WO2022217582A1 - Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same - Google Patents

Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same Download PDF

Info

Publication number
WO2022217582A1
WO2022217582A1 PCT/CN2021/087769 CN2021087769W WO2022217582A1 WO 2022217582 A1 WO2022217582 A1 WO 2022217582A1 CN 2021087769 W CN2021087769 W CN 2021087769W WO 2022217582 A1 WO2022217582 A1 WO 2022217582A1
Authority
WO
WIPO (PCT)
Prior art keywords
bhb
salt
ppb
arsenic
hydroxybutyrate
Prior art date
Application number
PCT/CN2021/087769
Other languages
French (fr)
Inventor
Jinjian Zhu
Jian Zhang
Qiru FAN
Ronghua YI
Kylin LIAO
Original Assignee
Nanjing Nutrabuilding Bio-Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Nutrabuilding Bio-Tech Co., Ltd. filed Critical Nanjing Nutrabuilding Bio-Tech Co., Ltd.
Priority to US17/768,388 priority Critical patent/US20240190803A1/en
Priority to CA3159213A priority patent/CA3159213A1/en
Priority to AU2021367387A priority patent/AU2021367387A1/en
Priority to CN202180002498.3A priority patent/CN115968364A/en
Priority to PCT/CN2021/087769 priority patent/WO2022217582A1/en
Publication of WO2022217582A1 publication Critical patent/WO2022217582A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • This invention generally relates to the field of chemical synthesis, and more specifically relates to synthesis and preparation of low-lead and low-arsenic beta-hydroxybutyrate (BHB) salts.
  • BHB beta-hydroxybutyrate
  • ketosis is the physiological state of elevated blood ketone body levels resulting from ketogenic diets, calorie restriction, therapeutic fasting, and/or supplementation with ketogenic precursors.
  • the body When in ketosis, the body is essentially burning fat for its primary fuel, and begins cleaving fats into fatty acids and glycerol and transforms the fatty acids into acetyl CoA molecules, which are then eventually transformed through ketogenesis into ketone bodies beta-hydroxybutyrate (beta-hydroxybutyrate or "BHB” ) , acetoacetate (acetylacetonate) , and acetone in the liver.
  • beta-hydroxybutyrate beta-hydroxybutyrate
  • acetoacetate acetylacetonate
  • BHB is a natural ketone body that produces by the human liver from the stored fat, which assists in breakdown of fat, fasten circulation of blood, activated the formation of new blood cells, and provides powerful energy to the brain, bone, myocardial tissues, etc.
  • BHB salts are pharmaceutics or supplements that contain a ketone (BHB) bound to a mineral. Released BHB not only can increase blood ketone levels, but also is able to assist entry of the ketogenic state more quickly and promote or maintain ketosis state. Furthermore, BHB can help improve endurance performance, and support better appetite management.
  • BHB ketone
  • Beta-hydroxybutyrate (BHB) salts have been widely commercialized as a dietary supplement, they may result in the excess intake of heavy metal ions, particularly lead and arsenic. In the current BHB salts in the market, the contents of the lead and arsenic have been neither sufficiently nor effectively controlled.
  • lead and arsenic are both heavy metals. Since heavy metals generally cannot be metabolized in the body, the more they accumulate in the body, the greater damage they may cause to the body.
  • Lead is not a mineral required by the human body, and is potentially harmful to the human body if overdosed. This heavy metal can accumulate in the body for a long period. When the lead in the body accumulates to a certain extent, it can have toxic effects on the hematopoietic system, nervous system, kidneys, etc. Accordingly, as lead has no physiological function in the human body but harmful effects, the level of lead in human blood should be as low as possible.
  • Arsenic acts on the nervous system and stimulates hematopoietic organs. Although a low amount of arsenic helps the synthesis of hemoglobin and can promote the growth and development of the human body, a mass of arsenic invades the human body for a long time and has a stimulating effect on red blood cell production. Long-term exposure to abundant arsenic might cause cell poisoning and capillary poisoning. What's worse, it may also induce malignant tumors. Accordingly, conventionally produced BHB salts with insufficiently controlled lead and arsenic contents may result in the excess intake of heavy metal ions and be harmful to the human body.
  • the present invention generally relates to low-lead, low-arsenic, and high yield beta-hydroxybutyrate (BHB) salts, and preparation methods thereof.
  • the preparation process according to the present invention includes an adsorption process (by particular adsorbent (s) and adsorbed solvent) for effectively adsorbing, controlling, and reducing the amounts of heavy metals including lead and arsenic.
  • adsorption process by particular adsorbent (s) and adsorbed solvent
  • the heavy metals such as lead and arsenic can be successfully and strictly controlled through simple manufacturing process at a low cost.
  • the prepared low-lead and low-arsenic BHB salts according to the present invention are pure, chemically stable, and also safer and healthier than the existing BHB salts in the market.
  • the BHB salts according to the present invention may be widely used in dietary supplementary, food additives and/or pharmaceuticals, and can avoid access intake of metal heavy ions into the human body.
  • BHB beta-hydroxybutyrate
  • the level of lead ranges from 10 to 50 parts per billion (ppb)
  • the level of arsenic ranges from 10 to 150 ppb.
  • the range of lead may be 10 to 30 ppb
  • the range of the arsenic may be 10 to 50 ppb.
  • the BHB salt comprises a BHB metal salt.
  • the BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof (e.g., a mixture of any two or any three thereof, in any ratio) .
  • the BHB salt comprises D-BHB, DL-BHB, L-BHB form or a mixture thereof (e.g., a mixture of any two or any three thereof, in any ratio) .
  • the BHB salt has a chemical purity of at least 95% (e.g., 95.0-99.5%) .
  • the BHB salt may have a chemical purity of at least 98%. (e.g., 98-99.5%) .
  • the BHB salt has an optical purity of at least 95% (e.g., 95.0-99.0%) .
  • the BHB salt may have an optical purity of at least 98%. (e.g., 98-99.0%) .
  • the BHB salt is formed with a molar yield of at least 81% (e.g., 81%-95%) .
  • the BHB salt may be formed with a molar yield of at least 88% (e.g., 88%-95%) .
  • Another aspect of the present invention provides a composition, for promoting and/or sustaining ketosis in a mammal (e.g., human) , comprising a BHB salt as described above.
  • the prevent invention relates to a method for preparing beta-hydroxybutyrate (BHB) salt, comprising an adsorbing process for controlling and enabling low levels of lead and arsenic in the prepared BHB salt.
  • BHB beta-hydroxybutyrate
  • the method comprises the steps of (a) synthesizing, (b) adsorbing, (c) concentrating under reduced pressure, and (d) spray drying.
  • the synthesizing step comprises adding (R) -3-hydroxybutyrate, water, and one or more metal oxides to obtain a mixture solution.
  • the adsorbing process comprising adding adsorbent (s) and filtering solution after the adsorption.
  • adsorbents include but are not limited to activated carbon, normal silicone, mercaptoalkyl-functionalisedsilica, and Al 2 O 3 .
  • the adsorbent may comprise activated carbon or mercaptoalkyl-functionalisedsilica.
  • the amount of the adsorbent is 1-50%, preferably 1-10%.
  • the adsorbing process uses a solvent.
  • solvents include but are not limited to water, ethanol, and methanol.
  • the solvent is water.
  • the volume of the solvent is controlled within a suitable amount of 500mL.
  • the adsorbing process is operated at a temperature ranging from 20 to 60°C.
  • the adsorbing process is operated for a time ranging from 2 to 24 hours.
  • the concentrating under reduced pressure step comprises concentrating the solution after the adsorption process under reduced pressure.
  • the spray-dry step comprises spray-drying the concentrated solution to obtain the beta-hydroxybutyrate (BHB) salt with low lead and arsenic contents.
  • BHB beta-hydroxybutyrate
  • the prepared beta-hydroxybutyrate (BHB) salt may include lead at a level ranging from 10 to 50 ppb and arsenic at a level ranging from 10 to 150 ppb.
  • the range of lead may be 10 to 30 ppb, and/or the range of the arsenic may be 10 to 50 ppb.
  • the prepared BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof.
  • the prepared BHB salt has a chemical purity of at least 95%, an optical purity of at least 95%, and/or a molar yield of at least 81%. In some further embodiments, the prepared BHB salt has a chemical purity of at least 98%, an optical purity of at least 98%, and/or a molar yield of at least 88%.
  • the term “or” is meant to include both “and” and “or. ” In other words, the term “or” may also be replaced with “and/or. ”
  • various embodiments of the present invention provide for synthesis and preparation method of low-lead and low-arsenicbeta-hydroxybutyrate (BHB) salts.
  • the process steps may include: synthesizing, adsorbing, concentrating under reduced pressure and spray drying.
  • the adsorbing process is critical for successfully and strictly controlling the amounts of heavy metals such as lead and arsenic.
  • the BHB salt can be adsorbed by particular adsorbents (e.g., activated carbon, mercaptoalkyl-functionalisedsilica, normal silicone, or aluminum oxide (Al2O3) ) and adsorbed solvent (e.g., water, ethanol, or methanol) .
  • the amount of adsorbents may be 1-50%, preferably 1-10%; and the volume of the solvent may be controlled within 500 mL.
  • the prepared BHB salt contains lead and arsenic in sufficiently low ranges, thereby achieving safer and healthier BHB salts that can be used widely and safely as a dietary supplement, food additives, etc.
  • the level of lead may be 10-50 ppb, preferably 10-30 ppb; and/or the level of arsenic may be 10-150 ppb, preferably 10-50 ppb.
  • the synthetic BHB salts according to the present invention have high yield (e.g., a molar yield of at least 81%, preferably 88%) , and high purity (e.g., chemical purity of 95.0-99.5%, preferably 98.0-99.5%; and optical purity of 95.0-99.0%, preferably 98.0-99.0%) .
  • the synthesis processes according to the present invention are simple, easy to control and repeat, effective and efficient, and at a low cost.
  • the BHB salt may be a BHB metal salt, e.g., formed from sodium, potassium, calcium, magnesium, or a mixture thereof.
  • Table 1 below shows law of BHB Ca salt or Ca-Mg salt adsorption and the law of BHB.
  • Nos. 1-2 are non-adsorption samples.
  • adsorbents are added in 1-10%.
  • use of adsorbents e.g., activated carbon, mercaptoalkyl- functionalisedsilica, normal silicone, and Al 2 O 3
  • solvents e.g., water, ethanol, and methanol
  • the activated carbon and mercaptoalkyl-functionalisedsilica show great adsorption effects on lead and arsenic.
  • the adsorption effect in aqueous solution is also shown to be better than that in alcohol solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed are low-lead and low-arsenic beta-hydroxybutyrate (BHB) salts, comprising lead ranging from 10 to 50 parts per billion (ppb) and arsenic ranging from 10 to 150 ppb. Disclosed also are methods for preparing low-lead and low-arsenic beta-hydroxybutyrate (BHB) salts, which may include (a) synthesizing, (b) adsorbing (e.g., by adsorbent and solvent, (c) concentrating under reduced pressure, and (d) spray drying.

Description

LOW-LEAD AND LOW-ARSENIC BETA-HYDROXYBUTYRATE SALTS AND METHODS FOR PRODUCING THE SAME FIELD OF THE INVENTION
This invention generally relates to the field of chemical synthesis, and more specifically relates to synthesis and preparation of low-lead and low-arsenic beta-hydroxybutyrate (BHB) salts.
BACKGROUND OF THE INVENTION
Nutritional, or therapeutic, ketosis is the physiological state of elevated blood ketone body levels resulting from ketogenic diets, calorie restriction, therapeutic fasting, and/or supplementation with ketogenic precursors. When in ketosis, the body is essentially burning fat for its primary fuel, and begins cleaving fats into fatty acids and glycerol and transforms the fatty acids into acetyl CoA molecules, which are then eventually transformed through ketogenesis into ketone bodies beta-hydroxybutyrate (beta-hydroxybutyrate or "BHB" ) , acetoacetate (acetylacetonate) , and acetone in the liver. As such, BHB is a natural ketone body that produces by the human liver from the stored fat, which assists in breakdown of fat, fasten circulation of blood, activated the formation of new blood cells, and provides powerful energy to the brain, bone, myocardial tissues, etc.
BHB salts are pharmaceutics or supplements that contain a ketone (BHB) bound to a mineral. Released BHB not only can increase blood ketone levels, but also is able to assist entry of the ketogenic state more quickly and promote or maintain ketosis state. Furthermore, BHB can help improve endurance performance, and support better appetite management.
While Beta-hydroxybutyrate (BHB) salts have been widely commercialized as a dietary supplement, they may result in the excess intake of heavy metal ions, particularly lead and arsenic. In the current BHB salts in the market, the contents of the lead and arsenic have been neither sufficiently nor effectively controlled.
Particularly, lead and arsenic are both heavy metals. Since heavy metals generally cannot be metabolized in the body, the more they accumulate in the body, the greater damage they may cause to the body.
Lead is not a mineral required by the human body, and is potentially harmful to the human body if overdosed. This heavy metal can accumulate in the body for a long period. When the lead in the body accumulates to a certain extent, it can have toxic effects on the hematopoietic system, nervous system, kidneys, etc. Accordingly, as lead has no physiological function in the human body but harmful effects, the level of lead in human blood should be as low as possible.
Arsenic acts on the nervous system and stimulates hematopoietic organs. Although a low amount of arsenic helps the synthesis of hemoglobin and can promote the growth and development of the human body, a mass of arsenic invades the human body for a long time and has a stimulating effect on red blood cell production. Long-term exposure to abundant arsenic might cause cell poisoning and capillary poisoning. What's worse, it may also induce malignant tumors. Accordingly, conventionally produced BHB salts with insufficiently controlled lead and arsenic contents may result in the excess intake of heavy metal ions and be harmful to the human body.
To overcome these drawbacks, it is therefore desired to have improved, safer, and healthier BHB salts, and effective production methods thereof, with sufficiently low levels of lead and arsenic.
SUMMARY OF THE INVENTION
This summary is provided to introduce a selection of concepts in a simplified form that is further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The present invention generally relates to low-lead, low-arsenic, and high yield beta-hydroxybutyrate (BHB) salts, and preparation methods thereof. Particularly, the preparation process according to the present invention includes an adsorption process (by particular  adsorbent (s) and adsorbed solvent) for effectively adsorbing, controlling, and reducing the amounts of heavy metals including lead and arsenic. As a result, the heavy metals such as lead and arsenic can be successfully and strictly controlled through simple manufacturing process at a low cost. The prepared low-lead and low-arsenic BHB salts according to the present invention are pure, chemically stable, and also safer and healthier than the existing BHB salts in the market. The BHB salts according to the present invention may be widely used in dietary supplementary, food additives and/or pharmaceuticals, and can avoid access intake of metal heavy ions into the human body.
One aspect of this invention relates to a beta-hydroxybutyrate (BHB) salt, comprising low lead and arsenic contents, wherein the level of lead ranges from 10 to 50 parts per billion (ppb) , and the level of arsenic ranges from 10 to 150 ppb. In some further embodiments, the range of lead may be 10 to 30 ppb, and/or the range of the arsenic may be 10 to 50 ppb.
In some embodiments, the BHB salt comprises a BHB metal salt. In some further embodiments, the BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof (e.g., a mixture of any two or any three thereof, in any ratio) .
In some embodiments, the BHB salt comprises D-BHB, DL-BHB, L-BHB form or a mixture thereof (e.g., a mixture of any two or any three thereof, in any ratio) .
In some embodiments, the BHB salt has a chemical purity of at least 95% (e.g., 95.0-99.5%) . Preferably, the BHB salt may have a chemical purity of at least 98%. (e.g., 98-99.5%) .
In some embodiments, the BHB salt has an optical purity of at least 95% (e.g., 95.0-99.0%) . Preferably, the BHB salt may have an optical purity of at least 98%. (e.g., 98-99.0%) .
In some embodiments, the BHB salt is formed with a molar yield of at least 81% (e.g., 81%-95%) . Preferably, the BHB salt may be formed with a molar yield of at least 88% (e.g., 88%-95%) .
Another aspect of the present invention provides a composition, for promoting and/or sustaining ketosis in a mammal (e.g., human) , comprising a BHB salt as described above.
In a further aspect, the prevent invention relates to a method for preparing beta-hydroxybutyrate (BHB) salt, comprising an adsorbing process for controlling and enabling low levels of lead and arsenic in the prepared BHB salt.
In some embodiments, the method comprises the steps of (a) synthesizing, (b) adsorbing, (c) concentrating under reduced pressure, and (d) spray drying.
In some further embodiments, the synthesizing step comprises adding (R) -3-hydroxybutyrate, water, and one or more metal oxides to obtain a mixture solution.
In some embodiments, the adsorbing process comprising adding adsorbent (s) and filtering solution after the adsorption. Examples of the adsorbents include but are not limited to activated carbon, normal silicone, mercaptoalkyl-functionalisedsilica, and Al 2O 3. Preferably, the adsorbent may comprise activated carbon or mercaptoalkyl-functionalisedsilica.
In some embodiments, the amount of the adsorbent is 1-50%, preferably 1-10%.
In some embodiments, the adsorbing process uses a solvent. Examples of solvents include but are not limited to water, ethanol, and methanol. For instance, the solvent is water. In some embodiments, the volume of the solvent is controlled within a suitable amount of 500mL.
In some embodiments, the adsorbing process is operated at a temperature ranging from 20 to 60℃.
In some embodiments, the adsorbing process is operated for a time ranging from 2 to 24 hours.
In some embodiments, the concentrating under reduced pressure step comprises concentrating the solution after the adsorption process under reduced pressure. In some embodiments, the spray-dry step comprises spray-drying the concentrated solution to obtain the beta-hydroxybutyrate (BHB) salt with low lead and arsenic contents.
In some embodiments, the method effectively controls the lead and arsenic contents within safe and healthy ranges. The prepared beta-hydroxybutyrate (BHB) salt may include lead at a level ranging from 10 to 50 ppb and arsenic at a level ranging from 10 to 150 ppb. In some further embodiments, the range of lead may be 10 to 30 ppb, and/or the range of the arsenic may be 10 to 50 ppb.
In some embodiments, the prepared BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof.
In some embodiments, the prepared BHB salt has a chemical purity of at least 95%, an optical purity of at least 95%, and/or a molar yield of at least 81%. In some further embodiments, the prepared BHB salt has a chemical purity of at least 98%, an optical purity of at least 98%, and/or a molar yield of at least 88%.
As used herein, the term “or” is meant to include both “and” and “or. ” In other words, the term “or” may also be replaced with “and/or. ”
As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are further illustrated. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the claims. Furthermore, in the detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and other features have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Generally speaking, various embodiments of the present invention provide for synthesis and preparation method of low-lead and low-arsenicbeta-hydroxybutyrate (BHB) salts. The process steps may include: synthesizing, adsorbing, concentrating under reduced pressure and spray drying. In particular, the adsorbing process is critical for successfully and strictly controlling the amounts of heavy metals such as lead and arsenic. The BHB salt can be adsorbed by particular adsorbents (e.g., activated carbon, mercaptoalkyl-functionalisedsilica, normal silicone, or aluminum oxide (Al2O3) ) and adsorbed solvent (e.g., water, ethanol, or methanol) .  For instance, the amount of adsorbents may be 1-50%, preferably 1-10%; and the volume of the solvent may be controlled within 500 mL.
Accordingly, the prepared BHB salt contains lead and arsenic in sufficiently low ranges, thereby achieving safer and healthier BHB salts that can be used widely and safely as a dietary supplement, food additives, etc. For instance, the level of lead may be 10-50 ppb, preferably 10-30 ppb; and/or the level of arsenic may be 10-150 ppb, preferably 10-50 ppb. In addition, the synthetic BHB salts according to the present invention have high yield (e.g., a molar yield of at least 81%, preferably 88%) , and high purity (e.g., chemical purity of 95.0-99.5%, preferably 98.0-99.5%; and optical purity of 95.0-99.0%, preferably 98.0-99.0%) . Furthermore, the synthesis processes according to the present invention are simple, easy to control and repeat, effective and efficient, and at a low cost.
In the present application, the BHB salt may be a BHB metal salt, e.g., formed from sodium, potassium, calcium, magnesium, or a mixture thereof. Table 1 below shows law of BHB Ca salt or Ca-Mg salt adsorption and the law of BHB.
Table 1
Figure PCTCN2021087769-appb-000001
In Table 1, Nos. 1-2 are non-adsorption samples. For Nos. 3-14, adsorbents are added in 1-10%. As shown in Table 1, use of adsorbents (e.g., activated carbon, mercaptoalkyl- functionalisedsilica, normal silicone, and Al 2O 3) and solvents (e.g., water, ethanol, and methanol) significantly and effectively decrease the lead and arsenic contents in the BHB salts. In particular, the activated carbon and mercaptoalkyl-functionalisedsilica show great adsorption effects on lead and arsenic. The adsorption effect in aqueous solution is also shown to be better than that in alcohol solution.
The adsorption law of potassium and sodium salts is also found to be similar to that of Ca and Ca-Mg salts, as described above.
Further, the following examples are illustrative of select embodiments of the present invention and are not meant to limit the scope of the invention, including, e.g., (R) -3-hydroxybutanoic acid sodium salt, (R) -3-hydroxybutanoic acid potassium salt, (R) -3-hydroxybutanoic acid calcium salt, (R) -3-hydroxybutanoic acid magnesium salt, (R) -3-hydroxybutanoic acid calcium and magnesium salt and (R) -3-hydroxybutyric acid.
Preparation of (R) -3-hydroxybutanoic acid sodium salt
Example 1
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5 g of activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 98.2 g of a white solid (R) -3-hydroxybutanoic acid sodium salt with the lead content of 30 ppb and arsenic content of 120 ppb, of which the molar yield was 92%, the chemical purity was 99.1%and the optical purity was 99.0%.
Example 2
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 44.9 g of sodium carbonate in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5 g of activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then  concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 98.2 g of a white solid (R) -3-hydroxybutanoic acid sodium salt with the lead content of 25 ppb and arsenic content of 110 ppb, of which the molar yield was 92%, the chemical purity was 99.1%and the optical purity was 99.0%.
Preparation of (R) -3-hydroxybutanoic acid potassium salt
Example 3
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 47.5 g (after conversion by content) of potassium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5%activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 108 g of a white solid (R) -3-hydroxybutanoic acid potassium salt with the lead content of 32 ppb and arsenic content of 100 ppb, of which the molar yield was 90%, the chemical purity was 99.1%and the optical purity was 99.0%.
Example 4
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 58.5 g of potassium carbonate in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5%activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 109 g of a white solid (R) -3-hydroxybutanoic acid potassium salt with the lead content of 30 ppb and arsenic content of 110 ppb, of which the molar yield was 90%, the chemical purity was 99.1%and the optical purity was 99.0%.
Preparation method of (R) -3-hydroxybutanoic acid calcium salt
Example 5
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 25 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) in batches at 10-20℃. Stir the mixture solution at 90-100℃ for 6 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5 g activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 96.7 g of a white solid (R) -3-hydroxybutanoic acid calcium salt with the lead content of 30 ppb and arsenic content of 120 ppb, of which the molar yield was 93%, the chemical purity was 99.1%and the optical purity was 99.0%.
Example 6
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and add then 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to room temperature, pass the mixture solution through a cation exchange resin column to obtain (R) -3-hydroxybutyric acid aqueous solution. Add 25 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) and stir it at 80-90℃ for 2 h. After cooling to 20-30℃, add 5 g activated charcoal and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 94.6 g of a white solid (R) -3-hydroxybutanoic acid calcium salt with the lead content of 32 ppb and arsenic content of 130 ppb, of which the molar yield was 91%, the chemical purity was 99.2%and the optical purity was 98.8%.
Example 7
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. Concentrate the mixture solution to about 150 mL and add 300 mL of ethanol. Adjust pH 1-2 with 85.8 g of concentrated hydrochloric acid. Filtered the mixture and concentrated it under reduced pressure to solvent-free distillation. After cooling to room temperature, add 200 mL of ethanol, stir by filtering, and  concentrate the filtrate to obtain (R) -3-hydroxybutyric acid oil. Add 500 mL and 25 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) and stir it at 80-85℃ for 2 h. After cooling to 20-30℃, add 5 g activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 94.6 g of a white solid (R) -3-hydroxybutanoic acid calcium salt with the lead content of 31 ppb and arsenic content of 125 ppb, of which the molar yield was 91%, the chemical purity was 99.0%and the optical purity was 98.8%.
Preparation of (R) -3-hydroxybutanoic acid magnesium salt
Example 8
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 17.2 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) . Stir the mixture solution at 90-100℃ for 6 h. The endpoint of reaction was detected by HPLC. After cooling to room temperature, filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 92.8 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt with the lead content of 20 ppb and arsenic content of 10 ppb, of which the molar yield was 95%, the chemical purity was 99.5%and the optical purity was 99.0%.
Example 9
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to room temperature, pass the mixture solution through a cation exchange resin column to obtain (R) -3-hydroxybutyric acid aqueous solution. Add 17.2 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) and stir it at 80-90℃ for 2 h. After cooling to room temperature, filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 87.9 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt with  the lead content of 20 ppb and arsenic content of 10 ppb, of which the molar yield was 90%, the chemical purity was 99.3%and the optical purity was 98.9%.
Example 10
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and add then 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. Concentrate the mixture solution to about 150 mL and add 300 mL of ethanol. Adjust pH 1-2 with 85.8 g of concentrated hydrochloric acid. Filtered the mixture and concentrated it under reduced pressure to solvent-free distillation. After cooling to room temperature, add 200 mL of ethanol, stir by filtering, and concentrate the filtrate to obtain (R) -3-hydroxybutyric acid oil. Add 500 mL and 17.2 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) and stir it at 80-90℃ for 2 h. After cooling to room temperature, filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 87.9 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt with the lead content of 10 ppb and arsenic content of 10 ppb, of which the molar yield was 90%, the chemical purity was 99.4%and the optical purity was 98.8%.
Preparation of (R) -3-hydroxybutanoic acid calcium and magnesium salt (w/w=1: 2)
Example 11
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 8.0 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) and 11.7 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) . Stir the mixture solution at 90-100℃ for 6 h. The endpoint of reaction was detected by HPLC. After cooling to 20-30℃, add 5 g activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 95.5 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt (w/w=1: 2) with the lead content of 20 ppb and arsenic content of 77 ppb, of which the molar yield was 95%, the chemical purity was 99.2%and the optical purity was 99.0%.
Example 12
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and add then 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. After cooling to room temperature, pass the mixture solution through a cation exchange resin column to obtain (R) -3-hydroxybutyric acid aqueous solution. Add 8.0 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) and 11.7 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) and stir it at 80-90℃ for 2 h. After cooling to 20-30℃, add 5 g activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 91.1 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt (w/w=1: 2) with the lead content of 10 ppb and arsenic content of 10 ppb, of which the molar yield was 91%, the chemical purity was 99.5%and the optical purity was 98.9%.
Example 13
Add 100 g of methyl (R) -3-hydroxybutyrate and 500 mL of water into the reaction bottle, and then add 34.2 g of sodium hydroxide in batches at 10-20℃. Stir the mixture solution at 70-80℃ for 2 h. The endpoint of reaction was detected by HPLC. Concentrate the mixture solution to about 150 mL and add 300 mL of ethanol. Adjust pH 1-2 with 85.8 g of concentrated hydrochloric acid. Filtered the mixture and concentrated it under reduced pressure to solvent-free distillation. After cooling to room temperature, add 200 mL of ethanol, stir by filtering, and concentrate the filtrate to obtain (R) -3-hydroxybutyric acid oil. Add 500 mL and 18.0 g of calcium oxide (lead content: 500 ppb; arsenic: 1500 ppb) and 11.7 g of magnesium oxide (lead content: 100 ppb; arsenic: 50 ppb) and stir it at 80-90℃ for 2 h. After cooling to 20-30℃, add 5 g activated carbon and stir the mixture solution for 2 h. Filter the mixture solution and then concentrate it to about 200 mL under reduced pressure. At last, spray-dry it to obtain 91.1 g of a white solid (R) -3-hydroxybutanoic acid magnesium salt (w/w=1: 2) with the lead content of 32  ppb and arsenic content of 100 ppb, of which the molar yield was 91%, the chemical purity was 99.5%and the optical purity was 98.8%.
Preparation of (R) -3-hydroxybutyric acid (50%)
Example 14
The 50%mass concentration aqueous solution or adsorbed reaction solution (usually 20-30%mass concentration) of (R) -3-hydroxybutanoic acid sodium salt, (R) -3-hydroxybutanoic acid potassium salt, (R) -3-hydroxybutanoic acid calcium salt, (R) -3-hydroxybutanoic acid magnesium salt, or (R) -3-hydroxybutanoic acid calcium and magnesium salt (w/w=1: 2) through a cation exchange resin column to collect the part product, and then concentrate it under reduced pressure to 50%mass concentration of (R) -3-hydroxybutyric acid with the lead content of 20-40 ppb and arsenic content of 10-100 ppb, of which the molar yield was 88-95%, the chemical purity was 99.0-99.5%, the optical purity was 98.0-99.0%.
Example 15
Acidize the 50%mass concentration aqueous solution or adsorbed reaction solution (usually 20-30%mass concentration) of (R) -3-hydroxybutanoic acid sodium salt, (R) -3-hydroxybutanoic acid potassium salt, (R) -3-hydroxybutanoic acid calcium salt, (R) -3-hydroxybutanoic acid magnesium salt, or (R) -3-hydroxybutanoic acid calcium and magnesium salt (w/w=1: 2) with equal molar amount of concentrated hydrochloric acid, then concentrate it under reduced pressure and add alcohol (generally 1-3 times the mass of the raw material) . After stirring, filter the mixture, concentrate the filtrate to dryness under reduced pressure, and add the water to obtain (R) -3-hydroxybutyric acid (50%) with the lead content of 20-40 ppb and the arsenic content of 10-100 ppb, of which the molar yield was 90-95%, the chemical purity was 98.0-99.0%, the optical purity is 98.0-99.0%.
Example 16
Acidize the 50%mass concentration aqueous solution or the adsorbed reaction solution (usually 20-30%mass concentration) of (R) -3-hydroxybutanoic acid calcium salt is acidified with  0.5 times the molar amount of 50%sulfuric acid. Filter the mixture and concentrate the filtrate under reduced pressure to obtain (R) -3-hydroxybutyric acid (50%) with the lead content of 20-40 ppb and the arsenic content of 10-100 ppb, of which the molar yield was 90-95%, the chemical purity was 98.0-99.0%, the optical purity is 98.50-99.0%.
Although specific embodiments and examples of this invention have been illustrated herein, it will be appreciated by those skilled in the art that any modifications and variations can be made without departing from the spirit of the invention. The examples and illustrations above are not intended to limit the scope of this invention. Any combination of embodiments of this invention, along with any obvious their extension or analogs, are within the scope of this invention. Further, it is intended that this invention encompass any arrangement, which is calculated to achieve that same purpose, and all such variations and modifications as fall within the scope of the appended claims.
All the features disclosed in this specification (including any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example of a generic series of equivalent or similar features.
Other Embodiments
It is to be understood that while the invention has been described in conjunction with the detailed description thereof and accompanying figures, the foregoing description and accompanying figures are only intended to illustrate, and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims. All publications referenced herein are incorporated by reference in their entireties.

Claims (28)

  1. A beta-hydroxybutyrate (BHB) salt, comprising low lead and arsenic contents, wherein the level of lead ranges from 10 to 50 parts per billion (ppb) , and the level of arsenic ranges from 10 to 150 ppb.
  2. The beta-hydroxybutyrate (BHB) salt of claim 1, wherein the level of lead ranges from 10 to 30 ppb, and the arsenic content ranges from 10-50 ppb.
  3. The beta-hydroxybutyrate (BHB) salt of claim 1 or 2, wherein the BHB salt comprises a BHB metal salt.
  4. The beta-hydroxybutyrate (BHB) salt of claim 3, wherein the BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof.
  5. The beta-hydroxybutyrate (BHB) salt of any of claims 1-4, wherein the BHB salt comprises D-BHB, DL-BHB, L-BHB form or a mixture thereof.
  6. The beta-hydroxybutyrate (BHB) salt of any of claims 1-5, wherein the BHB salt has a chemical purity of at least 90%.
  7. The beta-hydroxybutyrate (BHB) salt of claim 6, wherein the BHB salt has a chemical purity of at least 95%, an optical purity of at least 95%, or is formed with a molar yield of at least 81%.
  8. The beta-hydroxybutyrate (BHB) salt of claim 7, wherein the BHB salt has a chemical purity of at least 98%, an optical purity of at least 98%, or is formed with a molar yield of at least 88%.
  9. A composition for promoting and/or sustaining ketosis in a mammal, comprising a BHB salt of any of claims 1-8.
  10. A method for preparing beta-hydroxybutyrate (BHB) salt, comprising an adsorbing process for controlling and enabling low levels of lead and arsenic in the prepared BHB salt.
  11. The method of claim 10, comprising the steps of (a) synthesizing, (b) adsorbing, (c) concentrating under reduced pressure, and (d) spray drying.
  12. The method of claim 11, wherein the synthesizing step comprises adding (R) -3-hydroxybutyrate, water, and one or more metal oxides to obtain a mixture solution.
  13. The method of any of claims 10-12, wherein the adsorbing process comprising adding an adsorbent and filtering solution after the adsorption, wherein the adsorbent comprises activated carbon, normal silicone, mercaptoalkyl-functionalisedsilica, or Al 2O 3.
  14. The method of claim 13, wherein the adsorbent comprises activated carbon or mercaptoalkyl-functionalisedsilica.
  15. The method of claim 13, wherein the amount of the adsorbent ranges from 1 to 50%.
  16. The method of claim 15, wherein the amount of the adsorbent ranges from 1 to 10%.
  17. The method of any of claims 10-16, wherein the adsorbing process uses a solvent comprising water, ethanol, or methanol.
  18. The method of claim 17, wherein the solvent in the adsorbing process is water.
  19. The method of claim 17, wherein volume of the solvents is controlled within an amount of 500mL
  20. The method of any of claims 10-19, wherein adsorbing process is operated at a temperature ranging from 20 to 60℃.
  21. The method of claim 20, wherein the adsorbing process is operated for a time ranging from 2 to 24 hours.
  22. The method of any of claim 11-21, wherein concentrating under reduced pressure step comprises concentrating the solution after the adsorption process under reduced pressure; and the spray-dry step comprises spray-drying the concentrated solution to obtain the beta-hydroxybutyrate (BHB) salt with low lead and arsenic contents.
  23. The method of any of claims 10-22, wherein the method effectively controls the lead and arsenic contents within safe and healthy ranges, and the prepared beta-hydroxybutyrate (BHB) salt comprises lead at a level ranging from 10 to 50 ppb and arsenic at a level ranging from 10 to 150 ppb.
  24. The method of claim 23, wherein the BHB salt comprises lead at a level ranging from 10 to 30 ppb and arsenic at a level ranging from 10-50 ppb.
  25. The method of claim 23 or 24, wherein the prepared BHB salt is formed from sodium, potassium, calcium, magnesium, or a mixture thereof.
  26. The method of any of claims 23-25, wherein the prepared BHB salt comprises D-BHB, DL-BHB, L-BHB form, or a mixture thereof.
  27. The method of any of claims 23-26, wherein the prepared BHB salt has a chemical purity of at least 95%, an optical purity of at least 95%, or a molar yield of at least 81%.
  28. The method of claim 27, wherein the prepared BHB salt has a chemical purity of at least 98%, an optical purity of at least 98%, or a molar yield of at least 88%.
PCT/CN2021/087769 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same WO2022217582A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/768,388 US20240190803A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same
CA3159213A CA3159213A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same
AU2021367387A AU2021367387A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same
CN202180002498.3A CN115968364A (en) 2021-04-16 2021-04-16 Low lead and low arsenic beta-hydroxybutyrate and process for its production
PCT/CN2021/087769 WO2022217582A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087769 WO2022217582A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same

Publications (1)

Publication Number Publication Date
WO2022217582A1 true WO2022217582A1 (en) 2022-10-20

Family

ID=83594529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087769 WO2022217582A1 (en) 2021-04-16 2021-04-16 Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same

Country Status (5)

Country Link
US (1) US20240190803A1 (en)
CN (1) CN115968364A (en)
AU (1) AU2021367387A1 (en)
CA (1) CA3159213A1 (en)
WO (1) WO2022217582A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162893A (en) * 2017-07-11 2017-09-15 洛阳华荣生物技术有限公司 (R) synthesis technique of 3 hydroxybutyric acids and its salt
CN109369372A (en) * 2018-11-28 2019-02-22 上海欣海国际贸易有限公司 A method of preparing 3-hydroxybutyrate salt
CN109796326A (en) * 2018-12-27 2019-05-24 宣城菁科生物科技有限公司 A kind of preparation method of 3-hydroxybutyrate salt
CN110372487A (en) * 2019-07-22 2019-10-25 音芙医药科技(上海)有限公司 A kind of 3-hydroxybutyrate sodium product and preparation method thereof
US20190376098A1 (en) * 2017-04-04 2019-12-12 NNB Nutrition USA, LLC Preparation of (R)-3-Hydroxybutyric Acid or Its Salts by One-Step Fermentation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20151949A1 (en) * 2013-03-19 2016-01-05 Univ South Florida COMPOSITIONS AND METHODS TO PRODUCE ELEVATED AND SUSTAINED KETOSIS
CN117396458A (en) * 2021-05-25 2024-01-12 南京纽邦生物科技有限公司 Beta-hydroxybutyric acid with pure bio-based carbon component and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190376098A1 (en) * 2017-04-04 2019-12-12 NNB Nutrition USA, LLC Preparation of (R)-3-Hydroxybutyric Acid or Its Salts by One-Step Fermentation
CN107162893A (en) * 2017-07-11 2017-09-15 洛阳华荣生物技术有限公司 (R) synthesis technique of 3 hydroxybutyric acids and its salt
CN109369372A (en) * 2018-11-28 2019-02-22 上海欣海国际贸易有限公司 A method of preparing 3-hydroxybutyrate salt
CN109796326A (en) * 2018-12-27 2019-05-24 宣城菁科生物科技有限公司 A kind of preparation method of 3-hydroxybutyrate salt
CN110372487A (en) * 2019-07-22 2019-10-25 音芙医药科技(上海)有限公司 A kind of 3-hydroxybutyrate sodium product and preparation method thereof

Also Published As

Publication number Publication date
CA3159213A1 (en) 2022-10-16
CN115968364A (en) 2023-04-14
US20240190803A1 (en) 2024-06-13
AU2021367387A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
Francavilla et al. Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta
CA3005983A1 (en) Site-specific isotopic labeling of 1,4-diene systems
BRPI0619887A2 (en) glyceryl carbonate preparation process
EP3388424B1 (en) Method for preparing anti-heart-failure medicine lcz696
CN1860091A (en) Process for isolating, purifying and formulating a stable, commercial grade lutein paste from oleoresin
CN109369372A (en) A method of preparing 3-hydroxybutyrate salt
CN107746747A (en) It is a kind of to reduce pufa oils peroxide value and the method for anisidine value
CN101278743A (en) Silkworm pupa oil and extracting method and applications
WO2022217582A1 (en) Low-lead and low-arsenic beta-hydroxybutyrate salts and methods for producing the same
CN109053420B (en) Method for extracting DHA and EPA from copepods
CN111187660A (en) Method for extracting high-quality krill oil from krill
CN101863819A (en) Method for preparing magnesium L-pyroglutamate
CN1244590C (en) Method for preparing purine derivative disodium nucleotate crystal and dealcoholing method
JP2011157326A (en) Maxacalcitol intermediate and process for producing the same
CN1891684A (en) Method for preparing high-purity gahapentin
CN1230429C (en) Process for producing ascorbic acid in presence of sulfit
BR0312530A (en) Process of preparation of nitrophenol from nitrohalogenobenzene, nitrophenol, and, p-nitrophenol
US4617155A (en) Novel lysine salt crystals and process for production thereof
CN1733718A (en) Photochemical synthesis of vitamin D2Method (2)
US11518762B2 (en) Large scale purification of castanospermine
CN1714088A (en) Basic salt of thioctic acid with L-carnitine
CN101817758B (en) Preparation method of L-valine nitrate
CN114181192A (en) Resin deamination method in R-lipoic acid synthesis process
JP2012102041A (en) Antioxidant and anti-inflammatory agent
CN103172532B (en) A kind of preparation method of ethylenediaminetetraacidic acidic calcium disodium salt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17768388

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021884132

Country of ref document: EP

Effective date: 20220505

ENP Entry into the national phase

Ref document number: 2021367387

Country of ref document: AU

Date of ref document: 20210416

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE