WO2022217414A1 - 一种电化学装置及含该电化学装置的电子装置 - Google Patents

一种电化学装置及含该电化学装置的电子装置 Download PDF

Info

Publication number
WO2022217414A1
WO2022217414A1 PCT/CN2021/086527 CN2021086527W WO2022217414A1 WO 2022217414 A1 WO2022217414 A1 WO 2022217414A1 CN 2021086527 W CN2021086527 W CN 2021086527W WO 2022217414 A1 WO2022217414 A1 WO 2022217414A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
ether
content
electrode active
Prior art date
Application number
PCT/CN2021/086527
Other languages
English (en)
French (fr)
Inventor
崔辉
王翔
唐超
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202180005241.3A priority Critical patent/CN114365319B/zh
Priority to EP21867912.4A priority patent/EP4099469A4/en
Priority to BR112023021172A priority patent/BR112023021172A2/pt
Priority to PCT/CN2021/086527 priority patent/WO2022217414A1/zh
Priority to US17/709,650 priority patent/US20220336855A1/en
Publication of WO2022217414A1 publication Critical patent/WO2022217414A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, and in particular, to an electrochemical device and an electronic device containing the electrochemical device.
  • Electrochemical devices such as lithium-ion batteries
  • higher requirements have been placed on lithium-ion batteries—high energy density, long cycle life, and excellent storage characteristics.
  • the interaction between the electrolyte and the positive and negative electrodes has a huge impact on these properties, especially when the working voltage is increased to 4.4V in order to improve its energy density, the instability of the electrolyte and the positive electrode interface is intensified, and the battery is seriously swelled at high temperature.
  • the cycle performance and indirect charge-discharge performance are reduced, which seriously restricts the performance of the battery.
  • the existing lithium-ion battery technology often starts with optimizing the electrolyte or improving the cathode, and lacks in-depth innovation of the entire system, resulting in the inability to achieve an overall improvement in performance.
  • the present application provides an electrochemical device, the electrochemical device comprising: an electrolyte solution comprising a non-fluorinated cyclic carbonate and an ether polynitrile compound, the non-fluorinated cyclic carbonic acid
  • the ester includes ethylene carbonate, and based on the mass of the electrolyte, the content of the ethylene carbonate is X%, and the content of the ether polynitrile compound is A%;
  • the positive electrode includes a positive electrode active material layer and a positive electrode collector.
  • the positive electrode active material layer includes a positive electrode active material
  • the positive electrode active material includes M element
  • the M element includes at least one of Al, Mg, Ti, Zr, W, based on the quality of the positive electrode active material , the content of the M element is C ppm, 1000 ⁇ C ⁇ 22000; wherein, X+A ⁇ 15 and 133 ⁇ C/A ⁇ 22000. According to some embodiments of the present application, 400 ⁇ C/A ⁇ 4000.
  • the ether polynitrile compound comprises at least one of an ether dinitrile compound and an ether trinitrile compound, and the content of the ether dinitrile compound is Y% based on the mass of the electrolyte, The content of the ether trinitrile compound is Z%, wherein 0.1 ⁇ Y+Z ⁇ 7.5, 2.5 ⁇ X ⁇ 14.
  • the electrochemical device satisfies at least one of the conditions (a)-(c): (a) 0 ⁇ Y ⁇ 3.5; (b) 0 ⁇ Z ⁇ 4.0; (c) 133 ⁇ C/Y ⁇ 12500.
  • the ether polynitrile compound includes at least one of the nitrile compounds represented by formula I and formula II,
  • R 11 , R 12 , R 21 , R 22 and R 23 are independently selected from -(CH 2 )aO-(CH 2 )b-, and a and b are independently 0 to 10 , and a and b are not both 0.
  • the electrolyte further includes a polynitrile compound, and based on the mass of the electrolyte, the content of the polynitrile compound is D%, wherein 0.02 ⁇ Y/D ⁇ 1.0.
  • the polynitrile compounds include at least one of the nitrile compounds represented by formula IV,
  • R 41 is selected from c, d, e, f, and g are each independently an integer of 0 to 10, and c and d are not 0 at the same time.
  • the content of the ether polynitrile compound ranges from 0.0001 g to 0.06 g based on 1 g of the positive electrode active material of the electrochemical device.
  • the M element satisfies at least one of the conditions (d)-(f): (d) the M element includes Al, and at least one of Mg, Ti, Zr, and W (e) the M element includes Mg, and at least one of Al, Ti, Zr, and W; (f) the M element includes Al and Mg, and at least one of Ti, Zr, and W.
  • the content of the Al element is C1 ppm based on the mass of the positive electrode active material, and 0.2 ⁇ C1/C ⁇ 1 is satisfied.
  • the content of the Al element is C1 ppm
  • the content of the Mg element is C2 ppm, satisfying 0.001 ⁇ C2/C1 ⁇ 1 .
  • the positive electrode active material further includes an M2 element including at least one of La, Y, F, Na, Fe, Zn, or Cu.
  • the thickness of the positive electrode active material layer is 40 ⁇ m to 130 ⁇ m.
  • the present application further provides an electronic device, the electronic device comprising the electrochemical device described in the first aspect of the present application.
  • the electrochemical device provided in the present application includes: an electrolyte, the electrolyte includes a non-fluorinated cyclic carbonate and an ether polynitrile compound, the non-fluorinated cyclic carbonate includes ethylene carbonate, based on the electrolyte of the electrolyte mass, the content of the ethylene carbonate is X%, and the content of the ether polynitrile compound is A%; positive electrode, the positive electrode includes a positive electrode active material layer and a positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material , the positive electrode active material includes M element, the M element includes at least one of Al, Mg, Ti, Zr, W, based on the quality of the positive electrode active material, the content of the M element is Cppm, 1000 ⁇ C ⁇ 22000; wherein, the electrochemical device satisfies X+A ⁇ 15 and 133 ⁇ C/A ⁇ 22000.
  • Non-fluorinated cyclic carbonate can be reduced to form a better SEI, which is beneficial to the cycle process, but its high temperature stability is poor, and it is easy to produce gas in the later stage of high temperature interval cycle, which leads to failure; ether polynitrile compounds have specific nitrile functional groups, which can be well used.
  • the oxidizable components in the electrolyte are separated from the surface of the positive electrode, which greatly reduces the oxidation of the positive electrode surface of the lithium-ion battery in the charged state to the electrolyte, thereby improving the gas production of the high-temperature interval cycle of the lithium-ion battery; but its impedance is large, When its content is too high, the cyclic polarization increases, which affects the cyclic decay.
  • the ether polynitrile compound can stabilize the dissolution of the positive electrode Co from the interface, and has a synergistic effect with the M element.
  • the C/A satisfies 133 ⁇ C/A ⁇ 22000, it can reduce the overall polarization of the battery and improve the high temperature cycle performance.
  • X+A is 3, 4, 5, 6, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, and any value between them.
  • the C/A is 200, 300, 400, 500, 700, 900, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 15000, 17000, 20000 and anything in between.
  • the ether polynitrile compound comprises at least one of an ether dinitrile compound and an ether trinitrile compound.
  • the ether polynitrile compound includes an ether dinitrile compound and an ether trinitrile compound, the content of the ether dinitrile compound is Y% based on the mass of the electrolyte, and the ether trinitrile The content of the compound is Z%, wherein 0.1 ⁇ Y+Z ⁇ 7.5.
  • Y+Z is 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and the like.
  • 0.3 ⁇ Y+Z ⁇ 4.0 is 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and the like.
  • the content of the ethylene carbonate X% satisfies 2.5 ⁇ X ⁇ 14, for example, X is 3.0, 4.0, 5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.0, 13.0, 13.5, etc. In some embodiments, 3.0 ⁇ X ⁇ 14.
  • the content of the ether dinitrile compound is Y%, satisfying 0 ⁇ Y ⁇ 3.5, for example, Y is 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, etc. . In some embodiments, 0 ⁇ Y ⁇ 2.0.
  • Y is 0.1, 0.5, 1.0, 1.5, 2.0, 3.0, etc. .
  • 0 ⁇ Y ⁇ 2.0 When the content is too high, the polarization increases and there is no advantage for cycling.
  • the content of the ether trinitrile compound is Z %, which satisfies 0 ⁇ Z ⁇ 4.0.
  • Z is 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, etc.
  • 0 ⁇ Z ⁇ 3.0 In some embodiments, 0 ⁇ Z ⁇ 3.0.
  • the electrochemical device satisfies 133 ⁇ C/Y ⁇ 12500.
  • C/Y is 200, 300, 400, 500, 700, 900, 1200, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 12000 and anything in between. In some embodiments, 1000 ⁇ C/Y ⁇ 10000.
  • the non-fluorinated cyclic carbonate further comprises at least one of propylene carbonate or dimethylethylene carbonate.
  • the ether polynitrile compound includes a nitrile compound represented by formula I,
  • R 11 and R 12 are each independently selected from -(CH 2 )aO-(CH 2 )b-, a and b are each independently an integer from 0 to 10, and a and b are not 0 at the same time.
  • the ether dinitrile compound represented by formula I comprises ethylene glycol bis(2-cyanoethyl) ether, diethylene glycol bis(2-cyanoethyl) ether, triethylene glycol Alcohol bis(2-cyanoethyl) ether, tetraethylene glycol bis(2-cyanoethyl) ether, 1,2-bis(2-cyanoethoxy)ethane, 1,3-bis(2 -Cyanoethoxy)propane, 1,4-bis(2-cyanoethoxy)butane, 1,5-bis(2-cyanoethoxy)pentane or ethylene glycol bis(4- One or more of cyanobutyl) ethers.
  • the ether polynitrile compound includes a nitrile compound represented by formula II,
  • R 21 , R 22 and R 23 are each independently selected from -(CH 2 )aO-(CH 2 )b-, a and b are each independently an integer from 0 to 10, and a and b are not simultaneously is 0.
  • the ether trinitrile compound represented by formula II comprises 1,2,3-bis(2-cyanoethoxy)propane, 1,2,4-tris(2-cyanoethoxy) yl)butane, 1,1,1-tris(cyanoethoxymethylene)ethane, 1,1,1-tris(cyanoethoxymethylene)propane, 3-methyl-1 , 3,5-tris(cyanoethoxy)pentane, 1,2,7-tris(cyanoethoxy)heptane, 1,2,6-tris(cyanoethoxy)hexane or One or more of 1,2,5-tris(cyanoethoxy)pentane.
  • the ether polynitrile compound further includes a nitrile compound represented by formula III,
  • R 31 and R 32 are each independently selected from -(CH 2 )aO-(CH 2 )b-, a and b are each independently an integer from 0 to 10, and a and b are not 0 at the same time.
  • the ether polynitrile compound comprises at least one of the following:
  • the electrolyte further includes a polynitrile compound, and based on the mass of the electrolyte, the content of the polynitrile compound is D%, wherein 0.02 ⁇ Y/D ⁇ 1.0.
  • Y/D is 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and any value in between.
  • the polynitrile compound refers to a compound having more than or equal to 2 cyano groups other than the ether polynitrile compound.
  • the polynitrile compounds include at least one of the nitrile compounds represented by formula IV,
  • R 41 is selected from c, d, e, f, and g are each independently an integer of 0 to 10, and c and d are not 0 at the same time.
  • the polynitriles can be selected from one or more of the following compounds:
  • integers from 0 to 10 refer to 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • the electrolytic solution may further include a chain ester.
  • the chain ester includes chain carbonate and chain carboxylate.
  • the chain carbonate is selected from dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like.
  • Chain carboxylates selected from ethyl formate, ethyl acetate, propyl acetate, ethyl propionate, methyl propionate, n-propyl propionate, isopropyl propionate, n-butyl propionate, propionic acid Isobutyl, n-amyl propionate, isoamyl propionate, ethyl n-butyrate, n-butyl n-butyrate, propyl isobutyrate, n-amyl n-butyrate, n-amyl isobutyrate, n-butyl n-butyl butyrate, isobutyl isobutyrate, n-amyl n-valerate, etc.
  • the electrolyte contains LiBF 4 , DTD, FEC, VC, PS and other common anode film-forming additives, and the organic lithium salt is LiPF 6 .
  • the lithium salt concentration is 0.3 mol/L to 2 mol/L.
  • the lithium salt concentration is between 0.8 mol/L and 1.3 mol/L.
  • the cathode material doped with M element includes at least one of Al, Mg, Ti, Zr, and W.
  • the internal positive electrode structure can be stabilized, thereby improving the high temperature interval performance and high temperature cycle performance.
  • the content of the M element is Cppm, 1000 ⁇ C ⁇ 22000, for example, C is 1000, 2000, 3000, 4000, 5000, 6000, 7000, 9000 , 10000, 12000, 15000, 17000, 19000, 20000, etc. In some embodiments of the present application, 1000 ⁇ C ⁇ 12000.
  • the M element includes Al, and at least one of Mg, Ti, Zr, and W.
  • the content of Al is C1ppm, which satisfies 0.2 ⁇ C1/C ⁇ 1.
  • the M element includes Mg, and at least one of Al, Ti, Zr, and W.
  • the M element includes Al and Mg, and at least one of Ti, Zr, and W.
  • the content of Al is C1 ppm
  • the content of Mg is C2 ppm, satisfying 0.001 ⁇ C2/C1 ⁇ 1.
  • the positive electrode active material further includes an M2 element including at least one of La, Y, F, Na, Fe, Zn, or Cu.
  • the content of the ether polynitrile compound ranges from 0.0001 g to 0.06 g, such as 0.0005 g, 0.005 g, 0.010 g, 0.020 g, 0.030 g, 0.035g, 0.045g, 0.050g, 0.055g and any value in between.
  • the content of the ether polynitrile compound ranges from 0.0001 g to 0.02 g.
  • the thickness of the positive electrode active material layer is 40 ⁇ m to 130 ⁇ m.
  • the thickness of the cathode active material layer is 50 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 125 ⁇ m, and any value therebetween.
  • the thickness of the positive electrode active material layer is 40 ⁇ m to 100 ⁇ m. In this application, the thickness of the positive electrode active material layer refers to the thickness of the positive electrode active material layer on one surface of the current collector.
  • the positive electrode current collector used in the electrochemical device of the present application may adopt a metal foil sheet or a composite current collector.
  • a metal foil sheet For example, aluminum foil can be used.
  • the composite current collector can be formed by forming a metal material (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver, silver alloy, etc.) on a polymer substrate.
  • the positive electrode material and the binder are dry-mixed to form a sheet, and the obtained sheet is crimped to the positive electrode current collector, or the These materials are dissolved or dispersed in a liquid medium to prepare a slurry, and the slurry is applied on a positive electrode current collector and dried.
  • the binder may include polyvinylidene fluoride, copolymers of vinylidene fluoride-hexafluoropropylene, styrene-acrylate copolymers, styrene-butadiene copolymers, polyamides, polyacrylonitrile , polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethyl cellulose, polyvinyl acetate, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene or polyhexafluoroethylene At least one of propylene.
  • the conductive material may include at least one of conductive carbon black, lamellar graphite, graphene, carbon nanotubes, or carbon fibers.
  • the electrochemical device of the present application also includes a negative electrode, and the material, composition, and manufacturing method of the negative electrode used therein may include any of the techniques disclosed in the prior art.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
  • the anode active material layer includes an anode active material
  • the anode active material may include a material that reversibly intercalates/deintercalates lithium ions, lithium metal, lithium metal alloy, or transition metal oxide.
  • the negative electrode active material includes at least one of carbon material or silicon material
  • the carbon material includes at least one of graphite and hard carbon
  • the silicon material includes silicon, silicon oxide compound, silicon carbon compound or silicon alloy at least one of.
  • the anode active material layer includes a binder, and the binder may include various binder polymers.
  • the binder includes polyvinylidene fluoride, copolymers of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethylcellulose , at least one of polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene, polyhexafluoropropylene or styrene-butadiene rubber.
  • the anode active material layer further includes a conductive material to improve electrode conductivity.
  • a conductive material to improve electrode conductivity.
  • Any conductive material can be used as the conductive material as long as it does not cause chemical change.
  • the conductive material includes at least one of conductive carbon black, acetylene black, carbon nanotubes, ketjen black, conductive graphite, or graphene.
  • the electrochemical device of the present application further includes a separator, and the material and shape of the separator used in the electrochemical device of the present application are not particularly limited, and it may be any technology disclosed in the prior art.
  • the separator includes a polymer or inorganic or the like formed from a material that is stable to the electrolyte of the present application.
  • the release film may include a substrate layer and a surface treatment layer.
  • the base material layer is a non-woven fabric, film or composite film with a porous structure, and the material of the base material layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • a polypropylene porous membrane, a polyethylene porous membrane, a polypropylene non-woven fabric, a polyethylene non-woven fabric or a polypropylene-polyethylene-polypropylene porous composite membrane can be selected.
  • At least one surface of the base material layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic material layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, At least one of yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinylalkoxy , at least one of polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the polymer layer contains a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinylalkoxy, polyvinylidene fluoride, At least one of poly(vinylidene fluoride-hexafluoropropylene).
  • the present application further provides an electronic device comprising the electrochemical device described herein.
  • electronic devices of the present application include, but are not limited to, notebook computers, pen input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini CD, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, Motorcycle, Power-assisted Bicycle, Bicycle , lighting equipment, toys, game consoles, clocks, power tools, flashes, cameras, large household batteries and lithium-ion capacitors, etc.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • each individually disclosed point or single value may itself serve as a lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range that is not expressly recited.
  • a list of items to which the terms "at least one of,” “at least one of,” “at least one of,” or other similar terms are linked to can mean any combination of the listed items. For example, if items A and B are listed, the phrase “at least one of A and B” means A only; B only; or A and B. In another example, if items A, B, and C are listed, the phrase "at least one of A, B, and C” means A only; or B only; C only; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single component or multiple components.
  • Item B may contain a single component or multiple components.
  • Item C may contain a single component or multiple components.
  • the lithium-ion battery preparation process is as follows:
  • negative electrode sheet The negative electrode active material graphite, binder styrene-butadiene rubber (abbreviated as SBR), and thickener sodium carboxymethyl cellulose (abbreviated as CMC) are deionized in an appropriate amount according to the mass ratio of 97.4:1.2:1.4.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • the preparation of the positive electrode sheet the lithium cobalt oxide containing M element, the conductive agent acetylene black, and the binder polyvinylidene fluoride (abbreviated as PVDF) are mixed in an appropriate amount of N-methylpyrrolidone (abbreviated as PVDF) in a mass ratio of 96:2:2. Fully stirring and mixing in NMP) solvent to form a uniform positive electrode slurry; coating the slurry on the Al foil of the positive electrode current collector, drying, cold pressing, and welding the tabs to obtain a positive electrode sheet.
  • NMP N-methylpyrrolidone
  • Preparation of lithium ion battery stack the positive electrode sheet, the separator and the negative electrode sheet in order, so that the separator is placed between the positive electrode sheet and the negative electrode sheet to play a role of isolation, and then roll to obtain a bare cell; put the bare cell outside In the packaging foil, the above-prepared electrolyte is injected into the dried battery, and the preparation of the lithium ion battery is completed after the processes of vacuum packaging, standing, chemical formation, and shaping.
  • the lithium ion batteries of Examples 1-39 and Comparative Examples 1-4 were prepared according to the above-mentioned preparation method; and the batteries were subjected to a high temperature cycle test and a float charge test.
  • the prepared lithium-ion batteries were tested as follows, and the test conditions were as follows:
  • the thickness of the battery after the cycle the thickness of the full charge in the last cycle of the cycle (ie, constant voltage charging to 0.05C at 4.4V).
  • Table 1 shows the weight percentage X% of ethylene carbonate in the electrolyte, the weight percentage A% of the ether polynitrile compound in the electrolyte (wherein, the weight percentage of the ether dinitrile compound in the electrolyte Effects of Y%, the weight percent content of ether trinitrile compound in electrolyte (Z%), and the content of doping element M in the positive electrode active material C ppm on the high temperature interval cycle and high temperature cycle performance of lithium ion batteries.
  • the doping elements in the positive electrode active material are all Al, and the content of the Al element is 1000 ppm based on the mass of the positive electrode active material.
  • Non-fluorinated cyclic carbonate can be reduced to form a better SEI, which is beneficial to the cycle process, but its high temperature stability is poor, and it is easy to generate gas and lead to failure in the later period of high temperature interval cycling;
  • ether polynitrile compounds have specific nitrile functional groups, which can be adsorbed on the surface of the positive electrode , the organic molecules on the surface of the positive electrode can well separate the easily oxidizable components in the electrolyte from the surface of the positive electrode, which greatly reduces the oxidation of the positive electrode surface of the lithium-ion battery in the charged state to the electrolyte, thereby improving the high-temperature interval of the lithium-ion battery.
  • the ether polynitrile compound contains both ether dinitrile compound and ether trinitrile compound, which can further improve high temperature interval cycle performance and high temperature cycle performance.
  • Table 2 shows the effects of the weight percentage A% of the ether polynitrile compound in the electrolyte, the type and content of the doping element M in the positive electrode active material Cppm on the high temperature interval cycle and high temperature cycle performance of the lithium ion battery.
  • the content of ethylene carbonate is 10%
  • the structural formula of the ether trinitrile compound is II-1
  • the content is 2.0%
  • the structural formula of the ether dinitrile compound is I-1
  • the content is Y%.
  • the doping element M in the positive electrode active material includes Al and other elements
  • the content of Al is C1 ppm
  • the content of Mg is C2 ppm.
  • Table 3 shows the weight percentage Y% of ether dinitrile compounds in the electrolyte, the weight percentage D% of other polynitrile compounds such as non-ether nitrile compounds in the electrolyte, and the effects of high temperature interval cycles of lithium ion batteries and The effect of high temperature cycling performance.
  • the content of ethylene carbonate is 10%
  • the structural formula of the ether trinitrile compound is II-1
  • the content is 2.0%.
  • the doping elements in the positive electrode active material are all Al
  • the content of the Al element is 1000 ppm based on the total mass of the positive electrode active material.
  • Table 4 shows the effects of ether polynitrile mass in cathode active material and cathode active material layer thickness on high temperature interval cycling and high temperature cycling performance of lithium ion batteries.
  • Table 4 shows the effects of ether polynitrile mass in cathode active material and cathode active material layer thickness on high temperature interval cycling and high temperature cycling performance of lithium ion batteries.
  • the mass of ether polynitrile corresponding to 1 g of positive electrode active material and the thickness of positive electrode active material layer are different from those of Example 9 (see Table 4 for details), other parameters are the same as those of Example 9.
  • the battery has better comprehensive performance.
  • the thickness of the positive electrode active material layer is within this range, the matching between the positive electrode active material and the electrolyte is good, which can ensure that a good protective layer can be formed between the electrolyte and the positive electrode active material layer, and at the same time, the impact on other properties is small.
  • the thickness of the positive electrode active material layer is in the range of 40 ⁇ m to 130 ⁇ m, while ensuring the energy density of the battery, the infiltration of the electrolyte solution to the positive electrode active material layer can be in a better state, which can better improve the total performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种电化学装置及包含该电化学装置的电子装置。本申请的电化学装置包括电解液,所述电解液包括非氟代环状碳酸酯和醚多腈化合物,所述非氟代环状碳酸酯包括碳酸乙烯酯,基于所述电解液的质量,所述碳酸乙烯酯的含量为X%,所述醚多腈化合物的含量为A%;正极,所述正极包括正极活性材料层和正极集流体,所述正极活性材料层包括正极活性材料,所述正极活性材料包括M元素,M元素包含Al、Mg、Ti、Zr、W中的至少一种,基于所述正极活性材料的质量,所述M元素的含量为C ppm,1000≤C≤22000;其中,X+A≤15且133≤C/A≤22000。本申请提供的电化学装置具有优异的高温间隔循环性能及高温循环性能。

Description

一种电化学装置及含该电化学装置的电子装置 技术领域
本申请涉及储能领域,具体涉及一种电化学装置及含有该电化学装置的电子装置。
背景技术
电化学装置,如锂离子电池,因其具有工作电压高、能量密度高、环境友好、循环稳定、安全等优点,被广泛应用于穿戴设备、智能手机、无人机、笔记本电脑等领域。随着现代信息技术的发展及锂离子电池应用的拓展,对锂离子电池提出了更高的要求——高的能量密度、长的循环寿命以及优异的储存特性。电解液与正负极之间的相互作用对这些性能影响巨大,特别是为改善其能量密度将工作电压提升至4.4V时,电解液及正极界面不稳定性加剧,电池高温下气胀严重,循环性能及间接性充放电性能降低,严重制约了电池性能的发挥。为改善其特性,现有锂离子电池技术往往单一从优化电解液或改善正极入手,缺少对整个体系的深入创新,从而导致无法实现性能的整体提升。
发明内容
在第一方面,本申请提供一种电化学装置,所述电化学装置包括:电解液,所述电解液包括非氟代环状碳酸酯和醚多腈化合物,所述非氟代环状碳酸酯包括碳酸乙烯酯,基于所述电解液的质量,所述碳酸乙烯酯的含量为X%,所述醚多腈化合物的含量为A%;正极,所述正极包括正极活性材料层和正极集流体,所述正极活性材料层包括正极活性材料,所述正极活性材料包括M元素,所述M元素包含Al、Mg、Ti、Zr、W中的至少一种,基于所述正极活性材料的质量,所述M元素的含量为C ppm,1000≤C≤22000;其中,X+A≤15且133≤C/A≤22000。根据本申请的一些实施方式,400≤C/A≤4000。根据本申请的一些实施方式,所述醚多腈化合物包含醚二腈化合物和醚三腈化合物中的至少一种,基于所述电解液的质量,所述醚二腈化合物的含量为Y%,所述醚三腈化合物的含量为Z%,其中0.1≤Y+Z≤7.5,2.5≤X≤14。
根据本申请的一些实施方式,所述的电化学装置满足条件(a)-(c)中的至少一者:(a)0<Y≤3.5;(b)0≤Z≤4.0;(c)133<C/Y≤12500。
根据本申请的一些实施方式,所述醚多腈化合物包括式I、式II所示腈类化合物中的至少一种,
Figure PCTCN2021086527-appb-000001
式I、式II中,R 11、R 12、R 21、R 22及R 23分别独立地选自-(CH 2)a-O-(CH 2)b-,a、b分别独立地为0至10的整数,且a和b不同时为0。
根据本申请的一些实施方式,所述电解液进一步包括多腈类化合物,基于所述电解液的质量,多腈类化合物的含量为D%,其中0.02≤Y/D≤1.0。
根据本申请的一些实施方式,所述多腈类化合物包括式IV所示腈类化合物中的至少一种,
Figure PCTCN2021086527-appb-000002
式IV中R 41选自
Figure PCTCN2021086527-appb-000003
c、d、e、f、g分别独立地为0至10的整数,且c和d不同时为0。
根据本申请的一些实施方式,基于1g所述电化学装置的正极活性材料,醚多腈化合物的含量范围为0.0001g至0.06g。
根据本申请的一些实施方式,所述M元素满足条件(d)-(f)中的至少一者:(d)所述M元素包含Al,以及Mg、Ti、Zr、W中的至少一种;(e)所述M元素包含Mg,以及Al、Ti、Zr、W中的至少一种;(f)所述M元素包含Al和Mg,以及Ti、Zr、W中的至少一种。
根据本申请的一些实施方式,当满足条件(d)时,基于所述正极活性材料的质量,所述Al元素的含量为C1ppm,满足0.2≤C1/C<1。
根据本申请的一些实施方式,当满足条件(f)时,基于所述正极活性材料的质量,所述Al元素的含量为C1ppm,所述Mg元素含量为C2ppm,满足0.001≤C2/C1<1。
根据本申请的一些实施方式,所述正极活性材料进一步包含M2元素,所述M2元素 包含La、Y、F、Na、Fe、Zn或Cu中的至少一者。
根据本申请的一些实施方式,所述正极活性材料层的厚度为40μm至130μm。
在第二方面,本申请还提供了一种电子装置,所述电子装置包括本申请第一方面所述的电化学装置。
具体实施方式
本申请的实施方式将会被详细的描示在下文中。
本申请提供的电化学装置包括:电解液,所述电解液包括非氟代环状碳酸酯和醚多腈化合物,所述非氟代环状碳酸酯包括碳酸乙烯酯,基于所述电解液的质量,所述碳酸乙烯酯的含量为X%,所述醚多腈化合物的含量为A%;正极,所述正极包括正极活性材料层和正极集流体,所述正极活性材料层包括正极活性材料,所述正极活性材料包括M元素,所述M元素包含Al、Mg、Ti、Zr、W中的至少一种,基于所述正极活性材料的质量,所述M元素的含量为Cppm,1000≤C≤22000;其中,所述电化学装置满足X+A≤15且133≤C/A≤22000。
非氟代环状碳酸酯可还原形成较优SEI,有利于循环过程,但其高温稳定性差,在高温间隔循环后期易产气导致失效;醚多腈化合物具有特定腈官能团,可以很好地将电解液中易氧化组份与正极表面隔开,大大降低了充电态的锂离子电池正极表面对电解液的氧化作用,从而改善锂离子电池的高温间隔循环的产气;但其阻抗较大,当其含量过高时,循环极化增大,影响循环衰减。当非氟代环状碳酸酯与醚多腈化合物相互配合,满足关系X+A≤15时,可形成优异的SEI,同时降低非氟代环状碳酸酯与正极的氧化产气,有效改善高温间隔循环性能及高温循环性能。正极材料脱锂后结构稳定性变差,易释氧并溶出过渡金属(Co);掺杂M元素后,掺杂元素M占据晶格间隙,在正极脱锂后形成的M-O键强大于Co-O,从而缓解释氧,防止Co的溶出,稳定结构。但其掺杂含量过多时,会影响有效Li的发挥,极化增加。醚多腈化合物可从界面稳定正极Co的溶出,与M元素具有协同作用,当C/A满足133≤C/A≤22000时可降低电池整体极化,改善高温循环性能。
根据本申请的一些实施方式,X+A为3、4、5、6、7.5、8.0、8.5、9.0、9.5、10、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5以及它们之间的任意值。在一些实施例中,5≤X+A≤15。在一些实施例中,7.5≤X+A≤15。
根据本申请的一些实施方式,C/A为200、300、400、500、700、900、1200、1500、 1700、2000、2500、3000、3500、4000、5000、6000、7000、8000、9000、10000、12000、15000、17000、20000以及它们之间的任意值。在一些实施例中,133≤C/A≤12000。在一些实施例中,400≤C/A≤10000。在一些实施例中,500≤C/A≤8000。
根据本申请的一些实施方式,所述醚多腈化合物包含醚二腈化合物和醚三腈化合物中的至少一种。
根据本申请的一些实施方式,所述醚多腈化合物包含醚二腈化合物和醚三腈化合物,基于所述电解液的质量,所述醚二腈化合物的含量为Y%,所述醚三腈化合物的含量为Z%,其中0.1≤Y+Z≤7.5。在一些实施例中,Y+Z为0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0等。在本申请的一些实施例中,0.3≤Y+Z≤4.0。
根据本申请的一些实施方式,基于所述电解液的质量,所述碳酸乙烯酯的含量X%,满足2.5≤X≤14,例如X为3.0、4.0、5.0、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.0、13.0、13.5等。在一些实施例中,3.0≤X≤14。
根据本申请的一些实施方式,基于所述电解液的质量,所述醚二腈化合物的含量为Y%,满足0<Y≤3.5,例如Y为0.1、0.5、1.0、1.5、2.0、3.0等。在一些实施例中,0<Y≤2.0。当含量过高时,极化增加,对循环无优势。
根据本申请的一些实施方式,基于所述电解液的质量,所述醚三腈化合物的含量为Z%,满足0≤Z≤4.0。例如Z为0、0.5、1.0、1.5、2.0、2.5、3.0、3.5等。在一些实施例中,0<Z≤3.0。
根据本申请的一些实施方式,所述的电化学装置满足133<C/Y≤12500。根据本申请的一些实施方式,C/Y为200、300、400、500、700、900、1200、1500、1700、2000、2500、3000、3500、4000、5000、6000、7000、8000、9000、10000、12000以及它们之间的任意值。在一些实施例中,1000<C/Y≤10000。
根据本申请的一些实施方式,所述非氟代环状碳酸酯进一步包含碳酸丙烯酯或碳酸二甲基乙烯酯中的至少一种。
根据本申请的一些实施方式,所述醚多腈化合物包括式I所示腈类化合物,
NC-R 11-H 2C-R 12-CN式I
式I中,R 11、R 12分别独立地选自-(CH 2)a-O-(CH 2)b-,a、b分别独立地为0至10的整数且a和b不同时为0。
根据本申请的一些实施方式,式I所示的醚二腈化合物包含乙二醇二(2-氰基乙基)醚、 二乙二醇二(2-氰基乙基)醚、三乙二醇二(2-氰基乙基)醚、四乙二醇二(2-氰基乙基)醚、1,2-二(2-氰乙氧基)乙烷、1,3-二(2-氰基乙氧基)丙烷、1,4-二(2-氰基乙氧基)丁烷、1,5-二(2-氰基乙氧基)戊烷或乙二醇二(4-氰基丁基)醚中的一种或多种。
根据本申请的一些实施方式,所述醚多腈化合物包括式II所示腈类化合物,
Figure PCTCN2021086527-appb-000004
式II中,R 21、R 22及R 23分别独立地选自-(CH 2)a-O-(CH 2)b-,a、b分别独立地为0至10的整数,且a和b不同时为0。
根据本申请的一些实施方式,式II所示的醚三腈化合物包含1,2,3-二(2-氰基乙氧基)丙烷、1,2,4-三(2-氰基乙氧基)丁烷、1,1,1-三(氰基乙氧基亚甲基)乙烷、1,1,1-三(氰基乙氧基亚甲基)丙烷、3-甲基-1,3,5-三(氰基乙氧基)戊烷、1,2,7-三(氰基乙氧基)庚烷、1,2,6-三(氰基乙氧基)己烷或1,2,5-三(氰基乙氧基)戊烷中的一种或多种。
根据本申请的一些实施方式,所述醚多腈化合物还包括式III所示腈类化合物,
Figure PCTCN2021086527-appb-000005
式III中,R 31及R 32分别独立地选自-(CH 2)a-O-(CH 2)b-,a、b分别独立地为0至10的整数,且a和b不同时为0。
根据本申请的一些实施方式,所述醚多腈化合物包含如下至少一种:
Figure PCTCN2021086527-appb-000006
Figure PCTCN2021086527-appb-000007
根据本申请的一些实施方式,所述电解液进一步包括多腈类化合物,基于所述电解液的质量,多腈类化合物的含量为D%,其中0.02≤Y/D≤1.0。在一些实施例中,Y/D为0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9以及它们之间的任意值。Y/D过高时,易发生析铜,引起负极界面不良,影响性能;当含量过低,改善效果不明显。本申请中,所述的多腈类化合物指除醚多腈类化合物之外的氰基数量大于或等于2个的化合物。
根据本申请的一些实施方式,所述多腈类化合物包括式IV所示腈类化合物中的至少一种,
式IV中R 41选自
Figure PCTCN2021086527-appb-000008
c、d、e、f、g分别独立地为0至10的整数,且c和d不同时为0。
根据本申请的一些实施方式,所述多腈类化合物可选自下述化合物中的一种或几种:
Figure PCTCN2021086527-appb-000009
Figure PCTCN2021086527-appb-000010
本申请中,0-10的整数指0、1、2、3、4、5、6、7、8、9、10。
根据本申请的一些实施方式,电解液可进一步包含链状酯。链状酯包含链状碳酸酯及链状羧酸酯。链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯等。链状羧酸酯,选自甲酸乙酯、乙酸乙酯、乙酸丙酯、丙酸乙酯、丙酸甲酯、丙酸正丙酯、丙酸异丙酯、丙酸正丁酯、丙酸异丁酯、丙酸正戊酯、丙酸异戊酯、正丁酸乙酯、正丁酸正丁酯、异丁酸丙酯、正丁酸正戊酯、异丁酸正戊酯、正丁酸正丁酯、异丁酸异丁酯、正戊酸正戊酯等。
根据本申请的一些实施方式,电解液包含LiBF 4,DTD,FEC,VC,PS等常用阳极成膜添加剂,有机锂盐为LiPF 6。根据本申请的一些实施方式,锂盐浓度在0.3mol/L至2mol/L。根据本申请的一些实施方式,锂盐浓度介于0.8mol/L至1.3mol/L之间。
根据本申请的一些实施方式,正极材料掺杂M元素包含Al、Mg、Ti、Zr、W中的至少一种。正极材料掺杂M元素后,能够稳定内部正极结构,从而提升高温间隔性能及高温循环性能。根据本申请的一些实施方式,基于所述正极活性材料的质量,所述M元素的含量为Cppm,1000≤C≤22000,例如C为1000、2000、3000、4000、5000、6000、7000、9000、10000、12000、15000、17000、19000、20000等。在本申请的一些实施例中,1000≤C≤12000。
根据本申请的一些实施方式,所述M元素包含Al,以及Mg、Ti、Zr、W中的至少一种。在本申请的一些实施例中,基于所述正极活性材料的质量,Al的含量为C1ppm,满足0.2≤C1/C<1。
根据本申请的一些实施方式,所述M元素包含Mg,以及Al、Ti、Zr、W中的至少一种。
根据本申请的一些实施方式,所述M元素包含Al和Mg,以及Ti、Zr、W中的至少一种。在本申请的一些实施例中,基于所述正极活性材料的质量,Al的含量为C1ppm,Mg的含量为C2ppm,满足0.001≤C2/C1<1。
根据本申请的一些实施方式,所述正极活性材料进一步包含M2元素,所述M2元素包含La、Y、F、Na、Fe、Zn或Cu中的至少一者。
根据本申请的一些实施方式,基于1g所述电化学装置的正极活性材料,醚多腈化合 物的含量范围为0.0001g至0.06g,例如0.0005g、0.005g、0.010g、0.020g、0.030g、0.035g、0.045g、0.050g、0.055g以及它们之间的任意值。根据本申请的一些实施例,醚多腈化合物的含量范围为0.0001g至0.02g。
根据本申请的一些实施方式,所述正极活性材料层的厚度为40μm至130μm。根据本申请的一些实施方式,所述正极活性材料层的厚度为50μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、110μm、120μm、125μm以及它们之间的任意值。根据本申请的一些实施例,所述正极活性材料层的厚度为40μm至100μm。本申请中,正极活性材料层的厚度指集流体一个表面上的正极活性材料层的厚度。
用于本申请的电化学装置的正极集流体可以采用金属箔片或复合集流体。例如,可以使用铝箔。复合集流体可以通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子基材上而形成。
在一些实施例中,将正极材料和粘结剂(根据需要可进一步使用导电材料和增稠剂等)进行干式混合而制成片状,将得到的片压接于正极集流体,或者使这些材料溶解或分散于液体介质中而制成浆料状,将该浆料涂布在正极集流体上并进行干燥。
在一些实施例中,粘结剂可以包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、苯乙烯-丙烯酸酯共聚物、苯乙烯-丁二烯共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素纳、聚醋酸乙烯酯、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。导电材料可以包括导电炭黑、片层石墨、石墨烯、碳纳米管或碳纤维中的至少一种。
本申请的电化学装置还包括负极,其中使用的负极的材料、构成和其制造方法可包括任何现有技术中公开的技术。
根据本申请的一些实施方式,所述负极包括负极集流体和设置于所述负极集流体至少一个表面上的负极活性材料层。
根据本申请的一些实施方式,负极活性材料层包括负极活性材料,负极活性材料可以包括可逆地嵌入/脱嵌锂离子的材料、锂金属、锂金属合金或过渡金属氧化物。在一些实施方式中,负极活性材料包括碳材料或硅材料中的至少一种,碳材料包括石墨、硬碳中的至少一种,硅材料包括硅、硅氧化合物、硅碳化合物或硅合金中的至少一种。
根据本申请的一些实施方式,负极活性材料层包含有粘合剂,且该粘合剂可以包括各种粘合剂聚合物。在一些实施方式中,粘结剂包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯 吡咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯、聚六氟丙烯或丁苯橡胶中的至少一种。
根据本申请的一些实施方式,负极活性材料层还包括导电材料来改善电极导电率。可以使用任何导电的材料作为该导电材料,只要它不引起化学变化即可。在一些实施方式中,导电材料包括导电炭黑、乙炔黑、碳纳米管、科琴黑、导电石墨或石墨烯中的至少一种。
本申请的电化学装置还包括隔离膜,本申请的电化学装置中使用的隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的至少一种。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯烷氧、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的至少一种。
聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯烷氧、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
本申请进一步提供了一种电子装置,其包括本申请所述的电化学装置。
本申请的电子设备或装置没有特别限定。在一些实施例中,本申请的电子设备包括但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏 机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
为了简明,本文仅具体地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,每个单独公开的点或单个数值自身可以作为下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,除非另有说明,“以上”、“以下”包含本数。
除非另有说明,本申请中使用的术语具有本领域技术人员通常所理解的公知含义。除非另有说明,本申请中提到的各参数的数值可以用本领域常用的各种测量方法进行测量(例如,可以按照在本申请的实施例中给出的方法进行测试)。
术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个组分或多个组分。项目B可包含单个组分或多个组分。项目C可包含单个组分或多个组分。
下面结合具体实施方式,进一步阐述本申请。应理解,这些具体实施方式仅用于说明本申请而不用于限制本申请的范围。
在下述实施例及对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均可商购获得。
在下述实施例及对比例中,所用到的物料如下所示:
醚二腈化合物(式I):
Figure PCTCN2021086527-appb-000011
醚三腈化合物(式II):
Figure PCTCN2021086527-appb-000012
多腈类化合物(式IV):
Figure PCTCN2021086527-appb-000013
锂离子电池制备流程如下:
负极片的制备:将负极活性材料石墨、粘结剂丁苯橡胶(简写为SBR)、增稠剂羧甲基纤维素钠(简写为CMC)按照质量比97.4:1.2:1.4在适量的去离子水溶剂中充分搅拌混合,使其形成均匀的负极浆料;将此浆料涂覆于负极集流体(铜箔),烘干、冷压、焊接极耳,得到负极片。
电解液的制备:在含水量<10ppm的氩气气氛手套箱中,将碳酸乙烯酯(简写为EC)、碳酸丙烯酯(简写为PC)、碳酸二乙酯(简写为DEC),按照(EC+PC):DEC为4:6的质量比混合均匀,再将充分干燥的锂盐LiPF 6溶解于上述非水溶剂,加入5%的氟代碳酸乙烯酯和2%的1,3-丙烷磺内酯,最后加入一定质量的其他添加剂,配成实施例中的电解液。
正极片的制备:将含M元素的钴酸锂、导电剂乙炔黑、粘结剂聚偏二氟乙烯(简写为PVDF)按质量比96:2:2在适量的N-甲基吡咯烷酮(简写为NMP)溶剂中充分搅拌混合,使其形成均匀的正极浆料;将此浆料涂覆于正极集流体Al箔上,烘干、冷压、焊接极耳,得到正极片。
隔离膜:以PE多孔聚合物薄膜作为隔离膜。
锂离子电池的制备:将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正极片和负极片之间起到隔离的作用,然后卷绕得到裸电池;将裸电池置于外包装箔中,将上述制 备好的电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,即完成锂离子电池的制备。
按照上述制备方法制备实施例1-39以及对比例1-4的锂离子电池;并对电池进行高温循环测试和浮充测试。
对制备的锂离子电池进行如下测试,测试条件如下:
高温循环测试
将电池放至45℃恒温箱中,以恒定电流1.5C充电至4.4V,4.4V下恒压充电至0.05C,再以1.0C恒流放电至3.0V,此次为一个充放电循环过程,按上述方式进行500次循环充放电测试,监控容量保持率,容量保持率=剩余放电容量/初始放电容量×100%。
高温间隔循环测试
将电池放至45℃恒温箱中,以恒定电流0.5C充电至4.4V,4.4V下恒压充电至0.05C,记录电池厚度,记为电池循环初始厚度,之后保持19.5h,再以0.5C恒流放电至3.0V,记录此时的放电容量,记为初始放电容量,此次为一个充放电循环过程,按上述方式进行23次;而后以恒定电流05C充电至4.35V,4.35V下恒压充电至0.05C,保持19.5h,再以0.5C恒流放电至3.0V,此次为一个充放电循环过程,按上述方式再进行113次,监控容量保持率及厚度增长率,容量保持率=剩余放电容量/初始放电容量×100%;厚度增长率=(循环后电池厚度-电池循环初始厚度)/循环初始厚度×100%。
循环后电池厚度:循环最后一圈满充(即4.4V下恒压充电至0.05C)厚度。
具体实施例、对比例以及测试结果见表1至表4。
表1展示了碳酸乙烯酯在电解液中的重量百分含量X%、醚多腈化合物在电解液中的重量百分含量A%(其中,醚二腈化合物在电解液中的重量百分含量Y%、醚三腈化合物在电解液中的重量百分含量Z%)、以及正极活性材料中掺杂元素M的含量C ppm对锂离子电池高温间隔循环及高温循环性能的影响。在表1所示的各实施例和对比例中,正极活性材料中掺杂元素均为Al,基于正极活性材料的质量计,Al元素的含量为1000ppm。
表1
Figure PCTCN2021086527-appb-000014
通过表1的实施例1-3与对比例1-3相比,可得当同时含有醚腈及非氟代碳酸酯、及含量X+A≤15时,电池具有优异的高温间隔循环及高温循环性能。高温间隔循环可分解为高温循环及高SOC存储两个过程。非氟代环状碳酸酯可还原形成较优SEI,有利于循 环过程,但其高温稳定性差,在高温间隔循环后期易产气导致失效;醚多腈化合物具有特定腈官能团,可以在正极表面吸附,正极表面的有机分子可以很好地将电解液中易氧化组份与正极表面隔开,大大降低了充电态的锂离子电池正极表面对电解液的氧化作用,从而改善锂离子电池的高温间隔循环的产气;但其阻抗较大,当其含量过高时,循环极化增大,影响循环性能。当非氟代环状碳酸酯与醚多腈化合物相互配合,满足关系X+A≤15时,可形成优异的SEI,同时降低非氟代环状碳酸酯与正极的氧化产气,有效改善高温间隔循环性能及高温循环性能。
通过实施例3、实施例6与实施例8相比,可得醚多腈化合物同时包含醚二腈化合物和醚三腈化合物可进一步改善高温间隔循环性能及高温循环性能。
通过实施例9-12相比,可得在满足X+A≤15的基础上,醚二腈化合物和醚三腈化合物的含量之和满足0.3≤Y+Z≤4时,高温间隔循环性能及高温循环性能得到进一步提升。
表2展示了醚多腈化合物在电解液中的重量百分含量A%、正极活性材料中掺杂元素M的种类和含量Cppm对锂离子电池高温间隔循环及高温循环性能的影响。在表2所示的各实施例和对比例中,碳酸乙烯酯的含量为10%;醚三腈化合物的结构式为II-1,含量为2.0%;醚二腈化合物的结构式为I-1,含量为Y%。当正极活性材料中掺杂元素M包括Al及其他元素时,Al的含量为C1ppm,Mg的含量为C2ppm。
表2
Figure PCTCN2021086527-appb-000015
通过对比例4可知当不满足1000≤C≤22000及醚二腈含量≤2%时,电池高温间隔循环及高温循环性能受到影响。这是由于当正极材料掺杂元素M后,M-O键强大于Co-O在正极脱锂后可稳定Co,防止Co的溶出;或可占据晶格间隙,正极脱锂后占据锂位,稳定结构,从而改善电池性能。但其掺杂含量过多时,会影响有效Li的发挥,极化增加。 醚二腈化合物可从界面稳定正极Co的溶出,与M元素具有协同作用,当C/A满足500≤C/A≤4000时可进一步降低电池整体极化,改善循环性能。
表3展示了醚二腈化合物在电解液中的重量百分含量Y%、其他多腈类化合物例如非醚腈类化合物在电解液中的重量百分含量D%对锂离子电池高温间隔循环及高温循环性能的影响。在表3所示的各实施例中,碳酸乙烯酯含量为10%,醚三腈化合物的结构式为II-1,含量为2.0%。正极活性材料中掺杂元素均为Al,基于正极活性材料的总质量计,Al元素的含量为1000ppm。
表3
Figure PCTCN2021086527-appb-000016
通过实施例38-42与实施例9对比,当Y/D满足0.02≤Y/D≤1,可进一步改善高温间隔循环及高温循环性能。这可能是因为醚多腈中的O和CN均易与Cu 2+络合,形成的络合物不稳定易溶解到电解液中,易造成铜箔的腐蚀;多腈化合物中的CN也具有与Cu 2+络合的能力,但其形成的络合物能够稳定在铜箔表面,而从不会造成铜箔的腐蚀;多腈化合物与醚多腈合用可以缓解析铜,同时具有优异的高温循环性能。
表4展示了正极活性材料中醚多腈质量和正极活性材料层厚度对锂离子电池高温间隔循环及高温循环性能的影响。在表4所示的各实施例中,除了1g正极活性材料对应的醚多腈质量和正极活性材料层厚度与实施例9有区别(具体见表4),其他参数与实施例9相同。
表4
Figure PCTCN2021086527-appb-000017
从表4可以看出,当1g正极活性材料中,醚多腈化合物的含量范围为0.0001g至0.06g时,电池具有较优的综合性能。当正极活性材料层厚度在此范围内,正极活性材料与电解液之间的匹配较好,能保证电解液与正极活性材料层之间能形成良好的保护层,同时对其他性能的影响较小。正极活性材料层的厚度为40μm至130μm范围内时,可以在保证电池能量密度的同时,使电解液对正极活性材料层的浸润处于较优状态,能够更好的改善电池的总和性能。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (14)

  1. 一种电化学装置,其包括:
    电解液,所述电解液包括非氟代环状碳酸酯和醚多腈化合物,所述非氟代环状碳酸酯包括碳酸乙烯酯,基于所述电解液的质量,所述碳酸乙烯酯的含量为X%,所述醚多腈化合物的含量为A%;
    正极,所述正极包括正极活性材料层和正极集流体,所述正极活性材料层包括正极活性材料,所述正极活性材料包括M元素,M元素包含Al、Mg、Ti、Zr、W中的至少一种,基于所述正极活性材料的质量,所述M元素的含量为C ppm,1000≤C≤22000;
    其中,X+A≤15且133≤C/A≤22000。
  2. 根据权利要求1所述的电化学装置,其中,所述醚多腈化合物包含醚二腈化合物和醚三腈化合物中的至少一种,基于所述电解液的质量,所述醚二腈化合物的含量为Y%,所述醚三腈化合物的含量为Z%,其中0.1≤Y+Z≤7.5。
  3. 根据权利要求1所述的电化学装置,其中,400≤C/A≤4000,2.5≤X≤14。
  4. 根据权利要求2所述的电化学装置,其中满足条件(a)-(c)中的至少一者:
    (a)0<Y≤3.5;
    (b)0≤Z≤4.0;
    (c)133<C/Y≤12500。
  5. 根据权利要求2所述的电化学装置,其中,所述电解液进一步包括多腈类化合物,基于所述电解液的质量,多腈类化合物的含量为D%,其中0.02≤Y/D≤1.0。
  6. 根据权利要求1所述的电化学装置,其中,所述醚多腈化合物包括式I、式II所示腈类化合物中的至少一种,
    NC-R 11-H 2C-R 12-CN式I
    Figure PCTCN2021086527-appb-100001
    式I、式II中,R 11、R 12、R 21、R 22及R 23分别独立地选自-(CH 2)a-O-(CH 2)b-,a、b分别独立地为0至10的整数,且a和b不同时为0。
  7. 根据权利要求5所述的电化学装置,其中,所述多腈类化合物包括式IV所示腈类化合物中的至少一种,
    Figure PCTCN2021086527-appb-100002
    式IV中R 41选自
    Figure PCTCN2021086527-appb-100003
    c、d、e、f、g分别独立地为0至10的整数,且c和d不同时为0。
  8. 根据权利要求1所述的电化学装置,其中,1g正极活性材料中,醚多腈化合物的含量范围为0.0001g至0.06g。
  9. 根据权利要求1所述的电化学装置,其中,所述M元素满足条件(d)-(f)中的至少一者:
    (d)所述M元素包含Al,以及Mg、Ti、Zr、W中的至少一种;
    (e)所述M元素包含Mg,以及Al、Ti、Zr、W中的至少一种;
    (f)所述M元素包含Al和Mg,以及Ti、Zr、W中的至少一种。
  10. 根据权利要求9所述的电化学装置,其中,当满足条件(d)时,基于所述正极活性材料的质量,所述Al元素的含量为C1 ppm,满足0.2≤C1/C<1。
  11. 根据权利要求9所述的电化学装置,其中,当满足条件(f)时,基于所述正极活性材料的质量,所述Al元素的含量为C1 ppm,所述Mg元素含量为C2 ppm,满足0.001≤C2/C1<1。
  12. 根据权利要求1所述的电化学装置,其中,所述正极活性材料进一步包含M2元素,所述M2元素包含La、Y、F、Na、Fe、Zn或Cu中的至少一者。
  13. 根据权利要求1所述的电化学装置,其中,所述正极活性材料层的厚度为40μm至130μm。
  14. 一种电子装置,包括权利要求1至13中任一项所述的电化学装置。
PCT/CN2021/086527 2021-04-12 2021-04-12 一种电化学装置及含该电化学装置的电子装置 WO2022217414A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180005241.3A CN114365319B (zh) 2021-04-12 2021-04-12 一种电化学装置及含该电化学装置的电子装置
EP21867912.4A EP4099469A4 (en) 2021-04-12 2021-04-12 ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE THEREOF
BR112023021172A BR112023021172A2 (pt) 2021-04-12 2021-04-12 Dispositivo eletroquímico e dispositivo eletrônico
PCT/CN2021/086527 WO2022217414A1 (zh) 2021-04-12 2021-04-12 一种电化学装置及含该电化学装置的电子装置
US17/709,650 US20220336855A1 (en) 2021-04-12 2022-03-31 Electrochemical device and electronic device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086527 WO2022217414A1 (zh) 2021-04-12 2021-04-12 一种电化学装置及含该电化学装置的电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,650 Continuation US20220336855A1 (en) 2021-04-12 2022-03-31 Electrochemical device and electronic device including same

Publications (1)

Publication Number Publication Date
WO2022217414A1 true WO2022217414A1 (zh) 2022-10-20

Family

ID=81105151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086527 WO2022217414A1 (zh) 2021-04-12 2021-04-12 一种电化学装置及含该电化学装置的电子装置

Country Status (5)

Country Link
US (1) US20220336855A1 (zh)
EP (1) EP4099469A4 (zh)
CN (1) CN114365319B (zh)
BR (1) BR112023021172A2 (zh)
WO (1) WO2022217414A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848686A (zh) * 2022-09-22 2023-10-03 宁德新能源科技有限公司 电化学装置及其制备方法和电子装置
WO2024065431A1 (zh) * 2022-09-29 2024-04-04 宁德新能源科技有限公司 电化学装置及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980225A (zh) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN110165219A (zh) * 2019-06-03 2019-08-23 宁德新能源科技有限公司 电化学装置
CN111971845A (zh) * 2019-12-26 2020-11-20 宁德新能源科技有限公司 一种电解液及电化学装置
US20200373617A1 (en) * 2017-09-06 2020-11-26 Samsung Sdi Co., Ltd. Lithium secondary battery
CN112400249A (zh) * 2020-03-24 2021-02-23 宁德新能源科技有限公司 一种电解液及电化学装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780037B (zh) * 2012-07-19 2017-07-28 宁德新能源科技有限公司 一种非水电解质及包含该非水电解质的锂离子电池
CN110224169B (zh) * 2018-03-01 2021-09-14 安普瑞斯(南京)有限公司 一种高能量密度锂离子电池
CN112002942B (zh) * 2018-09-21 2022-08-02 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200373617A1 (en) * 2017-09-06 2020-11-26 Samsung Sdi Co., Ltd. Lithium secondary battery
CN109980225A (zh) * 2019-03-18 2019-07-05 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN110165219A (zh) * 2019-06-03 2019-08-23 宁德新能源科技有限公司 电化学装置
CN111971845A (zh) * 2019-12-26 2020-11-20 宁德新能源科技有限公司 一种电解液及电化学装置
CN112400249A (zh) * 2020-03-24 2021-02-23 宁德新能源科技有限公司 一种电解液及电化学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099469A4 *

Also Published As

Publication number Publication date
EP4099469A4 (en) 2023-03-01
EP4099469A1 (en) 2022-12-07
US20220336855A1 (en) 2022-10-20
BR112023021172A2 (pt) 2023-12-19
CN114365319A (zh) 2022-04-15
CN114365319B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2022267534A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2021184532A1 (zh) 负极活性材料及使用其的电化学装置和电子装置
CN113809399B (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2022000226A1 (zh) 电化学装置和电子装置
WO2022174547A1 (zh) 电化学装置和包含该电化学装置的电子装置
KR20220147692A (ko) 음극 활물질 및 이를 사용하는 전기화학 디바이스와 전자 디바이스
WO2022267535A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2022174550A1 (zh) 电化学装置及包括其的电子装置
CN112805864B (zh) 电解液、电化学装置和电子装置
WO2022133836A1 (zh) 电解液、电化学装置及电子装置
WO2021120434A1 (zh) 一种电解液及电化学装置
WO2021189255A1 (zh) 一种电解液及电化学装置
WO2021128206A1 (zh) 一种电解液及电化学装置
CN114365319B (zh) 一种电化学装置及含该电化学装置的电子装置
WO2022089280A1 (zh) 电化学装置及包括其的电子装置
WO2021179300A1 (zh) 电化学装置及包含其的电子装置
WO2024067287A1 (zh) 锂电池及用电设备
WO2023087209A1 (zh) 电化学装置及电子装置
CN112103561B (zh) 一种电解液及电化学装置
CN116666730A (zh) 二次电池及用电装置
WO2022087830A1 (zh) 电解液及包括其的电化学装置和电子装置
JP2022529549A (ja) 負極活物質及びそれを用いた電気化学デバイス及び電子設備
CN112055910A (zh) 一种电解液及电化学装置
CN112542613B (zh) 电解液、电化学装置和电子装置
WO2023102917A1 (zh) 负极活性材料及其制备方法、二次电池、电池模组、电池包、用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021867912

Country of ref document: EP

Effective date: 20220324

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021172

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021172

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231011