevlar reinforcement strands used in standard cable 326 constructions.
  • FIG. 13 is a flow chart of an exemplary method to robotically unplug, clean, inspect, and test a connector plugged into a port on a network element such as a standard patch-panel augmented with RFID tagged connectors, comprising the following steps: 1. Enter ID of port/connector to be cleaned
  • FIG. 14 depicts a flow chart of an exemplary method to robotically swap the transmit (Tx) and receive (Rx) connectors of a duplex fiber optic link.
  • the exemplary method comprises:
  • FIG. 15 is a flow chart of an exemplary method to robotically replace a damaged fiber optic connector.
  • the exemplary method comprises: 1. Enter ID of port/connector to be replaced
  • the robot arm 307 are attached to the moveable platform and include hand-like grippers 409 attached to the tool receiving end of each arm 307.
  • the robot arm 307 may have 6 degrees of freedom or axes.
  • the hand-like gripper includes three to five actuable fingers and as a result is able to perform a wide range of grasping tasks to execute a wide range of multi-step management and maintenance processes.
  • the “Shadow Dexterous Hand” is one example of a commercially available actuated hand with 5 fingers and 20 or more independent degrees of freedom. It provides grasping forces and precision of movement comparable to a human hand. This translates into versatility in its ability to grip tools and parts, both large and small.
  • the hand-like gripper 409 is able to grasp and unplug/plug-in all types of connectors, including fiber optic and electrical connectors and plugs.
  • the hand-like gripper 409 is of a similar size to a technician’s hand.
  • the hand-like gripper 409 is further able to grasp and manipulate tools such as a screwdriver, key or fiber optic connector cleaner 402. Moreover, it can open doors and remove panels on racks and replace power supplies, etc.
  • the robotic system 327 can cycle the power of servers, Ethernet switches, routers, generators, etc., and it can install and replace pluggable optics, servers, fuses, line cards, etc.
  • the system may include multiple robot arms. When multiple arms are included, they may, but need not be, homogenous. Different arms may, e.g., have different degrees of movement and/or support different hands (or grippers). Different arms and/or hands may be used to support different tasks or aspects of a task.
  • the moveable platform 309 at the base of the robot arm(s) 307 can further support test equipment (e.g. OTDR or insertion loss test set) and/or a fusion splicing system 406, etc.
  • This equipment is preferably powered by a battery on the platform.
  • the platform is able to navigate along the aisles of the data center and service any bay 300 within the data center.
  • the system also includes safety sensors to ensure that technicians are outside the work envelop of the robot arm. Otherwise, the one or more arms are temporarily stopped.
  • the mobile robot platform integrates one or more tools which enables multiple functions to execute routine maintenance and management tasks. Additional tasks performed by the robot include the attachment of labels, barcodes or tags to the cable and their readout. Physical layer management tasks can also be scheduled during off-hours to minimize potential impact on operations and a single mobile robot can be leveraged across an entire facility, regardless of size.
  • the use of an automated system also ensures proper execution and documentation of each of the above processes. As a consequence, this system increases the overall reliability and resiliency of the data center while reducing labor costs and unpredictable delays.
  • process may operate without any user intervention.
  • process includes some human intervention (e.g an act is performed by or with the assistance of a human).
  • the phrase “at least some” means “one or more,” and includes the case of only one.
  • the phrase “at least some ABCs” means “one or more ABCs”, and includes the case of only one ABC.
  • the phrase “using” means “using at least,” and is not exclusive. Thus, e.g., the phrase “using P” means “using at least P.” Unless specifically stated by use of the word “only”, the phrase “using P” does not mean “using only P.”
  • the phrase “based on” means “based in part on” or “based, at least in part, on,” and is not exclusive.
  • the phrase “based on proximity” means “based in part on proximity” or “based, at least in part, on proximity.”
  • the phrase “based on P” does not mean “based only on P.”
  • the terms “multiple” and “plurality” mean “two or more,” and include the case of “two.”
  • the phrase “multiple ABCs,” means “two or more ABCs,” and includes “two ABCs.”
  • the phrase “multiple PQRs,” means “two or more PQRs,” and includes “two PQRs.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

La présente invention concerne un système de robot mobile pour le fonctionnement automatisé d'un centre de données ou d'un bureau de télécommunications, qui comprend une plateforme robotique mobile avec une multiplicité d'outils intégrés dans celle-ci, pour fonctionner sur un élément de réseau à l'intérieur d'une baie, avec des étiquettes RFID (identification par radiofréquence intégrée) et des marqueurs d'alignement visuel fixés à des connecteurs de fibres optiques et à des ports des éléments de réseau. Le système de robot mobile positionne un bras de sonde de robot avec une sonde RFID pour une détection de proximité afin d'identifier un câble et un connecteur de fibre optique associé sur la base d'un identifiant RF unique d'une étiquette sur le connecteur de fibre optique. Le bras de sonde robotique a un élément de préhension de connecteur pour venir en prise avec le connecteur de fibre optique associé et le débrancher.
PCT/US2021/026866 2021-04-12 2021-04-12 Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile WO2022220789A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21937126.7A EP4323156A1 (fr) 2021-04-12 2021-04-12 Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/227,883 2021-04-12
US17/227,883 US11650598B2 (en) 2017-12-30 2021-04-12 Automated physical network management system utilizing high resolution RFID, optical scans and mobile robotic actuator

Publications (1)

Publication Number Publication Date
WO2022220789A1 true WO2022220789A1 (fr) 2022-10-20

Family

ID=83639461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/026866 WO2022220789A1 (fr) 2021-04-12 2021-04-12 Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile

Country Status (2)

Country Link
EP (1) EP4323156A1 (fr)
WO (1) WO2022220789A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180024306A1 (en) * 2016-07-22 2018-01-25 Intel Corporation Technologies for blind mating for sled-rack connections
US9908239B1 (en) * 2014-06-12 2018-03-06 Amazon Technologies, Inc. Mobile robot system
US20180215041A1 (en) * 2014-10-21 2018-08-02 Centurylink Intellectual Property Llc Automated Data Center
WO2018183045A1 (fr) * 2017-03-28 2018-10-04 Amazon Technologies, Inc. Procédé et système pour système de gestion d'inventaire téléopéré
US20190270201A1 (en) * 2016-05-06 2019-09-05 Kindred Systems Inc. Systems, devices, articles, and methods for using trained robots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908239B1 (en) * 2014-06-12 2018-03-06 Amazon Technologies, Inc. Mobile robot system
US20180215041A1 (en) * 2014-10-21 2018-08-02 Centurylink Intellectual Property Llc Automated Data Center
US20190270201A1 (en) * 2016-05-06 2019-09-05 Kindred Systems Inc. Systems, devices, articles, and methods for using trained robots
US20180024306A1 (en) * 2016-07-22 2018-01-25 Intel Corporation Technologies for blind mating for sled-rack connections
WO2018183045A1 (fr) * 2017-03-28 2018-10-04 Amazon Technologies, Inc. Procédé et système pour système de gestion d'inventaire téléopéré

Also Published As

Publication number Publication date
EP4323156A1 (fr) 2024-02-21

Similar Documents

Publication Publication Date Title
US11650598B2 (en) Automated physical network management system utilizing high resolution RFID, optical scans and mobile robotic actuator
US10977458B2 (en) Automated physical network management system utilizing high resolution RFID and optical scanning for RFID tag spatial localization
US10262656B2 (en) Multi-tier intelligent infrastructure management systems for communications systems and related equipment and methods
US8401349B2 (en) Method for providing an automated patch panel
US20230316014A1 (en) Automated physical network management system utilizing high-resolution rfid, optical scans, and mobile robotic actuator
US8897637B2 (en) Method and arrangement for identifying at least one object
US9225539B2 (en) Storing data relating to cables
US9058529B2 (en) RFID-based systems and methods for collecting telecommunications network information
US7081808B2 (en) Self-registration systems and methods for dynamically updating information related to a network
TWI588755B (zh) 射頻識別(rfid)標籤對標籤自動連接探索,及其相關方法、電路與系統
US20100098425A1 (en) Radio frequency identification overlay network for fiber optic communication systems
CN104685395A (zh) 与接线板连用的rfid使能光学适配器
KR20010072027A (ko) 통신 라인의 접속을 식별하고 추적하기 위한 방법 및장치
US20230344720A1 (en) High-resolution optical backscatter method to discover physical topology of complex, interconnected fiber optic network and automatically monitor and troubleshoot its performance
US20230042715A1 (en) Automated logging of patching operations via mixed reality based labeling
US11374808B2 (en) Automated logging of patching operations via mixed reality based labeling
WO2022220789A1 (fr) Système de gestion de réseau physique automatisé utilisant des balayages optiques rfid à haute résolution, balayages optiques et actionneur robotique mobile
Wagner et al. Automatic discovery of fiber optic structured cabling component locations and connectivity
Ruggeri et al. Design and development of a fully automated assembly solution for optical backplane interconnection circuits
RU2715361C1 (ru) Система мониторинга разъемных соединений кабельного тракта
Ogushi et al. A novel navigation system using augmented reality technology for distribution work at optical connector panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021937126

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937126

Country of ref document: EP

Effective date: 20231113