WO2022218005A1 - 天线装置及电子设备 - Google Patents
天线装置及电子设备 Download PDFInfo
- Publication number
- WO2022218005A1 WO2022218005A1 PCT/CN2022/073600 CN2022073600W WO2022218005A1 WO 2022218005 A1 WO2022218005 A1 WO 2022218005A1 CN 2022073600 W CN2022073600 W CN 2022073600W WO 2022218005 A1 WO2022218005 A1 WO 2022218005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- feeder
- line
- electrically connected
- resonant
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 120
- 230000005284 excitation Effects 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims description 122
- 239000002184 metal Substances 0.000 claims description 122
- 239000004020 conductor Substances 0.000 claims description 67
- 238000009826 distribution Methods 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 12
- 238000010586 diagram Methods 0.000 description 51
- 238000004891 communication Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/002—Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
Definitions
- the embodiments of the present application relate to the field of terminal technologies, and in particular, to an antenna device and an electronic device.
- the wireless performance of terminal products has been paid more and more attention, and the wireless performance of the antenna will directly affect the actual user experience.
- the current terminal mobile phone has developed towards the trend of full screen and multi-antenna, which will lead to the increasingly tight radiator size of the antenna, the deterioration of the radiation environment, and the performance of the antenna. the worse.
- the lower the frequency the longer the radiator and the greater the space requirement. Therefore, in the case of a full screen, under the limited space environment and radiator length, how to improve the antenna performance, especially the low-frequency antenna performance, has become an important issue in the research and design of terminal antennas.
- the antenna structure in the above solution occupies an excessively large design area in the mobile phone, which is not conducive to the layout of other components in the mobile phone. Therefore, how to meet the current performance requirements of antennas in a small space has become an important issue in antenna research and design.
- the embodiments of the present application provide an antenna device and an electronic device, which can improve the radiation efficiency of the antenna without occupying too much design space in the mobile phone and without affecting the resonance curve of the existing antenna, thereby improving the actual experience of the user.
- a first aspect of the embodiments of the present application provides an antenna device, which is applied to electronic equipment, the antenna device includes: at least one radiating unit, at least one feeding unit, and at least one non-resonant unit; and the feeding unit Feed the radiation unit and the non-resonant unit respectively; wherein, the size of the non-resonant unit is less than 1/8 ⁇ , and ⁇ is the wavelength corresponding to the resonant frequency of the radiation unit.
- the antenna device is provided with a non-resonant unit, and the feeding unit feeds the radiation unit and the non-resonant unit respectively, and the non-resonant unit can play an auxiliary role in exciting the characteristic mode of the floor through the feeding power distribution design. and because the size of the non-resonant unit is much smaller than the electrical length required for the antenna to resonate in this frequency band, the non-resonant unit will not generate a resonance curve on the resonance curve, and there will be no resonance point, so that no new resonance is generated. In the case of resonance, the radiation efficiency of the antenna can be improved, so that the use effect of the user can be improved.
- the feeding point and the grounding point of the feeding unit are respectively electrically connected to the non-resonant unit and the metal mid-plane serving as the floor in the electronic device.
- the feeding point of the feeding unit is connected to the non-resonant unit, and the grounding point of the feeding unit is connected to the floor (ie, the metal middle plate), which can achieve the effect of assisting the excitation of the characteristic mode of the floor.
- the non-resonant unit is used to assist in exciting the floor eigenmode; wherein, when the radiation unit is a low-frequency radiation unit, the non-resonant unit assists in exciting the floor longitudinal eigenmode; the radiation unit When it is a medium and high frequency radiation unit, the non-resonant unit assists in exciting the lateral characteristic mode of the floor.
- the current flow of the low frequency radiating element is in the longitudinal mode, and the current flow of the medium and high frequency radiating element is in the transverse mode, and the required floor characteristic mode can be excited to obtain better antenna efficiency at the corresponding frequency. That is, for low-frequency radiation elements, sufficient excitation of the longitudinal mode of the floor can obtain better radiation efficiency, and for medium and high-frequency radiation elements, sufficient excitation of the lateral mode can also obtain better radiation efficiency.
- the orthographic projection of the non-resonant unit in the first direction is located in the metal middle plate; the first direction is a direction perpendicular to the plane where the metal middle plate is located.
- the feeding units are respectively connected to the non-resonant unit and the floor (ie, the metal middle plate) below the non-resonant unit, which can achieve the effect of assisting the excitation of the characteristic mode of the floor.
- the feed unit is electrically connected to the non-resonant unit and the metal mid-plate through feed lines.
- the feeder unit is connected to the non-resonant unit and the floor (ie, the metal mid-plate) below the non-resonant unit respectively through the feeder, which can achieve the effect of assisting the excitation of the floor eigenmode.
- each of the feeders includes: a main feeder and a sub-feeder, the main feeder and the sub-feeder respectively include a signal wire and a ground wire, and the main feeder has a The signal line at the first end is electrically connected to the feed unit, and the signal line at the second end of the main feed line is electrically connected to the radiation unit; the ground wire of the main feed line is grounded; The signal line and the ground line of the first end are electrically connected with the signal line and the ground line of the main feeder, and the signal line and the ground line of the second end of the sub-feeder are respectively connected with the non-resonant unit and the metal medium. Board electrical connection.
- the feeding unit can feed the radiating unit and the non-resonant unit respectively, and is connected with the non-resonant unit and the floor (ie the metal middle plate) at the non-resonant unit through the power distribution at the feeding place, which can effectively improve the antenna. s efficiency.
- the sub-feeder line is a coaxial line, including: an outer conductor and an inner conductor; the outer conductor is wrapped outside the inner conductor, the inner conductor is a signal line, and the inner conductor is a signal line.
- the outer conductor is a ground wire; one end of the inner conductor is electrically connected to the signal line of the main feeder, and the other end of the inner conductor is electrically connected to the non-resonant unit; one end of the outer conductor is electrically connected to the main feeder
- the ground wire of the feeder is electrically connected, and the other end of the outer conductor is electrically connected to the metal middle plate.
- the inner conductor of the sub-feeder is electrically connected to the non-resonant unit, and the outer conductor of the sub-feeder is electrically connected to the floor (ie, the metal middle plate) at the non-resonant unit. While realizing the auxiliary excitation of the characteristic mode of the floor, the outer conductor is connected to the ground.
- the metal middle plate can also provide a certain shielding effect for the non-resonant unit connected by the inner conductor.
- the main feed line is a microstrip line, including: a first conductor and a second conductor, the first conductor is a signal line, the second conductor is a ground line, and the first conductor is a ground line.
- a conductor is provided separately from the second conductor. In this way, the transmission of the power signal and the ground signal between the feeding unit and the radiating unit can be ensured.
- the number of the non-resonant units is one; the number of the feeding lines is at least two; the at least one feeding unit includes: a first feeding unit and a second feeding unit; The feeding point and the grounding point of the first feeding unit are respectively electrically connected to the non-resonant unit and the metal mid-plate through the first feeding wire of the at least two feeding wires, and the second feeding unit The feed point and the ground point of the at least two feed lines are electrically connected to the non-resonant unit and the metal mid-plate respectively through the second feed line of the at least two feed lines.
- At least one radiation unit includes: a first radiation unit and a second radiation unit; a signal line at the first end of the main feeder of the first feeder and the first feeder The electrical unit is electrically connected, and the signal line at the second end of the main feeder of the first feeder is electrically connected to the first radiation unit; the ground wire of the main feeder of the first feeder is grounded; The signal line and the ground line of the first end of the sub-feed line of the first feed line are electrically connected with the signal line and the ground line of the main feed line of the first feed line, the first feed line The signal line and the ground line of the second end of the sub-feed line are respectively electrically connected to the non-resonant unit and the metal mid-plate;
- the signal line at the first end of the main feeder of the second feeder is electrically connected to the second feeder unit, and the signal line at the second end of the main feeder of the second feeder is electrically connected to the second feeder.
- the second radiating element is electrically connected; the ground wire of the main feeder of the second feeder is grounded; the signal wire and the ground wire of the first end of the sub-feeder of the second feeder are connected to the The signal line and the ground line of the main feed line of the second feed line are electrically connected, and the signal line and the ground line of the second end of the sub-feed line of the second feed line are respectively connected with the non-resonant unit and the ground line.
- the first feeding unit is connected to the first radiating unit, the non-resonant unit and the floor below the non-resonant unit (ie, the metal middle plate) through the first feeding line
- the second feeding unit is connected to the second feeding unit through the second feeding line
- the radiation unit, the non-resonant unit, and the floor below the non-resonant unit that is, the metal middle plate
- the first feed unit feeds the first radiation unit and the non-resonant unit through the first feed line
- the second The feeding unit feeds the second radiating unit and the non-resonant unit through the second feeding line, and the non-resonant unit can realize the function of assisting the first radiating unit and the second radiating unit to excite the characteristic mode of the floor.
- the number of the non-resonant units is two; at least one non-resonant unit includes: a first non-resonant unit and a second non-resonant unit; the number of the feed lines is at least two; At least one feeding unit includes: a first feeding unit and a second feeding unit; the first feeding unit communicates with the first non-resonant unit and the first feeding line through the first feeding line of the at least two feeding lines.
- the metal mid-plate is electrically connected, and the second feed unit is electrically connected to the second non-resonant unit and the metal mid-plate through a second feed line of at least two of the feed lines.
- At least one radiation unit includes: a first radiation unit and a second radiation unit; a signal line at the first end of the main feeder of the first feeder and the first feeder The electrical unit is electrically connected, and the signal line at the second end of the main feeder of the first feeder is electrically connected to the first radiation unit; the ground wire of the main feeder of the first feeder is grounded; The signal line and the ground line of the first end of the sub-feed line of the first feed line are electrically connected with the signal line and the ground line of the main feed line of the first feed line, the first feed line The signal line and the ground line of the second end of the sub-feed line are respectively electrically connected to the first non-resonant unit and the metal mid-plate;
- the signal line at the first end of the main feeder of the second feeder is electrically connected to the second feeder unit, and the signal line at the second end of the main feeder of the second feeder is electrically connected to the second feeder.
- the second radiating element is electrically connected; the ground wire of the main feeder of the second feeder is grounded; the signal wire and the ground wire of the first end of the sub-feeder of the second feeder are connected to the The signal line and the ground line of the main feed line of the second feed line are electrically connected, and the signal line and the ground line of the second end of the sub-feed line of the second feed line are respectively connected with the second non-resonant unit and the ground line.
- the metal middle plate is electrically connected.
- the first feeding unit is connected to the first radiating element, the first non-resonant unit and the floor (ie, the metal middle plate) below the first non-resonant unit through the first feeding line
- the second feeding unit is connected to the second feeding line through the second feeding line Connected to the second radiating unit, the second non-resonant unit and the floor below the second non-resonant unit (that is, the metal mid-plate), that is, through line power distribution
- the first feeding unit provides the first radiating unit and the The first non-resonant unit is fed, and the second feed unit feeds the second radiating unit and the second non-resonant unit through the second feed line, so that the first non-resonant unit can assist the first radiating unit to excite the floor characteristic mode And the effect of the second non-resonant unit assisting the second radiating unit to excite the floor eigenmode.
- the first radiation unit is a low frequency radiation unit
- the second radiation unit is a medium and high frequency radiation unit.
- a switch is provided on the sub-feeder for selectively turning on the non-resonant unit on the sub-feeder.
- the switch can control the connection or disconnection between the main feeder and the non-resonant unit, so that it can be used flexibly.
- the switch can be disconnected.
- the resonance unit assists in exciting the floor eigenmode, just close the switch.
- the radiation unit is a metal frame antenna
- the non-resonant unit is disposed close to the metal frame antenna.
- the non-resonant unit is arranged close to the metal frame antenna, which can reduce the length of the feeder to a certain extent, thereby saving costs and improving reliability.
- a second aspect of the embodiments of the present application further provides an electronic device, the electronic device includes at least a display screen, a rear case, and a middle frame between the display screen and the rear case, and further includes: any of the above antenna device.
- the electronic device includes at least an antenna device.
- the antenna device is provided with a non-resonant unit, and the feeding unit respectively feeds the radiation unit and the non-resonant unit. It can play the role of auxiliary excitation of the characteristic mode of the floor, and because the size of the non-resonant unit is much smaller than the electrical length required for the antenna to resonate in this frequency band, the non-resonant unit will not generate a resonance curve on the resonance curve, and there is no resonance point. , so that the radiation efficiency of the antenna can be improved without generating a new resonance, so that the user's use effect can be improved.
- the middle frame is a metal middle frame
- the metal middle frame includes at least a metal frame and a metal middle plate, and the metal frame is arranged around the periphery of the metal middle plate; the metal frame The frame forms a metal frame antenna, and the metal frame antenna serves as at least one radiation unit in the antenna device.
- FIG. 1 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of a split structure of an electronic device provided by an embodiment of the present application.
- FIG. 3 is a current distribution diagram of a floor eigenmode of an antenna of an electronic device in the prior art at 0.8 GHz;
- FIG. 4 is a current distribution diagram of a floor eigenmode of an antenna of an electronic device in the prior art at 2.3 GHz;
- FIG. 5 is a schematic diagram of the use of an electronic device provided in an embodiment of the present application in a head-hand model scenario
- FIG. 6 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 11 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 12 is a current distribution diagram of a floor eigenmode of an antenna of an electronic device in the prior art at 0.9 GHz;
- 13 is a radiation pattern of an antenna of an electronic device in the prior art at 0.89 GHz;
- FIG. 14 is a current distribution diagram of a floor eigenmode of an antenna device in an electronic device according to an embodiment of the application at 0.9 GHz;
- 15 is a radiation pattern of an antenna device in an electronic device provided in an embodiment of the application at 0.89 GHz;
- 16 is a current distribution diagram of a floor eigenmode at 0.9 GHz of a non-resonant unit of an antenna device in an electronic device according to an embodiment of the present application;
- 17 is a radiation pattern at 0.89 GHz of a non-resonant unit of an antenna device in an electronic device according to an embodiment of the application;
- Fig. 18 is a reflection coefficient curve comparison diagram and a radiation efficiency curve comparison diagram of a low-frequency antenna of an electronic device under B28/B5/B8 in the prior art;
- 19 is a comparison diagram of the radiation efficiency curve of the antenna device in the electronic device provided by an embodiment of the application compared with the antenna in the prior art under B5;
- 20 is a comparison diagram of the overall system efficiency curve of the antenna device in the electronic device provided by an embodiment of the application compared with the antenna in the prior art under B28/B5/B8;
- 21 is a comparison diagram of a reflection coefficient curve of an antenna device in an electronic device provided by an embodiment of the present application compared to an antenna in the prior art;
- 22 is a comparison diagram of radiation efficiency curves of an antenna device in an electronic device provided by an embodiment of the present application compared to an antenna in the prior art;
- FIG. 23 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- 24 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- 25 is a current distribution diagram of a floor eigenmode of an antenna device in an electronic device provided in an embodiment of the application at 1.8 GHz;
- 26 is a comparison diagram of a reflection coefficient curve, a comparison diagram of a radiation efficiency curve, and a comparison diagram of the total system efficiency of an antenna device in an electronic device provided by an embodiment of the present application compared with an antenna in the prior art;
- FIG. 27 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 28 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- FIG. 29 is a schematic structural diagram of an antenna device in an electronic device according to an embodiment of the present application.
- 100-antenna device 10-radiation unit; 101-first radiation unit;
- L1-first direction 200-mobile phone; 21-display screen;
- the embodiment of the present application provides an electronic device, which may include, but is not limited to, a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a handheld computer, a walkie-talkie, a netbook, a point of sale (Point of Sale) sales, POS) machines, personal digital assistants (personal digital assistants, PDAs), wearable devices, virtual reality devices, wireless U disks, Bluetooth audio/headphones, or vehicle front-mounted devices, driving recorders, security equipment, etc. with antenna devices Mobile or stationary terminal.
- UMPC ultra-mobile personal computer
- PDA personal digital assistants
- wearable devices virtual reality devices
- wireless U disks wireless U disks
- Bluetooth audio/headphones or vehicle front-mounted devices
- driving recorders security equipment, etc. with antenna devices Mobile or stationary terminal.
- the mobile phone 200 is taken as an example of the above electronic device for illustration.
- the mobile phone 200 provided in the embodiments of the present application may be a curved screen mobile phone or a flat screen mobile phone.
- the flat screen mobile phone is used as the example to illustrate. 1 and 2 respectively show the overall structure and the split structure of the mobile phone 200.
- the display screen 21 of the mobile phone 200 provided by the embodiment of the present application may be a water drop screen, a notch screen, a full screen, or a hole-digging screen (see FIG. 1 ).
- the display screen 21 is provided with an opening 211, and the following description takes a hole-drilling screen as an example for description.
- the mobile phone 200 may include: a display screen 21 , a rear case 25 and a middle frame 22 located between the display screen 21 and the rear case 25 , in addition, the mobile phone 200 may further include: a battery 24 , and the battery 24 is located in the middle frame 22 and the rear shell 25, wherein, the battery 24 can be arranged on the side of the middle frame 22 facing the rear shell 25 (as shown in FIG. 2), or the battery 24 can be arranged on the side of the middle frame 22 facing the display screen 21,
- the side of the middle frame 22 facing the rear case 25 may have a battery compartment (not shown in the figure), and the battery 24 is installed in the battery compartment.
- the mobile phone 200 may further include a circuit board 23, wherein the circuit board 23 may be disposed on the middle frame 22, for example, the circuit board 23 may be disposed on the side of the middle frame 22 facing the rear case 25 (as shown in FIG. 2), or the circuit board 23 may be disposed on the side of the middle frame 22 facing the display screen 21, and the display screen 21 and the rear shell 25 are located on both sides of the middle frame 22, respectively.
- the battery 24 can be connected to the charging management module and the circuit board 23 through the power management module, and the power management module receives the input of the battery 24 and/or the charging management module, and provides the processor, internal memory, external memory, display screen 21, camera, etc. modules and communication modules.
- the power management module can also be used to monitor parameters such as the capacity of the battery 24, the number of cycles of the battery 24, the state of health of the battery 24 (leakage, impedance).
- the power management module may also be provided in the processor of the circuit board 23 .
- the power management module and the charging management module may also be provided in the same device.
- the display screen 21 can be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen, or can be a liquid crystal display (Liquid Crystal Display, LCD), when the mobile phone 200 is a curved screen mobile phone , the display screen 21 may be an OLED display screen.
- OLED Organic Light-Emitting Diode
- LCD Liquid Crystal Display
- the middle frame 22 may be a metal middle frame, and the metal middle frame may at least include a metal middle plate 221 and a metal frame 222 , and the frame 222 is arranged around the outer circumference of the metal middle plate 221 .
- the frame 222 may include a top frame 2221, a bottom frame 2222, a left frame 2223 and a right frame 2224.
- the top frame 2221, the bottom frame 2222, the left frame 2223 and the right frame 2224 form a frame 222 with a square ring structure.
- the material of the metal middle plate 221 includes, but is not limited to, aluminum plate, aluminum alloy, stainless steel, steel-aluminum composite die-casting plate, titanium alloy or magnesium alloy, and the like.
- the frame 222 may be a metal frame, a ceramic frame, or a glass frame.
- the material of the metal frame includes, but is not limited to, aluminum alloy, stainless steel, steel-aluminum composite die-casting plate, or titanium alloy.
- the metal middle plate 221 and the frame 222 may be clamped, welded, bonded or integrally formed, or the metal middle plate 221 and the frame 222 may be fixedly connected by injection molding.
- the top frame 2221 and the bottom frame 2222 are oppositely arranged, the left frame 2223 and the right frame 2224 are oppositely arranged, and the top frame 2221 is connected with one end of the left frame 2223 and one end of the right frame 2224 in a rounded corner.
- the bottom frame 2222 is connected with the other end of the left frame 2223 and the other end of the right frame 2224 respectively with rounded corners, thereby forming a rounded rectangular area together.
- the ground plane of the rear case is disposed in the rounded rectangular area, and is respectively connected with the top frame 2221 , the bottom frame 2222 , the left frame 2223 and the right frame 2224 . It can be understood that the ground plane of the rear case may be the rear case 25 of the mobile phone 200 .
- the rear shell 25 can be a metal rear shell, a glass rear shell, a plastic rear shell, or a ceramic rear shell. Not limited to the above examples.
- the rear shell 25 of the mobile phone 200 may be connected with the frame 222 to form a unibody rear shell.
- the mobile phone 200 may include: a display screen 21 , a metal middle plate 221 and a rear shell, the rear shell
- the frame 222 and the rear case 25 can be formed by integral molding (Unibody), so that the circuit board 23 and the battery 24 are located in the space enclosed by the metal middle plate 221 and the rear case.
- the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the mobile phone 200 .
- the mobile phone 200 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
- the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
- an antenna may be provided on the mobile phone 200 to transmit and receive signals through the antenna.
- the antenna performance level of the mobile phone 200 in an actual usage scenario is directly related to the actual experience of the user.
- most mobile phones 200 use the industrial design (Industry Design, ID) of metal frame and glass back shell.
- ID Industrial Design
- the size of the metal frame is limited and the antenna environment is tense.
- the antenna environment is tense.
- the antenna performance according to the relationship between frequency and wavelength resonance, the lower the frequency, The longer the radiator required, the greater the space requirement. Therefore, under the limited space environment and radiator length, how to improve the antenna performance, especially the low-frequency antenna performance, has become an important issue in the research and design of terminal antennas.
- Figures 3 and 4 are the current distributions of the floor characteristic mode of the antenna. It can be seen from the figures that due to resonance, the floor (ie, the metal mid-plate 221 ) has different current distributions in different frequency bands, that is, the low-frequency antennas in different frequency bands and The floor eigenmodes of mid- and high-frequency antennas have their own characteristics.
- the current flow direction of the low-frequency antenna is the longitudinal mode (see Figure 3), and the current flow direction of the mid-high frequency antenna is the transverse mode (see Figure 4).
- the eigenmode of the floor is an inherent characteristic of the floor.
- the better antenna efficiency at the corresponding frequency can be obtained by exciting the required eigenmode of the floor.
- sufficient excitation of the longitudinal mode of the floor can obtain better free space (FS) efficiency
- sufficient excitation of the lateral mode can also obtain better FS efficiency.
- FIG. 5 is a schematic diagram of a head-hand model scene.
- the performance of the antenna will change compared to that of the FS.
- the antenna design needs to obtain a better longitudinal characteristic mode of the floor, but the longitudinal mode at this time will bring about a large drop in the hand mode.
- the low-frequency antenna has a better lateral characteristic mode of the floor, a smaller drop in the hand mode can be obtained and better hand mode performance, but the FS at this time will be worse.
- embodiments of the present application provide an antenna device and an electronic device having the antenna device.
- the antenna device can be applied to electronic devices (such as a mobile phone 200 ).
- the antenna device is provided with a non-resonant unit, and the feeding units are respectively The radiating element and the non-resonant unit are fed.
- the non-resonant unit can play the role of auxiliary excitation of the characteristic mode of the floor, and because the size of the non-resonant unit is much smaller than the power required for the antenna to resonate in this frequency band.
- the length of the non-resonant unit will not generate a resonance curve and no resonance point on the resonance curve, so that the radiation efficiency of the antenna can be improved without generating a new resonance, thereby improving the user's use effect.
- the antenna device provided in the present application is suitable for electronic equipment using any one or more of the following communication technologies, for example, long term evolution (long term evolution, LTE) communication technology, Wi-Fi communication technology, 5G communication technology , SUB-6G communication technology and other communication technologies in the future.
- LTE long term evolution
- Wi-Fi wireless Fidelity
- 5G Fifth Generation
- SUB-6G SUB-6G communication technology
- an embodiment of the present application provides an antenna device 100 .
- the antenna device 100 is applied to a mobile phone 200 .
- the mobile phone 200 may include a display screen 21 , a rear case 25 , and an antenna located between the display screen 21 and the rear case 25 .
- the middle frame 22 (see FIG. 2 ) in between, wherein the antenna device 100 may include: at least one radiating element 10, at least one feeding element 20 and at least one non-resonant element 30, and the feeding element 20 is the radiating element 10 and the at least one non-resonant element 30, respectively.
- the non-resonant unit 30 is fed.
- the size of the non-resonant unit 30 may be smaller than 1/8 ⁇ , where ⁇ is the wavelength corresponding to the resonant frequency of the radiation unit 10 . It should be noted that the size of the non-resonant unit 30 is far smaller than the electrical length required for the radiating unit 10 to resonate in this frequency band, which can ensure that the non-resonant unit 30 does not generate a resonance curve or resonance point on the reflection coefficient curve (S11), Therefore, even if the non-resonant unit 30 is removed, the resonance curve and the number of resonance points on S11 will not change.
- the size of the non-resonant unit 30 may be 8 mm ⁇ 9 mm, which is smaller than the resonance length of the radiation unit 10 in this frequency band.
- the 1/4 wavelength size at low frequency is 75mm@1GHz.
- the non-resonant unit 30 may be a metal layer or a frame metal branch, which is not limited in the embodiments of the present application, nor is it limited to the above examples.
- the frame 222 may be a metal frame, the metal frame may form a metal frame antenna, and the metal frame antenna serves as at least one radiation unit 10 in the antenna device 100 .
- the metal frame antenna may be a radiator located on the metal frame, and the radiator is formed by opening a slot on the metal frame.
- the metal frame antenna is a slot antenna formed by opening a slot on the metal frame.
- the slot antenna may include a first portion, a second portion, and a third portion separated by a slot, wherein the first portion and the second portion, the second portion and the third portion, and the third portion and the first portion Can be filled with non-conductive material.
- each gap can be filled with a non-conductive material (eg, plastic) to ensure the appearance integrity of the metal frame.
- a non-conductive material eg, plastic
- the feeding point and the grounding point of the feeding unit 20 may be respectively electrically connected to the non-resonant unit 30 and the metal middle plate 221 serving as the floor in the mobile phone 200 .
- the non-resonant unit 30 is used to assist in exciting the floor eigenmode, wherein when the radiation unit 10 is a low-frequency radiation unit, the non-resonant unit 30 assists in exciting the floor longitudinal eigenmode.
- the non-resonant unit 300 assists in exciting the lateral characteristic mode of the floor.
- the current flow of the low frequency radiating element is in the longitudinal mode
- the current flow of the medium and high frequency radiating element is in the transverse mode
- the required floor characteristic mode can be excited to obtain better antenna efficiency at the corresponding frequency. That is, for low-frequency radiation elements, sufficient excitation of the longitudinal mode of the floor can obtain better radiation efficiency, and for medium and high-frequency radiation elements, sufficient excitation of the lateral mode can also obtain better radiation efficiency.
- the orthographic projection of the non-resonant unit 30 on the first direction L1 may be located in the metal middle plate 221 , and the first direction L1 is a direction perpendicular to the plane where the metal middle plate 221 is located.
- the non-resonant unit 30 may be located above the metal mid-plate 221, so that the feed unit 20 is respectively connected to the non-resonant unit 30 and the floor below the non-resonant unit 30 (ie, the metal mid-plate 221) through the power distribution of the feed connection. , which can achieve the effect of assisting the excitation of the floor eigenmode.
- the feeding unit 20 may be electrically connected to the non-resonant unit 30 and the metal mid-plate 221 through the feeding line 40 .
- the feeder unit 20 is connected to the non-resonant unit 30 and the floor below the non-resonant unit 30 through the feeder line 40 respectively (ie the metal middle plate 221 ), enabling auxiliary excitation The effect of the floor feature mode.
- each feeder 40 may include: a main feeder 401 and a sub-feeder 402, wherein the main feeder 401 and the sub-feeder 402 respectively include a signal wire and a ground wire, and the first The signal line at one end 4011 is electrically connected to the feed unit 20 , the signal line at the second end 4012 of the main feed line is electrically connected to the radiation unit 10 , and the ground wire of the main feed line 401 is grounded.
- the signal wire and ground wire of the first end 4021 of the sub-feeder are electrically connected to the signal wire and ground wire of the main feeder 401, and the signal wire and ground wire of the second end 4022 of the sub-feeder are respectively connected to the non-resonant unit 30 and the metal wire.
- the middle plate 221 is electrically connected.
- the feeding unit 20 can feed the radiating unit 10 and the non-resonant unit 30 respectively, and is in phase with the non-resonant unit 30 and the floor at the non-resonant unit 30 (ie, the metal middle plate 221 ) through the power distribution at the feeding place. connection can effectively improve the efficiency of the antenna.
- the sub-feeder 402 may be a coaxial wire.
- the sub-feeder 402 may include: an outer conductor 4024 and an inner conductor 4023, and the outer conductor 4024 is wrapped in a Outside the inner conductor 4023 , the inner conductor 4023 is the signal line of the sub-feeder 402 , and the outer conductor 4024 is the ground wire of the sub-feeder 402 .
- One end of the inner conductor 4023 is electrically connected to the signal line of the main feeder 401 , and the other end of the inner conductor 4023 is electrically connected to the non-resonant unit 30 .
- One end of the outer conductor 4024 is electrically connected to the ground wire of the main feeder 401, and the other end of the outer conductor 4024 is electrically connected to the metal middle plate 221.
- the inner conductor 4023 of the sub-feed line 402 is electrically connected to the non-resonant unit 30, and the outer conductor 4024 of the sub-feed line 402 is electrically connected to the floor at the non-resonant unit 30 (ie, the metal middle plate 221).
- the metal middle plate 221 connected to the outer conductor 4024 can also provide a certain shielding effect for the non-resonant unit 30 connected to the inner conductor 4023 .
- the main feeder 401 may be a microstrip line.
- the main feeder 401 may include: a first conductor 4013 and a second conductor 4014 , wherein the first conductor 4013 is a part of the main feeder 401 .
- the second conductor 4014 is the ground line of the main feeder 401 , and the first conductor 4013 and the second conductor 4014 are provided separately. In this way, the transmission of the power signal and the ground signal between the feeding unit 20 and the radiation unit 10 can be ensured.
- first end 4011 of the main feeder may include the first end of the first conductor 4013 and the first end of the second conductor 4014.
- first end of the first conductor 4013 is used as the first end in FIG. 9 .
- the example shows the first end 4011 of the main feeder.
- the non-resonant unit 30 may be arranged at the position shown in FIG. 8 , or may be arranged at the position shown in FIG. 10 or FIG. 11 .
- the setting position is not limited and is not limited to the above-mentioned example.
- the radiation unit 10 may be a low frequency radiation unit.
- FIGS. 12 and 13 are current distribution diagrams and directional diagrams of the antenna in the prior art
- FIGS. 14 and 15 are the overall current distribution diagrams of the antenna device 100 after the non-resonant unit 30 is introduced into the antenna device 100 in the embodiment of the present application
- 16 and 17 are the current distribution diagram and the directional diagram of the non-resonant unit 30 itself introduced into the antenna device 100 in the embodiment of the present application.
- the non-resonant unit 30 introduced by the antenna device 100 in the embodiment of the present application does not change the current distribution and pattern characteristics of the antenna device 100 as a whole, but the current distribution on the non-resonant unit 30 is significantly better excited.
- the ground eigenmode is eliminated, and the excitation of this eigenmode has obvious benefits for improving the efficiency of the antenna.
- FIG. 18 is a comparison diagram of a reflection coefficient curve and a radiation efficiency curve of an antenna of an electronic device in the prior art under B28/B5/B8.
- A1 is the reflection coefficient curve achieved by tuning the B28 frequency band antenna
- B1 is the radiation efficiency curve achieved by the B28 frequency band antenna by tuning
- A2 is the reflection coefficient curve achieved by the B5 frequency band antenna by tuning
- B2 is the radiation efficiency curve achieved by tuning of the B5 frequency band antenna
- A3 is the reflection coefficient curve achieved by the B8 frequency band antenna by tuning
- B3 is the radiation efficiency curve achieved by the B8 frequency band antenna by tuning.
- the frequency band covered by B28 is 703-748MHz
- the frequency band covered by B5 is 824-849MHz
- the frequency band covered by B8 is 880-915MHz.
- FIG. 19 and FIG. 20 show the comparison of the antenna radiation efficiency and system efficiency after introducing the non-resonant unit 30 in the embodiment of the present application and the antenna radiation efficiency and system efficiency without using the solution in the embodiment of the present application.
- C1 is a radiation efficiency curve diagram of an antenna in the prior art
- C2 is a radiation efficiency curve diagram of the antenna device 100 in the embodiment of the present application.
- D1 is the system efficiency curve diagram when the antenna device 100 in the embodiment of the application is in the B28 frequency band
- D2 is the system efficiency curve diagram when the antenna device 100 in the embodiment of the application is in the B5 frequency band
- D3 is the application The system efficiency curve diagram when the antenna device 100 in the embodiment is in the B8 frequency band
- E1 is the system efficiency curve diagram when the antenna in the prior art is in the B28 frequency band
- E2 is the system efficiency when the antenna in the prior art is in the B5 frequency band
- E3 is the system efficiency graph when the antenna in the prior art is in the B8 frequency band.
- the embodiment of the present application introduces the non-resonant unit 30 and connects the non-resonant unit 30 and the floor (metal middle plate 221) at the non-resonant unit 30 through the power distribution at the feed, so that the antenna can be effectively improved.
- efficiency Specifically, at 700 MHz, the radiation efficiency of the antenna device 100 in the embodiment of the present application is improved by 1.5 dB compared to the radiation efficiency of the antenna in the prior art.
- the radiation efficiency of the antenna device 100 in the embodiment of the present application is improved by 1.5 dB. Compared with the radiation efficiency of the antenna in the prior art, the radiation efficiency is increased by 1.4 dB.
- the radiation efficiency of the antenna device 100 in the embodiment of the present application is increased by 1.3 compared with the radiation efficiency of the antenna in the prior art. dB.
- Figure 8 is a schematic diagram of the experimental fixture verified by the actual project.
- power distribution is performed at the feeder, the inner conductor 4023 of the feeder 40 is connected to the non-resonant unit 30, the outer conductor 4024 of the feeder 40 is connected to the floor frame at the non-resonant unit 30, and the non-resonant unit 30 can be a copper sheet of 10mm ⁇ 10mm.
- Figure 21 and Figure 22 are the reflection coefficient curves and radiation efficiency curves measured by the physical jig.
- F1 is a reflection coefficient curve diagram of an antenna in the prior art
- F2 is a reflection coefficient curve diagram of the antenna device 100 provided by the embodiment of the present application.
- G1 is a radiation efficiency curve diagram of an antenna in the prior art
- G2 is a radiation efficiency curve diagram of the antenna device 100 provided by the embodiment of the present application.
- the method of improving the antenna efficiency by introducing a non-resonant unit to assist the excitation of the floor eigenmode mentioned in the patent of the present invention can also be applied to medium and high frequency antennas.
- adding a non-resonant unit to the mid-high frequency antenna the excited floor eigenmode current is shown in Figure 25, and the floor eigenmode current assisted by the non-resonant unit 30 is the same as shown in Figure 4
- the mid- and high-frequency floor characteristic mode currents are completely consistent.
- FIG. 26 shows a comparison of the efficiency and benefits of introducing the non-resonant unit 30 to the antenna device 100 in the embodiment of the present application (ie, the structure shown in FIG. 23 or FIG. 24 ).
- L1 is the reflection coefficient curve diagram of the antenna in the prior art
- L2 is the reflection coefficient curve diagram of the antenna device 100 provided by the embodiment of the present application
- M1 is the radiation efficiency curve diagram of the antenna in the prior art
- M2 In the radiation efficiency curve diagram of the antenna device 100 provided by the embodiment of the present application
- N1 is the total system efficiency curve graph of the antenna in the prior art
- N2 is the total system efficiency curve graph of the antenna device 100 provided by the embodiment of the present application.
- the antenna device 100 provided by the embodiment of the present application can also significantly improve the antenna efficiency of the mid-to-high frequency antenna.
- the antenna efficiency can be improved by 1.7 dB. Improve the performance of the antenna.
- the radiation unit 10 may be a metal frame antenna
- the non-resonant unit 30 may be disposed close to the metal frame antenna.
- the non-resonant unit 30 is disposed close to the metal frame antenna, which can reduce the length of the feeder 40 to a certain extent, thereby saving costs and improving reliability.
- the number of non-resonant units 30 is one, and the number of feed lines 40 may be at least two.
- at least one feeding unit 20 may include: a first feeding unit 201 and a second feeding unit 202 , wherein the feeding point and the grounding point of the first feeding unit 201 may pass through at least two feeding units.
- the first feeder 41 of the wires 40 is electrically connected to the non-resonant unit 30 and the metal mid-plate 221
- the feed point and the ground point of the second feeder 202 can pass through the second feeder 42 of the at least two feeders 40 It is electrically connected to the non-resonant unit 30 and the metal middle plate 221 .
- At least one radiation unit 10 may include: a first radiation unit 101 and a second radiation unit 102, wherein the signal line of the first end 4011 of the main feeder of the first feeder 41 is electrically connected to the first feeder 201, and the first The signal line of the second end 4012 of the main feeder of a feeder 41 is electrically connected to the first radiating element 101 , and the ground wire of the main feeder 401 of the first feeder 41 is grounded.
- the signal line and the ground line of the first end 4021 of the sub-feed line of the first feed line 41 are electrically connected to the signal line and the ground line of the main feed line 401 of the first feed line 41 , and the The signal line and the ground line of the second end 4022 are respectively electrically connected to the non-resonant unit 30 and the metal mid-plate 221 .
- the signal line of the first end 4011 of the main feeder of the second feeder 42 is electrically connected to the second feeder unit 202
- the signal line of the second end 4012 of the main feeder of the second feeder 42 is electrically connected to the second radiating unit 102 are electrically connected, and the ground wire of the main feeder 401 of the second feeder 42 is grounded.
- the signal line and the ground line of the first end 4021 of the sub-feeder line of the second feeder line 42 are electrically connected to the signal line and the ground line of the main feeder line 401 of the second feeder line 42 .
- the signal line and the ground line of the second end 4022 are respectively electrically connected to the non-resonant unit 30 and the metal mid-plate 221 .
- the first feeding unit 201 is connected to the first radiating unit 101, the non-resonant unit 30 and the floor below the non-resonant unit 30 (ie, the metal middle plate 221) through the first feeding line 41, and the second feeding unit 202 is connected to the
- the two feeders 42 are connected to the second radiating element 102 , the non-resonant unit 30 and the floor below the non-resonant unit 30 (ie, the metal mid-plate 221 ), that is, through line power distribution, and the first feeder 201 passes through the first feeder 41
- the first radiating unit 101 and the non-resonant unit 30 are fed, and the second feeding unit 202 feeds the second radiating unit 102 and the non-resonant unit 30 through the second feeding line 42, so the non-resonant unit 30 can realize the auxiliary first
- the radiation element 101 and the second radiation element 102 excite the action of the floor eigenmode.
- the first radiation unit 101 may be a low frequency radiation unit
- the second radiation unit 102 may be a medium and high frequency radiation unit.
- the first radiation unit 101 and the second radiation unit 102 may both be low-frequency radiation units, or the first radiation unit 101 and the second radiation unit 102 may be both medium and high-frequency radiation units.
- the number of non-resonant units 30 may be two, and at least one non-resonant unit 30 may include: a first non-resonant unit 301 and a second non-resonant unit 302 .
- the number of feeding lines 40 may be at least two, and at least one feeding unit 20 may include: a first feeding unit 201 and a second feeding unit 202, wherein the feeding point and the grounding point of the first feeding unit 201 may be
- the first feeder 41 of the at least two feeders 40 is electrically connected to the first non-resonant unit 301 and the metal mid-plate 221 , and the feed point and the ground point of the second feeder 202 can pass through the at least two feeders 40
- the second feed line 42 in the middle is electrically connected to the second non-resonant unit 302 and the metal middle plate 221 .
- At least one radiation unit 10 may include: a first radiation unit 101 and a second radiation unit 102 , wherein the signal line of the first end 4011 of the main feeder of the first feeder 41 is electrically connected to the first feeder 201 , the signal line of the second end 4012 of the main feeder of the first feeder 41 is electrically connected to the first radiation unit 101 , and the ground wire of the main feeder 401 of the first feeder 41 is grounded.
- the signal line and the ground line of the first end 4021 of the sub-feed line of the first feed line 41 are electrically connected to the signal line and the ground line of the main feed line 401 of the first feed line 41 , and the The signal line and the ground line of the second end 4022 are respectively electrically connected to the first non-resonant unit 301 and the metal mid-plate 221 .
- the signal line of the first end 4011 of the main feeder of the second feeder 42 is electrically connected to the second feeder unit 202 , and the signal line of the second end 4012 of the main feeder of the second feeder 42 is electrically connected to the second radiating unit 102 are electrically connected, and the ground wire of the main feeder 401 of the second feeder 42 is grounded.
- the signal line and the ground line of the first end 4021 of the sub-feeder line of the second feeder line 42 are electrically connected to the signal line and the ground line of the main feeder line 401 of the second feeder line 42, and the sub-feeder line of the second feeder line 45
- the signal line and the ground line of the second end 4022 are electrically connected to the second non-resonant unit 302 and the metal middle plate 221, respectively.
- the first feeding unit 201 is connected to the first radiating unit 101 , the first non-resonant unit 301 and the floor below the first non-resonant unit 301 (ie, the metal middle plate 221 ) through the first feeding line 41
- the second feeding The unit 202 is connected to the second radiating unit 102, the second non-resonant unit 302, and the floor below the second non-resonant unit 302 (ie, the metal mid-plate 221) through the second feed line 42, that is, through line power distribution, the first feed
- the unit 201 feeds the first radiating unit 101 and the first non-resonant unit 301 through the first feeder 41
- the second feeder 202 feeds the second radiating unit 102 and the second non-resonant unit 302 through the second feeder 42
- the effect that the first non-resonant unit 301 assists the first radiation unit 101 to excite the floor characteristic mode and the second non-resonant unit 302 assists the second radiation unit 102 to excite the floor characteristic mode can be
- a switch 4025 may be provided on the sub-feeder 402, and the switch 4025 is used to select and turn on the non-resonant unit 30 (ie the first non-resonant unit 301 or second non-resonant unit 302).
- the switch 4025 can control the connection or disconnection between the main feeder 401 and the non-resonant unit 30, so as to play the role of flexible use, for example, when the non-resonant unit 30 is not needed to assist in exciting the floor eigenmode, the switch is turned off 4025 is sufficient, and when the non-resonant unit 30 is required to assist in exciting the floor eigenmode, the switch 4025 may be closed.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Support Of Aerials (AREA)
Abstract
本申请实施例提供一种天线装置及电子设备,该天线装置通过设置非谐振单元,馈电单元分别为辐射单元和非谐振单元馈电,通过馈电功率分配设计,该非谐振单元能够起到辅助激励地板特征模的作用,且由于该非谐振单元的尺寸远远小于天线在该频段谐振所需要的电长度,该非谐振单元在谐振曲线上不会产生谐振曲线,没有谐振点,以此能够实现在不产生新的谐振的情况下,提升天线的辐射效率,从而提升用户的使用效果。
Description
本申请要求于2021年04月12日提交中国专利局、申请号为202110391085.0,申请名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及终端技术领域,特别涉及一种天线装置及电子设备。
随着信息技术的发展,终端产品的无线性能已被越来越关注,而且天线的无线性能会直接影响用户的实际体验。但进入5G之后,现在的终端手机已朝着全面屏,多天线的趋势发展,这样就会导致天线的辐射体尺寸越来越紧张,辐射环境越来越恶化,天线的性能也变得越来越差。在天线的诸多频段中,根据频率与波长谐振的关系,频率越低,需要的辐射体越长,对空间的需求也越大。所以在全面屏的情况下,在有限的空间环境和辐射体长度下,如何提升天线性能尤其是低频天线性能已成为终端天线研究和设计中的重要问题。
以电子设备为手机为例,现有技术中,一般在手机上的不同空间位置设计有不同的天线结构,具体地,可以根据实际场景需求,通过在手机空间内不同位置布局不同的谐振天线,以满足不同场景下的天线需求。这样,若其中某一个天线被挡住,则可以选择通断分布在其它空间位置的天线进行工作,满足终端产品对天线的性能需求。
然而,由于手机内的可使用空间有限,上述方案中的天线结构在手机内占据过大的设计面积,不利于手机内其它部件的布局。因此,如何在较小空间内满足目前对天线的性能需求已成为天线研究和设计中的一个重要问题。
发明内容
本申请实施例提供一种天线装置及电子设备,能够在不占据手机内过大设计空间且不影响现有天线谐振曲线的情况下,提升天线的辐射效率,从而提升用户的实际体验感。
本申请实施例第一方面提供一种天线装置,该天线装置应用于电子设备,所述天线装置包括:至少一个辐射单元、至少一个馈电单元以及至少一个非谐振单元;且所述馈电单元分别为所述辐射单元和所述非谐振单元馈电;其中,所述非谐振单元的尺寸小于1/8λ,λ为所述辐射单元的谐振频率对应的波长。
本申请实施例提供的天线装置,该天线装置通过设置非谐振单元,馈电单元分别为辐射单元和非谐振单元馈电,通过馈电功率分配设计,该非谐振单元能够起到辅助激励地板特征模的作用,且由于该非谐振单元的尺寸远远小于天线在该频段谐振所需要的电长度,该非谐振单元在谐振曲线上不会产生谐振曲线,没有谐振点,以此在不 产生新的谐振的情况下,能够提升天线的辐射效率,从而能够提升用户的使用效果。
在一种可能的实现方式中,所述馈电单元的馈电点和接地点分别与所述非谐振单元和所述电子设备中作为地板的金属中板电连接。通过馈电连接的功率分配,馈电单元的馈电点连接到非谐振单元,馈电单元的接地点连接到地板(即金属中板),能够实现辅助激励地板特征模的效果。
在一种可能的实现方式中,所述非谐振单元用于辅助激励地板特征模;其中,所述辐射单元为低频辐射单元时,所述非谐振单元辅助激励地板纵向特征模;所述辐射单元为中高频辐射单元时,所述非谐振单元辅助激励地板横向特征模。低频辐射单元的电流流向为纵向模式,中高频辐射单元的电流流向为横向模式,激励所需要的地板特征模就可以得到对应频率下较好的天线效率。即,对于低频辐射单元,充分激励地板纵向模式就可以得到较好的辐射效率,对于中高频辐射单元,充分激励横向模式,同样也可以得到较好的辐射效率。
在一种可能的实现方式中,所述非谐振单元在第一方向上的正投影位于所述金属中板内;所述第一方向为垂直于所述金属中板所在平面的方向。通过馈电连接的功率分配,馈电单元分别连接到非谐振单元以及非谐振单元下方的地板(即金属中板),能够实现辅助激励地板特征模的效果。
在一种可能的实现方式中,所述馈电单元通过馈电线与所述非谐振单元和所述金属中板电连接。通过用于馈电连接的馈电线的线功率分配,馈电单元分别通过馈电线连接到非谐振单元以及非谐振单元下方的地板(即金属中板),能够实现辅助激励地板特征模的效果。
在一种可能的实现方式中,每个所述馈电线包括:主馈电线以及子馈电线,所述主馈电线和所述子馈电线分别包含信号线和接地线,所述主馈电线的第一端的信号线与所述馈电单元电连接,所述主馈电线的第二端的信号线与所述辐射单元电连接;所述主馈电线的接地线接地;所述子馈电线的第一端的信号线和接地线与所述主馈电线的信号线和接地线电连接,所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接。
这样,即能实现馈电单元分别为辐射单元和非谐振单元馈电,且通过馈电处功率分配与非谐振单元及非谐振单元处的地板(即金属中板)相连接,能够有效提升天线的效率。
在一种可能的实现方式中,所述子馈电线为同轴线,包括:外导体以及内导体;所述外导体包裹在所述内导体的外部,所述内导体为信号线,所述外导体为接地线;所述内导体的一端与所述主馈电线的信号线电连接,所述内导体的另一端与所述非谐振单元电连接;所述外导体的一端与所述主馈电线的接地线电连接,所述外导体的另一端与所述金属中板电连接。
通过子馈电线的内导体与非谐振单元电连接,子馈电线的外导体与非谐振单元处的地板(即金属中板)电连接,在实现辅助激励地板特征模的同时,外导体连接的金属中板还能为内导体连接的非谐振单元提供一定的屏蔽作用。
在一种可能的实现方式中,所述主馈电线为微带线,包括:第一导体以及第二导体,所述第一导体为信号线,所述第二导体为接地线,所述第一导体与所述第二导体 分离设置。这样能够保证馈电单元与辐射单元之间的电源信号和接地信号的传输。
在一种可能的实现方式中,所述非谐振单元的数量为一个;所述馈电线的数量为至少两个;至少一个馈电单元包括:第一馈电单元以及第二馈电单元;所述第一馈电单元的馈电点和接地点通过至少两个所述馈电线中的第一馈电线分别与所述非谐振单元和所述金属中板电连接,所述第二馈电单元的馈电点和接地点通过至少两个所述馈电线中的第二馈电线分别与所述非谐振单元和所述金属中板电连接。
在一种可能的实现方式中,至少一个辐射单元包括:第一辐射单元以及第二辐射单元;所述第一馈电线的所述主馈电线的第一端的信号线与所述第一馈电单元电连接,所述第一馈电线的所述主馈电线的第二端的信号线与所述第一辐射单元电连接;所述第一馈电线的所述主馈电线的接地线接地;所述第一馈电线的所述子馈电线的第一端的信号线和接地线与所述第一馈电线的所述主馈电线的信号线和接地线电连接,所述第一馈电线的所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接;
所述第二馈电线的所述主馈电线的第一端的信号线与所述第二馈电单元电连接,所述第二馈电线的所述主馈电线的第二端的信号线与所述第二辐射单元电连接;所述第二馈电线的所述主馈电线的接地线接地;所述第二馈电线的所述子馈电线的第一端的信号线和接地线与所述第二馈电线的所述主馈电线的信号线和接地线电连接,所述第二馈电线的所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接。
这样,第一馈电单元通过第一馈电线连接到第一辐射单元、非谐振单元以及非谐振单元下方的地板(即金属中板),第二馈电单元通过第二馈电线连接到第二辐射单元、非谐振单元以及非谐振单元下方的地板(即金属中板),即通过线功率分配,第一馈电单元通过第一馈电线为第一辐射单元和非谐振单元馈电,第二馈电单元通过第二馈电线为第二辐射单元和非谐振单元馈电,则非谐振单元能够实现辅助第一辐射单元和第二辐射单元激励地板特征模的作用。
在一种可能的实现方式中,所述非谐振单元的数量为两个;至少一个非谐振单元包括:第一非谐振单元以及第二非谐振单元;所述馈电线的数量为至少两个;至少一个馈电单元包括:第一馈电单元以及第二馈电单元;所述第一馈电单元通过至少两个所述馈电线中的第一馈电线与所述第一非谐振单元和所述金属中板电连接,所述第二馈电单元通过至少两个所述馈电线中的第二馈电线与所述第二非谐振单元和所述金属中板电连接。
在一种可能的实现方式中,至少一个辐射单元包括:第一辐射单元以及第二辐射单元;所述第一馈电线的所述主馈电线的第一端的信号线与所述第一馈电单元电连接,所述第一馈电线的所述主馈电线的第二端的信号线与所述第一辐射单元电连接;所述第一馈电线的所述主馈电线的接地线接地;所述第一馈电线的所述子馈电线的第一端的信号线和接地线与所述第一馈电线的所述主馈电线的信号线和接地线电连接,所述第一馈电线的所述子馈电线的第二端的信号线和接地线分别与所述第一非谐振单元和所述金属中板电连接;
所述第二馈电线的所述主馈电线的第一端的信号线与所述第二馈电单元电连接, 所述第二馈电线的所述主馈电线的第二端的信号线与所述第二辐射单元电连接;所述第二馈电线的所述主馈电线的接地线接地;所述第二馈电线的所述子馈电线的第一端的信号线和接地线与所述第二馈电线的所述主馈电线的信号线和接地线电连接,所述第二馈电线的所述子馈电线的第二端的信号线和接地线分别与所述第二非谐振单元和所述金属中板电连接。
这样,第一馈电单元通过第一馈电线连接到第一辐射单元、第一非谐振单元以及第一非谐振单元下方的地板(即金属中板),第二馈电单元通过第二馈电线连接到第二辐射单元、第二非谐振单元以及第二非谐振单元下方的地板(即金属中板),即通过线功率分配,第一馈电单元通过第一馈电线为第一辐射单元和第一非谐振单元馈电,第二馈电单元通过第二馈电线为第二辐射单元和第二非谐振单元馈电,这样即可实现第一非谐振单元辅助第一辐射单元激励地板特征模以及第二非谐振单元辅助第二辐射单元激励地板特征模的效果。
在一种可能的实现方式中,所述第一辐射单元为低频辐射单元,所述第二辐射单元为中高频辐射单元。
在一种可能的实现方式中,所述子馈电线上设置有开关,用于选择接通所述子馈电线上的所述非谐振单元。开关能够控制主馈电线与非谐振单元之间的连接或断开,以此起到灵活使用的作用,在无需非谐振单元辅助激励地板特征模的情况下,断开开关即可,在需要非谐振单元辅助激励地板特征模的情况下,闭合开关即可。
在一种可能的实现方式中,所述辐射单元为金属边框天线,所述非谐振单元靠近所述金属边框天线设置。非谐振单元靠近金属边框天线设置,能够在一定程度上减小馈电线的长度,从而能够起到节省成本以及提高可靠性的作用。
本申请实施例第二方面还提供一种电子设备,该电子设备至少包括:显示屏、后壳以及位于所述显示屏和所述后壳之间的中框,还包括:上述任一所述的天线装置。
本申请实施例提供的电子设备,该电子设备至少包括天线装置,该天线装置通过设置非谐振单元,馈电单元分别为辐射单元和非谐振单元馈电,通过馈电功率分配设计,该非谐振单元能够起到辅助激励地板特征模的作用,且由于该非谐振单元的尺寸远远小于天线在该频段谐振所需要的电长度,该非谐振单元在谐振曲线上不会产生谐振曲线,没有谐振点,以此在不产生新的谐振的情况下,能够提升天线的辐射效率,从而能够提升用户的使用效果。
在一种可能的实现方式中,所述中框为金属中框,且所述金属中框至少包括金属边框以及金属中板,所述金属边框围绕所述金属中板的外周设置;所述金属边框形成金属边框天线,所述金属边框天线作为所述天线装置中的至少一个辐射单元。
图1为本申请一实施例提供的电子设备的整体结构示意图;
图2为本申请一实施例提供的电子设备的拆分结构示意图;
图3为现有技术中电子设备的天线在0.8GHz下的地板特征模的电流分布图;
图4为现有技术中电子设备的天线在2.3GHz下的地板特征模的电流分布图;
图5为本申请一实施例提供的电子设备在头手模场景下的使用示意图;
图6为本申请一实施例提供的电子设备中天线装置的结构示意图;
图7为本申请一实施例提供的电子设备中天线装置的结构示意图;
图8为本申请一实施例提供的电子设备中天线装置的结构示意图;
图9为本申请一实施例提供的电子设备中天线装置的结构示意图;
图10为本申请一实施例提供的电子设备中天线装置的结构示意图;
图11为本申请一实施例提供的电子设备中天线装置的结构示意图;
图12为现有技术中电子设备的天线在0.9GHz下的地板特征模的电流分布图;
图13为现有技术中电子设备的天线在0.89GHz下的辐射方向图;
图14为本申请一实施例提供的电子设备中天线装置在0.9GHz下的地板特征模的电流分布图;
图15为本申请一实施例提供的电子设备中天线装置在0.89GHz下的辐射方向图;
图16为本申请一实施例提供的电子设备中天线装置的非谐振单元在0.9GHz下的地板特征模的电流分布图;
图17为本申请一实施例提供的电子设备中天线装置的非谐振单元在0.89GHz下的辐射方向图;
图18为现有技术中电子设备的低频天线在B28/B5/B8下的反射系数曲线对比图和辐射效率曲线对比图;
图19为本申请一实施例提供的电子设备中天线装置相比于现有技术中的天线在B5下的辐射效率曲线对比图;
图20为本申请一实施例提供的电子设备中天线装置相比于现有技术中的天线在B28/B5/B8下的系统总效率曲线对比图;
图21为本申请一实施例提供的电子设备中天线装置相比于现有技术中的天线的反射系数曲线对比图;
图22为本申请一实施例提供的电子设备中天线装置相比于现有技术中的天线的辐射效率曲线对比图;
图23为本申请一实施例提供的电子设备中天线装置的结构示意图;
图24为本申请一实施例提供的电子设备中天线装置的结构示意图;
图25为本申请一实施例提供的电子设备中天线装置在1.8GHz下的地板特征模的电流分布图;
图26为本申请一实施例提供的电子设备中天线装置相比于现有技术中的天线的反射系数曲线对比图、辐射效率曲线对比图以及系统总效率对比图;
图27为本申请一实施例提供的电子设备中天线装置的结构示意图;
图28为本申请一实施例提供的电子设备中天线装置的结构示意图;
图29为本申请一实施例提供的电子设备中天线装置的结构示意图。
附图标记说明:
100-天线装置; 10-辐射单元; 101-第一辐射单元;
102-第二辐射单元; 20-馈电单元; 201-第一馈电单元;
202-第二馈电单元; 30-非谐振单元; 301-第一非谐振单元;
302-第二非谐振单元; 40-馈电线; 41-第一馈电线;
42-第二馈电线; 401-主馈电线; 4011-主馈电线的第一端;
4012-主馈电线的第二端; 4013-第一导体; 4014-第二导体;
402-子馈电线; 4021-子馈电线的第一端; 4022-子馈电线的第二端;
4023-内导体; 4024-外导体; 4025-开关;
L1-第一方向; 200-手机; 21-显示屏;
211-开孔; 22-中框; 221-金属中板;
222-边框; 2221-顶边框; 2222-底边框;
2223-左侧边框; 2224-右侧边框; 23-电路板;
24-电池; 25-后壳。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供一种电子设备,可以包括但不限于为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、销售点(Point of sales,POS)机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响/耳机、或车载前装、行车记录仪、安防设备等具有天线装置的移动或固定终端。
其中,本申请实施例中,以手机200为上述电子设备为例进行说明,本申请实施例提供的手机200可以为曲面屏手机也可以为平面屏手机,本申请实施例中以平面屏手机为例进行说明。图1和图2分别示出了手机200的整体结构和拆分结构,本申请实施例提供的手机200的显示屏21可以为水滴屏、刘海屏、全面屏或者挖孔屏(参见图1所示),例如,显示屏21上开设有开孔211,下述描述以挖孔屏为例进行说明。
参见图2所示,手机200可以包括:显示屏21、后壳25以及位于显示屏21和后壳25之间的中框22,另外,手机200还可以包括:电池24,电池24位于中框22和后壳25之间,其中,电池24可以设在中框22朝向后壳25的一面上(如图2所示),或者电池24可以设置在中框22朝向显示屏21的一面上,例如中框22朝向后壳25的一面可以具有电池仓(图中未示出),电池24安装在电池仓中。
在一些其它的示例中,手机200还可以包括电路板23,其中,电路板23可以设置在中框22上,例如,电路板23可以设置在中框22朝向后壳25的一面上(如图2所示),或者电路板23可以设置在中框22朝向显示屏21的一面上,显示屏21和后壳25分别位于中框22的两侧。
其中,电池24可以通过电源管理模块与充电管理模块和电路板23相连,电源管理模块接收电池24和/或充电管理模块的输入,并为处理器、内部存储器、外部存储器、显示屏21、摄像模组以及通信模块等供电。电源管理模块还可以用于监测电池24容量,电池24循环次数,电池24健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于电路板23的处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
当手机200为平面屏手机时,显示屏21可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏,也可以为液晶显示屏(Liquid Crystal Display,LCD),当手机200为曲面屏手机时,显示屏21可以为OLED显示屏。
继续参照图2,中框22可以为金属中框,且金属中框至少可以包括金属中板221和金属边框222,边框222围绕金属中板221的外周设置一周。一般地,边框222可以包括顶边框2221、底边框2222、左侧边框2223和右侧边框2224,顶边框2221、底边框2222、左侧边框2223和右侧边框2224围成方环结构的边框222。其中,金属中板221的材料包括但不限于为铝板、铝合金、不锈钢、钢铝复合压铸板、钛合金或镁合金等。边框222可以为金属边框,也可以为陶瓷边框,还可以为玻璃边框。当边框222为金属边框时,金属边框的材料包括但不限于为铝合金、不锈钢、钢铝复合压铸板或钛合金等。其中,金属中板221和边框222之间可以卡接、焊接、粘合或一体成型,或者金属中板221与边框222之间可以通过注塑固定相连。
参照图2所示,顶边框2221和底边框2222相对设置,左侧边框2223与右侧边框2224相对设置,顶边框2221分别与左侧边框2223的一端和右侧边框2224的一端呈圆角连接,底边框2222分别与左侧边框2223的另一端和右侧边框2224的另一端呈圆角连接,从而共同形成一圆角矩形区域。后壳接地面设置于圆角矩形区域内,并分别与顶边框2221、底边框2222、左侧边框2223以及右侧边框2224连接。可以理解的是,后壳接地面可以为手机200的后壳25。
后壳25可以为金属后壳,也可以为玻璃后壳,还可以为塑料后壳,或者,还可以为陶瓷后壳,本申请实施例中,对后壳25的材质并不加以限定,也不限于上述示例。
需要说明的是,在一些示例中,手机200的后壳25可以与边框222相连形成一体成型(Unibody)后壳,例如手机200可以包括:显示屏21、金属中板221和后壳,后壳可以为边框222和后壳25一体成型(Unibody)形成的后壳,这样电路板23和电池24位于金属中板221和后壳围成的空间中。
可以理解的是,本申请实施例示意的结构并不构成对手机200的具体限定。在本申请另一些实施例中,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
为了实现手机200的通信功能,在手机200上可以设置有天线,以通过天线对信号进行发射和接收。手机200在实际使用场景下的天线性能水平直接关系着用户的实际体验。目前,手机200大多应用金属边框、玻璃后壳的工业设计(Industry Design,ID),金属边框尺寸有限而且天线环境紧张,在天线的诸多频段中,根据频率与波长谐振的关系,频率越低,需要的辐射体越长,对空间的需求也越大。所以在有限的空间环境和辐射体长度下,如何提升天线性能尤其是低频天线性能已成为终端天线研究和设计中的重要问题。
在天线的设计过程中,特征模理论是一个非常重要的理论。图3和图4是天线的地板特征模电流分布,从图中可以看出,由于谐振原因,地板(即金属中板221)在不同频段有不同的电流分布,即,不同频段的低频天线和中高频天线的地板特征模有各自的特点,低频天线的电流流向为纵向模式(参见图3所示),中高频天线的电流流向为横向模式(参见图4所示)。地板的特征模是地板固有的特性,根据频率要求, 激励所需要的地板特征模就可以得到对应频率下较好的天线效率。例如,对于低频天线,充分激励地板纵向模式就可以得到较好自由空间(FS)效率,而对于中高频天线,充分激励横向模式,同样也可以得到较好的FS效率。
由于现有终端天线的使用场景比较多,例如常见的使用场景有头手模(besides head and hand,BHH),头模(besides head,BH)以及手模(hand,H)等多种场景,这些场景也是国家认证或运营商准入时的常见测试场景。例如,图5是头手模场景示意图。但在这些场景下,会带来天线性能相比于FS的性能变化。例如,对于低频天线的FS,天线设计时需要获得较好的地板纵向特征模,但这时候的纵向模式会带来较大的手模降幅。但如果低频天线具有比较好的地板横向特征模,则可以获得较小的手模降幅,具有较好的手模性能,但这时候的FS会变差。
经分析,对于低频天线,如果再辅助激励地板纵向特征模,低频天线的效率会得到提升。同样,对于中高频天线,如果再辅助激励地板横向特征模,中高频天线的效率会得到提升。基于此,本申请实施例提供一种天线装置以及具有该天线装置的电子设备,该天线装置可应用于电子设备(例如手机200)中,该天线装置通过设置非谐振单元,馈电单元分别为辐射单元和非谐振单元馈电,通过馈电功率分配设计,该非谐振单元能够起到辅助激励地板特征模的作用,且由于该非谐振单元的尺寸远远小于天线在该频段谐振所需要的电长度,该非谐振单元在谐振曲线上不会产生谐振曲线,没有谐振点,以此在不产生新的谐振的情况下,能够提升天线的辐射效率,从而能够提升用户的使用效果。
需要说明的是,本申请提供的天线装置适用于采用以下任意一种或多种通信技术的电子设备,例如,长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、SUB-6G通信技术以及未来其它通信技术等。
下面结合具体附图,对该天线装置的具体结构进行介绍(以下各实施例不突出通信网络的需求,仅以频率大小说明天线装置的工作特性)。
参照图6至图8所示,本申请实施例提供一种天线装置100,该天线装置100应用于手机200,手机200可以包括显示屏21、后壳25以及位于显示屏21和后壳25之间的中框22(参见图2),其中,天线装置100可以包括:至少一个辐射单元10、至少一个馈电单元20以及至少一个非谐振单元30,且馈电单元20分别为辐射单元10和非谐振单元30馈电。
其中,非谐振单元30的尺寸可以小于1/8λ,λ为辐射单元10的谐振频率对应的波长。需要说明的是,非谐振单元30的尺寸远远小于辐射单元10在该频段谐振所需要的电长度,能够保证非谐振单元30在反射系数曲线(S11)上没有产生谐振曲线,没有谐振点,因而,即使去掉该非谐振单元30,S11上的谐振曲线和谐振点数量也不会变化。
示例性地,如图6所示,该非谐振单元尺寸30的尺寸可以为8mm×9mm,小于该辐射单元10在该频段的谐振长度。其中,低频时的1/4波长尺寸为75mm@1GHz。可以理解的是,非谐振单元30可以为金属层,也可以为边框金属枝节,本申请实施例对此并不加以限定,也不限于上述示例。
在本申请实施例中,边框222可以为金属边框,金属边框可以形成金属边框天线, 金属边框天线作为天线装置100中的至少一个辐射单元10。具体地,金属边框天线可以是位于金属边框上的辐射体,通过在金属边框上开设缝隙以形成辐射体,换句话说,金属边框天线即在金属边框上开缝形成的槽天线。该槽天线可以包括用缝隙隔开的第一部分,第二部分,第三部分,其中,第一部分与第二部分之间、第二部分与第三部分之间以及第三部分与第一部分之间可以填充有非导电材料。
在实际应用时,缝隙的位置可以根据需要改变,各缝隙内可以采用非导电材料(例如塑胶)填充,以保证金属边框在外观上的完整性。通过灵活设置金属边框上的缝隙的开设位置,可以在保证天线辐射性能的同时,实现不同需求的外观设计,有利于提升手机200的产品品质。
馈电单元20的馈电点和接地点可以分别与非谐振单元30和手机200中作为地板的金属中板221电连接。可以理解的是,非谐振单元30用于辅助激励地板特征模,其中,辐射单元10为低频辐射单元时,非谐振单元30辅助激励地板纵向特征模。辐射单元10为中高频辐射单元时,非谐振单元300辅助激励地板横向特征模。
低频辐射单元的电流流向为纵向模式,中高频辐射单元的电流流向为横向模式,激励所需要的地板特征模就可以得到对应频率下较好的天线效率。即,对于低频辐射单元,充分激励地板纵向模式就可以得到较好的辐射效率,对于中高频辐射单元,充分激励横向模式,同样也可以得到较好的辐射效率。
在一种可能的实现方式中,非谐振单元30在第一方向L1上的正投影可以位于金属中板221内,第一方向L1为垂直于金属中板221所在平面的方向。例如,非谐振单元30可以位于金属中板221的上方,这样通过馈电连接的功率分配,馈电单元20分别连接到非谐振单元30以及非谐振单元30下方的地板(即金属中板221),能够实现辅助激励地板特征模的效果。
作为一种可选的实施方式,馈电单元20可以是通过馈电线40与非谐振单元30和金属中板221电连接。通过用于馈电连接的馈电线40的线功率分配,馈电单元20分别通过馈电线40连接到非谐振单元30以及非谐振单元30下方的地板(即金属中板221),能够实现辅助激励地板特征模的效果。
参照图8和图9所示,每个馈电线40可以包括:主馈电线401以及子馈电线402,其中,主馈电线401和子馈电线402分别包含信号线和接地线,主馈电线的第一端4011的信号线与馈电单元20电连接,主馈电线的第二端4012的信号线与辐射单元10电连接,且主馈电线401的接地线接地。子馈电线的第一端4021的信号线和接地线与主馈电线401的信号线和接地线电连接,子馈电线的第二端4022的信号线和接地线分别与非谐振单元30和金属中板221电连接。这样,即能实现馈电单元20分别为辐射单元10和非谐振单元30馈电,且通过馈电处功率分配与非谐振单元30及非谐振单元30处的地板(即金属中板221)相连接,能够有效提升天线的效率。
在一种可能的实现方式中,继续参照图8所示,子馈电线402可以为同轴线,具体地,子馈电线402可以包括:外导体4024以及内导体4023,且外导体4024包裹在内导体4023的外部,内导体4023为子馈电线402的信号线,外导体4024为子馈电线402的接地线。其中,内导体4023的一端与主馈电线401的信号线电连接,内导体4023的另一端与非谐振单元30电连接。外导体4024的一端与主馈电线401的接地线电连 接,外导体4024的另一端与金属中板221电连接。通过子馈电线402的内导体4023与非谐振单元30电连接,子馈电线402的外导体4024与非谐振单元30处的地板(即金属中板221)电连接,在实现辅助激励地板特征模的同时,外导体4024连接的金属中板221还能为内导体4023连接的非谐振单元30提供一定的屏蔽作用。
另外,如图8所示,主馈电线401可以为微带线,具体地,主馈电线401可以包括:第一导体4013以及第二导体4014,其中,第一导体4013为主馈电线401的信号线,第二导体4014为主馈电线401的接地线,第一导体4013与第二导体4014分离设置。这样,能够保证馈电单元20与辐射单元10之间的电源信号和接地信号的传输。
需要说明的是,主馈电线的第一端4011可以包括第一导体4013的第一端以及第二导体4014的第一端,为了便于标示,图9中以第一导体4013的第一端作为示例示出了主馈电线的第一端4011。
在本申请实施例中,非谐振单元30可以设置在如图8所示的位置处,也可以设置在如图10或图11所示的位置处,本申请实施例对非谐振单元30的具体设置位置并不加以限定,也不限于上述示例。其中,需要说明的是,辐射单元10可以为低频辐射单元。
图12和图13为现有技术中的天线的电流分布图和方向图,图14和图15为本申请实施例中的天线装置100引入非谐振单元30后的天线装置100的整体电流分布图和方向图,图16和图17为本申请实施例中的天线装置100所引入的非谐振单元30本身的电流分布图和方向图。经对比可知,本申请实施例中的天线装置100所引入的非谐振单元30没有改变天线装置100整体的电流分布和方向图特性,但是在非谐振单元30上的电流分布却明显更好的激励了地板特征模,这种特征模的激励对于提升天线效率是有明显收益的。
图18为现有技术中的电子设备的天线在B28/B5/B8下的反射系数曲线对比图和辐射效率曲线对比图。图18中,A1为B28频段的天线通过调谐所实现的反射系数曲线,B1为B28频段的天线通过调谐所实现的辐射效率曲线图,A2为B5频段的天线通过调谐所实现的反射系数曲线,B2为B5频段的天线通过调谐所实现的辐射效率曲线图,A3为B8频段的天线通过调谐所实现的反射系数曲线,B3为B8频段的天线通过调谐所实现的辐射效率曲线图。其中,B28所覆盖的频段为703-748MHz,B5所覆盖的频段为824-849MHz,B8所覆盖的频段为880-915MHz。
图19和图20给出了本申请实施例通过引入非谐振单元30后的天线辐射效率和系统效率与没有采用本申请实施例中方案的天线辐射效率和系统效率的对比。图19中,C1为现有技术中的天线的辐射效率曲线图,C2为本申请实施例中的天线装置100的辐射效率曲线图。图20中,D1为本申请实施例中的天线装置100为B28频段时的系统效率曲线图,D2为本申请实施例中的天线装置100为B5频段时的系统效率曲线图,D3为本申请实施例中的天线装置100为B8频段时的系统效率曲线图,E1为现有技术中的天线为B28频段时的系统效率曲线图,E2为现有技术中的天线为B5频段时的系统效率曲线图,E3为现有技术中的天线为B8频段时的系统效率曲线图。
通过对比可以明显看出,本申请实施例通过引入非谐振单元30,通过馈电处功率分配与非谐振单元30及非谐振单元30处的地板(金属中板221)相连接,可以有效 提升天线效率。具体地,在700MHz时,本申请实施例中的天线装置100的辐射效率相比于现有技术中的天线的辐射效率提高了1.5dB,在800MHz时,本申请实施例中的天线装置100的辐射效率相比于现有技术中的天线的辐射效率提高了1.4dB,在900MHz时,本申请实施例中的天线装置100的辐射效率相比于现有技术中的天线的辐射效率提高了1.3dB。
另外,需要说明的是,通过在实际项目上调试验证,可以得到与仿真一致的结果。图8为实际项目验证的实验治具示意图。图8中,在馈电处进行功率分配,馈电线40的内导体4023与非谐振单元30连接,馈电线40的外导体4024与该非谐振单元30处的地板中框相连接,非谐振单元30可以为10mm×10mm的铜皮。
图21和图22为通过实物治具实测的反射系数曲线图和辐射效率曲线图。图21中,F1为现有技术中的天线的反射系数曲线图,F2为本申请实施例提供的天线装置100的反射系数曲线图。图22中,G1为现有技术中的天线的辐射效率曲线图,G2为本申请实施例提供的天线装置100的辐射效率曲线图。从实测结果来看,本申请实施例所引入的非谐振单元30在不增加S11谐振的情况下,可以有效提升天线效率。其中所出现的频偏现象是因为非谐振单元30与地板中框(金属中板221)的分布式电容加载到馈电处出现的电容加载所造成的,而这种频偏可以通过调谐比较容易的调正。
另外,本发明专利所提到的通过引入非谐振单元辅助激励地板特征模,提升天线效率的方法同样也可以应用到中高频天线。如图23或图24所示,在中高频天线上增加非谐振单元,所激励的地板特征模电流如图25所示,该非谐振单元30所辅助激励的地板特征模电流与图4所示的中高频地板特征模电流完全相符。
图26给出了本申请实施例中的天线装置100(即图23或图24所示的结构)引入非谐振单元30的效率收益对比。图26中,L1为现有技术中的天线的反射系数曲线图,L2为本申请实施例提供的天线装置100的反射系数曲线图,M1为现有技术中的天线的辐射效率曲线图,M2为本申请实施例提供的天线装置100的辐射效率曲线图,N1为现有技术中的天线的系统总效率曲线图,N2为本申请实施例提供的天线装置100的系统总效率曲线图。从效率曲线可以明显看出,本申请实施例提供的天线装置100相比于现有技术,中高频天线的天线效率也可以得到明显提升,在1.8GHz时,天线效率可提升1.7dB,因而可以实现天线性能的提升。
需要说明的是,在本申请实施例中,辐射单元10可以为金属边框天线,非谐振单元30可以靠近金属边框天线设置。非谐振单元30靠近金属边框天线设置,能够在一定程度上减小馈电线40的长度,从而能够起到节省成本以及提高可靠性的作用。
另外,在一些实施例中,非谐振单元30的数量为一个,馈电线40的数量可以为至少两个。如图27所示,至少一个馈电单元20可以包括:第一馈电单元201以及第二馈电单元202,其中,第一馈电单元201的馈电点和接地点可以通过至少两个馈电线40中的第一馈电线41与非谐振单元30和金属中板221电连接,第二馈电单元202的馈电点和接地点可以通过至少两个馈电线40中的第二馈电线42与非谐振单元30和金属中板221电连接。
至少一个辐射单元10可以包括:第一辐射单元101以及第二辐射单元102,其中, 第一馈电线41的主馈电线的第一端4011的信号线与第一馈电单元201电连接,第一馈电线41的主馈电线的第二端4012的信号线与第一辐射单元101电连接,且第一馈电线41的主馈电线401的接地线接地。第一馈电线41的子馈电线的第一端4021的信号线和接地线与第一馈电线41的主馈电线401的信号线和接地线电连接,第一馈电线41的子馈电线的第二端4022的信号线和接地线分别与非谐振单元30和金属中板221电连接。
第二馈电线42的主馈电线的第一端4011的信号线与第二馈电单元202电连接,第二馈电线42的主馈电线的第二端4012的信号线与第二辐射单元102电连接,且第二馈电线42的主馈电线401的接地线接地。第二馈电线42的子馈电线的第一端4021的信号线和接地线与第二馈电线42的主馈电线401的信号线和接地线电连接,第二馈电线42的子馈电线的第二端4022的信号线和接地线分别与非谐振单元30和金属中板221电连接。
这样,第一馈电单元201通过第一馈电线41连接到第一辐射单元101、非谐振单元30以及非谐振单元30下方的地板(即金属中板221),第二馈电单元202通过第二馈电线42连接到第二辐射单元102、非谐振单元30以及非谐振单元30下方的地板(即金属中板221),即通过线功率分配,第一馈电单元201通过第一馈电线41为第一辐射单元101和非谐振单元30馈电,第二馈电单元202通过第二馈电线42为第二辐射单元102和非谐振单元30馈电,则非谐振单元30能够实现辅助第一辐射单元101和第二辐射单元102激励地板特征模的作用。
其中,作为一种可选的实施方式,图27中,第一辐射单元101可以为低频辐射单元,第二辐射单元102可以为中高频辐射单元。当然,在其它的一些实施例中,第一辐射单元101和第二辐射单元102也可以均为低频辐射单元,或者,第一辐射单元101和第二辐射单元102也可以均为中高频辐射单元。
进一步地,在另一种实施例中,如图28所示,非谐振单元30的数量可以为两个,至少一个非谐振单元30可以包括:第一非谐振单元301以及第二非谐振单元302。馈电线40的数量可以为至少两个,至少一个馈电单元20可以包括:第一馈电单元201以及第二馈电单元202,其中,第一馈电单元201的馈电点和接地点可以通过至少两个馈电线40中的第一馈电线41与第一非谐振单元301和金属中板221电连接,第二馈电单元202的馈电点和接地点可以通过至少两个馈电线40中的第二馈电线42与第二非谐振单元302和金属中板221电连接。
同样,至少一个辐射单元10可以包括:第一辐射单元101以及第二辐射单元102,其中,第一馈电线41的主馈电线的第一端4011的信号线与第一馈电单元201电连接,第一馈电线41的主馈电线的第二端4012的信号线与第一辐射单元101电连接,且第一馈电线41的主馈电线401的接地线接地。第一馈电线41的子馈电线的第一端4021的信号线和接地线与第一馈电线41的主馈电线401的信号线和接地线电连接,第一馈电线41的子馈电线的第二端4022的信号线和接地线分别与第一非谐振单元301和金属中板221电连接。
第二馈电线42的主馈电线的第一端4011的信号线与第二馈电单元202电连接,第二馈电线42的主馈电线的第二端4012的信号线与第二辐射单元102电连接,且第 二馈电线42的主馈电线401的接地线接地。第二馈电线42的子馈电线的第一端4021的信号线和接地线与第二馈电线42的主馈电线401的信号线和接地线电连接,第二馈电线45的子馈电线的第二端4022的信号线和接地线分别与第二非谐振单元302和金属中板221电连接。
这样,第一馈电单元201通过第一馈电线41连接到第一辐射单元101、第一非谐振单元301以及第一非谐振单元301下方的地板(即金属中板221),第二馈电单元202通过第二馈电线42连接到第二辐射单元102、第二非谐振单元302以及第二非谐振单元302下方的地板(即金属中板221),即通过线功率分配,第一馈电单元201通过第一馈电线41为第一辐射单元101和第一非谐振单元301馈电,第二馈电单元202通过第二馈电线42为第二辐射单元102和第二非谐振单元302馈电,这样即可实现第一非谐振单元301辅助第一辐射单元101激励地板特征模以及第二非谐振单元302辅助第二辐射单元102激励地板特征模的效果。
另外,作为一种可选的实施方式,子馈电线402上可以设置有开关4025(参见图29所示),开关4025用于选择接通子馈电线402上的非谐振单元30(即第一非谐振单元301或第二非谐振单元302)。开关4025能够控制主馈电线401与非谐振单元30之间的连接或断开,以此起到灵活使用的作用,例如,在无需非谐振单元30辅助激励地板特征模的情况下,断开开关4025即可,在需要非谐振单元30辅助激励地板特征模的情况下,闭合开关4025即可。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“可以可以包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。
Claims (17)
- 一种天线装置,应用于电子设备,其特征在于,所述天线装置包括:至少一个辐射单元、至少一个馈电单元以及至少一个非谐振单元;且所述馈电单元分别为所述辐射单元和所述非谐振单元直接馈电;其中,所述非谐振单元的尺寸小于1/8λ,λ为所述辐射单元的谐振频率对应的波长。
- 根据权利要求1所述的天线装置,其特征在于,所述馈电单元的馈电点和接地点分别与所述非谐振单元和所述电子设备中作为地板的金属中板电连接。
- 根据权利要求2所述的天线装置,其特征在于,所述非谐振单元用于辅助激励地板特征模;其中,所述辐射单元为低频辐射单元时,所述非谐振单元辅助激励地板纵向特征模;所述辐射单元为中高频辐射单元时,所述非谐振单元辅助激励地板横向特征模。
- 根据权利要求2或3所述的天线装置,其特征在于,所述非谐振单元在第一方向上的正投影位于所述金属中板内;所述第一方向为垂直于所述金属中板所在平面的方向。
- 根据权利要求2-4任一所述的天线装置,其特征在于,所述馈电单元通过馈电线与所述非谐振单元和所述金属中板电连接。
- 根据权利要求5所述的天线装置,其特征在于,每个所述馈电线包括:主馈电线以及子馈电线,所述主馈电线和子馈电线分别包含信号线和接地线,所述主馈电线的第一端的信号线与所述馈电单元电连接,所述主馈电线的第二端的信号线与所述辐射单元电连接;所述主馈电线的接地线接地;所述子馈电线的第一端的信号线和接地线与所述主馈电线的信号线和接地线电连接,所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接。
- 根据权利要求6所述的天线装置,其特征在于,所述子馈电线为同轴线,包括:外导体以及内导体;所述外导体包裹在所述内导体的外部,所述内导体为信号线,所述外导体为接地线;所述内导体的一端与所述主馈电线的信号线电连接,所述内导体的另一端与所述非谐振单元电连接;所述外导体的一端与所述主馈电线的接地线电连接,所述外导体的另一端与所述金属中板电连接。
- 根据权利要求6或7所述的天线装置,其特征在于,所述主馈电线为微带线,包括:第一导体以及第二导体,所述第一导体为信号线,所述第二导体为接地线,所述第一导体与所述第二导体分离设置。
- 根据权利要求6-8任一所述的天线装置,其特征在于,所述非谐振单元的数量为一个;所述馈电线的数量为至少两个;至少一个馈电单元包括:第一馈电单元以及第二馈电单元;所述第一馈电单元的馈电点和接地点通过至少两个所述馈电线中的第一馈电线分 别与所述非谐振单元和所述金属中板电连接,所述第二馈电单元的馈电点和接地点通过至少两个所述馈电线中的第二馈电线分别与所述非谐振单元和所述金属中板电连接。
- 根据权利要求9所述的天线装置,其特征在于,至少一个辐射单元包括:第一辐射单元以及第二辐射单元;所述第一馈电线的所述主馈电线的第一端的信号线与所述第一馈电单元电连接,所述第一馈电线的所述主馈电线的第二端的信号线与所述第一辐射单元电连接;所述第一馈电线的所述主馈电线的接地线接地;所述第一馈电线的所述子馈电线的第一端的信号线和接地线与所述第一馈电线的所述主馈电线的信号线和接地线电连接,所述第一馈电线的所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接;所述第二馈电线的所述主馈电线的第一端的信号线与所述第二馈电单元电连接,所述第二馈电线的所述主馈电线的第二端的信号线与所述第二辐射单元电连接;所述第二馈电线的所述主馈电线的接地线接地;所述第二馈电线的所述子馈电线的第一端的信号线和接地线与所述第二馈电线的所述主馈电线的信号线和接地线电连接,所述第二馈电线的所述子馈电线的第二端的信号线和接地线分别与所述非谐振单元和所述金属中板电连接。
- 根据权利要求6-8任一所述的天线装置,其特征在于,所述非谐振单元的数量为两个;至少一个非谐振单元包括:第一非谐振单元以及第二非谐振单元;所述馈电线的数量为至少两个;至少一个馈电单元包括:第一馈电单元以及第二馈电单元;所述第一馈电单元通过至少两个所述馈电线中的第一馈电线与所述第一非谐振单元和所述金属中板电连接,所述第二馈电单元通过至少两个所述馈电线中的第二馈电线与所述第二非谐振单元和所述金属中板电连接。
- 根据权利要求11所述的天线装置,其特征在于,至少一个辐射单元包括:第一辐射单元以及第二辐射单元;所述第一馈电线的所述主馈电线的第一端的信号线与所述第一馈电单元电连接,所述第一馈电线的所述主馈电线的第二端的信号线与所述第一辐射单元电连接;所述第一馈电线的所述主馈电线的接地线接地;所述第一馈电线的所述子馈电线的第一端的信号线和接地线与所述第一馈电线的所述主馈电线的信号线和接地线电连接,所述第一馈电线的所述子馈电线的第二端的信号线和接地线分别与所述第一非谐振单元和所述金属中板电连接;所述第二馈电线的所述主馈电线的第一端的信号线与所述第二馈电单元电连接,所述第二馈电线的所述主馈电线的第二端的信号线与所述第二辐射单元电连接;所述第二馈电线的所述主馈电线的接地线接地;所述第二馈电线的所述子馈电线的第一端的信号线和接地线与所述第二馈电线的所述主馈电线的信号线和接地线电连接,所述第二馈电线的所述子馈电线的第二端的信号线和接地线分别与所述第二非谐振单元和所述金属中板电连接。
- 根据权利要求10或12所述的天线装置,其特征在于,所述第一辐射单元为低频辐射单元,所述第二辐射单元为中高频辐射单元。
- 根据权利要求6-13任一所述的天线装置,其特征在于,所述子馈电线上设置有开关,用于选择接通所述子馈电线上的所述非谐振单元。
- 根据权利要求1-14任一所述的天线装置,其特征在于,所述辐射单元为金属边框天线,所述非谐振单元靠近所述金属边框天线设置。
- 一种电子设备,其特征在于,至少包括:显示屏、后壳以及位于所述显示屏和所述后壳之间的中框,还包括:上述权利要求1-15任一所述的天线装置。
- 根据权利要求16所述的电子设备,其特征在于,所述中框为金属中框,且所述金属中框至少包括金属边框以及金属中板,所述金属边框围绕所述金属中板的外周设置;所述金属边框形成金属边框天线,所述金属边框天线作为所述天线装置中的至少一个辐射单元。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/044,639 US20240297436A1 (en) | 2021-04-12 | 2022-01-24 | Antenna apparatus and electronic device |
EP22787236.3A EP4191791A4 (en) | 2021-04-12 | 2022-01-24 | ANTENNA DEVICE AND ELECTRONIC DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110391085.0 | 2021-04-12 | ||
CN202110391085.0A CN113258268B (zh) | 2021-04-12 | 2021-04-12 | 天线装置及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022218005A1 true WO2022218005A1 (zh) | 2022-10-20 |
Family
ID=77220647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/073600 WO2022218005A1 (zh) | 2021-04-12 | 2022-01-24 | 天线装置及电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240297436A1 (zh) |
EP (1) | EP4191791A4 (zh) |
CN (1) | CN113258268B (zh) |
WO (1) | WO2022218005A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258268B (zh) * | 2021-04-12 | 2022-11-01 | 荣耀终端有限公司 | 天线装置及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040080457A1 (en) * | 2002-10-28 | 2004-04-29 | Yongxin Guo | Miniature built-in multiple frequency band antenna |
TW201541718A (zh) * | 2014-04-25 | 2015-11-01 | Univ Nat Sun Yat Sen | 通訊裝置及其組合式雙寬頻天線元件 |
CN111628298A (zh) * | 2019-02-27 | 2020-09-04 | 华为技术有限公司 | 共体天线及电子设备 |
CN112204815A (zh) * | 2018-06-01 | 2021-01-08 | 华为技术有限公司 | 天线及移动终端 |
CN113258268A (zh) * | 2021-04-12 | 2021-08-13 | 荣耀终端有限公司 | 天线装置及电子设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050010549A (ko) * | 2003-07-21 | 2005-01-28 | 엘지전자 주식회사 | Uwb 통신용 초소형 안테나 |
JP5442428B2 (ja) * | 2009-12-25 | 2014-03-12 | 京セラ株式会社 | デュプレクサ |
CN102110900B (zh) * | 2010-12-27 | 2014-07-02 | 中兴通讯股份有限公司 | 一种移动终端的阵列天线及其实现方法 |
CN102280696A (zh) * | 2011-04-28 | 2011-12-14 | 上海交通大学 | 半波传输去耦小间距微带阵列天线 |
CN109921174B (zh) * | 2017-12-12 | 2022-03-22 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的无线通信装置 |
CN111029729A (zh) * | 2019-12-24 | 2020-04-17 | 西安易朴通讯技术有限公司 | 天线组件及电子设备 |
CN111641040B (zh) * | 2020-04-20 | 2022-02-22 | 西安电子科技大学 | 一种具有自解耦合特性的双端口移动终端天线 |
-
2021
- 2021-04-12 CN CN202110391085.0A patent/CN113258268B/zh active Active
-
2022
- 2022-01-24 WO PCT/CN2022/073600 patent/WO2022218005A1/zh active Application Filing
- 2022-01-24 EP EP22787236.3A patent/EP4191791A4/en active Pending
- 2022-01-24 US US18/044,639 patent/US20240297436A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040080457A1 (en) * | 2002-10-28 | 2004-04-29 | Yongxin Guo | Miniature built-in multiple frequency band antenna |
TW201541718A (zh) * | 2014-04-25 | 2015-11-01 | Univ Nat Sun Yat Sen | 通訊裝置及其組合式雙寬頻天線元件 |
CN112204815A (zh) * | 2018-06-01 | 2021-01-08 | 华为技术有限公司 | 天线及移动终端 |
CN111628298A (zh) * | 2019-02-27 | 2020-09-04 | 华为技术有限公司 | 共体天线及电子设备 |
CN113258268A (zh) * | 2021-04-12 | 2021-08-13 | 荣耀终端有限公司 | 天线装置及电子设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4191791A4 |
Also Published As
Publication number | Publication date |
---|---|
CN113258268B (zh) | 2022-11-01 |
EP4191791A1 (en) | 2023-06-07 |
US20240297436A1 (en) | 2024-09-05 |
CN113258268A (zh) | 2021-08-13 |
EP4191791A4 (en) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10727590B2 (en) | Electronic devices having interior antennas | |
TWI640127B (zh) | 天線結構及具有該天線結構之無線通訊裝置 | |
KR102248849B1 (ko) | 안테나 장치 및 그를 구비하는 전자 장치 | |
EP3238303B1 (en) | Mobile terminal and antenna of mobile terminal | |
EP2761388B1 (en) | Antennas for computers with conductive chassis | |
US8922443B2 (en) | Distributed loop antenna with multiple subloops | |
TW201804672A (zh) | 天線結構及具有該天線結構之無線通訊裝置 | |
US20130207853A1 (en) | Antenna system for wireless terminal devices | |
TWI475752B (zh) | 通訊電子裝置及其天線結構 | |
CN108736142B (zh) | 天线和终端 | |
JP7190636B2 (ja) | 電子機器 | |
WO2021031944A1 (zh) | 一种天线组件和具有卷曲屏的电子设备 | |
WO2023024795A1 (zh) | 天线装置、电子设备及天线装置的设计方法 | |
TWI770978B (zh) | 天線結構及具有該天線結構之電子設備 | |
TW202141851A (zh) | 天線結構及具有該天線結構之電子設備 | |
CN108879112B (zh) | 天线阵列及终端 | |
US20160233581A1 (en) | Electronic device including multiband antenna using persistent conductive border | |
WO2022218005A1 (zh) | 天线装置及电子设备 | |
WO2022033018A1 (zh) | 高集成度多天线组及其天线组模块 | |
US20150171504A1 (en) | Electronic apparatus | |
US20240021982A1 (en) | Antenna Apparatus and Electronic Device | |
KR20140139286A (ko) | 전자 기기의 안테나 장치 | |
WO2024051466A1 (zh) | 电子组件及电子设备 | |
KR20140100384A (ko) | 케이스 및 전자 장치 | |
WO2014057698A1 (ja) | アンテナ装置を備えた電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22787236 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022787236 Country of ref document: EP Effective date: 20230227 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18044639 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |