WO2022217864A1 - 无线通信方法、设备及存储介质 - Google Patents

无线通信方法、设备及存储介质 Download PDF

Info

Publication number
WO2022217864A1
WO2022217864A1 PCT/CN2021/122716 CN2021122716W WO2022217864A1 WO 2022217864 A1 WO2022217864 A1 WO 2022217864A1 CN 2021122716 W CN2021122716 W CN 2021122716W WO 2022217864 A1 WO2022217864 A1 WO 2022217864A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos parameter
authorized
terminal device
correspondence
qos
Prior art date
Application number
PCT/CN2021/122716
Other languages
English (en)
French (fr)
Inventor
郭雅莉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180081935.5A priority Critical patent/CN116602051A/zh
Publication of WO2022217864A1 publication Critical patent/WO2022217864A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a wireless communication method, device and storage medium.
  • a remote user equipment capable of proximity services (Proximity-based services, ProSe) establishes a direct connection with the relay user equipment (Relay UE) through the PC5 interface, and communicates with the 5th generation through the Relay UE.
  • the Policy Control Function controls the quality of service from the Relay UE to the external network, such as transmission
  • the delay is 100ms, and the Relay UE can determine the quality of service on the PC5 interface according to its own configuration.
  • the transmission delay is 50ms, but the Remote UE only obtains the quality of service of the PC5 interface from the Relay UE (for example, the transmission delay is 50ms), and They do not know the end-to-end service quality of their own transmission business.
  • Embodiments of the present invention provide a wireless communication method, device, and storage medium, which can ensure that the Remote UE understands the end-to-end service quality of its own transmission service.
  • an embodiment of the present invention provides a wireless communication method, including:
  • the first terminal device receives an authorized first quality of service (quality of service, QoS) parameter sent by the first network device;
  • the authorized first QoS parameter represents the relationship between the first terminal device and the core network user plane anchor quality of service requirements;
  • the first terminal device determines an authorized second QoS parameter according to the authorized first QoS parameter; the authorized second QoS parameter represents the service between the second terminal device and the core network user plane anchor point quality requirements; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device;
  • the first terminal device sends the authorized second QoS parameter to the second terminal device.
  • an embodiment of the present invention provides a wireless communication method, including:
  • the second terminal device receives the authorized second QoS parameter sent by the first terminal device; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device; the authorized second QoS parameter represents the quality of service requirement between the second terminal device and the core network user plane anchor; the authorized second QoS parameter is determined according to the authorized first QoS parameter, and the authorized first QoS parameter
  • the QoS parameter represents the quality of service requirement between the first terminal device and the user plane anchor of the core network.
  • an embodiment of the present invention provides a wireless communication method, including:
  • the first network device sends the authorized first QoS parameter to the first terminal device; the first QoS parameter represents the service quality requirement between the first terminal device and the core network user plane anchor; the authorized first QoS parameter
  • the QoS parameter is used to determine the authorized second QoS parameter; the authorized second QoS parameter represents the quality of service requirement between the second terminal device and the user plane anchor of the core network; the second terminal device passes the The first terminal device performs data transmission with the core network user plane anchor.
  • an embodiment of the present invention provides a wireless communication method, including:
  • the second network device sends at least one first correspondence to the first terminal device; the first correspondence is at least the correspondence between the first QoS parameter and the second QoS parameter; the at least one correspondence is used for and authorization
  • the authorized first QoS parameter determines the authorized second QoS parameter; the authorized first QoS parameter represents the quality of service requirement between the first terminal device and the core network user plane anchor; the authorized second QoS parameter Represents the quality of service requirement between the second terminal device and the core network user plane anchor; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device.
  • an embodiment of the present invention provides a first terminal device, including:
  • a first receiving unit configured to receive an authorized first quality of service QoS parameter sent by a first network device; the authorized first QoS parameter represents the quality of service between the first terminal device and the user plane anchor of the core network Require;
  • the first determination unit is configured to determine the authorized second QoS parameter according to the authorized first QoS parameter; the authorized second QoS parameter represents the connection between the second terminal device and the core network user plane anchor point; Quality of service requirements; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device;
  • a first sending unit configured to send the authorized second QoS parameter to the second terminal device.
  • an embodiment of the present invention provides a second terminal device, including:
  • the second receiving unit is configured to receive the authorized second QoS parameter sent by the first terminal device; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device; the authorized second QoS parameter
  • the second QoS parameter represents the quality of service requirement between the second terminal device and the core network user plane anchor; the authorized second QoS parameter is determined according to the authorized first QoS parameter, and the authorized second QoS parameter is determined according to the authorized first QoS parameter.
  • the first QoS parameter of represents the quality of service requirement between the first terminal device and the user plane anchor of the core network.
  • an embodiment of the present invention provides a first network device, including:
  • the third sending unit is configured to send the authorized first QoS parameter to the first terminal device; the first QoS parameter represents the quality of service requirement between the first terminal device and the user plane anchor of the core network; the authorized first QoS parameter The first QoS parameter is used to determine the authorized second QoS parameter; the authorized second QoS parameter represents the quality of service requirement between the second terminal equipment and the core network user plane anchor; the second terminal equipment Data transmission is performed with the user plane anchor of the core network through the first terminal device.
  • an embodiment of the present invention provides a second network device, including:
  • the fourth sending unit is configured to send at least one first correspondence to the first terminal device; the first correspondence is at least the correspondence between the first QoS parameter and the second QoS parameter; the at least one correspondence uses and the authorized first QoS parameter to determine the authorized second QoS parameter; the authorized first QoS parameter represents the service quality requirement between the first terminal device and the core network user plane anchor; the authorized first QoS parameter Two QoS parameters represent the quality of service requirements between the second terminal device and the core network user plane anchor; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device.
  • an embodiment of the present invention provides a terminal device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the above-mentioned No. 1 when running the computer program.
  • an embodiment of the present invention provides a network device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the above-mentioned No. 1 when running the computer program.
  • an embodiment of the present invention provides a storage medium that stores an executable program, and when the executable program is executed by a processor, implements the wireless communication method executed by the above-mentioned first terminal device, or implements the above-mentioned second terminal device A wireless communication method performed by a device.
  • an embodiment of the present invention provides a storage medium that stores an executable program, and when the executable program is executed by a processor, implements the wireless communication method executed by the above-mentioned first network device, or implements the above-mentioned second network A wireless communication method performed by a device.
  • the wireless communication method provided by the embodiment of the present invention includes: a first terminal device receives an authorized first QoS parameter sent by a first network device; the authorized first QoS parameter represents the first terminal device and the core network user plane quality of service requirements between anchor points; the first terminal device determines the authorized second QoS parameter according to the authorized first QoS parameter; the authorized second QoS parameter represents the relationship between the second terminal device and the core quality of service requirements between network user plane anchors; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device; the first terminal device transfers the authorized first terminal device Two QoS parameters are sent to the second terminal device; so that the first terminal device determines the authorized second QoS parameters according to the authorized first QoS parameters sent by the first network device, and communicates with the core network user through the first terminal device and the core network user.
  • the second terminal device performing data transmission at the plane anchor point can receive the authorized second QoS parameter from the first terminal device, so that the second terminal device can understand the quality of service requirements when it performs data interaction with the user plane anchor point of the core network, Thereby, it can effectively control its own adjacent services and ensure the effective transmission of data of its own adjacent services.
  • FIG. 1 is a schematic diagram of a network architecture of a 5G system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of interaction between Relay UE and Remote UE according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an optional composition structure of a communication system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional composition structure of a communication system according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 10A is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 10B is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • 11A is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • 11B is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of an optional composition structure of a first terminal device according to an embodiment of the present invention.
  • 16 is a schematic diagram of an optional composition structure of a second terminal device according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of an optional composition structure of a first network device according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an optional composition structure of a second network device according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of an optional composition structure of an electronic device according to an embodiment of the present invention.
  • ProSe enables direct discovery of physically adjacent users and facilitates direct communication between these users.
  • Figure 1 is a schematic diagram of the network architecture of the 5G system, as shown in Figure 1, including: mobility management network elements (Access and Mobility Management Function, AMF), session management network elements (Session Management Function, SMF), policy control network elements ( Policy Control Function), Authentication Server Function (AUSF), Unified Data Management (UDM), User plane Function (UPF), Network Slice Selection Function (Network SliceSelection Function) , NSSF) and application layer network element (Application Function, AF).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • Policy Control Function Policy Control Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • UPF User plane Function
  • Network Slice Selection Function Network Slice Selection Function
  • NSSF Application Function
  • Application Function Application Function
  • the network architecture further includes an access network device ((Radio)Access Network(R)AN), a terminal device (user equipment, UE) and a data network element (data network, DN).
  • UE can be connected to AMF
  • (R)AN can also be connected to AMF
  • (R)AN can also be connected to UPF
  • UPF can be connected to SMF
  • DN respectively
  • AMF can be connected to SMF
  • SMF is connected with PCF and UDM respectively.
  • PCF is connected with AF.
  • Both AMF and SMF can obtain data from UDM, such as user subscription data
  • both AMF and SMF can obtain policy data from PCF.
  • the PCF element obtains user subscription data from the UDM and sends it to the AMF and SMF, and then the AMF and SMF deliver it to the (R)AN, UE, and UPF.
  • AMF is mainly used for registration, mobility management, and tracking area update procedures of terminal equipment in a mobile network.
  • the mobility management network element terminates non-access stratum (NAS) messages, completes registration management, connection management and reachability management, assigns track area list (TA list) and mobility management, etc. And transparently route session management (session management, SM) messages to session management network elements.
  • NAS non-access stratum
  • TA list track area list
  • SM session management
  • SMF is mainly used for session management in mobile networks, such as session creation, modification, and release. Specific functions include, for example, allocating Internet Protocol (IP) addresses to users, and selecting user plane network elements that provide packet forwarding functions.
  • IP Internet Protocol
  • SMF can be replaced by (Packet Data Network GateWay, PGW).
  • PGW Packet Data Network GateWay
  • SMF can still be SMF, or a network element with other names that supports session management functions, which is not limited in the present invention.
  • PCF which includes user subscription data management function, policy control function, charging policy control function, QoS control, etc.
  • PCF policy and charging rules function
  • future communications such as 6G, the PCF can still be the PCF, or a network element with other names that supports the policy control function. Inventions are not limited.
  • AUSF is mainly used to use the extensible authentication protocol (EAP) to verify service functions and store keys to realize user authentication and authentication.
  • EAP extensible authentication protocol
  • AUSF can be replaced by authentication, authorization and accounting (authentication, authorization, accounting server, AAA) server.
  • AAA authentication, authorization, accounting server
  • AUSF can still be AUSF, or network elements with other names that support the authentication function , the present invention is not limited.
  • UDM is mainly used to store user data, such as subscription information and authentication/authorization information.
  • UDM can be replaced by Home Subscriber Server (HSS)
  • HSS Home Subscriber Server
  • UDM can still be UDM, or a network element with other names that supports data management functions, which is not limited in the present invention.
  • UPF mainly used for user plane service processing, such as service routing, packet forwarding, anchoring function, QoS mapping and execution, uplink identification and routing to the data network, downlink packet buffering and notification of downlink data arrival Triggering, connecting to external data networks, etc.
  • PGW Packet Data Network GateWay, PGW
  • the UPF may still be a UPF, or a network element with other names supporting a user plane function, which is not limited in the present invention.
  • RAN is a device that provides wireless communication functions for terminal devices, including but not limited to: next-generation base stations (gnodeB, gNB), evolved node B (evolved node B, eNB) in 5G, wireless network control radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or homenode B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • RNC wireless network control radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • home base station for example, home evolved nodeB, or homenode B, HNB
  • baseband unit baseBand unit, BBU
  • TRP transmitting and receiving point
  • the UE is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellite, etc.).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) terminal wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart grid Wireless terminals in a smart city, wireless terminals in a smart home, etc.
  • DN is mainly used to provide services for users, such as operators' services, Internet access services and third-party services.
  • the core network as the bearer network, provides the interface to the DN, and provides communication connection, authentication, management, communication for terminal equipment, and completes the bearer of data services.
  • the core network functions are divided into user plane functions and control plane functions.
  • the user plane function is mainly responsible for packet forwarding and QoS control.
  • the control plane function is mainly responsible for user registration and authentication, mobility management, delivery of data packet forwarding policies to the UPF, or QoS control policies.
  • the control plane functions mainly include access and mobility management function (core access and mobility management function, AMF) network element and session management function (session management function, SMF) network element and so on.
  • AMF access and mobility management function
  • SMF session management function
  • the AMF network element is responsible for the registration process during user access, the location management during user movement, and the paging of terminal equipment.
  • the SMF network element is responsible for establishing a corresponding session connection on the core network side when a user initiates a service, and providing specific services for the user.
  • the CN may be the 5G core network (5GC).
  • the interfaces and connections in the network architecture may include: Uu, N1, N2, N3, N4, N5, N6, N7, N8, N10, N11, N12, N13, N14, N15, N22.
  • Uu is the connection between the terminal equipment and the RAN
  • N1 is the control plane connection between the terminal equipment and the AMF network element, which is used to transmit the control signaling between the user equipment and the core network control plane.
  • the messages can be transmitted by the connection between the terminal equipment and the RAN, and the N2 connection between the RAN and the AMF network element.
  • N2 is the control plane connection between the RAN and AMF network elements.
  • N3 is the connection between the RAN and the user plane functions.
  • N4 is the connection between the SMF network element and the user plane function, and is used to transmit the control signaling between the SMF network element and the user plane function.
  • N5 is the connection between PCF and AF
  • N6 is the connection between user plane function and DN
  • N7 is the connection between SMF NE and PCF
  • N8 is the connection between AMF NE and UDM NE
  • N10 is the connection between SMF NE and PCF.
  • the connection between the UDM network element and the SMF network element N11 is the connection between the AMF network element and the SMF network element
  • N12 is the connection between the AUSF network element and the AMF network element
  • N13 is the connection between the AUSF network element and the UDM.
  • N14 is the inter-AMF interface
  • N15 is the connection between the AMF network element and the PCF network element
  • N22 is the connection between the NSSF network element and the AMF network element.
  • the UE After the UE accesses the 5G network through the Uu port, it establishes a QoS flow for data transmission under the control of the SMF.
  • the transmission quality parameters of the QoS flow include the 5G QoS Identifier (5QI).
  • 5QI can be mapped to a series of QoS features such as delay, bit error rate, scheduling priority and so on.
  • 5QI is shown in Table 1, and the value of 5QI is 66, which represents the following QoS characteristics: the priority is 20, the delay is 100 ms, and the bit error rate is 10 ⁇ 2 .
  • a UE with ProSe capability can also directly communicate with another UE with ProSe capability through a PC5 interface, where the PC5 interface is the interface of the UE up to now.
  • a PC5 QoS data flow that can guarantee the corresponding QoS requirements is established between the two UEs to transmit service data, thereby ensuring the service quality of the service in the PC5 communication.
  • the QoS parameters of PC5 QoS data flow include PC5 5G QoS identifier (PC5 5QI, PQI). PQI can be mapped to a series of QoS characteristics such as delay, bit error rate, scheduling priority, etc.
  • the value of 5QI is 95, which represents the following QoS characteristics: the priority is 2, the delay is 200ms, and the bit error rate is 10 ⁇ 2 .
  • UE1 and UE2 include three PC5 unicast links, wherein, between application A on UE1 and application A on UE2, there are two PC5 unicast links, and the data flow of one PC5 unicast link It is PC5 QoS data flow #1, the data flow of a PC5 unicast link is PC5 QoS data flow #2, and there is a PC5 unicast link between application B on UE1 and application B on UE2, and the data flow is PC5 QoS data flow #3.
  • one of UE1 and UE2 is a Remote UE, and the other is a Relay UE.
  • the UE when a UE has both the connection to the external data network through the 5G network and the ProSe capability, the UE can act as a relay UE, and another remote UE with ProSe capability can establish a connection with the Relay UE through the PC5 interface Connect directly, and establish a PDU session with the 5G network (including NG-RAN and 5GC) through the Relay UE, and interact with the application server (Applation Service, AS) of the external network through the established PDU session.
  • the 5G network including NG-RAN and 5GC
  • AS Application Service
  • the PCF controls the quality of service from the Relay UE to the external network, such as The transmission delay is 100ms, and the Relay UE can determine the quality of service on the PC5 interface according to its own configuration.
  • the transmission delay is 50ms, but the Remote UE only obtains the quality of service of the PC5 interface from the Relay UE (for example, the transmission delay is 50ms), It does not know the end-to-end service quality of its own transmission service (that is, the service quality of Uu+PC5 is 150ms), so it is impossible to know whether its own service data is transmitted according to the requirements of the application layer.
  • the present invention provides a wireless communication method.
  • the wireless communication method according to the embodiment of the present invention can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access, WiMAX) communication system or 5G system, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access, WiMAX
  • the communication system 400 may include a network device 410, and the network device 410 may be a device that communicates with a terminal device 420 (or referred to as a communication terminal, a terminal).
  • the network device 410 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 410 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Node B eNB or eNodeB
  • it can also be the base station (gNB) in the New Radio (New Radio, NR)/5G system, or the wireless control in the Cloud Radio Access Network (CRAN)
  • the network device may be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a future evolved public land mobile network ( Network equipment in Public Land Mobile Network, PLMN), etc.
  • PLMN Public Land Mobile Network
  • the communication system 400 also includes at least one terminal device 420 located within the coverage of the network device 410 .
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- An FM broadcast transmitter; and/or a device of another terminal device configured to receive/transmit communication signals; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- An FM broadcast transmitter AM- An FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device arranged to communicate via a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminal devices include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communications capabilities; may include radiotelephones, pagers, Internet/ PDAs with intranet access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; other electronic devices.
  • Terminal equipment may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminal devices 420 .
  • any terminal device 420 may be a relay terminal device 420-1, any other terminal device 420 other than the relay terminal device 420-1 may be a remote terminal device 420-2, and the remote terminal device 420-2 The terminal device 420-2 interacts with the network device 410 through the relay terminal device 420-1.
  • the 5G system or 5G network may also be referred to as an NR system or an NR network.
  • FIG. 4 exemplarily shows one network device and three terminal devices.
  • the communication system 400 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices.
  • the present invention The embodiment does not limit this.
  • the network device 410 of the communication system 400 may further include other network entities such as AMF, SMF, UDM, PCF, etc., which is not limited in this embodiment of the present invention.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 410 and a terminal device 420 with a communication function, and the network device 410 and the terminal device 420 may be the specific devices described above, which will not be repeated here.
  • the communication device may further include other devices in the communication system 400, for example, other network entities such as AMF, SMF, UDM, PCF, etc., which are not limited in this embodiment of the present invention.
  • FIG. 5 is an optional processing flow of the wireless communication method provided by the embodiment of the present invention, which is applied to the first terminal. As shown in FIG. 5 , it includes the following steps:
  • a first terminal device receives an authorized first QoS parameter sent by a first network device
  • the authorized first QoS parameter represents the quality of service requirement between the first terminal device and the user plane anchor of the core network.
  • the first network device configures authorized first QoS parameters for the first terminal device, and sends the configured authorized first QoS parameters to the first terminal device.
  • the first terminal device is a Relay UE
  • the authorized first QoS parameter represents the quality of service requirement between the Relay UE and the user plane anchor of the core network, that is, the quality of service requirement of the data transmitted by the Uu interface.
  • the authorized first QoS parameter may represent one or more of the following QoS features: priority, delay, and bit error rate.
  • the authorized first QoS parameter includes 5QI.
  • the first terminal device determines an authorized second QoS parameter according to the authorized first QoS parameter
  • the authorized second QoS parameter represents the quality of service requirement between the second terminal equipment and the core network user plane anchor; the second terminal equipment communicates with the core network user plane anchor through the first terminal equipment point for data transfer.
  • the second terminal device is a Remote UE
  • the authorized second QoS parameter represents a quality of service requirement between the Remote UE and the user plane anchor point of the core network.
  • the authorized second QoS parameter may characterize one or more of the following QoS characteristics: priority, delay, and bit error rate.
  • the authorized second QoS parameter includes 5QI or PQI.
  • the manner of determining the authorized second QoS parameter includes one of the following manners:
  • Mode A1 Determine according to at least one first correspondence and authorized first QoS parameters
  • Mode A2 Determine according to the authorized first QoS parameter and the authorized third QoS parameter
  • Manner A3 Determine according to the authorized first QoS parameter and the requested second QoS parameter.
  • the first terminal device sends the authorized second QoS parameter to the second terminal device.
  • the first terminal After determining the authorized second QoS parameters, the first terminal sends the authorized second QoS parameters to the second terminal device, so that the second terminal device can learn the quality of service requirements for the interaction between itself and the network side, so that its own Data transfer is controlled.
  • a first terminal device receives an authorized first QoS parameter sent by a first network device; the authorized first QoS parameter represents the user plane anchor point between the first terminal device and the core network quality of service requirements between the two; the first terminal device determines the authorized second QoS parameter according to the authorized first QoS parameter; the authorized second QoS parameter represents the second terminal device and the core network user quality of service requirements between plane anchors; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device; the first terminal device transfers the authorized second QoS The parameter is sent to the second terminal device; so that the first terminal device determines the authorized second QoS parameter according to the authorized first QoS parameter sent by the first network device, and the first terminal device and the core network user plane anchor
  • the second terminal device that performs data transmission can receive the authorized second QoS parameters from the first terminal device, so that the second terminal device can understand the quality of service requirements when it interacts with the user plane anchor of the core network.
  • the wireless communication method provided by the embodiment of the present invention is applied to a second terminal device, as shown in FIG. 6 , and includes the following steps:
  • the second terminal device receives the authorized second QoS parameter sent by the first terminal device.
  • the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device; the authorized second QoS parameter represents the connection between the second terminal device and the user plane anchor of the core network
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter, and the authorized first QoS parameter represents the first terminal device and the core network user plane anchor point quality of service requirements.
  • the first terminal device is a Relay UE
  • the second terminal device is a Remote UE
  • the authorized first QoS parameter represents the quality of service requirement between the Relay UE and the user plane anchor of the core network, that is, the data transmitted by the Uu interface. Service quality requirements.
  • the authorized first QoS parameter may characterize one or more of the following QoS characteristics: priority, delay, and bit error rate.
  • the authorized first QoS parameter includes 5QI.
  • the authorized second QoS parameter represents the quality of service requirement between the Remote UE and the core network user plane anchor.
  • the authorized second QoS parameter may characterize one or more of the following QoS characteristics: priority, delay, and bit error rate.
  • the authorized second QoS parameter includes 5QI or PQI.
  • An embodiment of the present invention provides a wireless communication method, which is applied to a first network device. As shown in FIG. 7 , the method includes the following steps:
  • the first network device sends the authorized first QoS parameter to the first terminal device.
  • the first QoS parameter represents the quality of service requirement between the first terminal device and the core network user plane anchor; the authorized first QoS parameter is used to determine the authorized second QoS parameter; the authorized first QoS parameter Two QoS parameters represent the quality of service requirements between the second terminal device and the core network user plane anchor; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device.
  • the first network device is an SMF.
  • the SMF configures the first terminal device with the authorized first QoS parameters.
  • the SMF may query the PCF for the authorized first QoS parameter, and send the query result to the first terminal device.
  • An embodiment of the present invention provides a wireless communication method, as shown in FIG. 8 , including:
  • the first network device sends the authorized first QoS parameter to the first terminal device;
  • the first terminal device determines an authorized second QoS parameter according to the authorized first QoS parameter
  • the first terminal device sends the authorized second QoS parameter to the second terminal device.
  • the first terminal device determines the authorized second QoS parameter according to the at least one first correspondence and the authorized first QoS parameter.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and at least one first correspondence; the first correspondence is at least the correspondence between the first QoS parameter and the second QoS parameter .
  • the first correspondence is a correspondence between the first QoS parameter and the second QoS parameter.
  • the first terminal device determines the second QoS parameter included in the first correspondence including the authorized first QoS parameter as the authorized second QoS parameter.
  • the first terminal device determines the authorized second QoS parameter according to the following three first correspondences: the correspondence between QoS parameter 1A and QoS parameter 2A, the correspondence between QoS parameter 1B and QoS parameter 2B, and the QoS parameter The correspondence between 1C and QoS parameter 2C, wherein, QoS parameter 1A, QoS parameter 1B and QoS parameter 1C are different first QoS parameters, QoS parameter 2A, QoS parameter 2B and QoS parameter 2C are different second QoS parameters, when The authorized first QoS parameter is QoS parameter 1B, the corresponding relationship between QoS parameter 1B and QoS parameter 2B includes the authorized first QoS parameter, and the authorized second QoS parameter is determined to be QoS parameter 2B based on the corresponding relationship.
  • the first terminal device receives the at least one first correspondence configured by the second network device.
  • the first terminal device determines the authorized second QoS parameter according to the at least one first correspondence and the authorized first QoS parameter.
  • the at least one first correspondence is configured by the second network device to the first terminal device.
  • the second network device configures at least one first correspondence, and sends the at least one first correspondence to the first terminal device.
  • the second network device includes a PCF.
  • the first correspondence is a correspondence between a first QoS parameter, a second QoS parameter, and a third QoS parameter; the at least one first correspondence is also used to correspond to the authorized first correspondence
  • a QoS parameter determines an authorized third QoS parameter; the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device.
  • the first terminal device determines an authorized third QoS parameter according to the authorized first QoS parameter and the at least one first correspondence.
  • the first correspondence includes: a first QoS parameter, a second QoS parameter, and a third QoS parameter, and the first terminal device determines the third QoS parameter included in the first correspondence including the authorized first QoS parameter as the authorized third QoS parameter.
  • QoS parameters include: a first QoS parameter, a second QoS parameter, and a third QoS parameter, and the first terminal device determines the third QoS parameter included in the first correspondence including the authorized first QoS parameter as the authorized third QoS parameter.
  • the first terminal device determines the authorized third QoS parameter according to the following three first correspondences: the correspondence between QoS parameter 1A, QoS parameter 2A and QoS parameter 3A, QoS parameter 1B, QoS parameter 2B and QoS parameter The corresponding relationship of 3B, the corresponding relationship of QoS parameter 1C, QoS parameter 2C and QoS parameter 3C, wherein, QoS parameter 1A, QoS parameter 1B and QoS parameter 1C are different first QoS parameters, QoS parameter 2A, QoS parameter 2B and QoS parameter Parameter 2C is a different second QoS parameter, QoS parameter 3A, QoS parameter 3B and QoS parameter 3C are different third QoS parameters, when the authorized first QoS parameter is QoS parameter 1B, then QoS parameter 1B, QoS parameter 2B and The corresponding relationship of the QoS parameter 3B includes the authorized first QoS parameter, and the authorized third QoS parameter is determined
  • the authorized third QoS parameter represents the quality of service requirements of the Remote UE and the Relay UE, that is, the quality of service requirements of the data transmitted by the PC5.
  • the authorized third QoS parameter may represent one or more of the following QoS characteristics: priority, delay, and bit error rate.
  • the authorized third QoS parameter includes PQI.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and the authorized third QoS parameter; the authorized third QoS parameter represents the relationship between the first terminal device and the first terminal device. Quality of service requirements between the second terminal devices.
  • the first terminal determines an authorized third QoS parameter; the authorized third QoS parameter represents a service quality requirement between the first terminal device and the second terminal device; the first terminal determines the authorized third QoS parameter according to the The authorized first QoS parameter and the authorized third QoS parameter determine the authorized second QoS parameter.
  • the delay represented by the authorized first QoS parameter is 100 ms
  • the delay represented by the authorized third QoS parameter is 100 ms. is 50ms
  • the delay represented by the determined authorized second QoS parameter is less than or equal to 150ms.
  • the second QoS parameter is determined as the authorized second QoS parameter
  • the represented delay is less than the first QoS parameter described in 150ms.
  • Two QoS parameters are determined as the authorized second QoS parameter.
  • the authorized second QoS parameter may be represented by a combination of the authorized first QoS parameter and the authorized third QoS parameter.
  • the time delay represented by the authorized first QoS parameter is 100 ms
  • the time represented by the authorized third QoS parameter is If the delay is 50ms
  • the delay represented by the authorized second QoS parameter is represented by a combination of ⁇ the authorized first QoS parameter delay 100ms, the authorized third QoS parameter delay 50ms ⁇ .
  • the manner in which the first terminal determines the authorized third QoS parameter includes one of the following:
  • Manner B1 Determine according to the authorized first QoS parameter and at least one second correspondence
  • Manner B2 Determine according to the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and at least one second correspondence; the second correspondence is the difference between the first QoS parameter and the third QoS parameter Correspondence between.
  • the first terminal device determines the authorized third QoS parameter according to the at least one second correspondence and the authorized first QoS parameter.
  • the first terminal device determines the authorized third QoS parameter according to the following three second correspondences: the correspondence between QoS parameter 1A and QoS parameter 3A, the correspondence between QoS parameter 1B and QoS parameter 3B, and the correspondence between QoS parameter 1C
  • the corresponding relationship with QoS parameter 3C wherein, QoS parameter 1A, QoS parameter 1B and QoS parameter 1C are different first QoS parameters, QoS parameter 3A, QoS parameter 3B and QoS parameter 3C are different third QoS parameters, when authorized
  • the first QoS parameter is QoS parameter 1B
  • the corresponding relationship between QoS parameter 1B and QoS parameter 3B includes the authorized first QoS parameter
  • the authorized third QoS parameter is determined to be QoS parameter 3B based on the corresponding relationship.
  • the at least one second correspondence is configured by the second network device to the first terminal device.
  • the first terminal device receives the at least one second correspondence configured by the second network device.
  • the second network device includes a PCF.
  • the first terminal device receives the at least one second correspondence configured by the second network device;
  • the first terminal device determines an authorized third QoS parameter according to the at least one second correspondence relationship and the authorized first QoS parameter.
  • the implementation of S1001 is taken before S801 as an example, and the implementation of S1001 can also be implemented after S801, and the present invention does not limit the sequence of S1001 and S801.
  • the implementation of S801 includes: determining according to the authorized first QoS parameter and the authorized third QoS parameter Authorized second QoS parameter.
  • step S1002 the following steps are also performed:
  • the first terminal device sends a combination of the authorized first QoS parameter and the authorized third QoS parameter to the second terminal device.
  • the first terminal device does not need to perform S802 and S803, but directly sends the combination of the authorized first QoS parameter and the authorized third QoS parameter to the second terminal device.
  • the authorized second QoS parameter is represented by the combination of the authorized first QoS parameter and the authorized third QoS parameter.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and the requested second QoS parameter.
  • the first terminal device determines the authorized third QoS parameter according to the authorized first QoS parameter and the requested second QoS parameter, and determines the authorized second QoS parameter according to the authorized third QoS parameter and the authorized first QoS parameter.
  • the requested second QoS parameter represents a quality of service requirement between the second terminal device and the core network user plane anchor point requested by the second terminal device.
  • the authorized first QoS parameter represents a delay of 100ms
  • the requested second QoS parameter represents a delay of 150ms
  • the authorized third QoS parameter represents a delay of less than or equal to 50ms, for example, the delay represented by the authorized third QoS parameter is 30ms.
  • the time delay represented by the authorized third QoS parameter may also be greater than 150 ms, and the embodiment of the present application does not limit the time delay represented by the authorized third QoS parameter.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and the requested second QoS parameter.
  • the first terminal device determines the authorized second QoS parameter according to the authorized first QoS parameter and the requested second QoS parameter.
  • the requested second QoS parameter is the same as the authorized second QoS parameter.
  • the authorized first QoS parameter represents a delay of 100ms
  • the requested second QoS parameter represents a delay of 150ms
  • the authorized second QoS parameter represents a delay of 150ms.
  • the requested second QoS parameter and the authorized second QoS parameter are different.
  • the authorized first QoS parameter represents a delay of 100ms
  • the requested second QoS parameter represents a delay of 150ms
  • the authorized second QoS parameter represents a delay of 130ms.
  • the authorized second QoS parameter is used to determine the authorized third QoS parameter with the authorized first QoS parameter.
  • the first terminal device determines an authorized third QoS parameter according to the authorized first QoS parameter and the authorized second QoS parameter.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and the authorized second QoS parameter.
  • the delay represented by the first authorized QoS parameter is 100ms, and the delay represented by the second authorized QoS parameter is 130ms, then the delay represented by the third authorized QoS parameter is less than or equal to 30ms.
  • the second terminal device when the mode of determining the authorized third QoS parameter is mode B2, or the mode of determining the authorized second QoS parameter is mode A3, the second terminal device sends the first terminal device the The requested second QoS parameter, the first terminal device receives the requested second QoS parameter sent by the second terminal device.
  • the first terminal device receives the requested second QoS parameter sent by the second terminal device;
  • S802 may be implemented as: the first terminal device determines the authorized second QoS parameter and/or the authorized third QoS parameter according to the requested second QoS parameter and the authorized first QoS parameter.
  • the first terminal device determines the authorized third QoS parameter according to the requested second QoS parameter and the authorized first QoS parameter.
  • the first terminal device may further determine the authorized second QoS parameter according to the authorized first QoS parameter and the authorized third QoS parameter.
  • the first terminal device determines the authorized second QoS parameter according to the requested second QoS parameter and the authorized first QoS parameter.
  • the first terminal device may further determine the authorized third QoS parameter according to the authorized first QoS parameter and the authorized second QoS parameter.
  • the first terminal device receives the requested second QoS parameter, and after receiving the authorized first QoS parameter sent by the first network device, determines according to the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized third QoS parameter is determined, and the authorized second QoS parameter is determined according to the authorized third QoS parameter.
  • the first terminal device receives the requested second QoS parameter, and after receiving the authorized first QoS parameter sent by the first network device, determines according to the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized second QoS parameter is determined, and the authorized third QoS parameter is determined according to the authorized second QoS parameter.
  • the requested second QoS parameter is used to determine the requested first QoS parameter; the requested first QoS parameter is used to determine the authorized first QoS parameter.
  • the first terminal device determines the requested first QoS parameter according to the requested second QoS parameter; the first terminal device sends the requested first QoS parameter to the first network device; the The requested first QoS parameter is used by the first network device to determine the authorized first QoS parameter.
  • the requested service quality requirement represented by the first QoS parameter is higher than the requested service quality requirement represented by the second QoS parameter, and may also be the same as the requested service quality requirement represented by the second QoS parameter.
  • This embodiment of the present invention does not limit the relationship between the service quality requirement represented by the requested first QoS parameter and the service quality requirement represented by the requested second QoS parameter being the same.
  • the requested delay represented by the second QoS parameter is greater than or equal to the requested delay represented by the first QoS parameter.
  • the requested delay represented by the second QoS parameter is 150ms
  • the requested delay represented by the first QoS parameter is 150ms
  • the requested delay represented by the second QoS parameter is 150ms
  • the requested delay represented by the first QoS parameter is 100ms.
  • the first network device receives the requested first QoS parameter; the first network device determines the authorized first QoS parameter according to the requested first QoS parameter.
  • the requested first QoS parameter and the authorized first QoS parameter are the same.
  • the delay represented by the requested first QoS parameter is 100ms, and the delay represented by the authorized first QoS parameter is 100ms.
  • the requested first QoS parameter and the authorized first QoS parameter are different.
  • the delay represented by the requested first QoS parameter is 100ms, and the delay represented by the authorized first QoS parameter is 80ms.
  • step S802 the following steps are also performed:
  • the first terminal device sends a combination of the authorized first QoS parameter and the authorized third QoS parameter to the second terminal device.
  • the first terminal device does not need to perform S803, and directly sends the combination of the authorized first QoS parameter and the authorized third QoS parameter to the second terminal device.
  • the authorized second QoS parameter is represented by the combination of the authorized first QoS parameter and the authorized third QoS parameter.
  • the first terminal device determines the requested first QoS parameter according to the requested second QoS parameter
  • S1103 The first terminal device sends the requested first QoS parameter to the first network device.
  • the first network device receives the requested first QoS parameter sent by the first terminal device, and determines the authorized first QoS parameter according to the requested first QoS parameter.
  • the first terminal device sends the authorized third QoS parameter to the second terminal device.
  • the second terminal receives the authorized third QoS parameter sent by the first terminal device.
  • the first terminal device sends the authorized second QoS parameter and the authorized third QoS parameter to the second terminal device, so that the second terminal device can effectively control the QoS requirements of the PC5 interface and the end-to-end QoS requirements according to the own data transmission.
  • An embodiment of the present invention further provides a wireless communication method, which is applied to the second network device shown in FIG. 9 , including:
  • the second network device sends at least one first correspondence to the first terminal device; the first correspondence is at least the correspondence between the first QoS parameter and the second QoS parameter; the at least one correspondence is used for and authorization
  • the authorized first QoS parameter determines the authorized second QoS parameter; the authorized first QoS parameter represents the quality of service requirement between the first terminal device and the core network user plane anchor; the authorized second QoS parameter Represents the quality of service requirement between the second terminal device and the core network user plane anchor; the second terminal device performs data transmission with the core network user plane anchor through the first terminal device.
  • the second network device is a PCF.
  • the first QoS parameter includes 5QI.
  • the second QoS parameter includes PQI.
  • the third QoS parameter includes 5QI or PQI.
  • the second network device may acquire the service quality requirement from the AF, determine the third QoS parameter based on the service quality requirement, and create at least one first correspondence.
  • the first correspondence is a correspondence between a first QoS parameter, a second QoS parameter, and a third QoS parameter; the at least one first correspondence is also used to correspond to the authorized first correspondence
  • a QoS parameter determines an authorized third QoS parameter; the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device.
  • the first network element (for example, PCF) of the core network configures multiple groups of QoS correspondences (ie, first correspondences) to the Relay UE, and each group of QoS correspondences includes a first QoS parameter, a second QoS parameter, and a third QoS parameter.
  • One QoS parameter represents the quality of service between the Relay UE and the core network user plane anchor, which is represented by 5QI
  • the second QoS parameter represents the total quality of service between the Remote UE and the core network user plane anchor of the Relay UE through the Remote UE, It can be represented by 5QI or PQI
  • the third QoS parameter represents the quality of service between the Relay UE and the Remote UE, and is represented by PQI.
  • the second network element (eg SMF) of the core network sends the authorized first QoS parameter to the Relay UE.
  • the Relay UE determines the authorized second QoS parameter and the authorized third QoS parameter according to the received first QoS parameter and the configuration of the QoS correspondence, and uses the authorized third QoS parameter to control the quality of service between the Relay UE and the Remote UE , and also send the authorized second QoS parameter to the Remote UE, so that the Remote UE obtains the total authorized quality of service between the Remote UE through the Relay UE and the core network user plane anchor of the Relay UE.
  • the authorized first QoS parameter sent by the SMF to the Relay UE may be the authorized first QoS parameter queried from the PCF.
  • the PCF sends at least one first correspondence to the RelayUE;
  • the first correspondence includes: a first QoS parameter, a second QoS parameter and a third QoS parameter.
  • the SMF sends the authorized first QoS parameter to the RelayUE
  • the authorized first QoS parameter is the QoS parameter authorized between the RelayUE and the core network.
  • the RelayUE determines the authorized second QoS parameter and the authorized third QoS parameter according to the first correspondence and the authorized first QoS parameter;
  • the RelayUE sends the authorized second QoS parameter and the authorized third QoS parameter to the Remote UE.
  • the Remote UE determines the requested second QoS parameter according to its own application layer service requirements, that is, the total quality of service between the Remote UE and the core network user plane anchor of the Relay UE through the Relay UE, which can be represented by 5QI or PQI.
  • the Relay UE determines the requested first QoS parameter, that is, the quality of service between the Relay UE and the user plane anchor point of the core network, according to the second QoS parameter of the received request and based on its own implementation mode, which is represented by 5QI and sent to
  • the core network element (SMF or PCF) performs authorization.
  • the core network element sends the authorized first QoS parameter to the Relay UE.
  • the Relay UE determines the authorized third QoS parameter for controlling the quality of service between the Relay UE and the Remote UE according to the received authorized first QoS parameter and the received requested second QoS parameter, and determines the authorized third QoS parameter.
  • the second QoS parameter determines the authorized third QoS parameter.
  • the quality of service between the Relay UE and the Remote UE is controlled using the authorized third QoS parameter, and the authorized second QoS parameter is also sent to the Remote UE. Therefore, the Remote UE obtains the total authorized quality of service between the Remote UE through the Relay UE and the core network user plane anchor of the Relay UE.
  • the Remote UE sends the requested second QoS parameter to the Relay UE;
  • the Relay UE determines the requested first QoS parameter according to the requested second QoS parameter
  • the Relay UE sends the requested first QoS parameter to the SMF;
  • the SMF sends the authorized first QoS parameter to the Relay UE;
  • the Relay UE determines the authorized second QoS parameter and the authorized third QoS parameter according to the authorized first QoS parameter;
  • the Relay UE sends the authorized second QoS parameter and the authorized third QoS parameter to the Remote UE.
  • the remote UE when a Remote UE with ProSe capability establishes a direct connection with the Relay UE through the PC5 interface, and interacts with the external network through the PDU session established between the Relay UE and the 5G network, the remote UE can not only obtain the PC5 from the Relay UE
  • the service quality of the interface for example, the transmission delay is 50ms
  • the end-to-end service quality of its own transmission business that is, the service quality of Uu+PC5 is 150ms
  • an embodiment of the present invention further provides a first terminal device 1500.
  • the composition structure of the first terminal device 1500 includes:
  • the first receiving unit 1501 is configured to receive an authorized first QoS parameter sent by a first network device; the authorized first QoS parameter represents a quality of service requirement between the first terminal device and the core network user plane anchor point ;
  • the first determining unit 1502 is configured to determine an authorized second QoS parameter according to the authorized first QoS parameter; the authorized second QoS parameter represents the connection between the second terminal device and the core network user plane anchor quality of service requirements; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device;
  • the first sending unit 1503 is configured to send the authorized second QoS parameter to the second terminal device.
  • the first determining unit 1502 is further configured to determine the authorized second QoS parameter according to the authorized first QoS parameter and at least one first correspondence; the first correspondence is at least Correspondence between the first QoS parameter and the second QoS parameter.
  • the first receiving unit 1501 is further configured to receive the at least one first correspondence configured by the second network device.
  • the first terminal device 1500 further includes:
  • a second determining unit configured to determine an authorized third QoS parameter according to the authorized first QoS parameter and the at least one first correspondence; the authorized third QoS parameter represents the relationship between the first terminal device and the first terminal device.
  • the service quality requirement between the second terminal devices; the first correspondence is the correspondence between the first QoS parameter, the second QoS parameter and the third QoS parameter.
  • the first determining unit 1502 is further configured to:
  • the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device;
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and the authorized third QoS parameter.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and at least one second correspondence; the second correspondence is the first QoS parameter and the third QoS parameter Correspondence between.
  • the first receiving unit 1501 is further configured to receive the at least one second correspondence configured by the second network device.
  • the authorized third QoS parameter is determined from the authorized first QoS parameter and the requested second QoS parameter.
  • the first determining unit 1502 is further configured to determine the authorized second QoS parameter according to the authorized first QoS parameter and the requested second QoS parameter.
  • the first terminal device 1500 further includes: a third determination unit configured to determine the authorized third QoS parameter according to the authorized first QoS parameter and the authorized second QoS parameter.
  • the first receiving unit 1501 is further configured to receive the requested second QoS parameter sent by the second terminal device.
  • the first terminal device 1500 further includes:
  • a fourth determining unit configured to determine the requested first QoS parameter according to the requested second QoS parameter
  • the first sending unit 1503 is further configured to send the requested first QoS parameter to the first network device; the requested first QoS parameter is used by the first network device to determine the authorized first QoS parameter. QoS parameters.
  • the first sending unit 1503 is further configured to send the authorized third QoS parameter to the second terminal device.
  • An embodiment of the present invention further provides a first terminal device, including a processor and a memory for storing a computer program that can be run on the processor, wherein the processor is configured to execute the above-mentioned first terminal when running the computer program. Steps of a wireless communication method performed by a terminal device.
  • an embodiment of the present invention further provides a second terminal device 1600.
  • the composition structure of the second terminal device 1600 as shown in FIG. 16 , includes:
  • the second receiving unit 1601 is configured to receive the authorized second QoS parameters sent by the first terminal device; the second terminal device performs data transmission with the user plane anchor of the core network through the first terminal device; the authorized The second QoS parameter represents the quality of service requirement between the second terminal device and the core network user plane anchor; the authorized second QoS parameter is determined according to the authorized first QoS parameter, and the authorized second QoS parameter is determined according to the authorized first QoS parameter.
  • the authorized first QoS parameter represents the quality of service requirement between the first terminal device and the user plane anchor of the core network.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and at least one first correspondence; the first correspondence is at least the first QoS parameter and the second QoS Correspondence between parameters.
  • the first correspondence is a correspondence between a first QoS parameter, a second QoS parameter, and a third QoS parameter; the at least one first correspondence is also used to correspond to the authorized first correspondence
  • a QoS parameter determines an authorized third QoS parameter; the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and the authorized third QoS parameter; the authorized third QoS parameter represents the connection between the first terminal device and the first terminal device. Quality of service requirements between the second terminal devices.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and at least one second correspondence; the second correspondence is the first QoS parameter and the third QoS parameter Correspondence between.
  • the authorized third QoS parameter is determined from the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized second QoS parameter is determined from the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized second QoS parameter is used in conjunction with the authorized first QoS parameter to determine an authorized third QoS parameter.
  • the second terminal device 1600 further includes:
  • the second sending unit is configured to send the requested second QoS parameter to the first terminal device.
  • the requested second QoS parameter is used to determine the requested first QoS parameter; the requested first QoS parameter is used to determine the authorized first QoS parameter.
  • the second receiving unit 1601 is further configured to receive the authorized third QoS parameter sent by the first terminal device.
  • An embodiment of the present invention further provides a second terminal device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein the processor is configured to execute the above-mentioned second terminal when running the computer program. Steps of a wireless communication method performed by a terminal device.
  • an embodiment of the present invention further provides a first network device 1700.
  • the composition structure of the first network device 1700 includes:
  • the third sending unit 1701 is configured to send the authorized first QoS parameter to the first terminal device; the first QoS parameter represents the quality of service requirement between the first terminal device and the user plane anchor of the core network; the The authorized first QoS parameter is used to determine the authorized second QoS parameter; the authorized second QoS parameter represents the quality of service requirement between the second terminal device and the core network user plane anchor; the second terminal The device performs data transmission with the user plane anchor of the core network through the first terminal device.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and at least one first correspondence; the first correspondence is at least the first QoS parameter and the second QoS Correspondence between parameters.
  • the first correspondence is a correspondence between a first QoS parameter, a second QoS parameter, and a third QoS parameter; the first correspondence is also used to correspond to the authorized first QoS
  • the parameter determines an authorized third QoS parameter; the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device.
  • the at least one first correspondence is configured by the second network device to the first terminal device.
  • the authorized second QoS parameter is determined according to the authorized first QoS parameter and the authorized third QoS parameter; the authorized third QoS parameter represents the connection between the first terminal device and the first terminal device. Quality of service requirements between the second terminal devices.
  • the authorized third QoS parameter is determined according to the authorized first QoS parameter and at least one second correspondence; the second correspondence is the first QoS parameter and the third QoS parameter Correspondence between.
  • the at least one second correspondence is configured by the second network device to the first terminal device.
  • the authorized third QoS parameter is determined from the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized second QoS parameter is determined from the authorized first QoS parameter and the requested second QoS parameter.
  • the authorized second QoS parameter is used in conjunction with the authorized first QoS parameter to determine an authorized third QoS parameter.
  • the requested second QoS parameter is used to determine the requested first QoS parameter; the requested first QoS parameter is used to determine the authorized first QoS parameter.
  • the first network device 1700 further includes:
  • a third receiving unit configured to receive the requested first QoS parameter
  • a fifth determining unit configured to determine the authorized first QoS parameter according to the requested first QoS parameter.
  • An embodiment of the present invention further provides a first network device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein the processor is configured to execute the above-mentioned first computer program when running the computer program. Steps of a wireless communication method performed by a network device.
  • an embodiment of the present invention further provides a second network device 1800.
  • the composition structure of the second network device 1800 includes:
  • the fourth sending unit 1801 is configured to send at least one first correspondence to the first terminal device; the first correspondence is at least the correspondence between the first QoS parameter and the second QoS parameter; the at least one correspondence used to determine the authorized second QoS parameter with the authorized first QoS parameter; the authorized first QoS parameter represents the quality of service requirement between the first terminal device and the core network user plane anchor; the authorized first QoS parameter The second QoS parameter represents the quality of service requirement between the second terminal device and the core network user plane anchor; the second terminal device performs data transmission through the first terminal device and the core network user plane anchor .
  • the first correspondence is a correspondence between a first QoS parameter, a second QoS parameter, and a third QoS parameter; the at least one first correspondence is also used to correspond to the authorized first correspondence
  • a QoS parameter determines an authorized third QoS parameter; the authorized third QoS parameter represents a quality of service requirement between the first terminal device and the second terminal device.
  • An embodiment of the present invention further provides a second network device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein the processor is configured to execute the above-mentioned second computer program when the processor is running the computer program. Steps of a wireless communication method performed by a network device.
  • the electronic device 1900 includes: at least one processor 1901 and a memory 1902 and at least one network interface 1904.
  • the various components in electronic device 1900 are coupled together by bus system 1905 .
  • bus system 1905 is used to implement the connection communication between these components.
  • the bus system 1905 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 1905 in FIG. 19 .
  • the memory 1902 may be either volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM, Programmable Read-Only Memory), Erasable Programmable Read-Only Memory (EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM -ROM, Compact Disc Read-Only Memory); magnetic surface memory can be disk memory or tape memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Type Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 1902 described in the embodiments of the present invention is intended to include, but not be limited to, these and any other suitable types of memory.
  • the memory 1902 in the embodiment of the present invention is used to store various types of data to support the operation of the electronic device 1900 .
  • Examples of such data include: any computer program used to operate on electronic device 1900, such as application program 1922.
  • the program implementing the method of the embodiment of the present invention may be included in the application program 1922 .
  • the methods disclosed in the above embodiments of the present invention may be applied to the processor 1901 or implemented by the processor 1901 .
  • the processor 1901 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 1901 or an instruction in the form of software.
  • the above-mentioned processor 1901 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor 1901 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, the storage medium is located in the memory 1902, the processor 1901 reads the information in the memory 1902, and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 1900 may be implemented by one or more of Application Specific Integrated Circuit (ASIC), DSP, Programmable Logic Device (PLD), Complex Programmable Logic Device (CPLD) , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic component implementation for performing the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal processor
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA general-purpose processor
  • controller MCU, MPU, or other electronic component implementation for performing the aforementioned method.
  • the embodiment of the present invention also provides a storage medium for storing a computer program.
  • the storage medium can be applied to the terminal device in the embodiment of the present invention, and the computer program enables the computer to execute the corresponding processes in each method of the embodiment of the present invention, which is not repeated here for brevity.
  • the storage medium can be applied to the first network device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding processes in each method of the embodiment of the present invention, which is not repeated here for brevity.
  • the storage medium can be applied to the second network device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding processes in each method of the embodiment of the present invention, which is not repeated here for brevity.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线通信方法,包括:第一终端设备接收第一网络设备发送的授权的第一服务质量QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备。本发明还公开了一种无线通信方法、设备及存储介质。

Description

无线通信方法、设备及存储介质
相关申请的交叉引用
本申请基于申请号为PCT/CN2021/087488、申请日为2021年04月15日的国际申请提出,并要求该国际申请的优先权,该国际申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及移动通信技术,尤其涉及一种无线通信方法、设备及存储介质。
背景技术
相关技术中,一个具有邻近业务(proximity-based services,ProSe)能力的远端用户设备(Remote UE)通过PC5接口与中继用户设备(Relay UE)建立直接连接,并通过Relay UE与第5代(5th generation,5G)网络建立的协议数据单元(Protocol Data Unit,PDU)会话与外部网络交互时,策略控制功能网元(Policy Control Function,PCF)控制Relay UE到外部网络的服务质量,例如传输时延为100ms,Relay UE可以根据自身配置确定PC5接口上的服务质量,例如传输时延是50ms,但是Remote UE只从Relay UE获得了PC5接口的服务质量(例如传输时延是50ms),并不了解自己传输业务的端到端服务质量。
发明内容
本发明实施例提供一种无线通信方法、设备及存储介质,能够保证Remote UE了解自己传输业务的端到端服务质量。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供一种无线通信方法,包括:
第一终端设备接收第一网络设备发送的授权的第一服务质量(quality of service,QoS)参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;
所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;
所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备。
第二方面,本发明实施例提供一种无线通信方法,包括:
第二终端设备接收第一终端设备发送的授权的第二QoS参数;所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
第三方面,本发明实施例提供一种无线通信方法,包括:
第一网络设备向第一终端设备发送授权的第一QoS参数;所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
第四方面,本发明实施例提供一种无线通信方法,包括:
第二网络设备向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
第五方面,本发明实施例提供一种第一终端设备,包括:
第一接收单元,配置为接收第一网络设备发送的授权的第一服务质量QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;
第一确定单元,配置为根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;
第一发送单元,配置为将所述授权的第二QoS参数发送至所述第二终端设备。
第六方面,本发明实施例提供一种第二终端设备,包括:
第二接收单元,配置为接收第一终端设备发送的授权的第二QoS参数;所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
第七方面,本发明实施例提供一种第一网络设备,包括:
第三发送单元,配置为向第一终端设备发送授权的第一QoS参数;所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
第八方面,本发明实施例提供一种第二网络设备,包括:
第四发送单元,配置为向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
第九方面,本发明实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一终端设备执行的无线通信方法的步骤,或执行上述第二终端设备执行的无线通信方法的步骤。
第十方面,本发明实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一网络设备执行的无线通信方法的步骤,或执行上述第二网络设备执行的无线通信方法的步骤。
第十一方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第一终端设备执行的无线通信方法,或实现上述第二终端设备执行的无线通信方法。
第十二方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第一网络设备执行的无线通信方法,或实现上述第二网络设备执行的无线通信方法。
本发明实施例提供的无线通信方法,包括:第一终端设备接收第一网络设备发送的授权的第一QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备;从而使得第一终端设备设备根据第一网络设备发送的授权的第一QoS参数确定授权的第二QoS参数,且通过第一终端设备与核心网用户面锚点进行数据传输的第二终端设备能够从第一终端设备接收到授权的第二QoS参数,使得第二终端设备能够了解自身与核心网用户面锚点进行数据交互时的服务质量需求,从而对自身的临近业务的有效控制,保证自身临近业务的数据的有效传输。
附图说明
图1为本发明实施例5G系统的网络架构示意图;
图2为本发明实施例Relay UE与RemoteUE之间的交互示意图;
图3为本发明实施例通信系统的一种可选的组成结构示意图;
图4为本发明实施例通信系统的一种可选的组成结构示意图;
图5为本发明实施例无线通信方法的一种可选的流程示意图;
图6为本发明实施例无线通信方法的一种可选的流程示意图;
图7为本发明实施例无线通信方法的一种可选的流程示意图;
图8为本发明实施例无线通信方法的一种可选的流程示意图;
图9为本发明实施例无线通信方法的一种可选的流程示意图;
图10A为本发明实施例无线通信方法的一种可选的流程示意图;
图10B为本发明实施例无线通信方法的一种可选的流程示意图;
图11A为本发明实施例无线通信方法的一种可选的流程示意图;
图11B为本发明实施例无线通信方法的一种可选的流程示意图;
图12为本发明实施例无线通信方法的一种可选的流程示意图;
图13为本发明实施例无线通信方法的一种可选的流程示意图;
图14为本发明实施例无线通信方法的一种可选的流程示意图;
图15为本发明实施例第一终端设备的一种可选的组成结构示意图;
图16为本发明实施例第二终端设备的一种可选的组成结构示意图;
图17为本发明实施例第一网络设备的一种可选的组成结构示意图;
图18为本发明实施例第二网络设备的一种可选的组成结构示意图;
图19为本发明实施例电子设备的一种可选的组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例提供的随机接入方法进行详细说明之前,先对ProSe的部分技术进行简要说明。
ProSe实现物理上邻近的用户的直接发现(Direct discovery),并促进这些用户之间的直接通信。
图1为5G系统的网络架构示意图,如图1所示,包括:移动性管理网元(Access and Mobility Management Function,AMF)、会话管理网元(Session Management Function,SMF)、策略控制网元(Policy Control Function)、认证服务网元(Authentication Server Function,AUSF)、数据管理网元(Unified Data Management,UDM)、用户面网元(User plane Function,UPF)、网络切片选择网元(Network SliceSelection Function,NSSF)和应用层网元(Application Function,AF)。
进一步,该网络架构还包括接入网设备((Radio)Access Network(R)AN)、终端设备(user equipment,UE)和数据网络网元(data network,DN)。UE可与AMF连接,(R)AN也可与AMF连接,(R)AN还可与UPF连接,UPF可分别与SMF、DN连接,AMF可分别与SMF、UDM、PCF、NSSF和AUSF连接,SMF分别与PCF和UDM连接。PCF与AF连接。AMF和SMF均可从UDM获取数据,例如用户签约数据,AMF和SMF均可从PCF获取策略数据。例如,PCF元从UDM获得用户签约数据并发送到AMF和SMF,再由AMF和SMF下发到(R)AN、UE和UPF等。
AMF,主要用于移动网络中的终端设备的注册、移动性管理、跟踪区更新流程。移动性管理网元终结了非接入层(non access stratum,NAS)消息、完成注册管理、连接管理以及可达性管理、分配跟踪区域列表(track area list,TA list)以及移动性管理等,并且透明路由会话管理(session management,SM)消息到会话管理网元。其中,在第4代(4th generation,4G)通信中,AMF可以替换为移动性管理实体(Mobility Management Entity,MME),在未来通信如第6代(6th generation,6G)通信中,AMF仍可以是AMF,或者是支持移动性管理功能的其它名称的网元,本发明不作限定。
SMF,主要用于移动网络中的会话管理,如会话创建、修改、释放。具体功能比如包括为用户分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。在4G中,SMF可以替换为(Packet Data Network GateWay,PGW),在未来通信如6G中,SMF仍可以是SMF,或是支持会话管理功能的其它的名称的网元,本发明不做限定。
PCF,其包含用户签约数据管理功能,策略控制功能,计费策略控制功能,QoS控制等。在4G中,PCF可以替换为策略和计费规则功能(policyand charging rules function,PCRF),在未来通信如6G中,PCF仍可以是PCF,或是支持策略控制功能的其它名称的网元,本发明不做限定。
AUSF,主要用于使用可扩展的身份验证协议(extensible authentication protocol,EAP)验证服务功能、存储密钥,以实现对用户的鉴权和认证。在4G中,AUSF可以替换为认证、授权和计费(authentication、authorization、accounting server,AAA)服务器,在未来通信如6G中,AUSF仍可以是AUSF,或是支持认证功能的其它名称的网元,本发明不做限定。
UDM,主要用于存储用户数据,如签约信息、鉴权/授权信息。在4G中,UDM可以替换为归属用户服务器(Home subscriber Server,HSS)在未来通信如6G中,UDM仍可以是UDM,或是支持数据管理功能的其它名称的网元,本发明不做限定。
UPF,主要用于用户平面的业务处理,例如业务路由、包转发、锚定功能、QoS映射和执行、上行链路的标识识别并路由到数据网络、下行包缓存和下行链路数据到达的通知触发、与外部数据网络连接等。在4G中,UPF可以替换为分组数据网网关(Packet Data Network GateWay,PGW)的用户面功能(user planeof PGW)。在未来通信如6G中,UPF仍可以是UPF,或是支持用户面功能的其它名称的网元,本发明不做限定。
(R)AN,是一种为终端设备提供无线通信功能的设备,包括但不限于:5G中的下一代基站(gnodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio networkcontroller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或homenode B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
UE,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
DN,主要用于为用户提供业务,比如运营商的业务、互联网接入业务和第三方业务。
核心网络(core network,CN)作为承载网络提供到DN的接口,为终端设备提供通信连接、认证、管理、通信以及对数据业务完成承载等。在图1所示的网络架构中,核心网功能分为用户面功能与控制面功能。用户面功能主要负责分组数据包的转发、QoS控制等。控制面功能主要负责用户注册认证、移动性管理、向UPF下发数据包转发策略、或QoS控制策略等。其中,控制面功能主要包括接入与移动性管理功能(core access and mobility management function,AMF)网元与会话管理功能(session management function,SMF)网元等。具体的,AMF网元负责用户接入时的注册流程及用户移动过程中的位置管理,对终端设备的寻呼等。SMF网元负责用户发起业务时核心网络侧建立相应的会话连接,为用户提供具体服务等。在5G中,CN可以为5G核心网(5GC)。
如图1所示,网络架构中的接口和连接可以包括:Uu、N1、N2、N3、N4、N5、N6、N7、N8、N10、N11、N12、N13、N14、N15、N22。其中,Uu为终端设备与RAN之间的连接,N1为终端设备和AMF网元之间的控制面连接,用于传输用户设备和核心网控制面之间的控制信令,具体的N1连接中的消息可以由终端设备和RAN之间的连接、RAN和AMF网元之间的N2连接进行传输。N2为RAN和AMF网元之间的控制面连接。N3为RAN和用户面功能之间的连接。N4为SMF网元和用户面功能之间的连接,用于传递SMF网元和用户面功能之间的控制信令。N5为PCF与AF之间的连接,N6为用户面功能和DN之间的连接,N7为SMF网元与PCF之间的连接,N8为AMF网元和UDM网元之间的连接,N10为UDM网元和SMF网元之间的连接,N11为AMF网元和SMF网元之间的连接,N12为AUSF网元和AMF网元之间的连接,N13为AUSF网元与UDM之间的连接,N14为AMF间接口,N15为AMF网元和PCF网元之间的连接,N22为NSSF网元和AMF网元之间的连接。
UE通过Uu口接入5G网络后,在SMF的控制下建立QoS流进行数据传输,QoS流的传输质量参数包括5G QoS标识(5G QoS Identifier,5QI)。5QI可以映射到例如时延,误码率,调度优先级等一系列的QoS特征。
在一示例中,5QI如表1所示,5QI的值为66,表征以下QoS特征:优先级为20,延时为100ms,误码率为10 -2
表1 5QI示例
5QI Value 优先级 时延 误码率
66 20 100ms 10 -2
如图2,具有ProSe能力的UE还可以通过PC5接口与具有ProSe能力的另外一个UE直接通信,其中,PC5接口为UE至今的接口。在两个UE之间建立可以保障相应QoS要求的PC5 QoS数据流进行业务数据的传输,从而保证业务在PC5通信的服务质量。PC5 QoS数据流的QoS参数包括PC5 5G QoS标识(PC5 5QI,PQI),PQI可以映射到例如时延,误码率,调度优先级等一系列的QoS特征。
在一示例中,如表2所示,5QI的值为95,表征以下QoS特征:优先级为2,延时为200ms,误码率为10 -2
表2 PQI示例
PQI 优先级 时延 误码率
95 2 200ms 10 -2
58 4 100ms 10 -2
57 5 25ms 10 -1
如图2所示,UE1与UE2包括三条PC5单播链路,其中,UE1上的应用A与UE2上的应用A之间包括两条PC5单播链路,一条PC5单播链路的数据流为PC5 QoS数据流#1,一条PC5单播链路的数据流为PC5 QoS数据流#2,UE1上的应用B与UE2上的应用B之间包括一条PC5单播链路,数据流为PC5 QoS数据流#3。其中,UE1与UE2中其中一个为Remote UE,另一个为Relay UE。
如图3所示,当一个UE既具有通过5G网络连接外部数据网络,还具有ProSe能力时,这个UE可以充当中继UE,另外一个具有ProSe能力的远端UE可以通过PC5接口与Relay UE建立直接连接,并通过Relay UE与5G网络(包括NG-RAN和5GC)建立PDU会话,通过建立的PDU会话与外部网络的应用服务器(Applation Service,AS)交互。
相关技术中,一个具有Prose能力的Remote UE通过PC5接口与Relay UE建立直接连接,并通过Relay UE与5G网络建立的PDU会话与外部网络交互时,PCF控制Relay UE到外部网络的服务质量,例如传输时延为100ms,Relay UE可以根据自身配置确定PC5接口上的服务质量,例如传输时延是50ms,但是Remote UE只从Relay UE获得了PC5接口的服务质量(例如传输时延是50ms),并不了解自己传输业务的端到端服务质量(也就是Uu+PC5的服务质量150ms),因此也无法了解自己的业务数据有没有按照应用层的需求进行传输。
基于上述问题,本发明提供一种无线通信方法,本发明实施例的无线通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本发明实施例应用的通信系统400,如图4所示。该通信系统400可以包括网络设备410,网络设备410可以是与终端设备420(或称为通信终端、终端)通信的设备。网络设备410可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备410可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是新无线(New Radio,NR)/5G系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统400还包括位于网络设备410覆盖范围内的至少一个终端设备420。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端设备的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备 或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备420之间可以进行终端直连(Device to Device,D2D)通信。
本发明实施例中,任一终端设备420可为中继终端设备420-1,中继终端设备420-1之外的其他任一终端设备420可为远端终端设备420-2,且远端终端设备420-2通过中继终端设备420-1与网络设备410进行交互。
可选地,5G系统或5G网络还可以称为NR系统或NR网络。
图4示例性地示出了一个网络设备和三个终端设备,可选地,该通信系统400可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该通信系统400的网络设备410还可以包括AMF、SMF、UDM、PCF等其他网络实体,本发明实施例对此不作限定。
应理解,本发明实施例中网络/系统中具有通信功能的设备可称为通信设备。以图4示出的通信系统400为例,通信设备可包括具有通信功能的网络设备410和终端设备420,网络设备410和终端设备420可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统400中的其他设备,例如AMF、SMF、UDM、PCF等其他网络实体,本发明实施例中对此不做限定。
图5为本发明实施例提供的无线通信方法的一种可选处理流程,应用于第一终端,如图5所示,包括以下步骤:
S501、第一终端设备接收第一网络设备发送的授权的第一QoS参数;
所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求。
第一网络设备为第一终端设备配置授权的第一QoS参数,并将所配置的授权的第一QoS参数发送至第一终端设备。
可选地,第一终端设备为Relay UE,授权的第一QoS参数代表Relay UE与核心网用户面锚点之间的服务质量要求,即Uu口传输的数据的服务质量要求。
本发明实施例中,授权的第一QoS参数可表征以下QoS特征中的一种或多种:优先级、延时和误码率。
可选地,授权的第一QoS参数包括5QI。
S502、所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;
所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
可选地,第二终端设备为Remote UE,授权的第二QoS参数代表Remote UE与核心网用户面锚点之间的服务质量要求。
授权的第二QoS参数可表征以下QoS特征中的一种或多种:优先级、延时和误码率。
可选地,授权的第二QoS参数包括5QI或PQI。
授权的第二QoS参数的确定方式包括以下方式之一:
方式A1、根据至少一个第一对应关系和授权的第一QoS参数确定;
方式A2、根据授权的第一QoS参数和授权的第三QoS参数确定;
方式A3、根据授权的第一QoS参数和请求的第二QoS参数确定。
S503、所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备。
第一终端在确定授权的第二QoS参数后,将授权的第二QoS参数发送至第二终端设备,使得第二终端设备能够获知自身与网络侧之间交互的服务质量需求,从而对自身的数据传输进行控制。
本发明实施例提供的无线通信方法,第一终端设备接收第一网络设备发送的授权的第一QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备;从而使得第一终端设备设备根据第一网络设备发送的授权的第一QoS参数确定授权的第二QoS参数,且通过第一终端设备与核心网用户面锚点进行数据传输的第二终端设备能够从第一终端设备接收到授权的第二QoS参数,使得第二终端设备能够了解自身与核心网用户面锚点进行数据交互时的服务质量需求,从而对自身的临近业务的有效控制,保证自身临近业务的数据的有效传输。
本发明实施例提供的无线通信方法,应用于第二终端设备,如图6所示,包括以下步骤:
S601、第二终端设备接收第一终端设备发送的授权的第二QoS参数。
所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS 参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
可选地,第一终端设备为Relay UE,第二终端设备为Remote UE,授权的第一QoS参数代表Relay UE与核心网用户面锚点之间的服务质量要求,即Uu口传输的数据的服务质量要求。授权的第一QoS参数可表征以下QoS特征中的一种或多种:优先级、延时和误码率。可选地,授权的第一QoS参数包括5QI。
授权的第二QoS参数代表Remote UE与核心网用户面锚点之间的服务质量要求。授权的第二QoS参数可表征以下QoS特征中的一种或多种:优先级、延时和误码率。可选地,授权的第二QoS参数包括5QI或PQI。
本发明实施例提供一种无线通信方法,应用于第一网络设备,如图7所示,包括以下步骤:
S701、第一网络设备向第一终端设备发送授权的第一QoS参数。
所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
可选地,第一网络设备为SMF。
SMF向第一终端设备配置授权的第一QoS参数。
可选的,SMF可向PCF查询授权的第一QoS参数,并将查询的结果发送至第一终端设备。
本发明实施例中提供一种无线通信方法,如图8所示,包括:
S801、第一网络设备向第一终端设备发送授权的第一QoS参数;
S802、所述第一终端设备根据授权的第一QoS参数,确定授权的第二QoS参数;
S803、所述第一终端设备将授权的第二QoS参数发送至第二终端设备。
这里,S801、S802、S803的描述可分别参见图5中S501、S502、S503的描述,这里不再赘述。
在上述方式A1中,第一终端设备根据至少一个第一对应关系和授权的第一QoS参数确定授权的第二QoS参数。
所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
在一些实施例中,第一对应关系为第一QoS参数与第二QoS参数之间的对应关系。此时,第一终端设备将包括授权的第一QoS参数的第一对应关系所包括的第二QoS参数确定为授权的第二QoS参数。
在一示例中,第一终端设备根据以下3个第一对应关系确定授权的第二QoS参数:QoS参数1A和QoS参数2A的对应关系、QoS参数1B和QoS参数2B的对应关系、以及QoS参数1C和QoS参数2C的对应关系,其中,QoS参数1A、QoS参数1B和QoS参数1C为不同的第一QoS参数,QoS参数2A、QoS参数2B和QoS参数2C为不同的第二QoS参数,当授权的第一QoS参数为QoS参数1B,则QoS参数1B和QoS参数2B的对应关系包括授权的第一QoS参数,基于该对应关系确定授权的第二QoS参数为QoS参数2B。
在一些实施例中,如图9所示,S801之前,还执行以下步骤:
S901、所述第一终端设备接收第二网络设备配置的所述至少一个第一对应关系。
此时,第一终端设备根据至少一个第一对应关系和授权的第一QoS参数确定授权的第二QoS参数。
在一些实施例中,所述至少一个第一对应关系是第二网络设备向所述第一终端设备配置的。
第二网络设备配置至少一个第一对应关系,并将至少一个第一对应关系发送至第一终端设备。
可选地,第二网络设备包括PCF。
在一些实施例中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
所述第一终端设备根据所述授权的第一QoS参数和所述至少一个第一对应关系,确定授权的第三QoS参数。
第一对应关系包括:第一QoS参数、第二QoS参数和第三QoS参数,第一终端设备将包括授权的第一QoS参数的第一对应关系所包括第三QoS参数确定为授权的第三QoS参数。
在一示例中,第一终端设备根据以下3个第一对应关系确定授权的第三QoS参数:QoS参数1A、QoS参数2A和QoS参数3A的对应关系,QoS参数1B、QoS参数2B和QoS参数3B的对应关系, QoS参数1C、QoS参数2C和QoS参数3C的对应关系,其中,QoS参数1A、QoS参数1B和QoS参数1C为不同的第一QoS参数,QoS参数2A、QoS参数2B和QoS参数2C为不同的第二QoS参数,QoS参数3A、QoS参数3B和QoS参数3C为不同的第三QoS参数,当授权的第一QoS参数为QoS参数1B,则QoS参数1B、QoS参数2B和QoS参数3B的对应关系包括授权的第一QoS参数,基于该对应关系确定授权的第三QoS参数为QoS参数3B。
可选地,授权的第三QoS参数代表Remote UE与Relay UE的服务质量要求,即PC5传输的数据的服务质量要求。
本发明实施例中,授权的第三QoS参数可表征以下QoS特征中的一种或多种:优先级、延时和误码率。
可选地,授权的第三QoS参数包括PQI。
在上述方式A2中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
所述第一终端确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;所述第一终端根据所述授权的第一QoS参数和所述授权的第三QoS参数,确定所述授权的第二QoS参数。
以授权的第一QoS参数、授权的第二QoS参数和授权的第三QoS参数表征时延为例,授权的第一QoS参数表征的时延为100ms,授权的第三QoS参数表征的时延为50ms,则确定的授权的第二QoS参数所表征的时延小于或等于150ms。这里,当存在表征150ms的第二QoS参数,则将该第二QoS参数确定为授权的第二QoS参数,当不存在表征150ms的第二QoS参数,则将表征的时延小于150描述的第二QoS参数(比如:表征130ms的第三QoS参数)确定为授权的第二QoS参数。
可选地,授权的第二QoS参数可以通过授权的第一QoS参数及授权的第三QoS参数的组合进行表示。
同样以授权的第一QoS参数、授权的第二QoS参数和授权的第三QoS参数表征时延为例,授权的第一QoS参数表征的时延为100ms,授权的第三QoS参数表征的时延为50ms,则授权的第二QoS参数所表征的时延通过{授权的第一QoS参数时延100ms,授权的第三QoS参数时延50ms}的组合形式表示。
本发明实施例中,所述第一终端确定授权的第三QoS参数的方式包括以下之一:
方式B1、根据授权的第一QoS参数和至少一个第二对应关系确定;
方式B2、根据授权的第一QoS参数和请求的第二QoS参数确定。
在方式B1中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系是第一QoS参数和第三QoS参数之间的对应关系。
第一终端设备根据至少一个第二对应关系和授权的第一QoS参数,确定授权的第三QoS参数。
在一示例中,第一终端设备根据以下3个第二对应关系确定授权的第三QoS参数:QoS参数1A和QoS参数3A的对应关系,QoS参数1B和QoS参数3B的对应关系,QoS参数1C和QoS参数3C的对应关系,其中,QoS参数1A、QoS参数1B和QoS参数1C为不同的第一QoS参数,QoS参数3A、QoS参数3B和QoS参数3C为不同的第三QoS参数,当授权的第一QoS参数为QoS参数1B,则QoS参数1B和QoS参数3B的对应关系包括授权的第一QoS参数,基于该对应关系确定授权的第三QoS参数为QoS参数3B。
在一些实施例中,所述至少一个第二对应关系是第二网络设备向所述第一终端设备配置的。
可选地,所述第一终端设备接收第二网络设备配置的所述至少一个第二对应关系。
可选地,第二网络设备包括PCF。
可选地,如图10A所示,在S802之前,还执行以下步骤:
S1001、所述第一终端设备接收第二网络设备配置的所述至少一个第二对应关系;
S1002、所述第一终端设备根据至少一个第二对应关系和授权的第一QoS参数,确定授权的第三QoS参数。
在图10A中,以S1001的实施先于S801为例,S1001的实施也可在S801之后,本发明对S1001和S801的先后顺序不进行限定。
第一终端设备根据授权的第一QoS参数和至少一个第二对应关系确定授权的第三QoS参数后,此时,S801的实施包括:根据授权的第一QoS参数和授权的第三QoS参数确定授权的第二QoS参数。
可选地,如图10B所示,在S1002步骤之后,还执行以下步骤:
S1003、所述第一终端设备将授权的第一QoS参数、授权的第三QoS参数的组合发送给第二终端 设备。
在图10B中,所述第一终端设备不需要执行S802和S803,而是直接将授权的第一QoS参数、授权的第三QoS参数的组合发送给第二终端设备。此时,通过授权的第一QoS参数及授权的第三QoS参数的组合表示授权的第二QoS参数。
在方式B2中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
第一终端设备根据授权的第一QoS参数和请求的第二QoS参数确定授权的第三QoS参数,根据授权的第三QoS参数和授权的第一QoS参数确定授权的第二QoS参数。
请求的第二QoS参数表征第二终端设备请求的第二终端设备与所述核心网用户面锚点之间的服务质量要求。
在一示例中,以QoS特征为时延为例,授权的第一QoS参数表征时延100ms,请求的第二QoS参数表征时延150ms,则授权的第三QoS参数表征的时延小于或等于50ms,比如,授权的第三QoS参数表征的时延为30ms。其中,授权的第三QoS参数表征的时延也可大于150ms,本申请实施例对授权的第三QoS参数表征的时延的大小不进行限定。
在上述方式A3中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
所述第一终端设备根据所述授权的第一QoS参数和请求的第二QoS参数确定所述授权的第二QoS参数。
可选地,请求的第二QoS参数和授权的第二QoS参数相同。
在一示例中,以QoS特征为时延为例,授权的第一QoS参数表征时延100ms,请求的第二QoS参数表征时延150ms,则授权的第二QoS参数表征的时延为150ms。
可选地,请求的第二QoS参数和授权的第二QoS参数不同。
在一示例中,以QoS特征为时延为例,授权的第一QoS参数表征时延100ms,请求的第二QoS参数表征时延150ms,则授权的第二QoS参数表征的时延为130ms。
在上述方式A3中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
所述第一终端设备根据所述授权的第一QoS参数和所述授权的第二QoS参数,确定授权的第三QoS参数。
授权的第三QoS参数根据所述授权的第一QoS参数和所述授权的第二QoS参数确定。
在一示例中,以QoS特征为时延为例,授权的第一QoS参数表征时延100ms,授权的第二QoS参数表征的时延为130ms,则授权的第三QoS参数表征的时延小于或等于30ms。
在一些实施例中,当授权的第三QoS参数的确定方式为方式B2,或授权的第二QoS参数的确定方式为方式A3,所述第二终端设备向所述第一终端设备发送所述请求的第二QoS参数,所述第一终端设备接收所述第二终端设备发送的所述请求的第二QoS参数。
可选地,如图11A所示,在S801之前,还实施以下步骤:
S1101、所述第一终端设备接收所述第二终端设备发送的所述请求的第二QoS参数;
此时S802可以实施为:所述第一终端设备根据请求的第二QoS参数和授权的第一QoS参数确定授权的第二QoS参数和/或授权的第三QoS参数。
可选地,在S802中,第一终端设备根据请求的第二QoS参数和授权的第一QoS参数确定授权的第三QoS参数。可选地,第一终端设备还可根据授权的第一QoS参数和授权的第三QoS参数确定授权的第二QoS参数。
可选地,在S802中,第一终端设备根据请求的第二QoS参数和授权的第一QoS参数确定授权的第二QoS参数。可选地,第一终端设备还可根据授权的第一QoS参数和授权的第二QoS参数确定授权的第三QoS参数。
在一示例中,第一终端设备接收到请求的第二QoS参数,并接收到第一网络设备发送的授权的第一QoS参数后,根据授权的第一QoS参数和请求的第二QoS参数确定授权的第三QoS参数,并根据授权的第三QoS参数确定授权的第二QoS参数。
在一示例中,第一终端设备接收到请求的第二QoS参数,并接收到第一网络设备发送的授权的第一QoS参数后,根据授权的第一QoS参数和请求的第二QoS参数确定授权的第二QoS参数,并根据授权的第二QoS参数确定授权的第三QoS参数。
在一些实施例中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS 参数用于确定所述授权的第一QoS参数。
所述第一终端设备根据所述请求的第二QoS参数,确定请求的第一QoS参数;所述第一终端设备将所述请求的第一QoS参数发送至所述第一网络设备;所述请求的第一QoS参数用于所述第一网络设备确定所述授权的第一QoS参数。
可选地,请求的第一QoS参数表征的服务质量要求高于请求的第二QoS参数表征的服务质量要求,也可与请求的第二QoS参数表征的服务质量要求相同。本发明实施例对请求的第一QoS参数表征的服务质量要求于请求的第二QoS参数表征的服务质量要求相同之间的关系不进行限定。
以QoS特征为时延为例,请求的第二QoS参数表征的时延大于或等于请求的第一QoS参数表征的时延。
在一示例中,请求的第二QoS参数表征的时延为150ms,请求的第一QoS参数表征的时延为150ms。
在一示例中,请求的第二QoS参数表征的时延为150ms,请求的第一QoS参数表征的时延为100ms。
所述第一网络设备接收所述请求的第一QoS参数;所述第一网络设备根据所述请求的第一QoS参数,确定所述授权的第一QoS参数。
可选地,请求的第一QoS参数和授权的第一QoS参数相同。
在一示例中,请求的第一QoS参数表征的时延为100ms,授权的第一QoS参数表征的时延为100ms。
可选地,请求的第一QoS参数和授权的第一QoS参数不同。
在一示例中,以QoS参数为时延为例,请求的第一QoS参数表征的时延为100ms,授权的第一QoS参数表征的时延为80ms。
可选地,如图11B所示,在S802步骤之后,还执行以下步骤:
S1003、所述第一终端设备将授权的第一QoS参数、授权的第三QoS参数的组合发送给第二终端设备。
在图11B中,所述第一终端设备不需要执行S803,直接将授权的第一QoS参数、授权的第三QoS参数的组合发送给第二终端设备。此时,通过授权的第一QoS参数及授权的第三QoS参数的组合表示授权的第二QoS参数。
如图12所示,在S802之前,还执行以下步骤:
S1102、第一终端设备根据请求的第二QoS参数,确定请求的第一QoS参数;
S1103、第一终端设备将请求的第一QoS参数发送至第一网络设备。
这里,第一网络设备接收第一终端设备发送的请求的第一QoS参数,并根据请求的第一QoS参数确定授权的第一QoS参数。
在一些实施例中,所述第一终端设备将所述授权的第三QoS参数,发送至所述第二终端设备。所述第二终端接收所述第一终端设备发送的所述授权的第三QoS参数。
本发明实施例中,第一终端设备将授权的第二QoS参数和授权的第三QoS参数发送至第二终端设备,使得第二终端设备根据PC5接口的QoS要求和端到端的QoS要求有效控制自身的数据传输。
本发明实施例还提供一种无线通信方法,应用于图9所示的第二网络设备,包括:
第二网络设备向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
可选地,第二网络设备为PCF。
可选地,第一QoS参数包括5QI。
可选地,第二QoS参数包括PQI。
可选地,第三QoS参数包括5QI或PQI。
第二网络设备可从AF获取服务质量要求,基于服务质量要求确定第三QoS参数,并创建至少一个第一对应关系。
在一些实施例中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
这里,关于第一对应关系的描述可参见方式A1中关于第一对应关系的描述,这里不再赘述。
下面,对本发明实施例提供的无线通信方法进行进一步说明。
实例一
核心网的第一网元(例如PCF)向Relay UE配置多组QoS对应关系(即第一对应关系),每组QoS对应关系包括第一QoS参数、第二QoS参数和第三QoS参数,第一QoS参数代表Relay UE与核心网用户面锚点之间的服务质量,用5QI表示,第二QoS参数代表Remote UE通过RelayUE与Relay UE的核心网用户面锚点之间的总的服务质量,可以用5QI或者PQI表示,第三QoS参数代表Relay UE与Remote UE之间的服务质量,用PQI表示。
核心网的第二网元(例如SMF)向Relay UE发送授权的第一QoS参数。Relay UE根据收到的第一QoS参数及QoS对应关系的配置,确定授权的第二QoS参数和授权的第三QoS参数,使用授权的第三QoS参数控制Relay UE与Remote UE之间的服务质量,并将授权的第二QoS参数也发送给Remote UE,从而Remote UE获得了Remote UE通过Relay UE与Relay UE的核心网用户面锚点之间的总的授权的服务质量。
这里,SMF向Relay UE发送授权的第一QoS参数可为从PCF查询的授权的第一QoS参数。
如图13所示,包括以下步骤:
S1301、PCF向RelayUE发送至少一个第一对应关系;
第一对应关系中包括:第一QoS参数、第二QoS参数和第三QoS参数。
S1302、SMF向RelayUE发送授权的第一QoS参数;
授权的第一QoS参数为RelayUE与核心网之间授权的QoS参数。
S1303、RelayUE根据第一对应关系和授权的第一QoS参数,确定授权的第二QoS参数和授权的第三QoS参数;
S1304、RelayUE向Remote UE发送授权的第二QoS参数和授权的第三QoS参数。
实例二
Remote UE根据自己的应用层业务需求,确定请求的第二QoS参数,也就是Remote UE通过Relay UE与Relay UE的核心网用户面锚点之间的总的服务质量,可以用5QI或者PQI表示。
Relay UE根据收到的请求的第二QoS参数,基于自身实现方式,确定请求的第一QoS参数,也就是Relay UE与核心网用户面锚点之间的服务质量,用5QI表示,并发送到核心网网元(SMF或者PCF)进行授权。核心网网元向Relay UE发送授权的第一QoS参数。
Relay UE根据收到的授权的第一QoS参数,及收到的请求的第二QoS参数,确定用于控制Relay UE与Remote UE之间的服务质量的授权的第三QoS参数,并确定授权的第二QoS参数。使用授权的第三QoS参数控制Relay UE与Remote UE之间的服务质量,并将授权的第二QoS参数也发送给Remote UE。从而Remote UE获得了Remote UE通过Relay UE与Relay UE的核心网用户面锚点之间的总的授权的服务质量。
如图14所示,包括以下步骤:
S1401、Remote UE向Relay UE发送请求的第二QoS参数;
S1402、Relay UE根据请求的第二QoS参数确定请求的第一QoS参数;
S1403、Relay UE将请求的第一QoS参数发送至SMF;
S1404、SMF向Relay UE发送授权的第一QoS参数;
S1405、Relay UE根据授权的第一QoS参数确定授权的第二QoS参数和授权的第三QoS参数;
S1406、Relay UE将授权的第二QoS参数和授权的第三QoS参数发送至Remote UE。
本发明实施例中,一个具有ProSe能力的Remote UE通过PC5接口与Relay UE建立直接连接,并通过Relay UE与5G网络建立的PDU会话与外部网络交互时,remote UE不仅能够从Relay UE获得了PC5接口的服务质量(例如传输时延是50ms),并且能够了解自己传输业务的端到端服务质量(也就是Uu+PC5的服务质量150ms),因此,能够控制自己的业务数据根据应用层的需求进行传输。
为实现上述无线通信方法,本发明实施例还提供一种第一终端设备1500,第一终端设备1500的组成结构,如图15所示,包括:
第一接收单元1501,配置为接收第一网络设备发送的授权的第一QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;
第一确定单元1502,配置为根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;
第一发送单元1503,配置为将所述授权的第二QoS参数发送至所述第二终端设备。
在一些实施例中,第一确定单元1502,还配置为根据所述授权的第一QoS参数和至少一个第一对 应关系,确定所述授权的第二QoS参数;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
在一些实施例中,第一接收单元1501,还配置为接收第二网络设备配置的所述至少一个第一对应关系。
在一些实施例中,第一终端设备1500还包括:
第二确定单元,配置为根据所述授权的第一QoS参数和所述至少一个第一对应关系,确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系。
在一些实施例中,第一确定单元1502,还配置为:
确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;
根据所述授权的第一QoS参数和所述授权的第三QoS参数,确定所述授权的第二QoS参数。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系是第一QoS参数和第三QoS参数之间的对应关系。
在一些实施例中,第一接收单元1501,还配置为接收第二网络设备配置的所述至少一个第二对应关系。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
在一些实施例中,第一确定单元1502,还配置为根据所述授权的第一QoS参数和请求的第二QoS参数确定所述授权的第二QoS参数。
在一些实施例中,第一终端设备1500还包括:第三确定单元,配置为根据所述授权的第一QoS参数和所述授权的第二QoS参数,确定授权的第三QoS参数。
在一些实施例中,第一接收单元1501,还配置为接收所述第二终端设备发送的所述请求的第二QoS参数。
在一些实施例中,第一终端设备1500还包括:
第四确定单元,配置为根据所述请求的第二QoS参数,确定请求的第一QoS参数;
第一发送单元1503,还配置为将所述请求的第一QoS参数发送至所述第一网络设备;所述请求的第一QoS参数用于所述第一网络设备确定所述授权的第一QoS参数。
在一些实施例中,第一发送单元1503,还配置为将所述授权的第三QoS参数,发送至所述第二终端设备。
本发明实施例还提供一种第一终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一终端设备执行的无线通信方法的步骤。
为实现上无线通信方法,本发明实施例还提供一种第二终端设备1600,第二终端设备1600的组成结构,如图16所示,包括:
第二接收单元1601,配置为接收第一终端设备发送的授权的第二QoS参数;所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
在一些实施例中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
在一些实施例中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
在一些实施例中,第二终端设备1600还包括:
第二发送单元,配置为向所述第一终端设备发送所述请求的第二QoS参数。
在一些实施例中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
在一些实施例中,第二接收单元1601,还配置为接收所述第一终端设备发送的所述授权的第三QoS参数。
本发明实施例还提供一种第二终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第二终端设备执行的无线通信方法的步骤。
为实现上无线通信方法,本发明实施例还提供一种第一网络设备1700,第一网络设备1700的组成结构,如图17所示,包括:
第三发送单元1701,配置为向第一终端设备发送授权的第一QoS参数;所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
在一些实施例中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
在一些实施例中,所述至少一个第一对应关系是第二网络设备向所述第一终端设备配置的。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
在一些实施例中,所述至少一个第二对应关系是第二网络设备向所述第一终端设备配置的。
在一些实施例中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
在一些实施例中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
在一些实施例中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
在一些实施例中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
在一些实施例中,第一网络设备1700还包括:
第三接收单元,配置为接收所述请求的第一QoS参数;
第五确定单元,配置为根据所述请求的第一QoS参数,确定所述授权的第一QoS参数。
本发明实施例还提供一种第一网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第一网络设备执行的无线通信方法的步骤。
为实现上无线通信方法,本发明实施例还提供一种第二网络设备1800,第二网络设备1800的组成结构,如图18所示,包括:
第四发送单元1801,配置为向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
在一些实施例中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
本发明实施例还提供一种第二网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述第二网络设备执行的无线通信方法的步骤。
图19是本发明实施例的电子设备(第一终端设备或第二终端设备或第一网络设备或第二网络设备)的硬件组成结构示意图,电子设备1900包括:至少一个处理器1901、存储器1902和至少一个网络接口1904。电子设备1900中的各个组件通过总线系统1905耦合在一起。可理解,总线系统1905用于实现这些组件之间的连接通信。总线系统1905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图19中将各种总线都标为总线系统1905。
可以理解,存储器1902可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器1902旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器1902用于存储各种类型的数据以支持电子设备1900的操作。这些数据的示例包括:用于在电子设备1900上操作的任何计算机程序,如应用程序1922。实现本发明实施例方法的程序可以包含在应用程序1922中。
上述本发明实施例揭示的方法可以应用于处理器1901中,或者由处理器1901实现。处理器1901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1901可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器1901可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器1902,处理器1901读取存储器1902中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备1900可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本发明实施例还提供了一种存储介质,用于存储计算机程序。
可选的,该存储介质可应用于本发明实施例中的终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
可选的,该存储介质可应用于本发明实施例中的第一网络设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
可选的,该存储介质可应用于本发明实施例中的第二网络设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/ 或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (79)

  1. 一种无线通信方法,所述方法包括:
    第一终端设备接收第一网络设备发送的授权的第一服务质量QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;
    所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;
    所述第一终端设备将所述授权的第二QoS参数发送至所述第二终端设备。
  2. 根据权利要求1所述的方法,其中,所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数,包括:
    所述第一终端设备根据所述授权的第一QoS参数和至少一个第一对应关系,确定所述授权的第二QoS参数;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述第一终端设备接收第二网络设备配置的所述至少一个第一对应关系。
  4. 根据权利要求2或3所述的方法,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述方法还包括:
    所述第一终端设备根据所述授权的第一QoS参数和所述至少一个第一对应关系,确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  5. 根据权利要求1所述的方法,其中,所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数,包括:
    所述第一终端确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;
    所述第一终端根据所述授权的第一QoS参数和所述授权的第三QoS参数,确定所述授权的第二QoS参数。
  6. 根据权利要求5所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系是第一QoS参数和第三QoS参数之间的对应关系。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述第一终端设备接收第二网络设备配置的所述至少一个第二对应关系。
  8. 根据权利要求5所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  9. 根据权利要求1所述的方法,其中,所述第一终端设备根据所述授权的第一QoS参数,确定授权的第二QoS参数,包括:
    所述第一终端设备根据所述授权的第一QoS参数和请求的第二QoS参数确定所述授权的第二QoS参数。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    所述第一终端设备根据所述授权的第一QoS参数和所述授权的第二QoS参数,确定授权的第三QoS参数。
  11. 根据权利要求8至10任一项所述的方法,其中,所述方法还包括:
    所述第一终端设备接收所述第二终端设备发送的所述请求的第二QoS参数。
  12. 根据权利要求8至11任一项所述的方法,其中,所述方法还包括:
    所述第一终端设备根据所述请求的第二QoS参数,确定请求的第一QoS参数;
    所述第一终端设备将所述请求的第一QoS参数发送至所述第一网络设备;所述请求的第一QoS参数用于所述第一网络设备确定所述授权的第一QoS参数。
  13. 根据权利要求4、5、6、8、10任一项所述的方法,其中,所述方法还包括:
    所述第一终端设备将所述授权的第三QoS参数,发送至所述第二终端设备。
  14. 一种无线通信方法,所述方法包括:
    第二终端设备接收第一终端设备发送的授权的第二服务质量QoS参数;所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS 参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
  15. 根据权利要求14所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  16. 根据权利要求15所述的方法,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  17. 根据权利要求14所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  18. 根据权利要求17所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
  19. 根据权利要求17所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  20. 根据权利要求14所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  21. 根据权利要求20所述的方法,其中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
  22. 根据权利要求19至21任一项所述的方法,其中,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送所述请求的第二QoS参数。
  23. 根据权利要求19至22任一项所述的方法,其中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
  24. 根据权利要求16至19、21中任一项所述的方法,其中,所述方法还包括:
    所述第二终端接收所述第一终端设备发送的所述授权的第三QoS参数。
  25. 一种无线通信方法,所述方法包括:
    第一网络设备向第一终端设备发送授权的第一服务质量QoS参数;所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
  26. 根据权利要求25所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  27. 根据权利要求26所述的方法,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  28. 根据权利要求26或27所述的方法,其中,所述至少一个第一对应关系是第二网络设备向所述第一终端设备配置的。
  29. 根据权利要求25所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  30. 根据权利要求29所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
  31. 根据权利要求30所述的方法,其中,所述至少一个第二对应关系是第二网络设备向所述第一终端设备配置的。
  32. 根据权利要求29所述的方法,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  33. 根据权利要求25所述的方法,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  34. 根据权利要求33所述的方法,其中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
  35. 根据权利要求32至34任一项所述的方法,其中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
  36. 根据权利要求32至35任一项所述的方法,其中,所述方法还包括:
    所述第一网络设备接收所述请求的第一QoS参数;
    所述第一网络设备根据所述请求的第一QoS参数,确定所述授权的第一QoS参数。
  37. 一种无线通信方法,所述方法包括:
    第二网络设备向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一服务质量QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
  38. 根据权利要求37所述的方法,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  39. 一种第一终端设备,包括:
    第一接收单元,配置为接收第一网络设备发送的授权的第一服务质量QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;
    第一确定单元,配置为根据所述授权的第一QoS参数,确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输;
    第一发送单元,配置为将所述授权的第二QoS参数发送至所述第二终端设备。
  40. 根据权利要求39所述的第一终端设备,其中,所述第一确定单元,还配置为根据所述授权的第一QoS参数和至少一个第一对应关系,确定所述授权的第二QoS参数;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  41. 根据权利要求40所述的第一终端设备,其中,所述第一接收单元,还配置为接收第二网络设备配置的所述至少一个第一对应关系。
  42. 根据权利要求40或41所述的第一终端设备,其中,所述第一终端设备还包括:
    第二确定单元,配置为根据所述授权的第一QoS参数和所述至少一个第一对应关系,确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系。
  43. 根据权利要求39所述的第一终端设备,其中,所述第一确定单元,还配置为:
    确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求;
    根据所述授权的第一QoS参数和所述授权的第三QoS参数,确定所述授权的第二QoS参数。
  44. 根据权利要求43所述的第一终端设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系是第一QoS参数和第三QoS参数之间的对应关系。
  45. 根据权利要求43所述的第一终端设备,其中,所述第一接收单元,还配置为接收第二网络设备配置的所述至少一个第二对应关系。
  46. 根据权利要求43所述的第一终端设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  47. 根据权利要求39所述的第一终端设备,其中,所述第一确定单元,还配置为根据所述授权的第一QoS参数和请求的第二QoS参数确定所述授权的第二QoS参数。
  48. 根据权利要求47所述的第一终端设备,其中,所述第一终端设备还包括:第三确定单元,配置为根据所述授权的第一QoS参数和所述授权的第二QoS参数,确定授权的第三QoS参数。
  49. 根据权利要求46至48任一项所述的第一终端设备,其中,所述第一接收单元,还配置为接收所述第二终端设备发送的所述请求的第二QoS参数。
  50. 根据权利要求46中49任一项所述的第一终端设备,其中,所述第一终端设备还包括:
    第四确定单元,配置为根据所述请求的第二QoS参数,确定请求的第一QoS参数;
    所述第一发送单元,还配置为将所述请求的第一QoS参数发送至所述第一网络设备;所述请求的第一QoS参数用于所述第一网络设备确定所述授权的第一QoS参数。
  51. 根据权利要求42、43、44、46、48中任一项所述的第一终端设备,其中,所述第一发送单元,还配置为将所述授权的第三QoS参数,发送至所述第二终端设备。
  52. 一种第二终端设备,所述第二终端设备包括:
    第二接收单元,配置为接收第一终端设备发送的授权的第二服务质量QoS参数;所述第二终端设备通过所述第一终端设备与核心网用户面锚点进行数据传输;所述授权的第二QoS参数代表所述第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数是根据所述授权的第一QoS参数确定的,所述授权的第一QoS参数代表所述第一终端设备与所述核心网用户面锚点之间的服务质量要求。
  53. 根据权利要求52所述的第二终端设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  54. 根据权利要求53所述的第二终端设备,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  55. 根据权利要求52所述的第二终端设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  56. 根据权利要求55所述的第二终端设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
  57. 根据权利要求55所述的第二终端设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  58. 根据权利要求52所述的第二终端设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  59. 根据权利要求58所述的第二终端设备,其中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
  60. 根据权利要求57至59任一项所述的第二终端设备,其中,所述第二终端设备还包括:
    第二发送单元,配置为向所述第一终端设备发送所述请求的第二QoS参数。
  61. 根据权利要求57至60任一项所述的第二终端设备,其中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
  62. 根据权利要求54至57、59中任一项所述的第二终端设备,其中,所述第二接收单元,还配置为接收所述第一终端设备发送的所述授权的第三QoS参数。
  63. 一种第一网络设备,所述第一网络设备包括:
    第三发送单元,配置为向第一终端设备发送授权的第一服务质量QoS参数;所述第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第一QoS参数用于确定授权的第二QoS参数;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
  64. 根据权利要求63所述的第一网络设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和至少一个第一对应关系确定的;所述第一对应关系至少为第一QoS参数与第二QoS参数之间的对应关系。
  65. 根据权利要求64所述的第一网络设备,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  66. 根据权利要求64或65所述的第一网络设备,其中,所述至少一个第一对应关系是第二网络设备向所述第一终端设备配置的。
  67. 根据权利要求63所述的第一网络设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和授权的第三QoS参数确定的;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  68. 根据权利要求67所述的第一网络设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和至少一个第二对应关系确定的;所述第二对应关系为第一QoS参数和第三QoS参数之间的对应关系。
  69. 根据权利要求68所述的第一网络设备,其中,所述至少一个第二对应关系是第二网络设备向所述第一终端设备配置的。
  70. 根据权利要求67所述的第一网络设备,其中,所述授权的第三QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  71. 根据权利要求63所述的第一网络设备,其中,所述授权的第二QoS参数是根据所述授权的第一QoS参数和请求的第二QoS参数确定的。
  72. 根据权利要求71所述的第一网络设备,其中,所述授权的第二QoS参数用于与所述授权的第一QoS参数确定授权的第三QoS参数。
  73. 根据权利要求70至72任一项所述的第一网络设备,其中,所述请求的第二QoS参数用于确定请求的第一QoS参数;所述请求的第一QoS参数用于确定所述授权的第一QoS参数。
  74. 根据权利要求70至73任一项所述的第一网络设备,其中,所述第一网络设备还包括:
    第三接收单元,配置为接收所述请求的第一QoS参数;
    第五确定单元,配置为根据所述请求的第一QoS参数,确定所述授权的第一QoS参数。
  75. 一种第二网络设备,所述第二网络设备包括:
    第四发送单元,配置为向第一终端设备发送至少一个第一对应关系;所述第一对应关系至少为第一服务质量QoS参数与第二QoS参数之间的对应关系;所述至少一个对应关系用于和授权的第一QoS参数确定授权的第二QoS参数;所述授权的第一QoS参数代表所述第一终端设备与核心网用户面锚点之间的服务质量要求;所述授权的第二QoS参数代表第二终端设备与所述核心网用户面锚点之间的服务质量要求;所述第二终端设备通过所述第一终端设备与所述核心网用户面锚点进行数据传输。
  76. 根据权利要求75所述的第二网络设备,其中,所述第一对应关系为第一QoS参数、第二QoS参数与第三QoS参数之间的对应关系;所述至少一个第一对应关系还用于与所述授权的第一QoS参数确定授权的第三QoS参数;所述授权的第三QoS参数代表所述第一终端设备与所述第二终端设备之间的服务质量要求。
  77. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至13任一项所述方法的步骤,或执行权利要求14至24任一项所述方法的步骤。
  78. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求25至36任一项所述方法的步骤,或执行权利要求37至38任一项所述方法的步骤。
  79. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至13任一项所述的无线通信方法,或权利要求14至24任一项所述的无线通信方法,或权利要求25至36任一项所述的无线通信方法,或权利要求37至38任一项所述的无线通信方法。
PCT/CN2021/122716 2021-04-15 2021-10-08 无线通信方法、设备及存储介质 WO2022217864A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180081935.5A CN116602051A (zh) 2021-04-15 2021-10-08 无线通信方法、设备及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/087488 WO2022217540A1 (zh) 2021-04-15 2021-04-15 无线通信方法、设备及存储介质
CNPCT/CN2021/087488 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022217864A1 true WO2022217864A1 (zh) 2022-10-20

Family

ID=83639994

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/087488 WO2022217540A1 (zh) 2021-04-15 2021-04-15 无线通信方法、设备及存储介质
PCT/CN2021/122716 WO2022217864A1 (zh) 2021-04-15 2021-10-08 无线通信方法、设备及存储介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087488 WO2022217540A1 (zh) 2021-04-15 2021-04-15 无线通信方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116602051A (zh)
WO (2) WO2022217540A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118316995A (zh) * 2023-01-06 2024-07-09 华为技术有限公司 一种通信方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162512A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种中继承载控制方法和装置
CN107535011A (zh) * 2015-08-20 2018-01-02 华为技术有限公司 数据处理方法和设备
US20180255499A1 (en) * 2015-09-25 2018-09-06 Panasonic Intellectual Property Corporation Of America Improved bearer mapping for prose relay

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034511A1 (en) * 2015-08-24 2017-03-02 Intel IP Corporation Bearer binding in the presence of a ue-to-network relay
US11082908B2 (en) * 2018-01-19 2021-08-03 Qualcomm Incorporated Techniques for providing and/or applying quality of service in wireless communications
CN111901847A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 sidelink中继通信方法、装置、设备及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162512A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种中继承载控制方法和装置
CN107535011A (zh) * 2015-08-20 2018-01-02 华为技术有限公司 数据处理方法和设备
US20180255499A1 (en) * 2015-09-25 2018-09-06 Panasonic Intellectual Property Corporation Of America Improved bearer mapping for prose relay

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on system enhancement for Proximity based Services (ProSe) in the 5G System (5GS) (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.752, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.7.0, 27 November 2020 (2020-11-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 181, XP051961791 *
INTEL: "KI#3, Solution #24 Clarification", 3GPP DRAFT; S2-2009448, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20201116 - 20201120, 23 November 2020 (2020-11-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051958286 *

Also Published As

Publication number Publication date
WO2022217540A1 (zh) 2022-10-20
CN116602051A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN110999431B (zh) 用于在无线通信系统中注册终端的方法及其设备
US11153788B2 (en) Handover method and user equipment
US9936533B2 (en) Method for controlling relay on basis of proximity service and device therefor
WO2020014983A1 (zh) 会话管理方法、终端设备和网络设备
KR20160106520A (ko) 무선 통신 시스템에서 서비스 제공 방법 및 장치
US20110116469A1 (en) Local internet protocol access/selected internet protocol traffic offload packet encapsulation to support seamless mobility
CN106470465B (zh) Wifi语音业务发起方法、lte通信设备、终端及通信系统
WO2021109470A1 (en) Method for sidelink relay communication under dual connectivity
WO2018170747A1 (zh) 一种通信方法及装置
US20210267012A1 (en) Systems and methods for establishing and modifying user plane communications
WO2021022460A1 (zh) 一种会话验证方法、电子设备及存储介质
US20230422016A1 (en) Network access method and apparatus
WO2020087421A1 (zh) 协议数据单元会话状态指示方法、终端设备及存储介质
WO2021062727A1 (zh) 一种重定向方法及装置、终端设备、网络设备
TW202015440A (zh) 無線通訊的方法和設備
US20240179802A1 (en) Method of establishing multicast broadcast service session, and system and apparatus thereof
WO2022217864A1 (zh) 无线通信方法、设备及存储介质
CN112586065B (zh) 一种数据传输方法、终端设备及存储介质
US10499443B2 (en) Data transmission method, related device, and system
WO2021088007A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022021355A1 (zh) 会话建立方法、装置、设备及存储介质
WO2021056356A1 (zh) 一种业务请求方法、电子设备及存储介质
WO2020042038A1 (zh) 通信方法和设备
WO2023159570A1 (en) System and methods for support of emergency services using indirect communication path
WO2023179397A1 (zh) 一种授权方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081935.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936731

Country of ref document: EP

Kind code of ref document: A1