WO2022217563A1 - Partial frequency sounding based on dci signaling - Google Patents

Partial frequency sounding based on dci signaling Download PDF

Info

Publication number
WO2022217563A1
WO2022217563A1 PCT/CN2021/087632 CN2021087632W WO2022217563A1 WO 2022217563 A1 WO2022217563 A1 WO 2022217563A1 CN 2021087632 W CN2021087632 W CN 2021087632W WO 2022217563 A1 WO2022217563 A1 WO 2022217563A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
value
offset
srs
dci
Prior art date
Application number
PCT/CN2021/087632
Other languages
French (fr)
Inventor
Bingchao LIU
Chenxi Zhu
Lingling Xiao
Wei Ling
Yi Zhang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2021/087632 priority Critical patent/WO2022217563A1/en
Publication of WO2022217563A1 publication Critical patent/WO2022217563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for partial frequency sounding based on DCI signaling.
  • New Radio NR
  • VLSI Very Large Scale Integration
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM or Flash Memory Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • LAN Local Area Network
  • WAN Wide Area Network
  • UE User Equipment
  • eNB Evolved Node B
  • gNB Next Generation Node B
  • Uplink UL
  • Downlink DL
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • OFDM Orthogonal Frequency Division Multiplexing
  • RRC Radio Resource Control
  • RX User Entity/Equipment
  • SRS Sounding Reference Signal
  • SRS resource can be configured as aperiodic SRS, semi-persistent SRS or periodic SRS.
  • Aperiodic SRS resource can be triggered by DCI (e.g. DCI format 0_1 or DCI format 1_1) with a non-zero ‘SRS request’ field.
  • Semi-persistent SRS resource is activated or deactivated by a Semi-persistent SRS Activation/Deactivation MAC CE.
  • Periodic SRS resource can be triggered by a higher layer signaling (e.g. RRC signaling) .
  • the SRS capacity especially for the UE with lower mobility and small delay spread, needs to be improved.
  • One way to improve the SRS capacity is partial frequency sounding, which means that the SRS resource (s) is/are only transmitted on partial frequency band of the allocated frequency resources in a sounding hop.
  • the frequency resources used for a SRS resource is determined by the number of RBs
  • the number of RBs is determined by the RRC parameter C SRS and B SRS configured per SRS resource, as illustrated in Table 1.
  • m P is the largest integer that is equal to or smaller than ) contiguous RBs in one OFDM symbol, where indicates the number of RBs for a sounding hop configured by RRC signaling, P F is a number that is larger than 1 (e.g. 2, 4 or 8) so that only partial frequency band is used to transmit the SRS resource while means the indicated P F value.
  • This disclosure targets a DCI based signaling design for partial frequency sounding.
  • a method comprises receiving a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and transmitting a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI
  • the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups
  • the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups
  • the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  • the starting position and the duration of each block may be configured by RRC signaling.
  • the starting position offset k offset is determined by the number of resource blocks (N offset ) , where where is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than where is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset ) , where where is the number of subcarriers per resource block, M offset is one of 0 to where is the indicated P F value.
  • a method comprises transmitting a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and receiving a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • a remote unit comprises a receiver that receives a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a transmitter that transmits a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from where m P is the largest integer that is equal to or smaller than wherein, is the indicated P F value, is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and is the start position of the first SRS resource determined by RRC signaling.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • a base unit comprises a transmitter that transmits a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a receiver that receives a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from where m P is the largest integer that is equal to or smaller than wherein, is the indicated P F value, is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and is the start position of the first SRS resource determined by RRC signaling.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • Figure 1 illustrates a comparison between full frequency resources and partial frequency resources for a SRS resource
  • Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method
  • Figure 3 is a schematic flow chart diagram illustrating a further embodiment of a method.
  • Figure 4 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • code computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • the storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing code.
  • the storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C"programming language, or the like, and/or machine languages such as assembly languages.
  • the code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • Figure 1 illustrates the comparison between full frequency resources and partial frequency resources for a SRS resource.
  • the frequency resources used for a SRS resource with SRS antenna port p i are determined by a starting position in frequency domain for each hop, the allocated sounding frequency band (maybe referred to as “full sounding frequency band” ) that is calculated based on the number of RBs and a hopping pattern.
  • the hopping pattern including the occupied OFDM symbols for a SRS resource, subband size and the corresponding starting position of a SRS resource in a certain OFDM symbol is determined by some RRC parameter configured for the determination of and
  • the SRS resource is transmitted in four different ODFM symbols (the n hop -th ODFM symbol) with four different subbands (four e.g. four m SRS, 3 ) .
  • the allocated sounding frequency band refers to the number of subcarriers used for the SRS resource for each hop.
  • the allocated sounding frequency band can be calculated as for each hop, where (e.g. m SRS, 3 ) is the number of RBs (resource blocks) used for the SRS resource, and is the number of subcarriers in one RB (Resource Block) (e.g. equal to 12 subcarriers) .
  • the starting position is an index of the start subcarrier for each hop, and is determined by a set of RRC parameters..
  • the frequency resources used for a SRS resource with SRS antenna port p i is determined by a new starting position in frequency domain for each hop, a partial allocated sounding frequency band that is the same for each hop, and the same hopping pattern as the “ (a) Full frequency sounding” .
  • the partial allocated sounding frequency band (maybe abbreviated as “partial frequency band” ) is within the full frequency band.
  • the new starting position for each hop is obtained by adding an offset value k offset to the starting position used for the SRS resource with SRS antenna port p i for the same hop for full frequency sounding.
  • the offset value k offset is a number of subcarriers.
  • the full frequency sounding band is represented by (the number of RBs)
  • the present disclosure is only related to the frequency resources used for the SRS resource while it is not related to the time resources used for the SRS resource.
  • the time resources used for the SRS resource for “partial frequency sounding” are the same as those used for the SRS resource for “full frequency sounding” , e.g. 4 OFDM symbols with the same hopping pattern (that can be configured by RRC signaling) as illustrated in Figure 1.
  • Aperiodic SRS is supported for a quick channel sounding triggered by DCI. It has been agreed to support the triggering of aperiodic SRS by using DCI with format 0_1 or 0_2 without data assignment and without CSI triggering.
  • one or more aperiodic SRS resource sets can be triggered by a DCI with format 0_1 or 0_2 containing an UL-SCH indicator field set as 0 (i.e., without data assignment) and an CSI request field set as 0 (i.e., without CSI triggering) .
  • the other unused fields of the DCI can be repurposed at least for resource management for the triggered SRS resource set (s) .
  • a DCI with format 0_1 or 0_2 (abbreviated as DCI in the following description of the first embodiment) triggers one or multiple aperiodic SRS resource set (s) indicated in a non-zero SRS request field contained in the DCI.
  • Both the UL-SCH indicator field and the CSI request field contained in the DCI are set as 0.
  • the P F value can be indicated by MCS field or HARQ process number field contained in the DCI
  • the k offset value can be indicated by Frequency Domain Resource Allocation (FDRA) field contained in the DCI.
  • FDRA Frequency Domain Resource Allocation
  • a P F value is indicated by the MCS field or by the HARQ process number field.
  • Each value of the MCS field (or the HARQ process number field) indicates a P F value.
  • Table 2 provides an example of the mapping between MCS field and P F value.
  • the P F values are configured to a SRS resource or to a SRS resource set (i.e. to all SRS resources within the SRS resource set) by RRC signaling. It is not necessary that seven P F values are configured. It is enough that at least one P F value is configured.
  • the k offset value is indicated by the FDRA (Frequency Domain Resource Allocation) field.
  • the k offset value can be given by the number of resource blocks (RBs) (N offset ) . That is, where (e.g. equal to 12) is the number of subcarriers per RB.
  • N offset the candidate values of N offset shall be no more than the smallest integer that is equal to or larger than (i.e. roundup ) , where is the indicated P F value. So, N offset value can be indicated by the FDRA field while the k offset value can be determined according to the indicated N offset value.
  • the k offset value can be given by the number of m P RBs, where m P is the largest integer that is equal to or smaller than (i.e. ) .That is, where (e.g. equal to 12) is the number of subcarriers per RB, is the indicated P F value.
  • M offset value can be indicated by the FDRA field while the k offset value can be determined according to the indicated M offset value.
  • the k offset value can be determined (calculated) accordingly the indicated N offset value or M offset value.
  • the P F value indicated by the MCS field or HARQ process number field and k offset value determined by N offset value or M offset value indicated by the FDRA field apply to all SRS resources within the SRS resource set (s) indicated by the SRS request field contained in the DCI.
  • a UE receives a DCI format 0_1 with CSI request field set to ‘000’ , UL-SCH field set to ‘0’a nd SRS request field set to ‘01’ .
  • SRS resource set#1 consisting of SRS resource#1 and SRS resource#2
  • SRS resource set#2 consististing of SRS resource#3 and SRS resource#4
  • aperiodicSRS-TriggerState ‘01’ . So, SRS resource#1, SRS resource#2, SRS resource#3 and SRS resource#4 are triggered by the DCI format 0_1 with CSI request field set to ‘000’ , UL-SCH field set to ‘0’a nd SRS request field set to ‘01’ .
  • P F ⁇ ⁇ 2, 4 ⁇ (i.e. two P F values) are configured for SRS resource set#1. That is, for SRS resource#1 and SRS resource#2 in SRS resource set#1, the first configured P F value is 2 and the second configured P F value is 4.
  • P F ⁇ ⁇ 4, 8 ⁇ (i.e. another two P F values) are configured for SRS resource set#2. That is, for SRS resource#3 and SRS resource#4 in SRS resource set#2, the first configured P F value is 4 and the second configured P F value is 8.
  • each value of the MCS field is mapped to the P F value illustrated in Table 3.
  • each value of the MCS field (or HARQ process number field) is mapped to the P F value illustrated in Table 4.
  • the same value of the MCS field maps different P F values to SRS resources within different SRS resource sets, since different P F values are configured to different SRS resource sets.
  • the candidate N offset values (as well as the candidate k offset values) are shown in Table 5.
  • the value of the MCS field indicates an N offset value for all the triggered SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) . It is necessary to determine how the value of the MCS field (or of the HARQ process number field) indicates the N offset value for each SRS resource set. If the indicated value of the MCS field (or of the HARQ process number field) is within the candidate N offset values for each SRS resource set, the indicated value of the MCS field (or of the HARQ process number field) is the indicated N offset value for each SRS resource set.
  • the indicated value of the MCS field (or of the HARQ process number field) is 3, which is within both the candidate N offset values of SRS resource set#1 and SRS resource set#2 (when and ) (i.e. ⁇ 0, 1, 2, 3 ⁇ and ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ⁇ )
  • the indicated N offset value 3 for each of SRS resource set#1 and SRS resource set#2.
  • the candidate N offset values for SRS resource set#1 are ⁇ 0, 1, 2, 3 ⁇ and the candidate N offset values for SRS resource set#2 (i.e. SRS resource#3 and SRS resource#4) are ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ⁇ (see Table 5) . If the FDRA field (indicating an N offset value) is set to ‘0101’ (i.e.
  • the candidate M offset values (as well as the candidate k offset values) are shown in Table 6.
  • the value of the MCS field indicates an M offset value for all SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) . It is necessary to determine how the value of the MCS field (or of the HARQ process number field) indicates the M offset value for each SRS resource set. For example, if the indicated value of the MCS field (or of the HARQ process number field) is within the candidate M offset values for each SRS resource set, the indicated value of the MCS field (or of the HARQ process number field) is the indicated M offset value for each SRS resource set.
  • the MCS field applies to SRS resource#1 and SRS resource#2 (see Table 3) , and applies to SRS resource#3 and SRS resource#4 (see Table 4) .
  • the candidate M offset values for SRS resource set#1 i.e. SRS resource#1 and SRS resource#2 are ⁇ 0, 1, 2, 3 ⁇
  • the candidate N offset values for SRS resource set#2 i.e. SRS resource#3 and SRS resource#4 are ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ (see Table 6) .
  • the FDRA field indicates an M offset value
  • one or more aperiodic SRS resource sets are triggered by a DCI with format 0_1 or 0_2 with a non-zero ‘SRS request’ field.
  • the MCS field (or the HARQ process number field) of the DCI with format 0_1 or 0_2 is used to indicate a P F value.
  • the FDRA field is used to indicate a k offset value by indicating an N offset value or an M offset value. It thus can be seen that the P F value and the k offset value are indicated in the DCI with format 0_1 or 0_2 triggering the aperiodic SRS, so that the aperiodic SRS is triggered with partial frequency sounding.
  • a DCI with format 0_1 or 0_2 (abbreviated as DCI in the description of the second embodiment) is used to indicate the P F value and the k offset value to a SRS resource set.
  • the DCI with format 0_1 or 0_2 (for indicating the P F value and the k offset value) may not trigger any aperiodic SRS resource.
  • both the UL-SCH indicator field and the CSI request field contained in the DCI are set as 0.
  • the P F value is indicated by MCS field contained in the DCI.
  • Each value of the MCS field indicates a P F value of the multiple P F values configured to a SRS resource or to a SRS resource set by RRC signaling (see Table 1) .
  • the k offset value is indicated by Frequency Domain Resource Allocation (FDRA) field contained in the DCI.
  • the k offset value can be given by the number of resource blocks (RBs) (N offset ) . That is, where (e.g. equal to 12) is the number of subcarriers per RB.
  • the k offset value can be given by the number of m P RBs, where m P is the largest integer that is equal to or smaller than (i.e. ) . That is, where (e.g. equal to 12) is the number of subcarriers per RB, is the indicated P F value.
  • the FDRA field indicates an N offset value or an M offset value with the same way as described in the first embodiment.
  • the k offset value is determined according to the indicated N offset value or M offset value.
  • the indicated P F value and k offset value apply to all SRS resources within the SRS resource set with a srs-ResourceSetId indicated by HARQ process number field contained in the DCI.
  • a UE receives a DCI format 0_1 with CSI request field set to ‘000’a nd UL-SCH field set to ‘0’ .
  • the HARQ process number field contained in the DCI is set to ‘0101’ , that indicates a SRS resource set#5.
  • SRS resource set#5 is configured with P F ⁇ ⁇ 2, 4, 8 ⁇ (i.e. three P F values) .
  • each value of the MCS field is mapped to the P F value illustrated in Table 7.
  • the indicated P F value applies to SRS resource set#5.
  • the candidate N offset values for SRS resource set#5 are for indicated P F value It is necessary to use roundup bits for the FDRA field for indicating the N offset value.
  • the candidate M offset values for SRS resource set#5 are for indicated P F value It is necessary to use roundup bits for the FDRA field indicating the M offset value.
  • the indicated value of the FDRA field is larger than the required bits (i.e. 7 bits for N offset value or 2 bits for M offset value) , a modulo operation similar to the first embodiment can be performed.
  • k offset 564 or 1188 apply to SRS resource set#5 (i.e. apply to all SRS resources within SRS resource set#5) .
  • aperiodic SRS resource For each of the SRS resources within SRS resource set#5, no matter it is an aperiodic SRS resource, a semi-persistent SRS resource or periodic SRS resource, when it is triggered or activated (the aperiodic SRS resource being triggered by another DCI, or semi-persistent SRS resource being activated by a MAC CE, or periodic SRS resource triggered by a RRC signaling) , it will be transmitted with partial frequency sounding with the P F value and the k offset value indicated in the DCI in consideration of the and configured by RRC signaling.
  • the feature of partial frequency band sounding can improve the SRS capacity since different partial frequency bands can be assigned to different UEs. Therefore, the partial frequency band sounding patterns for different UEs can be signaled to a group of UEs via a dedicated group common DCI for SRS multiplexing.
  • the P F value and the frequency-domain offset k offset for one or more SRS resource sets are indicated by a group common DCI.
  • a new DCI format (e.g. DCI format 2_7) can be introduced for the transmission of a group of P F values and k offset values for SRS resource (s) and/or SRS resource set (s) and/or SRS resource set group (s) of one or more UEs.
  • the following information is transmitted by means of DCI format 2_7 with CRC scrambled by a dedicated RNTI, e.g., PFS-SRS-RNTI: block number 1, block number 2, ..., block number B, where the starting position and the duration of each block is determined by RRC parameters, e.g. startingBitOfFormat2-7 and DurationOfFormat2-7.
  • a dedicated RNTI e.g., PFS-SRS-RNTI: block number 1, block number 2, ..., block number B, where the starting position and the duration of each block is determined by RRC parameters, e.g. startingBitOfFormat2-7 and DurationOfFormat2-7.
  • RRC parameters e.g. startingBitOfFormat2-7 and DurationOfFormat2-7.
  • SRS resource set ID field or SRS resource ID field, or SRS resource set group ID field This field indicates an srs-ResourceSetId indicating a SRS resource set or an srs-ResourceId indicating a SRS resource or an srs-ResourceSetGroupId indicating a SRS resource set group for which the indicated P F value and k offset value apply to.
  • the SRS resource set ID field has 4 bits.
  • the SRS resource ID field has 6 bits.
  • the SRS resource set group ID field has roundup bits, where N SRS is the number of SRS resource set groups configured for the UE.
  • the P F field and the k offset field apply to all SRS resources within the SRS resource set indicated by the SRS resource set ID field. If the SRS resource ID field is included in a block, the P F field and the k offset field apply to the SRS resource indicated by the SRS resource ID field. If the SRS resource set group ID field in a block, the P F field and the k offset field apply to all SRS resources within all SRS resource sets within the SRS resource set group indicated by the SRS resource set group ID field.
  • P F field this field indicates the P F value.
  • k offset field as described in the first embodiment and the second embodiment, k offset value can be represented by an N offset value or an M offset value.
  • the bit length of the k offset field indicating the N offset value is determined by the maximum indicated P F value and the maximum value configured to the SRS resource set or the SRS resource or the SRS resource set group.
  • the candidate N offset values are So, the k offset field (when it is used to indicate the N offset value) has roundup bits.
  • the bit length of the k offset field indicating the M offset value is determined by the maximal indicated P F value configured to the SRS resource set or the SRS resource or the SRS resource set group.
  • the candidate M offset values are So, the k offset field (when it is used to indicate the M offset value) has roundup bits.
  • each block of the group common DCI (e.g. DCI format 2_7) indicates the P F value and the k offset value for an UE that is associated with a SRS resource or a SRS resource set or a SRS resource set group.
  • Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method 200 according to the present application.
  • the method 200 is performed by an apparatus, such as a base unit.
  • the method 200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 200 may include 202 receiving a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and 204 transmitting a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI
  • the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups
  • the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups
  • the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  • the starting position and the duration of each block may be configured by RRC signaling.
  • the starting position offset k offset is determined by the number of resource blocks (N offset ) , where where is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than where is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset ) , where where is the number of subcarriers per resource block, M offset is one of 0 to where is the indicated P F value.
  • Figure 3 is a schematic flow chart diagram illustrating a further embodiment of a method 300 according to the present application.
  • the method 300 is performed by an apparatus, such as a remote unit.
  • the method 300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 300 may include 302 transmitting a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and 304 receiving a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI
  • the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups
  • the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups
  • the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  • the starting position and the duration of each block may be configured by RRC signaling.
  • the starting position offset k offset is determined by the number of resource blocks (N offset ) , where where is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than where is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset ) , where where is the number of subcarriers per resource block, M offset is one of 0 to where is the indicated P F value.
  • Figure 4 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • the UE i.e. the remote unit
  • the UE includes a processor, a memory, and a transceiver.
  • the processor implements a function, a process, and/or a method which are proposed in Figure 2.
  • the UE comprises a receiver that receives a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a transmitter that transmits a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from where m P is the largest integer that is equal to or smaller than wherein, is the indicated P F value, is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and is the start position of the first SRS resource determined by RRC signaling.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI
  • the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups
  • the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups
  • the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  • the starting position and the duration of each block may be configured by RRC signaling.
  • the starting position offset k offset is determined by the number of resource blocks (N offset ) , where where is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than where is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset ) , where where is the number of subcarriers per resource block, M offset is one of 0 to where is the indicated P F value.
  • the gNB i.e. base unit
  • the gNB includes a processor, a memory, and a transceiver.
  • the processors implement a function, a process, and/or a method which are proposed in Figure 3.
  • the base unit comprises a transmitter that transmits a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a receiver that receives a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from where m P is the largest integer that is equal to or smaller than wherein, is the indicated P F value, is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and is the start position of the first SRS resource determined by RRC signaling.
  • the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  • the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset , the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI
  • the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups
  • the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups
  • the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  • the group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  • the starting position and the duration of each block may be configured by RRC signaling.
  • the starting position offset k offset is determined by the number of resource blocks (N offset ) , where where is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than where is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset ) , where where is the number of subcarriers per resource block, M offset is one of 0 to where is the indicated P F value.
  • Layers of a radio interface protocol may be implemented by the processors.
  • the memories are connected with the processors to store various pieces of information for driving the processors.
  • the transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
  • the memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
  • each component or feature should be considered as an option unless otherwise expressly stated.
  • Each component or feature may be implemented not to be associated with other components or features.
  • the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
  • the embodiments may be implemented by hardware, firmware, software, or combinations thereof.
  • the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatuses for partial frequency sounding based on DCI signaling are disclosed. A method comprises receiving a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and transmitting a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from formula (I) where m P is the largest integer that is equal to or smaller than formula (II) wherein, formula (III) is the indicated P F value, formula (IV) is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and formula (V) is the start position of the first SRS resource determined by RRC signaling.

Description

PARTIAL FREQUENCY SOUNDING BASED ON DCI SIGNALING FIELD
The subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for partial frequency sounding based on DCI signaling.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to within the following description: New Radio (NR) , Very Large Scale Integration (VLSI) , Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM or Flash Memory) , Compact Disc Read-Only Memory (CD-ROM) , Local Area Network (LAN) , Wide Area Network (WAN) , User Equipment (UE) , Evolved Node B (eNB) , Next Generation Node B (gNB) , Uplink (UL) , Downlink (DL) , Central Processing Unit (CPU) , Graphics Processing Unit (GPU) , Field Programmable Gate Array (FPGA) , Orthogonal Frequency Division Multiplexing (OFDM) , Radio Resource Control (RRC) , User Entity/Equipment (Mobile Terminal) , Transmitter (TX) , Receiver (RX) , Sounding Reference Signal (SRS) , Downlink control information (DCI) , Media Access Control (MAC) , MAC control element (MAC CE) , Radio Resource Control (RRC) , Resource Block (RB) , frequency range 2 (FR2) : indicating a frequency range of 24.25GHz~52.6GHz, Uplink Shared Channel (UL-SCH) , Channel State Information (CSI) , Modulation and Coding Scheme (MCS) , Hybrid Automatic Repeat reQuest (HARQ) , Frequency Domain Resource Allocation (FDRA) , Radio Network Tempory Identity (RNTI) , Cyclic Redundancy Check (CRC) .
Basic SRS function is specified in NR Release 15. The SRS function is enhanced in NR Release 16 to support high efficiency operation in FR2.
SRS resource can be configured as aperiodic SRS, semi-persistent SRS or periodic SRS. Aperiodic SRS resource can be triggered by DCI (e.g. DCI format 0_1 or DCI format 1_1) with a non-zero ‘SRS request’ field. Semi-persistent SRS resource is activated or deactivated by a Semi-persistent SRS Activation/Deactivation MAC CE. Periodic SRS resource can be triggered by a higher layer signaling (e.g. RRC signaling) .
The SRS capacity, especially for the UE with lower mobility and small delay spread, needs to be improved. One way to improve the SRS capacity is partial frequency  sounding, which means that the SRS resource (s) is/are only transmitted on partial frequency band of the allocated frequency resources in a sounding hop.
Traditionally, the frequency resources used for a SRS resource is determined by the number of RBs
Figure PCTCN2021087632-appb-000001
The number of RBs
Figure PCTCN2021087632-appb-000002
is determined by the RRC parameter C SRS and B SRS configured per SRS resource, as illustrated in Table 1.
Figure PCTCN2021087632-appb-000003
Figure PCTCN2021087632-appb-000004
Table 1
It has been agreed to support that the UE only transmits the SRS resource in m P (m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000005
) contiguous RBs in one OFDM symbol, where
Figure PCTCN2021087632-appb-000006
indicates the number of RBs for a sounding hop configured by RRC signaling, P F is a number that is larger than 1 (e.g. 2, 4 or 8) so that only partial frequency band is used to transmit the SRS resource while
Figure PCTCN2021087632-appb-000007
means the indicated P F value.
This disclosure targets a DCI based signaling design for partial frequency sounding.
BRIEF SUMMARY
Methods and apparatuses for partial frequency sounding are disclosed.
In one embodiment, a method comprises receiving a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and transmitting a first SRS resource, that is the  SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In one embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
In another embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
In yet another embodiment, the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI, the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups, the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling. The group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE. The starting position and the duration of each block may be configured by RRC signaling.
In some embodiment, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
Figure PCTCN2021087632-appb-000008
where
Figure PCTCN2021087632-appb-000009
is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000010
where
Figure PCTCN2021087632-appb-000011
is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
Figure PCTCN2021087632-appb-000012
Figure PCTCN2021087632-appb-000013
where
Figure PCTCN2021087632-appb-000014
is the number of subcarriers per resource block, M offset is one of 0 to
Figure PCTCN2021087632-appb-000015
where
Figure PCTCN2021087632-appb-000016
is the indicated P F value.
In one embodiment, a method comprises transmitting a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and receiving a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In another embodiment, a remote unit (UE) comprises a receiver that receives a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a transmitter that transmits a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from 
Figure PCTCN2021087632-appb-000017
where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000018
wherein, 
Figure PCTCN2021087632-appb-000019
is the indicated P F value, 
Figure PCTCN2021087632-appb-000020
is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
Figure PCTCN2021087632-appb-000021
is the start position of the first SRS resource determined by RRC signaling. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In yet another embodiment, a base unit comprises a transmitter that transmits a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a  receiver that receives a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from 
Figure PCTCN2021087632-appb-000022
where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000023
wherein, 
Figure PCTCN2021087632-appb-000024
is the indicated P F value, 
Figure PCTCN2021087632-appb-000025
is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
Figure PCTCN2021087632-appb-000026
is the start position of the first SRS resource determined by RRC signaling. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments, and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 illustrates a comparison between full frequency resources and partial frequency resources for a SRS resource;
Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method;
Figure 3 is a schematic flow chart diagram illustrating a further embodiment of a method; and
Figure 4 is a schematic block diagram illustrating apparatuses according to one embodiment.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art that certain aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” . The storage devices may be tangible, non-transitory, and/or non-transmission. The storage  devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain functional units described in this specification may be labeled as “modules” , in order to more particularly emphasize their independent implementation. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing code. The storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the storage device would include the following: an electrical connection having one or more wires, a portable computer  diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C"programming language, or the like, and/or machine languages such as assembly languages. The code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the very last scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment” , “an embodiment” , or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” , “in an embodiment” , and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including” , “comprising” , “having” , and variations thereof mean “including but are not limited to” , unless otherwise expressly specified. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, otherwise unless expressly specified. The terms “a” , “an” , and “the” also refer to “one or more” unless otherwise expressly specified.
Furthermore, described features, structures, or characteristics of various embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments.  One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid any obscuring of aspects of an embodiment.
Aspects of different embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. This code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which are executed via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified in the schematic flowchart diagrams and/or schematic block diagrams for the block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may substantially be executed concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, to the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each Figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Figure 1 illustrates the comparison between full frequency resources and partial frequency resources for a SRS resource.
In the left part of Figure 1 labeled as “ (a) Full frequency sounding” , the frequency resources used for a SRS resource with SRS antenna port p i are determined by a starting position 
Figure PCTCN2021087632-appb-000027
in frequency domain for each hop, the allocated sounding frequency band (maybe referred to as “full sounding frequency band” ) that is calculated based on the number of RBs
Figure PCTCN2021087632-appb-000028
and a hopping pattern. The hopping pattern including the occupied OFDM symbols for a SRS resource, subband size and the corresponding starting position of a SRS resource in a certain OFDM symbol is determined by some RRC parameter configured for the determination of 
Figure PCTCN2021087632-appb-000029
and
Figure PCTCN2021087632-appb-000030
When frequency hopping is enabled for a SRS resource, the SRS resource will be transmitted in different OFDM symbols with different subbands (note that each of the subbands has the same number of resource blocks) , and the SRS transmitted in the n hop-th symbol of all OFDM symbols containing the SRS resource is the n hop-th hop. For example, as shown in Figure 1, four hops (n hop = 1, 2, 3, and 4) are configured. The SRS resource is  transmitted in four different ODFM symbols (the n hop-th ODFM symbol) with four different subbands (four
Figure PCTCN2021087632-appb-000031
e.g. four m SRS, 3) . The allocated sounding frequency band refers to the number of subcarriers used for the SRS resource for each hop. The allocated sounding frequency band can be calculated as
Figure PCTCN2021087632-appb-000032
for each hop, where
Figure PCTCN2021087632-appb-000033
 (e.g. m SRS, 3) is the number of RBs (resource blocks) used for the SRS resource, and
Figure PCTCN2021087632-appb-000034
is the number of subcarriers in one RB (Resource Block) (e.g. equal to 12 subcarriers) . The number of RBs 
Figure PCTCN2021087632-appb-000035
is determined by the RRC parameters C SRS and B SRS configured per SRS resource (see Table 1) . In the example of Figure 1, C SRS=3 and B SRS=3. The starting position
Figure PCTCN2021087632-appb-000036
is an index of the start subcarrier for each hop, and is determined by a set of RRC parameters..
In the right part of Figure 1 labeled as “ (b) Partial frequency sounding” , the frequency resources used for a SRS resource with SRS antenna port p i is determined by a new starting position
Figure PCTCN2021087632-appb-000037
in frequency domain for each hop, a partial allocated sounding frequency band that is the same for each hop, and the same hopping pattern as the “ (a) Full frequency sounding” . The partial allocated sounding frequency band (maybe abbreviated as “partial frequency band” ) is within the full frequency band. The new starting position for each hop is obtained by adding an offset value k offset to the starting position
Figure PCTCN2021087632-appb-000038
used for the SRS resource with SRS antenna port p i for the same hop for full frequency sounding. The offset value k offset is a number of subcarriers. The partial frequency band is obtained by multiplying a fraction (e.g. 
Figure PCTCN2021087632-appb-000039
where P F is a coefficient that is larger than 1 (e.g. 2, 4, or 8, P F = 2 in Figure 1) ) to the full frequency sounding band (i.e. the allocated frequency band used for the SRS resource transmission in a hop) and performing a round down of the multiplying product if the resulted partial frequency band (
Figure PCTCN2021087632-appb-000040
where
Figure PCTCN2021087632-appb-000041
is the indicated P F value) is not an integer. If the full frequency sounding band is represented by
Figure PCTCN2021087632-appb-000042
 (the number of RBs) , the partial frequency band (used for the SRS resource for partial frequency sounding) can be represented by m P contiguous RBs, where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000043
i.e. 
Figure PCTCN2021087632-appb-000044
where
Figure PCTCN2021087632-appb-000045
is the indicated P F value. For example, if 
Figure PCTCN2021087632-appb-000046
then
Figure PCTCN2021087632-appb-000047
m P = 8. For another example, if 
Figure PCTCN2021087632-appb-000048
then
Figure PCTCN2021087632-appb-000049
m P = 1.
Incidentally, the present disclosure is only related to the frequency resources used for the SRS resource while it is not related to the time resources used for the SRS resource. In other words, the time resources used for the SRS resource for “partial frequency sounding” are the same as those used for the SRS resource for “full frequency sounding” , e.g. 4 OFDM symbols with the same hopping pattern (that can be configured by RRC signaling) as illustrated in Figure 1.
For the frequency resources used for the SRS resource with SRS antenna port p i for “partial frequency sounding” , it is necessary to indicate the starting position
Figure PCTCN2021087632-appb-000050
(the subcarrier index of the starting subcarrier) in frequency domain and to indicate the frequency band
Figure PCTCN2021087632-appb-000051
As mentioned earlier, 
Figure PCTCN2021087632-appb-000052
and
Figure PCTCN2021087632-appb-000053
for a SRS resource are determined by a set of RRC parameters. Therefore, it is only necessary to indicate P F value and k offset value. This disclosure proposes to indicate the P F value and the k offset value by DCI.
Aperiodic SRS is supported for a quick channel sounding triggered by DCI. It has been agreed to support the triggering of aperiodic SRS by using DCI with format 0_1 or 0_2 without data assignment and without CSI triggering. In particular, one or more aperiodic SRS resource sets can be triggered by a DCI with format 0_1 or 0_2 containing an UL-SCH indicator field set as 0 (i.e., without data assignment) and an CSI request field set as 0 (i.e., without CSI triggering) . The other unused fields of the DCI can be repurposed at least for resource management for the triggered SRS resource set (s) .
According to a first embodiment, a DCI with format 0_1 or 0_2 (abbreviated as DCI in the following description of the first embodiment) triggers one or multiple aperiodic SRS resource set (s) indicated in a non-zero SRS request field contained in the DCI. Both the UL-SCH indicator field and the CSI request field contained in the DCI are set as 0. The P F value can be indicated by MCS field or HARQ process number field contained in the DCI, and the k offset value can be indicated by Frequency Domain Resource Allocation (FDRA) field contained in the DCI.
A P F value is indicated by the MCS field or by the HARQ process number field. Each value of the MCS field (or the HARQ process number field) indicates a P F value. Table 2 provides an example of the mapping between MCS field and P F value.
MCS field P F value
000 1
001 The 1 st configured P F value
010 The 2 nd configured P F value
011 The 3 rd configured P F value
100 The 4 th configured P F value
101 The 5 th configured P F value
110 The 6 th configured P F value
111 The 7 th configured P F value
Table 2
The P F values (e.g. from the 1 st configured P F value to the 7 th configured P F value) are configured to a SRS resource or to a SRS resource set (i.e. to all SRS resources within the SRS resource set) by RRC signaling. It is not necessary that seven P F values are configured. It is enough that at least one P F value is configured. Incidentally, P F value = 1 is a default value that implies full frequency sounding, and it is not necessary to configure P F value = 1. 
The k offset value is indicated by the FDRA (Frequency Domain Resource Allocation) field. 
The k offset value can be given by the number of resource blocks (RBs) (N offset) . That is, 
Figure PCTCN2021087632-appb-000054
where 
Figure PCTCN2021087632-appb-000055
(e.g. equal to 12) is the number of subcarriers per RB. In order to ensure that the partial frequency band is within the full frequency band, in view of that the partial frequency band is
Figure PCTCN2021087632-appb-000056
Figure PCTCN2021087632-appb-000057
the candidate values of N offset shall be no more than the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000058
 (i.e. roundup
Figure PCTCN2021087632-appb-000059
Figure PCTCN2021087632-appb-000060
) , where
Figure PCTCN2021087632-appb-000061
is the indicated P F value. So, N offset value can be indicated by the FDRA field while the k offset value can be determined according to the indicated N offset value. 
Alternatively, the k offset value can be given by the number of m P RBs, where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000062
 (i.e. 
Figure PCTCN2021087632-appb-000063
Figure PCTCN2021087632-appb-000064
) .That is, 
Figure PCTCN2021087632-appb-000065
where
Figure PCTCN2021087632-appb-000066
 (e.g. equal to 12) is the number of subcarriers per RB, 
Figure PCTCN2021087632-appb-000067
is the indicated P F value. So, M offset value can be indicated by the FDRA field while the k offset value can be determined according to the indicated M offset value.
As a whole, the k offset value can be determined (calculated) accordingly the indicated N offset value or M offset value.
The P F value indicated by the MCS field or HARQ process number field and k offset value determined by N offset value or M offset value indicated by the FDRA field apply to all SRS resources within the SRS resource set (s) indicated by the SRS request field contained in the DCI.
An example of the first embodiment is described as follows:
A UE receives a DCI format 0_1 with CSI request field set to ‘000’ , UL-SCH field set to ‘0’a nd SRS request field set to ‘01’ . SRS resource set#1 (consisting of SRS resource#1 and SRS resource#2) and SRS resource set#2 (consisting of SRS resource#3 and SRS resource#4) are associated with aperiodicSRS-TriggerState = ‘01’ . So, SRS resource#1, SRS resource#2, SRS resource#3 and SRS resource#4 are triggered by the DCI format 0_1 with CSI request field set to ‘000’ , UL-SCH field set to ‘0’a nd SRS request field set to ‘01’ .
P F∈ {2, 4} (i.e. two P F values) are configured for SRS resource set#1. That is, for SRS resource#1 and SRS resource#2 in SRS resource set#1, the first configured P F value is 2 and the second configured P F value is 4. P F∈ {4, 8} (i.e. another two P F values) are configured for SRS resource set#2. That is, for SRS resource#3 and SRS resource#4 in SRS resource set#2, the first configured P F value is 4 and the second configured P F value is 8.
For SRS resource set#1 (consisting of SRS resource#1 and SRS resource#2) , each value of the MCS field (or HARQ process number field) is mapped to the P F value illustrated in Table 3.
MCS field P F value
000 1
001 2
010 4
Table 3
For SRS resource set#2 (consisting of SRS resource#3 and SRS resource#4) , each value of the MCS field (or HARQ process number field) is mapped to the P F value illustrated in Table 4.
MCS field P F value
000 1
001 4
010 8
Table 4
It can be seen that the same value of the MCS field (or the HARQ process number field) maps different P F values to SRS resources within different SRS resource sets, since different P F values are configured to different SRS resource sets.
SRS resource#1 and SRS resource#2 (i.e. SRS resources in SRS resource set#1) are configured with C SRS=13 and B SRS=3 resulting a
Figure PCTCN2021087632-appb-000068
 (see Table 1) . SRS resource#3 and SRS resource#4 (i.e. SRS resources in SRS resource set#2) are configured with C SRS=36 and B SRS=3 resulting a
Figure PCTCN2021087632-appb-000069
 (see Table 1) . 
Based on the indicated P F values
Figure PCTCN2021087632-appb-000070
and the configured
Figure PCTCN2021087632-appb-000071
values for different SRS resource sets, the candidate N offset values (as well as the candidate k offset values) are shown in Table 5.
Figure PCTCN2021087632-appb-000072
Figure PCTCN2021087632-appb-000073
Table 5
It can be seen from Table 5 that the candidate N offset values for different SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) are different depending on different P F values
Figure PCTCN2021087632-appb-000074
and different
Figure PCTCN2021087632-appb-000075
values.
Since the value of the MCS field (or of the HARQ process number field) indicates an N offset value for all the triggered SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) , it is necessary to determine how the value of the MCS field (or of the HARQ process number field) indicates the N offset value for each SRS resource set. If the indicated value of the MCS field (or of the HARQ process number field) is within the candidate N offset values for each SRS resource set, the indicated value of the MCS field (or of the HARQ process number field) is the indicated N offset value for each SRS resource set. For example, if the indicated value of the MCS field (or of the HARQ process number field) is 3, which is within both the candidate N offset values of SRS resource set#1 and SRS resource set#2 (when
Figure PCTCN2021087632-appb-000076
and
Figure PCTCN2021087632-appb-000077
) (i.e. {0, 1, 2, 3} and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ) , then the indicated N offset value = 3 for each of SRS resource set#1 and SRS resource set#2. On the other hand, if the indicated value of the MCS field (or of the HARQ process number field) is out of the candidate N offset values for a SRS resource set, the indicated N offset value can be a modulo of the indicated value of the MCS field (or of the HARQ process number field) by the number of candidate N offset values of the SRS resource set, i.e. indicated N offset value = [the indicated value of the MCS field (or of the HARQ process number field) ] % (the number of candidate N offset values of the SRS resource set) . For example, the candidate N offset values for SRS resource set#1 when
Figure PCTCN2021087632-appb-000078
and 
Figure PCTCN2021087632-appb-000079
in Table 5 are {0, 1, 2, 3} . If the indicated value of the MCS field (or of the HARQ process number field) is 10, then the indicated N offset value = 10 %4 = 2 for SRS resource set#1.
As a whole, if the MCS field is set to ‘010’ , P F =4 applies to SRS resource#1 and SRS resource#2 (see Table 3) , and P F =8 applies to SRS resource#3 and SRS resource#4 (see Table 4) . The candidate N offset values for SRS resource set#1 (i.e. SRS resource#1 and SRS resource#2) are {0, 1, 2, 3} and the candidate N offset values for SRS resource set#2 (i.e. SRS resource#3 and SRS resource#4) are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (see Table 5) . If the FDRA field (indicating an N offset value) is set to ‘0101’ (i.e. 9) , the N offset value for SRS resource#1 and SRS resource#2 is 9 %4 =1 (i.e.  offset = 12) , and the N offset value for SRS resource#3 and SRS resource#4 is 9 (or 9 %12 =9) (i.e. k offset = 108) .
Based on the indicated P F values
Figure PCTCN2021087632-appb-000080
and the configured
Figure PCTCN2021087632-appb-000081
values for different SRS resource sets, the candidate M offset values (as well as the candidate k offset values) are shown in Table 6.
Figure PCTCN2021087632-appb-000082
Table 6
It can be seen from Table 6 that the candidate M offset values for different SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) are different depending on different P F values
Figure PCTCN2021087632-appb-000083
and different
Figure PCTCN2021087632-appb-000084
values.
Since the value of the MCS field (or of the HARQ process number field) indicates an M offset value for all SRS resource sets (e.g. SRS resource set#1 and SRS resource set#2) , it is necessary to determine how the value of the MCS field (or of the HARQ process number field) indicates the M offset value for each SRS resource set. For example, if the indicated value of the MCS field (or of the HARQ process number field) is within the candidate M offset values for each SRS resource set, the indicated value of the MCS field (or of the HARQ process number field) is the indicated M offset value for each SRS resource set. On the other hand, if the indicated value of the MCS field (or of the HARQ process number field) is out of the candidate M offset values for a SRS resource set, the indicated M offset value can be a modulo of the indicated value of the MCS field (or of the HARQ process number field) by the number of candidate M offset values of the SRS resource set, i.e. indicated M offset value = [the indicated value of the MCS field (or of the HARQ process number field) ] % (the number of candidate M offset values of the SRS resource set) . For example, the candidate M offset values for SRS resource set#1 when
Figure PCTCN2021087632-appb-000085
and 
Figure PCTCN2021087632-appb-000086
in Table 6 are {0, 1} . If the indicated value of the MCS field (or of the HARQ process number field) is 3, then the indicated M offset value for SRS resource set#1 is 3 %2 = 1.
As a whole, if the MCS field is set to ‘010’ , 
Figure PCTCN2021087632-appb-000087
applies to SRS resource#1 and SRS resource#2 (see Table 3) , and
Figure PCTCN2021087632-appb-000088
applies to SRS resource#3 and SRS resource#4 (see Table 4) . The candidate M offset values for SRS resource set#1 (i.e. SRS resource#1 and SRS resource#2) are {0, 1, 2, 3} and the candidate N offset values for SRS resource set#2 (i.e. SRS resource#3 and SRS resource#4) are {0, 1, 2, 3, 4, 5, 6, 7} (see Table 6) . If the FDRA field (indicating an M offset value) is set to ‘0011’ (i.e. 3) , the M offset value for SRS resource#1 and SRS resource#2 = 3 (i.e.  offset = 36) , and the M offset value for SRS resource#3 and SRS resource#4 = 3 (i.e. k offset = 36) .
According to the first embodiment, one or more aperiodic SRS resource sets are triggered by a DCI with format 0_1 or 0_2 with a non-zero ‘SRS request’ field. The MCS field (or the HARQ process number field) of the DCI with format 0_1 or 0_2 is used to indicate a P F value. The FDRA field is used to indicate a k offset value by indicating an N offset value or an M offset value. It thus can be seen that the P F value and the k offset value are indicated in the DCI  with format 0_1 or 0_2 triggering the aperiodic SRS, so that the aperiodic SRS is triggered with partial frequency sounding.
According to a second embodiment, a DCI with format 0_1 or 0_2 (abbreviated as DCI in the description of the second embodiment) is used to indicate the P F value and the k offset value to a SRS resource set. However, according to the second embodiment, the DCI with format 0_1 or 0_2 (for indicating the P F value and the k offset value) may not trigger any aperiodic SRS resource.
According to the second embodiment, both the UL-SCH indicator field and the CSI request field contained in the DCI are set as 0.
The P F value is indicated by MCS field contained in the DCI. Each value of the MCS field indicates a P F value of the multiple P F values configured to a SRS resource or to a SRS resource set by RRC signaling (see Table 1) .
The k offset value is indicated by Frequency Domain Resource Allocation (FDRA) field contained in the DCI. The k offset value can be given by the number of resource blocks (RBs) (N offset) . That is, 
Figure PCTCN2021087632-appb-000089
where
Figure PCTCN2021087632-appb-000090
 (e.g. equal to 12) is the number of subcarriers per RB. Alternatively, the k offset value can be given by the number of m P RBs, where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000091
 (i.e. 
Figure PCTCN2021087632-appb-000092
) . That is, 
Figure PCTCN2021087632-appb-000093
Figure PCTCN2021087632-appb-000094
where
Figure PCTCN2021087632-appb-000095
 (e.g. equal to 12) is the number of subcarriers per RB,
Figure PCTCN2021087632-appb-000096
is the indicated P F value. As a whole, the FDRA field indicates an N offset value or an M offset value with the same way as described in the first embodiment. The k offset value is determined according to the indicated N offset value or M offset value.
The indicated P F value and k offset value apply to all SRS resources within the SRS resource set with a srs-ResourceSetId indicated by HARQ process number field contained in the DCI.
An example of the second embodiment is as follows:
A UE receives a DCI format 0_1 with CSI request field set to ‘000’a nd UL-SCH field set to ‘0’ . The HARQ process number field contained in the DCI is set to ‘0101’ , that indicates a SRS resource set#5. SRS resource set#5 is configured with P F ∈ {2, 4, 8} (i.e. three P F values) .
For SRS resource set#5, each value of the MCS field is mapped to the P F value illustrated in Table 7.
MCS field P F value
000 1
001 2
010 4
011 8
Table 7
If the MCS field is set to ‘010’ , the indicated P F value
Figure PCTCN2021087632-appb-000097
applies to SRS resource set#5.
Suppose
Figure PCTCN2021087632-appb-000098
is configured to SRS resource set#5.
If the value of the FDRA field indicates an N offset value, the candidate N offset values for SRS resource set#5 are
Figure PCTCN2021087632-appb-000099
Figure PCTCN2021087632-appb-000100
for indicated P F value
Figure PCTCN2021087632-appb-000101
It is necessary to use roundup
Figure PCTCN2021087632-appb-000102
Figure PCTCN2021087632-appb-000103
bits for the FDRA field for indicating the N offset value. 
Alternatively, if the value of the FDRA field indicates an M offset value, the candidate M offset values for SRS resource set#5 are
Figure PCTCN2021087632-appb-000104
for indicated P F value
Figure PCTCN2021087632-appb-000105
It is necessary to use roundup
Figure PCTCN2021087632-appb-000106
bits for the FDRA field indicating the M offset value. Incidentally, the indicated P F value
Figure PCTCN2021087632-appb-000107
 (e.g. = 4) implies that the number of the candidate M offset values.
If the indicated value of the FDRA field is larger than the required bits (i.e. 7 bits for N offset value or 2 bits for M offset value) , a modulo operation similar to the first embodiment can be performed.
For example, if the indicated value of the FDRA field is 47, the N offset value will be 47 (which implies
Figure PCTCN2021087632-appb-000108
) while the M offset value will be 47 %4 = 3 (which implies
Figure PCTCN2021087632-appb-000109
Figure PCTCN2021087632-appb-000110
As a whole, 
Figure PCTCN2021087632-appb-000111
and k offset= 564 or 1188 apply to SRS resource set#5 (i.e. apply to all SRS resources within SRS resource set#5) .
For each of the SRS resources within SRS resource set#5, no matter it is an aperiodic SRS resource, a semi-persistent SRS resource or periodic SRS resource, when it is triggered or activated (the aperiodic SRS resource being triggered by another DCI, or semi-persistent SRS resource being activated by a MAC CE, or periodic SRS resource triggered by a RRC signaling) , it will be transmitted with partial frequency sounding with the P F value and the k offset value indicated in the DCI in consideration of the
Figure PCTCN2021087632-appb-000112
and
Figure PCTCN2021087632-appb-000113
configured by RRC signaling.
As stated in the background part, the feature of partial frequency band sounding can improve the SRS capacity since different partial frequency bands can be assigned to different UEs. Therefore, the partial frequency band sounding patterns for different UEs can be signaled to a group of UEs via a dedicated group common DCI for SRS multiplexing.
According to a third embodiment, the P F value and the frequency-domain offset k offset for one or more SRS resource sets (the one or more SRS resource set is configured for a same UE) and/or for one or more SRS resources (the one or more SRS resource is configured for a same UE) and/or for one or more SRS resource set groups (the one or more SRS resource set group is configured for a same UE) are indicated by a group common DCI.
A new DCI format (e.g. DCI format 2_7) can be introduced for the transmission of a group of P F values and k offset values for SRS resource (s) and/or SRS resource set (s) and/or SRS resource set group (s) of one or more UEs.
The following information is transmitted by means of DCI format 2_7 with CRC scrambled by a dedicated RNTI, e.g., PFS-SRS-RNTI: block number 1, block number 2, …, block number B, where the starting position and the duration of each block is determined by RRC parameters, e.g. startingBitOfFormat2-7 and DurationOfFormat2-7. Each block has the following fields:
SRS resource set ID field or SRS resource ID field, or SRS resource set group ID field: This field indicates an srs-ResourceSetId indicating a SRS resource set or an srs-ResourceId indicating a SRS resource or an srs-ResourceSetGroupId indicating a SRS resource set group for which the indicated P F value and k offset value apply to. The SRS resource set ID field has 4 bits. The SRS resource ID field has 6 bits. The SRS resource set group ID field has roundup
Figure PCTCN2021087632-appb-000114
bits, where N SRS is the number of SRS resource set groups  configured for the UE. If the SRS resource set ID field is included in a block, the P F field and the k offset field apply to all SRS resources within the SRS resource set indicated by the SRS resource set ID field. If the SRS resource ID field is included in a block, the P F field and the k offset field apply to the SRS resource indicated by the SRS resource ID field. If the SRS resource set group ID field in a block, the P F field and the k offset field apply to all SRS resources within all SRS resource sets within the SRS resource set group indicated by the SRS resource set group ID field.
P F field: this field indicates the P F value. The P F field has a bit length of roundup
Figure PCTCN2021087632-appb-000115
where
Figure PCTCN2021087632-appb-000116
is the maximum number of P F values (including a default P F = 1) that are configured to the SRS resource set or the SRS resource or the SRS resource set group. For example, if a maximum of 7 P F values are configured to the SRS resource set as illustrated in Table 2, 
Figure PCTCN2021087632-appb-000117
Then, roundup
Figure PCTCN2021087632-appb-000118
i.e. the P F field has 3 bits.
k offset field: as described in the first embodiment and the second embodiment, k offset value can be represented by an N offset value or an M offset value.
If the k offset field indicates the N offset value, i.e. the k offset value is represented by the number of RBs
Figure PCTCN2021087632-appb-000119
 (e.g. 
Figure PCTCN2021087632-appb-000120
) , the bit length of the k offset field indicating the N offset value is determined by the maximum indicated P F value
Figure PCTCN2021087632-appb-000121
and the maximum
Figure PCTCN2021087632-appb-000122
value
Figure PCTCN2021087632-appb-000123
configured to the SRS resource set or the SRS resource or the SRS resource set group. The candidate N offset values are
Figure PCTCN2021087632-appb-000124
Figure PCTCN2021087632-appb-000125
So, the k offset field (when it is used to indicate the N offset value) has roundup 
Figure PCTCN2021087632-appb-000126
bits.
If the k offset field indicates the M offset value, i.e. the k offset value is represented by the number of m P
Figure PCTCN2021087632-appb-000127
RBs (i.e. 
Figure PCTCN2021087632-appb-000128
) (e.g. 
Figure PCTCN2021087632-appb-000129
) , the bit length of the k offset field indicating the M offset value is determined by the maximal indicated P F value
Figure PCTCN2021087632-appb-000130
configured to the SRS resource set or the SRS resource or the SRS resource set group. The candidate M offset values are
Figure PCTCN2021087632-appb-000131
So, the k offset field (when it is used to indicate the M offset value) has roundup
Figure PCTCN2021087632-appb-000132
bits.
As a whole, each block of the group common DCI (e.g. DCI format 2_7) indicates the P F value and the k offset value for an UE that is associated with a SRS resource or a SRS resource set or a SRS resource set group.
Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method 200 according to the present application. In some embodiments, the method 200 is performed by an apparatus, such as a base unit. In certain embodiments, the method 200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 200 may include 202 receiving a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and 204 transmitting a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In one embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
In another embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
In yet another embodiment, the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI, the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups, the first SRS resource is one of the one or multiple SRS  resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling. The group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE. The starting position and the duration of each block may be configured by RRC signaling.
In some embodiment, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
Figure PCTCN2021087632-appb-000133
where
Figure PCTCN2021087632-appb-000134
is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000135
where
Figure PCTCN2021087632-appb-000136
is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
Figure PCTCN2021087632-appb-000137
where
Figure PCTCN2021087632-appb-000138
is the number of subcarriers per resource block, M offset is one of 0 to
Figure PCTCN2021087632-appb-000139
where
Figure PCTCN2021087632-appb-000140
is the indicated P F value.
Figure 3 is a schematic flow chart diagram illustrating a further embodiment of a method 300 according to the present application. In some embodiments, the method 300 is performed by an apparatus, such as a remote unit. In certain embodiments, the method 300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 300 may include 302 transmitting a first DCI indicating a P F value and a value indicating a starting position offset in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and 304 receiving a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from the start position of the first SRS resource determined by RRC signaling plus the starting position offset, where m P is the largest integer that is equal to or smaller than the allocated sounding frequency band of the first SRS resource configured by RRC signaling divided by the indicated P F value. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In one embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set  as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
In another embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
In yet another embodiment, the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI, the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups, the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling. The group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE. The starting position and the duration of each block may be configured by RRC signaling.
In some embodiment, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
Figure PCTCN2021087632-appb-000141
where
Figure PCTCN2021087632-appb-000142
is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000143
where
Figure PCTCN2021087632-appb-000144
is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
Figure PCTCN2021087632-appb-000145
where
Figure PCTCN2021087632-appb-000146
is the number of subcarriers per resource block, M offset is one of 0 to
Figure PCTCN2021087632-appb-000147
where
Figure PCTCN2021087632-appb-000148
is the indicated P F value.
Figure 4 is a schematic block diagram illustrating apparatuses according to one embodiment.
Referring to Figure 4, the UE (i.e. the remote unit) includes a processor, a memory, and a transceiver. The processor implements a function, a process, and/or a method which are proposed in Figure 2.
The UE comprises a receiver that receives a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a transmitter that transmits a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from
Figure PCTCN2021087632-appb-000149
where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000150
wherein, 
Figure PCTCN2021087632-appb-000151
is the indicated P F value, 
Figure PCTCN2021087632-appb-000152
is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
Figure PCTCN2021087632-appb-000153
is the start position of the first SRS resource determined by RRC signaling. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In one embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a HARQ process number field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
In another embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
In yet another embodiment, the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI, the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups, the first SRS resource is one of the one or multiple SRS  resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling. The group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE. The starting position and the duration of each block may be configured by RRC signaling.
In some embodiment, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
Figure PCTCN2021087632-appb-000154
where
Figure PCTCN2021087632-appb-000155
is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000156
where
Figure PCTCN2021087632-appb-000157
is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
Figure PCTCN2021087632-appb-000158
where
Figure PCTCN2021087632-appb-000159
is the number of subcarriers per resource block, M offset is one of 0 to
Figure PCTCN2021087632-appb-000160
where
Figure PCTCN2021087632-appb-000161
is the indicated P F value.
Referring to Figure 4, the gNB (i.e. base unit) includes a processor, a memory, and a transceiver. The processors implement a function, a process, and/or a method which are proposed in Figure 3.
The base unit comprises a transmitter that transmits a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and a receiver that receives a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from
Figure PCTCN2021087632-appb-000162
where m P is the largest integer that is equal to or smaller than
Figure PCTCN2021087632-appb-000163
wherein, 
Figure PCTCN2021087632-appb-000164
is the indicated P F value, 
Figure PCTCN2021087632-appb-000165
is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
Figure PCTCN2021087632-appb-000166
is the start position of the first SRS resource determined by RRC signaling. The P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
In one embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a non-zero SRS request field indicating one or multiple SRS resource sets, a MCS field or a  HARQ process number field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
In another embodiment, the first DCI is a DCI with format 0_1 or 0_2, the DCI with format 0_1 or 0_2 contains: a UL-SCH indicator field set as 0, a CSI request field set as 0, a HARQ process number field indicating a SRS resource set, a MCS field indicating the P F value, and a FDRA field indicating the k offset, the first SRS resource is within the SRS resource set indicated by HARQ process number field, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
In yet another embodiment, the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI, the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups, the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling. The group common DCI may include one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE. The starting position and the duration of each block may be configured by RRC signaling.
In some embodiment, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
Figure PCTCN2021087632-appb-000167
where
Figure PCTCN2021087632-appb-000168
is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
Figure PCTCN2021087632-appb-000169
where
Figure PCTCN2021087632-appb-000170
is the indicated P F value. In some embodiment, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
Figure PCTCN2021087632-appb-000171
where
Figure PCTCN2021087632-appb-000172
is the number of subcarriers per resource block, M offset is one of 0 to
Figure PCTCN2021087632-appb-000173
where
Figure PCTCN2021087632-appb-000174
is the indicated P F value.
Layers of a radio interface protocol may be implemented by the processors. The memories are connected with the processors to store various pieces of information for driving the processors. The transceivers are connected with the processors to transmit and/or  receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
The memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
In the embodiments described above, the components and the features of the embodiments are combined in a predetermined form. Each component or feature should be considered as an option unless otherwise expressly stated. Each component or feature may be implemented not to be associated with other components or features. Further, the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
The embodiments may be implemented by hardware, firmware, software, or combinations thereof. In the case of implementation by hardware, according to hardware implementation, the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects to be only illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (12)

  1. A method of an UE, comprising:
    receiving a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and
    transmitting a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from
    Figure PCTCN2021087632-appb-100001
    where m P is the largest integer that is equal to or smaller than
    Figure PCTCN2021087632-appb-100002
    wherein, 
    Figure PCTCN2021087632-appb-100003
    is the indicated P F value, 
    Figure PCTCN2021087632-appb-100004
    is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
    Figure PCTCN2021087632-appb-100005
    is the start position of the first SRS resource determined by RRC signaling.
  2. The method of claim 1, wherein, the P F value is one of multiple P F values configured for the first SRS resource by RRC signaling.
  3. The method of claim 1, wherein,
    the first DCI is a DCI with format 0_1 or 0_2,
    the DCI with format 0_1 or 0_2 contains:
    a UL-SCH indicator field set as 0,
    a CSI request field set as 0,
    a non-zero SRS request field indicating one or multiple SRS resource sets,
    a MCS field or a HARQ process number field indicating the P F value, and
    a FDRA field indicating the k offset,
    the first SRS resource is the aperiodic SRS resource (s) within the one or multiple SRS resource sets indicated by the non-zero SRS request field triggered by the first DCI.
  4. The method of claim 1, wherein,
    the first DCI is a DCI with format 0_1 or 0_2,
    the DCI with format 0_1 or 0_2 contains:
    a UL-SCH indicator field set as 0,
    a CSI request field set as 0,
    a HARQ process number field indicating a SRS resource set,
    a MCS field indicating the P F value, and
    a FDRA field indicating the k offset,
    the first SRS resource is within the SRS resource set indicated by HARQ process number field, and
    the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  5. The method of claim 1, wherein,
    the first DCI is a group common DCI with CRC scrambled by a dedicated RNTI,
    the group common DCI includes the P F value (s) and the k offset (s) for one or multiple SRS resources and/or one or multiple SRS resource sets and/or one or multiple SRS resource set groups,
    the first SRS resource is one of the one or multiple SRS resources, or is within the one or multiple SRS resource sets, or is within SRS resource set (s) within the one or multiple SRS resource set groups, and
    the first SRS resource is an aperiodic SRS resource triggered by a second DCI, or a semi-persistent SRS resource activated by a MAC CE, or a periodic SRS resource triggered by RRC signaling.
  6. The method of claim 5, wherein, the group common DCI includes one or multiple blocks, each block includes the P F value and the k offset for one SRS resource or one SRS resource set or one SRS resource set group for one UE.
  7. The method of claim 6, wherein, the starting position and the duration of each block is configured by RRC signaling.
  8. The method of claim 1, wherein, the starting position offset k offset is determined by the number of resource blocks (N offset) , where
    Figure PCTCN2021087632-appb-100006
    where
    Figure PCTCN2021087632-appb-100007
    is the number of subcarriers per resource block, N offset is one of 0 to the smallest integer that is equal to or larger than
    Figure PCTCN2021087632-appb-100008
    where
    Figure PCTCN2021087632-appb-100009
    is the indicated P F value.
  9. The method of claim 1, wherein, the starting position offset k offset is indicated by the number of m P resource blocks (M offset) , where
    Figure PCTCN2021087632-appb-100010
    where
    Figure PCTCN2021087632-appb-100011
    is the number of subcarriers per resource block, M offset is one of 0 to
    Figure PCTCN2021087632-appb-100012
    where
    Figure PCTCN2021087632-appb-100013
    is the indicated P F value.
  10. A UE, comprising:
    a receiver that receives a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and
    a transmitter that transmits a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from
    Figure PCTCN2021087632-appb-100014
    where m P is the largest integer that is equal to or smaller than
    Figure PCTCN2021087632-appb-100015
    wherein, 
    Figure PCTCN2021087632-appb-100016
    is the indicated P F value, 
    Figure PCTCN2021087632-appb-100017
    is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
    Figure PCTCN2021087632-appb-100018
    is the start position of the first SRS resource determined by RRC signaling.
  11. A method at a base unit, comprising:
    transmitting a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and
    receiving a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks  starting from
    Figure PCTCN2021087632-appb-100019
    where m P is the largest integer that is equal to or smaller than
    Figure PCTCN2021087632-appb-100020
    wherein, 
    Figure PCTCN2021087632-appb-100021
    is the indicated P F value, 
    Figure PCTCN2021087632-appb-100022
    is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
    Figure PCTCN2021087632-appb-100023
    is the start position of the first SRS resource determined by RRC signaling.
  12. A base unit, comprising:
    a transmitter that transmits a first DCI indicating a P F value and a value indicating a starting position offset k offset value in frequency domain for a SRS resource set or a SRS resource or a SRS resource set group; and
    a receiver that receives a first SRS resource, that is the SRS resource or one or more SRS resource (s) within the SRS resource set or one or more SRS resource (s) within SRS resource set (s) within the SRS resource set group, in m P contiguous resource blocks starting from
    Figure PCTCN2021087632-appb-100024
    where m P is the largest integer that is equal to or smaller than
    Figure PCTCN2021087632-appb-100025
    wherein, 
    Figure PCTCN2021087632-appb-100026
    is the indicated P F value, 
    Figure PCTCN2021087632-appb-100027
    is the allocated sounding frequency band of the first SRS resource configured by RRC signaling, and
    Figure PCTCN2021087632-appb-100028
    is the start position of the first SRS resource determined by RRC signaling.
PCT/CN2021/087632 2021-04-16 2021-04-16 Partial frequency sounding based on dci signaling WO2022217563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087632 WO2022217563A1 (en) 2021-04-16 2021-04-16 Partial frequency sounding based on dci signaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087632 WO2022217563A1 (en) 2021-04-16 2021-04-16 Partial frequency sounding based on dci signaling

Publications (1)

Publication Number Publication Date
WO2022217563A1 true WO2022217563A1 (en) 2022-10-20

Family

ID=83640018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087632 WO2022217563A1 (en) 2021-04-16 2021-04-16 Partial frequency sounding based on dci signaling

Country Status (1)

Country Link
WO (1) WO2022217563A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023065A1 (en) * 2019-08-07 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for srs transmission, network device and ue
CN112438031A (en) * 2018-07-20 2021-03-02 高通股份有限公司 SRS resource configuration enhancements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438031A (en) * 2018-07-20 2021-03-02 高通股份有限公司 SRS resource configuration enhancements
WO2021023065A1 (en) * 2019-08-07 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for srs transmission, network device and ue

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Enhancements on SRS", 3GPP DRAFT; R1-2102842, vol. RAN WG1, 6 April 2021 (2021-04-06), pages 1 - 13, XP051993233 *
ZTE: "Enhancements on SRS flexibility, coverage and capacity", 3GPP DRAFT; R1-2102665, vol. RAN WG1, 7 April 2021 (2021-04-07), pages 1 - 11, XP052177673 *

Similar Documents

Publication Publication Date Title
US11930508B2 (en) Downlink control information transmission method
US10368341B2 (en) Method and device for uplink resource allocation
US20220385432A1 (en) Flexible radio resource allocation
JP5714604B2 (en) Method and apparatus for resource allocation by carrier extension
US20130034062A1 (en) Uplink transmission method and apparatus in wireless communication system
JP6603418B2 (en) Data transmission method and apparatus
US11652596B2 (en) Method executed by user equipment, and user equipment
NO340201B1 (en) Method and apparatus for assigning and detecting control channel.
JP2019512180A (en) Network node, user device and method thereof
KR20200050849A (en) Method and apparatus for radio resource allocation in wireless communication system
WO2023050135A1 (en) Srs sequence generating
WO2022217563A1 (en) Partial frequency sounding based on dci signaling
KR101710206B1 (en) Method and apparatus for uplink transmission in wireless communication system
WO2021139218A1 (en) 16qam transmission for nbiot
WO2022213254A1 (en) Partial frequency sounding
US11757580B2 (en) User equipment, base station, and method for modifying demodulation reference signal (DMRS) sequences
WO2023050140A1 (en) Partial frequency sounding with start rb location hopping
WO2023193226A1 (en) Single-dci multi-trp based pdsch reception with unified tci framework
WO2022032657A1 (en) Flexible triggering of aperiodic srs
WO2022205269A1 (en) Nbiot cqi report
WO2023147955A1 (en) Wireless telecommunications apparatuses and methods
CN115734360A (en) Method and device for multi-carrier scheduling
CN114520712A (en) Transmission method and transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/02/2024)