WO2022217697A1 - 一种多层壳约束聚变发电系统及其发电方法 - Google Patents

一种多层壳约束聚变发电系统及其发电方法 Download PDF

Info

Publication number
WO2022217697A1
WO2022217697A1 PCT/CN2021/094902 CN2021094902W WO2022217697A1 WO 2022217697 A1 WO2022217697 A1 WO 2022217697A1 CN 2021094902 W CN2021094902 W CN 2021094902W WO 2022217697 A1 WO2022217697 A1 WO 2022217697A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer shell
power generation
shell
generation system
Prior art date
Application number
PCT/CN2021/094902
Other languages
English (en)
French (fr)
Inventor
林溪石
Original Assignee
林溪石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林溪石 filed Critical 林溪石
Publication of WO2022217697A1 publication Critical patent/WO2022217697A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/03Thermonuclear fusion reactors with inertial plasma confinement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to the technical field of power generation, and more particularly, to a multi-layer shell confinement fusion power generation system and a power generation method thereof.
  • nuclear reactors or nuclear power plants that obtain nuclear energy through heavy nuclear fission has been successful in the 1940s.
  • uranium resources in nature are also limited, and at best they can only meet the needs of all civilization for hundreds of years.
  • nuclear reactors also have the problem of post-treatment and burial of radioactive nuclear waste.
  • thermonuclear fusion When the scientific community discovered that the energy of the sun is produced by thermonuclear fusion. After several generations of unremitting research and exploration, at present, it seems that only the magnetic force-constrained thermonuclear fusion and inertial force-constrained thermonuclear fusion are more promising to achieve controlled nuclear fusion. Fusion reactors have become the number one international scientific problem that all civilization is facing heavy energy and environmental protection pressures, and urgently needs to be solved as soon as possible, after more than 60 years.
  • the purpose of the present invention is to provide a multi-layer shell confinement fusion power generation system and a power generation method thereof, which have the advantage of being able to realize nuclear fusion power generation.
  • a multi-layer shell confinement fusion power generation system comprising a multi-layer shell confinement mechanism for confining nuclear fusion, and a multi-layer shell confinement mechanism for transferring heat in the multi-layer shell confinement mechanism.
  • the heat conduction mechanism is connected; the heat conduction mechanism is fixed with the boiler; the steam turbine is arranged on the boiler; the generator is arranged on the steam turbine.
  • the multi-layer shell restraining mechanism includes a heat-conducting layer shell, a heat-insulating layer shell, and a force-holding layer shell; a cavity is formed between the outer wall of the heat-conducting layer shell and the inner wall of the heat-insulating layer shell; the The cavity is filled with a heat transfer layer; the cavity is communicated with the heat conduction mechanism; the outer wall of the heat insulation layer shell is fitted with the inner wall of the force-holding layer shell.
  • the heat conducting layer shell is a hollow spherical shell.
  • the heat transfer layer is a low melting point metal heat transfer layer.
  • the bearing layer shell is a steel member spherical shell or a reinforced cement member spherical shell.
  • the heat-conducting mechanism includes a heat-conducting channel and a high-pressure pump; the heat-conducting channel communicates with the cavity; and the high-pressure pump is arranged in the heat-conducting channel.
  • it also includes a transformer and a high-voltage line; the generator is electrically connected to the transformer; the transformer is electrically connected to the high-voltage line.
  • a power generation method based on the above-mentioned multi-layer shell confinement fusion power generation system characterized by comprising:
  • the multi-layer shell restraint mechanism absorbs heat and transfers the heat to the boiler through the heat conduction mechanism;
  • the boiler temperature rises and heats the water to produce steam
  • the steam drives the steam turbine to turn the generator to generate electricity.
  • the present invention has the following beneficial effects: the multi-layer shell confinement mechanism constrains the nuclear fusion reactor, and since a large amount of heat is generated in the multi-layer shell confinement mechanism during the nuclear fusion reaction, the heat conduction mechanism confines the multi-layer shell confinement mechanism inside the multi-layer shell confinement mechanism.
  • the heat of the boiler is transferred to the boiler to heat the water in the boiler to generate steam, and push the steam turbine to rotate, so that the generator installed on the steam turbine generates electricity.
  • Fig. 1 is the overall structure schematic diagram of the present invention
  • Fig. 2 is the sectional structure schematic diagram of the multi-layer shell restraint mechanism of the present invention
  • Figure 3 is a schematic flow chart of the present invention.
  • Multilayer shell restraint mechanism 11. Heat conduction layer shell; 12, Insulation layer shell; 13, Force-holding layer shell; 14, Heat transfer layer; 5. Generator; 6. Transformer; 7. High-voltage line.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the terms “first” and “second” are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present invention provides a multi-layer shell confinement fusion power generation system, as shown in FIG. 1 and FIG. 2 , comprising a multi-layer shell confinement mechanism 1 for confining nuclear fusion, a multi-layer shell confinement mechanism 1 for transferring heat in the multi-layer shell confinement mechanism 1
  • the heat conduction mechanism 2 resulting in the boiler 3, the boiler 3 for receiving the heat conducted by the heat conduction mechanism 2 and generating steam, the steam turbine 4 for being driven by the steam, and the generator 5 for generating electricity driven by the steam turbine 4;
  • the multi-layer shell restraint mechanism 1 is communicated with the heat conduction mechanism 2; the heat conduction mechanism 2 is fixed with the boiler 3; the steam turbine 4 is arranged on the boiler 3; the generator 5 is arranged on the boiler 3; on the steam turbine 4.
  • the multi-layer shell confinement mechanism 1 confines the nuclear fusion reactor, and since a large amount of heat is generated in the multi-layer shell confinement mechanism 1 during the nuclear fusion reaction, the heat conduction mechanism 2 conducts the heat in the multi-layer shell confinement mechanism 1 to the boiler 3 to prevent the fusion reactor.
  • the water in the boiler 3 is heated to generate steam, and the steam turbine 4 is driven to rotate, so that the generator 5 installed on the steam turbine 4 generates electricity.
  • multiple groups of the heat conduction mechanism 2 , the boiler 3 , the steam turbine 4 and the generator 5 can be arranged, so as to make full use of the nuclear fusion reaction capability in the multi-layer shell confinement mechanism.
  • the multi-layer shell restraining mechanism 1 includes a heat-conducting layer shell 11 , a heat-insulating layer shell 12 and a force-holding layer shell 13 ; there is a space between the outer wall of the heat-conducting layer shell 11 and the inner wall of the heat-insulating layer shell 12 .
  • a cavity; the cavity is filled with a heat transfer layer 14 ; the cavity is communicated with the heat conduction mechanism 2 ; the outer wall of the heat insulation layer shell 12 is in contact with the inner wall of the force-holding layer shell 13 .
  • the heat transfer layer shell 11 uniformly transfers the heat of nuclear fusion to the heat transfer layer 14, and the heat transfer layer 14 transfers the heat to the heat transfer mechanism 2; the heat insulation layer shell 12 can effectively prevent the heat from dissipating to the outside, and improve the utilization rate of heat;
  • the holding layer shell 13 is subjected to the high pressure generated by the nuclear fusion reaction.
  • the heat conducting layer shell 11 is a hollow spherical shell.
  • the hollow heat-conducting layer shell 11 can make the pressure in the heat-conducting layer shell 11 consistent during the nuclear fusion reaction, and facilitate the uniform transfer of heat to the heat-conducting layer 14; the heat-conducting layer shell 11 in this embodiment is made of high-temperature resistant steel. Made of alloy material.
  • the heat transfer layer 14 is a low melting point metal heat transfer layer 14 .
  • the low-melting-point metal heat transfer layer 14 liquefies when heated to enter the heat transfer mechanism 2 for heat exchange.
  • the bearing layer shell 13 is a steel member spherical shell or a reinforced cement member spherical shell.
  • the steel component spherical shell or the reinforced cement component spherical shell has a strong bearing capacity.
  • the heat-conducting mechanism 2 includes a heat-conducting channel and a high-pressure pump; the heat-conducting channel communicates with the cavity; and the high-pressure pump is arranged in the heat-conducting channel. After the heat transfer layer 14 is liquefied, it flows into the heat conduction channel under the action of the high pressure pump, thereby realizing heat exchange.
  • the generator 5 is electrically connected to the transformer 6 ; the transformer 6 is electrically connected to the high-voltage line 7 .
  • the electricity generated by the generator 5 is supercharged by the transformer 6 and then input to the power grid through the high-voltage line 7 to complete the power generation task.
  • the present invention also provides a power generation method based on the above-mentioned multi-layer shell confinement fusion power generation system, which is characterized by comprising:
  • Step 100 put the seawater incendiary bomb into the interior of the multi-layer shell restraint mechanism 1, and ignite the seawater incendiary bomb;
  • Step 200 the multi-layer shell restraint mechanism 1 absorbs heat and transfers the heat to the boiler 3 through the heat conduction mechanism 2;
  • Step 300 the temperature of the boiler 3 rises and heats water to generate steam
  • Step 400 the steam drives the steam turbine 4 to rotate and drives the generator 5 to generate electricity.
  • seawater incendiary bombs are composed of shells, fuzes, seawater concentrates and other parts.
  • the ignition mechanism of the fuze is composed of an ordinary digital detonator.
  • the digital detonator can be ignited in a delay of 100 milliseconds, and then detonates the explosive charge.
  • the ignited seawater concentrate is in a plasma state. If the deuterium abundance of the seawater concentrate reaches more than 30%, the deuterium atoms in the seawater concentrate will undergo fusion reaction.
  • the combustion effect of the fusion reaction is equivalent to the instantaneous combustion of 1,000 tons of standard coal.
  • the invention provides a multi-layer shell confinement fusion power generation system and a power generation method thereof, which can realize nuclear fusion power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种多层壳约束聚变发电系统及其发电方法,其技术方案要点是:包括用于约束核聚变的多层壳约束机构、用于将多层壳约束机构内的热量传导致锅炉的导热机构、用于接收导热机构传导的热量并产生蒸汽的锅炉、用于受蒸汽驱动的蒸汽轮机、及用于在蒸汽轮机驱动下发电的发电机;所述多层壳约束机构与所述导热机构相连通;所述导热机构与所述锅炉相固定;所述蒸汽轮机设置在所述锅炉上;所述发电机设置在所述蒸汽轮机上;本申请具有能够实现核聚变发电的优点。

Description

一种多层壳约束聚变发电系统及其发电方法 技术领域
本发明涉及发电技术领域,更具体地说,它涉及一种多层壳约束聚变发电系统及其发电方法。
背景技术
建造通过重核裂变方式获取核能源的核反应堆或核电站,上一世纪40年代就已获得成功。但是,自然界中的铀矿资源也有限,充其量只能满足全人类数百年的需求。况且,这类核反应堆还存在放射性核废料的污染后期处理掩埋的难题。
当科学界发现了太阳的能量就是由热核聚变产生的以后。经过几代人的不懈努力研究探索,目前看来比较有希望能勉强实现受控核聚变的只有磁场力约束热核聚变和惯性力约束热核聚变。核聚变堆已经成为全人类面临沉重的能源、环保压力,迫切需要尽快解决,历经60余年仍久攻不克的国际性头号科学难题。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种多层壳约束聚变发电系统及其发电方法,具有能够实现核聚变发电的优点。
本发明的上述技术目的是通过以下技术方案得以实现的:一种多层壳约束聚变发电系统,包括用于约束核聚变的多层壳约束机构、用于将多层壳约束机构内的热量传导致锅炉的导热机构、用于接收导热机构传导的热量并产生蒸汽的锅炉、用于受蒸汽驱动的蒸汽轮机、及用于在蒸汽轮机驱动下发电的发电机;所述多层壳约束机构与所述导热机构相连通;所述导热机构与所述锅炉相固定;所述蒸汽轮机设置在所述锅炉上;所述发电机设置在所述蒸汽轮机上。
可选的,所述多层壳约束机构包括导热层壳、隔热层壳和持力层壳;所述导热层壳的外壁与所述隔热层壳的内壁之间具有空腔;所述空腔内填充有传热层;所述空腔与所述导热机构相连通;所述隔热层壳的外壁与所述持力层壳的内壁相贴合。
可选的,所述导热层壳为中空的球壳。
可选的,所述传热层为低熔点金属传热层。
可选的,所述持力层壳为钢构件球壳或钢筋水泥构件球壳。
可选的,所述导热机构包括导热通道和高压泵;所述导热通道与所述空腔连通;所述高压泵设置在导热通道内。
可选的,还包括变压器和高压线;所述发电机与所述变压器电连接;所述变压器与所述高压线电连接。
一种基于上述多层壳约束聚变发电系统的发电方法,其特征在于,包括:
将海水燃烧弹放入多层壳约束机构内部,点燃海水燃烧弹;
多层壳约束机构吸收热量并通过导热机构将热量传递至锅炉;
锅炉温度上升并加热水产生蒸汽;
蒸汽驱动蒸汽轮机转动带动发电机发电。
综上所述,本发明具有以下有益效果:多层壳约束机构对核聚变反应堆进行约束,并由于在核聚变反应时多层壳约束机构内产生大量热量,导热机构将多层壳约束机构内的热量传导给锅炉以对锅炉内的水进行加热产生蒸汽,并推动蒸汽轮机转动,使得安装在蒸汽轮机上的发电机发电。
附图说明
图1是本发明的整体结构示意图;
图2是本发明的多层壳约束机构的剖视结构示意图;
图3是本发明的流程示意图。
图中:1、多层壳约束机构;11、导热层壳;12、隔热层壳;13、持力层壳;14、传热层;2、导热机构;3、锅炉;4、蒸汽轮机;5、发电机;6、变压器;7、高压线。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。术语“垂直的”、“水平的”、“左”、 “右”、“上”、“下”以及类似的表述只是为了说明的目的,而不是指示或暗示所指装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面结合附图和实施例,对本发明进行详细描述。
本发明提供了一种多层壳约束聚变发电系统,如图1和图2所示,包括用于约束核聚变的多层壳约束机构1、用于将多层壳约束机构1内的热量传导致锅炉3的导热机构2、用于接收导热机构2传导的热量并产生蒸汽的锅炉3、用于受蒸汽驱动的蒸汽轮机4、及用于在蒸汽轮机4驱动下发电的发电机5;所述多层壳约束机构1与所述导热机构2相连通;所述导热机构2与所述锅炉3相固定;所述蒸汽轮机4设置在所述锅炉3上;所述发电机5设置在所述蒸汽轮机4上。多层壳约束机构1对核聚变反应堆进行约束,并由于在核聚变反应时多层壳约束机构1内产生大量热量,导热机构2将多层壳约束机构1内的热量传导给锅炉3以对锅炉3内的水进行加热产生蒸汽,并推动蒸汽轮机4转动,使得安装在蒸汽轮机4上的发电机5发电。
在实际应用中,导热机构2、锅炉3、蒸汽轮机4和发电机5可设置多组,从而对多层壳约束机构内的核聚变反应的能力进行充分利用。
进一步地,所述多层壳约束机构1包括导热层壳11、隔热层壳12和持力层壳13;所述导热层壳11的外壁与所述隔热层壳12的内壁之间具有空腔;所述空腔内填充有传热层14;所述空腔与所述导热机构2相连通;所述隔热层壳12的外壁与所述持力层壳13的内壁相贴合。导热层壳11将核聚变的热量均匀的传递给传热层14,传热层14将热量传递至导热机构2;隔热层壳12能够有效的避免热量散发至外界,提高热量的利用率;持力层壳13承受核聚变反应产生的高压。
可选的,所述导热层壳11为中空的球壳。中空的导热层壳11能够使得核聚变反应时,导热层壳11内受到的压强一致,并方便将热量均匀的传递给传热层14;本实施例中的导热层壳11采用耐高温的钢合金材料制成。
可选地,所述传热层14为低熔点金属传热层14。低熔点金属传热层14在受热时进行液化从而进入导热机构2进行热交换。
进一步地,所述持力层壳13为钢构件球壳或钢筋水泥构件球壳。钢构件球壳或钢筋水泥构件球壳的承压能力较强。
进一步地,所述导热机构2包括导热通道和高压泵;所述导热通道与所述空腔连通;所述高压泵设置在导热通道内。传热层14液化后在高压泵的作用下进入导热通道内流通,从而实现热交换。
进一步地,还包括变压器6和高压线7;所述发电机5与所述变压器6电连接;所述变压器6与所述高压线7电连接。发电机5产生的电通过变压器6增压后通过高压线7输入电网完成发电任务。
如图3所示,本发明还提供了一种基于上述多层壳约束聚变发电系统的发电方法,其特征在于,包括:
步骤100、将海水燃烧弹放入多层壳约束机构1内部,点燃海水燃烧弹;
步骤200、多层壳约束机构1吸收热量并通过导热机构2将热量传递至锅炉3;
步骤300、锅炉3温度上升并加热水产生蒸汽;
步骤400、蒸汽驱动蒸汽轮机4转动带动发电机5发电。
在实际应用中,海水燃烧弹由壳体、引信、海水浓缩液等部分构成。引信的点火机构由一枚普通的数码雷管构成,数码雷管可以在100毫秒的范围内作延时点火,然后引爆猛炸药,猛炸药的爆炸又使点火装药,处于超临界 状态产生高温,使被点火的海水浓缩液处于等离子状态。如果海水浓缩液的含氘丰度达到30%以上,此时海水浓缩液中氘原子就会发生聚变反应。聚变反应的燃烧效果相当于1000吨标准煤瞬间燃烧的效果,此时海水燃烧弹周边3000米以内就会产生局部超过1000摄氏度的高温和100兆帕的压力,在5分钟内释放出相当于1000吨标准煤的能量,这种高温被导热层壳11吸收并传至传热层14,传热层14液化后通过导热机构2传递给锅炉3做工,进而使蒸汽轮机4转动并带动发电机5发电;在一定时间后第一颗海水燃烧弹的热量已传递完毕,系统会自动送来第二颗海水燃烧弹并自动引爆燃烧,整个系统周而复此运行,直到停止补充海水燃烧弹为止。
本发明的一种多层壳约束聚变发电系统及其发电方法,能够实现核聚变发电。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种多层壳约束聚变发电系统,其特征在于,包括用于约束核聚变的多层壳约束机构、用于将多层壳约束机构内的热量传导致锅炉的导热机构、用于接收导热机构传导的热量并产生蒸汽的锅炉、用于受蒸汽驱动的蒸汽轮机、及用于在蒸汽轮机驱动下发电的发电机;所述多层壳约束机构与所述导热机构相连通;所述导热机构与所述锅炉相固定;所述蒸汽轮机设置在所述锅炉上;所述发电机设置在所述蒸汽轮机上。
  2. 根据权利要求1所述的一种多层壳约束聚变发电系统,其特征在于,所述多层壳约束机构包括导热层壳、隔热层壳和持力层壳;所述导热层壳的外壁与所述隔热层壳的内壁之间具有空腔;所述空腔内填充有传热层;所述空腔与所述导热机构相连通;所述隔热层壳的外壁与所述持力层壳的内壁相贴合。
  3. 根据权利要求2所述的一种多层壳约束聚变发电系统,其特征在于,所述导热层壳为中空的球壳。
  4. 根据权利要求2所述的一种多层壳约束聚变发电系统,其特征在于,所述传热层为低熔点金属传热层。
  5. 根据权利要求2所述的一种多层壳约束聚变发电系统,其特征在于,所述持力层壳为钢构件球壳或钢筋水泥构件球壳。
  6. 根据权利要求2所述的一种多层壳约束聚变发电系统,其特征在于,所述导热机构包括导热通道和高压泵;所述导热通道与所述空腔连通;所述高压泵设置在导热通道内。
  7. 根据权利要求1所述的一种多层壳约束聚变发电系统,其特征 在于,还包括变压器和高压线;所述发电机与所述变压器电连接;所述变压器与所述高压线电连接。
  8. 一种基于权利要求1-6任一项所述多层壳约束聚变发电系统的发电方法,其特征在于,包括:
    将海水燃烧弹放入多层壳约束机构内部,点燃海水燃烧弹;
    多层壳约束机构吸收热量并通过导热机构将热量传递至锅炉;
    锅炉温度上升并加热水产生蒸汽;
    蒸汽驱动蒸汽轮机转动带动发电机发电。
PCT/CN2021/094902 2021-04-15 2021-05-20 一种多层壳约束聚变发电系统及其发电方法 WO2022217697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110403771.5 2021-04-15
CN202110403771.5A CN113130093A (zh) 2021-04-15 2021-04-15 一种多层壳约束聚变发电系统及其发电方法

Publications (1)

Publication Number Publication Date
WO2022217697A1 true WO2022217697A1 (zh) 2022-10-20

Family

ID=76776470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094902 WO2022217697A1 (zh) 2021-04-15 2021-05-20 一种多层壳约束聚变发电系统及其发电方法

Country Status (2)

Country Link
CN (1) CN113130093A (zh)
WO (1) WO2022217697A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309398A (zh) * 2000-02-17 2001-08-22 李先克 可控热核聚变反应锅炉
CN1489157A (zh) * 2003-09-08 2004-04-14 化建华 一种利用热核聚变能发电的方法
US20050129159A1 (en) * 1999-04-29 2005-06-16 Condensate Energy Llc Method and apparatus for compressing a bose-einstein condensate of atoms
CN103514964A (zh) * 2012-06-21 2014-01-15 曾宪俊 核聚变反应系统
CN103778971A (zh) * 2013-12-23 2014-05-07 狼嗥出版社有限公司 一种核聚变炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129159A1 (en) * 1999-04-29 2005-06-16 Condensate Energy Llc Method and apparatus for compressing a bose-einstein condensate of atoms
CN1309398A (zh) * 2000-02-17 2001-08-22 李先克 可控热核聚变反应锅炉
CN1489157A (zh) * 2003-09-08 2004-04-14 化建华 一种利用热核聚变能发电的方法
CN103514964A (zh) * 2012-06-21 2014-01-15 曾宪俊 核聚变反应系统
CN103778971A (zh) * 2013-12-23 2014-05-07 狼嗥出版社有限公司 一种核聚变炉

Also Published As

Publication number Publication date
CN113130093A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN107945887B (zh) 一种一体化小型熔盐堆
CN104900276B (zh) 核裂变反应堆
KR101779730B1 (ko) 핵분열 점화기
CN104766635B (zh) 核裂变反应堆系统
JP2019531472A (ja) 滞留する液体の炉心を有するヒートパイプ式溶融塩高速炉
CN104766636B (zh) 一种核燃料棒与中心冷却热管的嵌套一体化结构
JP2016515191A5 (zh)
RU2015113440A (ru) Модульный транспортируемый ядерный генератор
Lubin et al. Fusion by laser
CN109859859B (zh) 一种基于钨导热的无对流换热整体模块式超小型空间反应堆堆芯
White et al. Phase change salt thermal energy storage for dish stirling solar power systems
WO2022217697A1 (zh) 一种多层壳约束聚变发电系统及其发电方法
US20070172015A1 (en) Nuclear fusion containment complex and systems network for the thermal durational enhancement of contained heat processes
Morishige et al. Nuclear Fusion Proposal Using the Explosive Power of Magnesium
JP2015501918A (ja) プラズマを高エネルギー状態に圧縮するための方法および装置
Adelerhof et al. Clean and sustainable fusion energy for the future
Chu et al. Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion
CN214664361U (zh) 一种涡轮蒸汽冷却循环系统
CN112951452A (zh) 中子(*)、双中子(*)无势垒核聚变及可控氢核反应技术装置
CN1489157A (zh) 一种利用热核聚变能发电的方法
Linhart Quo vadis fusion?
Zhang et al. Thermal-hydraulics characteristics of a heat pipe core of SAIRS-C
Tang et al. Thermal-Hydraulic Analysis of TOPAZ-II With Modified RELAP5
JP2017020721A (ja) イグナイタ及び原子力プラント
Watson Future of Fast Ignition Fusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936569

Country of ref document: EP

Kind code of ref document: A1