WO2022219846A1 - 固体電解質材料およびそれを用いた電池 - Google Patents

固体電解質材料およびそれを用いた電池 Download PDF

Info

Publication number
WO2022219846A1
WO2022219846A1 PCT/JP2021/046671 JP2021046671W WO2022219846A1 WO 2022219846 A1 WO2022219846 A1 WO 2022219846A1 JP 2021046671 W JP2021046671 W JP 2021046671W WO 2022219846 A1 WO2022219846 A1 WO 2022219846A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
positive electrode
battery
negative electrode
Prior art date
Application number
PCT/JP2021/046671
Other languages
English (en)
French (fr)
Inventor
卓弥 成瀬
智康 横山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023514328A priority Critical patent/JPWO2022219846A1/ja
Priority to EP21937039.2A priority patent/EP4325603A4/en
Priority to CN202180096868.4A priority patent/CN117121123A/zh
Publication of WO2022219846A1 publication Critical patent/WO2022219846A1/ja
Priority to US18/469,584 priority patent/US20240006658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to solid electrolyte materials and batteries using the same.
  • Patent Document 1 discloses a lithium ion conductive solid electrolyte material composed of Li, La, O, and X, and an all-solid-state battery using these materials.
  • X is at least one element from the group consisting of Cl, Br and I.
  • An object of the present disclosure is to provide a solid electrolyte material suitable for improving lithium ion conductivity.
  • the solid electrolyte material of the present disclosure consists of Li, La, O, and I.
  • the present disclosure provides a solid electrolyte material suitable for improving lithium ion conductivity.
  • FIG. 1 shows a cross-sectional view of a battery 1000 according to a second embodiment.
  • FIG. 2 shows a cross-sectional view of an electrode material 1100 according to a second embodiment.
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
  • FIG. 5 is a graph showing initial charge/discharge characteristics of the battery according to Example 1.
  • the solid electrolyte material according to the first embodiment consists of Li, La, O and I.
  • the solid electrolyte material according to the first embodiment is a solid electrolyte material suitable for improving lithium ion conductivity.
  • the solid electrolyte material according to the first embodiment may for example have a practical lithium ion conductivity, for example a high lithium ion conductivity.
  • the high lithium ion conductivity is, for example, 5 ⁇ 10 ⁇ 5 S/cm or more near room temperature (eg, 25° C.). That is, the solid electrolyte material according to the first embodiment can have an ionic conductivity of, for example, 5 ⁇ 10 ⁇ 5 S/cm or more.
  • the solid electrolyte material according to the first embodiment can be used to obtain batteries with excellent charge/discharge characteristics.
  • An example of such a battery is an all solid state battery.
  • the all-solid battery may be a primary battery or a secondary battery.
  • the solid electrolyte material according to the first embodiment does not substantially contain sulfur.
  • the fact that the solid electrolyte material according to the first embodiment does not substantially contain sulfur means that the solid electrolyte material does not contain sulfur as a constituent element except sulfur that is unavoidably mixed as an impurity. In this case, sulfur mixed as an impurity in the solid electrolyte material is, for example, 1 mol % or less.
  • the solid electrolyte material according to the first embodiment does not contain sulfur.
  • a sulfur-free solid electrolyte material does not generate hydrogen sulfide even when exposed to the atmosphere, and is therefore excellent in safety.
  • the sulfide solid electrolyte disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the air.
  • the solid electrolyte material according to the first embodiment may contain elements that are unavoidably mixed. Examples of such elements are hydrogen or nitrogen. Such elements can be present in the raw powder of the solid electrolyte material or in the atmosphere for manufacturing or storing the solid electrolyte material. In the solid electrolyte material according to the first embodiment, the elements that are unavoidably mixed as described above are, for example, 1 mol % or less.
  • the molar ratio of O (that is, oxygen) to I (that is, iodine) may be less than one.
  • Such solid electrolyte materials have high lithium ion conductivity.
  • the solid electrolyte material according to the first embodiment may be a material represented by the following compositional formula (1).
  • the solid electrolyte material represented by compositional formula (1) has high ionic conductivity.
  • the upper and lower limits of the range of a in the composition formula (1) are selected from numerical values of 0.50, 0.60, 0.80, 1.00, 1.20, 1.40, and 2.00 It may be defined by any combination.
  • the upper and lower limits of the range of b in the composition formula (1) are selected from numerical values of 1.00, 1.20, 1.27, 1.33, 1.40, 1.47, and 1.50. It may be defined by any combination.
  • the composition formula (1) may satisfy 1.0 ⁇ c ⁇ 3.0.
  • composition formula (1) may be Li a Lab OI 3.0 .
  • the solid electrolyte material according to the first embodiment may be crystalline or amorphous.
  • the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are acicular, spherical, or ellipsoidal.
  • the solid electrolyte material according to the first embodiment may be particles.
  • the solid electrolyte material according to the first embodiment may have the shape of pellets or plates.
  • the solid electrolyte material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. It may have a median diameter of 5 ⁇ m or more and 10 ⁇ m or less. Thereby, the solid electrolyte material according to the first embodiment and other materials can be well dispersed.
  • the median diameter of particles means the particle diameter (d50) corresponding to 50% of the cumulative volume in the volume-based particle size distribution.
  • a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
  • the solid electrolyte material according to the first embodiment can be produced, for example, by the following method.
  • Raw material powder is prepared so that it has the desired composition.
  • the Li 2 O raw material powder and the LaI 3 raw material powder are mixed at a molar ratio of 1.0:1.0.
  • the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for composition changes that may occur during the synthesis process.
  • the raw material powders are mechanochemically reacted with each other (that is, using the method of mechanochemical milling) in a mixing device such as a planetary ball mill to obtain a reactant.
  • the solid electrolyte material according to the first embodiment is obtained.
  • the composition of the solid electrolyte material can be determined, for example, by ICP emission spectrometry, ion chromatography, inert gas fusion-infrared absorption, or EPMA (Electron Probe Micro Analyzer).
  • ICP emission spectrometry ion chromatography
  • inert gas fusion-infrared absorption or EPMA (Electron Probe Micro Analyzer).
  • the composition of Li and La can be determined by ICP emission spectroscopy
  • the composition of I can be determined by ion chromatography
  • O can be measured by inert gas fusion-infrared absorption.
  • the second embodiment describes a battery using the solid electrolyte material according to the first embodiment.
  • a battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
  • An electrolyte layer is disposed between the positive and negative electrodes.
  • At least one selected from the group consisting of the positive electrode, the electrolyte layer, and the negative electrode contains the solid electrolyte material according to the first embodiment.
  • the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge/discharge characteristics.
  • the battery may be an all solid state battery.
  • FIG. 1 shows a cross-sectional view of a battery 1000 according to the second embodiment.
  • a battery 1000 according to the second embodiment includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • Electrolyte layer 202 is disposed between positive electrode 201 and negative electrode 203 .
  • the positive electrode 201 contains positive electrode active material particles 204 and solid electrolyte particles 100 .
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100 .
  • the solid electrolyte particles 100 contain the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles containing the solid electrolyte material according to the first embodiment as a main component.
  • a particle containing the solid electrolyte material according to the first embodiment as a main component means a particle in which the component contained in the largest molar ratio is the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles made of the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, or may have a median diameter of 0.5 ⁇ m or more and 10 ⁇ m or less. In this case, the solid electrolyte particles 100 have higher ionic conductivity.
  • the positive electrode 201 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
  • the positive electrode 201 contains, for example, a positive electrode active material (eg, positive electrode active material particles 204).
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides.
  • lithium-containing transition metal oxides are LiNi1 -dfCodAlfO2 (where 0 ⁇ d , 0 ⁇ f , and 0 ⁇ (d+f) ⁇ 1 ) or LiCoO2.
  • lithium phosphate may be used as the positive electrode active material.
  • the positive electrode 201 may contain a transition metal oxyfluoride as a positive electrode active material together with the solid electrolyte material according to the first embodiment. Even if the solid electrolyte material according to the first embodiment is fluorinated with a transition metal oxyfluoride, it is difficult for a resistance layer to be formed. As a result, the battery 1000 has high charge/discharge efficiency.
  • Transition metal oxyfluorides contain oxygen and fluorine.
  • the transition metal oxyfluoride may be a compound represented by Li p Me' q O m Fn .
  • Me' is Mn, Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W , B, Si, and P, and the formula: 0.5 ⁇ p ⁇ 1.5, 0.5 ⁇ q ⁇ 1.0, 1 ⁇ m ⁇ 2, and 0 ⁇ n ⁇ 1 are satisfied.
  • An example of such a transition metal oxyfluoride is Li1.05 ( Ni0.35Co0.35Mn0.3 ) 0.95O1.9F0.1 .
  • the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When positive electrode active material particles 204 have a median diameter of 0.1 ⁇ m or more, positive electrode active material particles 204 and solid electrolyte particles 100 can be well dispersed in positive electrode 201 . This improves the charge/discharge characteristics of the battery. When the positive electrode active material particles 204 have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material particles 204 is improved. This allows the battery to operate at high output.
  • the positive electrode active material particles 204 may have a larger median diameter than the solid electrolyte particles 100 . Thereby, the positive electrode active material particles 204 and the solid electrolyte particles 100 can be well dispersed.
  • the ratio of the volume of the positive electrode active material particles 204 to the sum of the volume of the positive electrode active material particles 204 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0.30. It may be 95 or less.
  • FIG. 2 shows a cross-sectional view of the electrode material 1100 according to the second embodiment.
  • Electrode material 1100 is included in, for example, positive electrode 201 .
  • a coating layer 216 may be formed on the surface of the electrode active material particles 206 to prevent the solid electrolyte particles 100 from reacting with the positive electrode active material (that is, the electrode active material particles 206). Thereby, an increase in the reaction overvoltage of the battery can be suppressed.
  • coating materials included in coating layer 216 are sulfide solid electrolytes, oxide solid electrolytes, or halide solid electrolytes.
  • the coating material may be lithium niobate, which has excellent stability even at high potentials.
  • the positive electrode 201 may consist of a first positive electrode layer containing a first positive electrode active material and a second positive electrode layer containing a second positive electrode active material.
  • the second cathode layer is disposed between the first cathode layer and the electrolyte layer 202 .
  • the first positive electrode layer and the second positive electrode layer may contain the solid electrolyte material according to the first embodiment, and a coating layer may be formed on the surface of the second positive electrode active material. According to the above configuration, the solid electrolyte material according to the first embodiment included in the electrolyte layer 202 can be suppressed from being oxidized by the second positive electrode active material. As a result, the battery has a high charge capacity.
  • coating materials included in coating layer 216 are sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or halide solid electrolytes.
  • the first positive electrode active material may be the same material as the second positive electrode active material, or may be a different material from the second positive electrode active material.
  • the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 may contain the solid electrolyte material according to the first embodiment.
  • the electrolyte layer 202 may consist only of the solid electrolyte material according to the first embodiment.
  • the solid electrolyte material according to the first embodiment is hereinafter referred to as the first solid electrolyte material.
  • a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
  • the electrolyte layer 202 may contain a second solid electrolyte material.
  • the electrolyte layer 202 may consist of only the second solid electrolyte material.
  • the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material. In the electrolyte layer 202, the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed.
  • the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 100 ⁇ m or less. When the electrolyte layer 202 has a thickness of 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. If the electrolyte layer 202 has a thickness of 100 ⁇ m or less, the battery can operate at high power.
  • electrolyte layer 202 may be further provided between the electrolyte layer 202 and the negative electrode 203 .
  • the second electrolyte layer may be composed of another solid electrolyte material that is more electrochemically stable than the first solid electrolyte material.
  • the reduction potential of the solid electrolyte material forming the second electrolyte layer may be lower than the reduction potential of the first solid electrolyte material.
  • the negative electrode 203 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
  • the negative electrode 203 contains, for example, a negative electrode active material (eg, negative electrode active material particles 205).
  • Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
  • the metal material may be a single metal or an alloy.
  • Examples of metallic materials are lithium metal or lithium alloys.
  • Examples of carbon materials are natural graphite, coke, ungraphitized carbon, carbon fibers, spherical carbon, artificial graphite, or amorphous carbon. From the viewpoint of capacity density, suitable examples of negative electrode active materials are silicon (ie, Si), tin (ie, Sn), silicon compounds, or tin compounds.
  • the negative electrode active material may be selected based on the reduction resistance of the solid electrolyte material contained in the negative electrode 203 .
  • a material capable of intercalating and deintercalating lithium ions at 0 V or higher with respect to lithium may be used as the negative electrode active material. If the negative electrode active material is such a material, reduction of the first solid electrolyte material contained in the negative electrode 203 can be suppressed. As a result, the battery has high charge-discharge efficiency.
  • examples of such materials are titanium oxide, indium metal, or lithium alloys. Examples of titanium oxides are Li4Ti5O12 , LiTi2O4 , or TiO2 .
  • the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When negative electrode active material particles 205 have a median diameter of 0.1 ⁇ m or more, negative electrode active material particles 205 and solid electrolyte particles 100 can be well dispersed in negative electrode 203 . This improves the charge/discharge characteristics of the battery. When the negative electrode active material particles 205 have a median diameter of 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material particles 205 is improved. This allows the battery to operate at high output.
  • the negative electrode active material particles 205 may have a larger median diameter than the solid electrolyte particles 100 . Thereby, the negative electrode active material particles 205 and the solid electrolyte particles 100 can be well dispersed.
  • the ratio of the volume of the negative electrode active material particles 205 to the sum of the volumes of the negative electrode active material particles 205 and the solid electrolyte particles 100 is 0.30 or more and 0. 0.95 or less.
  • the electrode material 1100 shown in FIG. 2 may be included in the negative electrode 202 .
  • a coating layer 216 may be formed on the surface of the electrode active material particles 206 to prevent the solid electrolyte particles 100 from reacting with the negative electrode active material (that is, the electrode active material particles 206). Thereby, the battery has a high charge-discharge efficiency.
  • coating materials included in coating layer 216 are sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or halide solid electrolytes.
  • the coating material may be a sulfide solid electrolyte or a polymer solid electrolyte.
  • a sulfide solid electrolyte is Li 2 SP 2 S 5 .
  • polymer solid electrolytes are composite compounds of polyethylene oxide and lithium salts.
  • An example of such a polymer solid electrolyte is lithium bis(trifluoromethanesulfonyl)imide.
  • the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • At least one selected from the group consisting of positive electrode 201, electrolyte layer 202, and negative electrode 203 contains a second solid electrolyte material for the purpose of enhancing ion conductivity, chemical stability, and electrochemical stability.
  • a second solid electrolyte material for the purpose of enhancing ion conductivity, chemical stability, and electrochemical stability.
  • the second solid electrolyte material are sulfide solid electrolytes, oxide solid electrolytes, halide solid electrolytes, or organic polymer solid electrolytes.
  • sulfide solid electrolyte means a solid electrolyte containing sulfur.
  • Oxide solid electrolyte means a solid electrolyte containing oxygen.
  • the oxide solid electrolyte may contain anions other than oxygen (excluding sulfur and halogen elements).
  • a "halide solid electrolyte” means a solid electrolyte containing a halogen element and not containing sulfur.
  • the halide solid electrolyte may contain not only halogen elements but also oxygen.
  • sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or Li10GeP2S12 . _
  • oxide solid electrolytes are (i) NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof; (ii) perovskite-type solid electrolytes such as (LaLi) TiO3 ; ( iii) LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 or elemental substitutions thereof; ( iv ) garnet - type solid electrolytes such as Li7La3Zr2O12 or its elemental substitutions; or ( v) Li3PO4 or its N substitutions.
  • NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof
  • perovskite-type solid electrolytes such as (LaLi) TiO3 ;
  • LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 or
  • halide solid electrolyte material is the compound represented by LiaMebYcZ6 .
  • Me is at least one element selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • Z is at least one selected from the group consisting of F, Cl, Br and I;
  • the value of m represents the valence of Me.
  • “Semimetal elements” are B, Si, Ge, As, Sb, and Te.
  • Metallic elements are all elements contained in groups 1 to 12 of the periodic table (excluding hydrogen), and all elements contained in groups 13 to 16 of the periodic table (however, B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se).
  • Me is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. At least one may be selected.
  • Li 3 YCl 6 or Li 3 YBr 6 is used as the halide solid electrolyte.
  • the negative electrode 203 may contain a sulfide solid electrolyte.
  • the sulfide solid electrolyte which is electrochemically stable with respect to the negative electrode active material, can suppress contact between the first solid electrolyte material and the negative electrode active material. As a result, the internal resistance of the battery is reduced.
  • organic polymer solid electrolytes are polymeric compounds and lithium salt compounds.
  • the polymer compound may have an ethylene oxide structure. Since a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte, a gel electrolyte, or an ion electrolyte for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery. It may contain liquids.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the lithium salt concentration may be, for example, 0.5 mol/liter or more and 2 mol/liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
  • examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium; (ii) aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums, or (iii) nitrogen-containing heterogeneous compounds such as pyridiniums or imidazoliums ring aromatic cation.
  • aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
  • aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums
  • nitrogen-containing heterogeneous compounds such as pyr
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N( SO2CF3 ) ( SO2C4F9 ) - , or C ( SO2CF3 ) 3- .
  • the ionic liquid may contain a lithium salt.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene-butadiene rubber , or carboxymethyl cellulose.
  • a copolymer may be used as a binder.
  • binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and It is a copolymer of two or more materials selected from the group consisting of hexadiene. A mixture of two or more selected from the above materials may be used as the binder.
  • At least one selected from the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • Examples of conductive aids are (i) graphites such as natural or artificial graphite; (ii) carbon blacks such as acetylene black or ketjen black; (iii) conductive fibers such as carbon or metal fibers; (iv) carbon fluoride, (v) metal powders such as aluminum; (vi) conductive whiskers such as zinc oxide or potassium titanate; (vii) a conductive metal oxide such as titanium oxide, or (viii) a conductive polymeric compound such as polyaniline, polypyrrole, or polythiophene; is.
  • the conductive aid (i) or (ii) may be used.
  • Examples of the shape of the battery according to the second embodiment are coin-shaped, cylindrical, rectangular, sheet-shaped, button-shaped, flat-shaped, and laminated.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may also be manufactured by making laminated laminates.
  • Example 1 Preparation of Solid Electrolyte Material
  • a mixture of these raw material powders was milled at 500 rpm for 30 hours using a planetary ball mill.
  • the solid electrolyte material powder according to Example 1 was obtained.
  • the solid electrolyte material according to Example 1 had a composition represented by Li 2.0 LaOI 3.0 .
  • the composition here is a charge composition calculated from the charge amount.
  • the composition of the obtained solid electrolyte material was almost the same as the composition of the preparation, depending on the manufacturing method used in this example.
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 .
  • the frame mold 302 was made of insulating polycarbonate. Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was measured by the following method.
  • the solid electrolyte material powder according to Example 1 (that is, the solid electrolyte material powder 101 in FIG. 3) was filled inside the pressure molding die 300 . Inside the pressing die 300 , a pressure of 400 MPa was applied to the solid electrolyte material according to Example 1 using the punch upper part 301 .
  • the upper punch 301 and lower punch 303 were connected to a potentiostat (Bio-Logic Sciences Instruments, VMP-300) equipped with a frequency response analyzer.
  • the punch upper part 301 was connected to the working electrode and the terminal for potential measurement.
  • the punch bottom 303 was connected to the counter and reference electrodes.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was measured at room temperature by an electrochemical impedance measurement method.
  • FIG. 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance to ion conduction of the solid electrolyte material. See the arrow R se shown in FIG. 4 for the real value.
  • represents ionic conductivity.
  • S represents the contact area of the solid electrolyte material with the punch upper part 301 (equal to the cross-sectional area of the hollow part of the frame mold 302 in FIG. 3).
  • R se represents the resistance value of the solid electrolyte material in impedance measurement.
  • t represents the thickness of the solid electrolyte material to which pressure is applied (equal to the thickness of the layer formed from the solid electrolyte material powder 101 in FIG. 3).
  • a metal In foil, a metal Li foil, and a metal In foil were laminated in this order on the solid electrolyte layer.
  • a pressure of 40 MPa was applied to this laminate to form a counter electrode.
  • a current collector made of stainless steel was attached to the electrode and the counter electrode, and a current collecting lead was attached to the current collector.
  • [Charging and discharging test] 4 is a graph showing the initial discharge characteristics of the battery according to Example 1.
  • FIG. Initial charge/discharge characteristics were measured by the following method.
  • the battery according to Example 1 was placed in a constant temperature bath at 25°C.
  • Example 1 A cell according to Example 1 was charged until a voltage of 0.58 V was reached at a current density of 17.1 ⁇ A/cm 2 . This current density corresponds to a 0.01C rate.
  • Example 1 The cell according to Example 1 was then discharged at a current density of 17.1 ⁇ A/cm 2 until a voltage of 1.9 V was reached. This current density corresponds to a 0.01C rate.
  • the battery according to Example 1 had an initial discharge capacity of 268.49 ⁇ Ah.
  • Example 2 to 7 Comparative Example 1, and Comparative Example 2
  • Li 2 O, La 2 O 3 , and LaI 3 were used as raw material powders so as to have a molar ratio of (a/2):((b ⁇ 1)/2):1.0. prepared.
  • the values of a and b are shown in Table 1.
  • the solid electrolyte materials according to Examples 1 to 7 had a high lithium ion conductivity of 5 ⁇ 10 ⁇ 5 S/cm or more at room temperature.
  • the battery according to Example 1 was charged and discharged at room temperature.
  • the solid electrolyte material according to the present disclosure can improve lithium ion conductivity while suppressing generation of hydrogen sulfide.
  • the solid electrolyte material of the present disclosure is suitable for providing well chargeable and dischargeable batteries.
  • the solid electrolyte material and manufacturing method thereof of the present disclosure are used, for example, in batteries (eg, all-solid lithium ion secondary batteries).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本開示の固体電解質材料は、Li、La、O、およびIからなる。本開示の電池1000は、正極201、負極203、および電解質層202を備える。電解質層202は、正極201および負極203の間に配置されている。正極201、負極203、および電解質層202からなる群より選択される少なくとも1つは、上記の本開示の固体電解質材料を含有する。

Description

固体電解質材料およびそれを用いた電池
 本開示は、固体電解質材料およびそれを用いた電池に関する。
 特許文献1は、Li、La、O、Xから構成されるリチウムイオン伝導性固体電解質材料、およびこれらを用いた全固体電池を開示している。ここで、Xは、Cl、Br、およびIからなる群より構成される少なくとも1種の元素である。
国際公開第2020/137043号
 本開示の目的は、リチウムイオン伝導度の向上に適した固体電解質材料を提供することにある。
 本開示の固体電解質材料は、Li、La、O、およびIからなる。
 本開示は、リチウムイオン伝導度の向上に適した固体電解質材料を提供する。
図1は、第2実施形態による電池1000の断面図を示す。 図2は、第2実施形態による電極材料1100の断面図を示す。 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図4は、実施例1による固体電解質材料のインピーダンス測定により得られたCole-Coleプロットを示すグラフである。 図5は、実施例1による電池の初期充放電特性を示すグラフである。
 以下、本開示の実施形態が、図面を参照しながら説明される。本開示は、以下の実施形態に限定されない。
 (第1実施形態)
 第1実施形態による固体電解質材料は、Li、La、O、およびIからなる。
 第1実施形態による固体電解質材料は、リチウムイオン伝導度の向上に適した固体電解質材料である。第1実施形態による固体電解質材料は、例えば実用的なリチウムイオン伝導度を有することができ、例えば高いリチウムイオン伝導度を有することができる。ここで、高いリチウムイオン伝導度とは、例えば、室温(例えば、25℃)近傍において5×10-5S/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば5×10-5S/cm以上のイオン伝導度を有し得る。
 第1実施形態による固体電解質材料は、充放電特性に優れた電池を得るために用いられ得る。当該電池の例は、全固体電池である。全固体電池は、一次電池であってもよく、二次電池であってもよい。
 第1実施形態による固体電解質材料は、実質的に硫黄を含有しない。第1実施形態による固体電解質材料が実質的に硫黄を含有しないとは、当該固体電解質材料が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、固体電解質材料に不純物として混入される硫黄は、例えば1モル%以下である。第1実施形態による固体電解質材料は、硫黄を含有しない。硫黄を含有しない固体電解質材料は、大気に曝露されても硫化水素が発生しないので、安全性に優れる。特許文献1に開示された硫化物固体電解質は、大気中に曝露されると、硫化水素が発生し得る。
 第1実施形態による固体電解質材料は、不可避的に混入される元素を含有していてもよい。当該元素の例は、水素または窒素である。このような元素は、固体電解質材料の原料粉、または、固体電解質材料を製造あるいは保管するための雰囲気中に存在し得る。第1実施形態による固体電解質材料において、上記のような不可避的に混入される元素は、例えば1モル%以下である。
 第1実施形態による固体電解質材料において、I(すなわち、ヨウ素)に対するO(すなわち、酸素)のモル比は、1未満であってもよい。このような固体電解質材料は、高いリチウムイオン伝導度を有する。
 第1実施形態による固体電解質材料は、以下の組成式(1)により表される材料であってもよい。
 LiaLabOIc ・・・(1)
 ここで、0<a、0<b、(a+b)<4.0、および0<c<4.0、が満たされる。
 組成式(1)により表される固体電解質材料は、高いイオン伝導度を有する。
 固体電解質材料のイオン伝導度を高めるために、組成式(1)において、0.5≦a≦2.3、および0.7≦b≦1.5、が満たされてもよい。
 固体電解質材料のイオン伝導度を高めるために、組成式(1)において、0.5≦a≦2.0、および1.0≦b≦1.5、が満たされてもよい。
 固体電解質材料のイオ伝導度をさらに高めるために、組成式(1)において、0.8≦a≦2.0、および、1.0≦b≦1.4、が満たされてもよい。
 組成式(1)におけるaの範囲の上限値および下限値は、0.50、0.60、0.80、1.00、1.20、1.40、および2.00の数値から選ばれる任意の組み合わせによって規定されてもよい。
 組成式(1)におけるbの範囲の上限値および下限値は、1.00、1.20、1.27、1.33、1.40、1.47、および1.50の数値から選ばれる任意の組み合わせによって規定されてもよい。
 固体電解質材料のイオン伝導度を高めるために、組成式(1)において、1.0≦c≦3.0、が満たされてもよい。
 固体電解質材料のイオン伝導度を高めるために、組成式(1)において、c=3.0が満たされてもよい。すなわち、上記組成式(1)が、LiaLabOI3.0であってもよい。
 第1実施形態による固体電解質材料は、結晶質であってもよく、非晶質であってもよい。
 第1実施形態による固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。第1実施形態による固体電解質材料は、粒子であってもよい。第1実施形態による固体電解質材料は、ペレットまたは板の形状を有していてもよい。
 第1実施形態による固体電解質材料の形状が、例えば粒子状(例えば、球状)である場合、当該固体電解質材料は、0.1μm以上かつ100μm以下のメジアン径を有していてもよく、0.5μm以上かつ10μm以下のメジアン径を有していてもよい。これにより、第1実施形態による固体電解質材料および他の材料が良好に分散し得る。
 粒子のメジアン径は、体積基準の粒度分布における累積体積が50%に相当する粒径(d50)を意味する。体積基準の粒度分布は、レーザー回折式測定装置または画像解析装置により測定され得る。
 <固体電解質材料の製造方法>
 第1実施形態による固体電解質材料は、例えば下記の方法により、製造され得る。
 目的の組成を有するように、原料粉が用意される。
 一例として、目的とされる固体電解質材料の組成がLi2.0La1.0OI3である場合、Li2O原料粉およびLaI3原料粉が、1.0:1.0のモル比で混合される。合成過程において生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 例えば、原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させて、反応物を得る。
 このような方法により、第1実施形態による固体電解質材料が得られる。
 固体電解質材料の組成は、例えば、ICP発光分光分析法、イオンクロマトグラフィー法、不活性ガス溶融-赤外線吸収法、またはEPMA(Electron Probe Micro Analyzer)法により決定することができる。例えば、LiおよびLaの組成はICP発光分光分析法により決定され、Iの組成はイオンクロマトグラフィー法により決定され、Oは不活性ガス溶融-赤外線吸収法により測定され得る。
 (第2実施形態)
 以下、本開示の第2実施形態が説明される。第1実施形態において説明された事項は、省略され得る。
 第2実施形態では、第1実施形態による固体電解質材料が用いられた電池が説明される。
 第2実施形態による電池は、正極、負極、および電解質層を備える。電解質層は、正極および負極の間に配置されている。正極、電解質層、および負極からなる群より選択される少なくとも1つは、第1実施形態による固体電解質材料を含有する。
 第2実施形態による電池は、第1実施形態による固体電解質材料を含有するため、優れた充放電特性を有する。当該電池は、全固体電池であってもよい。
 図1は、第2実施形態による電池1000の断面図を示す。
 第2実施形態による電池1000は、正極201、電解質層202、および負極203を備える。電解質層202は、正極201および負極203の間に配置されている。
 正極201は、正極活物質粒子204および固体電解質粒子100を含有する。
 電解質層202は、電解質材料を含有する。電解質材料は、例えば、固体電解質材料である。
 負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
 固体電解質粒子100は、第1実施形態による固体電解質材料を含む。固体電解質粒子100は、第1実施形態による固体電解質材料を主たる成分として含む粒子であってもよい。第1実施形態による固体電解質材料を主たる成分として含む粒子とは、モル比で最も多く含まれる成分が第1実施形態による固体電解質材料である粒子を意味する。固体電解質粒子100は、第1実施形態による固体電解質材料からなる粒子であってもよい。
 固体電解質粒子100は、0.1μm以上かつ100μm以下のメジアン径を有していてもよく、0.5μm以上かつ10μm以下のメジアン径を有していてもよい。この場合、固体電解質粒子100は、より高いイオン伝導性を有する。
 正極201は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。正極201は、例えば、正極活物質(例えば、正極活物質粒子204)を含有する。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、LiNi1-d-fCodAlf2(ここで、0<d、0<f、かつ0<(d+f)<1)またはLiCoO2である。
 電池1000のコストおよび安全性の観点から、正極活物質としてリン酸リチウムが使用されてもよい。
 正極201は、第1実施形態による固体電解質材料とともに、正極活物質として、遷移金属オキシフッ化物を含有していてもよい。第1実施形態による固体電解質材料は、遷移金属オキシフッ化物によりフッ化されても、抵抗層が形成されにくい。その結果、電池1000が高い充放電効率を有する。
 遷移金属オキシフッ化物は、酸素およびフッ素を含有する。一例として、遷移金属オキシフッ化物は、LipMe’qmnにより表される化合物であってもよい。ここで、Me’は、Mn、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、およびPからなる群より選択される少なくとも1つであり、かつ、数式:0.5≦p≦1.5、0.5≦q≦1.0、1≦m<2、および0<n≦1が充足される。このような遷移金属オキシフッ化物の例は、Li1.05(Ni0.35Co0.35Mn0.30.951.90.1である。
 正極活物質粒子204は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質粒子204が0.1μm以上のメジアン径を有する場合、正極201において、正極活物質粒子204および固体電解質粒子100が、良好に分散し得る。これにより、電池の充放電特性が向上する。正極活物質粒子204が100μm以下のメジアン径を有する場合、正極活物質粒子204内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質粒子204は、固体電解質粒子100より大きいメジアン径を有していてもよい。これにより、正極活物質粒子204および固体電解質粒子100が、良好に分散し得る。
 電池のエネルギー密度および出力を高めるために、正極201において、正極活物質粒子204の体積および固体電解質粒子100の体積の合計に対する正極活物質粒子204の体積の比は、0.30以上かつ0.95以下であってもよい。
 図2は、第2実施形態による電極材料1100の断面図を示す。電極材料1100は、例えば、正極201に含まれる。固体電解質粒子100が正極活物質(すなわち、電極活物質粒子206)と反応するのを防ぐために、電極活物質粒子206の表面には、被覆層216が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層216に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。被覆材料は、高電位でも優れた安定性を有するニオブ酸リチウムであってもよい。
 正極201は、第1正極活物質を含有する第1正極層および第2正極活物質を含有する第2正極層からなっていてもよい。ここで、第2正極層は、第1正極層および電解質層202の間に配置される。第1正極層および第2正極層は、第1実施形態による固体電解質材料を含有し、かつ第2正極活物質の表面には、被覆層が形成されてもよい。以上の構成によれば、電解質層202に含まれる第1実施形態による固体電解質材料が、第2正極活物質により酸化されるのを抑制できる。その結果、電池が高い充電容量を有する。被覆層216に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、またはハロゲン化物固体電解質である。第1正極活物質は、第2正極活物質と同じ材料であってもよく、第2正極活物質と異なる材料であってもよい。
 電池のエネルギー密度および出力を高めるために、正極201は、10μm以上かつ500μm以下の厚みを有していてもよい。
 電解質層202は、電解質材料を含有する。当該電解質材料は、例えば、固体電解質材料である。電解質層202は、固体電解質層であってもよい。電解質層202は、第1実施形態による固体電解質材料を含有していてもよい。電解質層202は、第1実施形態による固体電解質材料のみからなっていてもよい。
 以下、第1実施形態による固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態による固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
 電解質層202は、第2固体電解質材料を含有していてもよい。電解質層202は、第2固体電解質材料のみからなっていてもよい。
 電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料を含有していてもよい。電解質層202において、第1固体電解質材料および第2固体電解質材料は、均一に分散していてもよい。
 電解質層202は、1μm以上かつ100μm以下の厚みを有していてもよい。電解質層202が1μm以上の厚みを有する場合、正極201および負極203が短絡しにくくなる。電解質層202が100μm以下の厚みを有する場合、電池が高出力で動作し得る。
 電解質層202および負極203の間に、別の電解質層(すなわち、第2電解質層)がさらに設けられてもよい。例えば、電解質層202が第1固体電解質材料を含む場合、第2電解質層は、第1固体電解質材料よりも電気化学的に安定な別の固体電解質材料から構成されていてもよい。具体的には、第2電解質層を構成する固体電解質材料の還元電位は、第1固体電解質材料の還元電位より低くてもよい。これにより、第1固体電解質材料を還元させずに使用することができる。その結果、電池の充放電効率を向上させることができる。
 負極203は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。負極203は、例えば、負極活物質(例えば、負極活物質粒子205)を含有する。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
 負極活物質は、負極203に含まれる固体電解質材料の耐還元性をもとに選択されてもよい。負極203が第1実施形態による固体電解質材料を含有する場合、負極活物質として、リチウムに対して0V以上でリチウムイオンを吸蔵かつ放出可能な材料が使用されてもよい。負極活物質がこのような材料であれば、負極203に含まれる第1固体電解質材料が還元するのを抑制できる。その結果、電池が高い充放電効率を有する。当該材料の例は、チタン酸化物、インジウム金属、またはリチウム合金である。チタン酸化物の例は、Li4Ti512、LiTi24、またはTiO2である。
 負極活物質粒子205は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。負極活物質粒子205が0.1μm以上のメジアン径を有する場合、負極203において、負極活物質粒子205および固体電解質粒子100が、良好に分散し得る。これにより、電池の充放電特性が向上する。負極活物質粒子205が100μm以下のメジアン径を有する場合、負極活物質粒子205内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。これにより、負極活物質粒子205および固体電解質粒子100が良好に分散し得る。
 電池のエネルギー密度および出力を高めるために、負極203において、負極活物質粒子205の体積および固体電解質粒子100の体積の合計に対する、負極活物質粒子205の体積の比は、0.30以上かつ0.95以下であってもよい。
 図2に示される電極材料1100は、負極202に含まれてもよい。固体電解質粒子100が負極活物質(すなわち、電極活物質粒子206)と反応するのを防ぐために、電極活物質粒子206の表面には、被覆層216が形成されてもよい。これにより、電池が高い充放電効率を有する。被覆層216に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、またはハロゲン化物固体電解質である。
 固体電解質粒子100が第1固体電解質材料である場合、被覆材料は、硫化物固体電解質または高分子固体電解質であってもよい。硫化物固体電解質の例は、Li2S-P25である。高分子固体電解質の例は、ポリエチレンオキシドおよびリチウム塩の複合化合物である。このような高分子固体電解質の例は、リチウムビス(トリフルオロメタンスルホニル)イミドである。
 電池のエネルギー密度および出力を高めるために、負極203は、10μm以上かつ500μm以下の厚みを有していてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、イオン伝導性、化学的安定性、および電気化学的安定性を高める目的で、第2固体電解質材料を含有していてもよい。第2固体電解質材料の例は、硫化物固体電解質、酸化物固体電解質、ハロゲン化物固体電解質、または有機ポリマー固体電解質である。
 本開示において、「硫化物固体電解質」は、硫黄を含有する固体電解質を意味する。「酸化物固体電解質」は、酸素を含有する固体電解質を意味する。酸化物固体電解質は、酸素以外のアニオン(ただし、硫黄およびハロゲン元素は除く)を含有していてもよい。「ハロゲン化物固体電解質」は、ハロゲン元素を含有し、かつ、硫黄を含有しない固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。
 硫化物固体電解質の例は、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212である。
 酸化物固体電解質の例は、
 (i)LiTi2(PO43またはその元素置換体のようなNASICON型固体電解質、
 (ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
 (iii)Li14ZnGe416、Li4SiO4、LiGeO4またはその元素置換体のようなLISICON型固体電解質、
 (iv)Li7La3Zr212またはその元素置換体のようなガーネット型固体電解質、または
 (v)Li3PO4またはそのN置換体である。
 ハロゲン化物固体電解質材料の例は、LiaMebc6により表される化合物である。ここで、数式:a+mb+3c=6、およびc>0が充足される。Meは、LiおよびY以外の金属元素および半金属元素からなる群より選択される少なくとも1つの元素である。Zは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。mの値は、Meの価数を表す。
 「半金属元素」は、B、Si、Ge、As、Sb、およびTeである。「金属元素」は、周期表第1族から第12族中に含まれるすべての元素(ただし、水素を除く)、および、周期表第13族から第16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。
 ハロゲン化物固体電解質のイオン伝導度を高めるために、Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つであってもよい。ハロゲン化物固体電解質として、例えば、Li3YCl6またはLi3YBr6が用いられる。
 電解質層202が第1固体電解質材料を含有する場合、負極203は硫化物固体電解質を含有していてもよい。これにより、負極活物質に対して電気化学的に安定な硫化物固体電解質が、第1固体電解質材料および負極活物質の接触を抑制できる。その結果、電池の内部抵抗が低減される。
 有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物は、エチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有できるため、イオン導電率をより高めることができる。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/リットル以上かつ2mol/リットル以下であってもよい。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
 (i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
 (ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
 (iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオン、である。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 正極201、電解質層202、負極203からなる群より選択される少なくとも1つは、粒子同士の密着性を向上する目的で、結着剤を含有していてもよい。
 結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。結着剤として共重合体が使用されてもよい。当該結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体である。上記の材料から選択された2種以上の混合物が、結着剤として用いられてもよい。
 正極201および負極203から選択される少なくとも1つは、電子伝導性を高める目的で、導電助剤を含有していてもよい。
 導電助剤の例は、
 (i)天然黒鉛または人造黒鉛のようなグラファイト類、
 (ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
 (iii)炭素繊維または金属繊維のような導電性繊維類、
 (iv)フッ化カーボン、
 (v)アルミニウムのような金属粉末類、
 (vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
 (vii)酸化チタンのような導電性金属酸化物、または(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物、
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
 第2実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
 第2実施形態による電池は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。
 以下、実施例および比較例を参照しながら、本開示がより詳細に説明される。
 (実施例1)
 [固体電解質材料の作製]
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という)中で、原料粉としてLi2OおよびLaI3が、Li2O:LaI3=1.0:1.0のモル比を有するように用意された。これらの原料粉の混合物は、遊星型ボールミルを用い、30時間、500rpmでミリング処理された。このようにして、実施例1による固体電解質材料の粉末が得られた。実施例1による固体電解質材料は、Li2.0LaOI3.0により表される組成を有していた。なお、ここでの組成は、仕込み量から算出された仕込み組成である。ただし、本実施例で用いられた製法によっては、得られる固体電解質材料の組成は仕込み組成とほとんど同様であることが事前に確認されていた。
 [イオン伝導度の評価]
 図3は、固体電解質材料のイオン伝導度を評価するために用いられた加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性のポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、いずれも電子伝導性のステンレスから形成されていた。
 図3に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による固体電解質材料のイオン伝導度が測定された。
 -30℃以下の露点を有するドライ雰囲気中で、実施例1による固体電解質材料の粉末(すなわち、図3において、固体電解質材料の粉末101)が、加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料に、パンチ上部301を用いて、400MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303が、周波数応答アナライザを搭載したポテンショスタット(Bio-Logic Sciences Instruments社、VMP-300)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。実施例1による固体電解質材料のイオン伝導度は、室温において、電気化学インピーダンス測定法により測定された。
 図4は、実施例1による固体電解質材料のインピーダンス測定により得られたCole-Coleプロットを示すグラフである。
 図4において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値が、固体電解質材料のイオン伝導に対する抵抗値とみなされた。当該実数値は、図4に示される矢印Rseを参照せよ。
 当該抵抗値を用いて、以下の数式(2)に基づいて、イオン伝導度が算出された。
 σ=(Rse×S/t)-1 ・・・(2)
 ここで、σは、イオン伝導度を表す。Sは、固体電解質材料のパンチ上部301との接触面積(図3において、枠型302の中空部の断面積に等しい)を表す。Rseは、インピーダンス測定における固体電解質材料の抵抗値を表す。tは、圧力が印加された固体電解質材料の厚み(図3において、固体電解質材料の粉末101から形成される層の厚みに等しい)を表す。室温で測定された、実施例1による固体電解質材料のイオン伝導度は、1.03×10-4S/cmであった。
 [電池の作製]
 乾燥アルゴン雰囲気中で、実施例1による固体電解質材料、Li4Ti512、およびカーボンファイバー(VGCF)が、30:65:5の質量比となるように用意された。これらの材料は、乳鉢中で混合された。このようにして、混合物が得られた。なお、VGCFは、昭和電工株式会社の登録商標である。
 9.5mmの内径を有する絶縁性の筒の中で、アルジロダイト型硫化物固体電解質であるLi6PS5Cl(80mg)、実施例1による固体電解質材料(20mg)、上記の混合物(15mg)、およびVGCF(2mg)が、この順に積層された。この積層体に740MPaの圧力が印加され、固体電解質層および電極が形成された。
 次に、固体電解質層に、金属In箔、金属Li箔、および金属In箔が、この順に積層された。この積層体に40MPaの圧力が印加され、対極が形成された。
 次に、ステンレス鋼から形成された集電体が電極および対極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、実施例1による充放電試験セルとしての電池が得られた。
 [充放電試験]
 図4は、実施例1による電池の初期放電特性を示すグラフである。初期充放電特性は、下記の方法により測定された。
 実施例1による電池は、25℃の恒温槽に配置された。
 17.1μA/cm2の電流密度で0.58Vの電圧に達するまで、実施例1による電池が充電された。当該電流密度は、0.01Cレートに相当する。
 次いで、17.1μA/cm2の電流密度で1.9Vの電圧に達するまで、実施例1による電池が放電された。当該電流密度は、0.01Cレートに相当する。
 充放電試験の結果、実施例1による電池は、268.49μAhの初期放電容量を有していた。
 (実施例2から7、比較例1、および比較例2)
 実施例2から7では、原料粉としてLi2O、La23、およびLaI3が、(a/2):((b-1)/2):1.0のモル比を有するように用意された。aおよびbの値は、表1に示される。
 比較例1では、原料粉としてLiI、La23、およびLaBr3が、LiI:La23:LaBr3=3:1:1のモル比を有するように用意された。
 比較例2では、原料粉としてLiCl、La23、およびLaBr3が、LiCl:La23:LaBr3=3:1:1のモル比を有するように用意された。
 上記以外の事項は、実施例1と同様にして、実施例2から7、比較例1、および比較例2による固体電解質材料が得られた。
 実施例2から7、比較例1、および比較例2による固体電解質材料のイオン伝導度が、実施例1と同様にして、測定された。測定結果は表1に示される。
Figure JPOXMLDOC01-appb-T000001
 (考察)
 表1から明らかなように、実施例1から7による固体電解質材料は、室温において、5×10-5S/cm以上の高いリチウムイオン伝導性を有していた。
 実施例1から7を比較例1および2と比較すると明らかなように、XがIのみである場合、XがBrまたはClを含む場合よりも、固体電解質材料のイオン伝導度はより高かった。
 実施例1による電池は、室温において充電および放電された。
 実施例1から7による固体電解質材料は、硫黄を含有しないため、硫化水素が発生しない。
 以上のように、本開示による固体電解質材料は、硫化水素の発生を抑えながら、リチウムイオン伝導度を向上させることができる。本開示の固体電解質材料は、良好に充電および放電可能な電池を提供するために適切である。
 本開示の固体電解質材料とその製造方法は、例えば、電池(例えば、全固体リチウムイオン二次電池)において利用される。
 100 固体電解質粒子
 101 固体電解質材料の粉末
 201 正極
 202 電解質層
 203 負極
 204 正極活物質粒子
 205 負極活物質粒子
 300 加圧成形ダイス
 301 パンチ上部
 302 枠型
 303 パンチ下部
 1000 電池
 1100 電極材料

Claims (9)

  1.  Li、La、O、およびIからなる、
    固体電解質材料。
  2.  Iに対するOのモル比は、1未満である、
    請求項1に記載の固体電解質材料。
  3.  以下の組成式(1)により表され、
     LiaLabOIc ・・・(1)
     ここで、0<a、0<b、(a+b)<4.0、および0<c<4が満たされる、
    請求項1または2に記載の固体電解質材料。
  4.  前記組成式(1)において、0.5≦a≦2.3、および、0.7≦b≦1.5、が満たされる、
    請求項3に記載の固体電解質材料。
  5.  前記組成式(1)において、0.5≦a≦2.0、および、1.0≦b≦1.5、が満たされる、
    請求項3または4に記載の固体電解質材料。
  6.  前記組成式(1)において、0.8≦a≦2.0、および、1.0≦b≦1.4、が満たされる、
    請求項3から5のいずれか一項に記載の固体電解質材料。
  7.  前記組成式(1)において、1.0≦c≦3.0、が満たされる、
    請求項3から6のいずれか一項に記載の固体電解質材料。
  8.  前記組成式(1)において、c=3.0、が満たされる、
    請求項3から7のいずれか一項に記載の固体電解質材料。
  9.  正極、
     負極、および
     前記正極および前記負極の間に配置されている電解質層、
    を備え、
     前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から8のいずれか一項に記載の固体電解質材料を含有する、
    電池。
PCT/JP2021/046671 2021-04-15 2021-12-17 固体電解質材料およびそれを用いた電池 WO2022219846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023514328A JPWO2022219846A1 (ja) 2021-04-15 2021-12-17
EP21937039.2A EP4325603A4 (en) 2021-04-15 2021-12-17 SOLID ELECTROLYTE MATERIAL AND BATTERY
CN202180096868.4A CN117121123A (zh) 2021-04-15 2021-12-17 固体电解质材料及使用该固体电解质材料的电池
US18/469,584 US20240006658A1 (en) 2021-04-15 2023-09-19 Solid electrolyte material and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021068993 2021-04-15
JP2021-068993 2021-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/469,584 Continuation US20240006658A1 (en) 2021-04-15 2023-09-19 Solid electrolyte material and battery using same

Publications (1)

Publication Number Publication Date
WO2022219846A1 true WO2022219846A1 (ja) 2022-10-20

Family

ID=83639540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046671 WO2022219846A1 (ja) 2021-04-15 2021-12-17 固体電解質材料およびそれを用いた電池

Country Status (5)

Country Link
US (1) US20240006658A1 (ja)
EP (1) EP4325603A4 (ja)
JP (1) JPWO2022219846A1 (ja)
CN (1) CN117121123A (ja)
WO (1) WO2022219846A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137043A1 (ja) 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 リチウムイオン伝導性固体電解質材料、およびこれを用いた電池
WO2021002064A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137043A1 (ja) 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 リチウムイオン伝導性固体電解質材料、およびこれを用いた電池
WO2021002064A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325603A4

Also Published As

Publication number Publication date
CN117121123A (zh) 2023-11-24
EP4325603A1 (en) 2024-02-21
US20240006658A1 (en) 2024-01-04
EP4325603A4 (en) 2024-10-09
JPWO2022219846A1 (ja) 2022-10-20

Similar Documents

Publication Publication Date Title
JP7316571B2 (ja) 固体電解質材料、および、電池
JP7417925B2 (ja) 固体電解質材料、および、電池
JP7432897B2 (ja) 固体電解質材料およびそれを用いた電池
JP7542196B2 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
JP7542194B2 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
JP7535700B2 (ja) 固体電解質材料およびそれを用いた電池
WO2021070595A1 (ja) 固体電解質材料およびそれを用いた電池
JP7535712B2 (ja) 固体電解質材料およびこれを用いた電池
WO2021186809A1 (ja) 固体電解質材料およびそれを用いた電池
JP7565544B2 (ja) 固体電解質材料およびそれを用いた電池
JPWO2020070957A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
WO2021186833A1 (ja) 固体電解質材料およびそれを用いた電池
JP7417951B2 (ja) リチウムイオン伝導性固体電解質材料、およびこれを用いた電池
WO2023013305A1 (ja) 正極材料、それを用いた電池、および電池の充電方法
JP7496509B2 (ja) 固体電解質材料およびこれを用いた電池
JP7329776B2 (ja) 固体電解質材料、およびこれを用いた電池
JP7535711B2 (ja) 固体電解質材料およびこれを用いた電池
WO2023013232A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021186845A1 (ja) 固体電解質材料およびそれを用いた電池
JP7417952B2 (ja) 固体電解質材料およびそれを用いた電池
WO2022219846A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022219847A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022259749A1 (ja) 固体電解質材料および電池
WO2022264659A1 (ja) 固体電解質材料および電池
WO2022215337A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514328

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021937039

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937039

Country of ref document: EP

Effective date: 20231115