WO2022217813A1 - 一种高温状态下焊接接头组合检测方法 - Google Patents

一种高温状态下焊接接头组合检测方法 Download PDF

Info

Publication number
WO2022217813A1
WO2022217813A1 PCT/CN2021/115581 CN2021115581W WO2022217813A1 WO 2022217813 A1 WO2022217813 A1 WO 2022217813A1 CN 2021115581 W CN2021115581 W CN 2021115581W WO 2022217813 A1 WO2022217813 A1 WO 2022217813A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded joints
phased array
detection
high temperature
ultrasonic
Prior art date
Application number
PCT/CN2021/115581
Other languages
English (en)
French (fr)
Inventor
王志强
秦承鹏
王鹏
陈征
王强
李东江
王福贵
李梁
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022217813A1 publication Critical patent/WO2022217813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the invention belongs to the field of non-destructive testing, and relates to a combined testing method for welded joints in a high temperature state.
  • Welding is the most important connection method for boilers, pressure vessels and pressure pipelines. Welded joints are the weak point for the safe operation of equipment. Therefore, regular non-destructive testing of welded joints is an important means to ensure the safe operation of equipment. With the increasingly prominent contradiction between the long-term operation of large-scale complete sets of equipment and the short maintenance time and high safety requirements, the detection of high-temperature welded joints under operating conditions has become a realistic choice to solve this problem.
  • the non-destructive testing methods used at room temperature mainly include penetrant testing, magnetic particle testing, eddy current testing, radiographic testing, A-pulse ultrasonic testing, phased array ultrasonic testing, and time-of-flight diffraction ultrasonic testing.
  • magnetic particle testing can only use dry magnetic powder for detection, and the defects of dry magnetic particle detection are intuitive, but the detection sensitivity is low due to the large particle size and poor dispersion of the magnetic powder; the eddy current testing efficiency is high, but it is greatly affected by the geometry of the weld surface , structural clutter occurs, and it is easy to miss detection and misjudgment; the A-type pulse ultrasonic detection method is simple and accurate, but the scanning efficiency is low, and it takes a long time to scan the weld at high temperature; the phased array ultrasonic scanning efficiency is high , the speed is fast, but because the probe is made of multi-element, it is greatly affected by temperature, and it is difficult to quantify the defects.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a combined detection method for welded joints under a high temperature state, which can accurately detect the defects of the welded joints.
  • the combined detection method for welded joints in a high temperature state comprises the following steps:
  • the surface wave detection is carried out at the position where the front edge of the probe is greater than or equal to 30mm from the edge of the weld, and the detection interval is less than or equal to 5 times the width of the probe.
  • Phased array ultrasonic testing of welded joints is carried out using high temperature-resistant phased array probes and wedges.
  • phased array ultrasonic testing For defects detected by both phased array ultrasonic testing and A-type ultrasonic testing, the most serious detection results in phased-array ultrasonic testing and A-type ultrasonic testing shall prevail.
  • phased array ultrasound For defects detected by phased array ultrasound but not detected by type A ultrasound, the results of phased array ultrasound inspection shall prevail.
  • the combined detection method for welded joints in a high temperature state includes surface wave ultrasonic interval scanning, dry magnetic powder comprehensive and local testing, phased array ultrasonic comprehensive fast scanning, and A-type pulse ultrasonic local scanning. It can detect both internal defects and surface defects of welds at high temperature, with high detection sensitivity, high efficiency and high reliability, and has engineering application value.
  • Fig. 1 is the flow chart of the present invention
  • Figure 2 is a display diagram of the defect magnetic trace during detection
  • Figure 3 shows the phased array ultrasonic defect map of the welding interior during inspection.
  • the combined detection method for welded joints in a high temperature state includes the following steps:
  • the surface wave detection is performed at a position 30mm away from the edge of the probe from the edge of the weld, where the interval is less than or equal to 5 times the width of the probe, and the scanning sensitivity is: at a distance of 80mm, the reflection amplitude of an artificial crack with a length of 5mm and a depth of 1mm reaches 80% of the full screen, mark and reduce the interval when the defect signal is found, and record the defect position and length.
  • Dry magnetic powder is used to comprehensively inspect the welded joints, and the parts with defect reflections during the surface wave ultrasonic inspection are inspected and confirmed.
  • phased array probes and wedges Take high temperature resistant phased array probes and wedges, connect the phased array probes to the phased array detector to form a detection system, adjust the detection sensitivity according to the different wall thicknesses of the workpiece, when the sensitivity is adjusted, the test block is welded to the inspected
  • the temperature deviation of the joint shall not exceed ⁇ 15°C.
  • the sound beam can fully cover the weld seam, and at the same time record the internal defects whose reflected signal amplitude exceeds the evaluation line.
  • Different A-type ultrasonic probes and instruments are used to form a detection system.
  • the angle difference between the two probes is greater than or equal to 10°, and the sensitivity is selected according to different thicknesses to confirm the defect position obtained by the phased array ultrasonic inspection.
  • phased array ultrasonic testing For defects detected by both phased array ultrasonic testing and A-type ultrasonic testing, the most serious detection results in phased-array ultrasonic testing and A-type ultrasonic testing shall prevail.
  • phased array ultrasound For defects detected by phased array ultrasound but not detected by type A ultrasound, the results of phased array ultrasound inspection shall prevail.
  • a company's methanol synthesis No. 1 intermediate heat exchanger the barrel material is SA387GR11CL2, the size of the weld is DN2100 ⁇ 85mm, the width of the weld is 45mm, and the outer surface temperature is 160-180°C.
  • Adopt the present invention to detect comprise the following steps:
  • Select 5P8 ⁇ 12BM probe (frequency is 5MHz, chip size is 8mm ⁇ 12mm), and the surface wave ultrasonic inspection is carried out on the welded joint at an interval of 30mm.
  • the detection and scanning sensitivity is: at a distance of 80mm, the reflection amplitude of the artificial crack with a length of 5mm and a depth of 1mm reaches full 80% of the screen.
  • a defect reflection signal was found, and the defect position and length were recorded. The defect was located 10mm above the centerline of the weld, and the length was 90mm.
  • a special high-temperature phased array probe (model: 5L32-0.5 ⁇ 10-HT) is used to connect the phased array ultrasonic instrument to form a detection system.
  • the sensitivity of the PRB-III test block in the standard DL/T1718-2017 "Technical Regulations for Phased Array Ultrasonic Testing of Welded Joints in Thermal Power Plants" was used to adjust the sensitivity.
  • the temperature of the test block was heated to 170 °C.
  • the evaluation line is ⁇ 2 ⁇ 60-14dB
  • the quantitative line is ⁇ 2 ⁇ 60-8dB
  • the waste line is ⁇ 2 ⁇ 60+2dB.
  • the 2.5P13 ⁇ 13K1 probe and the 2.5P13 ⁇ 13K1.5 probe are used to detect the defect on one side and both sides, and the PRB-III test block in the standard DL/T1718-2017 is used to adjust the sensitivity , in which, when adjusting the sensitivity, the test block is heated to 170 °C.
  • the evaluation line is ⁇ 2 ⁇ 60-14dB
  • the quantitative line is ⁇ 2 ⁇ 60-8dB
  • the reject line is ⁇ 2 ⁇ 60+2dB.
  • the length is less than 15mm, and the maximum amplitude is ⁇ 2 ⁇ 60-8dB.
  • phased array ultrasonic testing results show that the length and amplitude of defects are higher. Based on the phased array ultrasonic testing results, according to DL/T1718-2017 standard Welded joints here are rated I.

Abstract

一种高温状态下焊接接头组合检测方法,包括以下步骤:对焊接接头及两侧母材进行表面处理;对焊接接头进行表面波超声检测;对焊接接头进行磁粉检测;对焊接接头进行相控阵超声检测;对焊接接头进行A型超声检测;根据表面波超声检测结果、磁粉检测结果、相控阵超声检测结果及A型超声检测结果综合确定焊接接头的缺陷,该方法能够准确检测焊接接头的缺陷。

Description

一种高温状态下焊接接头组合检测方法 技术领域
本发明属于无损检测领域,涉及一种高温状态下焊接接头组合检测方法。
背景技术
焊接是锅炉、压力容器、压力管道最主要的连接方式,焊接接头是设备安全运行的薄弱点,因此对焊接接头进行定期无损检测是保证设备安全运行的重要手段。随着大型成套设备的长周期运行与检修时间短安全要求高这一矛盾的日益突出,在运行状态下对高温焊接接头进行检测成为解决这一问题的现实选择。
目前在常温下使用的无损检测方法主要有渗透检测、磁粉检测、涡流检测、射线检测、A型脉冲超声检测、相控阵超声检测、衍射时差法超声检测等,在高温状态下,表面渗透检测基本不能使用;磁粉检测仅能采用干磁粉进行检测,干磁粉检测缺陷显示直观,但由于磁粉颗粒较大、分散性差等原因检测灵敏度低;涡流检测效率高,但受焊缝表面几何形状影响大,出现结构杂波,易漏检误判;A型脉冲超声检测方法简便准确,但扫查效率低,对高温状态下的焊缝扫查需要花费较长工时;相控阵超声扫查效率高,速率快,但因探头为多晶片制成,受温度影响较大,难以对缺陷定量定量。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种高温状态 下焊接接头组合检测方法,该方法能够准确检测焊接接头的缺陷。
为达到上述目的,本发明所述的高温状态下焊接接头组合检测方法包括以下步骤:
对焊接接头及两侧母材进行表面处理;
对焊接接头进行表面波超声检测;
对焊接接头进行磁粉检测;
对焊接接头进行相控阵超声检测;
对焊接接头进行A型超声检测;
根据表面波超声检测结果、磁粉检测结果、相控阵超声检测结果及A型超声检测结果综合确定焊接接头的缺陷。
对焊接接头及两侧母材进行表面处理的具体过程为:
清除扫查面的氧化层及油污,打磨所有焊道及熔合线处,使焊接接头及两侧母材的粗糙度小于等于6.3μm。
对焊接接头进行表面波超声检测的具体过程为:
在探头前沿距焊缝边缘大于等于30mm的位置处进行表面波检测,其中,检测间隔小于等于5倍的探头宽度。
对焊接接头进行相控阵超声检测的具体操作为:
利用耐高温的相控阵探头及楔块对焊接接头进行相控阵超声检测。
对表面波超声检测及磁粉检测均存在的缺陷,则以表面波超声检测结果为准。
对表面波超声检测出的但磁粉未检出的缺陷进行定期监督检测。
对相控阵超声及A型超声均检测出的缺陷,以相控阵超声检测及A 型超声检测中最严重的检测结果为准。
对相控阵超声检测出且A型超声未检出的缺陷,以相控阵超声检测的结果为准。
本发明具有以下有益效果:
本发明所述的高温状态下焊接接头组合检测方法在具体操作时,通过表面波超声间隔扫查、干磁粉全面和局部检测、相控阵超声全面快速扫查及A型脉冲超声波局部扫查,对高温状态下的焊缝内部缺陷与表面缺陷均能,检测灵敏度高、效率高、可靠性高,具有工程应用价值。
附图说明
图1为本发明的流程图;
图2为检测时的缺陷磁痕显示图;
图3为检测时焊接内部相控阵超声缺陷图谱。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可 能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1,本发明所述的高温状态下焊接接头组合检测方法包括下述步骤:
1)对焊接接头及两侧母材进行表面处理;
具体的,清除扫查面的氧化层及油污,打磨所有焊道及熔合线处,使其平滑过渡,使得焊接接头及两侧母材的粗糙度小于等于6.3μm;
2)对焊接接头进行表面波超声检测;
在探头前沿距焊缝边缘30mm外的位置处进行表面波检测,其中,间隔小于等于5倍的探头宽度,扫查灵敏度为:距离80mm处使长为5mm、深为1mm的人工裂纹反射幅度达到满屏的80%,发现缺陷信号时进行标记并缩小间隔,记录缺陷位置及长度。
3)对焊接接头进行磁粉检测;
采用干磁粉对焊接接头进行全面检测,对表面波超声检测时存在缺陷反射的部位进行检测确认。
4)对焊接接头进行相控阵超声检测;
取耐高温的相控阵探头及楔块,将相控阵探头与相控阵检测仪相连接,以组成检测系统,根据工件不同壁厚调节检测灵敏度,调节灵敏度时,试块与被检焊接接头的温度偏差不超过±15℃。声束能够对焊缝进行全覆盖,同时对反射信号幅值超过评定线的内部缺陷进行记录。
5)对焊接接头进行A型超声检测;
取不同的A型超声探头与仪器组成检测系统,两个探头角度相差大于等于10°,灵敏度根据不同厚度选取,对相控阵超声检测得到的缺陷位置进行确认。
6)缺陷评定及质量分级
对表面波超声检测及磁粉检测均存在的缺陷,则以表面波超声检测结果为准。
对表面波超声检测出的但磁粉未检出的缺陷进行定期监督检测。
对相控阵超声及A型超声均检测出的缺陷,以相控阵超声检测及A型超声检测中最严重的检测结果为准。
对相控阵超声检测出且A型超声未检出的缺陷,以相控阵超声检测的结果为准。
实施例一
某公司甲醇合成1号中间换热器,筒体材质SA387GR11CL2,焊缝所在处规格为DN2100×85mm,焊缝宽度45mm,外表面温度160~180℃。
采用本发明进行检测,包括以下步骤:
1)焊接接头及两侧母材处理
采用角磨机对焊缝表面及两侧母材进行打磨,去除表面氧化皮,焊缝焊道间、焊缝与母材间圆滑过渡,不得有尖锐的棱角等,焊接接头及两侧母材的粗糙度小于等于6.3μm。
2)对焊接接头进行表面波超声检测
选择5P8×12BM探头(频率为5MHz,晶片尺寸8mm×12mm),间隔30mm对焊接接头进行表面波超声检测,检测扫查灵敏度为:距离80mm处使长5mm、深1mm的人工裂纹反射幅度达到满屏的80%。检测时发现一处缺陷反射信号,记录缺陷位置及长度,缺陷位于焊缝中心线上方10mm,长度为90mm。
3)对焊接接头进行磁粉检测
对焊缝施加白色反差剂,等待反差剂完全干燥后用黑色干磁粉磁化法进行全面检测,对表面波超声发现的缺陷反射部位进行重点检测,发现一处表面裂纹显示,如图2所示,缺陷位于焊缝中心线上方10mm,长度为70mm。
4)对焊接接头进行相控阵超声检测
使用专用高温相控阵探头(型号:5L32-0.5×10-HT)连接相控阵超声仪器,组成检测系统。采用标准DL/T1718-2017《火力发电厂焊接接头相控阵超声检测技术规程》中的PRB-Ⅲ试块调节灵敏度,调节灵敏度时,将试块温度加热至170℃。评定线为Φ2×60-14dB,定量线为Φ2×60-8dB,判废线为Φ2×60+2dB。检测时发现焊缝中心线深度为50mm处存在缺陷,长度为15mm,波幅Φ2×60-7dB,如图3所示。
5)对焊接接头进行A型脉冲超声检测;
对相控阵超声检测出缺陷的位置,采用2.5P13×13K1探头和2.5P13×13K1.5探头对缺陷进行单面双侧检测,采用标准DL/T1718-2017中的PRB-Ⅲ试块调节灵敏度,其中,在调节灵敏度时,将试块加热到170℃。评定线为Φ2×60-14dB,定量线为Φ2×60-8dB,判废线为 Φ2×60+2dB。长度均小于15mm,最大波幅Φ2×60-8dB。
6)缺陷评定及质量分级
表面缺陷评定:由于表面波超声及磁粉检测均发现存在缺陷,以超声检测结果为评定依据,因该缺陷为表面裂纹类缺陷,评为不允许存在。
内部缺陷评定:由于A型超声检测与相控阵超声检测结果对比,相控阵超声检测结果显示缺陷长度及幅度更高,以相控阵超声检测结果为评定依据,按DL/T1718-2017标准该处焊接接头评为I级。

Claims (8)

  1. 一种高温状态下焊接接头组合检测方法,其特征在于,包括以下步骤:
    对焊接接头及两侧母材进行表面处理;
    对焊接接头进行表面波超声检测;
    对焊接接头进行磁粉检测;
    对焊接接头进行相控阵超声检测;
    对焊接接头进行A型超声检测;
    根据表面波超声检测结果、磁粉检测结果、相控阵超声检测结果及A型超声检测结果综合确定焊接接头的缺陷。
  2. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对焊接接头及两侧母材进行表面处理的具体过程为:
    清除扫查面的氧化层及油污,打磨所有焊道及熔合线处,使焊接接头及两侧母材的粗糙度小于等于6.3μm。
  3. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对焊接接头进行表面波超声检测的具体过程为:
    在探头前沿距焊缝边缘大于等于30mm的位置处进行表面波检测,其中,检测间隔小于等于5倍的探头宽度。
  4. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对焊接接头进行相控阵超声检测的具体操作为:
    利用耐高温的相控阵探头及楔块对焊接接头进行相控阵超声检测。
  5. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对表面波超声检测及磁粉检测均存在的缺陷,则以表面波超声检测结果为准。
  6. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对表面波超声检测出的但磁粉未检出的缺陷进行定期监督检测。
  7. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对相控阵超声及A型超声均检测出的缺陷,以相控阵超声检测及A型超声检测中最严重的检测结果为准。
  8. 根据权利要求1所述的高温状态下焊接接头组合检测方法,其特征在于,对相控阵超声检测出且A型超声未检出的缺陷,以相控阵超声检测的结果为准。
PCT/CN2021/115581 2021-04-14 2021-08-31 一种高温状态下焊接接头组合检测方法 WO2022217813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110402656.6A CN113138227B (zh) 2021-04-14 2021-04-14 一种高温状态下焊接接头组合检测方法
CN202110402656.6 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022217813A1 true WO2022217813A1 (zh) 2022-10-20

Family

ID=76812561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115581 WO2022217813A1 (zh) 2021-04-14 2021-08-31 一种高温状态下焊接接头组合检测方法

Country Status (2)

Country Link
CN (1) CN113138227B (zh)
WO (1) WO2022217813A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138227B (zh) * 2021-04-14 2024-03-08 西安热工研究院有限公司 一种高温状态下焊接接头组合检测方法
CN114888405B (zh) * 2022-03-31 2023-12-05 阳江核电有限公司 一种在线消除核电站大型耐热钢异形焊接接头缺陷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762633A (zh) * 2008-12-25 2010-06-30 中国石油天然气股份有限公司 一种管道本体缺陷快速检测方法
US20110296923A1 (en) * 2009-02-25 2011-12-08 Sauoen S,p.A. Method for testing pipeline welds using ultrasonic phased arrays
CN104090027A (zh) * 2014-07-14 2014-10-08 浙江省特种设备检验研究院 一种换热器管板角焊缝超声波自动检测装置
CN106645418A (zh) * 2017-01-26 2017-05-10 中国特种设备检测研究院 履带式磁声复合检测机器人及检测方法和装置
CN111656182A (zh) * 2018-02-14 2020-09-11 三菱日立电力系统株式会社 工厂设备的检查方法
CN113138227A (zh) * 2021-04-14 2021-07-20 西安热工研究院有限公司 一种高温状态下焊接接头组合检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762633A (zh) * 2008-12-25 2010-06-30 中国石油天然气股份有限公司 一种管道本体缺陷快速检测方法
US20110296923A1 (en) * 2009-02-25 2011-12-08 Sauoen S,p.A. Method for testing pipeline welds using ultrasonic phased arrays
CN104090027A (zh) * 2014-07-14 2014-10-08 浙江省特种设备检验研究院 一种换热器管板角焊缝超声波自动检测装置
CN106645418A (zh) * 2017-01-26 2017-05-10 中国特种设备检测研究院 履带式磁声复合检测机器人及检测方法和装置
CN111656182A (zh) * 2018-02-14 2020-09-11 三菱日立电力系统株式会社 工厂设备的检查方法
CN113138227A (zh) * 2021-04-14 2021-07-20 西安热工研究院有限公司 一种高温状态下焊接接头组合检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "RAILROAD TEST AND EVALUATION TECHNOLOGY", 31 August 2012, CHINA RAILWAY PRESS, CN, ISBN: 978-7-113-15019-8, article KANG, XIONG: "Passage; RAILROAD TEST AND EVALUATION TECHNOLOGY", pages: 428 - 435, XP009540912 *

Also Published As

Publication number Publication date
CN113138227A (zh) 2021-07-20
CN113138227B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN103336055B (zh) 用相控阵超声检测核电站主回路管道焊缝质量的方法
WO2022217813A1 (zh) 一种高温状态下焊接接头组合检测方法
WO2020048373A1 (zh) 一种基于相控阵超声探伤仪的中大径薄壁管无损检测方法
JPWO2007004303A1 (ja) 超音波探傷試験における傷高さ測定法並びに装置
Tomlinson et al. Ultrasonic inspection of austenitic welds
CN106198740A (zh) 一种核电站主管道焊缝自动化相控阵超声检测方法
CN108562647A (zh) Pa-tofd结合的聚乙烯管道热熔对接接头超声检测装置及方法
CN201218806Y (zh) 管道对接焊缝超声检测装置
CN101788534A (zh) 埋弧焊缝横向缺陷的探伤方法
CN102967654A (zh) 堆焊钢管母材侧超声探伤方法
CN106841392A (zh) 一种用于核电站boss焊缝的相控阵超声检测方法
JPH0219424B2 (zh)
CN106053601A (zh) 一种检测铁素体中厚壁管对接焊缝根部未焊透的方法
CN105353039A (zh) 对接焊接接头的相控阵纵波检测方式
Matsui et al. Development of an ultrasonic phased array testing system that can evaluate quality of weld seam of high-quality ERW pipes
Hou et al. Research on on-line ultrasonic testing of small diameter thin wall stainless steel straight welded pipe
CN103217476A (zh) 一种锅炉集箱管排对接焊缝表面缺陷超声表面波检测方法
WO2023274089A1 (zh) 一种用于小径管周向超声检测的曲面透声楔设计方法
Edelmann Application of ultrasonic testing techniques on austenitic welds for fabrication and in-service inspection
Zhou et al. Research on Phased Array Ultrasonic Testing for the Girth Weld of 4mm~ 10mm Austenitic Stainless Steel Pipeline
Miao et al. Ultrasonic phased array inspection with water wedge for butt fusion joints of polyethylene pipe
Xie et al. Comparative experimental study on phased array and X-ray detection of small diameter pipe weld
Guo et al. Research on phased array ultrasonic technique for testing tube to tube-sheet welds of heat exchanger
AIZAWA et al. Type IV creep voids detection method for high chromium steel welds using ultrasonic backscattered waves
Dugan et al. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936685

Country of ref document: EP

Kind code of ref document: A1