WO2022220263A1 - Ergothioneine production method - Google Patents

Ergothioneine production method Download PDF

Info

Publication number
WO2022220263A1
WO2022220263A1 PCT/JP2022/017698 JP2022017698W WO2022220263A1 WO 2022220263 A1 WO2022220263 A1 WO 2022220263A1 JP 2022017698 W JP2022017698 W JP 2022017698W WO 2022220263 A1 WO2022220263 A1 WO 2022220263A1
Authority
WO
WIPO (PCT)
Prior art keywords
ergothioneine
polypeptide
class
seq
idycogome
Prior art date
Application number
PCT/JP2022/017698
Other languages
French (fr)
Japanese (ja)
Inventor
進也 宮城島
俊亮 廣岡
Original Assignee
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人情報・システム研究機構 filed Critical 大学共同利用機関法人情報・システム研究機構
Priority to JP2023514667A priority Critical patent/JPWO2022220263A1/ja
Publication of WO2022220263A1 publication Critical patent/WO2022220263A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids

Definitions

  • the present invention relates to a method for producing ergothioneine. It also relates to a polypeptide that can be used to produce ergothioneine, a polynucleotide encoding the polypeptide, and a vector and cell containing the polynucleotide.
  • This application claims priority based on Japanese Patent Application No. 2021-067865 filed in Japan on April 13, 2021, the contents of which are incorporated herein.
  • Ergothioneine is a type of sulfur-containing amino acid and is known to exhibit high antioxidant activity.
  • the antioxidant activity of ergothioneine is extremely high, and is said to exhibit 7000 times the antioxidant activity of vitamin E.
  • Ergothioneine has been reported to accumulate in epidermal cells, and is said to be involved in suppression of oxidative stress caused by ultraviolet rays.
  • ergothioneine is known to accumulate in the central nervous system, and is suggested to be effective against neurodegenerative diseases.
  • Pleurotus cornucopia which is a kind of basidiomycetes, is known to have a remarkably high content of ergothioneine (Patent Document 1).
  • a method for producing ergothioneine a method of extracting from basidiomycetes such as Tamogitake (Patent Document 1), a method of culturing bacteria such as Mycobacterium (Patent Document 2), and the like are known.
  • microalgae have a high carbon dioxide fixing capacity compared to land plants and do not compete with agricultural products for growing places. It is also used industrially as a cosmetic material and the like. Spirulina, Chinolino, and the like are known to contain ergothioneine, but the content is not as high as in Basidiomycetes (Non-Patent Document 1).
  • the conventional method of producing ergothioneine requires time to cultivate Tamogitake mushrooms, etc., and cannot be said to be efficient. Therefore, there is a need for a new method for producing ergothioneine. If microalgae can be used to produce ergothioneine, it may be possible to produce ergothioneine at low cost.
  • an object of the present invention is to provide a method for producing ergothioneine using microalgae. Another object of the present invention is to provide a polypeptide that can be used to produce ergothioneine, a polynucleotide encoding the polypeptide, and a vector and cell containing the polynucleotide.
  • a method for producing ergothioneine which comprises the step (a) of culturing algae belonging to the class Idycogome.
  • the method for producing ergothioneine according to [1] further comprising the step (b) of recovering the algae belonging to the class Idycogome from the culture solution after the step (a).
  • [4] The method for producing ergothioneine according to any one of [1] to [3], wherein the alga belonging to the class Idycogome in the step (a) is diploid.
  • [5] The method for producing ergothioneine according to any one of [1] to [4], wherein the algae belonging to the class Idycogome are genetically modified algae.
  • [6] The method for producing ergothioneine according to [5], wherein the genetic modification is a genetic modification that increases the amount of ergothioneine produced.
  • a vector comprising at least one polynucleotide selected from the group consisting of the polynucleotide of [11] and the polynucleotide of [12].
  • a method for producing ergothioneine comprising the step of culturing the cells of [14].
  • a method for producing ergothioneine using microalgae is provided. Also provided are polypeptides that can be used to produce ergothioneine, polynucleotides encoding the polypeptides, and vectors and cells containing the polynucleotides.
  • PCR amplification of the NS1 region in the transformant (TF) of HKN1 (haploid) are shown.
  • PCR was performed using the NS1_F and NS1_R primer sets. Cyanidium sp. HKN1 (haploid) wild strain (WT) and Cyanidium sp.
  • WT wild strain
  • Cyanidium sp The growth polarity of HKN1 (haploid) transformant (TF) is shown. Arrows indicate sampling times for ergothioneine measurements.
  • the term “comprise” means that it may include elements other than the subject element.
  • the term “consist of” means containing no elements other than the subject element.
  • the term “consisting essentially of” means that it does not include constituent elements other than the subject constituent elements in a mode that exhibits a special function (such as a mode that completely loses the effect of the invention). means.
  • the word “comprise” includes aspects that "consist of” and aspects that "consist essentially of.”
  • Proteins, peptides, polynucleotides (DNA, RNA), vectors, and cells can be isolated.
  • isolated means separated from the natural state or other components.
  • isolated can be substantially free of other components.
  • substantially free of other components means that the content of other components contained in the isolated component is negligible.
  • the content of other components contained in the isolated component is, for example, 10% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less. It may be 5% by mass or less, or 0.1% by mass or less.
  • proteins, peptides, polynucleotides DNA, RNA
  • vectors and cells described herein may be isolated proteins, isolated peptides, isolated polynucleotides (isolated DNA, isolated RNA), isolated vectors, and isolated cells.
  • polynucleotide refers to a nucleotide polymer in which nucleotides are linked by phosphodiester bonds.
  • a “polynucleotide” may be DNA, RNA, or may be composed of a combination of DNA and RNA.
  • a “polynucleotide” may be a polymer of natural nucleotides, including natural nucleotides and non-natural nucleotides (analogs of natural nucleotides, nucleotides in which at least one of the base, sugar and phosphate moieties is modified). (for example, a phosphorothioate skeleton), etc.), or a polymer of non-natural nucleotides.
  • nucleotide sequences of "polynucleotides” are described in their generally accepted single-letter code unless otherwise specified. Unless otherwise indicated, nucleotide sequences are written 5' to 3'. As used herein, nucleotide residues that constitute a "polynucleotide” may be simply described as adenine, thymine, cytosine, guanine, uracil, or the like, or their one-letter codes.
  • polypeptide polypeptide
  • peptide protein
  • a “polypeptide”, “peptide” or “protein” may be a polymer of naturally occurring amino acids or of naturally occurring and non-natural amino acids (such as chemical analogues, modified derivatives of naturally occurring amino acids). It may also be a polymer of unnatural amino acids.
  • Amino acid sequences are written in the generally accepted one-letter or three-letter code unless otherwise specified. Unless otherwise specified, amino acid sequences are written from the N-terminal side to the C-terminal side.
  • “Operably linked” means that a first nucleotide sequence is positioned sufficiently close to a second nucleotide sequence such that the first nucleotide sequence is either in the second nucleotide sequence or under the control of the second nucleotide sequence. It means that it can affect the area.
  • a gene is operably linked to a promoter means that the gene is linked so as to be expressed under the control of the promoter.
  • “Expressable state” means that the gene is in a state where it can be transcribed and translated in the cell into which the gene has been introduced.
  • “Expression vector” means a vector containing a target gene and equipped with a system that enables expression of the target gene in cells into which the vector has been introduced.
  • the promoter can function means that the promoter can express a gene operably linked to the promoter in the cells of interest.
  • Gene refers to a polynucleotide containing at least one open reading frame that encodes a specific protein.
  • a gene may contain both exons and introns.
  • Sequence identity (or homology) between nucleotide or amino acid sequences refers to the matching of two nucleotide or amino acid sequences to the greatest degree of correspondence between the corresponding nucleotides or amino acids, with gaps corresponding to insertions and deletions. It is determined as the percentage of identical nucleotides or amino acids relative to the entire nucleotide or amino acid sequence excluding gaps in the resulting alignment. Sequence identity between nucleotide sequences or amino acid sequences can be determined using various homology search software known in the art.
  • sequence identity value of a nucleotide sequence can be obtained by calculation based on alignments obtained by the known homology search software BLASTN, and the sequence identity value of an amino acid sequence can be obtained by a known homology search. It can be obtained by calculation based on alignments obtained by software BLASTP.
  • Stringent conditions means conditions under which two polynucleotides with high sequence identity can specifically hybridize. Two polynucleotides with high sequence identity, the sequence identity between the two polynucleotides, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% Above, 98% or more, or 99% or more. Specific examples of stringent conditions include conditions described in Molecular Cloning-A Laboratory Manual Third Edition (Sambrook et al., Cold Spring Harbor Laboratory Press).
  • Stringent conditions include, for example, 6 x SSC (composition of 20 x SSC: 3 M sodium chloride, 0.3 M citric acid solution, pH 7.0), 5 x Denhardt's solution (composition of 100 x Denhardt's solution: 2 mass% bovine serum albumin, 2% ficoll, 2% polyvinylpyrrolidone), 0.5% SDS, 0.1 mg/mL salmon sperm DNA, and 50% formamide at 42-70°C in a hybridization buffer. conditions for several hours to overnight incubation at . Washing buffers used for washing after incubation include, for example, 0.1% by mass SDS-containing 1 ⁇ SSC solution and 0.1% by mass SDS-containing 0.1 ⁇ SSC solution.
  • codon optimization refers to replacing at least one codon in the original nucleotide sequence with a codon more frequently used in the target species while maintaining the original amino acid sequence.
  • a codon usage table is readily available, for example, in the "Codon Usage Database” (www.kazusa.or.jp/codon/) provided by Kazusa DNA Research Institute. For example, codon usage tables can be used to optimize codons.
  • Computer algorithms are also known for codon-optimizing a particular sequence for expression in a particular animal species. Computer algorithms for codon optimization are available, for example, at Gene Forge (Aptagen; Jacobus, PA).
  • the present disclosure provides a method of making ergothioneine.
  • the production method of the present embodiment includes the step (a) of culturing algae belonging to the class Idycogome.
  • step (a)> algae belonging to the class Idycogome are cultured.
  • the class Cyanidiphyta is taxonomically classified into the phylum Rhodophyta and the class Cyanidiophyceae. Three genera, Cyanidioschyzon, Cyanidium, and Galdieria, are currently classified in the class Idycogome. In the production method of the present embodiment, any algae belonging to the genus Cyanidioschizon, Cyanidium, and Garderia may be used.
  • FIG. 1 is a molecular phylogenetic tree of algae belonging to the class Idycogome based on the chloroplast rbcL gene.
  • maxima Galdieria-like Cyanidioschyzon are algae belonging to the class Idycogome.
  • Algae used in the production method of the present embodiment may be algae shown in FIG.
  • algae other than the algae shown in FIG. 1 may be algae classified into the class Idycogome by phylogenetic analysis based on the chloroplast rbcL gene.
  • Cyanidioschyzon include Cyanidioschyzon merolae.
  • Cyanidium include Cyanidium caldarium, Cyanidium sp. is mentioned.
  • Algae belonging to the genus Galdieria include Galdieria sulphuraria, Galdieria partita, Galdieria daedala, Galdieria maxima and Galdieria phlegrea.
  • Algae belonging to the class Idyucogome may be isolated from acidic environments such as acidic hot springs, or obtained from culture collections.
  • culture collections for example, the National Institute for Environmental Studies Microbial System Preservation Facility (16-2 Onogawa, Tsukuba City, Ibaraki Prefecture, Japan), NITE Biological Resource Center (NRBC; 2-49 Nishihara, Shibuya-ku, Tokyo, Japan) -10), GEORG-AUGUST-UNIVERSITY GOTTINGEN Culture Collection of Algae (SAG), and American Type Culture Collection (ATCC; 10801 University Boulevard Manassas, VA 20110).
  • a haploid cell morphology results from meiosis of a diploid cell morphology. The mating of two haploid cells is thought to give rise to a diploid cell.
  • Whether a cell is a diploid cell or a haploid cell can be determined by confirming the copy number of the same gene locus. If the copy number of the same gene locus is 1, it is determined to be a haploid cell.
  • a next-generation sequencer or the like can also be used to determine whether algae are diploid or haploid. For example, sequence reads of the whole genome are obtained by a next-generation sequencer or the like, and after assembling those sequence reads, the sequence reads are mapped to the sequence obtained by assembling. In diploids, allele-to-allele nucleotide differences are found in various regions on the genome, but in haploids, since only one allele exists, such regions are not found.
  • cells are stained with a nuclear staining reagent such as DAPI, and compared with cells known to be haploid, cells exhibiting equivalent fluorescence brightness are determined to be haploid, and about twice the fluorescence Cells that exhibit brightness may be determined to be diploid.
  • cells are stained with a nuclear staining reagent such as DAPI, and compared with cells known to be diploid, cells showing equivalent fluorescence brightness are determined to be diploid, about 1/2 times A cell exhibiting a fluorescence intensity of 1 may be determined as a haploid.
  • haploid cells In the production method of this embodiment, either haploid cells or diploid cells may be used. Diploid cells tend to have higher ergothioneine content compared to haploid cells. Therefore, it is preferable to use diploid cells from the viewpoint of production efficiency.
  • Algae belonging to the class Idycogome having both diploid and haploid cell morphologies include, for example, the genera Galderia and Cyanidium.
  • Specific examples of algae belonging to the genus Galderia include Galdieria sulphuraria (eg, SAG108.79 strain) and Galdieria partita (eg, NBRC 102759 strain).
  • Specific examples of algae belonging to the genus Cyanidium include, for example, Cyanidium sp. YFU3 strain (FERM BP-22334) (hereinafter referred to as "YFU3 strain") and Cyanidium sp. HKN1 strain. (FERM BP-22333) (hereinafter referred to as "HKN1 strain").
  • the YFU3 strain is a unicellular red algae isolated from high-temperature acidic water of a hot spring in Yufu City, Oita Prefecture, Japan.
  • the YFU3 strain was deposited on May 30, 2017 with the accession number FERM P-22334 at the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan).
  • the HKN1 strain is a unicellular red algae isolated from high-temperature acidic water of a hot spring in Hakone-machi, Ashigarashimo-gun, Kanagawa Prefecture, Japan.
  • the HKN1 strain was deposited with the National Institute of Technology and Evaluation Patent Organism Depository on May 30, 2017 under the accession number FERM P-22333, and on April 20, 2018 under the accession number FERM BP-22333. (Depositor: Inter-University Research Institute Corporation, Research and Development Organization of Information and Systems, National Institute of Genetics, Depositor's address: 1111 Yata, Mishima City, Shizuoka Prefecture, 411-8540).
  • a method of obtaining haploid cells from diploid cells includes a method of culturing diploid cells for a certain period of time.
  • haploid cells can be obtained by culturing diploid cells until they reach the stationary phase and continuing the culture for an arbitrary period of time while in the stationary phase. Examples of the period during which culture is continued in the stationary phase include 2 to 60 days, 3 to 40 days, or 5 to 35 days.
  • the period from the start of culture to stationary phase varies depending on the type of algae and culture conditions.
  • cells may be recovered from the stationary phase culture medium, subcultured, and further cultured for about 1 to 5 days.
  • Haploid cells of algae belonging to the class Idycogome are generally smaller in cell size than diploid cells, and do not have a strong cell wall. Therefore, haploid cells and diploid cells can be distinguished by observation with an optical microscope. Haploid cells can be obtained by collecting and isolating the haploid cells that have emerged in the culture medium using a Pasteur pipette or the like.
  • Methods for obtaining diploid cells from haploid cells include a method of mixing and culturing two or more types of haploid cells.
  • the two or more types of haploid cells are preferably algae cells of the same type, more preferably haploid cells derived from the same strain.
  • haploid cells derived from the same strain may be divided into two and the separately cultured mixtures may be mixed. By mixing and culturing two types of haploid cells, it is believed that the two cells will fuse to give rise to diploid cells.
  • the culture period is not particularly limited, and the culture may be continued until diploid cells appear.
  • the culture period includes, for example, 1 to 4 weeks.
  • algal cells may be transferred from the stationary phase culture solution and cultured for another 3 to 10 days.
  • the haploid cells can self-diploidize to obtain diploid cells. Diploid cells resulting from self-diploidization of haploid cells are believed to have properties similar to diploid cells resulting from the joining of two haploid cells. As described above, diploid cells have a larger cell size and a stronger cell wall than haploid cells. Therefore, haploid cells and diploid cells can be distinguished by observation with an optical microscope. Diploid cells can be obtained by collecting and isolating the diploid cells that have appeared in the culture medium using a Pasteur pipette or the like.
  • the algae belonging to the class Idycogome are not limited to those isolated from the natural world, and may be those in which mutations have occurred in natural algae belonging to the class Idycogome. Mutations may be naturally occurring or artificially occurring.
  • a method for artificially generating mutation is not particularly limited, and a known method can be used. Methods for artificially generating mutations include, for example, ultraviolet irradiation, radiation irradiation, chemical treatment with nitrous acid, etc.; genetic engineering methods such as gene introduction and genome editing;
  • Algae belonging to the class Idycogome may be genetically modified algae.
  • Haploid cells are amenable to genetic modification because they have only one set of genomes. Therefore, when algae belonging to the class Idycogome have both a diploid cell morphology and a haploid cell morphology, genetic modification is preferably performed in haploid cells.
  • the type of genetic modification is not particularly limited, but includes, for example, genetic modification that increases the amount of ergothioneine produced.
  • Genetic modifications that increase the amount of ergothioneine produced include, for example, genetic modifications that increase the expression levels of enzymes involved in the biosynthesis of ergothioneine, and genetic modifications that suppress the expression of enzymes involved in the degradation of ergothioneine.
  • Figure 2 shows the biosynthetic pathway of ergothioneine reported in Mycobacterium smegmatis, a Gram-positive bacterium, and Neurospora crassa, a type of filamentous fungus (Borodina et al Nutr Res Rev. 2020 Dec;33(2):190 -217).
  • the enzymes EgtD, EgtB, EgtC, and EgtE convert histidine to trimethylhistidine (hercynin), ⁇ -glutamylhercinylcysteine sulfoxide, and hercinylcysteine sulfoxide (5-histidylcysteine sulfoxide).
  • ergothioneine is synthesized.
  • ergothioneine is synthesized from histidine via trimethylhistidine and hercinylcysteine sulfoxide.
  • an enzyme (Egt-1) that synthesizes hercynylcysteine sulfoxide from histidine has been reported, but an enzyme that synthesizes ergothioneine from hercynylcysteine sulfoxide has not been reported.
  • Nanodia Since algae belonging to the class Idycogome are eukaryotes, they are considered to have an ergothioneine biosynthetic pathway similar to that of Neurospora crassa.
  • Neurospora crassa Egt-1 eg, NCBI Reference Sequence: XM — 951231.3: SEQ ID NO: 18
  • a domain having methyltransferase activity catalyzes a reaction to synthesize trimethylhistidine by adding a methyl group to histidine using S-adenosylmethionine (SAM) as a methyl group donor.
  • SAM S-adenosylmethionine
  • a domain with 5-histidylcysteine sulfoxide synthase activity adds cysteine to trimethylhistidine in the presence of iron (Fe(II)) and oxygen (O 2 ). catalyzes the synthesis of hercinylcysteine sulfoxide.
  • the enzymes involved in the biosynthesis of ergothioneine include Egt-1 of Neurospora crassa; the methyltransferase domain of Egt-1; the 5-histidylcysteine sulfoxide synthase domain of Egt-1; 30% or more, 35% or more, or 40% or more) and has methyltransferase activity and 5-histidylcysteine sulfoxide synthase activity; , 30% or more, 35% or more, or 40% or more) and has methyltransferase activity; , 35% or more, or 40% or more) and 5-histidylcysteine sulfoxide synthase activity.
  • Egt-1 of Neurospora crassa the methyltransferase domain of Egt-1, and the 5-histidylcysteine sulfoxide synthase domain of Egt-1 are collectively referred to as "Egt-1 etc.”.
  • Egt-1 a protein having high homology with Egt-1 of Neurospora crassa and having methyltransferase activity and 5-histidylcysteine sulfoxide synthase activity; having high homology with the methyltransferase domain of Egt-1, and proteins with methyltransferase activity; and proteins with high homology to the 5-histidylcysteine sulfoxide synthase domain of Egt-1 and having 5-histidylcysteine sulfoxide synthase activity are collectively referred to as "Egt-1 It is called "like enzyme".
  • a polynucleotide containing a coding sequence (CDS) for Egt-1 or the like or an Egt-1-like enzyme is added to the class Ideucogome in an expressible state.
  • CDS coding sequence
  • Examples include genetic modification introduced into the algae belonging to it.
  • genetic modification that increases the amount of ergothioneine produced includes genetic modification that increases the expression level of the Egt-1-like enzyme. mentioned.
  • Genetic modifications that increase the expression level of the Egt-1-like enzyme include, for example, an Egt-1-like enzyme gene functionally linked to a promoter with high expression activity (e.g., a polyglycol containing the Egt-1-like enzyme CDS). replacement of the promoter of the Egt-1-like enzyme gene with a strong expression promoter; disruption or suppression of the expression suppressor gene of the Egt-1-like enzyme gene; introduction of the expression promoter gene of the Egt-1-like enzyme gene introduction or promotion of expression, and the like.
  • a promoter with high expression activity e.g., a polyglycol containing the Egt-1-like enzyme CDS.
  • Egt-1-like enzymes of algae belonging to the class Egt-1 can be identified based on homology with amino acid sequences such as Egt-1.
  • a homology search program such as BLAST
  • the amino acid sequence of Egt-1 or the like is used as a query sequence, and a homology search is performed on the amino acid sequences of proteins expressed by algae belonging to the class Idycogome.
  • proteins having high homology eg, 30% or more, 35% or more, or 40% or more
  • proteins having high homology with the amino acid sequence of Egt-1 can be identified as Egt-1-like enzymes.
  • C.I. Egt-1-like enzymes in merolae include a protein having the amino acid sequence set forth in SEQ ID NO:2 (CMM184C) and a protein having the amino acid sequence set forth in SEQ ID NO:4 (CMR147C).
  • the protein of SEQ ID NO:2 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity.
  • the protein of SEQ ID NO:4 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1. Therefore, it is considered to have 5-histidylcysteine sulfoxide synthase activity.
  • the coding sequence (CDS) for the protein of SEQ ID NO:2 is shown in SEQ ID NO:1.
  • the genomic gene sequence of the protein of SEQ ID NO: 2 is identical to the CDS sequence as it has no introns.
  • the coding sequence (CDS) for the protein of SEQ ID NO:4 is shown in SEQ ID NO:3.
  • the genomic gene sequence of the protein of SEQ ID NO: 4 is identical to the CDS sequence as it has no introns.
  • Egt-1-like enzymes in the HKN1 strain include a protein having the amino acid sequence set forth in SEQ ID NO:6 and a protein having the amino acid sequence set forth in SEQ ID NO:8.
  • the protein of SEQ ID NO:6 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity.
  • the protein of SEQ ID NO:8 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1. Therefore, it is considered to have 5-histidylcysteine sulfoxide synthase activity.
  • the coding sequence (CDS) for the protein of SEQ ID NO:6 is shown in SEQ ID NO:5.
  • the genomic gene sequence of the protein of SEQ ID NO: 6 is the same as the CDS as it has no introns.
  • the coding sequence (CDS) for the protein of SEQ ID NO:8 is shown in SEQ ID NO:7.
  • the genomic gene sequence of the protein of SEQ ID NO:8 is the same as the CDS as it has no introns.
  • Egt-1-like enzymes in sulphuraria include a protein having the amino acid sequence set forth in SEQ ID NO: 11 (NCBI Reference Sequence: XP_005703833.1) and a protein having the amino acid sequence set forth in SEQ ID NO: 14 (NCBI Reference Sequence: XP_005706200. 1) can be mentioned.
  • the protein of SEQ ID NO: 11 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity.
  • the protein of SEQ ID NO: 14 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1.
  • the genomic gene sequence and coding sequence (CDS) for the protein of SEQ ID NO:11 are shown in SEQ ID NO:9 and SEQ ID NO:10, respectively.
  • the genomic gene sequence and coding sequence (CDS) for the protein of SEQ ID NO:14 are shown in SEQ ID NO:12 and SEQ ID NO:13, respectively.
  • a protein highly homologous to the methyltransferase domain of Egt-1 is also referred to as a "histidine methyltransferase-like protein", and a gene encoding a "histidine methyltransferase-like protein” is referred to as a “histidine methyltransferase-like gene”.
  • a protein that is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1 is called a "histidylcysteine sulfoxide synthase-like protein", and a gene encoding a "histidylcysteine sulfoxide synthase-like protein" is called “histidylcysteine sulfoxide synthase-like protein”. It is also called “dylcysteine sulfoxide synthase-like gene”.
  • a histidine methyltransferase-like gene and a histidylcysteine sulfoxide synthase-like gene More preferably, both a transferase-like gene and a histidylcysteine sulfoxide synthase-like gene are introduced.
  • the introduced gene When a gene is introduced into algae belonging to the class Idycogome, the introduced gene is introduced into cells in an expressible state.
  • a transgene is introduced into a cell after being operably linked to, for example, a promoter that can function in the target cell.
  • the promoter may be the promoter of the transgene or the promoter of another gene.
  • the promoter of the gene whose expression level is high in the cell to be introduced is preferable. Examples of such promoters include APCC promoter, CPCC promoter, Catalase promoter, EF1 ⁇ promoter and the like.
  • the merolae APCC (CMO250C) promoter (eg, -600 to -1; "-1" indicates the nucleotide immediately preceding the initiation codon) is shown in SEQ ID NO:15.
  • C. The merolae CPCC (CMP166C) promoter is shown in SEQ ID NO:16.
  • the merolae Catalase (CMI050C) promoter is shown in SEQ ID NO:17. These C.I.
  • the promoter of merolae can also be used in algae belonging to other subclasses.
  • the HKN1 strain APCC promoter is shown in SEQ ID NO:19.
  • the CPCC promoter of HKN1 strain is shown in SEQ ID NO:21.
  • the EF1 ⁇ promoter of HKN1 strain is shown in SEQ ID NO:20. These HKN1 strain promoters can also be used in other algae belonging to the class Idycogome.
  • a transgene may be introduced into a cell, for example, in the form of an expression vector.
  • expression vectors contain regulatory sequences (enhancers, poly-A addition signals, terminators, 3'UTR, etc.) and/or marker genes (drug resistance genes, fluorescent protein genes, auxotrophic genes, etc.). ).
  • Terminators and 3'UTRs include, for example, terminator and 3'UTR of ⁇ -tubulin, terminator and 3'UTR of ⁇ -tubulin, and terminator and 3'UTR of ubiquitin.
  • the type of expression vector is not particularly limited, and commonly used expression vectors can be appropriately selected and used.
  • Vectors may be linear or circular, and may be non-viral vectors such as plasmids, viral vectors (eg retroviral vectors such as lentiviral vectors), or transposon-based vectors.
  • C. merolae is an alga capable of self-cloning (Fujiwara et al., PLoS One. 2013 Sep 5;8(9):e73608).
  • Self-cloning means that the nucleic acid to be introduced into a cell is (1) a nucleic acid from an organism belonging to the same taxonomic species as the organism from which the cell is derived, and (2) an organism from which the cell is derived under natural conditions.
  • transgenic technology that uses only the nucleic acids of organisms belonging to species that exchange nucleic acids with the taxonomic species to which they belong. Transformants produced by self-cloning are excluded from the scope of living modified organisms under the Cartagena Protocol, and therefore can be cultivated in the field. Therefore, genetic modification may be performed by self-cloning.
  • C. A method for self-cloning in merolae is not particularly limited, but a method using the URA5.3 gene (CMK046C) as a selection marker can be mentioned.
  • C. merolae the uracil auxotrophic mutant C. merolae strain M4 (Minoda et al., Plant Cell Physiol. 2004 Jun;45(6):667-71.) exists.
  • C. The merolae M4 strain has a mutation in the URA5.3 gene and cannot synthesize uracil. Therefore, C.I.
  • the merolae M4 strain cannot grow on a medium that does not contain uracil. Therefore, C.I.
  • Self-cloning can be performed by using the merolae M4 strain as the parent strain and using the wild-type URA5.3 gene as the selection marker. More specifically, C.I. In the URA5.3 gene set of wild strains (eg strain 10D) of C. merolae, ligate any set of genes of C. merolae; Introduce into the merolae M4 strain. Thereafter, cells into which any gene set has been introduced can be obtained by culturing in a medium that does not contain uracil.
  • the “gene set” means a combination of any promoter, ORF of the target gene, and any 3′UTR.
  • the 3'UTR is not particularly limited, and may be the 3'UTR of the target gene or the 3'UTR of another gene. Commonly used 3'UTRs include the 3'UTR of ⁇ -tubulin, the 3'UTR of ⁇ -tubulin, and the 3'UTR of ubiquitin. Selectable markers are not limited to the URA5.3 gene, but may be genes associated with other auxotrophy.
  • auxotrophy-related gene As a selection marker as described above, by knocking out the auxotrophy-related gene introduced into algae cells, the same auxotrophy-related gene is used as a selection marker again. As such, genetic modification can be performed. That is, multiple self-cloning is possible.
  • a knockout method for the auxotrophic gene introduced as a selection marker is not particularly limited, and a known knockout technique may be used. Knockout techniques include, for example, homologous recombination, gene editing techniques, and the like. For example, C.I. In C. merolae, the URA5.3 gene (CMK046C) was used as a selectable marker.
  • Self-cloning can be performed using the merolae M4 strain as the parent strain. Since non-transformed cells cannot grow in a uracil-free medium, transformants can be selected by culturing transformed cells in a uracil-free medium. Furthermore, when performing self-cloning, the URA5.3 gene is knocked out by a known knockout technique such as homologous recombination. For example, the introduced URA5.3 gene may be entirely deleted, the URA5.3 gene may be partially deleted, or a point mutation may be introduced into the URA5.3 gene. URA5.3 gene knockout strains can be selected by culturing in a medium containing uracil and 5-fluorotinic acid (5-FOA).
  • 5-FOA 5-fluorotinic acid
  • the method for introducing genes into algae belonging to the class Idycogome is not particularly limited, and known methods can be used.
  • Nucleic acid introduction methods include, for example, polyethylene glycol (PEG) method, lipofection method, microinjection method, DEAE dextran method, gene gun method, electroporation method, calcium phosphate method and the like.
  • the introduced nucleic acid When introducing genes into algae belonging to the class Idycogome, the introduced nucleic acid may be inserted into any of the nuclear genome, the chloroplast genome, and the mitochondrial genome. When inserting the introduced nucleic acid into the genome, it may be inserted into the genome at a specific position, or may be inserted into the genome at random. Homologous recombination, genome editing and the like are examples of methods for inserting the nucleic acid to be introduced into a specific position of the genome. For example, C.I. Since the entire genome sequence of merolae has been completed (Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7.), the introduced nucleic acid is inserted at the desired position on the genome.
  • the insertion position of the transgene in merolae is not particularly limited, but includes, for example, the region between CMD184C and CMD185C.
  • Examples of transgene insertion sites in algae belonging to the genus Cyanidium include the NS1 region (for example, the NSI region of HKN1 strain (SEQ ID NO: 29)).
  • the method for culturing algae belonging to the class Idycogome is not particularly limited, and can be cultured by a known method.
  • Algae belonging to the class Idyucogome can be cultured, for example, using a medium for microalgae culture.
  • the medium for culturing microalgae is not particularly limited, but an inorganic salt medium containing a nitrogen source, a phosphorus source, trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.) and the like is exemplified.
  • nitrogen sources include ammonium salts, nitrates, nitrites and the like
  • phosphorus sources include phosphates and the like.
  • Such media include, for example, 2 ⁇ Allen medium (Allen MB. Arch. Microbiol. 1959 32: 270-277.), M-Allen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71 .), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.), modified M-Allen medium and the like.
  • a medium is preferably a liquid medium.
  • Algae belonging to the class Idyucogome can grow autotrophically under light irradiation, and can also grow heterotrophically by assimilating a carbon source. Therefore, the medium may contain organic matter as a carbon source.
  • Carbon sources include, for example, monosaccharides such as glucose, fructose and galactose; disaccharides such as sucrose, lactose and maltose; polysaccharides such as starch; peptides such as peptone, tryptone and casamino acids.
  • glucose is preferable from the viewpoint of the growth efficiency of algae belonging to the class Idycogome.
  • the glucose concentration in the medium is, for example, 0.01 to 10 M, 0.01 to 5 M, 0.01 to 3 M, 0.01 to 1 M, 0.01 to 0.5 M, 0.05 to 10M, 0.05 to 5M, 0.05 to 3M, 0.05 to 1M, or 0.05 to 0.5M.
  • the medium may contain sodium chloride.
  • the sodium chloride concentration in the medium is, for example, 0.1-10 M, 0.1-5 M, 0.1-3 M, 0.1-1 M, 0.1-0 .5M, 0.3-10M, 0.3-5M, 0.3-3M, 0.3-1M, or 0.3-0.8M.
  • Ergothioneine has high antioxidant activity and is thought to contribute to the reduction of oxidative stress. Therefore, ergothioneine production may increase under conditions of oxidative stress. Therefore, the medium may contain substances that induce oxidative stress.
  • Substances that induce oxidative stress include, for example, substances that induce osmotic stress such as salts, and peroxides.
  • the present invention also provides a method for increasing the nutrient content of algae belonging to the class Idyunicogome, comprising culturing the algae belonging to the class Idyunicogome under stress conditions.
  • the nutritional component include ergothioneine.
  • the stress conditions include salt stress, oxidative stress, and the like. Salt stress conditions include, for example, culture in the presence of sodium chloride at concentrations such as those described above. Oxidative stress conditions include culture in the presence of oxidative stress inducers as described above.
  • the present invention also provides algae belonging to the class Idycogome, cultured under stress conditions.
  • Algae belonging to the class Idycogome that have been cultured under stress conditions tend to have an increased content of nutritional components, including ergothioneine, compared to those cultured under non-stress conditions. Examples of stress conditions include those similar to those described above.
  • the medium may contain precursors of ergothioneine in the biosynthetic pathway of ergothioneine.
  • precursors of ergothioneine include methionine, histidine, trimethylhistidine, and hercinylcysteine sulfoxide.
  • the medium may contain substances that inhibit the metabolism of ergothioneine. Accumulation of ergothioneine can be expected when the medium contains a substance that inhibits the metabolism of ergothioneine. Ergothioneine can be consumed due to scavenging of reactive oxygen species if they are present. Therefore, the medium may contain antioxidants as other substances capable of scavenging reactive oxygen species. Antioxidants include, for example, ascorbic acid (vitamin C), tocopherols (vitamin E), polyphenols, flavonoids, glutathione, astaxanthin and the like.
  • the pH of the medium should be within the range in which algae belonging to the class Idyucogome can grow.
  • the pH of the medium can be, for example, pH 1-6, or pH 1-5.
  • the pH of the medium can be, for example, pH 1-3.
  • the culture temperature should be within a range where algae belonging to the class Idyucogome can grow.
  • the culture temperature is, for example, 15 to 50°C.
  • the culture temperature is preferably 20 to 50° C., more preferably 30 to 50° C., since the algae belonging to the class Idycogome grow well.
  • the culture temperature can be, for example, 35-50°C.
  • CO2 conditions may be within a range where algae belonging to the class Idyucogome can grow.
  • CO 2 concentrations include, for example, 0.04 to 5%.
  • the CO 2 concentration is preferably 0.04 to 3% because the growth of algae belonging to the class Idyucogome is favorable.
  • the CO2 condition may be atmospheric CO2 concentration.
  • the genus Garderia has high tolerance to high CO2 concentrations and can grow even at 100% CO2 . Therefore, when the alga belonging to the class Idycogome belongs to the genus Garderia, the CO 2 concentration may be 100%.
  • the culture may be static culture, aerobic culture, or shaking culture.
  • aeration conditions include, for example, 1 to 4 L air/min or 1 to 3 L air/min.
  • the shaking speed is, for example, 100 to 200 rpm.
  • Algae belonging to the class Idyucogome may be grown autotrophically or heterotrophically.
  • algae belonging to the class Idycogome are cultured under light irradiation.
  • the light intensity is, for example, 5 to 2000 ⁇ mol/m 2 s.
  • the light intensity is preferably from 5 to 1500 ⁇ mol/m 2 s because the growth of algae belonging to the class Idyucogome is favorable.
  • algae belonging to the class Idyucogome are cultured outdoors, they may be cultured under sunlight. When cultured indoors, the culture may be performed under continuous light, or a light-dark cycle (10L:14D, etc.) may be provided.
  • algae belonging to the class Idyucogome When algae belonging to the class Idyucogome are grown heterotrophically, they may be cultured in a medium containing an organic carbon source.
  • the light condition may be under light irradiation or under darkness.
  • algae belonging to the class Idyucogome undergo both autotrophic growth by photosynthesis and heterotrophic growth by assimilation of carbon sources.
  • algae belonging to the class Idyucogome grow only heterotrophically by assimilation of the carbon source.
  • Algae belonging to the class Idycogome may be pre-cultured before main culture for producing ergothioneine.
  • the culture conditions for the pre-culture may be the same as those for the main culture, or may be different.
  • the pre-culture can be, for example, an autotrophic culture.
  • the light condition can be 5-1000 ⁇ mol/m 2 s
  • the CO 2 condition can be 1-5%
  • the temperature condition can be 30-50°C.
  • Pre-culture may be performed by static culture.
  • Algae belonging to the class Idyucogome may be cultured until they reach the stationary phase, or the culture may be terminated at the growth phase. Since the ergothioneine content is higher in cells in the stationary phase than in cells in the growing phase, algae belonging to the class Idycogome are preferably cultured until they reach the stationary phase.
  • the manufacturing method of the present embodiment may include optional steps in addition to the step (a).
  • the step (c) of performing is mentioned.
  • Step (b) is a step of recovering algae belonging to the class Idycogome from the culture solution after culturing in step (a).
  • a method for recovering algae belonging to the class Idycogome from the culture medium is not particularly limited, and a known method can be used.
  • Methods for collecting algal cells include, for example, a method of collecting by centrifugation, a method of collecting by filtration, and the like.
  • centrifugation conditions include, for example, 1000-5000 ⁇ g or 2000-4000 ⁇ g.
  • the centrifugation time may be appropriately set according to the amount of the culture medium. Examples of centrifugation time include 5 to 60 minutes, 5 to 30 minutes, or 5 to 20 minutes.
  • a filter with a pore size smaller than that of algal cells belonging to the class Idycogome may be used. For example, a 0.45 ⁇ m filter or the like can be used.
  • Step (c) is a step of extracting ergothioneine from the algae belonging to the class Idycogome collected in step (b).
  • the method for extracting ergothioneine from algae belonging to the class Idycogome is not particularly limited.
  • Methods for extracting ergothioneine include, for example, solvent extraction.
  • Solvent extraction can be carried out, for example, by adding an extraction solvent to algae belonging to the class Idynocogoma, mixing them, and then removing cell residues of the algae belonging to the class Idycogome.
  • the extraction solvent is not particularly limited as long as it dissolves ergothioneine.
  • extraction solvents include organic solvents such as methanol, ethanol, isopropanol, and acetone; water-containing organic solvents obtained by mixing these organic solvents with water; and water (eg, hot water). Among them, methanol is preferable as the extraction solvent.
  • Solvent extraction may be performed after freeze-drying algal cells belonging to the class Idycogome. Extraction efficiency is improved by subjecting the freeze-dried cells to solvent extraction.
  • a cell disruption treatment may be performed in order to increase the extraction efficiency of ergothioneine.
  • Examples of cell disruption treatment include ultrasonic treatment and heat treatment.
  • cell debris of algae belonging to the class Idycogome may be removed. Methods for removing cell debris include, for example, centrifugation and filter filtration.
  • the extract may be further purified for ergothioneine.
  • Purification treatments include, for example, salting out, dialysis, recrystallization, reprecipitation, solvent extraction, adsorption, concentration, filtration, gel filtration, ultrafiltration, various types of chromatography (thin layer chromatography, column chromatography, ion exchange chromatography, chromatography, high-performance liquid chromatography, adsorption chromatography, etc.), but are not limited to these.
  • Ergothioneine may be purified by appropriately combining these methods.
  • Step (i) is a step of genetically modifying haploid algae belonging to the class Idycogome. Step (i) can be performed before step (a).
  • haploid cells When genetically modifying algae belonging to the class Idycogome, it is preferable to genetically modify haploid cells. Because haploid cells have only one set of genomes, they are easier to genetically modify than diploid cells. Examples of the method for making algae belonging to the class Idycogome haploid include the method mentioned in the above section " ⁇ Step (a)>". Examples of the method for genetically modifying algae belonging to the class Idycogome include the methods listed in the above section " ⁇ Step (a)>”. Genetic modification includes, for example, genetic modification that increases the amount of ergothioneine produced.
  • Step (ii) is a step of diploidizing algae belonging to the class Idycogome. Step (ii) can be performed after step (i) and before step (a).
  • ergothioneine can be obtained by culturing algae belonging to the class Idycogome. Since algae belonging to the class Idyucogome can grow under low-pH and high-temperature conditions where other organisms have difficulty growing, they can be cultivated outdoors in large quantities. In addition, algae belonging to the class Idycogome can increase the cellular content of ergothioneine to the same extent as that of Pleurotus cornucopiae. Therefore, reduction in the production cost of ergothioneine can be expected.
  • polypeptide in one embodiment, provides a polypeptide (hereinafter also referred to as "HSM polypeptide") selected from the group consisting of (a1) to (c1) below.
  • HSM polypeptide a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:6.
  • b1 A polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 6, and having histidine methyltransferase activity.
  • c1 A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6 and having histidine methyltransferase activity.
  • the polypeptide of (a1) is a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 6 (polypeptide of SEQ ID NO: 6), or an amino acid A polypeptide to which a sequence has been added.
  • the polypeptide of SEQ ID NO: 6 is a polypeptide found as a histidine methyltransferase-like protein from HKN1 strain.
  • the polypeptide of SEQ ID NO: 6, when introduced into the HKN1 strain together with the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 8 (the polypeptide of SEQ ID NO: 8), has the effect of increasing the ergothioneine production of the HKN1 strain. showed that. Therefore, the polypeptide of SEQ ID NO: 6 has histidine methyltransferase activity and is presumed to have activity to catalyze the reaction of methylating histidine to produce trimethylhistidine.
  • the length of the amino acid sequence added to the N-terminus or C-terminus of the polypeptide of SEQ ID NO: 6 is not particularly limited.
  • Examples of amino acid sequences to be added include amino acid sequences of peptide tags (FLAG tag, HA tag, 6 ⁇ His tag, Myc tag, etc.), amino acid sequences of other proteins, and the like.
  • the size of the polypeptide of (a1) is not particularly limited, but may be, for example, about 426 to 5000 amino acids long.
  • the size of the polypeptide of (a1) is 4000 amino acids or less, 3000 amino acids or less, 2000 amino acids or less, 1000 amino acids or less, 800 amino acids or less, 700 amino acids or less, 600 amino acids or less, or 500 amino acids.
  • 450 amino acids or less in length are mentioned.
  • the polypeptide of (b1) is a polypeptide consisting of an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 6, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added.
  • the amino acid sequence to be added includes those similar to (a1) above.
  • the size of the polypeptide of (b1) includes those similar to those of the polypeptide of (a1).
  • Amino acid mutations may be deletions, substitutions, additions, insertions, or combinations thereof.
  • the number of mutated amino acids is not particularly limited as long as the resulting polypeptide has histidine methyltransferase activity.
  • the number of amino acids to be mutated is, for example, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2 are included.
  • the types and positions of amino acids to be mutated are not particularly limited.
  • the mutation is an amino acid substitution, it includes, for example, substitution with an amino acid having a side chain similar to that of the original amino acid. Such substitutions include conservative substitutions. Conservative substitutions are amino acid substitutions that have little effect on the function of the polypeptide.
  • Amino acids include, for example, acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine, histidine), neutral amino acids (amino acids having hydrocarbon chains (glycine, alanine, valine, leucine, isoleucine/proline), amino acids with hydroxy groups (serine/threonine), amino acids containing sulfur (cysteine/methionine), amino acids with amide groups (asparagine/glutamine), amino acids with imino groups (proline), aromatic groups amino acids (phenylalanine, tyrosine, tryptophan)), etc. Conservative substitutions include substitutions within these groups.
  • the polypeptide of (c1) is a polypeptide consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added.
  • the amino acid sequence to be added includes those similar to (a1) above.
  • the size of the polypeptide of (c1) includes those similar to those of the polypeptide of (a1).
  • sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • the polypeptides (b1) and (c1) have histidine transferase activity. Whether or not a polypeptide has histidine transferase activity can be confirmed by a known method. Such methods include, for example, incubating histidine and an appropriate methyl donor (such as S-adenosylmethionine (SAM)) in the presence of the polypeptide and confirming the production of trimethylhistidine.
  • SAM S-adenosylmethionine
  • the present disclosure provides a polypeptide (hereinafter also referred to as "HSS polypeptide") selected from the group consisting of (a2) to (c2) below.
  • HSS polypeptide a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:8.
  • b2 A polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO:8, wherein the polypeptide has 5-histidylcysteine sulfoxide synthase activity.
  • c2 A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 8 and having 5-histidylcysteine sulfoxide synthase activity.
  • the polypeptide of (a2) is a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 8 (polypeptide of SEQ ID NO: 8), or an amino acid A polypeptide to which a sequence has been added.
  • the polypeptide of SEQ ID NO: 8 is a polypeptide found as a histidylcysteine sulfoxide synthase-like protein from HKN1 strain.
  • polypeptide of SEQ ID NO: 8 has 5-histidylcysteine sulfoxide synthase activity and is presumed to have activity to catalyze the reaction of trimethylhistidine to 5-histidylcysteine sulfoxide (hercinylcysteine sulfoxide). be done.
  • the length of the amino acid sequence added to the N-terminus or C-terminus of the polypeptide of SEQ ID NO: 8 is not particularly limited.
  • Examples of amino acid sequences to be added include amino acid sequences of peptide tags (FLAG tag, HA tag, 6 ⁇ His tag, Myc tag, etc.), amino acid sequences of other proteins, and the like.
  • the size of the polypeptide of (a2) is not particularly limited, but may be, for example, about 595 to 5000 amino acids long.
  • the size of the polypeptide of (a2) is 4000 amino acids or less, 3000 amino acids or less, 2000 amino acids or less, 1000 amino acids or less, 800 amino acids or less, 700 amino acids or less, 650 amino acids or less, or 600 amino acids. These include:
  • the polypeptide of (b2) is a polypeptide consisting of an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 8, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added.
  • the amino acid sequence to be added includes those similar to (a2) above.
  • the size of the polypeptide of (b2) includes those similar to those of the polypeptide of (a2).
  • Amino acid mutations may be deletions, substitutions, additions, insertions, or combinations thereof.
  • the number of amino acids to be mutated is not particularly limited as long as the resulting polypeptide has 5-histidylcysteine sulfoxide synthase activity.
  • the number of amino acids to be mutated is, for example, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2 are included.
  • the types and positions of amino acids to be mutated are not particularly limited. Types of amino acid substitution include those similar to those described above.
  • the polypeptide of (c2) is a polypeptide consisting of an amino acid sequence having a sequence identity of 80% or more with the amino acid sequence set forth in SEQ ID NO: 8, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added.
  • the amino acid sequence to be added includes those similar to (a2) above.
  • the size of the polypeptide of (c2) includes those similar to those of the polypeptide of (a2).
  • sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • the polypeptides (b2) and (c2) have 5-histidylcysteine sulfoxide synthase activity. Whether or not a polypeptide has 5-histidylcysteine sulfoxide synthase activity can be confirmed by known methods. Such methods include, for example, incubating trimethylhistidine and cysteine in the presence of the polypeptide and confirming the production of 5-histidylcysteine sulfoxide (hercinylcysteine sulfoxide).
  • HSM polypeptides and HSS polypeptides can be used to produce ergothioneine from histidine.
  • HSM polynucleotides polynucleotides encoding HSM polypeptides (hereinafter also referred to as "HSM polynucleotides”.
  • HSM polynucleotides include (d1) to (g1) below.
  • (d1) A polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO:5.
  • (e1) A polynucleotide comprising a nucleotide sequence in which one or more nucleotides are mutated in the polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO:5, and which encodes a polypeptide having histidine transferase activity.
  • (f1) A polynucleotide comprising a nucleotide sequence having 80% or more sequence identity with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 5, which encodes a polypeptide having histidine transferase activity.
  • (g1) A polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO:5 and that encodes a polypeptide having histidine transferase activity.
  • the polynucleotide (d1) is a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 5 (polynucleotide of SEQ ID NO: 5), or at either or both of the 5' end and 3' end of the polynucleotide of SEQ ID NO: 5 , is a polynucleotide to which a nucleotide sequence has been added.
  • the polynucleotide of SEQ ID NO:5 is a polynucleotide that encodes the polypeptide of SEQ ID NO:6.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide of SEQ ID NO:6.
  • the polynucleotide of (e1) is either a polynucleotide consisting of a nucleotide sequence in which one or more nucleotides are mutated in the nucleotide sequence set forth in SEQ ID NO: 5, or the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
  • Nucleotide mutations may be deletions, substitutions, additions, insertions, or combinations thereof.
  • the number of mutated nucleotides is not particularly limited as long as the polypeptide encoded by the resulting polynucleotide has histidine methyltransferase activity.
  • the number of nucleotides to be mutated is, for example, 1 to 300, 1 to 200, 1 to 150, 1 to 120, 1 to 100, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
  • the polynucleotide (f1) is a polynucleotide consisting of a nucleotide sequence having a sequence identity of 80% or more with the nucleotide sequence set forth in SEQ ID NO: 5, or any of the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
  • sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • the present disclosure provides polynucleotides encoding HSS polypeptides (hereinafter also referred to as "HSS polynucleotides").
  • HSS polynucleotides include (d2) to (g2) below.
  • (d2) a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO:7;
  • (e2) A polynucleotide comprising a nucleotide sequence in which one or more nucleotides are mutated in the polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7, the polypeptide having 5-histidylcysteine sulfoxide synthase activity
  • a polynucleotide encoding a f1
  • (g1) A polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7 and that encodes a polypeptide having 5-histidylcysteine sulfoxide synthase activity.
  • the polynucleotide (d2) is a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7 (polynucleotide of SEQ ID NO: 7), or at either or both of the 5' end and 3' end of the polynucleotide of SEQ ID NO: 7 , is a polynucleotide to which a nucleotide sequence has been added.
  • the polynucleotide of SEQ ID NO:7 is a polynucleotide that encodes the polypeptide of SEQ ID NO:8.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide of SEQ ID NO:8.
  • the polynucleotide of (e2) is either a polynucleotide consisting of a nucleotide sequence in which one or more nucleotides are mutated in the nucleotide sequence set forth in SEQ ID NO: 7, or the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
  • Nucleotide mutations may be deletions, substitutions, additions, insertions, or combinations thereof.
  • the number of mutated nucleotides is not particularly limited as long as the polypeptide encoded by the resulting polynucleotide has 5-histidylcysteine sulfoxide synthase activity.
  • the number of nucleotides to be mutated is, for example, 1 to 300, 1 to 200, 1 to 170, 1 to 150, 1 to 120, 1 to 100, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
  • the polynucleotide (f1) is a polynucleotide consisting of a nucleotide sequence having 80% or more sequence identity with the nucleotide sequence set forth in SEQ ID NO: 7, or any of the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences.
  • the nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
  • sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • degenerate codons that have a high codon usage frequency in the cells used may be used.
  • codon optimization may be performed depending on the cell species used.
  • Nucleotide mutations may be genetic mutations that do not change the amino acid sequence of the encoded protein (silent mutations).
  • HSM polynucleotides and HSS polynucleotides can be used to produce cells that produce ergothioneine or cells with improved ergothioneine-producing ability.
  • the disclosure provides a vector comprising at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
  • the vector of this embodiment may contain only one of the HSM polynucleotide and the HSS polynucleotide, or may contain both the HSM polynucleotide and the HSS polynucleotide.
  • a vector may contain other sequences in addition to HSM polynucleotides and/or HSS polynucleotides. Other sequences include those similar to those described above.
  • a vector may be an expression vector. Examples of vectors include the same vectors as those described above.
  • the HSM polynucleotide and/or HSS polynucleotide may be operably linked to a promoter that can function in the target of introduction.
  • promoters include those mentioned above. If the vector contains both HSM and HSS polynucleotides, the same promoter and terminator may be used, or different promoters and terminators may be used. From the viewpoint of avoiding unintended homologous recombination, HSM polynucleotides and HSS polynucleotides preferably use different promoters and terminators, respectively.
  • the vector of the present embodiment can be used for production of cells that produce ergothioneine, or production of cells with improved ergothioneine-producing ability.
  • the present disclosure provides cells comprising at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
  • the cells of this embodiment may contain either one of HSM polynucleotides and HSS polynucleotides, or may contain both HSM polynucleotides and HSS polynucleotides.
  • the cells of this embodiment preferably contain both HSM and HSS polynucleotides.
  • the type of cells is not particularly limited. Examples of cells include, but are not limited to, cells of bacteria (Escherichia coli, Bacillus subtilis, etc.), fungi (yeast, etc.), algae (Idycogome algae, etc.), insects (silkworms, etc.), plants, mammals, and the like. . Cells include, for example, algal cells belonging to the class Idycogome.
  • the cells of this embodiment can be produced by introducing a vector containing HSM polynucleotides and/or HSS polynucleotides into cells.
  • Methods for introducing vectors include the same methods as described above.
  • the cells of this embodiment preferably contain HSM polynucleotides and/or HSS polynucleotides in an expressible state.
  • Cells contain HSM and/or HSS polynucleotides in an expressible state such that HSM and/or HSS polypeptides are expressed from these polynucleotides.
  • the expressed HSM and/or HSS polypeptides catalyze the synthesis of ergothioneine from histidine. As a result, the cell becomes able to synthesize ergothioneine.
  • the ergothioneine-producing ability is improved.
  • the present disclosure provides a method for producing ergothioneine, comprising culturing cells containing at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
  • the culture method can be appropriately selected according to the cell type.
  • the cells are algal cells belonging to the class Idycogome, they can be cultured in the same manner as described above.
  • the production method of the present embodiment may further include a step of collecting cells, a step of extracting ergothioneine from cells, and the like.
  • Example 1 [Preparation of medium] (MA medium) An M-Allen medium (MA medium) having the composition shown in Table 1 was prepared. Specifically, medium components other than A2 Fe stock were mixed, adjusted to pH 2.0 with sulfuric acid, and then sterilized by autoclaving. After autoclave sterilization, 4 mL of filter-sterilized A2 Fe stock was added to prepare MA medium. Tables 2 and 3 show the compositions of A2 trace element and A2 Fe stock, respectively.
  • MA + 0.1 M glucose medium Glucose was added to the MA medium to a final concentration of 0.1 M to prepare an MA+0.1 M glucose medium.
  • MA + 0.3M NaCl medium NaCl was added to MA medium to a final concentration of 0.3 M to prepare MA+0.3 M NaCl medium.
  • MA + 0.6M NaCl medium NaCl was added to MA medium to a final concentration of 0.6M to prepare MA+0.6M NaCl medium.
  • MA + 0.1 M glucose, 0.6 M NaCl medium Glucose and NaCl were added to MA medium to final concentrations of 0.1 M and 0.6 M, respectively, to prepare MA+0.1 M glucose, 0.6 M NaCl medium.
  • main culture Using 1 L of MA medium, main culture of algae belonging to the class Idycogome was carried out in a gas phase incubator. After culturing for 2 to 3 weeks, cells were harvested by centrifugation (3,000 ⁇ g, 10 minutes).
  • the culture conditions were a light condition of 200 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
  • Algae belonging to the class Idycogome were statically cultured in a CO 2 incubator using MA medium.
  • the culture conditions were a light condition of 60 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
  • main culture Using 1 L of MA + 0.1 M glucose medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000 ⁇ g, 10 minutes). The culture conditions were a light condition of 200 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
  • Algae belonging to the class Idycogome were statically cultured in a CO 2 incubator using MA medium.
  • the culture conditions were a light condition of 60 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
  • main culture Using 1 L of MA + 0.1 M glucose medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000 ⁇ g, 10 minutes). The culture conditions were darkness, a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
  • main culture Using 1 L of MA+0.6 M NaCl medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 2 to 3 weeks, cells were harvested by centrifugation (3,000 ⁇ g, 10 minutes). The culture conditions were a light condition of 200 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
  • ⁇ Mixed nutrient culture under salt stress conditions> (pre-culture) Using MA+0.3M NaCl medium, static culture of algae belonging to the class Idycogome was carried out in a CO 2 incubator.
  • the culture conditions were a light condition of 60 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
  • main culture Using 1 L of MA+0.1 M glucose, 0.6 M NaCl medium, main culture of algae belonging to the class Idycogome was carried out in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000 ⁇ g, 10 minutes). The culture conditions were a light condition of 200 ⁇ mol/m 2 ⁇ s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
  • each alga indicates the following algae.
  • autotrophic culture + salt indicates autotrophic culture under salt stress conditions.
  • Matotrophic culture + salt indicates a mixed trophic culture under salt stress conditions.
  • FIG. 3 shows an example of an LC-MS chromatogram measuring the ergothioneine content.
  • FIG. 3 shows the results for autotrophically cultured Galdieria sulphuraria SAG108.79 (diploid).
  • Example 2 [Production of transformants] Cyanidium sp.
  • a histidine methyltransferase-like gene (HSM gene; SEQ ID NO: 5) and a 5-histidylcysteine sulfoxide synthase-like gene (HSS gene; SEQ ID NO: 7) were introduced into HKN1 (haploid), and the HSM gene and HSS gene were introduced. Overexpressing transformants were generated (see Figure 4).
  • the HSM and HSS genes are derived from Cyanidium sp. A clone from HKN1 was used.
  • FIG. 4 shows the construct of the donor DNA. Cyanidium sp. into which the HSS gene and the HSM gene are introduced. A neutral site (NS1) was selected as the genomic region of HKN1 (haploid). Cyanidium sp. Using genomic DNA extracted from HKN1 (haploid) as a template, the following primers (NS1_F, NS1_R; lowercase letters indicate sequences homologous to the vector, uppercase letters indicate the sequence of the NS1 region) were used to extract the NS1 region. A DNA fragment was amplified.
  • NS1_F cggtaccggggatcACCATCCAAAGAGCAGGAATGCGG (SEQ ID NO: 27)
  • NS1_R cgactctagaggatcATTAGCTCGCTGGTTGAAACCAAACG (SEQ ID NO: 28)
  • the obtained DNA fragment was cloned into the pUC19 plasmid, and the HSS gene set [P APCC (SEQ ID NO: 19)-HSS (SEQ ID NO: 7)-T ⁇ -tubulin (SEQ ID NO: 22)], CAT marker set [ PEF1 ⁇ (SEQ ID NO: 22)] No.20)-Tp of POP (SEQ ID NO:25)-CAT (SEQ ID NO:26)-T UBQ (SEQ ID NO:23)], HSM gene set [P CPCC (SEQ ID NO:21)-HSM (SEQ ID NO:5)-T ⁇ -tubulin (SEQ ID NO: 24)] was inserted.
  • the abbreviations are as follows.
  • P APCC Cyanidium sp. APCC promoter of HKN1.
  • HSS Cyanidium sp. HSS gene of HKN1.
  • T ⁇ -tubulin Cyanidium sp. ⁇ -tubulin terminator of HKN1.
  • PEF1 ⁇ Cyanidium sp. EF1 ⁇ promoter of HKN1.
  • Tp of POP transit peptide (Tp) of plant organelle DNA polymerase (POP) CAT: chloramphenicol antitransferase gene.
  • TUBQ Cyanidium sp. Ubiquitin terminator of HKN1.
  • P CPCC Cyanidium sp. CPCC promoter of HKN1.
  • HSM Cyanidium sp. HSM gene of HKN1.
  • T ⁇ -tubulin Cyanidium sp. ⁇ -tubulin terminator of HKN1.
  • Escherichia coli was transformed with the resulting plasmid, allowed to grow, and then the plasmid was extracted. Using the obtained plasmid as a template, PCR amplification was performed using the following primers (puc19_F, puc19_R). The obtained DNA fragment was used as donor DNA.
  • puc19_F gctgcaaggcgattaagttgggtaacgccagggttttccc (SEQ ID NO: 32)
  • puc19_R ttatgcttccggctcgtatgttgtgtggaattgtgagcgg (SEQ ID NO: 33)
  • the NS1 region and its upstream and downstream 200 bp sequences are shown in SEQ ID NO: 29.
  • the sequence of the NS1 region used as the 5' homology arm of the donor DNA is shown in SEQ ID NO:30.
  • the sequence of the NS1 region used as the 3' homology arm of the donor DNA is shown in SEQ ID NO:31.
  • Cyanidium sp The transformation of Cyanidium sp.
  • FIG. 5 shows the results of electrophoresis of the PCR amplification products.
  • TF transformant
  • WT wild strain
  • the algae described in Table 5 are the following algae.
  • Cyanidium (N) WT Cyanidium sp. Wild strain of HKN1 (haploid).
  • Cyanidium (N) TF Cyanidium sp. A transformant of HKN1 (haploid).
  • the amount of ergothioneine produced was significantly increased compared to the wild type (WT).
  • the ergothioneine content was higher in cells in stationary phase compared to cells in proliferative phase. From this result, it was confirmed that the HSM gene and HSS gene introduced into the transformant (TF) are genes involved in ergothioneine production.
  • the HSM and HSS genes were deduced to be histidine methyltransferase and 5-histidylcysteine sulfoxide synthase genes, respectively, based on their sequence homology with Egt-1.
  • the growth curve in the main culture is shown in Figure 6. Arrows in FIG. 6 indicate cell sampling times. There was no difference in growth rate between transformant (TF) and wild type (WT). This result indicates that overproduction of ergothioneine does not affect growth rate. As shown in Table 5, ergothioneine content is higher in stationary phase cells. Therefore, it was considered preferable to recover ergothioneine from algal cells after growing them to the stationary phase.
  • a method for producing ergothioneine using microalgae is provided. Also provided are polypeptides that can be used to produce ergothioneine, polynucleotides encoding the polypeptides, and vectors and cells containing the polynucleotides. While the preferred embodiments of the invention have been described and illustrated, it is to be understood that they are intended to be illustrative of the invention and should not be taken as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the spirit or scope of the invention. Accordingly, the present invention should not be viewed as limited by the foregoing description, but only by the scope of the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

An ergothioneine production method comprising: (a) a step for culturing an alga belonging to Cyanidiophyceae; (b) a step for collecting the alga belonging to Cyanidiophyceae from the culture liquid after the culture; and (c) a step for extracting ergothioneine from the collected alga belonging to Cyanidiophyceae. A polypeptide usable in the aforesaid production method; a polynucleotide encoding the polypeptide; and a vector and a cell containing the polynucleotide.

Description

エルゴチオネインの製造方法Ergothioneine manufacturing method
 本発明は、エルゴチオネインの製造方法に関する。また、エルゴチオネインの製造に利用可能なポリペプチド、当該ポリペプチドをコードするポリヌクレオチド、並びに前記ポリヌクレオチドを含むベクター及び細胞に関する。
 本願は、2021年4月13日に、日本に出願された特願2021-067865号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing ergothioneine. It also relates to a polypeptide that can be used to produce ergothioneine, a polynucleotide encoding the polypeptide, and a vector and cell containing the polynucleotide.
This application claims priority based on Japanese Patent Application No. 2021-067865 filed in Japan on April 13, 2021, the contents of which are incorporated herein.
 エルゴチオネインは、含硫アミノ酸の一種であり、高い抗酸化活性を示すことが知られている。エルゴチオネインの抗酸化活性は極めて高く、ビタミンEの7000倍の抗酸化活性を示すといわれている。エルゴチオネインは、表皮細胞に蓄積することが報告されており、紫外線による酸化ストレス抑制に関与しているといわれている。また、エルゴチオネインは、中枢神経に蓄積することが知られており、神経変性疾患に対する有効性が示唆されている。 Ergothioneine is a type of sulfur-containing amino acid and is known to exhibit high antioxidant activity. The antioxidant activity of ergothioneine is extremely high, and is said to exhibit 7000 times the antioxidant activity of vitamin E. Ergothioneine has been reported to accumulate in epidermal cells, and is said to be involved in suppression of oxidative stress caused by ultraviolet rays. Moreover, ergothioneine is known to accumulate in the central nervous system, and is suggested to be effective against neurodegenerative diseases.
 動植物はエルゴチオネインを生合成することができず、一部の細菌及び担子菌類がエルゴチオネインを生合成されることが知られている。特に、担子菌類の一種であるタモギタケは、エルゴチオネインの含有量が顕著に高いことが知られている(特許文献1)。エルゴチオネインの製造方法としては、タモギタケ等の担子菌類から抽出する方法(特許文献1)、マイコバクテリウム等の細菌を培養する方法(特許文献2)等が知られている。 Animals and plants cannot biosynthesize ergothioneine, and some bacteria and basidiomycetes are known to biosynthesize ergothioneine. In particular, Pleurotus cornucopia, which is a kind of basidiomycetes, is known to have a remarkably high content of ergothioneine (Patent Document 1). As a method for producing ergothioneine, a method of extracting from basidiomycetes such as Tamogitake (Patent Document 1), a method of culturing bacteria such as Mycobacterium (Patent Document 2), and the like are known.
 一方、微細藻類は、陸上植物と比較して、高い二酸化炭素固定能力を有すること、及び農産物と生育場所が競合しないことから、いくつかの種は、大量培養されて、飼料、機能性食品、及び化粧品材料等として産業的に利用されている。スピルリナ及びチノリノなどでエルゴチオネインを含有するものが知られているが、その含有量は担子菌類ほど多くない(非特許文献1)。 On the other hand, microalgae have a high carbon dioxide fixing capacity compared to land plants and do not compete with agricultural products for growing places. It is also used industrially as a cosmetic material and the like. Spirulina, Chinolino, and the like are known to contain ergothioneine, but the content is not as high as in Basidiomycetes (Non-Patent Document 1).
特許第6799836号公報Japanese Patent No. 6799836 特許第6263672号公報Japanese Patent No. 6263672
 従来のエルゴチオネインの製造方法は、タモギタケ等の栽培に時間を要し、効率がよいとはいえない。そのため、エルゴチオネインの新規な製造方法が求められている。エルゴチオネインの製造に微細藻類を利用できれば、安価にエルゴチオネインを製造できる可能性がある。 The conventional method of producing ergothioneine requires time to cultivate Tamogitake mushrooms, etc., and cannot be said to be efficient. Therefore, there is a need for a new method for producing ergothioneine. If microalgae can be used to produce ergothioneine, it may be possible to produce ergothioneine at low cost.
 そこで、本発明は、微細藻類を利用したエルゴチオネインの製造方法を提供することを目的とする。また、エルゴチオネインの製造に利用可能なポリペプチド、当該ポリペプチドをコードするポリヌクレオチド、並びに前記ポリヌクレオチドを含むベクター及び細胞を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing ergothioneine using microalgae. Another object of the present invention is to provide a polypeptide that can be used to produce ergothioneine, a polynucleotide encoding the polypeptide, and a vector and cell containing the polynucleotide.
 本発明は以下の態様を含む。
[1]イデユコゴメ綱に属する藻類を培養する工程(a)を含む、エルゴチオネインの製造方法。
[2]前記工程(a)後の培養液から前記イデユコゴメ綱に属する藻類を回収する工程(b)をさらに含む、[1]に記載のエルゴチオネインの製造方法。
[3]前記工程(b)で回収されたイデユコゴメ綱に属する藻類からエルゴチオネインを抽出する工程(c)をさらに含む、[2]に記載のエルゴチオネインの製造方法。
[4]前記工程(a)におけるイデユコゴメ綱に属する藻類が2倍体である、[1]~[3]のいずれか1つに記載のエルゴチオネインの製造方法。
[5]前記イデユコゴメ綱に属する藻類が、遺伝子改変された藻類である、[1]~[4]のいずれか1つに記載のエルゴチオネインの製造方法。
[6]前記遺伝子改変が、エルゴチオネインの生成量を増大させる遺伝子改変である、[5]に記載のエルゴチオネインの製造方法。
[7]前記工程(a)の前に、前記イデユコゴメ綱に属する藻類の1倍体に対して遺伝子改変を行う工程(i)をさらに含む、[5]又は[6]に記載のエルゴチオネインの製造方法。
[8]前記工程(i)と前記工程(a)との間に、前記イデユコゴメ綱に属する藻類を2倍体にする工程(ii)をさらに含む、[7]に記載のエルゴチオネインの製造方法。
[9]下記(a1)~(c1)からなる群より選択されるポリペプチド:
 (a1)配列番号6に記載のアミノ酸配列を含むポリペプチド;
 (b1)配列番号6に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド;及び
 (c1)配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド。
[10]下記(a2)~(c2)からなる群より選択されるポリペプチド:
 (a2)配列番号8に記載のアミノ酸配列を含むポリペプチド;
 (b2)配列番号8に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド;及び
 (c2)配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド。
[11][9]に記載のポリペプチドをコードするポリヌクレオチド。
[12][10]に記載のポリペプチドをコードするポリヌクレオチド。
[13][11]に記載のポリヌクレオチド及び[12]に記載のポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含むベクター。
[14][11]に記載のポリヌクレオチド及び[12]に記載のポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含む細胞。
[15][14]に記載の細胞を培養する工程を含む、エルゴチオネインの製造方法。
The present invention includes the following aspects.
[1] A method for producing ergothioneine, which comprises the step (a) of culturing algae belonging to the class Idycogome.
[2] The method for producing ergothioneine according to [1], further comprising the step (b) of recovering the algae belonging to the class Idycogome from the culture solution after the step (a).
[3] The method for producing ergothioneine according to [2], further comprising a step (c) of extracting ergothioneine from the algae belonging to the class Idycogome collected in the step (b).
[4] The method for producing ergothioneine according to any one of [1] to [3], wherein the alga belonging to the class Idycogome in the step (a) is diploid.
[5] The method for producing ergothioneine according to any one of [1] to [4], wherein the algae belonging to the class Idycogome are genetically modified algae.
[6] The method for producing ergothioneine according to [5], wherein the genetic modification is a genetic modification that increases the amount of ergothioneine produced.
[7] The production of ergothioneine according to [5] or [6], further comprising a step (i) of genetically modifying the haploid algae belonging to the class Idycogome before the step (a). Method.
[8] The method for producing ergothioneine according to [7], further comprising a step (ii) of diploidizing the alga belonging to the class Idycogome between the step (i) and the step (a).
[9] A polypeptide selected from the group consisting of the following (a1) to (c1):
(a1) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 6;
(b1) a polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO:6, the polypeptide having histidine methyltransferase activity; and (c1) set forth in SEQ ID NO:6 which has a histidine methyltransferase activity.
[10] A polypeptide selected from the group consisting of (a2) to (c2) below:
(a2) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:8;
(b2) a polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 8, the polypeptide having 5-histidylcysteine sulfoxide synthase activity; and (c2) A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6, and having 5-histidylcysteine sulfoxide synthase activity.
[11] A polynucleotide encoding the polypeptide of [9].
[12] A polynucleotide encoding the polypeptide of [10].
[13] A vector comprising at least one polynucleotide selected from the group consisting of the polynucleotide of [11] and the polynucleotide of [12].
[14] A cell containing at least one polynucleotide selected from the group consisting of the polynucleotide of [11] and the polynucleotide of [12].
[15] A method for producing ergothioneine, comprising the step of culturing the cells of [14].
 本発明によれば、微細藻類を利用したエルゴチオネインの製造方法が提供される。また、エルゴチオネインの製造に利用可能なポリペプチド、当該ポリペプチドをコードするポリヌクレオチド、並びに前記ポリヌクレオチドを含むベクター及び細胞が提供される。 According to the present invention, a method for producing ergothioneine using microalgae is provided. Also provided are polypeptides that can be used to produce ergothioneine, polynucleotides encoding the polypeptides, and vectors and cells containing the polynucleotides.
葉緑体リブロース1,5-ビスリン酸カルボキシラーゼ/オキシゲナーゼ大サブユニット(rbcL)遺伝子に基づくイデユコゴメ綱に属する藻類の分子系統樹である。各枝の近傍に最尤法によるローカルブートストラップ値(50以上のみ記載、左)及びベイズ法による事後確率(0.95以上のみ記載、右)を示した。Molecular phylogenetic tree of algae belonging to the class Idycogome based on the chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene. Near each branch, the local bootstrap value by the maximum likelihood method (only 50 or more is described, left) and the posterior probability by Bayesian method (only 0.95 or more is described, right) are shown. Mycobacterium smegmatis及びNeurospora crassaにおけるエルゴチオネインの合成経路を示す(Borodina et al Nutr Res Rev. 2020 Dec; 33(2):190-217)。The synthetic pathway of ergothioneine in Mycobacterium smegmatis and Neurospora crassa is shown (Borodina et al Nutr Res Rev. 2020 Dec; 33(2):190-217). イデユコゴメ綱に属する藻類においてエルゴチオネイン含有量を測定したLC-MSクロマトグラムの一例を示す。独立栄養培養したGaldieria sulphuraria SAG108.79(2倍体)における結果を示した。An example of an LC-MS chromatogram obtained by measuring the ergothioneine content in algae belonging to the class Idycogome is shown. Results for autotrophically cultured Galdieria sulphuraria SAG108.79 (diploid) are shown. Cyanidium sp. HKN1(1倍体)の形質転換体の作製方法の概要を示す。形質転換体では、ヒスチジンメチルトランスフェラーゼ様遺伝子(HSM遺伝子)及び5-ヒスチジルシステインスルホキシドシンターゼ様遺伝子(HSS遺伝子)を過剰発現させた。Cyanidium sp. An outline of the method for producing a transformant of HKN1 (haploid) is shown. The transformant overexpressed the histidine methyltransferase-like gene (HSM gene) and the 5-histidylcysteine sulfoxide synthase-like gene (HSS gene). Cyanidium sp. HKN1(1倍体)の野生株(WT)及びCyanidium sp. HKN1(1倍体)の形質転換体(TF)において、NS1領域をPCR増幅した結果を示す。PCRは、NS1_F及びNS1_Rのプライマーセットを用いて行った。Cyanidium sp. HKN1 (haploid) wild strain (WT) and Cyanidium sp. The results of PCR amplification of the NS1 region in the transformant (TF) of HKN1 (haploid) are shown. PCR was performed using the NS1_F and NS1_R primer sets. Cyanidium sp. HKN1(1倍体)の野生株(WT)及びCyanidium sp. HKN1(1倍体)の形質転換体(TF)の増殖極性を示す。矢印は、エルゴチオネイン測定のためのサンプリング時期を示す。Cyanidium sp. HKN1 (haploid) wild strain (WT) and Cyanidium sp. The growth polarity of HKN1 (haploid) transformant (TF) is shown. Arrows indicate sampling times for ergothioneine measurements.
[定義]
 「を含む」(comprise)という用語は、対象となる構成要素以外の構成要素を含んでいてもよいことを意味する。「からなる」(consist of)という用語は、対象となる構成要素以外の構成要素を含まないことを意味する。「から本質的になる」(consist essentially of)という用語は、対象となる構成要素以外の構成要素を特別な機能を発揮する態様(発明の効果を完全に喪失させる態様など)では含まないことを意味する。本明細書において、「を含む」(comprise)と記載する場合、「からなる」(consist of)態様、及び「から本質的になる」(consist essentially of)態様を包含する。
[definition]
The term "comprise" means that it may include elements other than the subject element. The term "consist of" means containing no elements other than the subject element. The term "consisting essentially of" means that it does not include constituent elements other than the subject constituent elements in a mode that exhibits a special function (such as a mode that completely loses the effect of the invention). means. As used herein, the word "comprise" includes aspects that "consist of" and aspects that "consist essentially of."
 タンパク質、ペプチド、ポリヌクレオチド(DNA、RNA)、ベクター、及び細胞は、単離されたものであり得る。「単離された」とは、天然状態又は他の成分から分離された状態を意味する。「単離された」ものは、他の成分を実質的に含まないものであり得る。「他の成分を実質的に含まない」とは、単離された成分に含まれる他の成分の含有量が無視できる程度であることを意味する。単離された成分に含まれる他の成分の含有量は、例えば、10質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、又は0.1質量%以下であり得る。本明細書に記載されるタンパク質、ペプチド、ポリヌクレオチド(DNA、RNA)、ベクター、及び細胞は、単離されたタンパク質、単離されたペプチド、単離されたポリヌクレオチド(単離されたDNA、単離されたRNA)、単離されたベクター、及び単離された細胞であり得る。 Proteins, peptides, polynucleotides (DNA, RNA), vectors, and cells can be isolated. "Isolated" means separated from the natural state or other components. "Isolated" can be substantially free of other components. "Substantially free of other components" means that the content of other components contained in the isolated component is negligible. The content of other components contained in the isolated component is, for example, 10% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less. It may be 5% by mass or less, or 0.1% by mass or less. The proteins, peptides, polynucleotides (DNA, RNA), vectors and cells described herein may be isolated proteins, isolated peptides, isolated polynucleotides (isolated DNA, isolated RNA), isolated vectors, and isolated cells.
 「ポリヌクレオチド」という用語は、ヌクレオチドがホスホジエステル結合によって結合したヌクレオチドポリマーを指す。「ポリヌクレオチド」は、DNAであってもよく、RNAであってもよく、DNAとRNAとの組み合わせから構成されてもよい。「ポリヌクレオチド」は、天然ヌクレオチドのポリマーであってもよく、天然ヌクレオチドと非天然ヌクレオチド(天然ヌクレオチドの類似体、塩基部分、糖部分及びリン酸部分のうち少なくとも一つの部分が修飾されているヌクレオチド(例えば、ホスホロチオエート骨格)等)とのポリマーであってもよく、非天然ヌクレオチドのポリマーであってもよい。
 本明細書において、「ポリヌクレオチド」のヌクレオチド配列は、特に明示しない限り、一般的に認められている1文字コードで記載される。特に明示しない限り、ヌクレオチド配列は、5’側から3’側に向かって記載する。
 本明細書において、「ポリヌクレオチド」を構成するヌクレオチド残基は、単に、アデニン、チミン、シトシン、グアニン、又はウラシル等、あるいはそれらの1文字コードで記載される場合がある。
The term "polynucleotide" refers to a nucleotide polymer in which nucleotides are linked by phosphodiester bonds. A "polynucleotide" may be DNA, RNA, or may be composed of a combination of DNA and RNA. A “polynucleotide” may be a polymer of natural nucleotides, including natural nucleotides and non-natural nucleotides (analogs of natural nucleotides, nucleotides in which at least one of the base, sugar and phosphate moieties is modified). (for example, a phosphorothioate skeleton), etc.), or a polymer of non-natural nucleotides.
As used herein, nucleotide sequences of "polynucleotides" are described in their generally accepted single-letter code unless otherwise specified. Unless otherwise indicated, nucleotide sequences are written 5' to 3'.
As used herein, nucleotide residues that constitute a "polynucleotide" may be simply described as adenine, thymine, cytosine, guanine, uracil, or the like, or their one-letter codes.
 「ポリペプチド」、「ペプチド」及び「タンパク質」という用語は、相互に互換的に使用され、アミド結合によって結合したアミノ酸のポリマーを指す。「ポリペプチド」、「ペプチド」又は「タンパク質」は、天然アミノ酸のポリマーであってもよく、天然アミノ酸と非天然アミノ酸(天然アミノ酸の化学的類似体、修飾誘導体等)とのポリマーであってもよく、非天然アミノ酸のポリマーであってもよい。
 アミノ酸配列は、特に明示しない限り、一般的に認められている1文字コード又は3文字コードで記載される。特に明示しない限り、アミノ酸配列は、N末端側からC末端側に向かって記載する。
The terms "polypeptide", "peptide" and "protein" are used interchangeably to refer to a polymer of amino acids joined by amide bonds. A "polypeptide", "peptide" or "protein" may be a polymer of naturally occurring amino acids or of naturally occurring and non-natural amino acids (such as chemical analogues, modified derivatives of naturally occurring amino acids). It may also be a polymer of unnatural amino acids.
Amino acid sequences are written in the generally accepted one-letter or three-letter code unless otherwise specified. Unless otherwise specified, amino acid sequences are written from the N-terminal side to the C-terminal side.
 「機能的に連結」とは、第一のヌクレオチド配列が第二のヌクレオチド配列の十分に近くに配置され、第一のヌクレオチド配列が、第二のヌクレオチド配列又は第二のヌクレオチド配列の制御下の領域に影響を及ぼし得ることを意味する。例えば、遺伝子がプロモーターに機能的に連結するとは、当該遺伝子が、当該プロモーターの制御下で発現するように連結されていることを意味する。 "Operably linked" means that a first nucleotide sequence is positioned sufficiently close to a second nucleotide sequence such that the first nucleotide sequence is either in the second nucleotide sequence or under the control of the second nucleotide sequence. It means that it can affect the area. For example, that a gene is operably linked to a promoter means that the gene is linked so as to be expressed under the control of the promoter.
 「発現可能な状態」とは、遺伝子が導入された細胞内で、該遺伝子が転写・翻訳され得る状態にあることをいう。 "Expressable state" means that the gene is in a state where it can be transcribed and translated in the cell into which the gene has been introduced.
 「発現ベクター」とは、対象遺伝子を含むベクターであって、当該ベクターを導入した細胞内で、対象遺伝子を発現可能な状態にするシステムを備えたベクターを意味する。 "Expression vector" means a vector containing a target gene and equipped with a system that enables expression of the target gene in cells into which the vector has been introduced.
 「プロモーターが機能し得る」とは、対象の細胞内において、プロモーターが、当該プロモーターに機能的に連結された遺伝子を発現させることができることを意味する。 "The promoter can function" means that the promoter can express a gene operably linked to the promoter in the cells of interest.
 「遺伝子」とは、特定のタンパク質をコードする少なくとも1つのオープンリーディングフレームを含むポリヌクレオチドをいう。遺伝子は、エクソン及びイントロンの両方を含み得る。 "Gene" refers to a polynucleotide containing at least one open reading frame that encodes a specific protein. A gene may contain both exons and introns.
 ヌクレオチド配列どうし又はアミノ酸配列どうしの配列同一性(又は相同性)は、2つのヌクレオチド配列又はアミノ酸配列を、対応するヌクレオチド又はアミノ酸が最も多く一致するように、挿入及び欠失に当たる部分にギャップを入れながら並置し、得られたアライメント中のギャップを除く、ヌクレオチド配列全体又はアミノ酸配列全体に対する一致したヌクレオチド又はアミノ酸の割合として求められる。ヌクレオチド配列又はアミノ酸配列どうしの配列同一性は、当該技術分野で公知の各種相同性検索ソフトウェアを用いて求めることができる。例えば、ヌクレオチド配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTNにより得られたアライメントを元にした計算によって得ることができ、アミノ酸配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTPにより得られたアライメントを元にした計算によって得ることができる。 Sequence identity (or homology) between nucleotide or amino acid sequences refers to the matching of two nucleotide or amino acid sequences to the greatest degree of correspondence between the corresponding nucleotides or amino acids, with gaps corresponding to insertions and deletions. It is determined as the percentage of identical nucleotides or amino acids relative to the entire nucleotide or amino acid sequence excluding gaps in the resulting alignment. Sequence identity between nucleotide sequences or amino acid sequences can be determined using various homology search software known in the art. For example, the sequence identity value of a nucleotide sequence can be obtained by calculation based on alignments obtained by the known homology search software BLASTN, and the sequence identity value of an amino acid sequence can be obtained by a known homology search. It can be obtained by calculation based on alignments obtained by software BLASTP.
 「ストリンジェントな条件」とは、配列同一性が高い2個のポリヌクレオチドが、特異的にハイブリダイズ可能な条件を意味する。配列同一性が高い2個のポリヌクレオチドとは、前記2個のポリヌクレオチド間の配列同一性が、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上であることをいう。ストリンジェントな条件の具体例としては、例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION(Sambrook et al., Cold Spring Harbor Laboratory Press)に記載の条件等が挙げられる。ストリンジェントな条件としては、例えば、6×SSC(20×SSCの組成:3M塩化ナトリウム、0.3Mクエン酸溶液、pH7.0)、5×デンハルト溶液(100×デンハルト溶液の組成:2質量%ウシ血清アルブミン、2質量%フィコール、2質量%ポリビニルピロリドン)、0.5質量%のSDS、0.1mg/mLサケ精子DNA、及び50%フォルムアミドからなるハイブリダイゼーションバッファー中で、42~70℃で数時間から一晩インキュベーションを行う条件が挙げられる。インキュベーション後の洗浄に用いる洗浄バッファーとしては、例えば、0.1質量%SDS含有1×SSC溶液、及び0.1質量%SDS含有0.1×SSC溶液が挙げられる。 "Stringent conditions" means conditions under which two polynucleotides with high sequence identity can specifically hybridize. Two polynucleotides with high sequence identity, the sequence identity between the two polynucleotides, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% Above, 98% or more, or 99% or more. Specific examples of stringent conditions include conditions described in Molecular Cloning-A Laboratory Manual Third Edition (Sambrook et al., Cold Spring Harbor Laboratory Press). Stringent conditions include, for example, 6 x SSC (composition of 20 x SSC: 3 M sodium chloride, 0.3 M citric acid solution, pH 7.0), 5 x Denhardt's solution (composition of 100 x Denhardt's solution: 2 mass% bovine serum albumin, 2% ficoll, 2% polyvinylpyrrolidone), 0.5% SDS, 0.1 mg/mL salmon sperm DNA, and 50% formamide at 42-70°C in a hybridization buffer. conditions for several hours to overnight incubation at . Washing buffers used for washing after incubation include, for example, 0.1% by mass SDS-containing 1×SSC solution and 0.1% by mass SDS-containing 0.1×SSC solution.
 「コドン最適化」という用語は、元のアミノ酸配列を維持しつつ、元のヌクレオチド配列の少なくとも1つのコドンを、対象の生物種においてより頻繁に使用されるコドンで置き換えることを指す。コドン使用頻度表は、例えば、公益財団法人かずさDNA研究所が提供する「Codon Usage Database」(www.kazusa.or.jp/codon/)において容易に入手可能である。例えば、コドン使用頻度表を用いて、コドンを最適化することができる。特定の動物種における発現のために、特定の配列をコドン最適化するためのコンピューターアルゴリズムも公知である。コドン最適化のコンピューターアルゴリズムは、例えば、Gene Forge(Aptagen社;Jacobus、PA)等において入手可能である。 The term "codon optimization" refers to replacing at least one codon in the original nucleotide sequence with a codon more frequently used in the target species while maintaining the original amino acid sequence. A codon usage table is readily available, for example, in the "Codon Usage Database" (www.kazusa.or.jp/codon/) provided by Kazusa DNA Research Institute. For example, codon usage tables can be used to optimize codons. Computer algorithms are also known for codon-optimizing a particular sequence for expression in a particular animal species. Computer algorithms for codon optimization are available, for example, at Gene Forge (Aptagen; Jacobus, PA).
[エルゴチオネインの製造方法]
 一実施形態において、本開示は、エルゴチオネインの製造方法を提供する。本実施形態の製造方法は、イデユコゴメ綱に属する藻類を培養する工程(a)を含む。
[Method for producing ergothioneine]
In one embodiment, the present disclosure provides a method of making ergothioneine. The production method of the present embodiment includes the step (a) of culturing algae belonging to the class Idycogome.
<工程(a)>
 工程(a)では、イデユコゴメ綱に属する藻類を培養する。
<Step (a)>
In step (a), algae belonging to the class Idycogome are cultured.
(イデユコゴメ綱に属する藻類)
 イデユコゴメ綱は、分類学上、紅色植物門(Rhodophyta)、イデユコゴメ綱(Cyanidiophyceae)に分類される。イデユコゴメ綱には、現在、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属の3属が分類されている。本実施形態の製造方法では、シアニディオシゾン属、シアニジウム属、及びガルデリア属のいずれの藻類を用いてもよい。
(Algae belonging to the class Idycogome)
The class Cyanidiphyta is taxonomically classified into the phylum Rhodophyta and the class Cyanidiophyceae. Three genera, Cyanidioschyzon, Cyanidium, and Galdieria, are currently classified in the class Idycogome. In the production method of the present embodiment, any algae belonging to the genus Cyanidioschizon, Cyanidium, and Garderia may be used.
 ある藻類が、イデユコゴメ綱に属するか否かの判定は、例えば、18S rRNA遺伝子又は葉緑体rbcL遺伝子のヌクレオチド配列を用いた系統解析により行うことができる。系統解析は、公知の方法で行えばよい。図1は、葉緑体rbcL遺伝子に基づくイデユコゴメ綱に属する藻類の分子系統樹である。図1の系統樹において、「Galdieria A」、「Galdieria B」、「Cyanidium(mesophilic)」、「Cyanidium」、「Cyanidium G.maxima Galdieria-like Cyanidioschyzon」に位置する藻類がイデユコゴメ綱に属する藻類である。本実施形態の製造方法で用いる藻類は、図1に示される藻類であってもよい。あるいは、図1に示される藻類以外で、葉緑体rbcL遺伝子に基づく系統解析によりイデユコゴメ綱に分類される藻類であってもよい。 Whether or not an algae belongs to the class Idycogome can be determined, for example, by phylogenetic analysis using the nucleotide sequence of the 18S rRNA gene or the chloroplast rbcL gene. A phylogenetic analysis may be performed by a known method. FIG. 1 is a molecular phylogenetic tree of algae belonging to the class Idycogome based on the chloroplast rbcL gene. In the phylogenetic tree of Fig. 1, algae located in "Galdieria A", "Galdieria B", "Cyanidium (mesophilic)", "Cyanidium", and "Cyanidium G. maxima Galdieria-like Cyanidioschyzon" are algae belonging to the class Idycogome. . Algae used in the production method of the present embodiment may be algae shown in FIG. Alternatively, algae other than the algae shown in FIG. 1 may be algae classified into the class Idycogome by phylogenetic analysis based on the chloroplast rbcL gene.
 シアニディオシゾン属に属する藻類としては、Cyanidioschyzon merolaeが挙げられる。
 シアニジウム属に属する藻類としては、Cyanidium caldarium、Cyanidium sp.が挙げられる。
 ガルデリア属に属する藻類としては、Galdieria sulphuraria、Galdieria partita、Galdieria daedala、Galdieria maxima、Galdieria phlegreaが挙げられる。
Algae belonging to the genus Cyanidioschyzon include Cyanidioschyzon merolae.
Algae belonging to the genus Cyanidium include Cyanidium caldarium, Cyanidium sp. is mentioned.
Algae belonging to the genus Galdieria include Galdieria sulphuraria, Galdieria partita, Galdieria daedala, Galdieria maxima and Galdieria phlegrea.
 イデユコゴメ綱に属する藻類は、酸性温泉などの酸性環境下から単離してもよく、カルチャー・コレクション等から入手してもよい。カルチャー・コレクションとしては、例えば、国立研究開発法人国立環境研究所微生物系統保存施設(日本国茨城県つくば市小野川16-2)、NITE Biological Resource Center(NRBC;日本国東京都渋谷区西原2-49-10)、GEORG-AUGUST-UNIVERSITY GOTTINGEN Culture Collection of Algae(SAG)、及びAmerican Type Culture Collection(ATCC;10801 University Boulevard Manassas, VA 20110 USA)等が挙げられる。 Algae belonging to the class Idyucogome may be isolated from acidic environments such as acidic hot springs, or obtained from culture collections. As culture collections, for example, the National Institute for Environmental Studies Microbial System Preservation Facility (16-2 Onogawa, Tsukuba City, Ibaraki Prefecture, Japan), NITE Biological Resource Center (NRBC; 2-49 Nishihara, Shibuya-ku, Tokyo, Japan) -10), GEORG-AUGUST-UNIVERSITY GOTTINGEN Culture Collection of Algae (SAG), and American Type Culture Collection (ATCC; 10801 University Boulevard Manassas, VA 20110).
 イデユコゴメ綱に属する藻類の中には、2倍体の細胞形態と1倍体の細胞形態との両方を有するものがある。1倍体の細胞形態は、2倍体の細胞形態が減数分裂することで生じる。2個の1倍体細胞が接合することで、2倍体細胞を生じると考えられる。 Some algae belonging to the class Idycogome have both diploid and haploid cell morphologies. A haploid cell morphology results from meiosis of a diploid cell morphology. The mating of two haploid cells is thought to give rise to a diploid cell.
 2倍体細胞であるか、1倍体細胞であるかの判定は、同一遺伝子座のコピー数を確認することにより行うことができる。同一遺伝子座のコピー数が1であれば、1倍体細胞であると判定される。次世代シーケンサー等を用いて、藻類が2倍体であるか、1倍体であるかの判定を行うこともできる。例えば、次世代シーケンサー等で全ゲノムのシーケンスリードを取得し、それらのシーケンスリードをアセンブルした後、アセンブルして得られた配列に対して、シーケンスリードをマッピングする。2倍体ではアレルごとのヌクレオチドの違いがゲノム上の様々な領域で見つかるが、1倍体では1アレルしか存在しないため、その様な領域は見つからない。
 あるいは、DAPI等の核染色試薬で細胞を染色し、1倍体であることが既知である細胞と比較して、同等の蛍光輝度を示す細胞を1倍体と判定し、約2倍の蛍光輝度を示す細胞を2倍体と判定してもよい。あるいは、DAPI等の核染色試薬で細胞を染色し、2倍体であることが既知である細胞と比較して、同等の蛍光輝度を示す細胞を2倍体と判定し、約1/2倍の蛍光輝度を示す細胞を1倍体と判定してもよい。
Whether a cell is a diploid cell or a haploid cell can be determined by confirming the copy number of the same gene locus. If the copy number of the same gene locus is 1, it is determined to be a haploid cell. A next-generation sequencer or the like can also be used to determine whether algae are diploid or haploid. For example, sequence reads of the whole genome are obtained by a next-generation sequencer or the like, and after assembling those sequence reads, the sequence reads are mapped to the sequence obtained by assembling. In diploids, allele-to-allele nucleotide differences are found in various regions on the genome, but in haploids, since only one allele exists, such regions are not found.
Alternatively, cells are stained with a nuclear staining reagent such as DAPI, and compared with cells known to be haploid, cells exhibiting equivalent fluorescence brightness are determined to be haploid, and about twice the fluorescence Cells that exhibit brightness may be determined to be diploid. Alternatively, cells are stained with a nuclear staining reagent such as DAPI, and compared with cells known to be diploid, cells showing equivalent fluorescence brightness are determined to be diploid, about 1/2 times A cell exhibiting a fluorescence intensity of 1 may be determined as a haploid.
 本実施形態の製造方法では、1倍体細胞を用いてもよく、2倍体細胞を用いてもよい。2倍体細胞は、1倍体細胞と比較して、エルゴチオネイン含有量が高くなる傾向がある。そのため、製造効率の観点からは2倍体細胞を用いることが好ましい。 In the production method of this embodiment, either haploid cells or diploid cells may be used. Diploid cells tend to have higher ergothioneine content compared to haploid cells. Therefore, it is preferable to use diploid cells from the viewpoint of production efficiency.
 2倍体の細胞形態と1倍体の細胞形態との両方を有するイデユコゴメ綱に属する藻類としては、例えば、ガルデリア属、及びシアニジウム属が挙げられる。
 ガルデリア属に属する藻類の具体例としては、Galdieria sulphuraria(例えば、SAG108.79株)、及びGaldieria partita(例えば、NBRC 102759株)が挙げられる。
 シアニジウム属に属する藻類の具体例としては、例えば、シアニジウム・エスピー(Cyanidium sp.)YFU3株(FERM BP-22334)(以下、「YFU3株」という)、及びシアニジウム・エスピー(Cyanidium sp.)HKN1株(FERM BP-22333)(以下、「HKN1株」という)が挙げられる。
Algae belonging to the class Idycogome having both diploid and haploid cell morphologies include, for example, the genera Galderia and Cyanidium.
Specific examples of algae belonging to the genus Galderia include Galdieria sulphuraria (eg, SAG108.79 strain) and Galdieria partita (eg, NBRC 102759 strain).
Specific examples of algae belonging to the genus Cyanidium include, for example, Cyanidium sp. YFU3 strain (FERM BP-22334) (hereinafter referred to as "YFU3 strain") and Cyanidium sp. HKN1 strain. (FERM BP-22333) (hereinafter referred to as "HKN1 strain").
 YFU3株は、日本国大分県由布市の温泉の高温酸性水より単離された単細胞紅藻である。YFU3株は、2017年5月30日付で、受託番号FERM P-22334として、独立行政法人製品評価技術基盤機構特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に寄託され、受託番号FERM BP-22334として、2018年4月20日付で国際寄託に移管されている(寄託者:大学共同利用機関法人 情報・システム研究開発機構 国立遺伝学研究所、寄託者住所:郵便番号411-8540 静岡県三島市谷田1111)。
 HKN1株は、日本国神奈川県足柄下郡箱根町の温泉の高温酸性水より単離された単細胞紅藻である。HKN1株は、2017年5月30日付で、受託番号FERM P-22333として、独立行政法人製品評価技術基盤機構特許生物寄託センターに寄託され、受託番号FERM BP-22333として、2018年4月20日付で国際寄託に移管されている(寄託者:大学共同利用機関法人 情報・システム研究開発機構 国立遺伝学研究所、寄託者住所:郵便番号411-8540 静岡県三島市谷田1111)。
The YFU3 strain is a unicellular red algae isolated from high-temperature acidic water of a hot spring in Yufu City, Oita Prefecture, Japan. The YFU3 strain was deposited on May 30, 2017 with the accession number FERM P-22334 at the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). was transferred to an international deposit on April 20, 2018 under the accession number FERM BP-22334 (Depositor: Inter-University Research Institute Corporation, Organization for Research and Development of Information and Systems, National Institute of Genetics, Depositor's address: Postal mail 1111 Yata, Mishima City, Shizuoka Prefecture, number 411-8540).
The HKN1 strain is a unicellular red algae isolated from high-temperature acidic water of a hot spring in Hakone-machi, Ashigarashimo-gun, Kanagawa Prefecture, Japan. The HKN1 strain was deposited with the National Institute of Technology and Evaluation Patent Organism Depository on May 30, 2017 under the accession number FERM P-22333, and on April 20, 2018 under the accession number FERM BP-22333. (Depositor: Inter-University Research Institute Corporation, Research and Development Organization of Information and Systems, National Institute of Genetics, Depositor's address: 1111 Yata, Mishima City, Shizuoka Prefecture, 411-8540).
 2倍体細胞から1倍体細胞を得る方法としては、2倍体細胞を一定期間培養する方法が挙げられる。例えば、2倍体細胞を静止期になるまで培養し、静止期のまま任意の期間培養を継続することにより、1倍体細胞を得ることができる。静止期で培養を継続する期間としては、例えば、2~60日、3~40日、又は5~35日等が挙げられる。培養開始から静止期になるまでの期間は、藻類の種類、培養条件により異なる。あるいは、静止期の培養液から細胞を回収して植え継ぎを行い、さらに1~5日程度培養を行ってもよい。イデユコゴメ綱に属する藻類の1倍体細胞は、通常、2倍体細胞と比較して、細胞サイズが小さく、強固な細胞壁が観察されない。そのため、光学顕微鏡観察により、1倍体の細胞と2倍体の細胞を見分けることができる。培養液中に出現した1倍体細胞をパスツールピペット等により採取して単離することにより、1倍体細胞を得ることができる。 A method of obtaining haploid cells from diploid cells includes a method of culturing diploid cells for a certain period of time. For example, haploid cells can be obtained by culturing diploid cells until they reach the stationary phase and continuing the culture for an arbitrary period of time while in the stationary phase. Examples of the period during which culture is continued in the stationary phase include 2 to 60 days, 3 to 40 days, or 5 to 35 days. The period from the start of culture to stationary phase varies depending on the type of algae and culture conditions. Alternatively, cells may be recovered from the stationary phase culture medium, subcultured, and further cultured for about 1 to 5 days. Haploid cells of algae belonging to the class Idycogome are generally smaller in cell size than diploid cells, and do not have a strong cell wall. Therefore, haploid cells and diploid cells can be distinguished by observation with an optical microscope. Haploid cells can be obtained by collecting and isolating the haploid cells that have emerged in the culture medium using a Pasteur pipette or the like.
 1倍体細胞から2倍体細胞を得る方法としては、2種以上の1倍体細胞を混合し、培養する方法が挙げられる。2種以上の1倍体細胞は、同種の藻類の細胞であることが好ましく、同じ株由来の1倍体細胞であることがより好ましい。例えば、同じ株由来の1倍体細胞を2つに分け、別々に培養したものを混合してもよい。2種の1倍体細胞を混合して培養することにより、2個の細胞が接合し、2倍体細胞が生じると考えられる。培養期間は、特に限定されず、2倍体細胞が出現するまで培養すればよい。培養期間としては、例えば、1~4週間が挙げられる。あるいは、静止期の培養液から藻類細胞の植え継ぎを行ってさらに3~10日間程度培養してもよい。あるいは、1倍体細胞をストレス条件下で長期間培養することにより、1倍体細胞が自己2倍体化し、2倍体細胞を得ることができる。1倍体細胞の自己2倍体化により生じた2倍体細胞は、2個の1倍体細胞の接合により生じる2倍体細胞と同様の性質を有すると考えられる。上記のように、2倍体細胞は、1倍体細胞と比較して、細胞サイズが大きく、強固な細胞壁が観察される。そのため、光学顕微鏡観察により、1倍体の細胞と2倍体の細胞を見分けることができる。培養液中に出現した2倍体細胞をパスツールピペット等により採取して単離することにより、2倍体細胞を得ることができる。 Methods for obtaining diploid cells from haploid cells include a method of mixing and culturing two or more types of haploid cells. The two or more types of haploid cells are preferably algae cells of the same type, more preferably haploid cells derived from the same strain. For example, haploid cells derived from the same strain may be divided into two and the separately cultured mixtures may be mixed. By mixing and culturing two types of haploid cells, it is believed that the two cells will fuse to give rise to diploid cells. The culture period is not particularly limited, and the culture may be continued until diploid cells appear. The culture period includes, for example, 1 to 4 weeks. Alternatively, algal cells may be transferred from the stationary phase culture solution and cultured for another 3 to 10 days. Alternatively, by culturing the haploid cells under stress conditions for a long period of time, the haploid cells can self-diploidize to obtain diploid cells. Diploid cells resulting from self-diploidization of haploid cells are believed to have properties similar to diploid cells resulting from the joining of two haploid cells. As described above, diploid cells have a larger cell size and a stronger cell wall than haploid cells. Therefore, haploid cells and diploid cells can be distinguished by observation with an optical microscope. Diploid cells can be obtained by collecting and isolating the diploid cells that have appeared in the culture medium using a Pasteur pipette or the like.
 イデユコゴメ綱に属する藻類は、自然界から単離されたものに限定されず、天然のイデユコゴメ綱に属する藻類に変異が生じたものであってもよい。変異は、自然発生的に生じたものであってもよく、人為的に生じたものであってもよい。人為的に変異を生じさせる方法は、特に限定されず、公知の方法を用いることができる。人為的に変異を生じされる方法としては、例えば、紫外線照射、放射線照射、亜硝酸などによる化学的処理;遺伝子導入、ゲノム編集などの遺伝子工学的方法等が挙げられる。 The algae belonging to the class Idycogome are not limited to those isolated from the natural world, and may be those in which mutations have occurred in natural algae belonging to the class Idycogome. Mutations may be naturally occurring or artificially occurring. A method for artificially generating mutation is not particularly limited, and a known method can be used. Methods for artificially generating mutations include, for example, ultraviolet irradiation, radiation irradiation, chemical treatment with nitrous acid, etc.; genetic engineering methods such as gene introduction and genome editing;
 イデユコゴメ綱に属する藻類は、遺伝子改変された藻類であってもよい。1倍体細胞は、ゲノムを1セットしか有さないため、遺伝子改変を行いやすい。そのため、イデユコゴメ綱に属する藻類が、2倍体の細胞形態と1倍体の細胞形態との両方を有する場合、遺伝子改変は1倍体細胞で行うことが好ましい。 Algae belonging to the class Idycogome may be genetically modified algae. Haploid cells are amenable to genetic modification because they have only one set of genomes. Therefore, when algae belonging to the class Idycogome have both a diploid cell morphology and a haploid cell morphology, genetic modification is preferably performed in haploid cells.
 遺伝子改変の種類は、特に限定されないが、例えば、エルゴチオネインの生成量を増大させる遺伝子改変が挙げられる。エルゴチオネインの生成量を増大させる遺伝子改変としては、例えば、エルゴチオネインの生合成に関与する酵素の発現量を上昇させる遺伝子改変、エルゴチオネインの分解に関与する酵素の発現を抑制する遺伝子改変等が挙げられる。 The type of genetic modification is not particularly limited, but includes, for example, genetic modification that increases the amount of ergothioneine produced. Genetic modifications that increase the amount of ergothioneine produced include, for example, genetic modifications that increase the expression levels of enzymes involved in the biosynthesis of ergothioneine, and genetic modifications that suppress the expression of enzymes involved in the degradation of ergothioneine.
 図2は、グラム陽性細菌であるMycobacterium smegmatis、及び糸状菌の一種であるNeurospora crassaで報告されているエルゴチオネインの生合成経路を示す(Borodina et al Nutr Res Rev. 2020 Dec;33(2):190-217)。Mycobacterium smegmatisでは、EgtD、EgtB、EgtC、及びEgtEの各酵素により、ヒスチジンから、トリメチルヒスチジン(ヘルシニン)、γ-グルタミルヘルシニルシステインスルホキシド、及びヘルシニルシステインスルホキシド(5-ヒスチジルシステインスルホキシド)を経て、エルゴチオネインが合成される。Neurospora crassaでは、ヒスチジンから、トリメチルヒスチジン、及びヘルシニルシステインスルホキシドを経て、エルゴチオネインが合成される。Neurospora crassaでは、ヒスチジンからヘルシニルシステインスルホキシドを合成する酵素(Egt-1)は報告されているが、ヘルシニルシステインスルホキシドからエルゴチオネインを合成する酵素は報告されていない。 Figure 2 shows the biosynthetic pathway of ergothioneine reported in Mycobacterium smegmatis, a Gram-positive bacterium, and Neurospora crassa, a type of filamentous fungus (Borodina et al Nutr Res Rev. 2020 Dec;33(2):190 -217). In Mycobacterium smegmatis, the enzymes EgtD, EgtB, EgtC, and EgtE convert histidine to trimethylhistidine (hercynin), γ-glutamylhercinylcysteine sulfoxide, and hercinylcysteine sulfoxide (5-histidylcysteine sulfoxide). , ergothioneine is synthesized. In Neurospora crassa, ergothioneine is synthesized from histidine via trimethylhistidine and hercinylcysteine sulfoxide. In Neurospora crassa, an enzyme (Egt-1) that synthesizes hercynylcysteine sulfoxide from histidine has been reported, but an enzyme that synthesizes ergothioneine from hercynylcysteine sulfoxide has not been reported.
 イデユコゴメ綱に属する藻類は、真核生物であることから、Neurospora crassaと類似のエルゴチオネイン生合成経路を有していると考えられる。Neurospora crassaのEgt-1(例えば、NCBI Reference Sequence:XM_951231.3:配列番号18)は、メチルトランスフェラーゼ活性を有するドメインと、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するドメインとを有する。メチルトランスフェラーゼ活性を有するドメイン(メチルトランスフェラーゼドメイン)は、S-アデノシルメチオニン(SAM)をメチル基供与体として、ヒスチジンにメチル基を付加してトリメチルヒスチジンを合成する反応を触媒する。5-ヒスチジルシステインスルホキシドシンターゼ活性を有するドメイン(5-ヒスチジルシステインスルホキシドシンターゼドメイン)は、鉄(Fe(II))及び酸素(O)の存在下で、トリメチルヒスチジンにシステインを付加してヘルシニルシステインスルホキシドを合成する反応を触媒する。 Since algae belonging to the class Idycogome are eukaryotes, they are considered to have an ergothioneine biosynthetic pathway similar to that of Neurospora crassa. Neurospora crassa Egt-1 (eg, NCBI Reference Sequence: XM — 951231.3: SEQ ID NO: 18) has a domain with methyltransferase activity and a domain with 5-histidylcysteine sulfoxide synthase activity. A domain having methyltransferase activity (methyltransferase domain) catalyzes a reaction to synthesize trimethylhistidine by adding a methyl group to histidine using S-adenosylmethionine (SAM) as a methyl group donor. A domain with 5-histidylcysteine sulfoxide synthase activity (5-histidylcysteine sulfoxide synthase domain) adds cysteine to trimethylhistidine in the presence of iron (Fe(II)) and oxygen (O 2 ). catalyzes the synthesis of hercinylcysteine sulfoxide.
 したがって、エルゴチオネインの生合成に関与する酵素としては、Neurospora crassaのEgt-1;Egt-1のメチルトランスフェラーゼドメイン;Egt-1の5-ヒスチジルシステインスルホキシドシンターゼドメイン;Egt-1と高い相同性(例えば、30%以上、35%以上、又は40%以上)を有し、且つメチルトランスフェラーゼ活性及び5-ヒスチジルシステインスルホキシドシンターゼ活性を有するタンパク質;Egt-1のメチルトランスフェラーゼドメインと高い相同性(例えば、30%以上、35%以上、又は40%以上)を有し、且つメチルトランスフェラーゼ活性を有するタンパク質;及びEgt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインと高い相同性(例えば、30%以上、35%以上、又は40%以上)を有し、且つ5-ヒスチジルシステインスルホキシドシンターゼ活性を有するタンパク質等が挙げられる。
 以下、Neurospora crassaのEgt-1、Egt-1のメチルトランスフェラーゼドメイン、及びEgt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインを、まとめて「Egt-1等」という。
 以下、Neurospora crassaのEgt-1と高い相同性を有し、且つメチルトランスフェラーゼ活性及び5-ヒスチジルシステインスルホキシドシンターゼ活性を有するタンパク質;Egt-1のメチルトランスフェラーゼドメインと高い相同性を有し、且つメチルトランスフェラーゼ活性を有するタンパク質;及びEgt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインと高い相同性を有し、且つ5-ヒスチジルシステインスルホキシドシンターゼ活性を有するタンパク質を、まとめて「Egt-1様酵素」という。
Therefore, the enzymes involved in the biosynthesis of ergothioneine include Egt-1 of Neurospora crassa; the methyltransferase domain of Egt-1; the 5-histidylcysteine sulfoxide synthase domain of Egt-1; 30% or more, 35% or more, or 40% or more) and has methyltransferase activity and 5-histidylcysteine sulfoxide synthase activity; , 30% or more, 35% or more, or 40% or more) and has methyltransferase activity; , 35% or more, or 40% or more) and 5-histidylcysteine sulfoxide synthase activity.
Hereinafter, Egt-1 of Neurospora crassa, the methyltransferase domain of Egt-1, and the 5-histidylcysteine sulfoxide synthase domain of Egt-1 are collectively referred to as "Egt-1 etc.".
Hereinafter, a protein having high homology with Egt-1 of Neurospora crassa and having methyltransferase activity and 5-histidylcysteine sulfoxide synthase activity; having high homology with the methyltransferase domain of Egt-1, and proteins with methyltransferase activity; and proteins with high homology to the 5-histidylcysteine sulfoxide synthase domain of Egt-1 and having 5-histidylcysteine sulfoxide synthase activity are collectively referred to as "Egt-1 It is called "like enzyme".
 エルゴチオネインの生合成に関与する酵素の発現量を上昇させる遺伝子改変としては、Egt-1等又はEgt-1様酵素のコード配列(CDS)を含むポリヌクレオチドを、発現可能な状態で、イデユコゴメ綱に属する藻類に導入する遺伝子改変が挙げられる。イデユコゴメ綱に属する藻類が、内因的に、Egt-1様酵素を有している場合、エルゴチオネインの生成量を増大させる遺伝子改変としては、当該Egt-1様酵素の発現量を上昇させる遺伝子改変が挙げられる。Egt-1様酵素の発現量を上昇させる遺伝子改変としては、例えば、発現活性の高いプロモーターに機能的に連結されたEgt-1様酵素の遺伝子(例えば、Egt-1様酵素のCDSを含むポリヌクレオチド)の導入;Egt-1様酵素遺伝子のプロモーターの強発現プロモーターへの置換;Egt-1様酵素遺伝子の発現抑制因子遺伝子の破壊又は発現抑制;Egt-1様酵素遺伝子の発現促進因子遺伝子の導入又は発現促進、等が挙げられる。 As a genetic modification that increases the expression level of enzymes involved in the biosynthesis of ergothioneine, a polynucleotide containing a coding sequence (CDS) for Egt-1 or the like or an Egt-1-like enzyme is added to the class Ideucogome in an expressible state. Examples include genetic modification introduced into the algae belonging to it. When algae belonging to the class Idycogome endogenously have an Egt-1-like enzyme, genetic modification that increases the amount of ergothioneine produced includes genetic modification that increases the expression level of the Egt-1-like enzyme. mentioned. Genetic modifications that increase the expression level of the Egt-1-like enzyme include, for example, an Egt-1-like enzyme gene functionally linked to a promoter with high expression activity (e.g., a polyglycol containing the Egt-1-like enzyme CDS). replacement of the promoter of the Egt-1-like enzyme gene with a strong expression promoter; disruption or suppression of the expression suppressor gene of the Egt-1-like enzyme gene; introduction of the expression promoter gene of the Egt-1-like enzyme gene introduction or promotion of expression, and the like.
 イデユコゴメ綱に属する藻類のEgt-1様酵素は、Egt-1等のアミノ酸配列との相同性に基づいて、同定することができる。例えば、BLAST等の相同性検索プログラムを用いて、Egt-1等のアミノ酸配列をクエリー配列として、イデユコゴメ綱に属する藻類が発現するタンパク質のアミノ酸配列を対象として相同性検索を行う。その結果、Egt-1等のアミノ酸配列と高い相同性(例えば、30%以上、35%以上、又は40%以上)を有するタンパク質を、Egt-1様酵素として同定することができる。 Egt-1-like enzymes of algae belonging to the class Egt-1 can be identified based on homology with amino acid sequences such as Egt-1. For example, using a homology search program such as BLAST, the amino acid sequence of Egt-1 or the like is used as a query sequence, and a homology search is performed on the amino acid sequences of proteins expressed by algae belonging to the class Idycogome. As a result, proteins having high homology (eg, 30% or more, 35% or more, or 40% or more) with the amino acid sequence of Egt-1 can be identified as Egt-1-like enzymes.
 例えば、C.merolaeにおけるEgt-1様酵素としては、配列番号2に記載のアミノ酸配列を有するタンパク質(CMM184C)、及び配列番号4に記載のアミノ酸配列を有するタンパク質(CMR147C)が挙げられる。配列番号2のタンパク質は、Egt-1のメチルトランスフェラーゼドメインとの相同性が高い。そのため、ヒスチジン特異的なメチルトランスフェラーゼ活性を有すると考えられる。配列番号4のタンパク質は、Egt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインとの相同性が高い。そのため、5-ヒスチジルシステインスルホキシドシンターゼ活性を有すると考えられる。配列番号2のタンパク質のコード配列(CDS)を配列番号1に示す。配列番号2のタンパク質のゲノム遺伝子配列は、イントロンを有さないため、CDS配列と同じである。配列番号4のタンパク質のコード配列(CDS)を配列番号3に示す。配列番号4のタンパク質のゲノム遺伝子配列は、イントロンを有さないため、CDS配列と同じである。 For example, C.I. Egt-1-like enzymes in merolae include a protein having the amino acid sequence set forth in SEQ ID NO:2 (CMM184C) and a protein having the amino acid sequence set forth in SEQ ID NO:4 (CMR147C). The protein of SEQ ID NO:2 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity. The protein of SEQ ID NO:4 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1. Therefore, it is considered to have 5-histidylcysteine sulfoxide synthase activity. The coding sequence (CDS) for the protein of SEQ ID NO:2 is shown in SEQ ID NO:1. The genomic gene sequence of the protein of SEQ ID NO: 2 is identical to the CDS sequence as it has no introns. The coding sequence (CDS) for the protein of SEQ ID NO:4 is shown in SEQ ID NO:3. The genomic gene sequence of the protein of SEQ ID NO: 4 is identical to the CDS sequence as it has no introns.
 例えば、HKN1株におけるEgt-1様酵素としては、配列番号6に記載のアミノ酸配列を有するタンパク質、及び配列番号8に記載のアミノ酸配列を有するタンパク質が挙げられる。配列番号6のタンパク質は、Egt-1のメチルトランスフェラーゼドメインとの相同性が高い。そのため、ヒスチジン特異的なメチルトランスフェラーゼ活性を有すると考えられる。配列番号8のタンパク質は、Egt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインとの相同性が高い。そのため、5-ヒスチジルシステインスルホキシドシンターゼ活性を有すると考えられる。配列番号6のタンパク質のコード配列(CDS)を配列番号5に示す。配列番号6のタンパク質のゲノム遺伝子配列は、イントロンを有さないため、CDSと同じである。配列番号8のタンパク質のコード配列(CDS)を配列番号7に示す。配列番号8のタンパク質のゲノム遺伝子配列は、イントロンを有さないため、CDSと同じである。 For example, Egt-1-like enzymes in the HKN1 strain include a protein having the amino acid sequence set forth in SEQ ID NO:6 and a protein having the amino acid sequence set forth in SEQ ID NO:8. The protein of SEQ ID NO:6 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity. The protein of SEQ ID NO:8 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1. Therefore, it is considered to have 5-histidylcysteine sulfoxide synthase activity. The coding sequence (CDS) for the protein of SEQ ID NO:6 is shown in SEQ ID NO:5. The genomic gene sequence of the protein of SEQ ID NO: 6 is the same as the CDS as it has no introns. The coding sequence (CDS) for the protein of SEQ ID NO:8 is shown in SEQ ID NO:7. The genomic gene sequence of the protein of SEQ ID NO:8 is the same as the CDS as it has no introns.
 例えば、G.sulphurariaにおけるEgt-1様酵素としては、配列番号11に記載のアミノ酸配列を有するタンパク質(NCBI Reference Sequence:XP_005703833.1)、及び配列番号14に記載のアミノ酸配列を有するタンパク質(NCBI Reference Sequence:XP_005706200.1)が挙げられる。配列番号11のタンパク質は、Egt-1のメチルトランスフェラーゼドメインとの相同性が高い。そのため、ヒスチジン特異的なメチルトランスフェラーゼ活性を有すると考えられる。配列番号14のタンパク質は、Egt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインとの相同性が高い。そのため、5-ヒスチジルシステインスルホキシドシンターゼ活性を有すると考えられる。配列番号11のタンパク質のゲノム遺伝子配列及びコード配列(CDS)を、配列番号9及び配列番号10にそれぞれ示す。配列番号14のタンパク質のゲノム遺伝子配列及びコード配列(CDS)を、配列番号12及び配列番号13にそれぞれ示す。 For example, G.I. Egt-1-like enzymes in sulphuraria include a protein having the amino acid sequence set forth in SEQ ID NO: 11 (NCBI Reference Sequence: XP_005703833.1) and a protein having the amino acid sequence set forth in SEQ ID NO: 14 (NCBI Reference Sequence: XP_005706200. 1) can be mentioned. The protein of SEQ ID NO: 11 is highly homologous to the methyltransferase domain of Egt-1. Therefore, it is considered to have histidine-specific methyltransferase activity. The protein of SEQ ID NO: 14 is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1. Therefore, it is considered to have 5-histidylcysteine sulfoxide synthase activity. The genomic gene sequence and coding sequence (CDS) for the protein of SEQ ID NO:11 are shown in SEQ ID NO:9 and SEQ ID NO:10, respectively. The genomic gene sequence and coding sequence (CDS) for the protein of SEQ ID NO:14 are shown in SEQ ID NO:12 and SEQ ID NO:13, respectively.
 以下、Egt-1のメチルトランスフェラーゼドメインとの相同性が高いタンパク質を「ヒスチジンメチルトランスフェラーゼ様タンパク質」、「ヒスチジンメチルトランスフェラーゼ様タンパク質」をコードする遺伝子を「ヒスチジンメチルトランスフェラーゼ様遺伝子」ともいう。Egt-1の5-ヒスチジルシステインスルホキシドシンターゼドメインとの相同性が高いタンパク質を「ヒスチジルシステインスルホキシドシンターゼ様タンパク質」、「ヒスチジルシステインスルホキシドシンターゼ様タンパク質」をコードする遺伝子を「ヒスチジルシステインスルホキシドシンターゼ様遺伝子」ともいう。 Hereinafter, a protein highly homologous to the methyltransferase domain of Egt-1 is also referred to as a "histidine methyltransferase-like protein", and a gene encoding a "histidine methyltransferase-like protein" is referred to as a "histidine methyltransferase-like gene". A protein that is highly homologous to the 5-histidylcysteine sulfoxide synthase domain of Egt-1 is called a "histidylcysteine sulfoxide synthase-like protein", and a gene encoding a "histidylcysteine sulfoxide synthase-like protein" is called "histidylcysteine sulfoxide synthase-like protein". It is also called "dylcysteine sulfoxide synthase-like gene".
 イデユコゴメ綱に属する藻類に対してエルゴチオネインの生成量を増大させる遺伝子改変を行う場合、ヒスチジンメチルトランスフェラーゼ様遺伝子及びヒスチジルシステインスルホキシドシンターゼ様遺伝子のいずれか一方又は両方を導入することが好ましく、ヒスチジンメチルトランスフェラーゼ様遺伝子及びヒスチジルシステインスルホキシドシンターゼ様遺伝子の両方を導入することがより好ましい。 When genetically modifying algae belonging to the class Idycogome to increase the production of ergothioneine, it is preferable to introduce one or both of a histidine methyltransferase-like gene and a histidylcysteine sulfoxide synthase-like gene. More preferably, both a transferase-like gene and a histidylcysteine sulfoxide synthase-like gene are introduced.
 イデユコゴメ綱に属する藻類に遺伝子導入を行う場合、導入遺伝子は、発現可能な状態で、細胞に導入される。導入遺伝子は、例えば、導入対象の細胞で機能し得るプロモーターに、機能的に連結されて細胞に導入される。プロモーターは、当該導入遺伝子のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。他の遺伝子のプロモーターを用いる場合、導入対象の細胞において発現量が高い遺伝子のプロモーターが好ましい。そのようなプロモーターとしては、例えば、APCCプロモーター、CPCCプロモーター、Catalaseプロモーター、EF1αプロモーター等が挙げられる。
 C.merolaeのAPCC(CMO250C)プロモーター(例、-600~-1;「-1」は開始コドンの直前のヌクレオチドを示す。)を配列番号15に示す。C.merolaeのCPCC(CMP166C)プロモーターを配列番号16に示す。C.merolaeのCatalase(CMI050C)プロモーターを配列番号17に示す。これらのC.merolaeのプロモーターは、他のイデユコゴメ綱に属する藻類においても使用可能である。
 HKN1株のAPCCプロモーターを配列番号19に示す。HKN1株のCPCCプロモーターを配列番号21に示す。HKN1株のEF1αプロモーターを配列番号20に示す。これらのHKN1株のプロモーターは、他のイデユコゴメ綱に属する藻類においても使用可能である。
When a gene is introduced into algae belonging to the class Idycogome, the introduced gene is introduced into cells in an expressible state. A transgene is introduced into a cell after being operably linked to, for example, a promoter that can function in the target cell. The promoter may be the promoter of the transgene or the promoter of another gene. When the promoter of another gene is used, the promoter of the gene whose expression level is high in the cell to be introduced is preferable. Examples of such promoters include APCC promoter, CPCC promoter, Catalase promoter, EF1α promoter and the like.
C. The merolae APCC (CMO250C) promoter (eg, -600 to -1; "-1" indicates the nucleotide immediately preceding the initiation codon) is shown in SEQ ID NO:15. C. The merolae CPCC (CMP166C) promoter is shown in SEQ ID NO:16. C. The merolae Catalase (CMI050C) promoter is shown in SEQ ID NO:17. These C.I. The promoter of merolae can also be used in algae belonging to other subclasses.
The HKN1 strain APCC promoter is shown in SEQ ID NO:19. The CPCC promoter of HKN1 strain is shown in SEQ ID NO:21. The EF1α promoter of HKN1 strain is shown in SEQ ID NO:20. These HKN1 strain promoters can also be used in other algae belonging to the class Idycogome.
 導入遺伝子は、例えば、発現ベクターの形態で細胞に導入されてもよい。発現ベクターは、導入遺伝子及びプロモーターに加えて、制御配列(エンハンサー、ポリA付加シグナル、ターミネーター、3’UTR等)、及び/又はマーカー遺伝子(薬剤耐性遺伝子、蛍光タンパク質遺伝子、栄養要求性関連遺伝子等)を含み得る。ターミネーター及び3’UTRとしては、例えば、β-チューブリンのターミネーター及び3’UTR、α-チューブリンのターミネーター及び3’UTR、並びにユビキチンのターミネーター及び3’UTRが挙げられる。発現ベクターの種類は特に限定されず、一般的に使用される発現ベクターを、適宜選択して使用することができる。ベクターは、直鎖状でも環状でもよく、プラスミドなどの非ウィルスベクターでも、ウィルスベクター(例えば、レンチウィルスベクターなどのレトロウィルスベクター)でも、トランスポゾンによるベクターでもよい。 A transgene may be introduced into a cell, for example, in the form of an expression vector. In addition to transgenes and promoters, expression vectors contain regulatory sequences (enhancers, poly-A addition signals, terminators, 3'UTR, etc.) and/or marker genes (drug resistance genes, fluorescent protein genes, auxotrophic genes, etc.). ). Terminators and 3'UTRs include, for example, terminator and 3'UTR of β-tubulin, terminator and 3'UTR of α-tubulin, and terminator and 3'UTR of ubiquitin. The type of expression vector is not particularly limited, and commonly used expression vectors can be appropriately selected and used. Vectors may be linear or circular, and may be non-viral vectors such as plasmids, viral vectors (eg retroviral vectors such as lentiviral vectors), or transposon-based vectors.
 イデユコゴメ綱に属する藻類の中でも、C.merolaeは、セルフクローニングが可能な藻類である(Fujiwara et al., PLoS One. 2013 Sep 5;8(9):e73608)。「セルフクローニング」とは、細胞に導入する核酸として、(1)当該細胞が由来する生物と同一の分類学上の種に属する生物の核酸、及び(2)自然条件において当該細胞が由来する生物の属する分類学上の種との間で核酸を交換する種に属する生物の核酸、のみを用いる、遺伝子組換技術をいう。セルフクローニングにより作製された形質転換体は、カタルヘナ議定書における遺伝子組換え生物の対象から除外されているため、野外でも培養可能である。したがって、遺伝子改変は、セルフクローニングにより行ってもよい。  Among the algae belonging to the class Idyucogome, C. merolae is an alga capable of self-cloning (Fujiwara et al., PLoS One. 2013 Sep 5;8(9):e73608). "Self-cloning" means that the nucleic acid to be introduced into a cell is (1) a nucleic acid from an organism belonging to the same taxonomic species as the organism from which the cell is derived, and (2) an organism from which the cell is derived under natural conditions. transgenic technology that uses only the nucleic acids of organisms belonging to species that exchange nucleic acids with the taxonomic species to which they belong. Transformants produced by self-cloning are excluded from the scope of living modified organisms under the Cartagena Protocol, and therefore can be cultivated in the field. Therefore, genetic modification may be performed by self-cloning.
 C.merolaeにおいてセルフクローニングを行う方法は、特に限定されないが、選択マーカーとして、URA5.3遺伝子(CMK046C)を用いる方法が挙げられる。C.merolaeには、ウラシル栄養要求性の変異株であるC.merolae M4株(Minoda et al., Plant Cell Physiol. 2004 Jun;45(6):667-71.)が存在する。C.merolae M4株は、URA5.3遺伝子に変異を有しており、ウラシルを合成することができない。そのため、C.merolae M4株は、ウラシルを含まない培地では生育できない。そこで、C.merolae M4株を親株とし、選択マーカーに野生株のURA5.3遺伝子を用いることにより、セルフクローニングを行うことができる。より具体的には、C.merolae野生株(例えば、10D株)のURA5.3遺伝子セットに、C.merolaeの任意の遺伝子セットを連結し、C.merolae M4株に導入する。その後、ウラシルを含まない培地で培養することにより、任意の遺伝子セットが導入された細胞を得ることができる。上記において、「遺伝子セット」とは、任意のプロモーターと、目的遺伝子のORFと、任意の3’UTRと、が連結されたものを意味する。3’UTRは、特に限定されず、目的遺伝子の3’UTRであってもよく、他の遺伝子の3’UTRを用いてもよい。よく用いられる3’UTRとしては、β-チューブリンの3’UTR、α-チューブリンの3’UTR、ユビキチンの3’UTRが例示される。選択マーカーは、URA5.3遺伝子に限定されず、他の栄養要求性に関連する遺伝子であってもよい。  C. A method for self-cloning in merolae is not particularly limited, but a method using the URA5.3 gene (CMK046C) as a selection marker can be mentioned. C. merolae, the uracil auxotrophic mutant C. merolae strain M4 (Minoda et al., Plant Cell Physiol. 2004 Jun;45(6):667-71.) exists. C. The merolae M4 strain has a mutation in the URA5.3 gene and cannot synthesize uracil. Therefore, C.I. The merolae M4 strain cannot grow on a medium that does not contain uracil. Therefore, C.I. Self-cloning can be performed by using the merolae M4 strain as the parent strain and using the wild-type URA5.3 gene as the selection marker. More specifically, C.I. In the URA5.3 gene set of wild strains (eg strain 10D) of C. merolae, ligate any set of genes of C. merolae; Introduce into the merolae M4 strain. Thereafter, cells into which any gene set has been introduced can be obtained by culturing in a medium that does not contain uracil. In the above, the “gene set” means a combination of any promoter, ORF of the target gene, and any 3′UTR. The 3'UTR is not particularly limited, and may be the 3'UTR of the target gene or the 3'UTR of another gene. Commonly used 3'UTRs include the 3'UTR of β-tubulin, the 3'UTR of α-tubulin, and the 3'UTR of ubiquitin. Selectable markers are not limited to the URA5.3 gene, but may be genes associated with other auxotrophy.
 上記のように栄養要求性関連遺伝子を選択マーカーとして用いて遺伝子改変を行った場合、藻類細胞に導入された栄養要求性関連遺伝子をノックアウトすることにより、再度、同じ栄養要求性関連遺伝子を選択マーカーとして、遺伝子改変を行うことができる。すなわち、多重セルフクローニングが可能である。選択マーカーとして導入した栄養要求性関連遺伝子のノックアウト方法は、特に限定されず、公知のノックアウト技術を用いればよい。ノックアウト技術としては、例えば、相同組換え、遺伝子編集技術等が挙げられる。
 例えば、C.merolaeにおいては、URA5.3遺伝子(CMK046C)を選択マーカーとし、C.merolae M4株を親株として、セルフクローニングを行うことが得きる。形質転換されていない細胞は、ウラシル非含有培地では生育できないため、形質転換後の細胞をウラシル非含有培地で培養することにより、形質転換体を選抜することができる。さらに、セルフクローニングを行う場合には、相同組換え等の公知のノックアウト技術により、URA5.3遺伝子をノックアウトする。例えば、導入したURA5.3遺伝子全体を欠失させてもよく、URA5.3遺伝子を部分的に欠失させてもよく、URA5.3遺伝子に点変異を導入してもよい。URA5.3遺伝子のノックアウト株は、ウラシル及び5-フルオロチン酸(5-FOA)を含む培地で培養することにより、選抜することができる。URA5.3遺伝子を正常に発現する株では、URA5.3遺伝子の遺伝子産物により、5-FOAが、毒性のある5-フルオロウラシルに変換されるためである。このようにして得たURA5.3ノックアウト株を親株とすれば、再度、URA5.3遺伝子を選択マーカーとして用いて、セルフクローニングを行うことができる。同様の操作を繰り返し行うことにより、所望の回数のセルフクローニングを行うことが可能である。
When genetic modification is performed using the auxotrophy-related gene as a selection marker as described above, by knocking out the auxotrophy-related gene introduced into algae cells, the same auxotrophy-related gene is used as a selection marker again. As such, genetic modification can be performed. That is, multiple self-cloning is possible. A knockout method for the auxotrophic gene introduced as a selection marker is not particularly limited, and a known knockout technique may be used. Knockout techniques include, for example, homologous recombination, gene editing techniques, and the like.
For example, C.I. In C. merolae, the URA5.3 gene (CMK046C) was used as a selectable marker. Self-cloning can be performed using the merolae M4 strain as the parent strain. Since non-transformed cells cannot grow in a uracil-free medium, transformants can be selected by culturing transformed cells in a uracil-free medium. Furthermore, when performing self-cloning, the URA5.3 gene is knocked out by a known knockout technique such as homologous recombination. For example, the introduced URA5.3 gene may be entirely deleted, the URA5.3 gene may be partially deleted, or a point mutation may be introduced into the URA5.3 gene. URA5.3 gene knockout strains can be selected by culturing in a medium containing uracil and 5-fluorotinic acid (5-FOA). This is because in strains that normally express the URA5.3 gene, the gene product of the URA5.3 gene converts 5-FOA to the toxic 5-fluorouracil. Using the URA5.3 knockout strain thus obtained as a parent strain, self-cloning can be performed again using the URA5.3 gene as a selection marker. By repeating similar operations, self-cloning can be performed a desired number of times.
 イデユコゴメ綱に属する藻類に遺伝子導入する方法は、特に限定されず、公知の方法を用いることができる。核酸導入法としては、例えば、ポリエチレングリコール(PEG)法、リポフェクション法、マイクロインジェクション法、DEAEデキストラン法、遺伝子銃法、エレクトロポレーション法、リン酸カルシウム法等が挙げられる。 The method for introducing genes into algae belonging to the class Idycogome is not particularly limited, and known methods can be used. Nucleic acid introduction methods include, for example, polyethylene glycol (PEG) method, lipofection method, microinjection method, DEAE dextran method, gene gun method, electroporation method, calcium phosphate method and the like.
 イデユコゴメ綱に属する藻類に遺伝子導入する場合、導入核酸は、核ゲノム、葉緑体ゲノム、及びミトコンドリアゲノムのいずれに挿入してもよい。導入核酸をゲノムに挿入する場合、ゲノムの特定の位置に挿入してもよく、ランダムにゲノムに挿入してもよい。
 ゲノムの特定の位置に導入核酸を挿入する方法としては、相同組換え、ゲノム編集等が挙げられる。例えば、C.merolaeは、全ゲノム配列の解読が終了しているため(Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7.)、ゲノム上の所望の位置に導入核酸を挿入することが可能である。C.merolaeにおける導入遺伝子の挿入位置は、特に限定されないが、例えば、CMD184CとCMD185Cとの間の領域が挙げられる。シアニジウム属に属する藻類における導入遺伝子の挿入位置としては、例えば、NS1領域(例えば、HKN1株のNSI領域(配列番号29))が挙げられる。
When introducing genes into algae belonging to the class Idycogome, the introduced nucleic acid may be inserted into any of the nuclear genome, the chloroplast genome, and the mitochondrial genome. When inserting the introduced nucleic acid into the genome, it may be inserted into the genome at a specific position, or may be inserted into the genome at random.
Homologous recombination, genome editing and the like are examples of methods for inserting the nucleic acid to be introduced into a specific position of the genome. For example, C.I. Since the entire genome sequence of merolae has been completed (Matsuzaki M et al., Nature. 2004 Apr 8;428(6983):653-7.), the introduced nucleic acid is inserted at the desired position on the genome. It is possible. C. The insertion position of the transgene in merolae is not particularly limited, but includes, for example, the region between CMD184C and CMD185C. Examples of transgene insertion sites in algae belonging to the genus Cyanidium include the NS1 region (for example, the NSI region of HKN1 strain (SEQ ID NO: 29)).
(イデユコゴメ綱に属する藻類の培養)
 イデユコゴメ綱に属する藻類の培養方法は、特に限定されず、公知の方法で培養することができる。イデユコゴメ綱に属する藻類は、例えば、微細藻類培養用の培地を用いて培養することができる。微細藻類培養用の培地としては、特に限定されないが、窒素源、リン源、微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデン、鉄など)等を含む無機塩培地が例示される。例えば、窒素源としては、アンモニウム塩、硝酸塩、亜硝酸塩等が挙げられ、リン源としては、リン酸塩等が挙げられる。そのような培地としては、例えば、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32: 270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)、改変M-Allen培地等が挙げられる。培地は、液体培地が好ましい。
(Culturing of algae belonging to the class Idycogome)
The method for culturing algae belonging to the class Idycogome is not particularly limited, and can be cultured by a known method. Algae belonging to the class Idyucogome can be cultured, for example, using a medium for microalgae culture. The medium for culturing microalgae is not particularly limited, but an inorganic salt medium containing a nitrogen source, a phosphorus source, trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.) and the like is exemplified. For example, nitrogen sources include ammonium salts, nitrates, nitrites and the like, and phosphorus sources include phosphates and the like. Such media include, for example, 2× Allen medium (Allen MB. Arch. Microbiol. 1959 32: 270-277.), M-Allen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71 .), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.), modified M-Allen medium and the like. A medium is preferably a liquid medium.
 イデユコゴメ綱に属する藻類は、光照射下で、独立栄養的に増殖することもでき、炭素源を資化して従属栄養的に増殖することもできる。そのため、培地は、炭素源としての有機物を含有してもよい。炭素源としては、例えば、グルコース、フルクトース、ガラクトース等の単糖類;スクロース、ラクトース、マルトース等の二糖類;デンプン等の多糖類;ペプトン、トリプトン、カザミノ酸等のペプチド類等が挙げられる。
 炭素源としては、イデユコゴメ綱に属する藻類の増殖効率の観点から、グルコースが好ましい。炭素源としてグルコースを用いる場合、培地中のグルコース濃度としては、例えば、0.01~10M、0.01~5M、0.01~3M、0.01~1M、0.01~0.5M、0.05~10M、0.05~5M、0.05~3M、0.05~1M、又は0.05~0.5M等が挙げられる。
Algae belonging to the class Idyucogome can grow autotrophically under light irradiation, and can also grow heterotrophically by assimilating a carbon source. Therefore, the medium may contain organic matter as a carbon source. Carbon sources include, for example, monosaccharides such as glucose, fructose and galactose; disaccharides such as sucrose, lactose and maltose; polysaccharides such as starch; peptides such as peptone, tryptone and casamino acids.
As the carbon source, glucose is preferable from the viewpoint of the growth efficiency of algae belonging to the class Idycogome. When glucose is used as the carbon source, the glucose concentration in the medium is, for example, 0.01 to 10 M, 0.01 to 5 M, 0.01 to 3 M, 0.01 to 1 M, 0.01 to 0.5 M, 0.05 to 10M, 0.05 to 5M, 0.05 to 3M, 0.05 to 1M, or 0.05 to 0.5M.
 イデユコゴメ綱に属する藻類は、塩ストレス条件下で、エルゴチオネインの生成量が増大する傾向がある。そのため、培地は、塩化ナトリウムを含有していてもよい。培地が、塩化ナトリウムを含有する場合、培地中の塩化ナトリウム濃度としては、例えば、0.1~10M、0.1~5M、0.1~3M、0.1~1M、0.1~0.5M、0.3~10M、0.3~5M、0.3~3M、0.3~1M、又は0.3~0.8M等が挙げられる。 Algae belonging to the class Idycogome tend to produce more ergothioneine under salt stress conditions. Therefore, the medium may contain sodium chloride. When the medium contains sodium chloride, the sodium chloride concentration in the medium is, for example, 0.1-10 M, 0.1-5 M, 0.1-3 M, 0.1-1 M, 0.1-0 .5M, 0.3-10M, 0.3-5M, 0.3-3M, 0.3-1M, or 0.3-0.8M.
 エルゴチオネインは、高い抗酸化活性を有し、酸化ストレスの軽減に寄与していると考えられる。そのため、酸化ストレス条件下では、エルゴチオネインの生成量が増大する可能性がある。そのため、培地は、酸化ストレスを誘導する物質を含有していてもよい。酸化ストレスを誘導する物質としては、例えば、塩類等の浸透圧ストレスを誘導する物質、過酸化物等が挙げられる。 Ergothioneine has high antioxidant activity and is thought to contribute to the reduction of oxidative stress. Therefore, ergothioneine production may increase under conditions of oxidative stress. Therefore, the medium may contain substances that induce oxidative stress. Substances that induce oxidative stress include, for example, substances that induce osmotic stress such as salts, and peroxides.
 イデユコゴメ綱に属する藻類をストレス条件下で培養することにより、エルゴチオネインを含む栄養成分の生成量が増大する傾向がある。したがって、一実施形態において、本発明は、イデユコゴメ綱に属する藻類をストレス条件下で培養することを含む、イデユコゴメ綱に属する藻類の栄養成分の含有量を増大させる方法、もまた提供する。前記栄養成分としては、例えば、エルゴチオネインが挙げられる。前記ストレス条件としては、塩ストレス、酸化ストレス等が挙げられる。塩ストレス条件としては、例えば、上記のような濃度の塩化ナトリウム存在下での培養が挙げられる。酸化ストレス条件としては、前記のような酸化ストレス誘導物質の存在下での培養が挙げられる。
 一実施形態において、本発明は、ストレス条件下で培養されたイデユコゴメ綱に属する藻類もまた提供する。ストレス条件下で培養されたイデユコゴメ綱に属する藻類は、ストレスのない条件下で培養されたものと比較して、エルゴチオネインを含む栄養成分の含有量が増大する傾向がある。ストレス条件としては、上記と同様のものが挙げられる。
Cultivating algae belonging to the class Idycogome under stress conditions tends to increase the production of nutritional components including ergothioneine. Accordingly, in one embodiment, the present invention also provides a method for increasing the nutrient content of algae belonging to the class Idyunicogome, comprising culturing the algae belonging to the class Idyunicogome under stress conditions. Examples of the nutritional component include ergothioneine. Examples of the stress conditions include salt stress, oxidative stress, and the like. Salt stress conditions include, for example, culture in the presence of sodium chloride at concentrations such as those described above. Oxidative stress conditions include culture in the presence of oxidative stress inducers as described above.
In one embodiment, the present invention also provides algae belonging to the class Idycogome, cultured under stress conditions. Algae belonging to the class Idycogome that have been cultured under stress conditions tend to have an increased content of nutritional components, including ergothioneine, compared to those cultured under non-stress conditions. Examples of stress conditions include those similar to those described above.
 培地は、エルゴチオネインの生合成経路におけるエルゴチオネインの前駆物質を含有してもよい。培地が、エルゴチオネインの前駆物質を含有することにより、イデユコゴメ綱に属する藻類によるエルゴチオネインの生成量の増大が期待できる。エルゴチオネインの前駆物質としては、メチオニン、ヒスチジン、トリメチルヒスチジン、及びヘルシニルシステインスルホキシドが挙げられる。 The medium may contain precursors of ergothioneine in the biosynthetic pathway of ergothioneine. By containing an ergothioneine precursor in the medium, an increase in the amount of ergothioneine produced by algae belonging to the class Idycogome can be expected. Precursors of ergothioneine include methionine, histidine, trimethylhistidine, and hercinylcysteine sulfoxide.
 培地は、エルゴチオネインの代謝を阻害する物質を含有してもよい。培地が、エルゴチオネインの代謝を阻害する物質を含有することにより、エルゴチオネインの蓄積が期待できる。エルゴチオネインは、活性酸素種が存在すると、活性酸素種の捕捉のために消費される可能性がある。そのため、培地は、活性酸素種を捕捉可能な他の物質として、抗酸化物質を含有してもよい。抗酸化物質としては、例えば、アスコルビン酸(ビタミンC)、トコフェロール類(ビタミンE)、ポリフェノール類、フラボノイド類、グルタチオン、アスタキサンチン等が挙げられる。 The medium may contain substances that inhibit the metabolism of ergothioneine. Accumulation of ergothioneine can be expected when the medium contains a substance that inhibits the metabolism of ergothioneine. Ergothioneine can be consumed due to scavenging of reactive oxygen species if they are present. Therefore, the medium may contain antioxidants as other substances capable of scavenging reactive oxygen species. Antioxidants include, for example, ascorbic acid (vitamin C), tocopherols (vitamin E), polyphenols, flavonoids, glutathione, astaxanthin and the like.
 培地のpHは、イデユコゴメ綱に属する藻類が、増殖できる範囲内であればよい。培地のpHは、例えば、pH1~6、又はpH1~5とすることができる。イデユコゴメ綱に属する藻類を屋外で培養する場合、他の生物の増殖を防ぐために、酸性度が高い条件で培養することが好ましい。この場合、培地のpHは、例えば、pH1~3とすることができる。 The pH of the medium should be within the range in which algae belonging to the class Idyucogome can grow. The pH of the medium can be, for example, pH 1-6, or pH 1-5. When culturing algae belonging to the class Idyucogome outdoors, it is preferable to culture them under highly acidic conditions in order to prevent the growth of other organisms. In this case, the pH of the medium can be, for example, pH 1-3.
 培養温度は、イデユコゴメ綱に属する藻が、増殖できる範囲内であればよい。培養温度としては、例えば、15~50℃が挙げられる。イデユコゴメ綱に属する藻類の増殖が良好となることから、培養温度は、20~50℃が好ましく、30~50℃がより好ましい。イデユコゴメ綱に属する藻類を屋外で培養する場合、他の生物の増殖を防ぐために、高温で培養することが好ましい。この場合、培養温度は、例えば、35~50℃とすることができる。 The culture temperature should be within a range where algae belonging to the class Idyucogome can grow. The culture temperature is, for example, 15 to 50°C. The culture temperature is preferably 20 to 50° C., more preferably 30 to 50° C., since the algae belonging to the class Idycogome grow well. When culturing algae belonging to the class Idyucogome outdoors, it is preferable to culture them at a high temperature in order to prevent the growth of other organisms. In this case, the culture temperature can be, for example, 35-50°C.
 CO条件は、イデユコゴメ綱に属する藻類が、増殖できる範囲内であればよい。CO濃度としては、例えば、0.04~5%が挙げられる。イデユコゴメ綱に属する藻類の増殖が良好となることから、CO濃度は、0.04~3%が好ましい。CO条件は、大気中CO濃度であってもよい。イデユコゴメ綱に属する微細藻類の中でも、ガルデリア属は高CO濃度耐性が高く、100%COでも生育可能である。そのため、イデユコゴメ綱に属する藻類がガルデリア属である場合、CO濃度100%としてもよい。 CO2 conditions may be within a range where algae belonging to the class Idyucogome can grow. CO 2 concentrations include, for example, 0.04 to 5%. The CO 2 concentration is preferably 0.04 to 3% because the growth of algae belonging to the class Idyucogome is favorable. The CO2 condition may be atmospheric CO2 concentration. Among the microalgae belonging to the class Idycogome, the genus Garderia has high tolerance to high CO2 concentrations and can grow even at 100% CO2 . Therefore, when the alga belonging to the class Idycogome belongs to the genus Garderia, the CO 2 concentration may be 100%.
 培養は、静置培養であってもよく、通気培養であってもよく、振とう培養であってもよい。通気培養とする場合、通気条件としては、例えば、1~4L air/min、又は1~3L air/minが挙げられる。振とう培養とする場合、振とう速度としては、例えば、100~200rpmが挙げられる。 The culture may be static culture, aerobic culture, or shaking culture. In the case of aerobic culture, aeration conditions include, for example, 1 to 4 L air/min or 1 to 3 L air/min. In the case of shaking culture, the shaking speed is, for example, 100 to 200 rpm.
 イデユコゴメ綱に属する藻類は、独立栄養的に増殖させてもよく、従属栄養的に増殖させてもよい。独立栄養的に増殖させる場合、イデユコゴメ綱に属する藻類を光照射下で培養する。独立栄養的に増殖させる場合、光強度としては、例えば、5~2000μmol/msが挙げられる。イデユコゴメ綱に属する藻類の増殖が良好となることから、光強度は、5~1500μmol/msが好ましい。イデユコゴメ綱に属する藻類を屋外で培養する場合、太陽光下で培養すればよい。室内で培養する場合には、連続光で培養してもよく、明暗周期(10L:14Dなど)を設けてもよい。 Algae belonging to the class Idyucogome may be grown autotrophically or heterotrophically. For autotrophic growth, algae belonging to the class Idycogome are cultured under light irradiation. For autotrophic growth, the light intensity is, for example, 5 to 2000 μmol/m 2 s. The light intensity is preferably from 5 to 1500 μmol/m 2 s because the growth of algae belonging to the class Idyucogome is favorable. When algae belonging to the class Idyucogome are cultured outdoors, they may be cultured under sunlight. When cultured indoors, the culture may be performed under continuous light, or a light-dark cycle (10L:14D, etc.) may be provided.
 イデユコゴメ綱に属する藻類を従属栄養的に増殖させる場合、有機炭素源を含有する培地で培養すればよい。光条件は、光照射下であってもよく、暗黒下であってもよい。有機炭素源含有培地を用いて、光照射下で培養した場合、イデユコゴメ綱に属する藻類は、光合成による独立栄養的な増殖と、炭素源の資化による従属栄養的な増殖の両方を行う。有機炭素源含有培地を用いて、暗黒下で培養した場合、イデユコゴメ綱に属する藻類は、炭素源の資化による従属栄養的な増殖のみを行う。有機炭素源非含有培地(無機塩培地)を用いて、光照射下で培養した場合、イデユコゴメ綱に属する藻類は、光合成による独立栄養的な増殖のみを行う。
 以下、有機炭素源非含有培地(無機塩培地)による光照射下での培養を「独立栄養培養」という。有機炭素源含有培地による光照射下での培養を「混合栄養培養」という。有機炭素源含有培地による暗黒下での培養を「従属栄養培養」という。
When algae belonging to the class Idyucogome are grown heterotrophically, they may be cultured in a medium containing an organic carbon source. The light condition may be under light irradiation or under darkness. When cultured in a medium containing an organic carbon source under light irradiation, algae belonging to the class Idyucogome undergo both autotrophic growth by photosynthesis and heterotrophic growth by assimilation of carbon sources. When cultured in the dark using a medium containing an organic carbon source, algae belonging to the class Idyucogome grow only heterotrophically by assimilation of the carbon source. When cultured under light irradiation using a medium containing no organic carbon source (inorganic salt medium), algae belonging to the class Idycogome grow only autotrophically by photosynthesis.
Hereinafter, culture under light irradiation in an organic carbon source-free medium (inorganic salt medium) is referred to as "autotrophic culture". Culture under light irradiation in a medium containing an organic carbon source is called "mixed nutrition culture". Culturing in the dark using a medium containing an organic carbon source is called "heterotrophic culture."
 イデユコゴメ綱に属する藻類を独立栄養培養した場合、混合栄養培養及び従属栄養培養と比較して、エルゴチオネインの細胞内含有量が高くなる。そのため、エルゴチオネインの細胞内含有量の観点からは、独立栄養培養とすることが好ましい。
 イデユコゴメ綱に属する藻類を混合栄養培養又は従属栄養培養とした場合、独立栄養培養と比較して、増殖速度が速くなる。そのため、エルゴチオネインの細胞内含有量を考慮しても、独立栄養培養の場合と同量のエルゴチオネインをより早く得ることができる。したがって、製造時間の観点からは、混合栄養培養又は従属栄養培養とすることが好ましい。
When algae belonging to the class Idyucogome are autotrophic cultured, the intracellular content of ergothioneine is higher than in mixed and heterotrophic cultures. Therefore, from the viewpoint of intracellular content of ergothioneine, autotrophic culture is preferable.
When algae belonging to the class Idycogome are subjected to mixed nutrition culture or heterotrophic culture, the growth rate is faster than that of autotrophic culture. Therefore, even if the intracellular content of ergothioneine is taken into account, the same amount of ergothioneine as in autotrophic culture can be obtained more quickly. Therefore, from the viewpoint of production time, mixed nutrition culture or heterotrophic culture is preferable.
 イデユコゴメ綱に属する藻類は、エルゴチオネインを生成させるための本培養を行う前に、前培養を行ってもよい。前培養の培養条件は、本培養と同じであってもよく、異なっていてもよい。前培養は、例えば、独立栄養培養とすることができる。この場合、例えば、光条件を5~1000μmol/ms、CO条件を1~5%、温度条件を30~50℃とすることができる。前培養は、静置培養で行ってもよい。 Algae belonging to the class Idycogome may be pre-cultured before main culture for producing ergothioneine. The culture conditions for the pre-culture may be the same as those for the main culture, or may be different. The pre-culture can be, for example, an autotrophic culture. In this case, for example, the light condition can be 5-1000 μmol/m 2 s, the CO 2 condition can be 1-5%, and the temperature condition can be 30-50°C. Pre-culture may be performed by static culture.
 イデユコゴメ綱に属する藻類は、静止期になるまで培養してもよく、増殖期で培養を終了してもよい。増殖期の細胞と比較して、静止期の細胞の方がエルゴチオネインの含有量が多くなることから、イデユコゴメ綱に属する藻類は、静止期になるまで培養することが好ましい。 Algae belonging to the class Idyucogome may be cultured until they reach the stationary phase, or the culture may be terminated at the growth phase. Since the ergothioneine content is higher in cells in the stationary phase than in cells in the growing phase, algae belonging to the class Idycogome are preferably cultured until they reach the stationary phase.
<任意工程>
 本実施形態の製造方法は、前記工程(a)に加えて、任意工程を含んでいてもよい。任意工程としては、例えば、工程(a)の培養後の培養液から、イデユコゴメ綱に属する藻類を回収する工程(b)、及び工程(b)で回収されたイデユコゴメ綱に属する藻類からエルゴチオネインを抽出する工程(c)が挙げられる。また、工程(a)の前に、イデユコゴメ綱に属する藻類の1倍体に対して遺伝子改変を行う工程(i)、及びイデユコゴメ綱に属する藻類を2倍体にする工程(ii)が挙げられる。
<Optional process>
The manufacturing method of the present embodiment may include optional steps in addition to the step (a). As an optional step, for example, a step (b) of recovering algae belonging to the class Idecogome from the culture solution after the culture in step (a), and extracting ergothioneine from the algae belonging to the class Idecogome collected in step (b). The step (c) of performing is mentioned. In addition, before the step (a), the step (i) of genetically modifying the haploid algae belonging to the class Idyucogome, and the step (ii) of making the algae belonging to the class Idyuteicogome diploid. .
(工程(b))
 工程(b)は、工程(a)の培養後の培養液から、イデユコゴメ綱に属する藻類を回収する工程である。
(Step (b))
Step (b) is a step of recovering algae belonging to the class Idycogome from the culture solution after culturing in step (a).
 培養液からイデユコゴメ綱に属する藻類を回収する方法は、特に限定されず、公知の方法を用いることができる。藻類細胞を回収する方法としては、例えば、遠心分離により回収する方法、ろ過により回収する方法等が挙げられる。
 遠心分離により藻類細胞を回収する場合、遠心条件としては、例えば、1000~5000×g、又は2000~4000×gが挙げられる。遠心時間は、培養液の量に応じて適宜設定すればよい。遠心時間としては、例えば、5~60分、5~30分、又は5~20分等が挙げられる。
 ろ過により藻類細胞を回収する場合、イデユコゴメ綱に属する藻類の細胞よりも小さい孔径のフィルターを用いればよい。例えば、0.45μmフィルター等を用いることができる。
A method for recovering algae belonging to the class Idycogome from the culture medium is not particularly limited, and a known method can be used. Methods for collecting algal cells include, for example, a method of collecting by centrifugation, a method of collecting by filtration, and the like.
When algal cells are collected by centrifugation, centrifugation conditions include, for example, 1000-5000×g or 2000-4000×g. The centrifugation time may be appropriately set according to the amount of the culture medium. Examples of centrifugation time include 5 to 60 minutes, 5 to 30 minutes, or 5 to 20 minutes.
When algal cells are collected by filtration, a filter with a pore size smaller than that of algal cells belonging to the class Idycogome may be used. For example, a 0.45 μm filter or the like can be used.
(工程(c))
 工程(c)は、工程(b)で回収されたイデユコゴメ綱に属する藻類からエルゴチオネインを抽出する工程である。
(Step (c))
Step (c) is a step of extracting ergothioneine from the algae belonging to the class Idycogome collected in step (b).
 イデユコゴメ綱に属する藻類からエルゴチオネインを抽出する方法は、特に限定されない。エルゴチオネインを抽出する方法としては、例えば、溶媒抽出が挙げられる。溶媒抽出は、例えば、イデユコゴメ綱に属する藻類に抽出溶媒を添加し、混合した後、イデユコゴメ綱に属する藻類の細胞残渣を除去することにより行うことができる。抽出溶媒は、エルゴチオネインが溶解するものであれば、特に限定されない。抽出溶媒としては、例えば、メタノール、エタノール、イソプロパノール、アセトン等の有機溶媒;これらの有機溶媒と水とを混合した含水有機溶媒;水(例えば、熱水)等が挙げられる。中でも、抽出溶媒としては、メタノールが好ましい。溶媒抽出は、イデユコゴメ綱に属する藻類の細胞を凍結乾燥した後に行ってもよい。凍結乾燥細胞に対して溶媒抽出を行うことにより、抽出効率が向上する。 The method for extracting ergothioneine from algae belonging to the class Idycogome is not particularly limited. Methods for extracting ergothioneine include, for example, solvent extraction. Solvent extraction can be carried out, for example, by adding an extraction solvent to algae belonging to the class Idynocogoma, mixing them, and then removing cell residues of the algae belonging to the class Idycogome. The extraction solvent is not particularly limited as long as it dissolves ergothioneine. Examples of extraction solvents include organic solvents such as methanol, ethanol, isopropanol, and acetone; water-containing organic solvents obtained by mixing these organic solvents with water; and water (eg, hot water). Among them, methanol is preferable as the extraction solvent. Solvent extraction may be performed after freeze-drying algal cells belonging to the class Idycogome. Extraction efficiency is improved by subjecting the freeze-dried cells to solvent extraction.
 イデユコゴメ綱に属する藻類に、抽出溶媒を添加した後、エルゴチオネインの抽出効率を上げるために、細胞破壊処理を行ってもよい。細胞破壊処理としては、例えば、超音波処理、熱処理等が挙げられる。エルゴチオネインの抽出処理の後、イデユコゴメ綱に属する藻類の細胞残渣を除去してもよい。細胞残渣を除去する方法としては、例えば、遠心分離、フィルターろ過等が挙げられる。 After adding an extraction solvent to algae belonging to the class Ideucogome, a cell disruption treatment may be performed in order to increase the extraction efficiency of ergothioneine. Examples of cell disruption treatment include ultrasonic treatment and heat treatment. After the ergothioneine extraction treatment, cell debris of algae belonging to the class Idycogome may be removed. Methods for removing cell debris include, for example, centrifugation and filter filtration.
 抽出液は、さらに、エルゴチオネインの精製処理を行ってもよい。精製処理としては、例えば、塩析、透析、再結晶、再沈殿、溶媒抽出、吸着、濃縮、ろ過、ゲルろ過、限外ろ過、各種クロマトグラフィー(薄層クロマトグラフィー、カラムクロマトグラフィー、イオン交換クロマトグラフィー、高速液体クロマトグラフィー、吸着クロマトグラフィーなど)等が挙げられるが、これらに限定されない。これらの方法を適宜組み合わせて、エルゴチオネインの精製処理を行ってもよい。 The extract may be further purified for ergothioneine. Purification treatments include, for example, salting out, dialysis, recrystallization, reprecipitation, solvent extraction, adsorption, concentration, filtration, gel filtration, ultrafiltration, various types of chromatography (thin layer chromatography, column chromatography, ion exchange chromatography, chromatography, high-performance liquid chromatography, adsorption chromatography, etc.), but are not limited to these. Ergothioneine may be purified by appropriately combining these methods.
(工程(i))
 工程(i)は、イデユコゴメ綱に属する藻類の1倍体に対して遺伝子改変を行う工程である。工程(i)は、工程(a)の前に行うことができる。
(Step (i))
Step (i) is a step of genetically modifying haploid algae belonging to the class Idycogome. Step (i) can be performed before step (a).
 イデユコゴメ綱に属する藻類を遺伝子改変する場合、1倍体細胞に対して遺伝子改変を行うことが好ましい。1倍体細胞は、ゲノムを1セットしか有しないため、2倍体細胞よりも遺伝子改変を容易に行うことができる。
 イデユコゴメ綱に属する藻類を1倍体にする方法としては、上記「<工程(a)>」の項で挙げた方法が挙げられる。
 イデユコゴメ綱に属する藻類の遺伝子改変方法としては、上記「<工程(a)>」の項で挙げた方法が挙げられる。遺伝子改変としては、例えば、エルゴチオネインの生成量を増大させる遺伝子改変が挙げられる。
When genetically modifying algae belonging to the class Idycogome, it is preferable to genetically modify haploid cells. Because haploid cells have only one set of genomes, they are easier to genetically modify than diploid cells.
Examples of the method for making algae belonging to the class Idycogome haploid include the method mentioned in the above section "<Step (a)>".
Examples of the method for genetically modifying algae belonging to the class Idycogome include the methods listed in the above section "<Step (a)>". Genetic modification includes, for example, genetic modification that increases the amount of ergothioneine produced.
(工程(ii))
 工程(ii)は、イデユコゴメ綱に属する藻類を2倍体にする工程である。工程(ii)は、工程(i)の後、工程(a)の前に行うことができる。
(Step (ii))
Step (ii) is a step of diploidizing algae belonging to the class Idycogome. Step (ii) can be performed after step (i) and before step (a).
 イデユコゴメ綱に属する藻類は、2倍体細胞の方が、1倍体細胞よりも、エルゴチオネインの生成量が多い傾向がある。そのため、工程(i)で1倍体細胞に対して遺伝子改変を行った場合、2倍体細胞にしてから、イデユコゴメ綱に属する藻類の培養を行うことが好ましい。イデユコゴメ綱に属する藻類を2倍体にする方法としては、上記「<工程(a)>」の項で挙げた方法が挙げられる。 In algae belonging to the class Idycogome, diploid cells tend to produce more ergothioneine than haploid cells. Therefore, when the haploid cells are genetically modified in the step (i), it is preferable to culture algae belonging to the class Idycogome after making them into diploid cells. Examples of the method for making algae belonging to the class Idyucogome diploid include the method mentioned in the above section "<Step (a)>".
 本実施形態の製造方法によれば、イデユコゴメ綱に属する藻類を培養することで、エルゴチオネインを得ることができる。イデユコゴメ綱に属する藻類は、他の生物が増殖困難な低pH、高温条件下で増殖可能であるため、屋外で大量培養することも可能である。また、イデユコゴメ綱に属する藻類では、タモギタケと同程度まで、エルゴチオネインの細胞含有量を高めることができる。そのため、エルゴチオネインの製造コストの低減が期待できる。 According to the production method of the present embodiment, ergothioneine can be obtained by culturing algae belonging to the class Idycogome. Since algae belonging to the class Idyucogome can grow under low-pH and high-temperature conditions where other organisms have difficulty growing, they can be cultivated outdoors in large quantities. In addition, algae belonging to the class Idycogome can increase the cellular content of ergothioneine to the same extent as that of Pleurotus cornucopiae. Therefore, reduction in the production cost of ergothioneine can be expected.
[ポリペプチド]
 一実施形態において、本開示は、下記(a1)~(c1)からなる群より選択されるポリペプチド(以下、「HSMポリペプチド」ともいう)を提供する。
 (a1)配列番号6に記載のアミノ酸配列を含むポリペプチド。
 (b1)配列番号6に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド。
 (c1)配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド。
[Polypeptide]
In one embodiment, the present disclosure provides a polypeptide (hereinafter also referred to as "HSM polypeptide") selected from the group consisting of (a1) to (c1) below.
(a1) A polypeptide comprising the amino acid sequence set forth in SEQ ID NO:6.
(b1) A polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 6, and having histidine methyltransferase activity.
(c1) A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6 and having histidine methyltransferase activity.
 (a1)のポリペプチドは、配列番号6に記載のアミノ酸配列からなるポリペプチド(配列番号6のポリペプチド)、又は配列番号6のポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。配列番号6のポリペプチドは、HKN1株からヒスチジンメチルトランスフェラーゼ様タンパク質として見出されたポリペプチドである。配列番号6のポリペプチドは、後述の配列番号8に記載のアミノ酸配列からなるポリペプチド(配列番号8のポリペプチド)とともに、HKN1株に導入されたとき、HKN1株のエルゴチオネイン生産量を増大させる作用を示した。したがって、配列番号6のポリペプチドは、ヒスチジンメチルトランスフェラーゼ活性を有し、ヒスチジンをメチル化してトリメチルヒスチジンを生じる反応を触媒する活性を有すると推定される。 The polypeptide of (a1) is a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 6 (polypeptide of SEQ ID NO: 6), or an amino acid A polypeptide to which a sequence has been added. The polypeptide of SEQ ID NO: 6 is a polypeptide found as a histidine methyltransferase-like protein from HKN1 strain. The polypeptide of SEQ ID NO: 6, when introduced into the HKN1 strain together with the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 8 (the polypeptide of SEQ ID NO: 8), has the effect of increasing the ergothioneine production of the HKN1 strain. showed that. Therefore, the polypeptide of SEQ ID NO: 6 has histidine methyltransferase activity and is presumed to have activity to catalyze the reaction of methylating histidine to produce trimethylhistidine.
 配列番号6のポリペプチドのN末端又はC末端に付加されるアミノ酸配列の長さは特に限定されない。付加されるアミノ酸配列としては、例えば、ペプチドタグ(FLAGタグ、HAタグ、6×Hisタグ、Mycタグ等)のアミノ酸配列、他のタンパク質のアミノ酸配列等が挙げられる。(a1)のポリペプチドの大きさは、特に限定されないが、例えば、426~5000アミノ酸長程度が挙げられる。(a1)のポリペプチドの大きさとしては、4000アミノ酸長以下、3000アミノ酸長以下、2000アミノ酸長以下、1000アミノ酸長以下、800アミノ酸長以下、700アミノ酸長以下、600アミノ酸長以下、500アミノ酸長以下、450アミノ酸長以下が挙げられる。 The length of the amino acid sequence added to the N-terminus or C-terminus of the polypeptide of SEQ ID NO: 6 is not particularly limited. Examples of amino acid sequences to be added include amino acid sequences of peptide tags (FLAG tag, HA tag, 6×His tag, Myc tag, etc.), amino acid sequences of other proteins, and the like. The size of the polypeptide of (a1) is not particularly limited, but may be, for example, about 426 to 5000 amino acids long. The size of the polypeptide of (a1) is 4000 amino acids or less, 3000 amino acids or less, 2000 amino acids or less, 1000 amino acids or less, 800 amino acids or less, 700 amino acids or less, 600 amino acids or less, or 500 amino acids. Hereafter, 450 amino acids or less in length are mentioned.
 (b1)のポリペプチドは、配列番号6に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列からなるポリペプチド、あるいは前記ポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。付加されるアミノ酸配列としては、上記(a1)と同様のものが挙げられる。(b1)のポリペプチドの大きさとしては、(a1)のポリペプチドと同様のものが挙げられる。 The polypeptide of (b1) is a polypeptide consisting of an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 6, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added. The amino acid sequence to be added includes those similar to (a1) above. The size of the polypeptide of (b1) includes those similar to those of the polypeptide of (a1).
 アミノ酸の変異は、欠失、置換、付加、及び挿入のいずれであってもよく、これらの組合せであってもよい。変異されるアミノ酸の数は、結果として生じるポリペプチドがヒスチジンメチルトランスフェラーゼ活性を有する限り、特に限定されない。変異されるアミノ酸の数としては、例えば1~80個、1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、1~5個、1~4個、1~3個、1個又は2個が挙げられる。 Amino acid mutations may be deletions, substitutions, additions, insertions, or combinations thereof. The number of mutated amino acids is not particularly limited as long as the resulting polypeptide has histidine methyltransferase activity. The number of amino acids to be mutated is, for example, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2 are included.
 変異されるアミノ酸の種類及び位置は特に限定されない。変異がアミノ酸の置換である場合、例えば、元のアミノ酸と側鎖の性質が類似したアミノ酸への置換が挙げられる。そのような置換としては、保存的置換が挙げられる。保存的置換は、ポリペプチドの機能にほとんど影響を及ぼさないアミノ酸置換である。アミノ酸は、例えば、側鎖の種類により、酸性アミノ酸(アスパラギン酸及びグルタミン酸)、塩基性アミノ酸(リシン・アルギニン・ヒスチジン)、中性アミノ酸(炭化水素鎖を持つアミノ酸(グリシン・アラニン・バリン・ロイシン・イソロイシン・プロリン)、ヒドロキシ基を有するアミノ酸(セリン・スレオニン)、硫黄を含むアミノ酸(システイン・メチオニン)、アミド基を有するアミノ酸(アスパラギン・グルタミン)、イミノ基を有するアミノ酸(プロリン)、芳香族基を有するアミノ酸(フェニルアラニン・チロシン・トリプトファン))等に分類することができる。保存的置換としては、これらのグループ内での置換が挙げられる。 The types and positions of amino acids to be mutated are not particularly limited. When the mutation is an amino acid substitution, it includes, for example, substitution with an amino acid having a side chain similar to that of the original amino acid. Such substitutions include conservative substitutions. Conservative substitutions are amino acid substitutions that have little effect on the function of the polypeptide. Amino acids include, for example, acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine, histidine), neutral amino acids (amino acids having hydrocarbon chains (glycine, alanine, valine, leucine, isoleucine/proline), amino acids with hydroxy groups (serine/threonine), amino acids containing sulfur (cysteine/methionine), amino acids with amide groups (asparagine/glutamine), amino acids with imino groups (proline), aromatic groups amino acids (phenylalanine, tyrosine, tryptophan)), etc. Conservative substitutions include substitutions within these groups.
 (c1)のポリペプチドは、配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるポリペプチド、あるいは、前記ポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。付加されるアミノ酸配列としては、上記(a1)と同様のものが挙げられる。(c1)のポリペプチドの大きさとしては、(a1)のポリペプチドと同様のものが挙げられる。 The polypeptide of (c1) is a polypeptide consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added. The amino acid sequence to be added includes those similar to (a1) above. The size of the polypeptide of (c1) includes those similar to those of the polypeptide of (a1).
 配列同一性は、80%以上である限り、特に限定されない。配列同一性としては、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上が挙げられる。 The sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
 (b1)及び(c1)のポリペプチドは、ヒスチジントランスフェラーゼ活性を有する。ポリペプチドが、ヒスチジントランスフェラーゼ活性を有するか否かは、公知の方法で確認することができる。そのような方法としては、例えば、ヒスチジン及び適当なメチルドナー(S-アデノシルメチオニン(SAM)等)を、ポリペプチドの存在下でインキュベーションし、トリメチルヒスチジンの生成を確認する方法が挙げられる。 The polypeptides (b1) and (c1) have histidine transferase activity. Whether or not a polypeptide has histidine transferase activity can be confirmed by a known method. Such methods include, for example, incubating histidine and an appropriate methyl donor (such as S-adenosylmethionine (SAM)) in the presence of the polypeptide and confirming the production of trimethylhistidine.
 一実施形態において、本開示は、下記(a2)~(c2)からなる群より選択されるポリペプチド(以下、「HSSポリペプチド」ともいう)を提供する。
 (a2)配列番号8に記載のアミノ酸配列を含むポリペプチド。
 (b2)配列番号8に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド。
 (c2)配列番号8に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド。
In one embodiment, the present disclosure provides a polypeptide (hereinafter also referred to as "HSS polypeptide") selected from the group consisting of (a2) to (c2) below.
(a2) A polypeptide comprising the amino acid sequence set forth in SEQ ID NO:8.
(b2) A polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO:8, wherein the polypeptide has 5-histidylcysteine sulfoxide synthase activity.
(c2) A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 8 and having 5-histidylcysteine sulfoxide synthase activity.
 (a2)のポリペプチドは、配列番号8に記載のアミノ酸配列からなるポリペプチド(配列番号8のポリペプチド)、又は配列番号8のポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。配列番号8のポリペプチドは、HKN1株からヒスチジルシステインスルホキシドシンターゼ様タンパク質として見出されたポリペプチドである。配列番号8のポリペプチドは、上述の配列番号6のポリペプチドとともに、HKN1株に導入されたとき、HKN1株のエルゴチオネイン生産量を増大させる作用を示した。したがって、配列番号8のポリペプチドは、5-ヒスチジルシステインスルホキシドシンターゼ活性を有し、トリメチルヒスチジンから5-ヒスチジルシステインスルホキシド(ヘルシニルシステインスルホキシド)を生じる反応を触媒する活性を有すると推定される。 The polypeptide of (a2) is a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 8 (polypeptide of SEQ ID NO: 8), or an amino acid A polypeptide to which a sequence has been added. The polypeptide of SEQ ID NO: 8 is a polypeptide found as a histidylcysteine sulfoxide synthase-like protein from HKN1 strain. When the polypeptide of SEQ ID NO: 8 was introduced into the HKN1 strain together with the polypeptide of SEQ ID NO: 6, it exhibited the effect of increasing the ergothioneine production of the HKN1 strain. Therefore, the polypeptide of SEQ ID NO: 8 has 5-histidylcysteine sulfoxide synthase activity and is presumed to have activity to catalyze the reaction of trimethylhistidine to 5-histidylcysteine sulfoxide (hercinylcysteine sulfoxide). be done.
 配列番号8のポリペプチドのN末端又はC末端に付加されるアミノ酸配列の長さは特に限定されない。付加されるアミノ酸配列としては、例えば、ペプチドタグ(FLAGタグ、HAタグ、6×Hisタグ、Mycタグ等)のアミノ酸配列、他のタンパク質のアミノ酸配列等が挙げられる。(a2)のポリペプチドの大きさは、特に限定されないが、例えば、595~5000アミノ酸長程度が挙げられる。(a2)のポリペプチドの大きさとしては、4000アミノ酸長以下、3000アミノ酸長以下、2000アミノ酸長以下、1000アミノ酸長以下、800アミノ酸長以下、700アミノ酸長以下、650アミノ酸長以下、600アミノ酸長以下が挙げられる。 The length of the amino acid sequence added to the N-terminus or C-terminus of the polypeptide of SEQ ID NO: 8 is not particularly limited. Examples of amino acid sequences to be added include amino acid sequences of peptide tags (FLAG tag, HA tag, 6×His tag, Myc tag, etc.), amino acid sequences of other proteins, and the like. The size of the polypeptide of (a2) is not particularly limited, but may be, for example, about 595 to 5000 amino acids long. The size of the polypeptide of (a2) is 4000 amino acids or less, 3000 amino acids or less, 2000 amino acids or less, 1000 amino acids or less, 800 amino acids or less, 700 amino acids or less, 650 amino acids or less, or 600 amino acids. These include:
 (b2)のポリペプチドは、配列番号8に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列からなるポリペプチド、あるいは前記ポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。付加されるアミノ酸配列としては、上記(a2)と同様のものが挙げられる。(b2)のポリペプチドの大きさとしては、(a2)のポリペプチドと同様のものが挙げられる。 The polypeptide of (b2) is a polypeptide consisting of an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 8, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added. The amino acid sequence to be added includes those similar to (a2) above. The size of the polypeptide of (b2) includes those similar to those of the polypeptide of (a2).
 アミノ酸の変異は、欠失、置換、付加、及び挿入のいずれであってもよく、これらの組合せであってもよい。変異されるアミノ酸の数は、結果として生じるポリペプチドが5-ヒスチジルシステインスルホキシドシンターゼ活性を有する限り、特に限定されない。変異されるアミノ酸の数としては、例えば1~80個、1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、1~5個、1~4個、1~3個、1個又は2個が挙げられる。
 変異されるアミノ酸の種類及び位置は特に限定されない。アミノ酸置換の種類としては、上記と同様のものが挙げられる。
Amino acid mutations may be deletions, substitutions, additions, insertions, or combinations thereof. The number of amino acids to be mutated is not particularly limited as long as the resulting polypeptide has 5-histidylcysteine sulfoxide synthase activity. The number of amino acids to be mutated is, for example, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2 are included.
The types and positions of amino acids to be mutated are not particularly limited. Types of amino acid substitution include those similar to those described above.
 (c2)のポリペプチドは、配列番号8に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるポリペプチド、あるいは、前記ポリペプチドのN末端及びC末端のいずれか又は両方に、アミノ酸配列が付加されたポリペプチドである。付加されるアミノ酸配列としては、上記(a2)と同様のものが挙げられる。(c2)のポリペプチドの大きさとしては、(a2)のポリペプチドと同様のものが挙げられる。 The polypeptide of (c2) is a polypeptide consisting of an amino acid sequence having a sequence identity of 80% or more with the amino acid sequence set forth in SEQ ID NO: 8, or at either or both of the N-terminus and C-terminus of the polypeptide , is a polypeptide to which an amino acid sequence has been added. The amino acid sequence to be added includes those similar to (a2) above. The size of the polypeptide of (c2) includes those similar to those of the polypeptide of (a2).
 配列同一性は、80%以上である限り、特に限定されない。配列同一性としては、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上が挙げられる。 The sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
 (b2)及び(c2)のポリペプチドは、5-ヒスチジルシステインスルホキシドシンターゼ活性を有する。ポリペプチドが、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するか否かは、公知の方法で確認することができる。そのような方法としては、例えば、トリメチルヒスチジン及びシステインを、ポリペプチドの存在下でインキュベーションし、5-ヒスチジルシステインスルホキシド(ヘルシニルシステインスルホキシド)の生成を確認する方法が挙げられる。 The polypeptides (b2) and (c2) have 5-histidylcysteine sulfoxide synthase activity. Whether or not a polypeptide has 5-histidylcysteine sulfoxide synthase activity can be confirmed by known methods. Such methods include, for example, incubating trimethylhistidine and cysteine in the presence of the polypeptide and confirming the production of 5-histidylcysteine sulfoxide (hercinylcysteine sulfoxide).
 HSMポリペプチド及びHSSポリペプチドは、ヒスチジンからエルゴチオネインを製造するために用いることができる。 HSM polypeptides and HSS polypeptides can be used to produce ergothioneine from histidine.
[ポリヌクレオチド]
 一実施形態において、本開示は、HSMポリペプチドをコードするポリヌクレオチド(以下、「HSMポリヌクレオチド」ともいう)を提供する。
[Polynucleotide]
In one embodiment, the present disclosure provides polynucleotides encoding HSM polypeptides (hereinafter also referred to as "HSM polynucleotides").
 HSMポリヌクレオチドの具体例としては、下記(d1)~(g1)が挙げられる。
 (d1)配列番号5に記載のヌクレオチド配列を含むポリヌクレオチド。
 (e1)配列番号5に記載のヌクレオチド配列からなるポリヌクレオチドにおいて、1又は複数個のヌクレオチドが変異されたヌクレオチド配列を含むポリヌクレオチドであって、ヒスチジントランスフェラーゼ活性を有するポリペプチドをコードするポリヌクレオチド。
 (f1)配列番号5に記載のヌクレオチド配列からなるポリヌクレオチドと80%以上の配列同一性を有するヌクレオチド配列を含むポリヌクレオチドであって、ヒスチジントランスフェラーゼ活性を有するポリペプチドをコードするポリヌクレオチド。
 (g1)配列番号5に記載のヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、ヒスチジントランスフェラーゼ活性を有するポリペプチドをコードするポリヌクレオチド。
Specific examples of HSM polynucleotides include (d1) to (g1) below.
(d1) A polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO:5.
(e1) A polynucleotide comprising a nucleotide sequence in which one or more nucleotides are mutated in the polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO:5, and which encodes a polypeptide having histidine transferase activity.
(f1) A polynucleotide comprising a nucleotide sequence having 80% or more sequence identity with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 5, which encodes a polypeptide having histidine transferase activity.
(g1) A polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO:5 and that encodes a polypeptide having histidine transferase activity.
 (d1)のポリヌクレオチドは、配列番号5に記載のヌクレオチド配列からなるポリヌクレオチド(配列番号5のポリヌクレオチド)、又は配列番号5のポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。配列番号5のポリヌクレオチドは、配列番号6のポリペプチドをコードするポリヌクレオチドである。付加されるヌクレオチド配列は、配列番号6のポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide (d1) is a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 5 (polynucleotide of SEQ ID NO: 5), or at either or both of the 5' end and 3' end of the polynucleotide of SEQ ID NO: 5 , is a polynucleotide to which a nucleotide sequence has been added. The polynucleotide of SEQ ID NO:5 is a polynucleotide that encodes the polypeptide of SEQ ID NO:6. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide of SEQ ID NO:6.
 (e1)のポリヌクレオチドは、配列番号5に記載のヌクレオチド配列において1又は複数個のヌクレオチドが変異されたヌクレオチド配列からなるポリヌクレオチド、あるいは前記ポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。付加されるヌクレオチド配列は、上記ポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide of (e1) is either a polynucleotide consisting of a nucleotide sequence in which one or more nucleotides are mutated in the nucleotide sequence set forth in SEQ ID NO: 5, or the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
 ヌクレオチドの変異は、欠失、置換、付加、及び挿入のいずれであってもよく、これらの組合せであってもよい。変異されるヌクレオチドの数は、結果として生じるポリヌクレオチドにコードされるポリペプチドがヒスチジンメチルトランスフェラーゼ活性を有する限り、特に限定されない。変異されるヌクレオチドの数としては、例えば1~300個、1~200個、1~150個、1~120個、1~100個、1~80個、1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、1~5個、1~4個、1~3個、1個又は2個が挙げられる。 Nucleotide mutations may be deletions, substitutions, additions, insertions, or combinations thereof. The number of mutated nucleotides is not particularly limited as long as the polypeptide encoded by the resulting polynucleotide has histidine methyltransferase activity. The number of nucleotides to be mutated is, for example, 1 to 300, 1 to 200, 1 to 150, 1 to 120, 1 to 100, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
 (f1)のポリヌクレオチドは、配列番号5に記載のヌクレオチド配列と80%以上の配列同一性を有するヌクレオチド配列からなるポリヌクレオチド、あるいは、前記ポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。付加されるヌクレオチド配列は、上記ポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide (f1) is a polynucleotide consisting of a nucleotide sequence having a sequence identity of 80% or more with the nucleotide sequence set forth in SEQ ID NO: 5, or any of the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
 配列同一性は、80%以上である限り、特に限定されない。配列同一性としては、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上が挙げられる。 The sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
 一実施形態において、本開示は、HSSポリペプチドをコードするポリヌクレオチド(以下、「HSSポリヌクレオチド」ともいう)を提供する。 In one embodiment, the present disclosure provides polynucleotides encoding HSS polypeptides (hereinafter also referred to as "HSS polynucleotides").
 HSSポリヌクレオチドの具体例としては、下記(d2)~(g2)が挙げられる。
 (d2)配列番号7に記載のヌクレオチド配列を含むポリヌクレオチド。
 (e2)配列番号7に記載のヌクレオチド配列からなるポリヌクレオチドにおいて、1又は複数個のヌクレオチドが変異されたヌクレオチド配列を含むポリヌクレオチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチドをコードするポリヌクレオチド。
 (f1)配列番号7に記載のヌクレオチド配列からなるポリヌクレオチドと、80%以上の配列同一性を有するヌクレオチド配列を含むポリヌクレオチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチドをコードするポリヌクレオチド。
 (g1)配列番号7に記載のヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチドをコードするポリヌクレオチド。
Specific examples of HSS polynucleotides include (d2) to (g2) below.
(d2) a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO:7;
(e2) A polynucleotide comprising a nucleotide sequence in which one or more nucleotides are mutated in the polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7, the polypeptide having 5-histidylcysteine sulfoxide synthase activity A polynucleotide encoding a
(f1) A polynucleotide comprising a nucleotide sequence having 80% or more sequence identity with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7, wherein the polypeptide has 5-histidylcysteine sulfoxide synthase activity encoding polynucleotide.
(g1) A polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7 and that encodes a polypeptide having 5-histidylcysteine sulfoxide synthase activity.
 (d2)のポリヌクレオチドは、配列番号7に記載のヌクレオチド配列からなるポリヌクレオチド(配列番号7のポリヌクレオチド)、又は配列番号7のポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。配列番号7のポリヌクレオチドは、配列番号8のポリペプチドをコードするポリヌクレオチドである。付加されるヌクレオチド配列は、配列番号8のポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide (d2) is a polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7 (polynucleotide of SEQ ID NO: 7), or at either or both of the 5' end and 3' end of the polynucleotide of SEQ ID NO: 7 , is a polynucleotide to which a nucleotide sequence has been added. The polynucleotide of SEQ ID NO:7 is a polynucleotide that encodes the polypeptide of SEQ ID NO:8. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide of SEQ ID NO:8.
 (e2)のポリヌクレオチドは、配列番号7に記載のヌクレオチド配列において1又は複数個のヌクレオチドが変異されたヌクレオチド配列からなるポリヌクレオチド、あるいは前記ポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。付加されるヌクレオチド配列は、上記ポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide of (e2) is either a polynucleotide consisting of a nucleotide sequence in which one or more nucleotides are mutated in the nucleotide sequence set forth in SEQ ID NO: 7, or the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
 ヌクレオチドの変異は、欠失、置換、付加、及び挿入のいずれであってもよく、これらの組合せであってもよい。変異されるヌクレオチドの数は、結果として生じるポリヌクレオチドにコードされるポリペプチドが5-ヒスチジルシステインスルホキシドシンターゼ活性を有する限り、特に限定されない。変異されるヌクレオチドの数としては、例えば1~300個、1~200個、1~170個、1~150個、1~120個、1~100個、1~80個、1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、1~5個、1~4個、1~3個、1個又は2個が挙げられる。 Nucleotide mutations may be deletions, substitutions, additions, insertions, or combinations thereof. The number of mutated nucleotides is not particularly limited as long as the polypeptide encoded by the resulting polynucleotide has 5-histidylcysteine sulfoxide synthase activity. The number of nucleotides to be mutated is, for example, 1 to 300, 1 to 200, 1 to 170, 1 to 150, 1 to 120, 1 to 100, 1 to 80, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 5, 1 to 4, 1 to 3, 1 or 2.
 (f1)のポリヌクレオチドは、配列番号7に記載のヌクレオチド配列と80%以上の配列同一性を有するヌクレオチド配列からなるポリヌクレオチド、あるいは、前記ポリヌクレオチドの5’末端及び3’末端のいずれか又は両方に、ヌクレオチド配列が付加されたポリヌクレオチドである。付加されるヌクレオチド配列は、上記ポリペプチドに付加されるアミノ酸配列に応じて選択することができる。 The polynucleotide (f1) is a polynucleotide consisting of a nucleotide sequence having 80% or more sequence identity with the nucleotide sequence set forth in SEQ ID NO: 7, or any of the 5' end and 3' end of the polynucleotide, or Both are polynucleotides with added nucleotide sequences. The nucleotide sequence to be added can be selected according to the amino acid sequence to be added to the polypeptide.
 配列同一性は、80%以上である限り、特に限定されない。配列同一性としては、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上が挙げられる。 The sequence identity is not particularly limited as long as it is 80% or more. Sequence identities include 85% or greater, 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
 上記において、縮重コドンは、使用する細胞において、コドン使用頻度が高いものを用いてもよい。例えば、使用する細胞の種に応じて、コドン最適化を行ってもよい。ヌクレオチドの変異は、コードするタンパク質のアミノ酸配列が変化しない遺伝子変異(サイレント変異)であってもよい。 In the above, degenerate codons that have a high codon usage frequency in the cells used may be used. For example, codon optimization may be performed depending on the cell species used. Nucleotide mutations may be genetic mutations that do not change the amino acid sequence of the encoded protein (silent mutations).
 HSMポリヌクレオチド及びHSSポリヌクレオチドは、エルゴチオネインを生産する細胞の製造、あるいはエルゴチオネイン生産能が向上した細胞の製造に用いることができる。 HSM polynucleotides and HSS polynucleotides can be used to produce cells that produce ergothioneine or cells with improved ergothioneine-producing ability.
[ベクター]
 一実施形態おいて、本開示は、HSMポリヌクレオチド及びHSSポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含むベクターを提供する。
[vector]
In one embodiment, the disclosure provides a vector comprising at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
 本実施形態のベクターは、HSMポリヌクレオチド及びHSSポリヌクレオチドのいずれか一方のみを含んでもよく、HSMポリヌクレオチド及びHSSポリヌクレオチドの両方を含んでもよい。 The vector of this embodiment may contain only one of the HSM polynucleotide and the HSS polynucleotide, or may contain both the HSM polynucleotide and the HSS polynucleotide.
 ベクターは、HSMポリヌクレオチド及び/又はHSSポリヌクレオチドに加えて、他の配列を含んでもよい。他の配列としては、上記と同様のものが挙げられる。ベクターは、発現ベクターであってもよい。ベクターとしては、上記と同様のものが挙げられる。 A vector may contain other sequences in addition to HSM polynucleotides and/or HSS polynucleotides. Other sequences include those similar to those described above. A vector may be an expression vector. Examples of vectors include the same vectors as those described above.
 HSMポリヌクレオチド及び/又はHSSポリヌクレオチドは、導入対象の対象で機能し得るプロモーターに、機能的に連結されていてもよい。プロモーターとしては、上記と同様のものが挙げられる。ベクターが、HSMポリヌクレオチド及びHSSポリヌクレオチドの両方を含む場合、プロモーター及びターミネーターは同じものを用いてもよく、異なるものを用いてもよい。意図しない相同組換えを回避する観点から、HSMポリヌクレオチド及びHSSポリヌクレオチドは、それぞれ異なるプロモーター及びターミネーターを用いることが好ましい。 The HSM polynucleotide and/or HSS polynucleotide may be operably linked to a promoter that can function in the target of introduction. Examples of promoters include those mentioned above. If the vector contains both HSM and HSS polynucleotides, the same promoter and terminator may be used, or different promoters and terminators may be used. From the viewpoint of avoiding unintended homologous recombination, HSM polynucleotides and HSS polynucleotides preferably use different promoters and terminators, respectively.
 本実施形態のベクターは、エルゴチオネインを生産する細胞の製造、あるいはエルゴチオネイン生産能が向上した細胞の製造等に用いることができる。 The vector of the present embodiment can be used for production of cells that produce ergothioneine, or production of cells with improved ergothioneine-producing ability.
[細胞]
 一実施形態おいて、本開示は、HSMポリヌクレオチド及びHSSポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含む細胞を提供する。
[cell]
In one embodiment, the present disclosure provides cells comprising at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
 本実施形態の細胞は、HSMポリヌクレオチド及びHSSポリヌクレオチドのいずれか一方のみを含んでもよく、HSMポリヌクレオチド及びHSSポリヌクレオチドの両方を含んでもよい。本実施形態の細胞は、HSMポリヌクレオチド及びHSSポリヌクレオチドの両方を含むことが好ましい。 The cells of this embodiment may contain either one of HSM polynucleotides and HSS polynucleotides, or may contain both HSM polynucleotides and HSS polynucleotides. The cells of this embodiment preferably contain both HSM and HSS polynucleotides.
 細胞の種類は特に限定されない。細胞としては、例えば、細菌(大腸菌、枯草菌等)、真菌(酵母等)、藻類(イデユコゴメ綱藻類等)、昆虫(カイコ等)、植物、哺乳類等の細胞が挙げられるが、これらに限定されない。細胞としては、例えば、イデユコゴメ綱に属する藻類の細胞が挙げられる。 The type of cells is not particularly limited. Examples of cells include, but are not limited to, cells of bacteria (Escherichia coli, Bacillus subtilis, etc.), fungi (yeast, etc.), algae (Idycogome algae, etc.), insects (silkworms, etc.), plants, mammals, and the like. . Cells include, for example, algal cells belonging to the class Idycogome.
 本実施形態の細胞は、HSMポリヌクレオチド及び/又はHSSポリヌクレオチドを含むベクターを細胞に導入することにより、製造することができる。ベクターの導入方法としては、上記と同様の方法が挙げられる。 The cells of this embodiment can be produced by introducing a vector containing HSM polynucleotides and/or HSS polynucleotides into cells. Methods for introducing vectors include the same methods as described above.
 本実施形態の細胞は、HSMポリヌクレオチド及び/又はHSSポリヌクレオチドを、発現可能な状態で含むことが好ましい。細胞が、HSMポリヌクレオチド及び/又はHSSポリヌクレオチドを発現可能な状態で含むことにより、これらのポリヌクレオチドからHSMポリペプチド及び/又はHSSポリペプチドが発現する。発現されたHSM及び/又はHSSポリペプチドにより、ヒスチジンからエルゴチオネインを合成する反応が触媒される。その結果、細胞は、エルゴチオネインを合成できるようになる。あるいは、細胞がエルゴチオネイン生産能を有する場合、エルゴチオネイン生産能が向上する。 The cells of this embodiment preferably contain HSM polynucleotides and/or HSS polynucleotides in an expressible state. Cells contain HSM and/or HSS polynucleotides in an expressible state such that HSM and/or HSS polypeptides are expressed from these polynucleotides. The expressed HSM and/or HSS polypeptides catalyze the synthesis of ergothioneine from histidine. As a result, the cell becomes able to synthesize ergothioneine. Alternatively, when the cell has ergothioneine-producing ability, the ergothioneine-producing ability is improved.
 一実施形態において、本開示は、HSMポリヌクレオチド及びHSSポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含む細胞を培養する工程を含む、エルゴチオネインの製造方法を提供する。 In one embodiment, the present disclosure provides a method for producing ergothioneine, comprising culturing cells containing at least one polynucleotide selected from the group consisting of HSM polynucleotides and HSS polynucleotides.
 培養方法は、細胞の種類に応じて、適宜選択することができる。細胞がイデユコゴメ綱に属する藻類の細胞である場合、上記と同様に培養することができる。本実施形態の製造方法は、さらに、細胞を回収する工程、及び細胞からエルゴチオネインを抽出する工程等を含んでもよい。 The culture method can be appropriately selected according to the cell type. When the cells are algal cells belonging to the class Idycogome, they can be cultured in the same manner as described above. The production method of the present embodiment may further include a step of collecting cells, a step of extracting ergothioneine from cells, and the like.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.
実施例1:
[培地の調製]
(MA培地)
 表1に示す組成のM-Allen培地(MA培地)を調製した。具体的には、A2 Fe stock以外の培地成分を混合し、硫酸でpH2.0に調整した後、オートクレーブにより滅菌した。オートクレーブ滅菌後、フィルター滅菌した4mLのA2 Fe stockを添加し、MA培地とした。
 表2及び表3に、A2 trace element及びA2 Fe stockの組成をそれぞれ示す。
Example 1:
[Preparation of medium]
(MA medium)
An M-Allen medium (MA medium) having the composition shown in Table 1 was prepared. Specifically, medium components other than A2 Fe stock were mixed, adjusted to pH 2.0 with sulfuric acid, and then sterilized by autoclaving. After autoclave sterilization, 4 mL of filter-sterilized A2 Fe stock was added to prepare MA medium.
Tables 2 and 3 show the compositions of A2 trace element and A2 Fe stock, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(MA+0.1Mグルコース培地)
 MA培地に、最終濃度0.1Mとなるようにグルコースを添加し、MA+0.1Mグルコース培地を調製した。
(MA + 0.1 M glucose medium)
Glucose was added to the MA medium to a final concentration of 0.1 M to prepare an MA+0.1 M glucose medium.
(MA+0.3M NaCl培地)
 MA培地に、最終濃度0.3MとなるようにNaClを添加し、MA+0.3M NaCl培地を調製した。
(MA + 0.3M NaCl medium)
NaCl was added to MA medium to a final concentration of 0.3 M to prepare MA+0.3 M NaCl medium.
(MA+0.6M NaCl培地)
 MA培地に、最終濃度0.6MとなるようにNaClを添加し、MA+0.6M NaCl培地を調製した。
(MA + 0.6M NaCl medium)
NaCl was added to MA medium to a final concentration of 0.6M to prepare MA+0.6M NaCl medium.
(MA+0.1Mグルコース,0.6M NaCl培地)
 MA培地に、最終濃度がそれぞれ0.1M及び0.6Mとなるように、グルコース及びNaClを添加して、MA+0.1Mグルコース,0.6M NaCl培地を調製した。
(MA + 0.1 M glucose, 0.6 M NaCl medium)
Glucose and NaCl were added to MA medium to final concentrations of 0.1 M and 0.6 M, respectively, to prepare MA+0.1 M glucose, 0.6 M NaCl medium.
[培養方法]
<独立栄養培養>
(前培養)
 MA培地を用いて、COインキュベータ内で、イデユコゴメ綱に属する藻類を静置培養した。
 培養条件は、光条件60μmol/m・s(連続光)、温度条件40℃、CO濃度2%とした。
[Culture method]
<Autotrophic culture>
(pre-culture)
Algae belonging to the class Idycogome were statically cultured in a CO 2 incubator using MA medium.
The culture conditions were a light condition of 60 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
(本培養)
 1LのMA培地を用いて、気相インキュベータ内で、イデユコゴメ綱に属する藻類の本培養を行った。2~3週間培養した後、遠心分離(3,000×g,10分間)により、細胞を回収した。
 培養条件は、光条件200μmol/m・s(連続光)、温度条件40℃、通気条件2L ambient air/minとした。
(main culture)
Using 1 L of MA medium, main culture of algae belonging to the class Idycogome was carried out in a gas phase incubator. After culturing for 2 to 3 weeks, cells were harvested by centrifugation (3,000×g, 10 minutes).
The culture conditions were a light condition of 200 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
<混合栄養培養>
(前培養)
 MA培地を用いて、COインキュベータ内で、イデユコゴメ綱に属する藻類を静置培養した。
 培養条件は、光条件60μmol/m・s(連続光)、温度条件40℃、CO濃度2%とした。
<Mixed nutrient culture>
(pre-culture)
Algae belonging to the class Idycogome were statically cultured in a CO 2 incubator using MA medium.
The culture conditions were a light condition of 60 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
(本培養)
 1LのMA+0.1Mグルコース培地を用いて、気相インキュベータ内で、イデユコゴメ綱に属する藻類の本培養を行った。4日間培養した後、遠心分離(3,000×g,10分間)により、細胞を回収した。
 培養条件は、光条件200μmol/m・s(連続光)、温度条件40℃、通気条件2L ambient air/minとした。
(main culture)
Using 1 L of MA + 0.1 M glucose medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000×g, 10 minutes).
The culture conditions were a light condition of 200 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
<従属栄養培養>
(前培養)
 MA培地を用いて、COインキュベータ内で、イデユコゴメ綱に属する藻類を静置培養した。
 培養条件は、光条件60μmol/m・s(連続光)、温度条件40℃、CO濃度2%とした。
<Heterotrophic culture>
(pre-culture)
Algae belonging to the class Idycogome were statically cultured in a CO 2 incubator using MA medium.
The culture conditions were a light condition of 60 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
(本培養)
 1LのMA+0.1Mグルコース培地を用いて、気相インキュベータ内で、イデユコゴメ綱に属する藻類の本培養を行った。4日間培養した後、遠心分離(3,000×g,10分間)により、細胞を回収した。
 培養条件は、暗黒下、温度条件40℃、通気条件2L ambient air/minとした。
(main culture)
Using 1 L of MA + 0.1 M glucose medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000×g, 10 minutes).
The culture conditions were darkness, a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
<塩ストレス条件下での独立栄養培養>
(前培養)
 MA+0.3M NaCl培地を用いて、COインキュベータ内で、イデユコゴメ綱に属する藻類を静置培養した。
 培養条件は、光条件60μmol/m・s(連続光)、温度条件40℃、CO濃度2%とした。
<Autotrophic culture under salt stress conditions>
(pre-culture)
Using MA+0.3M NaCl medium, static culture of algae belonging to the class Idycogome was carried out in a CO 2 incubator.
The culture conditions were a light condition of 60 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
(本培養)
 1LのMA+0.6M NaCl培地を用いて、気相インキュベータ内で、イデユコゴメ綱に属する藻類の本培養を行った。2~3週間培養した後、遠心分離(3,000×g,10分間)により、細胞を回収した。
 培養条件は、光条件200μmol/m・s(連続光)、温度条件40℃、通気条件2L ambient air/minとした。
(main culture)
Using 1 L of MA+0.6 M NaCl medium, main culture of algae belonging to the class Idycogome was performed in a gas phase incubator. After culturing for 2 to 3 weeks, cells were harvested by centrifugation (3,000×g, 10 minutes).
The culture conditions were a light condition of 200 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
<塩ストレス条件下での混合栄養培養>
(前培養)
 MA+0.3M NaCl培地を用いて、COインキュベータ内で、イデユコゴメ綱に属する藻類を静置培養した。
 培養条件は、光条件60μmol/m・s(連続光)、温度条件40℃、CO濃度2%とした。
<Mixed nutrient culture under salt stress conditions>
(pre-culture)
Using MA+0.3M NaCl medium, static culture of algae belonging to the class Idycogome was carried out in a CO 2 incubator.
The culture conditions were a light condition of 60 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and a CO 2 concentration of 2%.
(本培養)
 1LのMA+0.1Mグルコース,0.6M NaCl培地を用いて、気相インキュベータ内で、イデユコゴメ綱に属する藻類の本培養を行った。4日間培養した後、遠心分離(3,000×g,10分間)により、細胞を回収した。
 培養条件は、光条件200μmol/m・s(連続光)、温度条件40℃、通気条件2L ambient air/minとした。
(main culture)
Using 1 L of MA+0.1 M glucose, 0.6 M NaCl medium, main culture of algae belonging to the class Idycogome was carried out in a gas phase incubator. After culturing for 4 days, cells were collected by centrifugation (3,000×g, 10 minutes).
The culture conditions were a light condition of 200 μmol/m 2 ·s (continuous light), a temperature condition of 40° C., and an aeration condition of 2 L ambient air/min.
[エルゴチオネインの定量方法]
 培養液から回収した細胞を凍結乾燥した。凍結乾燥細胞100mgにメタノール10mLを加えた。超音波処理を30分間行った後、メンブレンフィルター(0.45μm)でろ過した。ろ液を液体クロマトグラフィー-質量分析(LC-MS)用の測定サンプルとした。エルゴチオネインの定量は、一般財団法人 材料科学技術振興財団に委託して行った。
[Method for quantifying ergothioneine]
Cells harvested from the culture medium were freeze-dried. 10 mL of methanol was added to 100 mg of lyophilized cells. After performing ultrasonic treatment for 30 minutes, it was filtered with a membrane filter (0.45 μm). The filtrate was used as a measurement sample for liquid chromatography-mass spectrometry (LC-MS). The quantification of ergothioneine was entrusted to the Foundation for Promotion of Materials Science and Technology.
<測定条件>
(液体クロマトグラフィー:LC)
 装置:Prominenceシステム UFLC(島津製作所社製)
 カラム:ZORBAX Rx-SIL(150mm×2.1mm,5.0μm)
 カラム温度:40℃
 移動相:5mM酢酸アンモニウム+85%アセトニトリル水溶液
 流速:0.4mL/min
 注入量:5μL
<Measurement conditions>
(liquid chromatography: LC)
Apparatus: Prominence System UFLC (manufactured by Shimadzu Corporation)
Column: ZORBAX Rx-SIL (150 mm × 2.1 mm, 5.0 μm)
Column temperature: 40°C
Mobile phase: 5 mM ammonium acetate + 85% acetonitrile aqueous solution Flow rate: 0.4 mL/min
Injection volume: 5 μL
(質量分析:MS)
 装置:QTRAP4500(AB Sciex社製)
 イオン化法:Electro Spray Ionization(ESI)
 Q1/Q3:エルゴチオネイン 230.1/127.0
       エルゴチオネイン-d9 239.1/127.0
(Mass spectrometry: MS)
Apparatus: QTRAP4500 (manufactured by AB Sciex)
Ionization method: Electro Spray Ionization (ESI)
Q1/Q3: Ergothioneine 230.1/127.0
Ergothioneine-d9 239.1/127.0
[イデユコゴメ綱に属する藻類におけるエルゴチオネイン含有量の測定]
 表4に示す培養方法で、イデユコゴメ綱に属する各藻類の培養を行い、細胞を回収した。回収した細胞のエルゴチオネイン(EGT)含有量を測定し、「EGT量/湿重量(100g)」として表4に示した。また、EGT量/湿重量(100g)を、(細胞の乾燥重量/細胞の湿重量)の値で割ることにより、乾燥重量当たりのエルゴチオネイン含有量を算出した。これを「EGT量/乾重量(100g)」として表4に示した。
[Measurement of ergothioneine content in algae belonging to the class Idycogome]
By the culture method shown in Table 4, each alga belonging to the class Idycogome was cultured, and the cells were collected. The ergothioneine (EGT) content of the collected cells was measured and shown in Table 4 as "EGT amount/wet weight (100 g)". Also, the ergothioneine content per dry weight was calculated by dividing the EGT amount/wet weight (100 g) by the value of (cell dry weight/cell wet weight). This is shown in Table 4 as "EGT amount/dry weight (100 g)".
 表4中、各藻類の記載は、以下の藻類を示す。
 Cyanidium(2N):Cyanidium sp. HKN1(2倍体)
 Cyanidium(N):Cyanidium sp. HKN1(1倍体)
 Galdieria(2N):Galdieria sulphuraria SAG108.79(2倍体)
 Galdieria(N):Galdieria sulphuraria SAG108.79(1倍体)
In Table 4, the description of each alga indicates the following algae.
Cyanidium (2N): Cyanidium sp. HKN1 (diploid)
Cyanidium (N): Cyanidium sp. HKN1 (haploid)
Galdieria (2N): Galdieria sulphuraria SAG108.79 (diploid)
Galdieria (N): Galdieria sulphuraria SAG108.79 (haploid)
 表4中、「独立栄養培養+塩」は、塩ストレス条件下での独立栄養培養を示す。「混合栄養培養+塩」は、塩ストレス条件下での混合栄養培養を示す。 In Table 4, "autotrophic culture + salt" indicates autotrophic culture under salt stress conditions. "Mixotrophic culture + salt" indicates a mixed trophic culture under salt stress conditions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、エルゴチオネイン含有量を測定したLC-MSクロマトグラムの一例を示す。図3には、独立栄養培養したGaldieria sulphuraria SAG108.79(2倍体)における結果を示した。 Fig. 3 shows an example of an LC-MS chromatogram measuring the ergothioneine content. FIG. 3 shows the results for autotrophically cultured Galdieria sulphuraria SAG108.79 (diploid).
 表4に示すように、いずれの藻類においても、高濃度でエルゴチオネインを含有していることが確認された。エルゴチオネインの含有量は、1倍体よりも、2倍体の方が高かった。培養方法の比較では、混合栄養培養及び従属栄養培養よりも、独立栄養培養の方が、エルゴチオネインの含有量が高かった。ただし、混合栄養培養及び従属栄養培養では、独立栄養培養と比較して、増殖速度が速かった。そのため、培養時間当たりの生産量は、混合栄養培養及び従属栄養培養の方が、独立栄養培養よりも多いと考えられる。
 また、塩ストレス条件下(0.3M NaCl)での培養は、塩ストレスのない条件下(0M NaCl)での培養と比較して、エルゴチオネイン含有量が増加する傾向があった。この結果から、塩ストレスのようなストレス条件下で培養することにより、エルゴチオネイン含有量が向上することが示唆された。
As shown in Table 4, it was confirmed that all algae contained ergothioneine at high concentrations. Ergothioneine content was higher in diploids than in haploids. In comparison of the culture methods, the content of ergothioneine was higher in the autotrophic culture than in the mixed and heterotrophic cultures. However, the growth rate was faster in the mixed and heterotrophic cultures than in the autotrophic cultures. Therefore, it is considered that the production amount per culture time is higher in mixed nutrition culture and heterotrophic culture than in autotrophic culture.
Also, culture under salt stress conditions (0.3 M NaCl) tended to increase ergothioneine content compared to culture under conditions without salt stress (0 M NaCl). This result suggested that the ergothioneine content was improved by culturing under stress conditions such as salt stress.
実施例2:
[形質転換体の作製]
 Cyanidium sp. HKN1(1倍体)に、ヒスチジンメチルトランスフェラーゼ様遺伝子(HSM遺伝子;配列番号5)及び5-ヒスチジルシステインスルホキシドシンターゼ様遺伝子(HSS遺伝子;配列番号7)を導入し、HSM遺伝子及びHSS遺伝子を過剰発現する形質転換体を作製した(図4参照)。HSM遺伝子及びHSS遺伝子は、Cyanidium sp. HKN1からクローニングしたものを用いた。
Example 2:
[Production of transformants]
Cyanidium sp. A histidine methyltransferase-like gene (HSM gene; SEQ ID NO: 5) and a 5-histidylcysteine sulfoxide synthase-like gene (HSS gene; SEQ ID NO: 7) were introduced into HKN1 (haploid), and the HSM gene and HSS gene were introduced. Overexpressing transformants were generated (see Figure 4). The HSM and HSS genes are derived from Cyanidium sp. A clone from HKN1 was used.
(ドナーDNAの作製)
 図4に、ドナーDNAのコンストラクトを示す。HSS遺伝子及びHSM遺伝子を導入するCyanidium sp. HKN1(1倍体)のゲノム領域として、ニュートラルサイト(NS1)を選択した。Cyanidium sp. HKN1(1倍体))から抽出したゲノムDNAを鋳型として、下記プライマー(NS1_F、NS1_R;小文字はベクターとの相同配列を示し、大文字はNS1領域の配列を示す。)を用いて、NS1領域のDNA断片を増幅した。
(Preparation of donor DNA)
FIG. 4 shows the construct of the donor DNA. Cyanidium sp. into which the HSS gene and the HSM gene are introduced. A neutral site (NS1) was selected as the genomic region of HKN1 (haploid). Cyanidium sp. Using genomic DNA extracted from HKN1 (haploid) as a template, the following primers (NS1_F, NS1_R; lowercase letters indicate sequences homologous to the vector, uppercase letters indicate the sequence of the NS1 region) were used to extract the NS1 region. A DNA fragment was amplified.
 NS1_F:cggtacccggggatcACCATCCAAAGAGCAGGAATGCGG(配列番号27)
 NS1_R:cgactctagaggatcATTAGCTCGCTGGTTGAAACCAAACG(配列番号28)
NS1_F: cggtaccggggatcACCATCCAAAGAGCAGGAATGCGG (SEQ ID NO: 27)
NS1_R: cgactctagaggatcATTAGCTCGCTGGTTGAAACCAAACG (SEQ ID NO: 28)
 得られたDNA断片をpUC19プラスミドにクローニングし、HSS遺伝子セット[PAPCC(配列番号19)-HSS(配列番号7)-Tβ―tubulin(配列番号22)]、CATマーカーセット[PEF1α(配列番号20)-Tp of POP(配列番号25)-CAT(配列番号26)-TUBQ(配列番号23)]、HSM遺伝子セット[PCPCC(配列番号21)-HSM(配列番号5)-Tα―tubulin(配列番号24)]を挿入した。前記略号は、以下を示す。 The obtained DNA fragment was cloned into the pUC19 plasmid, and the HSS gene set [P APCC (SEQ ID NO: 19)-HSS (SEQ ID NO: 7)-T β-tubulin (SEQ ID NO: 22)], CAT marker set [ PEF1α (SEQ ID NO: 22)] No.20)-Tp of POP (SEQ ID NO:25)-CAT (SEQ ID NO:26)-T UBQ (SEQ ID NO:23)], HSM gene set [P CPCC (SEQ ID NO:21)-HSM (SEQ ID NO:5)-T α -tubulin (SEQ ID NO: 24)] was inserted. The abbreviations are as follows.
 PAPCC:Cyanidium sp. HKN1のAPCCプロモーター。
 HSS:Cyanidium sp. HKN1のHSS遺伝子。
 Tβ―tubulin:Cyanidium sp. HKN1のβチューブリンターミネーター。
 PEF1α:Cyanidium sp. HKN1のEF1αプロモーター。
 Tp of POP:植物オルガネラDNAポリメラーゼ(POP)のトランジットペプチド(Tp)
 CAT:クロラムフェニコールアンチトランスフェラーゼ遺伝子。
 TUBQ:Cyanidium sp. HKN1のユビキチンターミネーター。
 PCPCC:Cyanidium sp. HKN1のCPCCプロモーター。
 HSM:Cyanidium sp. HKN1のHSM遺伝子。
 Tα―tubulin:Cyanidium sp. HKN1のαチューブリンターミネーター。
P APCC : Cyanidium sp. APCC promoter of HKN1.
HSS: Cyanidium sp. HSS gene of HKN1.
T β-tubulin : Cyanidium sp. β-tubulin terminator of HKN1.
PEF1α : Cyanidium sp. EF1α promoter of HKN1.
Tp of POP: transit peptide (Tp) of plant organelle DNA polymerase (POP)
CAT: chloramphenicol antitransferase gene.
TUBQ : Cyanidium sp. Ubiquitin terminator of HKN1.
P CPCC : Cyanidium sp. CPCC promoter of HKN1.
HSM: Cyanidium sp. HSM gene of HKN1.
T α-tubulin : Cyanidium sp. α-tubulin terminator of HKN1.
 得られたプラスミドで大腸菌を形質転換し、増殖させた後、プラスミドを抽出した。得られたプラスミドを鋳型として下記プライマー(puc19_F、puc19_R)を用いてPCR増幅を行った。得られたDNA断片を、ドナーDNAとして用いた。 Escherichia coli was transformed with the resulting plasmid, allowed to grow, and then the plasmid was extracted. Using the obtained plasmid as a template, PCR amplification was performed using the following primers (puc19_F, puc19_R). The obtained DNA fragment was used as donor DNA.
 puc19_F:gctgcaaggcgattaagttgggtaacgccagggttttccc(配列番号32)
 puc19_R:ttatgcttccggctcgtatgttgtgtggaattgtgagcgg(配列番号33)
puc19_F: gctgcaaggcgattaagttgggtaacgccagggttttccc (SEQ ID NO: 32)
puc19_R: ttatgcttccggctcgtatgttgtgtggaattgtgagcgg (SEQ ID NO: 33)
 NS1領域とその上流及び下流200bpの配列を配列番号29に示す。ドナーDNAの5’ホモロジーアームとした用いたNS1領域の配列を配列番号30に示す。ドナーDNAの3’ホモロジーアームとした用いたNS1領域の配列を配列番号31に示す。 The NS1 region and its upstream and downstream 200 bp sequences are shown in SEQ ID NO: 29. The sequence of the NS1 region used as the 5' homology arm of the donor DNA is shown in SEQ ID NO:30. The sequence of the NS1 region used as the 3' homology arm of the donor DNA is shown in SEQ ID NO:31.
(形質転換)
 Cyanidium sp. HKN1(1倍体)へのDNAの導入は、PEG法により行った。Cyanidium sp. HKN1(1倍体)を、OD750=0.5となるように、50mLのMA培地(pH2.0)に植藻した。明暗周期(12L/12D)、42℃で、4~5日間培養した(通気培養、300mL air/min)。培養した細胞を回収し、OD750=500となるようにMA培地(pH2.0)に懸濁し、細胞懸濁液を作製した。
(transformation)
Cyanidium sp. Introduction of DNA into HKN1 (haploid) was performed by the PEG method. Cyanidium sp. HKN1 (haploid) was inoculated into 50 mL of MA medium (pH 2.0) at OD 750 =0.5. It was cultured at 42° C. for 4 to 5 days with a light/dark cycle (12 L/12 D) (aerobic culture, 300 mL air/min). The cultured cells were collected and suspended in MA medium (pH 2.0) to OD 750 =500 to prepare a cell suspension.
 67.5μLの30%(v/v)PEGを含むMA2培地に、45μLのドナーDNA(~500ng/μL;蒸留水に溶解)を添加して撹拌した。ここに、12.5μLの細胞懸濁液を添加し、転倒撹拌した。撹拌後の懸濁液を、10mLの改変MA培地(pH1.2)に移して、前記と同様の培養条件で2日間培養した。その後、細胞を回収し、クロラムフェにコール含有改変MA培地(pH1.0、クロラムフェニコール 100μg/mL)に植藻し、上記と同様の条件で培養した。培養後の細胞を回収し、形質転換体(TF)として用いた。 45 μL of donor DNA (˜500 ng/μL; dissolved in distilled water) was added to 67.5 μL of MA2 medium containing 30% (v/v) PEG and stirred. 12.5 μL of the cell suspension was added here and stirred upside down. The suspension after stirring was transferred to 10 mL of modified MA medium (pH 1.2) and cultured for 2 days under the same culture conditions as above. Thereafter, the cells were collected, planted in a modified MA medium containing chloramphenicol (pH 1.0, chloramphenicol 100 μg/mL), and cultured under the same conditions as above. The cultured cells were collected and used as transformants (TF).
 得られた形質転換体(TF)及び野生株(WT)から抽出したゲノムDNAを鋳型として、上記プライマー(NS1_F、NS1_R)を用いて、PCR増幅を行った。PCR増幅産物の電気泳動を行った結果を図5に示す。形質転換体(TF)では、野生株(WT)よりも大きいサイズのDNA断片が増幅された。この増幅DNA断片のサイズは、ドナーDNAのサイズに一致した。この結果から、形質転換体(TF)のNS1領域には、ドナーDNAが挿入されていることが確認された。 Using the genomic DNA extracted from the resulting transformant (TF) and wild strain (WT) as templates, PCR amplification was performed using the above primers (NS1_F, NS1_R). FIG. 5 shows the results of electrophoresis of the PCR amplification products. In the transformant (TF), a larger size DNA fragment was amplified than in the wild strain (WT). The size of this amplified DNA fragment matched the size of the donor DNA. From this result, it was confirmed that the donor DNA was inserted into the NS1 region of the transformant (TF).
[エルゴチオネインの産生]
 Cyanidium sp. HKN1(1倍体)(WT)及びCyanidium sp. HKN1(1倍体)の形質転換体(TF)を、上記と同様の方法で、独立栄養培養した。本培養開始から1週間後(増殖期)及び3週間後(定常期)に、培養液から細胞を回収した。回収した細胞について、上記と同様の方法で、エルゴチオネイン含有量を測定した。その結果を表5に示す。
[Production of ergothioneine]
Cyanidium sp. HKN1 (haploid) (WT) and Cyanidium sp. A transformant (TF) of HKN1 (haploid) was autotrophically cultured in the same manner as above. After 1 week (proliferation phase) and 3 weeks (stationary phase) from the start of main culture, cells were collected from the culture medium. The ergothioneine content of the recovered cells was measured in the same manner as above. Table 5 shows the results.
 表5の記載の藻類は、以下の藻類を示す。
 Cyanidium(N) WT:Cyanidium sp. HKN1(1倍体)の野生株。
 Cyanidium(N) TF:Cyanidium sp. HKN1(1倍体)の形質転換体。
The algae described in Table 5 are the following algae.
Cyanidium (N) WT: Cyanidium sp. Wild strain of HKN1 (haploid).
Cyanidium (N) TF: Cyanidium sp. A transformant of HKN1 (haploid).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 形質転換体(TF)では、野生株(WT)と比較して、エルゴチオネインの産生量が顕著に増加した。増殖期の細胞と比較して、定常期の細胞の方が、エルゴチオネインの含有量が高かった。この結果から、形質転換体(TF)に導入したHSM遺伝子及びHSS遺伝子は、エルゴチオネイン産生に関与する遺伝子であることが確認された。HSM遺伝子及びHSS遺伝子は、Egt-1との配列相同性から、それぞれ、ヒスチジンメチルトランスフェラーゼ遺伝子及び5-ヒスチジルシステインスルホキシドシンターゼ遺伝子であると推定された。  In the transformant (TF), the amount of ergothioneine produced was significantly increased compared to the wild type (WT). The ergothioneine content was higher in cells in stationary phase compared to cells in proliferative phase. From this result, it was confirmed that the HSM gene and HSS gene introduced into the transformant (TF) are genes involved in ergothioneine production. The HSM and HSS genes were deduced to be histidine methyltransferase and 5-histidylcysteine sulfoxide synthase genes, respectively, based on their sequence homology with Egt-1.
 本培養における増殖曲線を、図6に示す。図6中、矢印は、細胞のサンプリング時期を示す。形質転換体(TF)と野生株(WT)とで、増殖速度に差はなかった。この結果は、エルゴチオネインの過剰生産は、増殖速度に影響しないことを示す。表5に示すように、エルゴチオネインの含有量は、定常期の細胞の方が高い。そのため、藻類細胞からのエルゴチオネインの回収は、定常期まで増殖させた後に行うことが好ましいと考えられた。 The growth curve in the main culture is shown in Figure 6. Arrows in FIG. 6 indicate cell sampling times. There was no difference in growth rate between transformant (TF) and wild type (WT). This result indicates that overproduction of ergothioneine does not affect growth rate. As shown in Table 5, ergothioneine content is higher in stationary phase cells. Therefore, it was considered preferable to recover ergothioneine from algal cells after growing them to the stationary phase.
 本発明によれば、微細藻類を利用したエルゴチオネインの製造方法が提供される。また、エルゴチオネインの製造に利用可能なポリペプチド、当該ポリペプチドをコードするポリヌクレオチド、並びに前記ポリヌクレオチドを含むベクター及び細胞が提供される。
 以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。
According to the present invention, a method for producing ergothioneine using microalgae is provided. Also provided are polypeptides that can be used to produce ergothioneine, polynucleotides encoding the polypeptides, and vectors and cells containing the polynucleotides.
While the preferred embodiments of the invention have been described and illustrated, it is to be understood that they are intended to be illustrative of the invention and should not be taken as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the spirit or scope of the invention. Accordingly, the present invention should not be viewed as limited by the foregoing description, but only by the scope of the appended claims.

Claims (15)

  1.  イデユコゴメ綱に属する藻類を培養する工程(a)を含む、エルゴチオネインの製造方法。 A method for producing ergothioneine, including the step (a) of culturing algae belonging to the class Idycogome.
  2.  前記工程(a)後の培養液から前記イデユコゴメ綱に属する藻類を回収する工程(b)をさらに含む、請求項1に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to claim 1, further comprising the step (b) of recovering the algae belonging to the class Idycogome from the culture solution after the step (a).
  3.  前記工程(b)で回収されたイデユコゴメ綱に属する藻類からエルゴチオネインを抽出する工程(c)をさらに含む、請求項2に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to claim 2, further comprising a step (c) of extracting ergothioneine from the algae belonging to the class Idycogome collected in the step (b).
  4.  前記工程(a)におけるイデユコゴメ綱に属する藻類が2倍体である、請求項1~3のいずれか一項に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to any one of claims 1 to 3, wherein the algae belonging to the class Idycogome in the step (a) are diploid.
  5.  前記イデユコゴメ綱に属する藻類が、遺伝子改変された藻類である、請求項1~4のいずれか一項に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to any one of claims 1 to 4, wherein the algae belonging to the class Idycogome are genetically modified algae.
  6.  前記遺伝子改変が、エルゴチオネインの生成量を増大させる遺伝子改変である、請求項5に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to claim 5, wherein the genetic modification is a genetic modification that increases the amount of ergothioneine produced.
  7.  前記工程(a)の前に、前記イデユコゴメ綱に属する藻類の1倍体に対して遺伝子改変を行う工程(i)をさらに含む、請求項5又は6に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to claim 5 or 6, further comprising the step (i) of genetically modifying the haploid algae belonging to the class Idycogome before the step (a).
  8.  前記工程(i)と前記工程(a)との間に、前記イデユコゴメ綱に属する藻類を2倍体にする工程(ii)をさらに含む、請求項7に記載のエルゴチオネインの製造方法。 The method for producing ergothioneine according to claim 7, further comprising a step (ii) of diploidizing the alga belonging to the class Idycogome between the step (i) and the step (a).
  9.  下記(a1)~(c1)からなる群より選択されるポリペプチド:
     (a1)配列番号6に記載のアミノ酸配列を含むポリペプチド;
     (b1)配列番号6に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド;及び
     (c1)配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、ヒスチジンメチルトランスフェラーゼ活性を有するポリペプチド。
    Polypeptides selected from the group consisting of the following (a1) to (c1):
    (a1) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 6;
    (b1) a polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO:6, the polypeptide having histidine methyltransferase activity; and (c1) set forth in SEQ ID NO:6 which has a histidine methyltransferase activity.
  10.  下記(a2)~(c2)からなる群より選択されるポリペプチド:
     (a2)配列番号8に記載のアミノ酸配列を含むポリペプチド;
     (b2)配列番号8に記載のアミノ酸配列において1又は複数個のアミノ酸が変異されたアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド;及び
     (c2)配列番号6に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を含むポリペプチドであって、5-ヒスチジルシステインスルホキシドシンターゼ活性を有するポリペプチド。
    Polypeptides selected from the group consisting of the following (a2) to (c2):
    (a2) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:8;
    (b2) a polypeptide comprising an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence set forth in SEQ ID NO: 8, the polypeptide having 5-histidylcysteine sulfoxide synthase activity; and (c2) A polypeptide comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6, and having 5-histidylcysteine sulfoxide synthase activity.
  11.  請求項9に記載のポリペプチドをコードするポリヌクレオチド。 A polynucleotide encoding the polypeptide according to claim 9.
  12.  請求項10に記載のポリペプチドをコードするポリヌクレオチド。 A polynucleotide encoding the polypeptide according to claim 10.
  13.  請求項11に記載のポリヌクレオチド及び請求項12に記載のポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含むベクター。 A vector comprising at least one polynucleotide selected from the group consisting of the polynucleotide according to claim 11 and the polynucleotide according to claim 12.
  14.  請求項11に記載のポリヌクレオチド及び請求項12に記載のポリヌクレオチドからなる群より選択される少なくとも1種のポリヌクレオチドを含む細胞。 A cell containing at least one polynucleotide selected from the group consisting of the polynucleotide according to claim 11 and the polynucleotide according to claim 12.
  15.  請求項14に記載の細胞を培養する工程を含む、エルゴチオネインの製造方法。 A method for producing ergothioneine, comprising the step of culturing the cells according to claim 14.
PCT/JP2022/017698 2021-04-13 2022-04-13 Ergothioneine production method WO2022220263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514667A JPWO2022220263A1 (en) 2021-04-13 2022-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067865 2021-04-13
JP2021-067865 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022220263A1 true WO2022220263A1 (en) 2022-10-20

Family

ID=83640708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017698 WO2022220263A1 (en) 2021-04-13 2022-04-13 Ergothioneine production method

Country Status (2)

Country Link
JP (1) JPWO2022220263A1 (en)
WO (1) WO2022220263A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE UNIPROTKB 7 April 2021 (2021-04-07), ANONYMOUS : "RecName: Full=FGE-sulfatase domain-containing protein {ECO:0000259|Pfam:PF03781}", XP055976598, retrieved from UNIPROT Database accession no. A0A7J7IN87 *
DATABASE UNIPROTKB 7 April 2021 (2021-04-07), ANONYMOUS : "RecName: Full=Methyltransf_33 domain-containing protein {ECO:0000259|Pfam:PF10017}", XP055976595, retrieved from UNIPROT Database accession no. A0A7J7IKJ1 *
LIAO CANGSONG, SEEBECK FLORIAN P.: "Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria", CHEMBIOCHEM, vol. 18, no. 21, 2 November 2017 (2017-11-02), pages 2115 - 2118, XP055976605, ISSN: 1439-4227, DOI: 10.1002/cbic.201700354 *

Also Published As

Publication number Publication date
JPWO2022220263A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2019094447A2 (en) Production of mycosporine-like amino acids in cyanobacteria
KR20170121051A (en) Method for gene editing in microalgae using RGEN RNP
US20110034680A1 (en) Microginin producing proteins and nucleic acids encoding a microginin gene cluster as well as methods for creating novel microginins
US10787489B2 (en) Biocatalyst comprising photoautotrophic organisms producing recombinant enzyme for degradation of harmful algal bloom toxins
CN113604445B (en) Tyrosinase and preparation and application thereof
WO2020231426A1 (en) Production of mycosporine-like amino acids employing enhanced production strains and novel enzymes
CN101659698A (en) Violacein synthesized related protein system, coding gene cluster thereof and application thereof
WO2022220263A1 (en) Ergothioneine production method
CN107326035A (en) A kind of adjusting and controlling rice grain type and the deubiquitination enzyme gene UBP5 of leaf color and its application
JP6249456B2 (en) How to produce plastic raw materials in cyanobacteria
US20050170460A1 (en) Method for diversifying the chemical composition of proteins produced in vivo by genetically disabling the editing function of their aminoacyl tRNA synthetases
AU2016361701A1 (en) Green algae mutant exhibiting resistance to intense light, and use thereof
Kiruthika et al. Selective isolation and molecular identification of L-glutaminase producing bacteria from marine sediments
CN102718849A (en) Protein related to chlorophyll synthesis and coding gene and application thereof
CN109097315B (en) Genetically engineered bacterium for high-yield lipopeptide and construction method and application thereof
JP6778870B2 (en) Cyanobacteria mutant strain and succinic acid and D-lactic acid production method using it
JP7194960B2 (en) Fatty alcohol-synthesizing bacteria and method for producing fatty alcohol
WO2023145850A1 (en) Algae, method for improving growth of algae in darkness, method for producing algae exhibiting improved growth in darkness, dark active cryptochrome, and polynucleotide encoding dark active cryptochrome
CN112662696B (en) Engineering cyanobacteria for biosynthesizing p-soyabean aromatic acid and preparation method thereof
CN110331121B (en) Recombinant bacterium for high-yield lipopeptide and application thereof
KR102089573B1 (en) Novel Protein Inhibiting Growth and Gene Coding the Protein
JPH07132091A (en) Ectoine synthase gene
EP4317461A1 (en) Cyclic lipopeptide-producing microbial strain and method for producing cyclic lipopeptide
Pingkhanont Metabolic engineering of synechococcus elongatus pcc 7942 for mycosporine-2-glycine production under salt stress condition
CN118064471A (en) Method for improving heme production of escherichia coli engineering strain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788186

Country of ref document: EP

Kind code of ref document: A1