WO2022216025A1 - Recombinant mycobacterium strain expressing sars-cov-2 antigen, and vaccine composition including same - Google Patents

Recombinant mycobacterium strain expressing sars-cov-2 antigen, and vaccine composition including same Download PDF

Info

Publication number
WO2022216025A1
WO2022216025A1 PCT/KR2022/004915 KR2022004915W WO2022216025A1 WO 2022216025 A1 WO2022216025 A1 WO 2022216025A1 KR 2022004915 W KR2022004915 W KR 2022004915W WO 2022216025 A1 WO2022216025 A1 WO 2022216025A1
Authority
WO
WIPO (PCT)
Prior art keywords
rbd
strain
cov
sars
rmpg
Prior art date
Application number
PCT/KR2022/004915
Other languages
French (fr)
Korean (ko)
Inventor
김범준
김병준
정도현
신주엽
진주영
이문수
Original Assignee
주식회사 라파스
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 라파스, 서울대학교산학협력단 filed Critical 주식회사 라파스
Publication of WO2022216025A1 publication Critical patent/WO2022216025A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora

Definitions

  • the present invention relates to a recombinant Mycobacterium strain expressing the SARS-CoV-2 antigen and a vaccine composition comprising the same as an active ingredient.
  • SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
  • SARS-CoV-2 has a higher infectivity than the existing coronavirus or flu virus, and is known to show various symptoms ranging from asymptomatic to mild respiratory symptoms, acute respiratory distress syndrome, and death. Due to the worldwide spread of SARS-CoV-2, the World Health Organization (WHO) declared a pandemic on March 11, 2020.
  • WHO World Health Organization
  • the cumulative number of confirmed cases worldwide is 93,217,287, and the cumulative number of deaths is 2,014,957.
  • the number of confirmed cases and deaths is increasing rapidly in the United States and Europe (World Health Organization. (https://covid19.who.int/)).
  • This SARS-CoV-2 virus can infect cells expressing angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 on the cell surface.
  • ACE2 angiotensin-converting enzyme 2
  • RBD receptor binding domain
  • Known to increase infectivity Cannalire R, et al. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci. 2020; 21(16): 5707; Tay MZ, et al. The trinity of COVID-19: immunity, inflammation and intervention, Nat Rev Immunol. 2020; 20(6):363-374; and Saha RP, et al. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives against COVID-19. Front Pharmacol. 2020;11:1258]).
  • recombinant Mycobacterium strains such as recombinant BCG have attracted attention for the development of human immunodeficiency virus-1 (HIV-1) vaccines
  • Mycobacterium paragordonae Mpg is a temperature-sensitive strain that stimulates the immune response by proliferating on the skin and subcutaneously when inoculated, but inhibits proliferation due to the characteristic that it can grow only at a temperature lower than body temperature in the center of the body, so the possibility of infection is low. It is known that it can be used for prophylactic vaccines and immunotherapy for Korea (Korean Patent Publication Nos. 2018-0080999 and 2016-0021933).
  • the present inventors studied to develop a new vaccine against COVID-19.
  • mice were immunized using a recombinant Mycobacterium paragordone strain transformed with a vector expressing the SARS-CoV-2 antigen.
  • the present invention was completed by confirming that a significant immune response including neutralizing antibody ability was generated in mice against SARS-CoV-2.
  • one aspect of the present invention provides a recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen.
  • Another aspect of the present invention is a pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection
  • a pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection comprising the recombinant Mycobacterium paragordone strain as an active ingredient, SARS of the recombinant Mycobacterium paragordone strain -Use for the treatment or prevention of CoV-2 infection, or provides a method for the treatment or prevention of SARS-CoV-2 infection using the recombinant Mycobacterium paragordone strain.
  • a first composition comprising the recombinant Mycobacterium paragordone strain as an active ingredient; And a kit for treating or preventing SARS-CoV-2 infection, comprising a second composition comprising a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof as an active ingredient, or provide a way
  • Another aspect of the present invention provides a vector comprising a nucleic acid molecule in which a polynucleotide encoding a receptor binding domain of SARS-CoV-2 or a fragment thereof is operably linked to an hsp gene promoter.
  • Another aspect of the present invention provides an isolated cell comprising the vector.
  • Another aspect of the present invention provides a method for producing a recombinant Mycobacterium paragordone strain expressing a SARS-CoV-2 antigen, comprising transforming the Mycobacterium paragordone strain with the vector do.
  • the recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen of the present invention can induce a remarkable immune response including neutralizing antibody ability against SARS-CoV-2 in mice. Therefore, the recombinant Mycobacterium paragordone strain of the present invention can be usefully used as a vaccine for preventing or treating SARS-CoV-2 infection.
  • FIG. 1 shows a schematic diagram of the insertion sequence production using the RBD portion of SARS-CoV-2.
  • Figure 2 shows a schematic diagram of the insertion sequence using the NP (nucleocapside phosphoprotein) portion of SARS-CoV-2.
  • 3A and 3B show a vector map obtained by cloning a Phsp:RBD sequence (pMV306-Phsp:RBD) and a Phsp:NP sequence (pMV306-Phsp:NP) into the pMV306 shuttle vector, respectively.
  • 4A and 4B show the results of confirming the presence or absence of an insertion sequence through colony PCR in E. coli colonies transformed with pMV306-Phsp:RBD vector and pMV306-Phsp:NP vector, respectively.
  • Figures 5a and 5b show the colony pattern (Figure 5a) and colony PCR results (Figure 5b) formed on 7H10 solid medium (100 ⁇ g/ml kanamycin) after electroporation of the pMV306-Phsp:RBD vector into Mpg. .
  • FIG. 6a and 6b show the colony pattern ( FIG. 6a ) and colony PCR results ( FIG. 6b ) formed on 7H10 solid medium (100 ⁇ g/ml kanamycin) after electroporation of the pMV306-Phsp:NP vector into Mpg.
  • Figure 7 shows the pattern of the bands confirmed when an antibody (Sino Biological, 40591-T62) against the SARS-CoV-2 spike protein was extracted from the wild-type Mpg strain and the three rMpg_RBD strains.
  • an antibody Sino Biological, 40591-T62
  • SARS-CoV spike S1 protein Sino Biological, 40159-V08B1
  • FIG. 8 shows the patterns of the bands identified when an antibody (Thermo Fisher, MA5-29981) against the SARS-CoV-2 nucleocapsid protein was extracted by extracting the proteins of wild-type Mpg and two rMpg_NP strains.
  • NP protein Session Biological, 40588-V08B
  • Figure 9 shows the expression patterns after infecting dendritic cells with a wild-type Mpg strain (10 M.O.I.) and rMpg_RBD strain (1 or 10 M.O.I.), extracting RNA from the cells, performing real-time PCR with RBD gene-specific primers, and A comparison graph is shown.
  • statistical significance was tested by Student's t-test (**, p ⁇ 0.01).
  • Figure 10 shows that the protein of the wild-type Mpg strain and the rMpg_RBD strain (P1, 1st generation; P3, 3rd generation; P5, 5th generation) was extracted and an antibody against SARS-CoV-2 spike protein (Sino Biological, 40591-T62) was attached. When, it shows the confirmed band pattern.
  • RBD protein (Sino Biological, 40592-V08B) was used as a positive control.
  • FIG. 11A to 11D show the percentage of MHCII+ (FIG. 11A), CD40+ (FIG. 11B), CD80+ (FIG. 11C), and CD86+ (FIG. 11D) cell populations by FACS analysis of dendritic cell maturation markers upon infection with Mpg and rMpg_RBD. The result of comparing (%) is shown.
  • statistical significance was tested by Student's t-test (*, p ⁇ 0.05; **, p ⁇ 0.01; ***, p ⁇ 0.001).
  • FIG. 12A and 12B show the results of measuring and comparing the expression levels of cytokines IL-10 (FIG. 12A) and IL-12 (FIG. 12B) in dendritic cell culture medium during infection with Mpg and rMpg_RBD by ELISA.
  • cytokines IL-10 FIG. 12A
  • IL-12 FIG. 12B
  • Student's t-test *, p ⁇ 0.05; **, p ⁇ 0.01; ***, p ⁇ 0.001).
  • FIG. 13A and 13B show RBD expression using RBD ELISA kit (FIG. 13A) and real-time PCR (FIG. 13b) shows the results confirmed.
  • FIG. 13A shows RBD expression using RBD ELISA kit
  • FIG. 13b shows the results confirmed.
  • statistical significance was tested by Student's t-test (**, p ⁇ 0.01; ***, p ⁇ 0.001).
  • FIG. 14 shows a schematic diagram of the Mpg and rMpg_RBD strain inoculation schedule for mice.
  • 15A and 15B are graphs showing the results of IFN- ⁇ ELISPOT assay using mouse splenocytes immunized with SC-immunized Mpg and rMpg_RBD (#5, #6, #7) strains. IFN by each rMpg_RBD strain. - ⁇ ELISPOT results (FIG. 15A) and IFN- ⁇ ELISPOT results by all rMpg_RBD strains (FIG. 15B) are shown. 15A shows a photograph of a representative membrane. Here, statistical significance was tested by Student's t-test (*, p ⁇ 0.05; ***, p ⁇ 0.001).
  • FIG. 16A and 16B show the expression of cytokine IL-12 (FIG. 16A) and splenocytes of mice immunized with SC-immunized Mpg and rMpg_RBD strains (#5, #6, #7) with S1 protein.
  • IFN- ⁇ ( FIG. 16B ) levels were measured by ELISA, and the results of comparison are shown.
  • FIG. 17A to 17C show serum samples of mice immunized with Mpg and rMpg_RBD strains (#5, #6, #7) with RBD protein after stimulation with RBD protein, IgG2 ( FIG. 17A ), IgG1 ( FIG. 17B ) and total IgG.
  • FIG. 17c shows the result of comparing the antibody expression level by measuring the absorbance.
  • statistical significance was tested by Student's t-test (**, p ⁇ 0.01).
  • 18A to 18D show the SARS-CoV-2 pseudovirus neutralizing antibody ability of mouse serum immunized with wild-type Mpg wild-type and three rMpg_RBD strains.
  • rMpg-RBD 1 means #5
  • rMpg-RBD 2 means #6
  • rMpg-RBD 3 means #7.
  • FIG. 20 is a graph showing the results of an IFN- ⁇ ELISPOT assay using mouse splenocytes immunized with SC-immunized Mpg, rMpg_RBD and RBD proteins. At the bottom, a photograph of a representative membrane is shown. Here, statistical significance was tested by Student's t-test (**, p ⁇ 0.01).
  • 21A to 21D show mouse splenocytes immunized with SC-immunized Mpg, rMpg_RBD and RBD proteins with RBD protein, followed by CD3+ CD4+ IFN- ⁇ + ( FIG. 21A ), CD3+ CD4+ TNF- ⁇ + ( FIG. 21B ). ), CD3+ CD8+ IFN- ⁇ + ( FIG. 21C ), and CD3+ CD8+ TNF- ⁇ + ( FIG. 21A ) T cell populations analyzed by FACS are shown. Here, statistical significance was tested with Student's t-test (*, p ⁇ 0.05; **, p ⁇ 0.01; *** p ⁇ 0.001).
  • FIG. 22A to 22E show the expression of cytokines IFN- ⁇ (FIG. 22A) and TNF- ⁇ (FIG. 22B) after stimulation of splenocytes of mice immunized with Mpg, rMpg_RBD and RBD protein with RBD protein. ), IL-2 (FIG. 22C), IL-10 (FIG. 22D), and IL-12 (FIG. 22E) levels were measured and compared by ELISA.
  • IL-2 FIG. 22C
  • IL-10 FIG. 22D
  • FIG. 22E IL-12
  • FIG. 23A to 23C show serum samples of mice immunized with Mpg, rMpg_RBD, and RBD protein with RBD protein after stimulation with RBD protein, IgG2 (FIG. 23A), IgG1 (FIG. 23B), and total IgG (FIG. 23C)
  • IgG2 FIG. 23A
  • IgG1 FIG. 23B
  • total IgG FIG. 23C
  • 25A to 25D show the ability of neutralizing antibody against SARS-CoV-2 pseudovirus of mouse serum immunized with rMpg_RBD strain or RBD protein.
  • FIGS. 26A and 26B show the results of an ACE2-RBD binding assay for evaluating the effect of PBS, Mpg, and rMpg_RBD-immunized mouse serum on the binding of ACE2 to RBD.
  • Figure 26a shows the absorbance measurement and analysis result of the amount of HRP-IgG binding to the Fc tag of the RBD protein bound to ACE2
  • Figure 26b is the absorbance result normalized (the highest value is 100%, the most A graph is shown in which ACE2-RBD binding is converted to % by converting low values to 0%).
  • the p value was expressed by analyzing the results of PBS and Mpg and rMpg_RBD by Student's t-test (***, p ⁇ 0.001).
  • FIG. 27 shows the results of comparing BALF samples of mice immunized with Mpg, rMpg_RBD and RBD proteins with the RBD protein by measuring the absorbance of the expression level of the IgA antibody.
  • statistical significance was tested with Student's t-test (*, p ⁇ 0.05; **, p ⁇ 0.01; *** p ⁇ 0.001).
  • FIG. 28 shows a host cell molecule used when SARS-CoV-2 virus infects a host cell and a schematic diagram thereof.
  • Figure 29 shows the SARS-CoV-2 Vero p2 neutralizing antibody ability of serum obtained from mice at 2 weeks and 2 weeks and 5 days after subcutaneous injection of rMpg_RBD strain (#7 strain) into mice at 1 ⁇ 10 6 CFU in live cell form.
  • the control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
  • control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
  • Figure 31 shows the SARS-CoV-2 Vero p2 neutralizing antibody ability of serum obtained from mice at 2 weeks and 2 weeks and 5 days by subcutaneously injecting the rMpg_RBD strain (#7 strain) into mice at 1 ⁇ 10 7 CFU in an inactivated form. indicates.
  • the control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
  • FIG. 32 shows a graph in which the results for the rMpg_RBD strain among the results shown in FIGS. 29 to 31 are expressed as changes according to the blood sampling period after inoculation.
  • Live ⁇ 6, Live ⁇ 7 and Inactivation ⁇ 7 are 1 ⁇ 10 6 CFU of live cell form, 1 ⁇ 10 7 CFU of live cell form and 1 ⁇ 10 6 CFU of inactivated form of the rMpg_RBD strain (#7 strain), respectively.
  • One aspect of the present invention provides a recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen.
  • SARS-CoV-2 antigen refers to a polypeptide or polypeptide fragment capable of inducing an immune response, such as a humoral and/or cellular mediated immune response, against SARS-CoV-2 in a subject. it means.
  • the antigen is a protein, fragment or epitope thereof, or several SARS-CoV-2 proteins or these capable of inducing an immune response against SARS-CoV-2 in a subject or exhibiting a protective immune effect. It may be a combination of some of the
  • the SARS-CoV-2 antigen may be a spike (S) protein or a fragment thereof that forms a protruding spike on the surface of SARS-CoV-2.
  • the SARS-CoV-2 antigen may be an S1 subunit or a fragment thereof comprising a receptor binding domain (RBD) of a spike protein that binds to angiotensin-converting enzyme 2 (ACE2) of a host cell.
  • the SARS-CoV-2 antigen may be a receptor binding domain or a fragment thereof.
  • the receptor binding domain or fragment thereof may have the amino acid sequence of SEQ ID NO: 1.
  • the SARS-CoV-2 antigen may be expressed from a polynucleotide encoding the SARS-CoV-2 antigen operably linked to a promoter.
  • the polynucleotide encoding the SARS-CoV-2 antigen may be the nucleotide sequence of SEQ ID NO: 2.
  • the promoter may be a heat shock protein (hsp) promoter. More specifically, the promoter may be a heat shock protein 65 (hsp65) gene promoter derived from Mycobacterium bovis BCG.
  • the recombinant Mycobacterium paragordone strain may be a wild-type Mycobacterium paragordone strain transformed to express the SARS-CoV-2 antigen.
  • the polynucleotide encoding the SARS-CoV-2 antigen is operable on the Hsp65 (heat shock protein 65) gene promoter derived from Mycobacterium bovis BCG. It may be transformed with a tightly linked nucleic acid molecule.
  • the SARS-CoV-2 antigen may be a spike (S) protein, which is a surface antigen of SARS-CoV-2, and more specifically, may be an S1 subunit.
  • the SARS-CoV-2 antigen may be a receptor binding domain.
  • the recombinant Mycobacterium paragordone strain may be transformed with the pMV306-Pshp:RBD vector having the structure shown in FIG. 3A.
  • the (wild type) Mycobacterium paragordone (Mpg) strain used in the embodiment of the present invention is a naturally occurring strain, morphologically similar to Mycobacterium gordonae, but the optimum growth temperature is 25 to 30 °C, it is a temperature-sensitive strain that does not grow at 37 °C, the temperature at which general bacteria grow well. Due to these characteristics, safety can be secured when applied to the human body.
  • Mpg strain reference may be made to Korean Patent Application Laid-Open No. 2016-0021933 and the like. This document is considered a part of this specification. Specifically, the Mpg strain may be deposited at the Korea Research Institute of Bioscience and Biotechnology Microbial Resource Center under the accession number KCTC 12628BP.
  • Another aspect of the present invention provides a pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection, comprising the recombinant Mycobacterium paragordone strain as an active ingredient.
  • the pharmaceutical composition may be a vaccine.
  • the pharmaceutical composition may be administered in a single dose or in multiple doses.
  • the multiple administration may be two administrations.
  • the pharmaceutical composition may be used as a priming vaccine in a prime-boosting inoculation method.
  • the boosting inoculation may be used together with the receptor binding domain of SARS-CoV-2, alum, or a combination thereof.
  • the pharmaceutical composition may be in the form of a microneedle or microarray formulation, powder, capsule, tablet, granule, aqueous suspension, inhalant, suppository, injection, ointment, patch, powder or beverage.
  • the pharmaceutical composition may be for humans.
  • a pharmaceutically acceptable excipient used in the pharmaceutical composition in the case of oral administration, a binder, a lubricant, a disintegrant, an excipient, a solubilizer, a dispersing agent, a stabilizer, a suspending agent, a pigment, a fragrance, etc. may be used.
  • a binder a lubricant, a disintegrant, an excipient, a solubilizer, a dispersing agent, a stabilizer, a suspending agent, a pigment, a fragrance, etc.
  • buffers, preservatives, analgesics, solubilizers, isotonic agents, stabilizers, etc. can be mixed and used, and in the case of topical administration, bases, excipients, lubricants, preservatives, etc. can be used.
  • the dosage form of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with the pharmaceutically acceptable excipients as described above.
  • the pharmaceutical composition of the present invention may be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. in the case of oral administration, and in the case of injections in the form of unit dose ampoules or multiple doses. can be manufactured.
  • the pharmaceutical composition of the present invention may be formulated as a solution, sustained release preparation, pill, dragee, liquid, gel or slurry. In the case of a patch, it may be formulated in the form of microneedles or microarrays.
  • suitable carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate , cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil may be used.
  • it may further include a filler, an anti-agglomeration agent, a lubricant, a wetting agent, a flavoring agent, an emulsifier, a preservative, and the like.
  • Routes of administration of the pharmaceutical composition include, but are not limited to, subcutaneous, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, intraperitoneal, intranasal, enteral, topical, sublingual or rectal. Routes are included, and subcutaneous or transdermal routes may be preferred.
  • the dosage of the pharmaceutical composition may vary depending on a number of factors including the subject's age, weight, general health, sex, diet, administration frequency, administration period, administration route, excretion rate, and the severity of the specific disease to be treated or prevented. and may be appropriately selected by those skilled in the art. Typically, the dosage may be 0.0001 to 50 mg/kg or 0.001 to 50 mg/kg per day. Administration may be performed once a day or divided into several times. The above dosage does not limit the scope of the present invention in any way.
  • the vaccine may be administered two or more times in a normal prime-boost form.
  • the same vaccine may be administered several times, or different types of vaccines containing the same antigen may be administered.
  • the vaccine of the present invention may be used as a priming vaccine, and a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof may be used in a boosting inoculation.
  • the recombinant Mycobacterium paragordone strain may be used in live, attenuated or inactivated form.
  • a first composition comprising the above-described recombinant Mycobacterium paragordone strain as an active ingredient; And it provides a kit for the treatment or prevention of SARS-CoV-2 infection, comprising a second composition comprising a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof as an active ingredient do.
  • the kit may be for prime-boost inoculation.
  • the first composition may be prime-administered and the second composition may be boost-administered.
  • Another aspect of the present invention provides a vector comprising a recombinant nucleic acid molecule in which a polynucleotide encoding a receptor binding domain of SARS-CoV-2 is operably linked to an hsp gene promoter.
  • the hsp gene promoter may be a heat shock protein 65 (hsp65) gene promoter derived from Mycobacterium bovis BCG.
  • the vector may be for Mycobacterium strain expression, specifically Mycobacterium-E. coli shuttle vector.
  • the vector may be pMV306-Pshp:RBD having the structure shown in FIG. 3A.
  • the cell may be a Mycobacterium strain, specifically, a Mycobacterium paragordone strain.
  • Another aspect of the present invention provides a method for producing a recombinant Mycobacterium paragordone strain expressing a SARS-CoV-2 antigen, comprising transforming the above-described vector into the Mycobacterium paragordone strain. to provide.
  • the transformation can be performed by various methods known in the art, for example, microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, Agrobacterium-mediated transfection, DEAE-dextran treatment, and gene balm. It may be performed using a badment or the like. In an embodiment of the present invention, transformation was performed using electroporation.
  • Example 1 Construction of mycobacteria-E. coli shuttle vector for SARS-CoV-2 antigen expression
  • RBD receptor binding domain
  • NP nucleocapsid phosphoprotein
  • the NP sequence consists of 654 nucleotides (SEQ ID NO: 4) and encodes 217 amino acids (SEQ ID NO: 3) corresponding to amino acids 138 to 353 of the entire nucleocapsid phosphoprotein (FIG. 2).
  • the hsp65 (heat shock protein 65) gene promoter (Phsp) portion (375 bp) (SEQ ID NO: 5) was amplified through PCR from the genomic DNA of Mycobacterium bovis BCG (The Tuberculosis Research Institute), and the synthesized Phsp:RBD (1,050 bp) and Phsp:NP (1,029 bp) sequences were prepared by linking each gene sequence and overlapping PCR. Table 1 shows the primer sets and temperature conditions used for the overlapping PCR.
  • Phsp:RBD and Phsp:NP sequences were cloned into a mycobacteria-E. coli shuttle vector, pMV306, using a combination of NotI and XbaI or EcoRV and XbaI restriction enzymes to construct a vector ( FIGS. 3A and 3B ), and the vector was transformed into E. coli. Thereafter, PCR was performed on some of the colonies formed through kanamycin selection to select colonies in which the insert sequence was strongly amplified ( FIGS. 4A and 4B ). Plasmid DNA was extracted and plasmid DNA identical to the inserted sequence was obtained through sequencing.
  • Example 2 Each of the plasmid DNAs (pMV306-Phsp:RBD and -Phsp:NP) obtained in Example 1 was subjected to electroporation (Gene Pulser Xcell TM , Bio-RAD) into competent Mpg prepared in-house. Transformed under the conditions described in Table 2.
  • the Mpg generated after electroporation was inoculated into 7H9 liquid medium (Becton Dickinson) without antibiotics and incubated at 30°C for 24 hours, and then 1/10 to 1/2 dilutions of 7H10 solids containing kanamycin (100 ⁇ g/ml) It was plated on medium (Becton Dickinson). Thereafter, it was cultured at 30° C. for 14 to 21 days, and colony formation was checked.
  • pMV306-Phsp:RBD a significant number of colonies were secured ( FIG. 5A ).
  • FIG. 5b As a result of confirming some of the obtained colonies by PCR, it was confirmed that most colonies showed a positive reaction (RBD expression: amplification of the transformed RBD gene was confirmed) ( FIG. 5b ).
  • Colonies were selected for each prepared recombinant Mpg strain (rMpg_RBD and rMpg_NP) (colonies corresponding to #5, #6, and #7 among several colonies were selected, and the colony was subjected to colony PCR targeting RBD)
  • rMpg_RBD and rMpg_NP colonnies corresponding to #5, #6, and #7 among several colonies were selected, and the colony was subjected to colony PCR targeting RBD
  • Each recombinant Mpg (rMpg_RBD and rMpg_NP) strain culture was centrifuged (2,500 rpm, 10 min) to obtain a pellet, and then B-PER buffer (Thermo Scientific; 100 ⁇ g/ml lysozyme, 5 U/ml DNase) , and supplemented with proteinase inhibitor) and sonicated on ice (2 reactions 5 min; pulse: 0.3 sec, stop: 0.7 sec).
  • the pulverized solution was centrifuged (13,000 rpm, 15 min, 4° C.) to take the supernatant, and western blot was performed.
  • anti-SARS-CoV-2 spike protein antibody (Sino Biological, 40591-T62; 1:2,000) and anti-SARS-CoV-2 nucleoside
  • a capsid protein antibody (Thermo Fisher, MA5-29981; 1:1,000)
  • an antibody (Santa Cruz, sc-57842; 1:200) capable of binding to hsp65 (heat shock protein 65) protein of Mycobacterium tuberculosis was used.
  • SARS-CoV-2 spike S1-His recombinant protein (Sino Biological, 40159-V08B1) and SARS-CoV-2 nucleocapsid-His recombinant protein (Sino Biological, 40588-V08B) were used.
  • Dendritic cells (Huiying Bio. Tech) were seeded in a 24-well plate (5 x 10 5 cells/well) and 24 hours later, the rMpg_RBD strain was infected at 1 or 10 MOI (multiplicity of infection). After 4 hours, the infected cells were washed with PBS to remove extracellular bacteria, replaced with a medium containing amikacin (10 ⁇ M), and cultured at 37° C. for 24 hours. Uninfected dendritic cells and cells infected with the Mpg wild-type strain were prepared in the same manner as controls.
  • the obtained cell culture was stored at -20°C for immune cytokine analysis.
  • Cells were washed with PBS and then mixed with 1 ml Trizol (TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018). Then, chloroform was added, mixed well, and incubated for 3 minutes at room temperature. The supernatant was centrifuged (12,000 x g, 15 min, 4°C), mixed with the same amount of isopropanol, and centrifuged again. After washing with 75% EtOH, the pellet was dried in air by centrifugation. Thereafter, it was dissolved in an appropriate volume of DEPC-treated water to obtain total RNA.
  • Real-time PCR (CFX ConnectTM Real-Time System, Bio-RAD) was performed on the extracted RNA with a SYBR kit (SensiFASTTM SYBR® Lo-ROX One-Step kit, Bioline), and based on the obtained Cq value, intracellular RBD The expression level was relatively quantified.
  • Table 3 shows the primer sets and temperature conditions for real-time PCR used for RBD detection.
  • Primer sets (SEQ ID NOs: 10 and 11) and temperature conditions used for RBD detection Primers Sequences (5' to 3') Tm (°C) RBD_RT_F1 ACC GAG TCG ATC GTG CGC TTC 60 RBD_RT_R1 GAA GCA CAG GTC GTT CAG CTT
  • the recombinant Mpg strain (rMpg_RBD) prepared in Example 2 was similar to that of the wild-type Mpg strain, the recombinant Mpg strain and the wild-type Mpg strain were each infected with dendritic cells, and then the expression pattern of dendritic cell maturation markers. was confirmed, and the expression pattern of IL-10 and IL-12 cytokines was confirmed from the cell culture medium. A group untreated and a group treated with LPS were used as negative and positive controls, respectively.
  • dendritic cells were seeded in 24-well plates (5 x 10 5 cells/well) and 24 hours later, they were infected with Mpg (10 MOI) and rMpg_RBD strains (1 or 10 MOI). After 4 hours, the infected cells were washed with PBS to remove extracellular bacteria. Then, the medium was replaced with a medium containing amikacin (10 ⁇ M) and cultured at 37° C. for 24 hours.
  • the obtained cell culture was stored at -20°C for cytokine analysis. After washing with PBS, cells were removed and blocked with CD16/32 antibody (Biolegend, Cat: 101301) for 30 minutes, BV605 conjugated anti-CD86, PE conjugated anti-CD40, FITC conjugated anti-MHCII, APC conjugated anti -CD80 antibody (BD Biosciences) was stained at 4°C for 30 minutes under light-blocked conditions. Then, the expression pattern of the maturation marker of dendritic cells was confirmed by FACS (BD LSRFortessa).
  • the expression rate of dendritic cell maturation markers (MHCII, CD40, CD80, CD86) was relatively high when Mpg-infected, and in the case of rMpg_RBD strain infection (10 M.O.I.), It was confirmed that the maturation marker expression pattern was increased to a similar level ( FIGS. 11a to 11d , Table 4). However, rMpg_RBD 1 M.O.I. Upon infection, the maturation marker hardly increased as in the untreated group ( FIGS. 11A to 11D , Table 4). In addition, the expression patterns of cytokines IL-10 and IL-12 in cell culture were analyzed by ELISA. .
  • each well was washed 3 times with wash buffer and blocked with assay buffer at room temperature for 1 hour. After washing each well again, the obtained culture solution was added and reacted at room temperature for 2 hours. After washing each well, a detection antibody for each cytokine was attached and reacted at room temperature for 1 hour. Then, after each well was developed with a color reagent, absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and the expression level of IL-10 and IL-12 cytokines was measured based on the standard value. did.
  • Cytokine expression level comparison result Concentration (pg/ml) IL-10 IL-12 no treat 70.02 ⁇ 1.82 3.50 ⁇ 0.41 mpg 384.49 ⁇ 4.98 90.27 ⁇ 1.91 rMpg_RBD (1 M.O.I.) 86.48 ⁇ 2.06 7.66 ⁇ 1.95 rMpg_RBD (10 M.O.I.) 267.91 ⁇ 40.13 61.61 ⁇ 4.17 LPS 750.27 ⁇ 7.39 125.76 ⁇ 4.07
  • rMpg_RBD 1 M.O.I.
  • IL-10 and IL-12 showed a statistically significant increase compared to the untreated group, but the expression level was significantly lower than that of the other groups.
  • Example 2 prepared in Example 2 When one rMpg_RBD strain was infected with dendritic cells with 10 M.O.I., the expression of dendritic cell maturation markers (MHCII, CD40, CD80, CD86) was increased to a level similar to that of Mpg infection, and IL-10 and IL- It was confirmed that the expression of cytokines such as 12 is also increased.
  • MHCII dendritic cell maturation markers
  • the rMpg_RBD strain prepared in Example 2 was subcultured in 7H9 liquid medium (containing 100 ⁇ g/ml of kanamycin), the protein of the 5th generation cultured strain was extracted, and RBD western blot was performed to confirm RBD expression (FIG. 10). ).
  • the culture of the strain was completed up to 10 generations, and each cultured strain was suspended in 20% glycerol and stored at -70°C.
  • the culture solution of the subcultured rMpg_RBD strain (strain #7) was centrifuged (2,500 rpm, 10 min) to obtain a pellet, and then B-PER buffer (Thermo Scientific; 100 ⁇ g/ml lysozyme, 5 U/ml DNase, and proteinase inhibitor) and sonication on ice (5 min in 2 reactions; pulse: 0.3 sec, stop: 0.7 sec) on ice.
  • the pulverized solution was centrifuged (13,000 rpm, 15 min, 4°C), and the supernatant was taken to secure the protein.
  • the expression of RBD in the protein was confirmed with the S1RBD ELISA kit (ELV-COVID19S1-1) provided by RayBiotech.
  • the extracted protein was put in a 96-well plate coated with an S1 RBD-specific antibody and reacted at room temperature for 2.5 hours. Then, each well was washed 3 to 4 times with the wash buffer provided by the kit, and the S1 RBD detection antibody was put into each well and reacted at room temperature for 1 hour. After washing each well again, HRP-streptavidin was added to each well and reacted at room temperature for 45 minutes.
  • the rMpg_RBD strain culture pellet was mixed with Trizol (TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018), transferred to a tube containing a glass bead, and pulverized 3 times for 30 seconds each with a Mini BeadBeater device (BioSpec). Then, chloroform/isoamyl alcohol (29:1) was added and mixed well. Then, centrifugation (16,000 x g, 5 min) was performed, and the obtained supernatant was treated with isopropanol and 3 M sodium acetate, and precipitated at -20°C. The precipitated RNA was washed with 75% EtOH and then dried in air.
  • Trizol Trizol® Reagent, ThermoFisher Scientific, REF: 15596018
  • RNA was extracted through a general EtOH precipitation method.
  • Real-time PCR (CFX ConnectTM Real-Time System, Bio-RAD) was performed on the extracted RNA with a SYBR kit (SensiFASTTM SYBR® Lo-ROX One-Step kit, Bioline), and based on the obtained Cq value, RBD in the strain The expression level was relatively quantified. At this time, the relative expression level was calculated by correcting each RBD Cq value with the Cq value for hsp65.
  • Table 6 shows the primer sets and temperature conditions for real-time PCR used for RBD detection.
  • Primer set (SEQ ID NOs: 12-15) and temperature conditions used for RBD detection Primers Sequences (5' to 3') Tm (°C) RBD_RT_F1 ACC GAG TCG ATC GTG CGC TTC 60 RBD_RT_R1 GAA GCA CAG GTC GTT CAG CTT Mpg_hsp_RT_F GTC GAG GAG TCC AAC ACC TT 60 Mpg_hsp_RT_R CTG GAG ACC AGC AGG ATG TA
  • rMpg_RBD strains #5, #6, #7 strains
  • SC subcutaneous
  • mice were sacrificed to obtain splenocytes. After the obtained splenocytes were stimulated with S1 protein, i) IFN- ⁇ ELISPOT and ii) IFN- ⁇ , IL-12 immune cytokines were analyzed by ELISA. In addition, iii) expression of S1-specific IgG (IgG1, 2 and total IgG) and iv) neutralizing antibody ability against SARS-CoV-2 pseudovirus were analyzed in serum samples.
  • S1-specific IgG IgG1, 2 and total IgG
  • neutralizing antibody ability against SARS-CoV-2 pseudovirus were analyzed in serum samples.
  • ELISPOT assay for IFN- ⁇ was performed on splenocytes isolated from immunized mice. First, splenocytes of each group were seeded at 1 x 10 6 cells/well on a PVDF membrane plate coated with IFN- ⁇ antibody (anti-mouse IFN- ⁇ , clone: AN-18, 3 ⁇ g/ml), and SARS- Splenocytes were stimulated for 24 hours by treatment with CoV-2 spike (S1) protein at 5 ⁇ g/ml. Then, each well was washed 3 times with PBST and PBS, respectively.
  • IFN- ⁇ antibody anti-mouse IFN- ⁇ , clone: AN-18, 3 ⁇ g/ml
  • SARS- Splenocytes were stimulated for 24 hours by treatment with CoV-2 spike (S1) protein at 5 ⁇ g/ml. Then, each well was washed 3 times with PBST and PBS, respectively.
  • the detection antibody (anti-mouse-IFN- ⁇ biotin, clone: XMG1.2, 3 ⁇ g/ml) was treated and reacted at 4° C. for 24 hours. After washing each well again, streptavidin-HRP was treated at room temperature for 2 hours. Thereafter, color was developed using an AEC substrate kit (within 10 minutes), and spots on each membrane were counted with an ELISPOT reader device (AID EliSpot Reader).
  • Splenocytes isolated from immunized mice were cultured in vitro with S1 protein (5 ⁇ g/ml) for 3 days, then the culture medium was collected and stored at -70°C. Thereafter, ELISA was performed for IFN- ⁇ and IL-12 cytokines to compare and analyze their expression patterns. ELISA was performed using mouse IFN- ⁇ and IL-12 ELISA kit (Invitrogen).
  • the expression of IL-12 and IFN- ⁇ cytokines specific for S1 protein in splenocytes immunized with the rMpg_RBD strain was increased compared to the case of immunization with the Mpg strain.
  • the rMpg_RBD #7 strain showed the highest IL-12 and IFN- ⁇ cytokine expression levels were confirmed (Fig. 16, Table 8).
  • RBD protein (Sino Biological) was coated (5 ⁇ g/ml) on an ELISA plate and reacted at 4° C. for 24 hours. Thereafter, each well was washed with wash buffer (0.05% Tween 20), and then each well was blocked with 5% BSA. Serum samples isolated from mice were diluted (1:10), put into each well, and reacted at room temperature for 2 hours.
  • IgG1 with HRP goat anti-mouse IgG1, HRP conjugated; ThermoFisher Scientific
  • IgG2a goat anti-mouse IgG2, HRP conjugated; Invitrogen
  • total IgG anti mouse IgG, biotinylated; eBioScinece
  • IgG production pattern for RBD was measured by absorbance Absorbance (OD 450nm) Stimulated with RBD IgG2 IgG1 Total IgG mpg 0.087 ⁇ 0.003 0.555 ⁇ 0.046 0.384 ⁇ 0.005 rMpg_RBD #5 0.09 0.526 0.513 rMpg_RBD #6 0.137 0.692 0.537 rMpg_RBD #7 0.188 0.775 0.619
  • pCAGGS NR-52310, BEI Resources
  • SARS-CoV-2 spike glycoprotein S sequence was co-transfected into human embryonic kidney 293T cells to obtain a SARS-CoV-2 pseudovirus pellet.
  • -transfection was carried out.
  • 5X PEG-it LV810A-1-SBI
  • 5X PEG-it LV810A-1-SBI
  • rMpg_RBD 1, #5; rMpg_RBD 2, #6; rMpg_RBD 3, #7) and a wild-type Mpg strain were subcutaneously injected into BALB/c mice twice at 2-week intervals. Two weeks after the last injection, they were euthanized and serum was obtained from each mouse. Each serum is diluted in RPMI 1640 medium in multiples of 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000 in a 96-well plate to prepare 100 ⁇ l each. did.
  • SARS-CoV-2 pseudovirus pellet was diluted in PRMI 1640 and mixed with serum by pipetting. Then, it was cultured in an incubator at 37° C. for 2 hours. After 2 hours of reaction, all of the culture medium was treated with Huh7 cells (96-well plate, 5 ⁇ 10 4 cells/well), which is a human liver cancer cell line, and cultured in an incubator at 37° C. for 48 hours. Then, the supernatant was removed and the cells were lysed with a cell lysis buffer (Promega, USA). Then, immediately after reaction with a luciferase substrate (Promega, USA), luciferase color development was confirmed with a Luminometer (Tecan) ( FIGS. 18A to 18B ).
  • NT50 value is the serum dilution factor when the color of luciferase is reduced by 50% based on the pseudovirus infection without mixing the serum, and means a neutralizing antibody titer of 50.
  • the rMpg_RBD strain 3 showed the highest NT50 value.
  • the rMpg_RBD strain 3 (#7 strain) It is expected that the neutralizing antibody ability against SARS-CoV-2 will be the best. Even when the same neutralizing antibody ability test was performed on Calu-3 cells, it was confirmed that the neutralizing antibody ability of the mouse serum immunized with the rMpg_RBD 3 (#7) strain was the best.
  • RBD protein and alum were used, RBD protein was adjusted to a concentration of 10 ⁇ g/ml, and alum was adjusted to a concentration of 100 ⁇ g/ml, and immunization was performed after mixing them together. All inoculation volumes were adjusted to 100 ⁇ l.
  • mice 8-week-old BALB/c female mice were immunized with each strain, and each group was composed of 5 mice.
  • the immunized mice were sacrificed to obtain splenocytes, and the obtained splenocytes were stimulated with SARS-CoV-2 RBD protein.
  • IFN- ⁇ ELISPOT assay was performed as follows, ii) CD4, CD8 T cell populations expressing IFN- ⁇ or TNF- ⁇ were analyzed by FACS, iii) immune cytokines (IFN) - ⁇ , TNF- ⁇ , IL-2, IL-10 and IL-12) were analyzed by ELISA, iv) the expression of RBD specific IgG (IgG1, IgG2 and total IgG) in serum samples was analyzed, v) Comparing the neutralizing antibody ability against live SARS-CoV-2 virus, vi) comparing the neutralizing antibody ability against SARS-CoV-2 pseudovirus, vii) performing an ACE2-RBD binding assay using serum , viii) IgA expression specific for SARS-CoV-2 RBD was confirmed in bronchoalveolar lavage fluid (BALF) of mice.
  • BALF bronchoalveolar lavage fluid
  • ELISPOT for IFN- ⁇ was performed on splenocytes isolated from immunized mice.
  • splenocytes of each group were seeded at 1 x 10 6 cells/well on a PVDF membrane plate coated with IFN- ⁇ (anti-mouse IFN- ⁇ , clone: AN-18, 3 ⁇ g/ml), and SARS-CoV Splenocytes were stimulated for 24 hours by treatment with -2 RBD protein at 5 ⁇ g/ml. Then, each well was washed three times with PBST and PBS, respectively, and then treated with a detection antibody (anti-mouse-IFN- ⁇ biotin, clone: XMG1.2, 3 ⁇ g/ml). Then, it was made to react at 4 degreeC for 24 hours.
  • streptavidin-HRP was treated at room temperature for 2 hours. Thereafter, color was developed using an AEC substrate kit (within 10 minutes), and the spot of each membrane was counted with an ELISPOT reader device (AID EliSpot Reader).
  • the splenocytes of each immunized mouse were stimulated with RBD protein for 18 hours, and then treated with brefeldin A (eBioscience TM BrefeldinA, Invitrogen) for 4 to 6 hours to capture intracellular cytokines. Thereafter, surface molecular staining (4°C, 30 min) was first performed using FITC-conjugated anti-CD3, V500-conjugated anti-CD4, and PE-conjugated anti-CD8 antibodies (BD BioSciences). Then, cells were fixed with 1% paraformaldehyde (PFA) at room temperature for 20 minutes, and treated with 0.1% Triton X-100 (in FACS buffer) (RT, 30 minutes) to increase cell permeabilization.
  • PFA paraformaldehyde
  • CD4 and CD8 T cell populations secreting IFN- ⁇ showed statistical significance and increased compared to other immunized groups (FIG. 21, Table 11).
  • CD4+ IFN- ⁇ + T cells showed the highest aspect in the group immunized with rMpg_RBD once, which was determined to be correlated with the IFN- ⁇ ELISPOT results (Fig. 20, Fig. 21, Table 10, Table). 11).
  • TNF- ⁇ -secreting CD4 and CD8 T cell populations In the case of TNF- ⁇ -secreting CD4 and CD8 T cell populations, the rMpg_RBD immunized group (1 or 2 immunizations) showed a high pattern, and the rMpg_RBD immunized group showed a high pattern in the 2 immunized group.
  • TNF- ⁇ -secreting CD4 and CD8 T cell populations tended to increase compared to the group.
  • the TNF- ⁇ -secreting T cell population In particular, in the group immunized with rMpg_RBD prime-RBD protein boosting, the TNF- ⁇ -secreting T cell population showed the highest pattern (FIG. 21, Table 11).
  • Splenocytes isolated from immunized mice were incubated with SARS-CoV-2 RBD protein (5 ⁇ g/ml) in vitro for 3 days, then the culture medium was collected and stored at -70°C. Thereafter, ELISA was performed for IFN- ⁇ , TNF- ⁇ , IL-2, IL-10 and IL-12 cytokines to compare and analyze their expression patterns.
  • ELISA was mouse IFN- ⁇ , TNF- ⁇ , IL-2.
  • IL-10 and IL-12 ELISA kits (Invitrogen) were used.
  • an antibody specific for each cytokine was coated on a 96-well plate (4° C., O/N), and then each well was washed 3 times with wash buffer and blocked with assay buffer at room temperature for 1 hour. After washing each well again, the obtained culture solution was added and reacted at room temperature for 2 hours. After washing each well, a detection antibody for each cytokine was attached and reacted at room temperature for 1 hour. Then, after each well was developed with a color reagent, absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and based on the standard values, IFN- ⁇ , TNF- ⁇ , IL-2. The expression levels of IL-10 and IL-12 cytokines were measured.
  • the rMpg_RBD strain was The immunized group showed a higher cytokine expression level than the Mpg wild-type immunized group, and in particular, the group immunized with the rMpg_RBD strain twice showed the highest expression level.
  • TNF- ⁇ it was correlated with the results of FACS analysis (Fig. 21, Table 11), and the group immunized with the rMpg_RBD strain twice showed the highest expression level (Fig. 22b, Fig. 22c, Fig. 22e, Table 12). ).
  • the expression levels of cytokines (TNF- ⁇ , IFN- ⁇ , IL-12, etc.) important for the Th1-cell-mediated immune response were significantly lower than those of the other immune groups, but Th2 immunity It was confirmed that the expression level of IL-10 associated with the response was significantly higher than that of other immune groups (Fig. 22d, Table 11).
  • mice were tested for the following treatments: no treat, wild-type Mpg, rMpg_RBD(1), rMpg_RBD(2), rMpg_RBD + RBD, and RBD.
  • Serum was obtained from mice two weeks after the last injection of the strain or protein, and the obtained serum was stored at -20°C.
  • IgG1 with HRP goat anti-mouse IgG1, HRP conjugated; ThermoFisher Scientific
  • IgG2a goat anti-mouse IgG2, HRP conjugated; Invitrogen
  • total IgG anti mouse IgG, biotinylated; eBioScinece
  • RBD-specific IgG production pattern was measured by absorbance Absorbance (OD 450nm) IgG2 IgG1 Total IgG no treat 0.082 ⁇ 0.006 0.053 ⁇ 0.003 0.259 ⁇ 0.034 Mpg (2 times immunity) 0.124 ⁇ 0.021 0.583 ⁇ 0.055 0.448 ⁇ 0.032 rMpg_RBD (1 time) 0.136 ⁇ 0.039 0.286 ⁇ 0.165 0.366 ⁇ 0.047 rMpg_RBD (2 times) 0.197 ⁇ 0.050 0.564 ⁇ 0.058 0.470 ⁇ 0.027 rMpg_RBD+RBD protein 0.090 ⁇ 0.009 0.315 ⁇ 0.159 0.381 ⁇ 0.060 RBD protein (2 times) 0.113 ⁇ 0.018 0.344 ⁇ 0.046 0.395 ⁇ 0.044
  • the group immunized with rMpg_RBD showed a similar level of IgG1 expression to the rMpg_RBD prime-RBD boosting group and the RBD protein immune group.
  • the expression of total IgG seemed to reflect the high expression of IgG1, showing the highest pattern in the group immunized with the Mpg strain and the group immunized with the rMpg_RBD strain twice (FIG. 23c, Table 13).
  • the monkey kidney cell line Vero E6 was cultured in a T75 flask (5 ⁇ 10 6 in DMEM (supplemented with 10% FBS)) for 24 hours, and then in a 37°C water bath (water bath). bath) dissolved in the SARS-CoV-2 stock was dissolved in 20 ml DMEM (supplemented with 10% FBS) to replace the medium for Vero E6.
  • the infection was carried out in an incubator at 37° C. for 1 hour, and the flask was lightly shaken from side to side so that the virus could be uniformly infected at intervals of 10 minutes. After 1 hour, the supernatant was removed, replaced with a virus-free medium, and cultured at 37°C for 3 days. Thereafter, the supernatant was collected and aliquoted and stored in a -80°C deepfreezer.
  • 150 ⁇ l of mouse serum was prepared by diluting it in DMEM medium at dilution concentrations of 1:2, 1:10, 1:20, 1:50, 1:100, 1:1000, and 1:10000. Thereafter, 150 ⁇ l of SARS-CoV-2 of 100 to 150 pfu was reacted at 37° C. for 1 hour.
  • Each well of Vero E6 cells 24 well plate, 5 ⁇ 10 5 cells/well prepared the day before was infected with the reacted serum-virus mixture, and then reacted at 37° C. for 1 hour. At this time, the plate was lightly shaken at 10-minute intervals so that the virus could be uniformly infected. After 1 hour of infection, the medium was removed and washed with PBS. Then, DMEM (supplemented with 10% FBS and 0.8% methylcellulose) was replaced with 500 ⁇ l/well and incubated for 2 days in a 37° C. incubator.
  • the primary antibody against the nucleocapsid (NP) of SARS-CoV2 was diluted 1:1000 in 2% BSA (in PBS) and treated with 200 ⁇ l/well, followed by reaction at 4° C. overnight. Thereafter, the primary antibody was removed, and washing was performed three times with PBS. Then, the secondary antibody to which alkaline phosphatase (AP) is attached was diluted 1:5000 in 2% BSA (in PBS) and treated with 200 ⁇ l/ml, followed by reaction at room temperature for 2 hours. The secondary antibody was removed, washed with PBS, and the substrate NBT/BCIP was diluted 1:10000 in 2% BSA (in PBS) and treated with 200 ⁇ l/well. When plaque development progressed, the substrate solution was removed, washed with DW, and water was removed.
  • AP alkaline phosphatase
  • the titer of the Plaque Reduction Neutralization Test 50 refers to the dilution factor of the serum when the virus plaque formation is reduced by 50% compared to the case of no treatment. can be (Fig. 24).
  • PRNT50 Plaque Reduction Neutralization Test 50
  • the serum showed an excellent neutralizing antibody ability against SARS-CoV-2 at a statistically significant level compared to the case where the mice were not treated at all.
  • the serum in the case of treatment with a recombinant strain or a combination of a recombinant strain and a protein has excellent neutralizing antibody ability compared to the case of treatment with wild-type Mpg.
  • mice were immunized with recombinant rMpg_RBD once and immunized twice at 2-week intervals, it was confirmed that there was no difference in serum SARS-CoV-2 neutralizing antibody ability. However, compared to the case of immunization with rMpg_RBD once, it was confirmed that the neutralizing antibody ability of mouse serum was excellent at a statistically significant level when RBD protein was injected after immunization with rMpg_RBD once.
  • the mouse serum was diluted in multiples of 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000 and reacted with SARS-CoV-2 at 37°C. did it Then, the serum-virus culture was infected with Calu-3 and Huh7 cells. At 48 hours after infection, inhibition of intracellular pseudovirus infection was confirmed through luciferase color development ( FIGS. 25A to 25D ).
  • the relative luciferase unit is the amount of luciferase expressed by SARS-CoV-2 pseudovirus infecting cells, and it can be said that the smaller the value, the more inhibited the infection.
  • the serum when comparing NT50 values, in the case of mice injected with the rest of the strains or proteins in preparation for no treatment, the serum was statistically significant for SARS-CoV-2 pseudovirus in both Calu-3 and Huh7 experiments. It showed excellent neutralizing antibody ability.
  • the NT50 value is the serum dilution factor when the color of luciferase is reduced by 50% based on the pseudovirus infection without mixing the serum, and means a neutralizing antibody titer of 50.
  • NT50 values were high in both Calu-3 and Huh7 experiments. It was confirmed that the pseudovirus neutralizing antibody ability was excellent at a statistically significant level.
  • the NT50 value of the mouse serum was found to be statistically significant, indicating that the mouse serum has excellent pseudovirus neutralizing antibody ability. that has been confirmed
  • HRP-conjugated IgG was attached to each well and reacted at room temperature for 1 hour. After washing each well again, a coloring reagent was added and allowed to develop color for up to 30 minutes. Then, the reaction was stopped, and absorbance was measured at 450 nm with an ELISA reader device (Tecan Sunrise). At this time, it can be determined that the lower the absorbance, the more inhibiting the binding of ACE2 and RBD.
  • ACE2-RBD binding inhibitory concentration (inhibitory concentration 50, IC50) by the rMpg_RBD immune serum was equal to 1 :762.2
  • rMpg_RBD (two immunizations) was 1:6008, indicating that serum immunized with rMpg_RBD twice had an excellent effect on inhibiting ACE2-RBD binding even at low concentrations.
  • IgA ELISA was performed.
  • mice were dissected to expose the bronchi. Thereafter, a 22-gauge catheter (BD BioSciences) was intubated into the bronchus, and then replaced with a 1 ml syringe containing 800 ⁇ l of PBS and injected. At this time, when injecting or withdrawing, visually confirm whether the lungs swell and subside again. The operation of inserting and withdrawing PBS with a syringe was repeated 3 to 4 times, and finally about 500 to 600 ⁇ l of BALF was obtained, and stored at -20°C until used in the experiment.
  • BD BioSciences BD BioSciences
  • an HRP-attached IgA antibody (goat anti-mouse IgA secondary antibody, HRP conjugated; Invitrogen) was added and reacted at room temperature for 1 hour, followed by color development.
  • HRP conjugated HRP conjugated; Invitrogen
  • the IgA expression pattern in BALF of the rMpg_RBD immunized group was statistically significant compared to the rMpg_RBD prime-RBD boosting and RBD immunization groups including Mpg. An increasing trend could be observed.
  • the group immunized with rMpg_RBD twice showed the highest expression of IgA, which was higher than the group immunized with rMpg_RBD once ( FIG. 27 , Table 15).
  • mice were immunized with the rMpg_RBD #7 strain according to an embodiment of the present invention according to the dosing schedule of FIG. 19, and the formation of SARS-CoV-2 RBD-specific immune-inducing ability was confirmed by several immune combinations [i) PBS (twice inoculation, S.C.
  • the PBS and Mpg strain immune group A higher IFN- ⁇ spot could be confirmed compared to .
  • the highest IFN- ⁇ spot was confirmed in the group immunized with the rMpg_RBD strain once ( FIG. 20 , Table 10).
  • IFN- ⁇ -secreting CD4 and CD8 T cell populations were different in the group immunized with rMpg_RBD (once or twice). It showed a statistically significant increase compared to the group (FIG. 21, Table 11). In particular, in the group immunized with the rMpg_RBD strain once, the CD4 T cell population expressing IFN- ⁇ showed the tendency to be most induced.
  • TNF- ⁇ -secreting CD4 and CD8 T cell populations the group immunized with rMpg_RBD (1 or 2 immunizations) showed a high pattern, but in the group immunized with rMpg_RBD prime-RBD protein boosting, TNF- The T cell population secreting ⁇ showed the highest pattern (FIG. 21, Table 11).
  • the immune cytokine expression pattern of the rMpg_RBD prime-RBD boosting immunization group was lower than that of the rMpg_RBD 1 or 2 immunization group.
  • the expression of IL-10, an anti-inflammatory cytokine was significantly higher than in the rest of the immune group, and the expression of immune cytokines important for the rest of the vaccine immunity showed a low tendency compared to other groups.
  • IgG2 which is known to be involved in cell-mediated Th1 immunity
  • the expression of IgG2 in the serum of each immunized mouse was confirmed to be the highest in the group immunized with rMpg_RBD twice, and the group immunized with rMpg_RBD once or rMpg_RBD prime-RBD boosting. showed similar or lower IgG2 expression patterns to those of the Mpg immune group.
  • IgG1 and total IgG1 in the group inoculated with Mpg bacteria was high without much difference from the rMpg_RBD 2 immunization group. It is considered that it should be considered (FIG. 23, Table 13).
  • rMpg_RBD prime-RBD boosting immunity had no significant effect on RBD-specific cell-mediated immune responses (IFN- ⁇ ELISPOT, IFN- ⁇ or TN F- ⁇ expressing T cell assay and immune cytokine measurement), and RBD-specific antibody There was no significant effect on production.
  • ACE2-RBD binding inhibitory concentration (IC50) by rMpg_RBD immune serum was 1:762.2 for rMpg_RBD (single immunization) and 1:6008 for rMpg_RBD (two immunizations), indicating that the serum immunized with rMpg_RBD twice had a lower concentration (IC50). It means that even at the concentration, it has an excellent effect on inhibiting the binding between ACE2-RBD.
  • the IgA expression pattern in the BALF of the group immunized with rMpg_RBD increased to a statistically significant level compared to the rMpg_RBD prime-RBD boosting and RBD immunization groups including Mpg. It showed a high expression pattern of IgA (Fig. 27, Table 15).
  • rMpg_RBD prime-RBD boosting immunity induction of RBD-specific immune cytokine expression, IFN- ⁇ and TNF- ⁇ expressing T cells, and RBD-specific IgG and IgA expression induction, rMpg_RBD strain immune group (1 or 2 times) immune group), but showed the greatest effect compared to the rMpg_RBD immune group in the induction of neutralizing antibodies against live SARS-CoV-2 and SARS-CoV-2 pseudovirus.
  • the rMpg_RBD strain alone induced RBD-specific immunity well
  • the rMpg_RBD prime-RBD boosting immunization induced the formation of neutralizing antibodies well. is expected to be usable.
  • mice were divided into three groups and the rMpg_RBD strain was injected subcutaneously at 1 ⁇ 10 6 CFU and 1 ⁇ 10 7 CFU in live cell form, and 1 ⁇ 10 7 CFU in inactivated form, respectively, at 2 weeks and 2 weeks and 5 days. Serum was obtained from mice.
  • mice serum was diluted to a dilution concentration of 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280, 1:2560, 1:5120, 1:10240.
  • an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2) (1 mg/ml) was diluted to the same dilution concentration to prepare a control antibody.
  • SARS-CoV-2 Vero p2 (CoV/Korea/KCDC/2020 NCCP43326), a virus distributed from the Korea Centers for Disease Control and Prevention, was mixed at a concentration of 100 TCID 50 in the same volume as the serum and control antibody, and at 37 °C. Incubated for 30 minutes. Then, it was infected with the monkey kidney cell line Vero E6 (96 well plate, 1.5x10 ⁇ 6 cells/well) seeded 24 hours before the experiment to measure the degree of neutralization. Readings were confirmed by tissue culture infectious dose (TCID 50 ) format. In general, the TCID 50 method represents the dilution factor of the virus that infects 50 % of the cells by inoculating the virus suspension. The degree of neutralization was confirmed in a way that the experimental group and the control group lowered the infectivity of the virus. The results are shown in FIGS. 29 to 33 .

Abstract

The present invention relates to a recombinant Mycobacterium paragordonae (Mpg) strain expressing a SARS-CoV-2 antigen, and a vaccine composition including same. The recombinant Mycobacterium paragordonae strain expressing the SARS-CoV-2 antigen of the present invention can generate remarkable immune responses, including neutralizing antibody activity, against SARS-CoV-2 in mice. Accordingly, the recombinant Mycobacterium paragordonae strain of the present invention can be effectively used as a vaccine for preventing or treating SARS-CoV-2 infection.

Description

SARS-COV-2 항원을 발현하는 재조합 마이코박테리움 균주 및 이를 포함하는 백신 조성물Recombinant Mycobacterium strain expressing SARS-COV-2 antigen and vaccine composition comprising same
본 발명은 SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 균주 및 이를 유효성분으로 포함하는 백신 조성물에 관한 것이다. The present invention relates to a recombinant Mycobacterium strain expressing the SARS-CoV-2 antigen and a vaccine composition comprising the same as an active ingredient.
2019년 중국 우한에서 처음 보고된 중증급성호흡기증후군 코로나바이러스 2(Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2)에 의한 감염이 전 세계적으로 확산되고 있어 보건, 사회, 경제적인 큰 위기에 직면하고 있다.Infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), first reported in Wuhan, China in 2019, is spreading around the world, facing a great health, social and economic crisis. have.
SARS-CoV-2는 기존의 코로나 바이러스나 독감 바이러스에 비해 높은 감염력을 지니고 있으며, 무증상부터 경증 호흡기 증상, 급성 호흡곤란 증후군, 그리고 사망에 이르는 다양한 증상을 보인다고 알려져 있다. 이러한 SARS-CoV-2의 전 세계적인 확산으로 인해 세계보건기구(WHO)는 2020년 3월 11일에 pandemic을 선언하였다.SARS-CoV-2 has a higher infectivity than the existing coronavirus or flu virus, and is known to show various symptoms ranging from asymptomatic to mild respiratory symptoms, acute respiratory distress syndrome, and death. Due to the worldwide spread of SARS-CoV-2, the World Health Organization (WHO) declared a pandemic on March 11, 2020.
2021년 1월 17일 기준으로, 전 세계 누적 확진 건수는 93,217,287건이며, 누적 사망 건수는 2,014,957건이다. 특히, 미국과 유럽 등에서는 확진자와 사망자가 급격하게 증가하고 있는 추세이다(World Health Organization. (https://covid19.who.int/)).As of January 17, 2021, the cumulative number of confirmed cases worldwide is 93,217,287, and the cumulative number of deaths is 2,014,957. In particular, the number of confirmed cases and deaths is increasing rapidly in the United States and Europe (World Health Organization. (https://covid19.who.int/)).
현재 국내 누적 확진자 수는 74,262명, 사망자 수는 1,328명으로 알려져 있다(2021년 1월 22일 기준)(코로나바이러스감염증-19(COVID-19) 발생 현황. (http://ncov.mohw.go.kr/)).Currently, the cumulative number of confirmed cases in Korea is 74,262, and the number of deaths is known to be 1,328 (as of January 22, 2021) (Coronavirus Infectious Disease-19 (COVID-19). go.kr/)).
이러한 SARS-CoV-2 바이러스는 세포 표면에 ACE2(angiotensin-converting enzyme 2) 및 TMPRSS2를 발현하는 세포에 감염될 수 있다. 특히 숙주세포의 ACE2와 결합하는 바이러스 부위는 스파이크 단백 중 RBD(receptor binding domain)인데, 기존의 SARS-CoV-1 바이러스의 RBD보다 SARS-CoV-2 바이러스의 RBD가 ACE2와 높은 친화성을 나타내어, 전염력을 높이는 것으로 알려져 있다 (문헌[Cannalire R, et al. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci. 2020; 21(16): 5707]; 문헌[Tay MZ, et al. The trinity of COVID-19: immunity, inflammation and intervention, Nat Rev Immunol. 2020; 20(6):363-374]; 및 문헌[Saha RP, et al. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol. 2020;11:1258]).This SARS-CoV-2 virus can infect cells expressing angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 on the cell surface. In particular, the viral site that binds to ACE2 in the host cell is the receptor binding domain (RBD) of the spike protein. Known to increase infectivity (Cannalire R, et al. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci. 2020; 21(16): 5707; Tay MZ, et al. The trinity of COVID-19: immunity, inflammation and intervention, Nat Rev Immunol. 2020; 20(6):363-374; and Saha RP, et al. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol. 2020;11:1258]).
이러한 SARS-CoV-2 바이러스를 극복하기 위해, 전 세계적으로 백신 및 치료제 개발 연구를 진행하고 있다. 대부분의 SARS-CoV-2 바이러스에 대한 백신 개발 연구는 스파이크 단백을 타겟으로 진행되고 있다. 스파이크 단백은 바이러스의 진입과 면역 반응에 중요한 역할을 한다고 알려져 있다. 또한, 스파이크 단백의 RBD에 중화항체 형성을 유도할 수 있는 주요 항원결정인자(antigenic determinant)가 포함되어 있다고 알려져 있으므로, RBD를 포함하는 단백이나 이에 대한 유전자 또는 이들을 전달하는 벡터가 효과적인 백신 개발에 활용될 수 있을 것으로 전망되고 있으며, 실제로 이들을 타겟으로 한 백신이 개발되고 있다. 다양한 연구진에서 COVID-19를 제어할 수 있는 백신을 개발 중이고 일부는 접종 중에 있지만, 아직 안전성과 효용성이 확보된 백신은 검증되지 않은 상황이다.In order to overcome the SARS-CoV-2 virus, research on vaccines and therapeutics is being developed worldwide. Vaccine development studies for most SARS-CoV-2 viruses are being conducted targeting the spike protein. Spike protein is known to play an important role in viral entry and immune response. In addition, since it is known that the RBD of the spike protein contains a major antigenic determinant that can induce the formation of neutralizing antibodies, a protein containing RBD or a gene for it or a vector delivering them is utilized for effective vaccine development It is expected that this will be possible, and vaccines targeting them are being developed. Various researchers are developing vaccines that can control COVID-19, and some are being vaccinated, but vaccines with safety and efficacy have not yet been verified.
한편, 재조합 BCG와 같은 재조합 마이코박테리움 균주는 사람 면역결핍 바이러스(human immunodeficiency virus-1, HIV-1) 백신 개발을 위해 주목받아 왔으며, 마이코박테리움 파라고르도네 균주(Mycobacterium paragordonae, Mpg)는 온도 민감성 균주로서 체내 접종 시 피부 및 피하에서는 증식을 하여 면역 반응을 자극시키지만 체내 중심부에서는 체온보다 낮은 온도에서만 자랄 수 있는 특징으로 인해 증식이 억제되어 감염의 가능성이 낮아 결핵균을 포함한 마이코박테리아 감염증 등에 대한 예방 백신 및 면역 치료에 이용될 수 있다고 알려져 있다(한국 공개특허공보 제2018-0080999호 및 제2016-0021933호). On the other hand, recombinant Mycobacterium strains such as recombinant BCG have attracted attention for the development of human immunodeficiency virus-1 (HIV-1) vaccines, and Mycobacterium paragordonae (Mpg) is a temperature-sensitive strain that stimulates the immune response by proliferating on the skin and subcutaneously when inoculated, but inhibits proliferation due to the characteristic that it can grow only at a temperature lower than body temperature in the center of the body, so the possibility of infection is low. It is known that it can be used for prophylactic vaccines and immunotherapy for Korea (Korean Patent Publication Nos. 2018-0080999 and 2016-0021933).
또한, Mpg 균주는 HIV-1의 항원인 p24를 발현시킨 재조합 Mpg 균주(rMpg_p24)가 같은 항원을 발현시킨 재조합 BCG 균주보다 p24 특이적인 면역을 증가시킨 연구도 보고된 바 있다(문헌[Kim BJ et al. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci Rep. 2019 Oct 29;9(1):15515]).In addition, as for the Mpg strain, a study in which a recombinant Mpg strain expressing HIV-1 antigen p24 (rMpg_p24) increased p24-specific immunity compared to a recombinant BCG strain expressing the same antigen has also been reported (Kim BJ et al. al. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci Rep. 2019 Oct 29;9(1):15515]).
이에 본 발명자들은 새로운 COVID-19에 대한 백신을 개발하기 위해 연구한 결과, SARS-CoV-2 항원을 발현하는 벡터로 형질전환된 재조합 마이코박테리움 파라고르도네 균주를 사용하여 마우스를 면역화시킨 경우 마우스에서 SARS-CoV-2에 대해 중화항체능을 비롯하여 현저한 면역 반응이 생성됨을 확인함으로써, 본 발명을 완성하였다.Accordingly, the present inventors studied to develop a new vaccine against COVID-19. As a result, when mice were immunized using a recombinant Mycobacterium paragordone strain transformed with a vector expressing the SARS-CoV-2 antigen. The present invention was completed by confirming that a significant immune response including neutralizing antibody ability was generated in mice against SARS-CoV-2.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은, SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주를 제공한다.In order to achieve the above object, one aspect of the present invention provides a recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen.
본 발명의 다른 측면은, 상기 재조합 마이코박테리움 파라고르도네 균주를 유효성분으로 포함하는 SARS-CoV-2 감염의 치료 또는 예방을 위한 약학 조성물, 상기 재조합 마이코박테리움 파라고르도네 균주의 SARS-CoV-2 감염 치료 또는 예방을 위한 용도, 또는 상기 재조합 마이코박테리움 파라고르도네 균주를 이용한 SARS-CoV-2 감염의 치료 또는 예방을 위한 방법을 제공한다. Another aspect of the present invention is a pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection comprising the recombinant Mycobacterium paragordone strain as an active ingredient, SARS of the recombinant Mycobacterium paragordone strain -Use for the treatment or prevention of CoV-2 infection, or provides a method for the treatment or prevention of SARS-CoV-2 infection using the recombinant Mycobacterium paragordone strain.
본 발명의 또 다른 측면은, 상기 재조합 마이코박테리움 파라고르도네 균주를 유효성분으로 포함하는 제 1 조성물; 및 SARS-CoV-2의 수용체 결합 도메인 또는 이의 단편, 알룸(alum), 또는 이들의 조합을 유효성분으로 포함하는 제 2 조성물을 포함하는, SARS-CoV-2 감염의 치료 또는 예방용 키트, 또는 방법을 제공한다. Another aspect of the present invention, a first composition comprising the recombinant Mycobacterium paragordone strain as an active ingredient; And a kit for treating or preventing SARS-CoV-2 infection, comprising a second composition comprising a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof as an active ingredient, or provide a way
본 발명의 또 다른 측면은, SARS-CoV-2의 수용체 결합 도메인 또는 이의 단편을 코딩하는 폴리뉴클레오티드가 hsp 유전자 프로모터에 작동 가능하게 연결된 핵산 분자를 포함하는 벡터를 제공한다. Another aspect of the present invention provides a vector comprising a nucleic acid molecule in which a polynucleotide encoding a receptor binding domain of SARS-CoV-2 or a fragment thereof is operably linked to an hsp gene promoter.
본 발명의 또 다른 측면은, 상기 벡터를 포함하는 단리된 세포를 제공한다. Another aspect of the present invention provides an isolated cell comprising the vector.
본 발명의 또 다른 측면은, 상기 벡터로 마이코박테리움 파라고르도네 균주를 형질전환 시키는 것을 포함하는, SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주의 제조 방법을 제공한다. Another aspect of the present invention provides a method for producing a recombinant Mycobacterium paragordone strain expressing a SARS-CoV-2 antigen, comprising transforming the Mycobacterium paragordone strain with the vector do.
본 발명의 SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주는 마우스에서 SARS-CoV-2에 대해 중화항체능을 비롯하여 현저한 면역 반응을 유도할 수 있다. 따라서, 본 발명의 재조합 마이코박테리움 파라고르도네 균주는 SARS-CoV-2 감염을 예방하거나 치료하기 위한 백신으로 유용하게 사용될 수 있다.The recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen of the present invention can induce a remarkable immune response including neutralizing antibody ability against SARS-CoV-2 in mice. Therefore, the recombinant Mycobacterium paragordone strain of the present invention can be usefully used as a vaccine for preventing or treating SARS-CoV-2 infection.
도 1은 SARS-CoV-2의 RBD 부분을 활용한 삽입서열 제작 모식도를 나타낸다.1 shows a schematic diagram of the insertion sequence production using the RBD portion of SARS-CoV-2.
도 2는 SARS-CoV-2의 NP(nucleocapside phosphoprotein) 부분을 활용한 삽입서열 제작 모식도를 나타낸다.Figure 2 shows a schematic diagram of the insertion sequence using the NP (nucleocapside phosphoprotein) portion of SARS-CoV-2.
도 3a 및 도 3b는 각각 pMV306 셔틀 벡터에 각각 Phsp:RBD 염기서열(pMV306-Phsp:RBD) 및 Phsp:NP 염기서열(pMV306-Phsp:NP)을 클로닝한 벡터 맵을 나타낸다.3A and 3B show a vector map obtained by cloning a Phsp:RBD sequence (pMV306-Phsp:RBD) and a Phsp:NP sequence (pMV306-Phsp:NP) into the pMV306 shuttle vector, respectively.
도 4a 및 도 4b는 각각 pMV306-Phsp:RBD 벡터 및 pMV306-Phsp:NP 벡터를 형질전환시킨 대장균 콜로니에서 삽입 서열의 유무를 콜로니 PCR을 통해 확인한 결과를 나타낸다.4A and 4B show the results of confirming the presence or absence of an insertion sequence through colony PCR in E. coli colonies transformed with pMV306-Phsp:RBD vector and pMV306-Phsp:NP vector, respectively.
도 5a 및 도 5b는 pMV306-Phsp:RBD 벡터를 Mpg에 전기 천공한 후, 7H10 고체 배지(100 μg/ml의 카나마이신) 상에 형성된 콜로니 양상(도 5a)과 콜로니 PCR 결과(도 5b)를 나타낸다.Figures 5a and 5b show the colony pattern (Figure 5a) and colony PCR results (Figure 5b) formed on 7H10 solid medium (100 μg/ml kanamycin) after electroporation of the pMV306-Phsp:RBD vector into Mpg. .
도 6a 및 도 6b는 pMV306-Phsp:NP 벡터를 Mpg에 전기 천공한 후, 7H10 고체 배지(100 μg/ml의 카나마이신) 상 형성된 콜로니 양상(도 6a)과 콜로니 PCR 결과(도 6b)를 나타낸다.6a and 6b show the colony pattern ( FIG. 6a ) and colony PCR results ( FIG. 6b ) formed on 7H10 solid medium (100 μg/ml kanamycin) after electroporation of the pMV306-Phsp:NP vector into Mpg.
도 7은 야생형 Mpg 균주와 3개 rMpg_RBD 균주의 단백을 추출하여 SARS-CoV-2 스파이크 단백에 대한 항체(Sino Biological, 40591-T62)를 붙였을 때, 확인된 밴드 양상을 나타낸다. 여기서, 양성 대조군으로는 SARS-CoV 스파이크 S1 단백질(Sino Biological, 40159-V08B1)을 사용하였다.Figure 7 shows the pattern of the bands confirmed when an antibody (Sino Biological, 40591-T62) against the SARS-CoV-2 spike protein was extracted from the wild-type Mpg strain and the three rMpg_RBD strains. Here, as a positive control, SARS-CoV spike S1 protein (Sino Biological, 40159-V08B1) was used.
도 8은 야생형 Mpg와 2개 rMpg_NP 균주의 단백을 추출하여 SARS-CoV-2 뉴클레오캡시드 단백질에 대한 항체(Thermo Fisher, MA5-29981)를 붙였을 때, 확인된 밴드 양상을 나타낸다. 여기서, 양성 대조군으로는 NP 단백질(Sino Biological, 40588-V08B)을 사용하였다.FIG. 8 shows the patterns of the bands identified when an antibody (Thermo Fisher, MA5-29981) against the SARS-CoV-2 nucleocapsid protein was extracted by extracting the proteins of wild-type Mpg and two rMpg_NP strains. Here, as a positive control, NP protein (Sino Biological, 40588-V08B) was used.
도 9는 수지상 세포에 야생형 Mpg 균주(10 M.O.I.) 및 rMpg_RBD 균주(1 또는 10 M.O.I.)를 감염시키고, 세포에서 RNA를 추출하여 RBD 유전자 특이적인 프라이머로 real-time PCR을 수행한 후, 발현 양상을 비교한 그래프를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(**, p < 0.01).Figure 9 shows the expression patterns after infecting dendritic cells with a wild-type Mpg strain (10 M.O.I.) and rMpg_RBD strain (1 or 10 M.O.I.), extracting RNA from the cells, performing real-time PCR with RBD gene-specific primers, and A comparison graph is shown. Here, statistical significance was tested by Student's t-test (**, p < 0.01).
도 10은 야생형 Mpg 균주와 rMpg_RBD 균주(P1, 1세대; P3, 3세대; P5, 5세대)의 단백을 추출하여 SARS-CoV-2 스파이크 단백에 대한 항체(Sino Biological, 40591-T62)를 붙였을 때, 확인된 밴드 양상을 나타낸다. 여기서, 양성 대조군으로는 RBD 단백질(Sino Biological, 40592-V08B)을 사용하였다.Figure 10 shows that the protein of the wild-type Mpg strain and the rMpg_RBD strain (P1, 1st generation; P3, 3rd generation; P5, 5th generation) was extracted and an antibody against SARS-CoV-2 spike protein (Sino Biological, 40591-T62) was attached. When, it shows the confirmed band pattern. Here, as a positive control, RBD protein (Sino Biological, 40592-V08B) was used.
도 11a 내지 도 11d는, Mpg와 rMpg_RBD 감염 시 수지상 세포의 성숙 마커를 FACS로 분석하여, MHCII+(도 11a), CD40+(도 11b), CD80+(도 11c), CD86+(도 11d) 세포 집단의 비율 (%)을 비교한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; ***, p < 0.001).11A to 11D show the percentage of MHCII+ (FIG. 11A), CD40+ (FIG. 11B), CD80+ (FIG. 11C), and CD86+ (FIG. 11D) cell populations by FACS analysis of dendritic cell maturation markers upon infection with Mpg and rMpg_RBD. The result of comparing (%) is shown. Here, statistical significance was tested by Student's t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
도 12a 및 도 12b는 Mpg와 rMpg_RBD 감염 시 수지상 세포 배양액에서 사이토카인 IL-10(도 12a) 및 IL-12(도 12b)의 발현량을 ELISA로 측정, 비교한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; ***, p < 0.001).12A and 12B show the results of measuring and comparing the expression levels of cytokines IL-10 (FIG. 12A) and IL-12 (FIG. 12B) in dendritic cell culture medium during infection with Mpg and rMpg_RBD by ELISA. Here, statistical significance was tested by Student's t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
도 13a 및 도 13b는, 야생형 Mpg 균주 및 세대별 rMpg_RBD 균주(1, 5, 10 세대)에서 추출한 단백 및 mRNA를 사용하여, RBD의 발현을 RBD ELISA kit(도 13a) 및 real-time PCR(도 13b)로 확인한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정하였다(**, p < 0.01; ***, p < 0.001).13A and 13B show RBD expression using RBD ELISA kit (FIG. 13A) and real-time PCR (FIG. 13b) shows the results confirmed. Here, statistical significance was tested by Student's t-test (**, p < 0.01; ***, p < 0.001).
도 14는 마우스에 대한 Mpg 및 rMpg_RBD 균주 접종 스케줄 모식도를 나타낸다.14 shows a schematic diagram of the Mpg and rMpg_RBD strain inoculation schedule for mice.
도 15a 및 도 15b는 Mpg 및 rMpg_RBD(#5, #6, #7) 균주를 SC로 면역화한 마우스 비장세포를 사용하여 IFN-γ ELISPOT 어세이를 진행한 결과 그래프로서, 각 rMpg_RBD 균주에 의한 IFN-γ ELISPOT 결과(도 15a) 및 모든 rMpg_RBD 균주에 의한 IFN-γ ELISPOT 결과(도 15b)를 나타낸다. 도 15a의 하단에는 대표적인 멤브레인의 사진을 도시한다. 여기서, 통계적 유의성은 Student's t-test로 검정하였다(*, p < 0.05; ***, p < 0.001).15A and 15B are graphs showing the results of IFN-γ ELISPOT assay using mouse splenocytes immunized with SC-immunized Mpg and rMpg_RBD (#5, #6, #7) strains. IFN by each rMpg_RBD strain. -γ ELISPOT results (FIG. 15A) and IFN-γ ELISPOT results by all rMpg_RBD strains (FIG. 15B) are shown. 15A shows a photograph of a representative membrane. Here, statistical significance was tested by Student's t-test (*, p < 0.05; ***, p < 0.001).
도 16a 및 도 16b는 Mpg 및 rMpg_RBD 균주(#5, #6, #7)를 SC로 면역화한 마우스의 비장세포를 S1 단백으로 자극한 후, 발현된 사이토카인인 IL-12(도 16a) 및 IFN-γ(도 16b) 수준을 ELISA로 측정, 비교한 결과를 나타낸다.16A and 16B show the expression of cytokine IL-12 (FIG. 16A) and splenocytes of mice immunized with SC-immunized Mpg and rMpg_RBD strains (#5, #6, #7) with S1 protein. IFN-γ ( FIG. 16B ) levels were measured by ELISA, and the results of comparison are shown.
도 17a 내지 도 17c은 Mpg 및 rMpg_RBD 균주(#5, #6, #7)를 SC로 면역화한 마우스의 혈청 샘플을 RBD 단백으로 자극시킨 후 IgG2(도 17a), IgG1(도 17b) 및 총 IgG(도 17c) 항체의 발현량을 흡광도로 측정하여 비교한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(**, p < 0.01).17A to 17C show serum samples of mice immunized with Mpg and rMpg_RBD strains (#5, #6, #7) with RBD protein after stimulation with RBD protein, IgG2 ( FIG. 17A ), IgG1 ( FIG. 17B ) and total IgG. (FIG. 17c) shows the result of comparing the antibody expression level by measuring the absorbance. Here, statistical significance was tested by Student's t-test (**, p < 0.01).
도 18a 내지 도 18d는 야생형 Mpg 야생형과 3개 rMpg_RBD 균주를 면역화한 마우스 혈청의 SARS-CoV-2 pseudovirus 중화항체능을 나타낸다. 여기서, rMpg-RBD 1은 #5를 의미하고; rMpg-RBD 2는 #6을 의미하고; rMpg-RBD 3은 #7을 의미한다.18A to 18D show the SARS-CoV-2 pseudovirus neutralizing antibody ability of mouse serum immunized with wild-type Mpg wild-type and three rMpg_RBD strains. Here, rMpg-RBD 1 means #5; rMpg-RBD 2 means #6; rMpg-RBD 3 means #7.
도 19는 마우스에 대해 Mpg, rMpg_RBD 및 RBD 단백으로 면역화를 수행한 후, RBD 특이적인 면역 유도능을 평가하기 위한 동물 실험 스케줄을 나타낸다.19 shows an animal experiment schedule for evaluating RBD-specific immunity inducing ability after immunization with Mpg, rMpg_RBD and RBD proteins for mice.
도 20은 Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스 비장세포를 사용하여 IFN-γ ELISPOT 어세이를 진행한 결과 그래프를 나타낸다. 하단에는 대표적인 멤브레인의 사진을 도시한다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(**, p < 0.01).20 is a graph showing the results of an IFN-γ ELISPOT assay using mouse splenocytes immunized with SC-immunized Mpg, rMpg_RBD and RBD proteins. At the bottom, a photograph of a representative membrane is shown. Here, statistical significance was tested by Student's t-test (**, p < 0.01).
도 21a 내지 도 21d는, Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스 비장세포를 RBD 단백으로 자극한 후, CD3+ CD4+ IFN-γ+(도 21a), CD3+ CD4+ TNF-α+(도 21b), CD3+ CD8+ IFN-γ+(도 21c), 및 CD3+ CD8+ TNF-α+(도 21a) T 세포 집단을 FACS로 분석한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; *** p < 0.001).21A to 21D show mouse splenocytes immunized with SC-immunized Mpg, rMpg_RBD and RBD proteins with RBD protein, followed by CD3+ CD4+ IFN-γ+ ( FIG. 21A ), CD3+ CD4+ TNF-α+ ( FIG. 21B ). ), CD3+ CD8+ IFN-γ+ ( FIG. 21C ), and CD3+ CD8+ TNF-α+ ( FIG. 21A ) T cell populations analyzed by FACS are shown. Here, statistical significance was tested with Student's t-test (*, p < 0.05; **, p < 0.01; *** p < 0.001).
도 22a 내지 도 22e는, Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스의 비장세포를 RBD 단백으로 자극한 후, 발현된 사이토카인인 IFN-γ(도 22a), TNF-α(도 22b), IL-2(도 22c), IL-10(도 22d), 및 IL-12(도 22e) 수준을 ELISA로 측정, 비교한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; *** p <0.001).22A to 22E show the expression of cytokines IFN-γ (FIG. 22A) and TNF-α (FIG. 22B) after stimulation of splenocytes of mice immunized with Mpg, rMpg_RBD and RBD protein with RBD protein. ), IL-2 (FIG. 22C), IL-10 (FIG. 22D), and IL-12 (FIG. 22E) levels were measured and compared by ELISA. Here, statistical significance was tested with Student's t-test (*, p < 0.05; **, p < 0.01; *** p <0.001).
도 23a 내지 도 23c는, Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스의 혈청 샘플을 RBD 단백으로 자극한 후, IgG2(도 23a), IgG1(도 23b), 및 총 IgG(도 23c) 항체의 발현량을 흡광도로 측정하여 비교한 결과를 나타낸다. 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; *** p <0.001).23A to 23C show serum samples of mice immunized with Mpg, rMpg_RBD, and RBD protein with RBD protein after stimulation with RBD protein, IgG2 (FIG. 23A), IgG1 (FIG. 23B), and total IgG (FIG. 23C) The result of comparison by measuring the expression level of the antibody by absorbance is shown. Statistical significance was tested by Student's t-test (*, p < 0.05; **, p < 0.01; *** p <0.001).
도 24는 rMpg_RBD 균주 혹은 RBD 단백을 면역화한 마우스 혈청의 생 SARS-CoV-2에 대한 중화항체능을 나타낸다.24 shows the neutralizing antibody ability against live SARS-CoV-2 of mouse serum immunized with rMpg_RBD strain or RBD protein.
도 25a 내지 도 25d는 rMpg_RBD 균주 혹은 RBD 단백을 면역화한 마우스 혈청의 SARS-CoV-2 pseudovirus에 대한 중화 항체능을 나타낸다.25A to 25D show the ability of neutralizing antibody against SARS-CoV-2 pseudovirus of mouse serum immunized with rMpg_RBD strain or RBD protein.
도 26a 및 도 26b는 PBS, Mpg 및 rMpg_RBD를 면역시킨 마우스 혈청이 ACE2와 RBD의 결합에 미치는 영향을 평가하기 위한 ACE2-RBD 결합 어세이 결과를 나타낸다. 구체적으로, 도 26a는 ACE2와 결합된 RBD 단백의 Fc tag에 결합하는 HRP-IgG의 양을 흡광도로 측정, 분석한 결과를 나타내고, 도 26b는 흡광도 결과를 정규화(가장 높은 값을 100%, 가장 낮은 값을 0%로 변환)하여, ACE2-RBD 결합을 %로 변환한 그래프를 나타낸다. p 값은 PBS 및 Mpg의 결과와 rMpg_RBD 결과를 Student's t-test로 분석하여 나타내었다(***, p < 0.001).26A and 26B show the results of an ACE2-RBD binding assay for evaluating the effect of PBS, Mpg, and rMpg_RBD-immunized mouse serum on the binding of ACE2 to RBD. Specifically, Figure 26a shows the absorbance measurement and analysis result of the amount of HRP-IgG binding to the Fc tag of the RBD protein bound to ACE2, and Figure 26b is the absorbance result normalized (the highest value is 100%, the most A graph is shown in which ACE2-RBD binding is converted to % by converting low values to 0%). The p value was expressed by analyzing the results of PBS and Mpg and rMpg_RBD by Student's t-test (***, p < 0.001).
도 27은 Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스의 BALF 샘플을 RBD 단백으로 자극한 후 IgA 항체의 발현량을 흡광도로 측정하여 비교한 결과를 나타낸다. 여기서, 통계적 유의성은 Student's t-test로 검정되었다(*, p < 0.05; **, p < 0.01; *** p < 0.001).FIG. 27 shows the results of comparing BALF samples of mice immunized with Mpg, rMpg_RBD and RBD proteins with the RBD protein by measuring the absorbance of the expression level of the IgA antibody. Here, statistical significance was tested with Student's t-test (*, p < 0.05; **, p < 0.01; *** p < 0.001).
도 28은 SARS-CoV-2 바이러스가 숙주세포로 감염될 때 사용되는 숙주세포 분자와 그의 모식도를 나타낸다.28 shows a host cell molecule used when SARS-CoV-2 virus infects a host cell and a schematic diagram thereof.
도 29는 rMpg_RBD 균주(#7 strain)를 생균 형태로 1×106 CFU로 마우스에 피하 주사하여 2주째 및 2주 5일째에 마우스로부터 얻은 혈청의 SARS-CoV-2 Vero p2 중화항체능을 나타낸다. 여기서, 대조 항체(control antibody)는 항-SARS-CoV-2 스파이크 항체(Cat#: 40150-T62-COV2)이다.Figure 29 shows the SARS-CoV-2 Vero p2 neutralizing antibody ability of serum obtained from mice at 2 weeks and 2 weeks and 5 days after subcutaneous injection of rMpg_RBD strain (#7 strain) into mice at 1×10 6 CFU in live cell form. . Here, the control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
도 30은 rMpg_RBD 균주(#7 strain)를 생균 형태로 1×107 CFU로 마우스에 피하 주사하여 2주째 및 2주 5일째에 마우스로부터 얻은 혈청의 SARS-CoV-2 Vero p2 중화항체능을 나타낸다. 여기서, 대조 항체는 항-SARS-CoV-2 스파이크 항체(Cat#: 40150-T62-COV2)이다.30 shows the SARS-CoV-2 Vero p2 neutralizing antibody ability of serum obtained from mice at 2 weeks and 2 weeks and 5 days by subcutaneously injecting the rMpg_RBD strain (#7 strain) into mice at 1×10 7 CFU in live cell form. . Here, the control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
도 31은 rMpg_RBD 균주(#7 strain)를 불활성화 형태로 1×107 CFU로 마우스에 피하 주사하여 2주째 및 2주 5일째에 마우스로부터 얻은 혈청의 SARS-CoV-2 Vero p2 중화항체능을 나타낸다. 여기서, 대조 항체는 항-SARS-CoV-2 스파이크 항체(Cat#: 40150-T62-COV2)이다.Figure 31 shows the SARS-CoV-2 Vero p2 neutralizing antibody ability of serum obtained from mice at 2 weeks and 2 weeks and 5 days by subcutaneously injecting the rMpg_RBD strain (#7 strain) into mice at 1×10 7 CFU in an inactivated form. indicates. Here, the control antibody is an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2).
도 32는 도 29 내지 도 31에 도시된 결과 중 rMpg_RBD 균주에 대한 결과를 접종 후 채혈 시기에 따른 변화로 표현한 그래프를 나타낸다.FIG. 32 shows a graph in which the results for the rMpg_RBD strain among the results shown in FIGS. 29 to 31 are expressed as changes according to the blood sampling period after inoculation.
도 33은 도 29 내지 도 31에 도시된 결과 중 rMpg_RBD 균주에 대한 결과를 접종량에 따른 중화항체능으로 비교한 그래프를 나타낸다. 여기서, Live ^6, Live ^7 및 Inactivation ^7은 각각 rMpg_RBD 균주(#7 strain)를 1×106 CFU의 생균 형태, 1×107 CFU의 생균 형태 및 1×106 CFU의 불활성화 형태로 마우스에 피하 주사하여 얻은 혈청을 의미한다.33 shows a graph comparing the results for the rMpg_RBD strain among the results shown in FIGS. 29 to 31 as neutralizing antibody capacity according to the inoculation amount. Here, Live ^6, Live ^7 and Inactivation ^7 are 1×10 6 CFU of live cell form, 1×10 7 CFU of live cell form and 1×10 6 CFU of inactivated form of the rMpg_RBD strain (#7 strain), respectively. means the serum obtained by subcutaneous injection into mice.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 측면은, SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주를 제공한다.One aspect of the present invention provides a recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen.
본 명세서에서 사용된 용어, "SARS-CoV-2 항원"은 대상에서 SARS-CoV-2에 대해 면역 반응, 예컨대, 체액성 및/또는 세포성 매개 면역 반응을 유도할 수 있는 폴리펩티드 또는 폴리펩티드 단편을 의미한다. 상기 항원은 대상에서 SARS-CoV-2에 대해 면역 반응을 유도할 수 있거나 보호 면역 효과를 나타낼 수 있는 SARS-CoV-2의 단백, 이들의 단편 또는 에피토프, 또는 여러 SARS-CoV-2 단백 또는 이들의 일부의 조합일 수 있다. As used herein, the term "SARS-CoV-2 antigen" refers to a polypeptide or polypeptide fragment capable of inducing an immune response, such as a humoral and/or cellular mediated immune response, against SARS-CoV-2 in a subject. it means. The antigen is a protein, fragment or epitope thereof, or several SARS-CoV-2 proteins or these capable of inducing an immune response against SARS-CoV-2 in a subject or exhibiting a protective immune effect. It may be a combination of some of the
본 발명의 일 구현예에서, 상기 SARS-CoV-2 항원은 SARS-CoV-2의 표면에 돌출 스파이크를 형성하는 스파이크(S) 단백 또는 이의 단편일 수 있다. 구체적으로, 상기 SARS-CoV-2 항원은 숙주 세포의 ACE2(angiotensin-converting enzyme 2)와 결합하는 스파이크 단백의 수용체 결합 도메인(Receptor Binding Domain, RBD)을 포함하는 S1 서브유닛 또는 이의 단편일 수 있다. 또한, 상기 SARS-CoV-2 항원은 수용체 결합 도메인 또는 이의 단편일 수 있다. 상기 수용체 결합 도메인 또는 이의 단편은 서열번호 1의 아미노산 서열을 가질 수 있다. In one embodiment of the present invention, the SARS-CoV-2 antigen may be a spike (S) protein or a fragment thereof that forms a protruding spike on the surface of SARS-CoV-2. Specifically, the SARS-CoV-2 antigen may be an S1 subunit or a fragment thereof comprising a receptor binding domain (RBD) of a spike protein that binds to angiotensin-converting enzyme 2 (ACE2) of a host cell. . In addition, the SARS-CoV-2 antigen may be a receptor binding domain or a fragment thereof. The receptor binding domain or fragment thereof may have the amino acid sequence of SEQ ID NO: 1.
본 발명의 일 구현예에서, 상기 SARS-CoV-2 항원은 프로모터에 작동가능하게 연결된 SARS-CoV-2 항원을 코딩하는 폴리뉴클레오티드로부터 발현될 수 있다. 구체적으로, SARS-CoV-2 항원을 코딩하는 폴리뉴클레오티드는 서열번호 2의 뉴클레오티드 서열일 수 있다. 또한, 프로모터는 hsp(heat shock protein) 프로모터일 수 있다. 더 구체적으로, 프로모터는 마이코박테리움 보비스(Mycobacterium bovis) BCG 유래의 hsp65(heat shock protein 65) 유전자 프로모터일 수 있다. In one embodiment of the present invention, the SARS-CoV-2 antigen may be expressed from a polynucleotide encoding the SARS-CoV-2 antigen operably linked to a promoter. Specifically, the polynucleotide encoding the SARS-CoV-2 antigen may be the nucleotide sequence of SEQ ID NO: 2. In addition, the promoter may be a heat shock protein (hsp) promoter. More specifically, the promoter may be a heat shock protein 65 (hsp65) gene promoter derived from Mycobacterium bovis BCG.
본 발명의 일 구현예에서, 상기 재조합 마이코박테리움 파라고르도네 균주는 야생형 마이코박테리움 파라고르도네 균주가 SARS-CoV-2 항원을 발현하도록 형질전환된 것일 수 있다. 구체적으로, 상기 재조합 마이코박테리움 파라고르도네 균주는 SARS-CoV-2 항원을 코딩하는 폴리뉴클레오티드가 마이코박테리움 보비스(Mycobacterium bovis) BCG 유래의 hsp65(heat shock protein 65) 유전자 프로모터에 작동가능하게 연결된 핵산 분자로 형질전환된 것일 수 있다. 상기 SARS-CoV-2 항원은 SARS-CoV-2의 표면 항원인 스파이크(S) 단백일 수 있으며, 보다 구체적으로 S1 서브유닛일 수 있다. 또한, 상기 SARS-CoV-2 항원은 수용체 결합 도메인일 수 있다. In one embodiment of the present invention, the recombinant Mycobacterium paragordone strain may be a wild-type Mycobacterium paragordone strain transformed to express the SARS-CoV-2 antigen. Specifically, in the recombinant Mycobacterium paragordone strain, the polynucleotide encoding the SARS-CoV-2 antigen is operable on the Hsp65 (heat shock protein 65) gene promoter derived from Mycobacterium bovis BCG. It may be transformed with a tightly linked nucleic acid molecule. The SARS-CoV-2 antigen may be a spike (S) protein, which is a surface antigen of SARS-CoV-2, and more specifically, may be an S1 subunit. In addition, the SARS-CoV-2 antigen may be a receptor binding domain.
본 발명의 일 실시예에 따르면, 상기 재조합 마이코박테리움 파라고르도네 균주는 도 3a에 도시된 구조를 갖는 pMV306-Pshp:RBD 벡터로 형질전환된 것일 수 있다. According to an embodiment of the present invention, the recombinant Mycobacterium paragordone strain may be transformed with the pMV306-Pshp:RBD vector having the structure shown in FIG. 3A.
본 발명의 구현예에서 사용된 (야생형) 마이코박테리움 파라고르도네(Mpg) 균주는 자연발생적 균주로, 형태학적으로 마이코박테리움 고르도네(Mycobacterium gordonae)와 유사하나, 최적 성장 온도가 25 내지 30℃이며, 일반적인 세균이 잘 자라는 온도인 37℃에서는 자라지 않는 온도 민감성 균주이다. 이러한 특징으로 인해 인체에 적용 시 안전성이 확보될 수 있다. Mpg 균주에 대해서는 한국 공개특허공보 제2016-0021933호 등을 참조할 수 있다. 상기 문헌은 본 명세서의 일부로서 간주된다. 구체적으로 Mpg 균주는 기탁번호 KCTC 12628BP로 한국생명공학연구원 미생물자원센터에 기탁된 것일 수 있다. The (wild type) Mycobacterium paragordone (Mpg) strain used in the embodiment of the present invention is a naturally occurring strain, morphologically similar to Mycobacterium gordonae, but the optimum growth temperature is 25 to 30 ℃, it is a temperature-sensitive strain that does not grow at 37 ℃, the temperature at which general bacteria grow well. Due to these characteristics, safety can be secured when applied to the human body. For the Mpg strain, reference may be made to Korean Patent Application Laid-Open No. 2016-0021933 and the like. This document is considered a part of this specification. Specifically, the Mpg strain may be deposited at the Korea Research Institute of Bioscience and Biotechnology Microbial Resource Center under the accession number KCTC 12628BP.
본 발명의 일 실시예에 따른, SARS-CoV-2 항원 중 스파이크 단백을 구성하는 수용체 결합 도메인(RBD) 유전자가 도입된 재조합 Mpg 균주(rMpg_RBD)는 형질전환시 많은 콜로니가 확보되었고, 그 중 상당 수가 RBD를 가지고 있는 것으로 확인되었으며, 실제로 RBD 항체에 특이적인 밴드가 웨스턴블랏에서 검출되었다(도 5 및 도 7 참조). 또한, 수지상 세포 감염 시, 세포 내 RNA에서도 RBD가 검출됨이 확인되었다(도 9 참조). 나아가, rMpg_RBD로 마우스를 면역화한 경우에, rMpg_RBD은 SARS-CoV-2 pseudovirus에 대해 우수한 면역원성을 나타내는 것을 확인되었다(도 15 내지 18 참조). In the recombinant Mpg strain (rMpg_RBD) into which the receptor binding domain (RBD) gene constituting the spike protein among the SARS-CoV-2 antigens was introduced according to an embodiment of the present invention, many colonies were secured during transformation, and many of them were It was confirmed that the number had RBD, and in fact, a band specific for the RBD antibody was detected by western blot (see FIGS. 5 and 7 ). In addition, it was confirmed that RBD was also detected in intracellular RNA during dendritic cell infection (see FIG. 9 ). Furthermore, when mice were immunized with rMpg_RBD, it was confirmed that rMpg_RBD exhibited excellent immunogenicity against SARS-CoV-2 pseudovirus (see FIGS. 15 to 18 ).
본 발명의 다른 측면은, 재조합 마이코박테리움 파라고르도네 균주를 유효성분으로 포함하는, SARS-CoV-2 감염의 치료 또는 예방을 위한 약학 조성물을 제공한다. Another aspect of the present invention provides a pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection, comprising the recombinant Mycobacterium paragordone strain as an active ingredient.
본 발명의 일 구현예에서, 상기 약학 조성물은 백신일 수 있다. In one embodiment of the present invention, the pharmaceutical composition may be a vaccine.
본 발명의 일 구현예에서, 상기 약학 조성물은 단회 투여 또는 다회 투여될 수 있다. 상기 다회 투여는 2회 투여일 수 있다. In one embodiment of the present invention, the pharmaceutical composition may be administered in a single dose or in multiple doses. The multiple administration may be two administrations.
본 발명의 다른 구현예에서, 상기 약학 조성물은 프라임-부스팅 접종법에서 프라이밍 백신으로 사용될 수 있다. 상기 부스팅 접종으로 SARS-CoV-2의 수용체 결합 도메인, 알룸(alum), 또는 이들의 조합과 함께 사용될 수 있다. In another embodiment of the present invention, the pharmaceutical composition may be used as a priming vaccine in a prime-boosting inoculation method. The boosting inoculation may be used together with the receptor binding domain of SARS-CoV-2, alum, or a combination thereof.
상기 약학 조성물은 마이크로니들 또는 마이크로어레이 제제, 산제, 캡슐, 정제, 과립, 수성 현탁액, 흡입제, 좌제, 주사제, 연고제, 패치, 분말 또는 음료 형태일 수 있다. 또한, 상기 약학 조성물은 인간을 대상으로 하는 것일 수 있다. The pharmaceutical composition may be in the form of a microneedle or microarray formulation, powder, capsule, tablet, granule, aqueous suspension, inhalant, suppository, injection, ointment, patch, powder or beverage. In addition, the pharmaceutical composition may be for humans.
또한, 상기 약학 조성물에 사용되는 약학적으로 허용되는 부형제로서, 경구 투여의 경우에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있고, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있고, 국소 투여의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. In addition, as a pharmaceutically acceptable excipient used in the pharmaceutical composition, in the case of oral administration, a binder, a lubricant, a disintegrant, an excipient, a solubilizer, a dispersing agent, a stabilizer, a suspending agent, a pigment, a fragrance, etc. may be used. , in the case of injections, buffers, preservatives, analgesics, solubilizers, isotonic agents, stabilizers, etc. can be mixed and used, and in the case of topical administration, bases, excipients, lubricants, preservatives, etc. can be used.
본 발명의 약학 조성물의 제형은 상술한 바와 같은 약학적으로 허용되는 부형제와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 본 발명의 약학 조성물은 경구 투여의 경우에는 정제, 트로키, 캡슐, 엘릭서, 현탁액, 시럽, 웨이퍼 등의 형태로 제조될 수 있고, 주사제의 경우에는 단위 투약 앰플 또는 다회 투약 형태로 제조될 수 있다. 또한, 본 발명의 약학 조성물은 용액, 서방형 제제, 환제, 당의정, 액제, 겔 또는 슬러리로도 제형화될 수 있다. 패치의 경우에는 마이크로니들 또는 마이크로어레이 형태로 제형화될 수 있다. The dosage form of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with the pharmaceutically acceptable excipients as described above. For example, the pharmaceutical composition of the present invention may be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. in the case of oral administration, and in the case of injections in the form of unit dose ampoules or multiple doses. can be manufactured. In addition, the pharmaceutical composition of the present invention may be formulated as a solution, sustained release preparation, pill, dragee, liquid, gel or slurry. In the case of a patch, it may be formulated in the form of microneedles or microarrays.
한편, 제형화에 적합한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말디톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.Meanwhile, examples of suitable carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate , cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil may be used. In addition, it may further include a filler, an anti-agglomeration agent, a lubricant, a wetting agent, a flavoring agent, an emulsifier, a preservative, and the like.
상기 약학 조성물의 투여 경로에는 이들로 한정되는 것은 아니지만 피하, 경구, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 복강내, 비강내, 장관, 국소, 설하 또는 직장 경로가 포함되며, 피하 또는 경피 경로가 바람직할 수 있다. Routes of administration of the pharmaceutical composition include, but are not limited to, subcutaneous, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, intraperitoneal, intranasal, enteral, topical, sublingual or rectal. Routes are included, and subcutaneous or transdermal routes may be preferred.
상기 약학 조성물의 투여량은 대상체의 연령, 체중, 일반적인 건강, 성별, 다이어트(diet), 투여 빈도, 투여 기간, 투여 경로, 배출율, 및 치료 또는 예방하려는 특정 질환의 중증도를 포함한 여러 요인에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 통상적으로, 투여량은 1일 0.0001 내지 50 mg/kg 또는 0.001 내지 50 mg/kg일 수 있다. 투여는 1일 1회 또는 수회로 나누어 이루어질 수 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The dosage of the pharmaceutical composition may vary depending on a number of factors including the subject's age, weight, general health, sex, diet, administration frequency, administration period, administration route, excretion rate, and the severity of the specific disease to be treated or prevented. and may be appropriately selected by those skilled in the art. Typically, the dosage may be 0.0001 to 50 mg/kg or 0.001 to 50 mg/kg per day. Administration may be performed once a day or divided into several times. The above dosage does not limit the scope of the present invention in any way.
본 발명의 일 구현예에 따르면, 백신은 통상 프라임-부스트 형태로 2회 이상 투여될 수 있다. 이때, 동일한 백신이 수회 투여되거나, 동일 항원을 포함하는 서로 다른 종류의 백신이 투여될 수 있다. 예를 들어, 본 발명의 백신이 프라이밍 백신으로 사용되고, SARS-CoV-2의 수용체 결합 도메인 또는 이의 단편, 알룸(alum), 또는 이들의 조합이 부스팅 접종에서 사용될 수 있다.According to one embodiment of the present invention, the vaccine may be administered two or more times in a normal prime-boost form. In this case, the same vaccine may be administered several times, or different types of vaccines containing the same antigen may be administered. For example, the vaccine of the present invention may be used as a priming vaccine, and a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof may be used in a boosting inoculation.
본 발명의 다른 구현예에 따르면, 재조합 마이코박테리움 파라고르도네 균주는 생균, 약독화 또는 불활화 형태로 사용될 수 있다.According to another embodiment of the present invention, the recombinant Mycobacterium paragordone strain may be used in live, attenuated or inactivated form.
본 발명의 또 다른 측면은, 상술한 재조합 마이코박테리움 파라고르도네 균주를 유효성분으로 포함하는 제 1 조성물; 및 SARS-CoV-2의 수용체 결합 도메인 또는 이의 단편, 알룸(alum), 또는 이들의 조합을 유효성분으로 포함하는 제 2 조성물을 포함하는, SARS-CoV-2 감염의 치료 또는 예방용 키트를 제공한다. Another aspect of the present invention, a first composition comprising the above-described recombinant Mycobacterium paragordone strain as an active ingredient; And it provides a kit for the treatment or prevention of SARS-CoV-2 infection, comprising a second composition comprising a receptor binding domain of SARS-CoV-2 or a fragment thereof, alum, or a combination thereof as an active ingredient do.
본 발명의 일 구현예에 따르면, 상기 키트는 프라임-부스트 접종을 위한 것일 수 있다. 프라임-부스트 접종 시에, 제 1 조성물은 프라임 투여되고 제 2 조성물은 부스트 투여되는 것일 수 있다. According to one embodiment of the present invention, the kit may be for prime-boost inoculation. Upon prime-boost inoculation, the first composition may be prime-administered and the second composition may be boost-administered.
본 발명의 일 실시예에서, rMpg_RBD로 투여한 후에 RBD 단백을 투여하는 경우에, rMpg_RBD만을 투여한 경우와 비교하여 마우스 혈청의 live SARS-CoV-2에 대한 항체 생성이 증가하고 중화항체능이 우수하였음을 확인하였다(도 24 및 도 25a 내지 도 25d 참조).In one embodiment of the present invention, when RBD protein was administered after administration with rMpg_RBD, the production of antibodies against live SARS-CoV-2 in mouse serum increased and the neutralizing antibody ability was excellent compared to the case where only rMpg_RBD was administered. was confirmed (see FIGS. 24 and 25a to 25d).
본 발명의 또 다른 측면은, SARS-CoV-2의 수용체 결합 도메인을 코딩하는 폴리뉴클레오티드가 hsp 유전자 프로모터에 작동 가능하게 연결된 재조합 핵산 분자를 포함하는 벡터를 제공한다. Another aspect of the present invention provides a vector comprising a recombinant nucleic acid molecule in which a polynucleotide encoding a receptor binding domain of SARS-CoV-2 is operably linked to an hsp gene promoter.
본 발명의 일 구현예에서, 상기 hsp 유전자 프로모터는 마이코박테리움 보비스(Mycobacterium bovis) BCG 유래의 hsp65(heat shock protein 65) 유전자 프로모터일 수 있다. In one embodiment of the present invention, the hsp gene promoter may be a heat shock protein 65 (hsp65) gene promoter derived from Mycobacterium bovis BCG.
본 발명의 일 구현예에서, 상기 벡터는 마이코박테리움 균주 발현용일 수 있으며, 구체적으로 마이코박테리움-대장균 셔틀 벡터일 수 있다. 또한, 상기 벡터는 도 3a에 도시된 구조를 갖는 pMV306-Pshp:RBD일 수 있다. In one embodiment of the present invention, the vector may be for Mycobacterium strain expression, specifically Mycobacterium-E. coli shuttle vector. In addition, the vector may be pMV306-Pshp:RBD having the structure shown in FIG. 3A.
본 발명의 또 다른 측면은, 상술한 벡터를 포함하는, 단리된 세포를 제공한다. 상기 세포는 마이코박테리움 균주, 구체적으로 마이코박테리움 파라고르도네 균주일 수 있다. Another aspect of the present invention provides an isolated cell comprising the vector described above. The cell may be a Mycobacterium strain, specifically, a Mycobacterium paragordone strain.
본 발명의 또 다른 측면은, 상술한 벡터를 마이코박테리움 파라고르도네 균주에 형질전환시키는 것을 포함하는, SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주의 제조 방법을 제공한다. Another aspect of the present invention provides a method for producing a recombinant Mycobacterium paragordone strain expressing a SARS-CoV-2 antigen, comprising transforming the above-described vector into the Mycobacterium paragordone strain. to provide.
상기 형질전환은 당업계에 알려진 다양한 방법, 예를 들어, 미세주입, 칼슘포스페이트 침전, 전기 천공, 리포좀-매개 트랜스펙션, 아그로박테리움-매개 트랜스펙션, DEAE-덱스트란 처리, 및 유전자 밤바드먼트 등을 이용하여 수행될 수 있다. 본 발명의 일 실시예에서는 전기 천공법을 사용하여 형질전환을 수행하였다.The transformation can be performed by various methods known in the art, for example, microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, Agrobacterium-mediated transfection, DEAE-dextran treatment, and gene balm. It may be performed using a badment or the like. In an embodiment of the present invention, transformation was performed using electroporation.
실시예Example
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
I. 온도 민감성 마이코박테리움 파라고르도네(Mycobacterium paragordonae, Mpg) 균주를 이용한 SARS-CoV-2 항원 발현 재조합 균주의 제작 및 그의 면역원성 평가I. Construction of a recombinant strain expressing SARS-CoV-2 antigen using a temperature-sensitive Mycobacterium paragordonae (Mpg) strain and evaluation of its immunogenicity
실시예 1. SARS-CoV-2 항원 발현을 위한 마이코박테리아-대장균 셔틀 벡터의 제작Example 1. Construction of mycobacteria-E. coli shuttle vector for SARS-CoV-2 antigen expression
SARS-CoV-2 항원 중 스파이크(spike) 단백을 구성하는 수용체 결합 도메인(receptor binding domain, RBD)과 뉴클레오캡시드 인단백(nucleocapsid phosphoprotein, NP)의 염기서열을 토대로 결핵균의 코돈에 최적화된 서열(코돈 최적화 웹툴 사용: http://www.jcat.de/)을 유전자 합성(바이오닉스: http://www.bionicsro.co.kr/)을 통해 확보하였다. RBD 염기서열은 675개 뉴클레오타이드(서열번호 2)로 이루어지고 전체 스파이크 단백 중 319번 내지 541번 아미노산 영역에 해당하는 224개 아미노산(서열번호 1)을 코딩한다(도 1). NP 염기서열은 654개 뉴클레오타이드(서열번호 4)로 이루어지고 전체 뉴클레오캡시드 인단백 중 138번 내지 353번 아미노산 영역에 해당하는 217개 아미노산(서열번호 3)을 코딩한다(도 2).Based on the nucleotide sequence of the receptor binding domain (RBD) and nucleocapsid phosphoprotein (NP) constituting the spike protein among SARS-CoV-2 antigens, a sequence optimized for the codon of Mycobacterium tuberculosis ( Using the codon optimization web tool: http://www.jcat.de/) was obtained through gene synthesis (Bionics: http://www.bionicsro.co.kr/). The RBD base sequence consists of 675 nucleotides (SEQ ID NO: 2) and encodes 224 amino acids (SEQ ID NO: 1) corresponding to amino acids 319 to 541 of the total spike protein (FIG. 1). The NP sequence consists of 654 nucleotides (SEQ ID NO: 4) and encodes 217 amino acids (SEQ ID NO: 3) corresponding to amino acids 138 to 353 of the entire nucleocapsid phosphoprotein (FIG. 2).
마이코박테리움 보비스(Mycobacterium bovis) BCG(결핵연구원)의 지놈 DNA로부터 hsp65(heat shock protein 65) 유전자 프로모터(Phsp) 부분(375 bp)(서열번호 5)을 PCR을 통해 증폭하고, 상기 합성된 각각의 유전자 서열과 오버랩핑(overlapping) PCR을 통해 연결하여 Phsp:RBD(1,050 bp) 및 Phsp:NP(1,029 bp) 서열을 각각 제작하였다. 상기 오버랩핑 PCR에 사용한 프라이머 세트 및 온도 조건을 표 1에 나타내었다.The hsp65 (heat shock protein 65) gene promoter (Phsp) portion (375 bp) (SEQ ID NO: 5) was amplified through PCR from the genomic DNA of Mycobacterium bovis BCG (The Tuberculosis Research Institute), and the synthesized Phsp:RBD (1,050 bp) and Phsp:NP (1,029 bp) sequences were prepared by linking each gene sequence and overlapping PCR. Table 1 shows the primer sets and temperature conditions used for the overlapping PCR.
Phsp:RBD 및 Phsp:NP 서열 증폭에 사용된 프라이머 세트(서열번호 6 내지 9) 및 온도 조건Primer sets (SEQ ID NOs: 6 to 9) and temperature conditions used for Phsp:RBD and Phsp:NP sequence amplification
PrimersPrimers Sequences (5' to 3')Sequences (5' to 3') Tm (℃)Tm (℃) ProductProduct
NotI_Phsp_FNotI_Phsp_F AAA GCG GCC GCG GTG ACC ACA ACG ACG CAAA GCG GCC GCG GTG ACC ACA ACG ACG C 5656 Phsp:RBD
(1,050bp)
Phsp:RBD
(1,050bp)
RBD_TB_XbaI_RRBD_TB_XbaI_R AAA TCT AGA TTA GAA GTT CAC GCA CTT GTT CTT CAAA TCT AGA TTA GAA GTT CAC GCA CTT GTT CTT C
Phsp_EcoRV_FPhsp_EcoRV_F TTT GAT ATC GGT GAC CAC AAC GAC GCG CTTT GAT ATC GGT GAC CAC AAC GAC GCG C 6262 Phsp:NP
(1,029bp)
Phsp:NP
(1,029bp)
NP_XbaI_RNP_XbaI_R AAA TCT AGA TTA GGC CTG AGT TGA GTC AGC ACT GAAA TCT AGA TTA GGC CTG AGT TGA GTC AGC ACT G
이어서, Phsp:RBD 및 Phsp:NP 서열을 NotI과 XbaI 또는 EcoRV와 XbaI의 제한 효소 조합을 사용하여 마이코박테리아-대장균 셔틀 벡터인 pMV306에 클로닝하여 벡터를 제작하고(도 3a 및 도 3b), 상기 벡터로 대장균을 형질전환시켰다. 그 후, 카나마이신 선별을 통해 형성된 콜로니 중 일부에 PCR을 수행하여 삽입 서열이 강하게 증폭되는 콜로니를 다시 선별하였다(도 4a 및 도 4b).이렇게 삽입 서열(RBD 및 NP)의 증폭이 확인된 콜로니에서 플라스미드 DNA를 뽑아, 시퀀싱을 통해 삽입 서열과 동일한 플라스미드 DNA를 확보하였다.Subsequently, the Phsp:RBD and Phsp:NP sequences were cloned into a mycobacteria-E. coli shuttle vector, pMV306, using a combination of NotI and XbaI or EcoRV and XbaI restriction enzymes to construct a vector ( FIGS. 3A and 3B ), and the vector was transformed into E. coli. Thereafter, PCR was performed on some of the colonies formed through kanamycin selection to select colonies in which the insert sequence was strongly amplified ( FIGS. 4A and 4B ). Plasmid DNA was extracted and plasmid DNA identical to the inserted sequence was obtained through sequencing.
실시예 2. SARS-CoV-2 RBD 발현 Mpg 및 NP 발현 Mpg의 제작Example 2. Construction of SARS-CoV-2 RBD-expressing Mpg and NP-expressing Mpg
실시예 1에서 확보한 각각의 플라스미드 DNA(pMV306-Phsp:RBD 및 -Phsp:NP)를 인하우스(in-house) 제작된 competent Mpg에 전기 천공(electroporation; Gene Pulser XcellTM, Bio-RAD)을 통해 표 2에 기재된 조건으로 형질전환시켰다.Each of the plasmid DNAs (pMV306-Phsp:RBD and -Phsp:NP) obtained in Example 1 was subjected to electroporation (Gene Pulser Xcell TM , Bio-RAD) into competent Mpg prepared in-house. Transformed under the conditions described in Table 2.
Mpg 형질전환 조건Mpg transformation conditions
Plasmid DNA concentrationPlasmid DNA concentration 1~2μg/5 μl1-2 μg/5 μl
VoltageVoltage 2.5 kV2.5 kV
CapacitanceCapacitance 25 μF25 μF
ResistanceResistance 1,000 Ω1,000 Ω
Cuvette (mm)Cuvette (mm) 22
Volume Volume 200 μl200 μl
전기 천공 후 생성된 Mpg를 항생제가 없는 7H9 액체 배지(Becton Dickinson)에 접종하여 30℃에서 24시간 동안 배양한 후에 1/10 내지 1/2 희석액을 카나마이신(100 μg/ml)이 포함된 7H10 고체 배지(Becton Dickinson)에 도말하였다. 그 후, 14일 내지 21일간 30℃에서 배양하고, 콜로니 형성 여부를 확인하였다.pMV306-Phsp:RBD로 형질전환시킨 경우, 상당한 수의 콜로니가 확보되었다(도 5a). 이렇게 확보된 콜로니 중 일부를 PCR로 확인한 결과, 대부분의 콜로니에서 양성 반응(RBD 발현: 형질전환시킨 RBD 유전자의 증폭이 확인됨)이 나타남을 확인하였다(도 5b).The Mpg generated after electroporation was inoculated into 7H9 liquid medium (Becton Dickinson) without antibiotics and incubated at 30°C for 24 hours, and then 1/10 to 1/2 dilutions of 7H10 solids containing kanamycin (100 μg/ml) It was plated on medium (Becton Dickinson). Thereafter, it was cultured at 30° C. for 14 to 21 days, and colony formation was checked. When transformed with pMV306-Phsp:RBD, a significant number of colonies were secured ( FIG. 5A ). As a result of confirming some of the obtained colonies by PCR, it was confirmed that most colonies showed a positive reaction (RBD expression: amplification of the transformed RBD gene was confirmed) ( FIG. 5b ).
반면, pMV306-Phsp:NP의 경우, 2회의 형질전환 시도를 하였는데, 첫 회에는 콜로니가 형성되지 않았고, 2회 째에 적은 수의 콜로니가 형성되었다(플레이트 당 6 내지 10개 콜로니 수준)(도 6a). 콜로니 PCR 결과, 8개 콜로니 중 2개 콜로니에서만 양성 결과가 확인되었다(도 6b).On the other hand, in the case of pMV306-Phsp:NP, two transformation attempts were made, no colonies were formed in the first time, and a small number of colonies were formed in the second time (level of 6 to 10 colonies per plate) (Fig. 6a). As a result of colony PCR, a positive result was confirmed only in 2 colonies out of 8 colonies (FIG. 6b).
각 제작된 재조합 Mpg 균주(rMpg_RBD 및 rMpg_NP)에 대해 콜로니를 선별 (여러 콜로니 중 #5, #6, 및 #7에 해당하는 콜로니를 선별한 것으로, 해당 콜로니는 RBD를 타겟으로 하는 콜로니 PCR을 진행하여, 양성 반응이 확인된 콜로니로, 양성 반응이 확인된 콜로니 중 무작위로 선별됨)하여, 7H9 액체 배지(100 μg/ml의 카나마이신 함유)에 접종하여 21일가량 30℃에서 배양한 후, 일부는 스탁(stock)으로 제조하고(20% 글리세롤, -70℃ 보관), 일부는 계대배양을 진행하였으며, 남은 배양액은 균주 내 RBD 및 NP의 발현 양상을 확인하기 위한 분석에 사용하였다.Colonies were selected for each prepared recombinant Mpg strain (rMpg_RBD and rMpg_NP) (colonies corresponding to #5, #6, and #7 among several colonies were selected, and the colony was subjected to colony PCR targeting RBD) Thus, positively confirmed colonies, randomly selected among positively confirmed colonies), inoculated into 7H9 liquid medium (containing 100 μg/ml of kanamycin), and cultured at 30° C. for about 21 days, then some was prepared as a stock (20% glycerol, stored at -70°C), some were subcultured, and the remaining culture was used for analysis to confirm the expression pattern of RBD and NP in the strain.
실험예 1. 재조합 Mpg의 RBD 및 NP 발현 확인Experimental Example 1. Confirmation of RBD and NP expression of recombinant Mpg
각 재조합 Mpg(rMpg_RBD 및 rMpg_NP) 균주 배양액을 원심분리(2,500 rpm, 10 min)하여 펠릿(pellet)을 취한 후, B-PER 버퍼(Thermo Scientific; 100 μg/ml의 라이소자임, 5 U/ml의 DNase, 및 프로테이나제 억제제가 보충됨)에 균일하게 섞어 얼음 상에서 초음파 처리하였다(2회 반응으로 5분; 펄스: 0.3초, 정지: 0.7초). 분쇄액을 원심분리(13,000 rpm, 15 min, 4℃)하여 상층액을 취해 웨스턴블랏(western blot)을 수행하였다.Each recombinant Mpg (rMpg_RBD and rMpg_NP) strain culture was centrifuged (2,500 rpm, 10 min) to obtain a pellet, and then B-PER buffer (Thermo Scientific; 100 μg/ml lysozyme, 5 U/ml DNase) , and supplemented with proteinase inhibitor) and sonicated on ice (2 reactions 5 min; pulse: 0.3 sec, stop: 0.7 sec). The pulverized solution was centrifuged (13,000 rpm, 15 min, 4° C.) to take the supernatant, and western blot was performed.
각 재조합 균주에서 추출한 단백(60 μg)을 SDS-PAGE 겔에 로딩한 후, 항 SARS-CoV-2 스파이크 단백질 항체(Sino Biological, 40591-T62; 1:2,000) 및 항 SARS-CoV-2 뉴클레오캡시드 단백질 항체(Thermo Fisher, MA5-29981; 1:1,000)를 붙여, RBD 및 NP가 제대로 발현되는지 여부를 확인하였다. 또한, 내부 대조군(internal control)으로 Mycobacterium tuberculosis의 hsp65(heat shock protein 65) 단백과 결합할 수 있는 항체(Santa Cruz, sc-57842; 1:200)를 사용하였다. 이때, 양성 대조군으로, SARS-CoV-2 스파이크 S1-His 재조합 단백질(Sino Biological, 40159-V08B1)과 SARS-CoV-2 뉴클레오캡시드-His 재조합 단백질(Sino Biological, 40588-V08B)을 사용하였다.After loading the protein (60 μg) extracted from each recombinant strain on an SDS-PAGE gel, anti-SARS-CoV-2 spike protein antibody (Sino Biological, 40591-T62; 1:2,000) and anti-SARS-CoV-2 nucleoside By attaching a capsid protein antibody (Thermo Fisher, MA5-29981; 1:1,000), it was confirmed whether RBD and NP were properly expressed. In addition, as an internal control, an antibody (Santa Cruz, sc-57842; 1:200) capable of binding to hsp65 (heat shock protein 65) protein of Mycobacterium tuberculosis was used. In this case, as positive controls, SARS-CoV-2 spike S1-His recombinant protein (Sino Biological, 40159-V08B1) and SARS-CoV-2 nucleocapsid-His recombinant protein (Sino Biological, 40588-V08B) were used.
그 결과, rMpg_RBD 균주에서는 RBD 특이적인 밴드가 검출되었다(도 7). 반면, rMpg_NP 균주에서는 동일한 실험을 반복했을 때에도 NP 특이적인 밴드가 전혀 관찰되지 않았다(도 8).As a result, an RBD-specific band was detected in the rMpg_RBD strain ( FIG. 7 ). On the other hand, no NP-specific band was observed in the rMpg_NP strain even when the same experiment was repeated ( FIG. 8 ).
실험예 2. 수지상 세포 감염 시 rMpg_RBD에 의한 RBD 발현량 측정Experimental Example 2. Measurement of RBD expression level by rMpg_RBD during dendritic cell infection
수지상 세포(Huiying Bio. Tech)를 24 웰 플레이트에 시딩하고(5 x 105 세포/웰) 24시간이 지난 후에 rMpg_RBD 균주를 1 또는 10 M.O.I.(multiplicity of infection)로 감염시켰다. 4시간 후, 감염된 세포를 PBS로 세척하여 세포 외부(extracellular)의 균을 제거하고, 아미카신(10 μM)이 포함된 배지로 교체하여 24시간 동안 37℃에서 배양을 진행하였다. 감염시키지 않은 수지상 세포 및 Mpg 야생형 균주로 감염시킨 세포를 대조군으로 동일한 방법으로 준비하였다. Dendritic cells (Huiying Bio. Tech) were seeded in a 24-well plate (5 x 10 5 cells/well) and 24 hours later, the rMpg_RBD strain was infected at 1 or 10 MOI (multiplicity of infection). After 4 hours, the infected cells were washed with PBS to remove extracellular bacteria, replaced with a medium containing amikacin (10 μM), and cultured at 37° C. for 24 hours. Uninfected dendritic cells and cells infected with the Mpg wild-type strain were prepared in the same manner as controls.
얻어진 세포 배양액을 면역 사이토카인 분석을 위해 -20℃에 보관하였다. 세포를 PBS로 세척한 후, 1 ml Trizol(TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018)과 혼합하였다. 그 후, 클로로포름을 넣어 잘 혼합하고 상온에서 3분 간 배양하였다. 원심 분리(12,000 x g, 15 min, 4℃)하여 상층액을 취하고, 동량의 이소프로판올과 혼합하여 다시 한번 원심 분리하였다. 75% EtOH로 세척한 후, 원심 분리하여 펠릿을 공기 중 건조시켰다. 그 후, 적절한 부피의 DEPC 처리수로 용해시켜, 총 RNA를 확보하였다.The obtained cell culture was stored at -20°C for immune cytokine analysis. Cells were washed with PBS and then mixed with 1 ml Trizol (TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018). Then, chloroform was added, mixed well, and incubated for 3 minutes at room temperature. The supernatant was centrifuged (12,000 x g, 15 min, 4°C), mixed with the same amount of isopropanol, and centrifuged again. After washing with 75% EtOH, the pellet was dried in air by centrifugation. Thereafter, it was dissolved in an appropriate volume of DEPC-treated water to obtain total RNA.
확보된 RNA에서 DNA 오염을 배제하기 위해, DNaseI(Promega, Cat: M6101)을 처리하여 37℃에서 30분 간 반응시킨 후, 일반적인 EtOH 침전법에 의해 RNA를 추출하였다. 추출한 RNA를 SYBR kit(SensiFASTTM SYBR® Lo-ROX One-Step kit, Bioline)로 real-time PCR(CFX ConnectTM Real-Time System, Bio-RAD)을 수행하고, 확보된 Cq 값을 토대로, 세포 내 RBD의 발현량을 상대적으로 정량하였다. RBD 검출을 위해 사용된 real-time PCR용 프라이머 세트 및 온도 조건을 표 3에 나타내었다.In order to exclude DNA contamination from the obtained RNA, DNaseI (Promega, Cat: M6101) was treated and reacted at 37° C. for 30 minutes, and then RNA was extracted by a general EtOH precipitation method. Real-time PCR (CFX Connect™ Real-Time System, Bio-RAD) was performed on the extracted RNA with a SYBR kit (SensiFAST™ SYBR® Lo-ROX One-Step kit, Bioline), and based on the obtained Cq value, intracellular RBD The expression level was relatively quantified. Table 3 shows the primer sets and temperature conditions for real-time PCR used for RBD detection.
RBD 검출을 위해 사용된 프라이머 세트(서열번호 10 및 11) 및 온도 조건Primer sets (SEQ ID NOs: 10 and 11) and temperature conditions used for RBD detection
PrimersPrimers Sequences (5' to 3')Sequences (5' to 3') Tm (℃)Tm (℃)
RBD_RT_F1RBD_RT_F1 ACC GAG TCG ATC GTG CGC TTCACC GAG TCG ATC GTG CGC TTC 6060
RBD_RT_R1RBD_RT_R1 GAA GCA CAG GTC GTT CAG CTTGAA GCA CAG GTC GTT CAG CTT
결과, 감염시키지 않은 세포 및 Mpg 야생형 균주를 감염시킨 세포와 비교하여, rMpg_RBD를 감염(10 M.O.I.)시킨 세포에서 상대적으로 3배 정도 높은 RBD의 발현이 mRNA 수준에서 확인되었다. 1 M.O.I. 감염 시에도 RBD 발현이 검출되긴 하였으나 그 정도는 미미하였다(도 9). As a result, compared to the uninfected cells and the cells infected with the Mpg wild-type strain, a relatively three-fold higher expression of RBD was confirmed at the mRNA level in the cells infected with rMpg_RBD (10 M.O.I.). 1 M.O.I. Although RBD expression was detected even during infection, the level was insignificant ( FIG. 9 ).
실험예 3. 재조합 Mpg 균주의 면역원성 평가Experimental Example 3. Immunogenicity evaluation of recombinant Mpg strain
실시예 2에서 제작된 재조합 Mpg 균주(rMpg_RBD)의 면역 유도능이 야생형 Mpg 균주와 유사한지 확인하기 위해, 재조합 Mpg 균주 및 야생형 Mpg 균주를 각각 수지상 세포에 감염시킨 후, 수지상 세포의 성숙 마커의 발현 양상을 확인하고, 세포 배양액으로부터 IL-10 및 IL-12 사이토카인의 발현 양상을 확인하였다. 아무것도 처리하지 않은 그룹과 LPS를 처리한 그룹을 각각 음성 대조군 및 양성 대조군으로 하였다. In order to confirm whether the immune-inducing ability of the recombinant Mpg strain (rMpg_RBD) prepared in Example 2 is similar to that of the wild-type Mpg strain, the recombinant Mpg strain and the wild-type Mpg strain were each infected with dendritic cells, and then the expression pattern of dendritic cell maturation markers. was confirmed, and the expression pattern of IL-10 and IL-12 cytokines was confirmed from the cell culture medium. A group untreated and a group treated with LPS were used as negative and positive controls, respectively.
먼저, 수지상 세포를 24웰 플레이트에 시딩하고(5 x 105 세포/웰) 24시간이 지난 후, Mpg(10 M.O.I.) 및 rMpg_RBD 균주(1 또는 10 M.O.I.)로 감염시켰다. 4시간 후, 감염된 세포를 PBS로 세척하여 세포 외부(extracellular)의 균을 제거하였다. 이어서, 배지를 아미카신(10 μM)이 포함된 배지로 교체하여 37℃에서 24시간 배양하였다.First, dendritic cells were seeded in 24-well plates (5 x 10 5 cells/well) and 24 hours later, they were infected with Mpg (10 MOI) and rMpg_RBD strains (1 or 10 MOI). After 4 hours, the infected cells were washed with PBS to remove extracellular bacteria. Then, the medium was replaced with a medium containing amikacin (10 μM) and cultured at 37° C. for 24 hours.
얻어진 세포 배양액은 사이토카인 분석을 위해 -20℃에 보관하였다. PBS로 세척하고 세포를 떼어내어 CD16/32 항체(Biolegend, Cat: 101301)로 30분 간 블록킹(blocking)하고, BV605 접합 항-CD86, PE 접합 항-CD40, FITC 접합 항-MHCII, APC 접합 항-CD80 항체(BD Biosciences)로 빛이 차단된 조건에서 30분 간 4℃에서 염색하였다. 이어서, 수지상 세포의 성숙 마커 발현 양상을 FACS(BD LSRFortessa)로 확인하였다.The obtained cell culture was stored at -20°C for cytokine analysis. After washing with PBS, cells were removed and blocked with CD16/32 antibody (Biolegend, Cat: 101301) for 30 minutes, BV605 conjugated anti-CD86, PE conjugated anti-CD40, FITC conjugated anti-MHCII, APC conjugated anti -CD80 antibody (BD Biosciences) was stained at 4°C for 30 minutes under light-blocked conditions. Then, the expression pattern of the maturation marker of dendritic cells was confirmed by FACS (BD LSRFortessa).
수지상 세포의 성숙 마커 발현량 비교 결과Comparison of expression levels of maturation markers in dendritic cells
Cell population (%)Cell population (%)
MHCII+MHCII+ CD40+CD40+ CD80+CD80+ CD86+CD86+
No treatno treat 1.66±0.811.66±0.81 11.22±1.9711.22±1.97 6.81±0.896.81±0.89 14.33±0.5014.33±0.50
Mpgmpg 4.32±1.414.32±1.41 41.20±2.6541.20±2.65 33.83±1.4233.83±1.42 29.03±0.4629.03±0.46
rMpg_RBD
(1 M.O.I.)
rMpg_RBD
(1 MOI)
1.19±0.331.19±0.33 11.96±1.7611.96±1.76 10.60±0.5210.60±0.52 15.73±0.3115.73±0.31
rMpg_RBD
(10 M.O.I.)
rMpg_RBD
(10 MOI)
3.37±1.103.37±1.10 30.07±1.1430.07±1.14 25.53±0.8125.53±0.81 28.90±0.5628.90±0.56
LPSLPS 5.00±1.045.00±1.04 29.55±0.6429.55±0.64 22.33±3.2622.33±3.26 27.25±1.2027.25±1.20
그 결과, Mpg를 감염시킨 경우에 수지상 세포의 성숙 마커(MHCII, CD40, CD80, CD86) 발현 비율이 상대적으로 가장 높은 양상을 보였으며, rMpg_RBD 균주 감염(10 M.O.I.)의 경우에도, Mpg 감염 시와 비슷한 수준으로 성숙 마커 발현 양상이 증가하는 것을 확인할 수 있었다(도 11a 내지 도 11d, 표 4). 다만, rMpg_RBD 1 M.O.I. 감염 시, 아무것도 처리하지 않은 그룹과 같이 성숙 마커가 거의 증가하지 않았다(도 11a 내지 도 11d, 표 4).또한, 세포 배양액에서 사이토카인 IL-10 및 IL-12의 발현 양상을 ELISA로 분석하였다. 각 사이토카인에 특이적인 항체를 96웰 플레이트에 코팅한 후(4℃, O/N), 각 웰을 세척 버퍼로 3회 세척하여 상온에서 1시간 동안 어세이 버퍼로 블록킹하였다. 각 웰을 다시 세척한 후, 확보한 배양액을 넣어 상온에서 2시간 반응시켰다. 각 웰을 세척한 후, 각 사이토카인에 대한 검출 항체를 붙여 상온에서 1시간 동안 반응시켰다. 그 후, 발색 시약을 통해 각 웰을 발색시킨 후, OD 450 nm에서 ELISA reader 기기(Tecan Sunrise)로 흡광도를 측정하고, 표준 값을 토대로, IL-10 및 IL-12 사이토카인의 발현량을 측정하였다.As a result, the expression rate of dendritic cell maturation markers (MHCII, CD40, CD80, CD86) was relatively high when Mpg-infected, and in the case of rMpg_RBD strain infection (10 M.O.I.), It was confirmed that the maturation marker expression pattern was increased to a similar level ( FIGS. 11a to 11d , Table 4). However, rMpg_RBD 1 M.O.I. Upon infection, the maturation marker hardly increased as in the untreated group ( FIGS. 11A to 11D , Table 4). In addition, the expression patterns of cytokines IL-10 and IL-12 in cell culture were analyzed by ELISA. . After each cytokine-specific antibody was coated on a 96-well plate (4° C., O/N), each well was washed 3 times with wash buffer and blocked with assay buffer at room temperature for 1 hour. After washing each well again, the obtained culture solution was added and reacted at room temperature for 2 hours. After washing each well, a detection antibody for each cytokine was attached and reacted at room temperature for 1 hour. Then, after each well was developed with a color reagent, absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and the expression level of IL-10 and IL-12 cytokines was measured based on the standard value. did.
사이토카인 발현량 비교 결과Cytokine expression level comparison result
Concentration (pg/ml)Concentration (pg/ml)
IL-10IL-10 IL-12IL-12
No treatno treat 70.02±1.8270.02±1.82 3.50±0.413.50±0.41
Mpgmpg 384.49±4.98384.49±4.98 90.27±1.9190.27±1.91
rMpg_RBD (1 M.O.I.)rMpg_RBD (1 M.O.I.) 86.48±2.0686.48±2.06 7.66±1.957.66±1.95
rMpg_RBD (10 M.O.I.)rMpg_RBD (10 M.O.I.) 267.91±40.13267.91±40.13 61.61±4.1761.61±4.17
LPSLPS 750.27±7.39750.27±7.39 125.76±4.07125.76±4.07
그 결과, 수지상 세포 성숙 양상과 비슷하게, Mpg로 감염시킨 경우에 가장 높은 수준의 사이토카인을 발현하였고, rMpg_RBD로 감염시킨 경우에도 비교적 높은 수준의 사이토카인 발현량을 나타내었다(도 12a 및 도 12b, 표 5). rMpg_RBD 1 M.O.I. 감염 시, 아무것도 처리하지 않은 그룹에 비해 통계적으로 유의하게 IL-10 및 IL-12의 발현이 증가되는 양상을 보였으나, 다른 그룹에 비해서는 상당히 낮은 발현량을 보였다.즉, 실시예 2에서 제조한 rMpg_RBD 균주를 10 M.O.I.로 수지상 세포에 감염시킨 경우에, Mpg를 감염시킨 경우와 유사한 수준으로 수지상 세포의 성숙 마커(MHCII, CD40, CD80, CD86)의 발현을 증가시키고, IL-10 및 IL-12와 같은 사이토카인의 발현도 증가시키는 것을 확인하였다.As a result, similar to the dendritic cell maturation pattern, the highest level of cytokine was expressed when infected with Mpg, and a relatively high level of cytokine expression was also exhibited when infected with rMpg_RBD (Figs. 12a and 12b, Table 5). rMpg_RBD 1 M.O.I. Upon infection, the expression of IL-10 and IL-12 showed a statistically significant increase compared to the untreated group, but the expression level was significantly lower than that of the other groups. That is, prepared in Example 2 When one rMpg_RBD strain was infected with dendritic cells with 10 M.O.I., the expression of dendritic cell maturation markers (MHCII, CD40, CD80, CD86) was increased to a level similar to that of Mpg infection, and IL-10 and IL- It was confirmed that the expression of cytokines such as 12 is also increased.
다만, 감염 용량을 비교해 봤을 때, 1 M.O.I. 감염 시에는 수지상 세포 내 면역 유도능이 미미하였다. However, when comparing the infection dose, 1 M.O.I. Upon infection, the ability to induce immunity in dendritic cells was insignificant.
실시예 3. 재조합 Mpg 균주의 계대 배양Example 3. Subculture of Recombinant Mpg Strain
실시예 2에서 제조된 rMpg_RBD 균주를 7H9 액체 배지(100 μg/ml의 카나마이신 함유)에서 계대배양하여, 5세대 배양된 균주의 단백을 추출해 RBD western blot을 수행하여 RBD 발현 여부를 확인하였다(도 10).The rMpg_RBD strain prepared in Example 2 was subcultured in 7H9 liquid medium (containing 100 μg/ml of kanamycin), the protein of the 5th generation cultured strain was extracted, and RBD western blot was performed to confirm RBD expression (FIG. 10). ).
상기 균주의 배양을 10세대까지 완료하였고, 각 배양 균주를 20% 글리세롤에 현탁하여 -70℃에 보관하였다.The culture of the strain was completed up to 10 generations, and each cultured strain was suspended in 20% glycerol and stored at -70°C.
실험예 4. 계대배양된 rMpg_RBD 균주에서의 RBD 발현 확인Experimental Example 4. Confirmation of RBD expression in the subcultured rMpg_RBD strain
계대배양된 rMpg_RBD 균주(#7 균주)의 배양액을 원심분리(2,500 rpm, 10 min)하여 펠릿을 취한 후, B-PER 버퍼(Thermo Scientific; 100 μg/ml의 라이소자임, 5 U/ml의 DNase, 및 프로테이나제 억제제가 보충됨)에 균일하게 섞어 얼음 상에서 초음파 처리(2회 반응으로 5분; 펄스: 0.3초, 정지: 0.7초)를 수행하였다. 분쇄액을 원심분리(13,000 rpm, 15 min, 4℃)하여 상층액을 취해 단백을 확보하였다.The culture solution of the subcultured rMpg_RBD strain (strain #7) was centrifuged (2,500 rpm, 10 min) to obtain a pellet, and then B-PER buffer (Thermo Scientific; 100 μg/ml lysozyme, 5 U/ml DNase, and proteinase inhibitor) and sonication on ice (5 min in 2 reactions; pulse: 0.3 sec, stop: 0.7 sec) on ice. The pulverized solution was centrifuged (13,000 rpm, 15 min, 4°C), and the supernatant was taken to secure the protein.
확보된 단백(100 μg)을 사용하여 RayBiotech에서 제공하는 S1RBD ELISA kit(ELV-COVID19S1-1)로 단백 내 RBD의 발현을 확인하였다. 먼저, 추출한 단백을 S1 RBD 특이적인 항체가 코팅되어 있는 96웰 플레이트에 넣어 2.5시간 동안 상온에서 반응시켰다. 그 후, kit에서 제공하는 세척 버퍼로 3회 내지 4회 각 웰을 세척하고, S1 RBD 검출 항체를 각 웰에 넣어 상온에서 1시간 반응시켰다. 다시 한번 각 웰을 세척한 후, 각 웰에 HRP-streptavidin을 넣어 45분간 상온에서 반응시켰다. 이어서, 발색하여 OD 450 nm에서 ELISA reader 기기(Tecan Sunrise)로 흡광도를 측정하고 및 표준(standard)을 기반으로 단백 발현량을 정량하였다. 그 결과, Mpg 야생형(17.2 pg/ml)에 비해, 각 세대의 재조합 rMpg_RBD 균주(1, 5, 10 세대는 각각 73.4, 82.9, 65.3 pg/ml임)에서 RBD가 높게 발현되어 있음을 확인할 수 있었다(도 13a).Using the obtained protein (100 μg), the expression of RBD in the protein was confirmed with the S1RBD ELISA kit (ELV-COVID19S1-1) provided by RayBiotech. First, the extracted protein was put in a 96-well plate coated with an S1 RBD-specific antibody and reacted at room temperature for 2.5 hours. Then, each well was washed 3 to 4 times with the wash buffer provided by the kit, and the S1 RBD detection antibody was put into each well and reacted at room temperature for 1 hour. After washing each well again, HRP-streptavidin was added to each well and reacted at room temperature for 45 minutes. Then, the color was developed and the absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and the protein expression level was quantified based on the standard. As a result, it was confirmed that RBD was highly expressed in the recombinant rMpg_RBD strains of each generation (73.4, 82.9, and 65.3 pg/ml in the 1st, 5th and 10th generations, respectively) compared to the Mpg wild type (17.2 pg/ml). (Fig. 13a).
또한, 상기 rMpg_RBD 균주 배양액 펠릿을 Trizol(TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018)과 혼합한 후, glass bead가 담긴 튜브에 옮겨 담아, Mini BeadBeater 기기(BioSpec)로 30초씩 3회 분쇄하였다. 그 후, 클로로포름/이소아밀 알코올(29:1)을 넣어 잘 혼합하였다. 이어서, 원심분리(16,000 x g, 5 min)하고, 얻어진 상층액에 이소프로판올과 3 M 아세트산나트륨을 처리하고, -20℃에서 침전시켰다. 침전된 RNA를 75% EtOH로 세척한 후, 공기 중에서 건조시켰다. 얻어진 펠릿을 DEPC-처리수로 녹여 RNA를 확보하였다. 확보된 RNA에서 DNA 오염을 배제하기 위해, DNaseI(Promega, Cat: M6101)을 처리하여 37℃에서 30분 간 반응시켰다. 이어서, 일반적인 EtOH 침전법을 통해 RNA를 추출하였다. 추출한 RNA를 SYBR kit(SensiFASTTM SYBR® Lo-ROX One-Step kit, Bioline)로 real-time PCR(CFX ConnectTM Real-Time System, Bio-RAD)을 수행하고, 확보된 Cq 값을 토대로, 균주 내 RBD의 발현량을 상대적으로 정량하였다. 이때, hsp65에 대한 Cq 값으로 각 RBD Cq 값을 보정하여 상대적인 발현량을 계산하였다.In addition, the rMpg_RBD strain culture pellet was mixed with Trizol (TRIzol® Reagent, ThermoFisher Scientific, REF: 15596018), transferred to a tube containing a glass bead, and pulverized 3 times for 30 seconds each with a Mini BeadBeater device (BioSpec). Then, chloroform/isoamyl alcohol (29:1) was added and mixed well. Then, centrifugation (16,000 x g, 5 min) was performed, and the obtained supernatant was treated with isopropanol and 3 M sodium acetate, and precipitated at -20°C. The precipitated RNA was washed with 75% EtOH and then dried in air. The obtained pellet was dissolved in DEPC-treated water to obtain RNA. In order to exclude DNA contamination from the obtained RNA, it was treated with DNaseI (Promega, Cat: M6101) and reacted at 37° C. for 30 minutes. Then, RNA was extracted through a general EtOH precipitation method. Real-time PCR (CFX Connect™ Real-Time System, Bio-RAD) was performed on the extracted RNA with a SYBR kit (SensiFAST™ SYBR® Lo-ROX One-Step kit, Bioline), and based on the obtained Cq value, RBD in the strain The expression level was relatively quantified. At this time, the relative expression level was calculated by correcting each RBD Cq value with the Cq value for hsp65.
RBD 검출을 위해 사용된 real-time PCR 용 프라이머 세트 및 온도 조건을 표 6에 나타내었다.Table 6 shows the primer sets and temperature conditions for real-time PCR used for RBD detection.
RBD 검출을 위해 사용된 프라이머 세트(서열번호 12 내지 15) 및 온도 조건Primer set (SEQ ID NOs: 12-15) and temperature conditions used for RBD detection
PrimersPrimers Sequences (5' to 3')Sequences (5' to 3') Tm (℃)Tm (℃)
RBD_RT_F1RBD_RT_F1 ACC GAG TCG ATC GTG CGC TTCACC GAG TCG ATC GTG CGC TTC 6060
RBD_RT_R1RBD_RT_R1 GAA GCA CAG GTC GTT CAG CTTGAA GCA CAG GTC GTT CAG CTT
Mpg_hsp_RT_FMpg_hsp_RT_F GTC GAG GAG TCC AAC ACC TTGTC GAG GAG TCC AAC ACC TT 6060
Mpg_hsp_RT_RMpg_hsp_RT_R CTG GAG ACC AGC AGG ATG TACTG GAG ACC AGC AGG ATG TA
결과, RBD ELISA 결과와 마찬가지로, Mpg 야생형에 비해, 각 세대의 rMpg_RBD 균주(1, 5, 10세대)에서 RBD의 발현이 mRNA 수준에서 증가한 것을 확인할 수 있었다(도 13b).이와 같이, 실시예 2에서 제조된 rMpg_RBD 균주(#7 균주)를 계대배양하였을 때, 10 세대 배양에서도 RBD 발현이 단백 및 mRNA 수준에서 비슷한 수준으로 유지되는 것을 확인할 수 있었다. As a result, similar to the RBD ELISA results, it was confirmed that the expression of RBD increased at the mRNA level in each generation of the rMpg_RBD strain (1st, 5th, and 10th generation) compared to the Mpg wild type (FIG. 13b). As such, Example 2 When the rMpg_RBD strain (#7 strain) prepared in
II. 마우스 모델에서 재조합 Mpg 균주(rMpg_RBD)에 의한 RBD 특이적인 면역 반응 유도능 평가II. Evaluation of RBD-specific immune response induction ability by recombinant Mpg strain (rMpg_RBD) in mouse model
실험예 5. rMpg_RBD 균주의 면역 반응 유도능 평가Experimental Example 5. Evaluation of immune response inducing ability of rMpg_RBD strain
실시예 2에서 제조한 rMpg_RBD 균주(#5, #6, #7 균주)의 면역 반응 유도능을 평가하기 위해, 도 14에 도시된 접종 스케줄에 따라 in vivo 실험을 아래와 같이 진행하였다.In order to evaluate the immune response inducing ability of the rMpg_RBD strains (#5, #6, #7 strains) prepared in Example 2, an in vivo experiment was performed according to the inoculation schedule shown in FIG. 14 as follows.
8주령 BALB/c 암컷 마우스를 3 마리씩 각 그룹으로 구성하여 rMpg_RBD 균주(#5, #6, #7 균주)를 각 그룹에 피하(S.C.) 경로로 접종하였고, 접종 용량은 1 x 106 였다.Three 8-week-old BALB/c female mice were configured in each group, and rMpg_RBD strains (#5, #6, #7 strains) were inoculated into each group by subcutaneous (SC) route, and the inoculation dose was 1×10 6 .
면역화된 마우스를 희생시켜 비장세포를 확보하였다. 확보된 비장세포를 S1 단백으로 자극한 후, i) IFN-γ ELISPOT 및 ii) IFN-γ, IL-12 면역 사이토카인을 ELISA로 분석하였다. 또한, 혈청 샘플에서 iii) S1 특이적인 IgG(IgG1, 2 및 총(total) IgG)의 발현과 iv) SARS-CoV-2 pseudovirus에 대한 중화항체능을 분석하였다.The immunized mice were sacrificed to obtain splenocytes. After the obtained splenocytes were stimulated with S1 protein, i) IFN-γ ELISPOT and ii) IFN-γ, IL-12 immune cytokines were analyzed by ELISA. In addition, iii) expression of S1-specific IgG (IgG1, 2 and total IgG) and iv) neutralizing antibody ability against SARS-CoV-2 pseudovirus were analyzed in serum samples.
실험예 5.1. IFN-γ ELISPOT 어세이Experimental Example 5.1. IFN-γ ELISPOT assay
면역화된 마우스에서 분리된 비장세포를 대상으로 IFN-γ에 대한 ELISPOT 어세이를 수행하였다. 먼저, IFN-γ 항체(항-마우스 IFN-γ, clone: AN-18, 3 μg/ml)를 코팅한 PVDF 멤브레인 플레이트에 각 그룹의 비장세포를 1 x 106 세포/웰로 시딩하고, SARS-CoV-2 스파이크(S1) 단백을 5 μg/ml로 처리하여 24시간 동안 비장세포를 자극시켰다. 그 후, 각 웰을 PBST와 PBS로 각각 3회씩 세척하였다. 이어서, 검출 항체(항-마우스-IFN-γ 바이오틴, clone: XMG1.2, 3 μg/ml)를 처리한 후, 4℃에서 24시간 동안 반응시켰다. 다시 각 웰을 세척한 후, streptavidin-HRP를 상온에서 2시간 동안 처리하였다. 그 후, AEC 기질 kit를 사용하여 발색시키고(10분 이내), ELISPOT reader 기기(AID EliSpot Reader)로 각 멤브레인의 spot을 카운팅하였다.ELISPOT assay for IFN-γ was performed on splenocytes isolated from immunized mice. First, splenocytes of each group were seeded at 1 x 10 6 cells/well on a PVDF membrane plate coated with IFN-γ antibody (anti-mouse IFN-γ, clone: AN-18, 3 μg/ml), and SARS- Splenocytes were stimulated for 24 hours by treatment with CoV-2 spike (S1) protein at 5 μg/ml. Then, each well was washed 3 times with PBST and PBS, respectively. Then, the detection antibody (anti-mouse-IFN-γ biotin, clone: XMG1.2, 3 μg/ml) was treated and reacted at 4° C. for 24 hours. After washing each well again, streptavidin-HRP was treated at room temperature for 2 hours. Thereafter, color was developed using an AEC substrate kit (within 10 minutes), and spots on each membrane were counted with an ELISPOT reader device (AID EliSpot Reader).
면역화 후 S1 단백에 대한 IFN-γ의 발현 양상을 ELISPOT으로 확인한 결과As a result of confirming the expression pattern of IFN-γ for S1 protein after immunization with ELISPOT
Stimulated with RBDStimulated with RBD Spot formin units (SFUs)Spot formin units (SFUs)
Mpgmpg 3.00 ± 2.943.00 ± 2.94
rMpg_RBD #5 rMpg_RBD #5 53.50 ± 44.5553.50 ± 44.55
rMpg_RBD #6 rMpg_RBD #6 161.00 ± 29.70161.00 ± 29.70
rMpg_RBD #7 rMpg_RBD #7 300.50 ± 65.76300.50 ± 65.76
그 결과, Mpg로 면역화한 그룹에서는 spot이 거의 확인되지 않았으나, rMpg_RBD를 면역화한 그룹에서 상대적으로 많은 spot이 확인되었으며, 특히 다른 rMpg_RBD 균주들에 비해, rMpg_RBD #7 균주로 면역화된 비장세포에서 S1 단백에 특이적인 IFN-γ가 가장 높게 발현된 것으로 확인되었다(도 15, 표 7).실험예 5.2. 사이토카인 발현량 측정 As a result, few spots were observed in the group immunized with Mpg, but relatively many spots were confirmed in the group immunized with rMpg_RBD. In particular, compared to other rMpg_RBD strains, S1 protein in splenocytes immunized with rMpg_RBD #7 strain. It was confirmed that the highest expression of IFN-γ specific to (Fig. 15, Table 7). Experimental Example 5.2. Cytokine expression level measurement
면역화된 마우스에서 분리된 비장세포를 S1 단백(5 μg/ml)과 함께 in vitro에서 3일 간 배양한 후에 배양액을 모아 -70℃에 보관하였다. 그 후, IFN-γ 및 IL-12 사이토카인에 대한 ELISA를 수행하여 그 발현 양상을 비교, 분석하였다. ELISA는 마우스 IFN-γ 및 IL-12 ELISA kit(Invitrogen)를 사용하여 수행하였다.Splenocytes isolated from immunized mice were cultured in vitro with S1 protein (5 μg/ml) for 3 days, then the culture medium was collected and stored at -70°C. Thereafter, ELISA was performed for IFN-γ and IL-12 cytokines to compare and analyze their expression patterns. ELISA was performed using mouse IFN-γ and IL-12 ELISA kit (Invitrogen).
먼저, IFN-γ 및 IL-12에 특이적인 항체를 96웰 플레이트에 코팅하였다(4℃, O/N). 그 후, 각 웰을 세척 버퍼로 3회 세척하고, 상온에서 1시간 동안 어세이 버퍼로 블록킹하였다. 각 웰을 다시 세척한 후, 확보한 배양액을 넣어 상온에서 2시간 동안 반응시켰다. 각 웰을 세척한 후, 각 사이토카인에 대한 검출 항체를 붙여 상온에서 1시간 동안 반응시켰다. 그 후, 발색 시약을 통해 각 웰을 발색시킨 후, OD 450 nm에서 ELISA reader 기기(Tecan Sunrise)로 흡광도를 측정하고, 표준 값을 토대로, IFN-γ 및 IL-12 사이토카인의 발현량을 측정하였다.First, antibodies specific for IFN-γ and IL-12 were coated on 96-well plates (4°C, O/N). Then, each well was washed 3 times with wash buffer, and blocked with assay buffer for 1 hour at room temperature. After washing each well again, the obtained culture solution was added and reacted at room temperature for 2 hours. After washing each well, a detection antibody for each cytokine was attached and reacted at room temperature for 1 hour. After that, each well was developed with a color reagent, and absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and the expression level of IFN-γ and IL-12 cytokines was measured based on the standard value. did.
Mpg 및 rMpg_RBD 균주(#5, #6, #7)로 면역화한 후, S1 단백에 대한 사이토카인 수준 비교 결과After immunization with Mpg and rMpg_RBD strains (#5, #6, #7), cytokine level comparison results for S1 protein
Concentration (pg/ml)Concentration (pg/ml)
IL-12IL-12 IFN-γIFN-γ
Mpgmpg 19.141 ± 8.56719.141 ± 8.567 31.736 ± 10.55731.736 ± 10.557
rMpg_RBD #5 rMpg_RBD #5 31.96031.960 39.20139.201
rMpg_RBD #6 rMpg_RBD #6 55.37855.378 406.327406.327
rMpg_RBD #7 rMpg_RBD #7 149.943149.943 469.912469.912
그 결과, rMpg_RBD 균주로 면역화된 비장세포에서 S1 단백에 특이적인 IL-12 및 IFN-γ 사이토카인 발현이 Mpg 균주로 면역화한 경우에 비해 증가되는 양상을 보였고, 특히 rMpg_RBD #7 균주의 경우 가장 높은 IL-12 및 IFN-γ 사이토카인 발현량이 확인되었다(도 16, 표 8).As a result, the expression of IL-12 and IFN-γ cytokines specific for S1 protein in splenocytes immunized with the rMpg_RBD strain was increased compared to the case of immunization with the Mpg strain. In particular, the rMpg_RBD #7 strain showed the highest IL-12 and IFN-γ cytokine expression levels were confirmed (Fig. 16, Table 8).
실험예 5.3. 혈청 내 IgG 수준 확인Experimental Example 5.3. Checking the IgG level in the serum
본 실험예에서는 면역화된 마우스에서 분리된 혈청을 사용하여 혈청 내 RBD에 의한 IgG 발현 양상을 분석 및 평가하고자 하였다.In this experimental example, using serum isolated from immunized mice, it was attempted to analyze and evaluate the IgG expression pattern by RBD in the serum.
이를 위해, RBD 단백(Sino Biological)을 ELISA 플레이트에 코팅(5 μg/ml)하여 24시간 동안 4℃에서 반응시켰다. 그 후, 세척 버퍼(0.05% Tween 20)로 각 웰을 세척한 후, 5% BSA로 각 웰을 블록킹하였다. 마우스에서 분리한 혈청 샘플을 희석(1:10)하고, 각 웰에 넣어 2시간 상온에서 반응시켰다. 그 후, HRP가 달린 IgG1(염소 항-마우스 IgG1, HRP 접합됨; ThermoFisher Scientific), IgG2a(염소 항-마우스 IgG2, HRP 접합됨; Invitrogen) 및 총 IgG(항 마우스 IgG, 바이오틴화됨; eBioScinece)에 대한 항체를 넣어 1시간 상온에서 반응시킨 후, 발색시켰다. 그 후, ELISA reader 기기(Tecan Sunrise)로 450 nm 파장에서 흡광도를 측정하여, 각 항체 아이소타입에 대한 OD 값을 평가하였다.For this, RBD protein (Sino Biological) was coated (5 μg/ml) on an ELISA plate and reacted at 4° C. for 24 hours. Thereafter, each well was washed with wash buffer (0.05% Tween 20), and then each well was blocked with 5% BSA. Serum samples isolated from mice were diluted (1:10), put into each well, and reacted at room temperature for 2 hours. Then, IgG1 with HRP (goat anti-mouse IgG1, HRP conjugated; ThermoFisher Scientific), IgG2a (goat anti-mouse IgG2, HRP conjugated; Invitrogen) and total IgG (anti mouse IgG, biotinylated; eBioScinece) Antibodies were added and reacted at room temperature for 1 hour, followed by color development. Thereafter, the absorbance was measured at a wavelength of 450 nm with an ELISA reader device (Tecan Sunrise), and the OD value for each antibody isotype was evaluated.
Mpg 및 rMpg_RBD 균주(#5, #6, #7)를 SC로 면역 시, RBD에 대한 IgG 생성 양상을 흡광도로 측정한 결과When Mpg and rMpg_RBD strains (#5, #6, #7) were immunized with SC, IgG production pattern for RBD was measured by absorbance
흡광도 (OD 450nm)Absorbance (OD 450nm)
Stimulated with RBDStimulated with RBD IgG2IgG2 IgG1IgG1 Total IgGTotal IgG
Mpgmpg 0.087 ± 0.0030.087 ± 0.003 0.555 ± 0.0460.555 ± 0.046 0.384 ± 0.0050.384 ± 0.005
rMpg_RBD #5 rMpg_RBD #5 0.090.09 0.5260.526 0.5130.513
rMpg_RBD #6 rMpg_RBD #6 0.1370.137 0.6920.692 0.5370.537
rMpg_RBD #7 rMpg_RBD #7 0.1880.188 0.7750.775 0.6190.619
그 결과, Mpg 균주에 의한 면역화에 비해, rMpg_RBD 균주에 의한 면역화가 RBD 특이적인 IgG2, IgG1 및 총 IgG의 생성을 증가시킴을 확인할 수 있었다. 또한, rMpg_RBD #7 균주에 의해 가장 높은 수준의 IgG가 생성됨을 확인할 수 있었다(도 17, 표 9).As a result, it was confirmed that immunization with the rMpg_RBD strain increased the production of RBD-specific IgG2, IgG1, and total IgG compared to the immunization with the Mpg strain. In addition, it was confirmed that the highest level of IgG was produced by the rMpg_RBD #7 strain (FIG. 17, Table 9).
실험예 5.4. 중화항체능 확인Experimental Example 5.4. Confirmation of neutralizing antibody ability
재조합 rMpg_RBD 균주의 pseudovirus 중화항체능 실험을 진행하였다.A pseudovirus neutralizing antibody ability experiment of the recombinant rMpg_RBD strain was conducted.
먼저, SARS-CoV-2 pseudovirus 펠릿을 얻기 위해 pNL4-3.luc.RE와 SARS-CoV-2 스파이크 당단백질 S 서열이 포함된 pCAGGS(NR-52310, BEI Resources)를 인간 배아 신장 293T 세포에 co-transfection시켰다. 72시간 이후, 상층액을 5X PEG-it(LV810A-1-SBI)를 넣고 원심분리(1,500 g, 30 min)하여 렌티바이러스(lentivirus) 펠릿을 확보하였다.First, pCAGGS (NR-52310, BEI Resources) containing pNL4-3.luc.RE and the SARS-CoV-2 spike glycoprotein S sequence was co-transfected into human embryonic kidney 293T cells to obtain a SARS-CoV-2 pseudovirus pellet. -transfection was carried out. After 72 hours, 5X PEG-it (LV810A-1-SBI) was added to the supernatant and centrifuged (1,500 g, 30 min) to obtain a lentivirus pellet.
한편, BALB/c 마우스에 세 가지 재조합 rMpg_RBD 균주(rMpg_RBD 1, #5; rMpg_RBD 2, #6; rMpg_RBD 3, #7)와 야생형 Mpg 균주를 2주 간격으로 총 2번 피하 주입하였다. 마지막 주입 후 2주가 지났을 때 안락사시키고, 각 마우스에서 혈청을 얻었다. 각 혈청은 96 웰 플레이트에서 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000의 배수로 RPMI 1640 배지에 희석하여 100 μl씩 준비하였다. 희석된 혈청과 바이러스를 반응시키기 위해 SARS-CoV-2 pseudovirus 펠릿을 PRMI 1640에 희석하여 100 μl씩 준비하고 혈청과 피펫팅하여 혼합하였다. 그 후, 37℃ 인큐베이터에서 2시간 동안 배양하였다. 2시간 반응 후 배양액을 모두 인간 간암 세포주인 Huh7 세포(96 웰 플레이트, 5×104 세포/웰)에 처리하여 37℃ 인큐베이터에서 48시간 동안 배양하였다. 이후 상층액을 제거하여 세포 용해 버퍼(Promega, USA)로 세포를 용해시켰다. 이어서, 루시퍼라제 기질(Promega, USA)과 반응시킨 직후, Luminometer(Tecan)로 루시퍼라제 발색을 확인하였다(도 18a 내지 도 18b).Meanwhile, three recombinant rMpg_RBD strains (rMpg_RBD 1, #5; rMpg_RBD 2, #6; rMpg_RBD 3, #7) and a wild-type Mpg strain were subcutaneously injected into BALB/c mice twice at 2-week intervals. Two weeks after the last injection, they were euthanized and serum was obtained from each mouse. Each serum is diluted in RPMI 1640 medium in multiples of 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000 in a 96-well plate to prepare 100 μl each. did. To react the diluted serum with the virus, 100 μl of SARS-CoV-2 pseudovirus pellet was diluted in PRMI 1640 and mixed with serum by pipetting. Then, it was cultured in an incubator at 37° C. for 2 hours. After 2 hours of reaction, all of the culture medium was treated with Huh7 cells (96-well plate, 5×10 4 cells/well), which is a human liver cancer cell line, and cultured in an incubator at 37° C. for 48 hours. Then, the supernatant was removed and the cells were lysed with a cell lysis buffer (Promega, USA). Then, immediately after reaction with a luciferase substrate (Promega, USA), luciferase color development was confirmed with a Luminometer (Tecan) ( FIGS. 18A to 18B ).
동일한 SARS-Cov-2 pseudovirus 중화항체능 실험을 인간 폐암 세포주인 Calu-3 세포(한국세포주은행)에서도 진행하였으며, 이때 배지는 DMEM을 사용하였다(도 18c 내지 도 18d).The same SARS-Cov-2 pseudovirus neutralizing antibody ability test was also performed on Calu-3 cells (Korea Cell Line Bank), a human lung cancer cell line, and DMEM was used as the medium ( FIGS. 18c to 18d ).
그 결과, Mpg 야생형과 세 가지 rMpg-RBD 균주를 면역화한 마우스 혈청 모두 희석 배수가 증가함에 따라 세포에 감염된 SARS-CoV-2 pseudovirus가 줄어드는 것으로부터 SARS-CoV-2 pseudovirus에 대한 중화항체능이 있음을 확인하였다(도 18a 내지 도 18d). 여기서, 상대 루시퍼라제 단위(RLU)는 SARS-CoV-2 pseudovirus가 세포에 감염하여 발현하는 루시퍼라제의 양으로 값이 작을수록 감염이 저해되었다고 할 수 있다.As a result, both the wild-type Mpg and mouse sera immunized with the three rMpg-RBD strains exhibited neutralizing antibody ability against SARS-CoV-2 pseudovirus from the decrease in the SARS-CoV-2 pseudovirus infected with cells as the dilution factor increased. was confirmed ( FIGS. 18A to 18D ). Here, the relative luciferase unit (RLU) is the amount of luciferase expressed by SARS-CoV-2 pseudovirus infecting cells, and it can be said that the smaller the value, the more inhibited the infection.
또한, 세 가지 rMpg_RBD 균주 모두 야생형 Mpg보다 높은 NT50 값을 나타내어 SARS-CoV-2 pseudovirus에 대한 중화항체능이 뛰어난 것으로 확인되었다(도 18a 내지 도 18d). 여기서, NT50 값은 혈청을 섞어주지 않은 pseudovirus 감염을 기준으로 루시퍼라제 발색이 50% 줄었을 때의 혈청 희석 배수로서, 중화 항체 역가 50을 의미한다.In addition, all three rMpg_RBD strains exhibited higher NT50 values than wild-type Mpg, confirming excellent neutralizing antibody ability against SARS-CoV-2 pseudovirus ( FIGS. 18A to 18D ). Here, the NT50 value is the serum dilution factor when the color of luciferase is reduced by 50% based on the pseudovirus infection without mixing the serum, and means a neutralizing antibody titer of 50.
상기 세 가지 균주의 NT50 값 사이의 통계적인 유의성을 확인하지는 못하였으나, rMpg_RBD 3번 균주의 경우 NT50 값이 가장 높은 것으로 보아 세 가지 재조합 rMpg_RBD 균주 가운데 rMpg_RBD 3번 균주(#7 strain)가 마우스 면역 시 가장 SARS-CoV-2에 대한 중화항체능이 가장 뛰어날 것으로 예상된다. 동일한 중화항체능 실험을 Calu-3 세포에서 진행한 경우에도, rMpg_RBD 3번(#7) 균주를 면역화한 마우스 혈청의 중화항체능이 가장 뛰어난 것으로 확인되었다.Although it was not possible to confirm the statistical significance between the NT50 values of the three strains, the rMpg_RBD strain 3 showed the highest NT50 value. Among the three recombinant rMpg_RBD strains, the rMpg_RBD strain 3 (#7 strain) It is expected that the neutralizing antibody ability against SARS-CoV-2 will be the best. Even when the same neutralizing antibody ability test was performed on Calu-3 cells, it was confirmed that the neutralizing antibody ability of the mouse serum immunized with the rMpg_RBD 3 (#7) strain was the best.
실험예 6. 마우스에서 rMpg_RBD 균주의 SARS-CoV-2 RBD 단백 특이적인 면역 반응 확인Experimental Example 6. Confirmation of SARS-CoV-2 RBD protein-specific immune response of rMpg_RBD strain in mice
실험예 5의 결과를 토대로 선별된 rMpg_RBD 균주(#7 strain)를 사용하여 마우스에서 SARS-CoV-2 RBD 단백 특이적인 면역 반응이 유도되는지를 평가하는 실험을 도 19에 도시된 투여 스케줄에 따라 수행하였다. An experiment to evaluate whether SARS-CoV-2 RBD protein-specific immune response is induced in mice using the rMpg_RBD strain (#7 strain) selected based on the results of Experimental Example 5 was performed according to the administration schedule shown in FIG. 19 . did.
모든 균주를 피하 경로(S.C.)로 접종하였고, 접종 용량은 1 x 106였다.All strains were inoculated by the subcutaneous route (SC), and the inoculation dose was 1×10 6 .
실험군: i) PBS(2회 접종, S.C.); ii) Mpg(2회 접종, S.C.); iii) rMpg_RBD(1회 접종, S.C.); iv) rMpg_RBD(2회 접종, S.C.); v) rMpg_RBD(1회 접종, S.C.) + RBD 단백과 알룸(alum)(1회 접종, S.C.); vi) RBD 단백과 알룸(2회 접종, S.C.). 여기서, RBD 단백과 알룸을 사용하는 경우, RBD 단백은 10 μg/ml의 농도로 맞추고, 알룸은 100 μg/ml의 농도로 맞춰 같이 혼합한 후 면역을 수행하였다. 모든 접종 볼륨은 100 μl로 맞춰 진행하였다.Experimental group: i) PBS (2 inoculations, S.C.); ii) Mpg (2 doses, S.C.); iii) rMpg_RBD (single inoculation, S.C.); iv) rMpg_RBD (2 doses, S.C.); v) rMpg_RBD (single dose, S.C.) + RBD protein and alum (single dose, S.C.); vi) RBD protein and alum (2 doses, S.C.). Here, when RBD protein and alum were used, RBD protein was adjusted to a concentration of 10 μg/ml, and alum was adjusted to a concentration of 100 μg/ml, and immunization was performed after mixing them together. All inoculation volumes were adjusted to 100 μl.
8주령 BALB/c 암컷 마우스를 각 균주로 면역화시켰으며, 5 마리씩 각 그룹을 구성하였다. 면역화된 마우스를 희생시켜, 비장세포를 확보하고, 확보된 비장세포를 SARS-CoV-2 RBD 단백으로 자극시켰다. 그 후, 다음과 같이 i) IFN-γ ELISPOT 어세이를 수행하고, ii) FACS를 통해 IFN-γ 또는 TNF-α를 발현하는 CD4, CD8 T 세포 집단을 분석하고, iii) 면역 사이토카인(IFN-γ, TNF-α, IL-2, IL-10 및 IL-12)을 ELISA로 분석하고, iv) 혈청 샘플에서 RBD 특이적인 IgG(IgG1, IgG2 및 총 IgG)의 발현을 분석하고, v) 생(live) SARS-CoV-2 virus에 대한 중화항체능을 비교하고, vi) SARS-CoV-2 pseudovirus에 대한 중화항체능을 비교하고, vii) 혈청을 사용한 ACE2-RBD 결합 어세이를 수행하고, viii) 마우스의 기관지 폐포 세척액(bronchoalveolar lavage fluid, BALF)에서 SARS-CoV-2 RBD에 특이적인 IgA의 발현을 확인하였다.8-week-old BALB/c female mice were immunized with each strain, and each group was composed of 5 mice. The immunized mice were sacrificed to obtain splenocytes, and the obtained splenocytes were stimulated with SARS-CoV-2 RBD protein. Thereafter, i) IFN-γ ELISPOT assay was performed as follows, ii) CD4, CD8 T cell populations expressing IFN-γ or TNF-α were analyzed by FACS, iii) immune cytokines (IFN) -γ, TNF-α, IL-2, IL-10 and IL-12) were analyzed by ELISA, iv) the expression of RBD specific IgG (IgG1, IgG2 and total IgG) in serum samples was analyzed, v) Comparing the neutralizing antibody ability against live SARS-CoV-2 virus, vi) comparing the neutralizing antibody ability against SARS-CoV-2 pseudovirus, vii) performing an ACE2-RBD binding assay using serum , viii) IgA expression specific for SARS-CoV-2 RBD was confirmed in bronchoalveolar lavage fluid (BALF) of mice.
실험예 6.1. IFN-γ ELISPOT 어세이Experimental Example 6.1. IFN-γ ELISPOT assay
면역화된 마우스에서 분리된 비장세포를 대상으로 IFN-γ에 대한 ELISPOT을 수행하였다.ELISPOT for IFN-γ was performed on splenocytes isolated from immunized mice.
먼저, IFN-γ(항-마우스 IFN-γ, clone: AN-18, 3 μg/ml)를 코팅한 PVDF 멤브레인 플레이트에 각 그룹의 비장세포를 1 x 106 세포/웰로 시딩하고, SARS-CoV-2 RBD 단백을 5 μg/ml로 처리하여 24시간 동안 비장세포를 자극시켰다. 그 후, 각 웰을 PBST와 PBS로 각각 3회씩 세척한 후, 검출 항체(항-마우스-IFN-γ 바이오틴, clone: XMG1.2, 3 μg/ml)를 처리하였다. 이어서, 4℃에서 24시간 반응시켰다. 다시 각 웰을 세척한 후, streptavidin-HRP를 상온에서 2시간 동안 처리하였다. 그 후, AEC 기질 kit를 사용하여 발색시키고(10분 이내), ELISPOT reader 기기(AID EliSpot Reader)로 각 멤브레인의 spot을 카운팅하였다.First, splenocytes of each group were seeded at 1 x 10 6 cells/well on a PVDF membrane plate coated with IFN-γ (anti-mouse IFN-γ, clone: AN-18, 3 μg/ml), and SARS-CoV Splenocytes were stimulated for 24 hours by treatment with -2 RBD protein at 5 μg/ml. Then, each well was washed three times with PBST and PBS, respectively, and then treated with a detection antibody (anti-mouse-IFN-γ biotin, clone: XMG1.2, 3 μg/ml). Then, it was made to react at 4 degreeC for 24 hours. After washing each well again, streptavidin-HRP was treated at room temperature for 2 hours. Thereafter, color was developed using an AEC substrate kit (within 10 minutes), and the spot of each membrane was counted with an ELISPOT reader device (AID EliSpot Reader).
면역화후 RBD 단백에 대한 IFN-γ의 발현 양상을 ELISPOT으로 확인한 결과As a result of confirming the expression pattern of IFN-γ for RBD protein after immunization with ELISPOT
Stimulated with RBDStimulated with RBD Spot formin units (SFUs)Spot formin units (SFUs)
PBSPBS 1.00 ± 1.261.00 ± 1.26
Mpgmpg 1.00 ± 1.671.00 ± 1.67
rMpg_RBD 1회 면역Immune to rMpg_RBD 1 time 7.50 ± 4.727.50 ± 4.72
rMpg_RBD 2회 면역Immune to rMpg_RBD 2 times 2.83 ± 2.142.83 ± 2.14
rMpg_RBD + RBD proteinrMpg_RBD + RBD protein 5.50 ± 3.515.50 ± 3.51
RBD proteinRBD protein 4.17 ± 3.434.17 ± 3.43
그 결과, rMpg_RBD 균주를 면역화한 그룹(1회, 2회 및 rMpg_RBD + RBD 단백 면역)에서 PBS 및 Mpg 균주 면역 그룹에 비해 상대적으로 많은 IFN-γ spot을 확인할 수 있었다. 하지만, rMpg_RBD 균주를 1회 면역화한 그룹과, rMpg_RBD로 prime한 후 RBD 단백을 boosting 면역화한 그룹만이 PBS 및 Mpg 면역 그룹과 유의하게 차이를 보였다. 그 중에서, rMpg_RBD 균주를 1회 면역화한 그룹에서 가장 많은 IFN-γ spot을 확인할 수 있었다(도 20, 표 10). As a result, in the group immunized with the rMpg_RBD strain (once, twice, and rMpg_RBD + RBD protein immunity), relatively many IFN-γ spots were confirmed compared to the PBS and Mpg strain immunization groups. However, only the group immunized with the rMpg_RBD strain once and the group immunized with RBD protein boosting after primed with rMpg_RBD showed significant differences from the PBS and Mpg immunization groups. Among them, the most IFN-γ spots were identified in the group immunized with the rMpg_RBD strain once ( FIG. 20 , Table 10).
실험예 6.2. FACS 분석Experimental Example 6.2. FACS analysis
각각의 면역화된 마우스의 비장세포를 RBD 단백으로 18시간 동안 자극한 후, brefeldin A(eBioscienceTM BrefeldinA, Invitrogen)를 4 내지 6시간 동안 처리하여 세포 내 사이토카인을 잡아두었다. 그 후, FITC 접합 항-CD3, V500 접합 항-CD4, PE 접합 항-CD8 항체(BD BioSciences)를 사용하여 표면 분자 염색(4℃, 30분)을 먼저 진행하였다. 이어서, 1% 파라포름알데하이드(PFA)로 상온에서 20분 세포를 고정하고, (FACS 버퍼 중의) 0.1% Triton X-100를 처리하여(RT, 30분) 세포 투과성(permeabilization)을 높였다. 그 후, 세포내 염색을 통해 IFN-γ 또는 TNF-α(APC 접합 항-IFN-γ, APC_Cy7 접합 항-TNF-α 항체를 사용)(BD BioSciences)를 발현하는 CD4 및 CD8 T 세포 집단의 차이를 FACS(FACS LSRFortessa)로 분석하였다.The splenocytes of each immunized mouse were stimulated with RBD protein for 18 hours, and then treated with brefeldin A (eBioscience TM BrefeldinA, Invitrogen) for 4 to 6 hours to capture intracellular cytokines. Thereafter, surface molecular staining (4°C, 30 min) was first performed using FITC-conjugated anti-CD3, V500-conjugated anti-CD4, and PE-conjugated anti-CD8 antibodies (BD BioSciences). Then, cells were fixed with 1% paraformaldehyde (PFA) at room temperature for 20 minutes, and treated with 0.1% Triton X-100 (in FACS buffer) (RT, 30 minutes) to increase cell permeabilization. Differences in CD4 and CD8 T cell populations expressing IFN-γ or TNF-α (using APC-conjugated anti-IFN-γ, APC_Cy7 conjugated anti-TNF-α antibody) (BD BioSciences) by intracellular staining thereafter were analyzed by FACS (FACS LSRFortessa).
면역화후 RBD에 특이적인 IFN-γ 및 TNF-α를 발현하는 CD4, CD8 T 세포 집단을 FACS로 분석한 결과As a result of FACS analysis of CD4 and CD8 T cell populations expressing RBD-specific IFN-γ and TNF-α after immunization
Cell population (%)Cell population (%)
CD3+CD4+IFNγ+CD3+CD4+IFNγ+ CD3+CD4+TNFα+CD3+CD4+TNFα+ CD3+CD8+IFNγ+CD3+CD8+IFNγ+ CD3+CD8+TNFα+CD3+CD8+TNFα+
No treatno treat 0.537±0.0210.537±0.021 0.510±0.0350.510±0.035 0.630±0.2760.630±0.276 1.017±0.3111.017±0.311
Mpg (2회 면역)Mpg (2 times immunity) 1.090±0.2901.090±0.290 0.293±0.0210.293±0.021 0.960±0.0710.960±0.071 1.305±0.1631.305±0.163
rMpg_RBD (1회)rMpg_RBD (1 time) 2.305±0.2622.305±0.262 0.497±0.1770.497±0.177 1.355±0.2901.355±0.290 2.150±0.5092.150±0.509
rMpg_RBD (2회)rMpg_RBD (2 times) 1.490±0.1981.490±0.198 0.990±0.4950.990±0.495 1.460±0.2261.460±0.226 2.817±0.6012.817±0.601
rMpg_RBD+RBD 단백rMpg_RBD+RBD protein 0.693±0.2330.693±0.233 2.355±1.4072.355±1.407 0.897±0.1560.897±0.156 3.267±0.9553.267±0.955
RBD 단백 (2회)RBD protein (2 times) 0.333±0.2120.333±0.212 0.530±0.1130.530±0.113 0.187±0.1200.187±0.120 1.710±0.0641.710±0.064
그 결과, rMpg_RBD를 면역화한 그룹에서 IFN-γ를 분비하는 CD4, CD8 T 세포 집단이 다른 면역 그룹에 비해 통계적 유의성을 보이며 증가하는 양상을 나타냈다(도 21, 표 11). 특히, CD4+ IFN-γ+ T 세포의 경우, rMpg_RBD를 1회 면역화한 그룹에서 가장 높은 양상을 보였으며, 이는 IFN-γ ELISPOT 결과와 상관성을 보인다고 판단되었다(도 20, 도 21, 표 10, 표 11).TNF-α를 분비하는 CD4, CD8 T 세포 집단의 경우에도, rMpg_RBD를 면역화한 그룹(1회 또는 2회 면역)에서 높은 양상을 보였고, rMpg_RBD를 2회 면역화한 그룹에서는 1회 면역화한 그룹보다 TNF-α를 분비하는 CD4, CD8 T 세포 집단이 증가하는 경향을 보였다. 특히, rMpg_RBD prime-RBD 단백 boosting으로 면역화한 그룹에서 TNF-α를 분비하는 T 세포 집단이 가장 높은 양상을 보였다(도 21, 표 11).As a result, in the group immunized with rMpg_RBD, the CD4 and CD8 T cell populations secreting IFN-γ showed statistical significance and increased compared to other immunized groups (FIG. 21, Table 11). In particular, CD4+ IFN-γ+ T cells showed the highest aspect in the group immunized with rMpg_RBD once, which was determined to be correlated with the IFN-γ ELISPOT results (Fig. 20, Fig. 21, Table 10, Table). 11). In the case of TNF-α-secreting CD4 and CD8 T cell populations, the rMpg_RBD immunized group (1 or 2 immunizations) showed a high pattern, and the rMpg_RBD immunized group showed a high pattern in the 2 immunized group. TNF-α-secreting CD4 and CD8 T cell populations tended to increase compared to the group. In particular, in the group immunized with rMpg_RBD prime-RBD protein boosting, the TNF-α-secreting T cell population showed the highest pattern (FIG. 21, Table 11).
하지만, RBD 단백만 면역화한 그룹에서는 IFN-γ 및 TNF-α를 발현하는 T 세포 집단이 낮은 양상을 보였다(도 21, 표 11).However, in the group immunized with only RBD protein, the T cell population expressing IFN-γ and TNF-α was low ( FIG. 21 , Table 11).
실험예 6.3. 사이토카인 발현량 측정Experimental Example 6.3. Cytokine expression level measurement
면역화된 마우스에서 분리된 비장세포를 SARS-CoV-2 RBD 단백(5 μg/ml)과 함께 in vitro에서 3일 간 배양시킨 후 배양액을 모아 -70℃에서 보관하였다. 그 후, IFN-γ, TNF-α, IL-2, IL-10 및 IL-12 사이토카인에 대한 ELISA를 수행하여 그 발현 양상을 비교, 분석하였다. ELISA는 마우스 IFN-γ, TNF-α, IL-2. IL-10 및 IL-12 ELISA kit(Invitrogen)를 사용하여 수행하였다.Splenocytes isolated from immunized mice were incubated with SARS-CoV-2 RBD protein (5 μg/ml) in vitro for 3 days, then the culture medium was collected and stored at -70°C. Thereafter, ELISA was performed for IFN-γ, TNF-α, IL-2, IL-10 and IL-12 cytokines to compare and analyze their expression patterns. ELISA was mouse IFN-γ, TNF-α, IL-2. IL-10 and IL-12 ELISA kits (Invitrogen) were used.
먼저, 각 사이토카인에 특이적인 항체를 96웰 플레이트에 코팅한 후(4℃, O/N), 각 웰을 세척 버퍼로 3회 세척하여 상온에서 1시간 동안 어세이 버퍼로 블록킹하였다. 각 웰을 다시 세척한 후, 확보한 배양액을 넣어 상온에서 2시간 반응시켰다. 각 웰을 세척한 후, 각 사이토카인에 대한 검출 항체를 붙여 상온에서 1시간 동안 반응시켰다. 그 후, 발색 시약을 통해 각 웰을 발색시킨 후, OD 450 nm에서 ELISA reader 기기(Tecan Sunrise)로 흡광도를 측정하고, 표준 값을 토대로, IFN-γ, TNF-α, IL-2. IL-10 및 IL-12 사이토카인의 발현량을 측정하였다.First, an antibody specific for each cytokine was coated on a 96-well plate (4° C., O/N), and then each well was washed 3 times with wash buffer and blocked with assay buffer at room temperature for 1 hour. After washing each well again, the obtained culture solution was added and reacted at room temperature for 2 hours. After washing each well, a detection antibody for each cytokine was attached and reacted at room temperature for 1 hour. Then, after each well was developed with a color reagent, absorbance was measured with an ELISA reader device (Tecan Sunrise) at OD 450 nm, and based on the standard values, IFN-γ, TNF-α, IL-2. The expression levels of IL-10 and IL-12 cytokines were measured.
면역화후 RBD에 특이적인 사이토카인 발현 수준의 비교 결과Comparison of RBD-specific cytokine expression levels after immunization
Concentration (pg/ml)Concentration (pg/ml)
IFN-γIFN-γ TNF-αTNF-α IL-2IL-2 IL-10IL-10 IL-12IL-12
No treatno treat 11.821±0.34411.821±0.344 1.971±0.0911.971±0.091 69.707±18.90869.707±18.908 60.563±7.42160.563±7.421 43.534±8.12343.534±8.123
Mpg (2회 면역)Mpg (2 times immunity) 14.201±2.43614.201±2.436 2.564±0.5042.564±0.504 379.699±70.316379.699±70.316 123.755±27.244123.755±27.244 50.168±32.98450.168±32.984
rMpg_RBD (1회)rMpg_RBD (1 time) 2823.047±361.1842823.047±361.184 16.883±2.23016.883±2.230 607.431±53.096607.431±53.096 63.073±8.87763.073±8.877 123.311±9.823123.311±9.823
rMpg_RBD (2회)rMpg_RBD (2 times) 326.993±215.479326.993±215.479 20.163±5.37320.163±5.373 4272.077±605.0794272.077±605.079 118.317±36.668118.317±36.668 241.710±95.435241.710±95.435
rMpg_RBD+RBD 단백rMpg_RBD+RBD protein 31.683±20.16931.683±20.169 3.444±1.5143.444±1.514 449.954±66.844449.954±66.844 115.781±14.654115.781±14.654 120.982±22.163120.982±22.163
RBD 단백 (2회)RBD protein (2 times) 52.190±13.94252.190±13.942 4.771±1.0634.771±1.063 1728.377±328.7801728.377±328.780 1052.501±283.5571052.501±283.557 19.985±2.60219.985±2.602
그 결과, 앞선 IFN-γ ELISPOT 및 FACS 결과와 마찬가지로(도 20, 도 21; 표 10, 표 11), rMpg_RBD 균주를 1회 면역화한 그룹에서 가장 높은 IFN-γ의 발현을 확인할 수 있었다(도 22a, 표 12). rMpg_RBD 균주를 2회 면역화한 그룹도 다른 나머지 면역 그룹에 비해 통계적으로 유의하게 IFN-γ의 발현을 증가시켰다(도 22a, 표 12). 하지만, rMpg_RBD로 prime한 후 RBD 단백을 boosting하여 면역시킨 그룹과 RBD 단백만 면역시킨 그룹에서는 IFN-γ의 발현량이 낮게 확인되었다.IL-2, IL-12 및 TNF-α의 경우, rMpg_RBD 균주를 면역화한 그룹이 Mpg 야생형을 면역화한 그룹보다 높은 사이토카인 발현량을 보였으며, 특히, rMpg_RBD 균주를 2회 면역화한 그룹이 가장 높은 발현량을 보였다. TNF-α의 경우, FACS 분석 결과(도 21, 표 11)와 상관성을 보이는 양상으로, rMpg_RBD 균주를 2회 면역화한 그룹이 가장 높은 발현량을 보였다(도 22b, 도 22c, 도 22e, 표 12).As a result, as with the previous IFN-γ ELISPOT and FACS results (Fig. 20, Fig. 21; Table 10, Table 11), the highest expression of IFN-γ was confirmed in the group immunized with the rMpg_RBD strain once (Fig. 22a). , Table 12). The group immunized with the rMpg_RBD strain twice also increased the expression of IFN-γ statistically significantly compared to the other immunization groups (Fig. 22a, Table 12). However, the expression level of IFN-γ was found to be low in the group immunized with RBD protein boosting after primed with rMpg_RBD and in the group immunized with RBD protein alone. For IL-2, IL-12 and TNF-α, the rMpg_RBD strain was The immunized group showed a higher cytokine expression level than the Mpg wild-type immunized group, and in particular, the group immunized with the rMpg_RBD strain twice showed the highest expression level. In the case of TNF-α, it was correlated with the results of FACS analysis (Fig. 21, Table 11), and the group immunized with the rMpg_RBD strain twice showed the highest expression level (Fig. 22b, Fig. 22c, Fig. 22e, Table 12). ).
RBD 단백을 면역화한 그룹의 경우, Th1 세포 매개 면역 반응에 중요한 사이토카인들(TNF-α, IFN-γ, IL-12 등)의 발현량이 다른 면역 그룹에 비해 크게 낮은 양상을 보였으나, Th2 면역 반응과 연관된 IL-10의 발현량이 다른 면역 그룹에 비해 월등히 높은 것으로 확인되었다(도 22d, 표 11).In the case of the RBD protein-immunized group, the expression levels of cytokines (TNF-α, IFN-γ, IL-12, etc.) important for the Th1-cell-mediated immune response were significantly lower than those of the other immune groups, but Th2 immunity It was confirmed that the expression level of IL-10 associated with the response was significantly higher than that of other immune groups (Fig. 22d, Table 11).
실험예 6.4. 혈청 내 IgG 분석Experimental Example 6.4. IgG analysis in serum
선별한 재조합 균주에 기초한 비처리(No treat), 야생형 Mpg, rMpg_RBD(1), rMpg_RBD(2), rMpg_RBD + RBD, RBD의 총 6개의 그룹, 총 30마리의 마우스로 실험을 진행하였다. 균주 혹은 단백의 마지막 주입 후 2주가 지났을 때 마우스에서 혈청을 확보하였고, 확보된 혈청은 -20℃에 보관하였다.Based on the selected recombinant strain, the experiment was conducted with a total of 30 mice, in total of 6 groups: no treat, wild-type Mpg, rMpg_RBD(1), rMpg_RBD(2), rMpg_RBD + RBD, and RBD. Serum was obtained from mice two weeks after the last injection of the strain or protein, and the obtained serum was stored at -20°C.
면역화된 마우스에서 분리된 혈청을 사용하여, 혈청 내 SARS-CoV-2 RBD에 의한 IgG 발현 양상을 분석, 평가하고자 하였다. 이를 위해, RBD 단백을 ELISA 플레이트에 코팅(5 μg/ml)하여 24시간 동안 4℃에 반응시켰다. 그 후, 세척 버퍼(0.05% Tween 20)로 각 웰을 세척한 후, 5% BSA로 각 웰을 블록킹하였다. 각 마우스에서 분리한 혈청 샘플을 희석하고(1:10), 각 웰에 넣어 2시간 동안 상온에서 반응시켰다. 그 후, HRP가 달린 IgG1(염소 항-마우스 IgG1, HRP 접합됨; ThermoFisher Scientific), IgG2a(염소 항-마우스 IgG2, HRP 접합됨; Invitrogen) 및 총 IgG(항 마우스 IgG, 바이오틴화됨; eBioScinece)에 대한 항체를 넣어 1시간 상온에서 반응시킨 후, 발색시켰다. ELISA reader 기기(Tecan Sunrise)로 450 nm 파장에서 흡광도를 측정하여, 각 항체 아이소타입에 대한 OD 값을 평가하였다.Using serum isolated from immunized mice, we tried to analyze and evaluate the IgG expression pattern by SARS-CoV-2 RBD in the serum. For this, the RBD protein was coated on an ELISA plate (5 μg/ml) and reacted at 4° C. for 24 hours. Thereafter, each well was washed with wash buffer (0.05% Tween 20), and then each well was blocked with 5% BSA. Serum samples isolated from each mouse were diluted (1:10), put into each well, and reacted at room temperature for 2 hours. Then, IgG1 with HRP (goat anti-mouse IgG1, HRP conjugated; ThermoFisher Scientific), IgG2a (goat anti-mouse IgG2, HRP conjugated; Invitrogen) and total IgG (anti mouse IgG, biotinylated; eBioScinece) Antibodies were added and reacted at room temperature for 1 hour, followed by color development. By measuring the absorbance at a wavelength of 450 nm with an ELISA reader device (Tecan Sunrise), the OD value for each antibody isotype was evaluated.
면역화 후 RBD에 특이적인 IgG 생성 양상을 흡광도로 측정한 결과After immunization, RBD-specific IgG production pattern was measured by absorbance
흡광도 (OD 450nm)Absorbance (OD 450nm)
IgG2IgG2 IgG1IgG1 Total IgGTotal IgG
No treatno treat 0.082±0.0060.082±0.006 0.053±0.0030.053±0.003 0.259±0.0340.259±0.034
Mpg (2회 면역)Mpg (2 times immunity) 0.124±0.0210.124±0.021 0.583±0.0550.583±0.055 0.448±0.0320.448±0.032
rMpg_RBD (1회)rMpg_RBD (1 time) 0.136±0.0390.136±0.039 0.286±0.1650.286±0.165 0.366±0.0470.366±0.047
rMpg_RBD (2회)rMpg_RBD (2 times) 0.197±0.0500.197±0.050 0.564±0.0580.564±0.058 0.470±0.0270.470±0.027
rMpg_RBD+RBD 단백rMpg_RBD+RBD protein 0.090±0.0090.090±0.009 0.315±0.1590.315±0.159 0.381±0.0600.381±0.060
RBD 단백 (2회)RBD protein (2 times) 0.113±0.0180.113±0.018 0.344±0.0460.344±0.046 0.395±0.0440.395±0.044
그 결과, rMpg_RBD를 2회 접종한 그룹에서 세포 매개성 Th1 면역에 관여한다고 알려져 있는 IgG2의 발현이 가장 높은 것으로 확인되었다(도 23a, 표 13). rMpg_RBD를 1회 접종한 그룹은 Mpg 야생형 및 RBD 단백 면역 그룹과 비슷한 수준의 IgG2 발현 양상을 보였다. IgG1의 경우에도, rMpg_RBD를 2회 접종한 그룹에서 높은 발현을 보였으나, Mpg 균주를 면역화한 그룹에서도 그와 비슷한 수준으로 IgG1의 발현이 증가됨이 확인되었다(도 23b, 표 13).RBD 특이적인 세포 매개성 면역 반응 결과와 달리, rMpg_RBD를 1회 면역화한 그룹은 rMpg_RBD prime-RBD boosting 및 RBD 단백 면역 그룹과 비슷한 수준의 IgG1 발현 양상을 보였다. 총 IgG의 발현은 높은 IgG1 발현을 반영하는 듯, Mpg 균주가 면역화된 그룹과 rMpg_RBD 균주를 2회 면역화한 그룹에서 가장 높은 양상을 보였다(도 23c, 표 13).As a result, it was confirmed that the group inoculated with rMpg_RBD twice had the highest expression of IgG2, which is known to be involved in cell-mediated Th1 immunity ( FIG. 23A , Table 13). The group inoculated with rMpg_RBD showed a similar level of IgG2 expression to the Mpg wild-type and RBD protein immune groups. In the case of IgG1, high expression was shown in the group inoculated with rMpg_RBD twice, but it was confirmed that the expression of IgG1 was increased to a similar level in the group immunized with the Mpg strain (FIG. 23b, Table 13). RBD-specific Contrary to the results of cell-mediated immune response, the group immunized with rMpg_RBD showed a similar level of IgG1 expression to the rMpg_RBD prime-RBD boosting group and the RBD protein immune group. The expression of total IgG seemed to reflect the high expression of IgG1, showing the highest pattern in the group immunized with the Mpg strain and the group immunized with the rMpg_RBD strain twice (FIG. 23c, Table 13).
실험예 6.5. rMpg_RBD로 면역화한 마우스 혈청의 생 SARS-CoV-2에 대한 중화항체능 평가Experimental Example 6.5. Evaluation of neutralizing antibody ability against live SARS-CoV-2 in mouse serum immunized with rMpg_RBD
각 그룹에서 얻은 마우스 혈청의 생 SARS-CoV-2에 대한 중화항체능을 평가하기 위해 Biosafety Level 3 연구실에서 실험을 진행하였다.In order to evaluate the neutralizing antibody ability against live SARS-CoV-2 of mouse sera obtained from each group, an experiment was conducted in the Biosafety Level 3 laboratory.
먼저, SARS-CoV-2를 배양하기 위해, 원숭이 신장세포주 Vero E6를 T75 플라스크에서(5×106을 DMEM(10% FBS가 보충됨)에서) 24시간 배양한 다음, 37℃ 워터 배스(water bath)에서 녹인 SARS-CoV-2 스탁을 20 ml DMEM(10% FBS가 보충됨)에 풀어 Vero E6에 대한 배지를 교체하였다. 이렇게 1시간 동안 37℃ 인큐베이터에서 감염시키며 10분 간격으로 바이러스가 균일하게 감염될 수 있도록 플라스크를 좌우로 가볍게 흔들어주었다. 1 시간 후 상층액을 제거하여 바이러스가 없는 배지로 교체하며 37℃에서 3일간 배양하였다. 그 후, 상층액을 수득하여 분취하고, -80℃ 딥프리저(deepfreezer)에 보관하였다.First, for culturing SARS-CoV-2, the monkey kidney cell line Vero E6 was cultured in a T75 flask (5×10 6 in DMEM (supplemented with 10% FBS)) for 24 hours, and then in a 37°C water bath (water bath). bath) dissolved in the SARS-CoV-2 stock was dissolved in 20 ml DMEM (supplemented with 10% FBS) to replace the medium for Vero E6. In this way, the infection was carried out in an incubator at 37° C. for 1 hour, and the flask was lightly shaken from side to side so that the virus could be uniformly infected at intervals of 10 minutes. After 1 hour, the supernatant was removed, replaced with a virus-free medium, and cultured at 37°C for 3 days. Thereafter, the supernatant was collected and aliquoted and stored in a -80°C deepfreezer.
한편, 마우스 혈청을 1:2, 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000의 희석 농도로 DMEM 배지에 희석하여 150 μl를 준비하였다. 그 후, 100 내지 150 pfu의 SARS-CoV-2 150 μl와 37℃에서 1시간 동안 반응시켰다. 전날 준비한 Vero E6 세포(24 웰 플레이트, 5×105 세포/웰)의 각 웰에 반응시킨 혈청-바이러스 혼합물을 감염시킨 후 37℃에서 1시간 반응시켰다. 이때, 바이러스가 균일하게 감염될 수 있도록 10분 간격으로 플레이트를 가볍게 흔들어주었다. 1시간 감염 후 배지를 제거하고, PBS로 세척하였다. 그 후, DMEM(10% FBS 및 0.8% 메틸셀룰로스가 보충됨) 500 μl/웰로 교체하고 37℃ 인큐베이터에서 2일간 배양하였다.Meanwhile, 150 μl of mouse serum was prepared by diluting it in DMEM medium at dilution concentrations of 1:2, 1:10, 1:20, 1:50, 1:100, 1:1000, and 1:10000. Thereafter, 150 μl of SARS-CoV-2 of 100 to 150 pfu was reacted at 37° C. for 1 hour. Each well of Vero E6 cells (24 well plate, 5×10 5 cells/well) prepared the day before was infected with the reacted serum-virus mixture, and then reacted at 37° C. for 1 hour. At this time, the plate was lightly shaken at 10-minute intervals so that the virus could be uniformly infected. After 1 hour of infection, the medium was removed and washed with PBS. Then, DMEM (supplemented with 10% FBS and 0.8% methylcellulose) was replaced with 500 μl/well and incubated for 2 days in a 37° C. incubator.
3일 후, 플라크(plaque) 발색을 위해, 100% 메탄올 1 ml(1:2 부피)/웰을 처리하여 15분간 상온에서 반응시키면서 0.8% 메틸셀룰로스를 녹였다. 메틸셀룰로스를 제거하고, PBS로 세척한 후 4% 파라포름알데하이드 500 μl/웰 처리하여 상온에서 15분간 세포를 고정하였다. 이후 플레이트 덮개를 연 상태로 UV를 1시간 조사하여 샘플을 불활성화시켰다. 1시간 후, 용액을 제거하고, 100% 메탄올을 500 μl/웰 처리하여 15분간 고정/투과를 진행하였다. PBS로 세척한 후, SARS-CoV2의 뉴클레오캡시드(NP)에 대한 1차 항체를 (PBS 중의) 2% BSA에 1:1000 희석하여 200 μl/웰 처리하고, 4℃에서 밤새 반응시켰다. 이후 1차 항체를 제거하고, PBS로 세척을 세 번 진행하였다. 이어서, 알칼리 포스파타제(AP)가 부착된 2차 항체를 (PBS 중의) 2% BSA에 1:5000 희석하여 200 μl/ml 처리한 후 상온에서 2시간 반응시켰다. 2차 항체를 제거하고, PBS로 세척한 다음, 기질 NBT/BCIP를 (PBS 중의) 2% BSA에 1:10000 희석하여 200 μl/웰 처리하여 반응시켰다. 플라크 발색이 진행되면, 기질 용액을 제거한 후 DW로 세척하고 물기를 제거하였다.After 3 days, in order to develop a plaque, 1 ml (1:2 volume)/well of 100% methanol was treated and reacted at room temperature for 15 minutes to dissolve 0.8% methylcellulose. Methylcellulose was removed, washed with PBS, and then treated with 4% paraformaldehyde 500 μl/well, and the cells were fixed at room temperature for 15 minutes. After that, the sample was inactivated by irradiating UV for 1 hour with the plate cover open. After 1 hour, the solution was removed, and 100% methanol was treated with 500 μl/well, followed by fixation/permeation for 15 minutes. After washing with PBS, the primary antibody against the nucleocapsid (NP) of SARS-CoV2 was diluted 1:1000 in 2% BSA (in PBS) and treated with 200 μl/well, followed by reaction at 4° C. overnight. Thereafter, the primary antibody was removed, and washing was performed three times with PBS. Then, the secondary antibody to which alkaline phosphatase (AP) is attached was diluted 1:5000 in 2% BSA (in PBS) and treated with 200 μl/ml, followed by reaction at room temperature for 2 hours. The secondary antibody was removed, washed with PBS, and the substrate NBT/BCIP was diluted 1:10000 in 2% BSA (in PBS) and treated with 200 μl/well. When plaque development progressed, the substrate solution was removed, washed with DW, and water was removed.
그 결과, 아무 처리하지 않은 마우스의 혈청의 경우를 제외하고 나머지 모든 그룹에서 혈청의 희석 배수가 증가함에 따라 SARS-CoV-2의 플라크 형성이 줄어드는 것으로 보아 생 SARS-CoV-2에 대한 중화항체능이 확인되었다. 이때, 혈청과 반응시키지 않는 바이러스 감염을 기준으로 플라크 개수의 감소를 중화율(%)로 계산하였다.As a result, as the dilution factor of serum increased in all groups except for the serum of untreated mice, plaque formation of SARS-CoV-2 was reduced. Confirmed. At this time, the reduction in the number of plaques was calculated as the neutralization rate (%) based on the virus infection that did not react with the serum.
또한, 플라크 감소 중화 테스트 50(PRNT50) 역가는 바이러스 플라크 형성이 아무 처리하지 않은 경우에 대비하여 50% 감소할 때의 혈청 희석 배수를 말하며, PRNT50 값이 클수록 혈청의 중화항체능 효율이 뛰어나다고 할 수 있다(도 24). PRNT50 값을 비교할 때, 마우스에 아무 처리하지 않은 경우에 대비하여 균주 혹은 단백을 주입한 마우스의 경우 혈청은 SARS-CoV-2에 대해 통계적으로 유의한 수준으로 뛰어난 중화항체능을 보였다. 또한, 야생형 Mpg를 처리한 경우에 대비하여 재조합 균주를 처리하거나 재조합 균주와 단백과의 조합으로 처리한 경우의 혈청이 뛰어난 중화항체능을 가짐을 확인하였다.In addition, the titer of the Plaque Reduction Neutralization Test 50 (PRNT50) refers to the dilution factor of the serum when the virus plaque formation is reduced by 50% compared to the case of no treatment. can be (Fig. 24). When comparing the PRNT50 values, in the case of mice injected with the strain or protein, the serum showed an excellent neutralizing antibody ability against SARS-CoV-2 at a statistically significant level compared to the case where the mice were not treated at all. In addition, it was confirmed that the serum in the case of treatment with a recombinant strain or a combination of a recombinant strain and a protein has excellent neutralizing antibody ability compared to the case of treatment with wild-type Mpg.
재조합 rMpg_RBD를 한 번 마우스에 면역화한 경우와 2주 간격으로 두 번 면역화한 경우를 비교할 때 혈청의 SARS-CoV-2 중화항체능 차이는 없는 것으로 확인되었다. 하지만, rMpg_RBD를 한 번 면역화한 경우에 대비하여 rMpg_RBD를 한 번 면역화한 후 RBD 단백을 주입한 경우에 마우스 혈청의 중화항체능이 통계적으로 유의한 수준에서 뛰어나다는 것을 확인할 수 있었다.When mice were immunized with recombinant rMpg_RBD once and immunized twice at 2-week intervals, it was confirmed that there was no difference in serum SARS-CoV-2 neutralizing antibody ability. However, compared to the case of immunization with rMpg_RBD once, it was confirmed that the neutralizing antibody ability of mouse serum was excellent at a statistically significant level when RBD protein was injected after immunization with rMpg_RBD once.
이 결과를 통해, 재조합 rMpg_RBD를 한 번 주입한 경우보다 rMpg_RBD를 한 번 주입한 이후 RBD 단백을 주입하는 경우 마우스 혈청의 생 SARS-CoV-2에 대한 항체 생성이 증가한다는 것을 알 수 있었다.From this result, it was found that the production of antibodies against live SARS-CoV-2 in mouse serum increased when RBD protein was injected after one injection of rMpg_RBD than when recombinant rMpg_RBD was injected once.
실험예 6.6. rMpg_RBD로 면역화한 마우스 혈청의 SARS-CoV-2 pseudovirus에 대한 중화항체능 비교Experimental Example 6.6. Comparison of neutralizing antibody ability against SARS-CoV-2 pseudovirus of mouse serum immunized with rMpg_RBD
재조합 rMpg_RBD 혹은 RBD 단백을 주입한 마우스 혈청의 SARS-CoV-2 pseudovirus에 대한 중화항체능을 확인하기 위해 실험예 5.4의 중화항체능 확인 실험과 동일한 방식으로 진행하였다.In order to confirm the neutralizing antibody ability of the mouse serum injected with recombinant rMpg_RBD or RBD protein against SARS-CoV-2 pseudovirus, it was carried out in the same manner as the neutralizing antibody activity confirmation experiment of Experimental Example 5.4.
먼저, 마우스 혈청을 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000의 배수로 희석하여 SARS-CoV-2와 37℃에서 반응시켰다. 그 후, 혈청-바이러스 배양액을 Calu-3와 Huh7 세포에 감염시켰다. 감염 후 48시간째에, 루시퍼라제 발색을 통해 세포 내 pseudovirus 감염 저해를 확인하였다(도 25a 내지 도 25d).First, the mouse serum was diluted in multiples of 1:10, 1:20, 1:50, 1:100, 1:1000, 1:10000, 1:100000, 1:1000000 and reacted with SARS-CoV-2 at 37°C. did it Then, the serum-virus culture was infected with Calu-3 and Huh7 cells. At 48 hours after infection, inhibition of intracellular pseudovirus infection was confirmed through luciferase color development ( FIGS. 25A to 25D ).
그 결과, 마우스에 아무 처리를 하지 않은 경우를 제외하고 균주 혹은 단백을 면역화한 마우스 혈청의 경우 모두에서 혈청의 희석배수가 증가함에 따라 Calu-3 세포 내 pseudovirus 감염이 줄어드는 것으로 보아 SARS-CoV-2 pseudovirus에 대한 중화항체능이 있음을 알 수 있었다. 여기서, 상대 루시퍼라제 단위(RLU)는 SARS-CoV-2 pseudovirus가 세포에 감염하여 발현하는 루시퍼라제의 양으로 값이 작을수록 감염이 저해되었다고 할 수 있다. As a result, in all of the mouse serum immunized with the strain or protein, except for the case where the mice were not treated at all, as the dilution factor of the serum increased, the pseudovirus infection in Calu-3 cells was reduced, so SARS-CoV-2 It was found that there is neutralizing antibody ability against pseudovirus. Here, the relative luciferase unit (RLU) is the amount of luciferase expressed by SARS-CoV-2 pseudovirus infecting cells, and it can be said that the smaller the value, the more inhibited the infection.
또한, NT50 값을 비교할 때, 마우스에 아무 처리하지 않은 경우에 대비하여 나머지 균주 혹은 단백을 주입한 마우스의 경우 혈청은 Calu-3와 Huh7 실험 모두에서 SARS-CoV-2 pseudovirus에 대해 통계적으로 유의한 수준으로 뛰어난 중화항체능을 보였다. 여기서, NT50 값은 혈청을 섞어주지 않은 pseudovirus 감염을 기준으로 루시퍼라제 발색이 50% 줄었을 때의 혈청 희석 배수로서, 중화 항체 역가 50을 의미한다.In addition, when comparing NT50 values, in the case of mice injected with the rest of the strains or proteins in preparation for no treatment, the serum was statistically significant for SARS-CoV-2 pseudovirus in both Calu-3 and Huh7 experiments. It showed excellent neutralizing antibody ability. Here, the NT50 value is the serum dilution factor when the color of luciferase is reduced by 50% based on the pseudovirus infection without mixing the serum, and means a neutralizing antibody titer of 50.
한편, 야생형 Mpg를 마우스에 주입한 경우에 대비하여 rMpg_RBD를 두 번 주입한 경우, rMpg_RBD 한 번과 RBD 단백을 주입한 경우, RBD만 주입한 경우 Calu-3 세포 실험에서 혈청의 NT50 값이 통계적으로 유의한 수준으로 높은 것으로 보아 SARS-CoV-2 pseudovirus에 대한 중화항체능이 뛰어나다는 것이 확인되었다. 이와 같은 차이가 Calu-3 뿐만 아니라 Huh7에서도 확인되었으며 Huh 세포 실험에서는 야생형 Mpg를 주입한 경우 보다 rMpg_RBD를 한 번 주입한 경우에서 혈청의 SARS-CoV-2 pseudovirus 중화항체능 효율이 뛰어난 것이 확인되었다.On the other hand, when rMpg_RBD was injected twice, when rMpg_RBD and RBD protein were injected, when wild-type Mpg was injected into mice, when only RBD was injected, the NT50 value of serum in the Calu-3 cell experiment was statistically It was confirmed that the neutralizing antibody ability against SARS-CoV-2 pseudovirus was excellent as it was found to be high at a significant level. This difference was confirmed not only in Calu-3 but also in Huh7, and in the Huh cell experiment, it was confirmed that the efficiency of the serum SARS-CoV-2 pseudovirus neutralizing antibody was superior in the case of single injection of rMpg_RBD than in the case of injection of wild-type Mpg.
또한, rMpg_RBD를 한 번 주입한 경우에 대비하여 rMpg_RBD를 두 번 주입 또는 rMpg_RBD 한 번과 RBD 단백을 주입한 경우 Calu-3와 Huh7 실험 모두에서 NT50 값이 높은 것으로 보아 마우스 혈청의 SARS-CoV-2 pseudovirus 중화항체능이 통계적으로 유의한 수준으로 뛰어나다는 것이 확인되었다. 뿐만 아니라, rMpg_RBD를 두 번 주입한 경우에 대비하여 rMpg_RBD를 한 번 주입한 후 RBD 단백을 주입하였을 때 마우스 혈청의 NT50 값이 통계적으로 유의한 수준으로 높은 것으로 보아 마우스 혈청의 pseudovirus 중화항체능이 뛰어나다는 것이 확인되었다.In addition, when rMpg_RBD was injected twice or rMpg_RBD was injected once and RBD protein was injected, NT50 values were high in both Calu-3 and Huh7 experiments. It was confirmed that the pseudovirus neutralizing antibody ability was excellent at a statistically significant level. In addition, in preparation for the double injection of rMpg_RBD, when RBD protein was injected after rMpg_RBD was injected once, the NT50 value of the mouse serum was found to be statistically significant, indicating that the mouse serum has excellent pseudovirus neutralizing antibody ability. that has been confirmed
이 결과를 바탕으로, 재조합 rMpg_RBD를 한 번 주입한 경우 보다 두 번 마우스에 주입하였을 때 혈청에서 SARS-CoV-2 pseudovirus에 대한 항체 생성이 증가한다는 것을 알 수 있었다. 또한, rMpg_RBD를 두 번 주입하는 경우보다 rMpg_RBD를 한 번 주입한 후 RBD 단백을 마우스에 주입할 때 혈청에서 SARS-CoV-2 pseudovirus에 대한 항체 생성이 증가한다는 것을 알 수 있었다.Based on these results, it was found that the production of antibodies against SARS-CoV-2 pseudovirus in serum increased when the recombinant rMpg_RBD was injected twice into mice than when the recombinant rMpg_RBD was injected once. In addition, it was found that the production of antibodies against SARS-CoV-2 pseudovirus in serum increased when RBD protein was injected into mice after rMpg_RBD was injected once more than when rMpg_RBD was injected twice.
실험예 6.7. rMpg_RBD로 면역화한 마우스 혈청이 ACE2-RBD 결합에 미치는 영향 평가Experimental Example 6.7. Evaluation of the Effect of Mouse Serum Immunized with rMpg_RBD on ACE2-RBD Binding
실험예 6.5 및 6.6을 통해 rMpg_RBD를 면역화한 마우스 혈청에서 생 SARS-CoV-2 및 SARS-CoV-2 pseudovirus에 대한 중화항체능이 있다는 것이 실험적으로 확인되었다. 이에, 면역화한 마우스 혈청 내 항체들이 RBD가 인지하여 결합하는 분자인 ACE2와의 결합을 실제로 방해하는지를 확인하기 위해, ACE2-RBD 결합 어세이를 수행하였다.Through Experimental Examples 6.5 and 6.6, it was experimentally confirmed that rMpg_RBD-immunized mouse serum had neutralizing antibody ability against live SARS-CoV-2 and SARS-CoV-2 pseudovirus. Therefore, in order to confirm whether the antibodies in the immunized mouse serum actually interfere with binding to ACE2, a molecule that RBD recognizes and binds, an ACE2-RBD binding assay was performed.
구체적으로, RayBiotech에서 제공하는 COVID-19 스파이크-ACE2 결합 어세이 Kit(CoV-ACE2S2-1)를 사용하여, rMpg_RBD로 면역화한 마우스 혈청 내 항체가 ACE2와 RBD의 결합에 영향을 미치는지를 평가하였다. 먼저, PBS, Mpg, rMpg_RBD(1회 또는 2회)로 면역화한 마우스의 혈청을 1:10, 1:100, 1:1000, 1:10000으로 희석하여 RBD 단백과 섞어주었다. 그 후, ACE2 단백이 코팅되어 있는 96웰 플레이트에 넣어 3시간 동안 상온에서 반응시켰다. Kit에서 제공하는 세척 버퍼로 각 웰을 4회 세척한 후, 각 웰에 HRP-접합 IgG를 붙여 상온에서 1시간 동안 반응시켰다. 다시 각 웰을 세척한 후, 발색 시약을 넣고 최대 30분까지 발색시켰다. 그 후, 반응을 중지시켜, ELISA reader 기기(Tecan Sunrise)로 450 nm에서 흡광도를 측정하였다. 이 때, 흡광도가 낮을수록 ACE2와 RBD의 결합을 방해한다고 판단할 수 있다.Specifically, using the COVID-19 Spike-ACE2 Binding Assay Kit (CoV-ACE2S2-1) provided by RayBiotech, it was evaluated whether the antibody in the serum of mice immunized with rMpg_RBD affects the binding of ACE2 and RBD. First, the serum of mice immunized with PBS, Mpg, rMpg_RBD (once or twice) was diluted 1:10, 1:100, 1:1000, 1:10000 and mixed with RBD protein. Then, it was put in a 96-well plate coated with ACE2 protein and reacted at room temperature for 3 hours. After washing each well 4 times with the wash buffer provided by the kit, HRP-conjugated IgG was attached to each well and reacted at room temperature for 1 hour. After washing each well again, a coloring reagent was added and allowed to develop color for up to 30 minutes. Then, the reaction was stopped, and absorbance was measured at 450 nm with an ELISA reader device (Tecan Sunrise). At this time, it can be determined that the lower the absorbance, the more inhibiting the binding of ACE2 and RBD.
PBS, Mpg 및 rMpg_RB로 면역화한 마우스의 혈청이 ACE2와 RBD의 결합에 미치는 영향을 평가하기 위한 ACE2-RBD 결합 어세이 흡광도 결과Absorbance results of an ACE2-RBD binding assay to evaluate the effect of serum from mice immunized with PBS, Mpg and rMpg_RB on the binding of ACE2 and RBD
흡광도 (OD 450nm)Absorbance (OD 450nm)
1:101:10 1:1001:100 1:10001:1000 1:100001:10000
PBSPBS 0.482±0.0170.482±0.017 0.493±0.0040.493±0.004 0.515±0.0090.515±0.009 0.547±0.0390.547±0.039
Mpgmpg 0.464±0.0100.464±0.010 0.471±0.0180.471±0.018 0.501±0.0190.501±0.019 0.528±0.0270.528±0.027
rMpg_RBD(1)rMpg_RBD(1) 0.316±0.0130.316±0.013 0.347±0.0040.347±0.004 0.416±0.0220.416±0.022 0.478±0.0060.478±0.006
rMpg_RBD(2)rMpg_RBD(2) 0.334±0.0110.334±0.011 0.351±0.0200.351±0.020 0.399±0.0090.399±0.009 0.483±0.0110.483±0.011
그 결과, PBS와 Mpg를 면역화한 그룹의 혈청을 RBD 단백과 섞어 ACE2와 반응시켰을 때, 희석 배수에 상관없이 흡광도가 비슷한 수준을 유지되는 것을 확인할 수 있었다. 하지만, rMpg_RBD를 면역시킨 마우스 혈청 샘플의 경우, 1회 또는 2회 면역 그룹 간의 차이는 없었지만, PBS 및 Mpg 면역 그룹에 비해, ACE2와 RBD의 결합을 방해하는 양상을 보였다. 이러한 경향은 혈청을 희석하여도 PBS 및 Mpg 면역 그룹에 비해 통계적으로 유의한 수준으로 흡광도가 낮은 양상을 보였다(도 26, 표 14). 하지만, 혈청을 1:10000가량 희석했을 때는, 흡광도가 상당히 증가하는 양상을 보였다.또한, rMpg_RBD 면역 혈청에 의한 ACE2-RBD 결합 저해 농도(inhibitory concentration 50, IC50)는 rMpg_RBD(1회 면역)가 1:762.2, rMpg_RBD(2회 면역)가 1:6008로, 이는 rMpg_RBD를 2회 면역화한 혈청이 낮은 농도에서도 ACE2-RBD 간 결합을 저해하는 데 탁월한 영향을 미친다는 것을 의미한다.As a result, when the serum of the group immunized with PBS and Mpg was mixed with RBD protein and reacted with ACE2, it was confirmed that the absorbance was maintained at a similar level regardless of the dilution factor. However, in the case of mouse serum samples immunized with rMpg_RBD, there was no difference between the 1 or 2 immunization groups, but compared to the PBS and Mpg immunization groups, the binding of ACE2 and RBD was inhibited. This trend showed a low absorbance at a statistically significant level compared to the PBS and Mpg immune groups even when the serum was diluted ( FIG. 26 , Table 14). However, when the serum was diluted about 1:10000, the absorbance significantly increased. In addition, the ACE2-RBD binding inhibitory concentration (inhibitory concentration 50, IC50) by the rMpg_RBD immune serum was equal to 1 :762.2, rMpg_RBD (two immunizations) was 1:6008, indicating that serum immunized with rMpg_RBD twice had an excellent effect on inhibiting ACE2-RBD binding even at low concentrations.
실험예 6.8. BALF에서 IgA의 발현 확인Experimental Example 6.8. Confirmation of IgA expression in BALF
rMpg_RBD로 면역화된 마우스의 기관지 폐포 세척액(BALF)에서 SARS-CoV-2 RBD에 특이적으로 반응하는 IgA의 발현량을 확인하기 위해, IgA ELISA를 수행하였다.To determine the expression level of IgA specifically responding to SARS-CoV-2 RBD in bronchoalveolar lavage (BALF) of mice immunized with rMpg_RBD, IgA ELISA was performed.
우선, 면역화된 마우스를 해부하여 기관지를 노출시켰다. 그 후, 22 게이지의 카테터(BD BioSciences)를 기관지에 삽관시킨 후, 800 μl의 PBS가 담긴 1 ml 시린지(syringe)로 교체하여 주입시켰다. 이때, 주입하거나 빼낼 때, 폐가 부풀어 오르고 다시 가라앉는지 육안으로 확인하며 진행하였다. 시린지로 PBS를 넣었다 빼는 작업을 3회 내지 4회 반복하여, 최종적으로 약 500 내지 600 μl의 BALF를 확보하고, 실험에 사용될 때까지 -20℃에 보관하였다.First, the immunized mice were dissected to expose the bronchi. Thereafter, a 22-gauge catheter (BD BioSciences) was intubated into the bronchus, and then replaced with a 1 ml syringe containing 800 μl of PBS and injected. At this time, when injecting or withdrawing, visually confirm whether the lungs swell and subside again. The operation of inserting and withdrawing PBS with a syringe was repeated 3 to 4 times, and finally about 500 to 600 μl of BALF was obtained, and stored at -20°C until used in the experiment.
면역화된 마우스에서 분리된 BALF를 사용하여, BALF 내 SARS-CoV-2 RBD에 의한 IgA 발현 양상을 ELISA로 확인하였다. 이를 위해, RBD 단백을 ELISA 플레이트에 코팅(5 μg/ml)하여 24시간 동안 4℃에서 반응시킨 후, 세척 버퍼 (0.05% Tween 20)로 각 웰을 세척하였다. 그 후, 5% BSA로 각 웰을 블록킹하였다. 각 웰을 다시 한번 세척한 후, 마우스에서 분리한 BALF 샘플을 각 웰에 넣어 2시간 동안 상온에서 반응시켰다. 그 후, HRP가 달린 IgA에 대한 항체(염소 항-마우스 IgA 2차 항체, HRP 접합됨; Invitrogen)를 넣어 1시간 상온에서 반응시킨 후, 발색시켰다. ELISA reader 기기(Tecan Sunrise)로 450 nm 파장에서 흡광도를 측정하여, IgA에 대한 OD 값을 측정하였다.Using BALF isolated from immunized mice, the IgA expression pattern by SARS-CoV-2 RBD in BALF was confirmed by ELISA. To this end, RBD protein was coated on an ELISA plate (5 μg/ml) and reacted at 4° C. for 24 hours, and then each well was washed with a wash buffer (0.05% Tween 20). Then, each well was blocked with 5% BSA. After washing each well again, the BALF sample isolated from the mouse was put into each well and reacted at room temperature for 2 hours. After that, an HRP-attached IgA antibody (goat anti-mouse IgA secondary antibody, HRP conjugated; Invitrogen) was added and reacted at room temperature for 1 hour, followed by color development. By measuring the absorbance at a wavelength of 450 nm with an ELISA reader device (Tecan Sunrise), the OD value for IgA was measured.
Mpg, rMpg_RBD 및 RBD 단백 등을 SC로 면역화한 마우스의 BALF 샘플을 RBD 단백으로 자극시킨 후 IgA 항체의 발현량을 흡광도로 측정하여 비교한 결과.The results of comparing BALF samples of mice immunized with Mpg, rMpg_RBD, and RBD proteins with SC were stimulated with RBD protein, and then the expression level of IgA antibody was measured by absorbance and compared.
흡광도 (OD 450nm)Absorbance (OD 450nm)
PBSPBS 0.078±0.0120.078±0.012
Mpgmpg 0.1024±0.0090.1024±0.009
rMpg_RBD (1)rMpg_RBD (1) 0.124±0.0120.124±0.012
rMpg_RBD (2)rMpg_RBD (2) 0.129±0.0100.129±0.010
rMpg_RBD + RBDrMpg_RBD + RBD 0.088±0.0130.088±0.013
RBDRBD 0.099±0.0160.099±0.016
그 결과, Mpg 면역 시에도 BALF 내 IgA의 발현이 일정 수준 확인되긴 하였으나, rMpg_RBD를 면역시킨 그룹의 BALF 내 IgA 발현 양상이 Mpg를 비롯한 rMpg_RBD prime-RBD boosting 및 RBD 면역 그룹에 비해 통계적으로 유의한 수준으로 증가되는 경향을 확인할 수 있었다. 또한, rMpg_RBD를 2회 면역화한 그룹에서 가장 높은 IgA의 발현 양상을 보였으며, 이는 rMpg_RBD를 1회 면역화한 그룹보다 높은 양상이었다(도 27, 표 15).As a result, although a certain level of IgA expression in BALF was confirmed even during Mpg immunization, the IgA expression pattern in BALF of the rMpg_RBD immunized group was statistically significant compared to the rMpg_RBD prime-RBD boosting and RBD immunization groups including Mpg. An increasing trend could be observed. In addition, the group immunized with rMpg_RBD twice showed the highest expression of IgA, which was higher than the group immunized with rMpg_RBD once ( FIG. 27 , Table 15).
실험예 6.1 내지 6.8의 결과 요약 및 고찰Summary and consideration of the results of Experimental Examples 6.1 to 6.8
본 발명의 실시예에 따른 rMpg_RBD #7 균주로 마우스를 도 19의 투여 스케줄에 따라 면역화하여 SARS-CoV-2 RBD 특이적인 면역 유도능의 형성을 여러 면역 조합[i) PBS(2회 접종, S.C.); ii) Mpg(2회 접종, S.C.); iii) rMpg_RBD(1회 접종, S.C.); iv) rMpg_RBD(2회 접종, S.C.); v) rMpg_RBD(1회 접종, S.C.) + RBD 단백과 알룸(1회 접종, S.C.); vi) RBD 단백과 알룸(2회 접종, S.C.)]을 통해 비교, 평가한 결과를 요약하면 다음과 같다. Mice were immunized with the rMpg_RBD #7 strain according to an embodiment of the present invention according to the dosing schedule of FIG. 19, and the formation of SARS-CoV-2 RBD-specific immune-inducing ability was confirmed by several immune combinations [i) PBS (twice inoculation, S.C. ); ii) Mpg (2 doses, S.C.); iii) rMpg_RBD (single inoculation, S.C.); iv) rMpg_RBD (2 doses, S.C.); v) rMpg_RBD (single dose, S.C.) + RBD protein and alum (single dose, S.C.); vi) RBD protein and Alum (2 doses, S.C.)] to summarize the results of comparison and evaluation.
우선, RBD 단백으로 자극시킨 비장 세포를 사용하여 IFN-γ ELISPOT을 수행한 결과, rMpg_RBD 균주로 면역화한 그룹(1회, 2회 면역 또는 rMpg_RBD prime-RBD boosting 면역 그룹)에서 PBS 및 Mpg 균주 면역 그룹에 비해 높은 IFN-γ spot을 확인할 수 있었다. 그 중에서, rMpg_RBD 균주로 1회 면역화한 그룹에서 가장 높은 IFN-γ spot을 확인할 수 있었다(도 20, 표 10).First, as a result of performing IFN-γ ELISPOT using spleen cells stimulated with RBD protein, in the group immunized with the rMpg_RBD strain (1 time, 2 times, or rMpg_RBD prime-RBD boosting immune group), the PBS and Mpg strain immune group A higher IFN-γ spot could be confirmed compared to . Among them, the highest IFN-γ spot was confirmed in the group immunized with the rMpg_RBD strain once ( FIG. 20 , Table 10).
또한, IFN-γ 및 TNF-α를 분비하는 T 세포 집단을 FACS로 분석한 결과, rMpg_RBD로 면역화한 그룹(1회 또는 2회)에서 IFN-γ를 분비하는 CD4, CD8 T 세포 집단이 다른 면역화 그룹에 비해 통계적으로 유의하게 증가하는 양상을 보였다(도 21, 표 11). 특히, rMpg_RBD 균주로 1회 면역화한 그룹에서 IFN-γ를 발현하는 CD4 T 세포 집단이 가장 많이 유도되는 경향을 보였다. 또한, TNF-α를 분비하는 CD4, CD8 T 세포 집단의 경우도, rMpg_RBD로 면역화한 그룹(1회 또는 2회 면역)에서 높은 양상을 보였지만, rMpg_RBD prime-RBD 단백 boosting으로 면역화한 그룹에서 TNF-α를 분비하는 T 세포 집단이 가장 높은 양상을 보였다(도 21, 표 11).In addition, as a result of FACS analysis of IFN-γ and TNF-α-secreting T cell populations, IFN-γ-secreting CD4 and CD8 T cell populations were different in the group immunized with rMpg_RBD (once or twice). It showed a statistically significant increase compared to the group (FIG. 21, Table 11). In particular, in the group immunized with the rMpg_RBD strain once, the CD4 T cell population expressing IFN-γ showed the tendency to be most induced. Also, in the case of TNF-α-secreting CD4 and CD8 T cell populations, the group immunized with rMpg_RBD (1 or 2 immunizations) showed a high pattern, but in the group immunized with rMpg_RBD prime-RBD protein boosting, TNF- The T cell population secreting α showed the highest pattern (FIG. 21, Table 11).
또한, 각 면역화된 마우스 비장 세포를 RBD 단백으로 자극시킨 후, 세포 배양액에서 면역 사이토카인 발현을 평가하였다. 그 결과, IFN-γ의 발현은 ELISPOT 및 FACS 분석 결과와 유사하게, rMpg_RBD 균주를 1회 면역화한 그룹에서 가장 높았지만(도 20, 도 21, 도 22a; 표 10, 표 11, 표 12), 나머지 Th1 면역 반응에 중요한 사이토카인들(TNF-α, IL-2, 및 IL-12)의 발현은 rMpg_RBD 균주를 2회 면역화한 그룹에서 가장 높은 양상을 보였다(도 22b, 도 22c, 도 22e, 표 12). rMpg_RBD prime-RBD boosting 면역 그룹의 면역 사이토카인 발현 양상은 rMpg_RBD 1회 또는 2회 면역 그룹보다 낮은 경향을 보였다. RBD 단독 면역 그룹에서는 항염증 사이토카인인 IL-10의 발현만 나머지 면역 그룹에 비해 월등히 높은 수준을 보였고, 나머지 백신 면역에 중요한 면역 사이토카인의 발현은 다른 그룹에 비해 낮은 경향을 보였다.In addition, after each immunized mouse spleen cells were stimulated with RBD protein, immune cytokine expression was evaluated in the cell culture medium. As a result, the expression of IFN-γ was highest in the group immunized with the rMpg_RBD strain once, similar to the results of ELISPOT and FACS analysis (Fig. 20, Fig. 21, Fig. 22a; Table 10, Table 11, Table 12), The expression of cytokines (TNF-α, IL-2, and IL-12) important for the remaining Th1 immune response showed the highest aspect in the group immunized with the rMpg_RBD strain twice ( FIGS. 22b, 22c, 22e, Table 12). The immune cytokine expression pattern of the rMpg_RBD prime-RBD boosting immunization group was lower than that of the rMpg_RBD 1 or 2 immunization group. In the RBD-only immune group, only the expression of IL-10, an anti-inflammatory cytokine, was significantly higher than in the rest of the immune group, and the expression of immune cytokines important for the rest of the vaccine immunity showed a low tendency compared to other groups.
또한, 각 면역화된 마우스 혈청에서 세포 매개성 Th1 면역에 관여한다고 알려져 있는 IgG2의 발현은 rMpg_RBD를 2회 접종한 그룹에서 가장 높은 것으로 확인되었고, rMpg_RBD를 1회 면역화하거나 rMpg_RBD prime-RBD boosting 면역화한 그룹에서는 Mpg 면역 그룹과 비슷하거나 낮은 IgG2 발현 양상을 보였다. 특이적으로, Mpg 균을 접종한 그룹에서 IgG1 및 총 IgG1의 발현이 rMpg_RBD 2회 면역 그룹과 큰 차이 없이 높은 것으로 확인되었는데, 이는 추후 더 면밀한 확인이 필요하겠지만 Mpg 면역에 의한 항원 비특이적인 항체 형성능도 고려되어야 할 것으로 생각된다(도 23, 표 13).Also, the expression of IgG2, which is known to be involved in cell-mediated Th1 immunity, in the serum of each immunized mouse was confirmed to be the highest in the group immunized with rMpg_RBD twice, and the group immunized with rMpg_RBD once or rMpg_RBD prime-RBD boosting. showed similar or lower IgG2 expression patterns to those of the Mpg immune group. Specifically, it was confirmed that the expression of IgG1 and total IgG1 in the group inoculated with Mpg bacteria was high without much difference from the rMpg_RBD 2 immunization group. It is considered that it should be considered (FIG. 23, Table 13).
또한, 각 면역화된 마우스의 혈청을 사용하여 생 SARS-CoV-2 및 SARS-CoV-2 pseudovirus에 대한 중화 항체능을 평가하였다. 그 결과, rMpg_RBD 균주를 1회 또는 2회 면역하거나, rMpg_RBD prime-RBD boosting 면역 시, PBS, Mpg 및 RBD 단독 면역 그룹에 비해 상대적으로 높은 중화항체능을 보였다(도 24, 도 25a 내지 도 25d). 하지만, 재조합 균주를 1회 면역화한 후 RBD 단백을 면역화한 혈청에서 가장 높은 중화항체능을 보였다(도 24, 도 25a 내지 도 25d). rMpg_RBD prime-RBD boosting 면역이 RBD 특이적인 세포 매개성 면역 반응(IFN-γ ELISPOT, IFN-γ 또는 TN F-α 발현 T 세포 분석 및 면역 사이토카인 측정)에서는 큰 영향을 미치지 않았고, RBD 특이적인 항체 생성에서도 큰 영향을 미치지 않았다.In addition, the neutralizing antibody ability against live SARS-CoV-2 and SARS-CoV-2 pseudovirus was evaluated using the sera of each immunized mouse. As a result, when the rMpg_RBD strain was immunized once or twice, or when immunized with rMpg_RBD prime-RBD boosting, a neutralizing antibody ability was relatively higher than that of the PBS, Mpg, and RBD alone immunization groups ( FIGS. 24 and 25A to 25D ). . However, after immunization with the recombinant strain once, the serum immunized with the RBD protein showed the highest neutralizing antibody ability ( FIGS. 24 and 25A to 25D ). rMpg_RBD prime-RBD boosting immunity had no significant effect on RBD-specific cell-mediated immune responses (IFN-γ ELISPOT, IFN-γ or TN F-α expressing T cell assay and immune cytokine measurement), and RBD-specific antibody There was no significant effect on production.
또한, rMpg_RBD가 면역화된 마우스 혈청을 사용하여, ACE2-RBD 결합 어세이를 수행하였을 때, rMpg_RBD로 면역화한 마우스 혈청 샘플의 경우, 1회 또는 2회 면역 그룹 간의 차이는 없었지만, PBS 및 Mpg 면역 그룹에 비해, ACE2와 RBD의 결합을 방해하는 양상을 보였다(도 26, 표 14). 또한, rMpg_RBD 면역 혈청에 의한 ACE2-RBD 결합 저해 농도(IC50)는 rMpg_RBD(1회 면역)가 1:762.2, rMpg_RBD(2회 면역)가 1:6008로, 이는 rMpg_RBD를 2회 면역화한 혈청이 낮은 농도에서도 ACE2-RBD 간 결합을 저해하는 데 탁월한 영향을 미친다는 것을 의미한다.In addition, when an ACE2-RBD binding assay was performed using rMpg_RBD-immunized mouse serum, there was no difference between the rMpg_RBD-immunized mouse serum samples between the 1st or 2nd immunization groups, but there was no difference between the PBS and Mpg immunization groups. In comparison, it showed an aspect that interfered with the binding of ACE2 and RBD (FIG. 26, Table 14). In addition, the ACE2-RBD binding inhibitory concentration (IC50) by rMpg_RBD immune serum was 1:762.2 for rMpg_RBD (single immunization) and 1:6008 for rMpg_RBD (two immunizations), indicating that the serum immunized with rMpg_RBD twice had a lower concentration (IC50). It means that even at the concentration, it has an excellent effect on inhibiting the binding between ACE2-RBD.
또한, rMpg_RBD로 면역화한 그룹의 BALF 내 IgA 발현 양상이 Mpg를 비롯한 rMpg_RBD prime-RBD boosting 및 RBD 면역 그룹에 비해 통계적으로 유의한 수준으로 증가되는 경향을 확인할 수 있었고 rMpg_RBD를 2회 면역화한 그룹에서 가장 높은 IgA의 발현 양상을 보였다(도 27, 표 15).In addition, it was confirmed that the IgA expression pattern in the BALF of the group immunized with rMpg_RBD increased to a statistically significant level compared to the rMpg_RBD prime-RBD boosting and RBD immunization groups including Mpg. It showed a high expression pattern of IgA (Fig. 27, Table 15).
또한, rMpg_RBD 균주의 면역을 통해, RBD에 특이적인 세포 매개성 면역 반응과 SARS-CoV-2에 대한 중화항체능, 혈청 내 형성된 항체가 ACE2와 RBD의 결합의 저해를 유도하며, BALF에서 RBD 특이적인 IgA의 발현을 유도시킴을 확인할 수 있었다. rMpg_RBD prime-RBD boosting 면역의 경우, RBD 특이적인 면역 사이토카인 발현과 IFN-γ 및 TNF-α 발현 T 세포의 유도, RBD 특이적인 IgG 및 IgA의 발현 유도에서는 rMpg_RBD 균주 면역 그룹(1회 또는 2회 면역 그룹)에 비해 큰 영향을 미치지 않았으나, 생 SARS-CoV-2 및 SARS-CoV-2 pseudovirus에 대한 중화항체 유도에 있어서는 rMpg_RBD 면역 그룹에 비해 가장 큰 영향을 보였다.In addition, through immunization of the rMpg_RBD strain, RBD-specific cell-mediated immune response, neutralizing antibody ability against SARS-CoV-2, and antibody formed in serum induce inhibition of binding of ACE2 and RBD, and RBD-specific in BALF. It was confirmed that it induces the expression of specific IgA. In the case of rMpg_RBD prime-RBD boosting immunity, induction of RBD-specific immune cytokine expression, IFN-γ and TNF-α expressing T cells, and RBD-specific IgG and IgA expression induction, rMpg_RBD strain immune group (1 or 2 times) immune group), but showed the greatest effect compared to the rMpg_RBD immune group in the induction of neutralizing antibodies against live SARS-CoV-2 and SARS-CoV-2 pseudovirus.
마지막으로, rMpg_RBD 균주의 단독 면역이 RBD 특이적인 면역을 잘 유도했지만, rMpg_RBD prime-RBD boosting 면역의 경우 중화항체 형성을 잘 유도시켰기 때문에, rMpg_RBD 균주를 SARS-CoV-2 감염에 대한 새로운 백신 개발에 활용할 수 있을 것으로 사료된다.Finally, although the rMpg_RBD strain alone induced RBD-specific immunity well, the rMpg_RBD prime-RBD boosting immunization induced the formation of neutralizing antibodies well. is expected to be usable.
아래 표 16에 실험예 6.1 내지 6.8의 결과를 평가하고자 하는 물질 측면에서 정성적으로 나타내었다. In Table 16 below, the results of Experimental Examples 6.1 to 6.8 are qualitatively shown in terms of materials to be evaluated.
GroupGroup tIgGtIgG IFN-rIFN-r IgA
(BALF)
IgA
(BALF)
nIgGs
(IC50)
nIgGs
(IC50)
IFN-r
CD4+Tcell
IFN-r
CD4+Tcell
TNF-a
CD4+Tcell
TNF-a
CD4+Tcell
IFN-r
CD8+Tcell
IFN-r
CD8+Tcell
TNF-a
CD8+Tcell
TNF-a
CD8+Tcell
r-Mpg Primer-Mpg Prime ++++ ++++++++ ++++++ 1:7621:762 ++++++++ ++++ ++++++ ++++
r-Mpg Prime/boostingr-Mpg Prime/boosting ++++++ ++++ ++++++++ 1:6,0081:6,008 ++++++ ++++++ ++++++++ ++++++
r-Mpg Prime+RBDr-Mpg Prime+RBD ++++ ++++++ ++++ ++++ ++++++++ ++++ ++++++++
RBD(Alum)RBD (Alum) ++++ ++++ ++++ ++ ++++ ++ ++
실험예 7. rMpg_RBD 균주에 의해 면역화된 마우스 혈청의 중화항체능 추가 확인실험예 5의 결과를 토대로 선별된 rMpg_RBD 균주(#7 strain)를 사용하여 마우스에서 SARS-CoV-2 RBD 단백 특이적인 면역 반응이 유도되는지를 평가하는 실험을 추가로 진행하였다. BALB/c 마우스를 세 그룹으로 나누어 rMpg_RBD 균주를 생균 형태로 각각 1×106 CFU 및 1×107 CFU, 불활화 형태로 1×107 CFU로 피하 주사하고, 2주째 및 2주 5일째에 마우스로부터 혈청을 얻었다. Experimental Example 7. Additional confirmation of neutralizing antibody ability of mouse serum immunized with rMpg_RBD strain SARS-CoV-2 RBD protein-specific immune response in mice using the rMpg_RBD strain (#7 strain) selected based on the results of Experimental Example 5 An experiment was further conducted to evaluate whether this was induced. BALB/c mice were divided into three groups and the rMpg_RBD strain was injected subcutaneously at 1×10 6 CFU and 1×10 7 CFU in live cell form, and 1×10 7 CFU in inactivated form, respectively, at 2 weeks and 2 weeks and 5 days. Serum was obtained from mice.
이렇게 얻은 마우스 혈청을 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280, 1:2560, 1:5120, 1:10240의 희석 농도로 희석하여 준비하였고, 항-SARS-CoV-2 스파이크 항체(Cat#: 40150-T62-COV2)(1 mg/ml)를 동일한 희석 농도로 희석하여 대조군 항체로 준비하였다.The obtained mouse serum was diluted to a dilution concentration of 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280, 1:2560, 1:5120, 1:10240. prepared, an anti-SARS-CoV-2 spike antibody (Cat#: 40150-T62-COV2) (1 mg/ml) was diluted to the same dilution concentration to prepare a control antibody.
한국질병관리청에서 분양 받은 바이러스인 SARS-CoV-2 Vero p2(CoV/Korea/KCDC/2020 NCCP43326)를 100 TCID50의 농도로 상기 희석된 혈청 및 대조군 항체와 동일한 용량으로 혼합하고, 37°C에서 30분 간 인큐베이션시켰다. 그 후, 실험 24시간 전에 시딩한 원숭이 신장세포주 Vero E6(96 웰 플레이트, 1.5x10^6 세포/웰)에 감염시켜 중화 정도를 측정하였다. 판독은 조직 배양 감염 용량(TCID50)방식으로 확인하였다. 일반적으로 TCID50 방법은 바이러스 부유액을 세포에 접종하여 50%를 감염시키는 바이러스 희석배수를 역가(titer)로 나타내는데, 본 시험에서는 동일한 100 TCID50의 바이러스 농도에 실험군 및 대조군을 희색배수 별로 혼합하여, 실험군 및 대조군이 바이러스의 감염력을 떨어뜨리는 방식으로 중화 정도를 확인하였다. 그 결과를 도 29 내지 도 33에 도시하였다.SARS-CoV-2 Vero p2 (CoV/Korea/KCDC/2020 NCCP43326), a virus distributed from the Korea Centers for Disease Control and Prevention, was mixed at a concentration of 100 TCID 50 in the same volume as the serum and control antibody, and at 37 °C. Incubated for 30 minutes. Then, it was infected with the monkey kidney cell line Vero E6 (96 well plate, 1.5x10^6 cells/well) seeded 24 hours before the experiment to measure the degree of neutralization. Readings were confirmed by tissue culture infectious dose (TCID 50 ) format. In general, the TCID 50 method represents the dilution factor of the virus that infects 50 % of the cells by inoculating the virus suspension. The degree of neutralization was confirmed in a way that the experimental group and the control group lowered the infectivity of the virus. The results are shown in FIGS. 29 to 33 .
그 결과, 생균 형태로 1×106 CFU를 피하주사한 군에서는 1/320까지 희석한 혈청에서 TCID50 이상의 값을 나타내는 것을 확인하였으며(도 29, 도 32 및 도 33), 생균 형태로 1×107 CFU를 피하주사한 군에서는 1/640으로 희석한 혈청에서도 TCID50 이상의 값을 나타내는 것을 확인하였다(도 30, 도 32 및 도 33). 이는 생균 형태로 접종하였을 때 용량 의존적으로 중화항체능이 상승할 수 있음을 의미한다. 또한 불활화 형태로 1×107 CFU를 피하주사한 군 역시 1/160 희석 배수에서 TCID50 이상의 값을 나타내는 것을 확인하여, 불활화 상태에서도 중화능을 확인하였다(도 31, 도 32 및 도 33). 이러한 실시예는 재조합 마이코박테리움 파라고르도네 균주가 생균 및 불활화 상태와 관계없이 SARS-CoV-2 바이러스에 대한 중화항체능을 갖는 것을 의미한다.As a result, it was confirmed that in the group subcutaneously injected with 1×10 6 CFU in live cell form, TCID 50 or higher in serum diluted to 1/320 ( FIGS. 29, 32 and 33 ), and 1× in live cell form In the group subcutaneously injected with 10 7 CFU, it was confirmed that the serum diluted at 1/640 showed a value of 50 or more TCID ( FIGS. 30 , 32 and 33 ). This means that the neutralizing antibody capacity can be increased in a dose-dependent manner when inoculated in the form of live cells. In addition, it was confirmed that the group subcutaneously injected with 1×10 7 CFU in the inactivated form also exhibited a value of 50 or more TCID at a 1/160 dilution, confirming the neutralizing ability even in the inactivated state ( FIGS. 31 , 32 and 33 ) ). This example means that the recombinant Mycobacterium paragordone strain has neutralizing antibody ability against SARS-CoV-2 virus regardless of live cells and inactivated state.

Claims (22)

  1. SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네(Mycobacterium paragordonae) 균주.A recombinant Mycobacterium paragordonae strain expressing the SARS-CoV-2 antigen.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 SARS-CoV-2 항원은 스파이크 단백인, 재조합 마이코박테리움 파라고르도네 균주.The SARS-CoV-2 antigen is a spike protein, recombinant Mycobacterium paragordone strain.
  3. 제 2 항에 있어서, 3. The method of claim 2,
    상기 스파이크 단백은 수용체 결합 도메인(Receptor binding domain) 또는 이의 단편인, 재조합 마이코박테리움 파라고르도네 균주.The spike protein is a receptor binding domain (Receptor binding domain) or a fragment thereof, recombinant Mycobacterium paragordone strain.
  4. 제 3 항에 있어서, 4. The method of claim 3,
    상기 SARS-CoV-2 항원은 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드인, 재조합 마이코박테리움 파라고르도네 균주.The SARS-CoV-2 antigen is a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1, recombinant Mycobacterium paragordone strain.
  5. 제 3 항에 있어서, 4. The method of claim 3,
    상기 균주는 SARS-CoV-2의 수용체 결합 도메인을 코딩하는 폴리뉴클레오티드가 마이코박테리움 보비스(Mycobacterium bovis) BCG 유래의 hsp65(heat shock protein 65) 유전자 프로모터에 작동가능하게 연결된 핵산 분자로 형질전환된 것인, 재조합 마이코박테리움 파라고르도네 균주.The strain was transformed with a nucleic acid molecule in which a polynucleotide encoding a receptor binding domain of SARS-CoV-2 is operably linked to a heat shock protein 65 (hsp65) gene promoter derived from Mycobacterium bovis BCG. That is, the recombinant Mycobacterium paragordone strain.
  6. 제 3 항에 있어서, 4. The method of claim 3,
    상기 균주는 도 3에 도시된 구조를 갖는 pMV306-Pshp:RBD 벡터로 형질전환된 것인, 재조합 마이코박테리움 파라고르도네 균주.The strain was transformed with the pMV306-Pshp:RBD vector having the structure shown in FIG. 3 , the recombinant Mycobacterium paragordone strain.
  7. 제 1 항 내지 제 6 항 중 어느 한 항의 균주를 유효성분으로 포함하는, SARS-CoV-2 감염의 치료 또는 예방을 위한 약학 조성물.A pharmaceutical composition for the treatment or prevention of SARS-CoV-2 infection, comprising the strain of any one of claims 1 to 6 as an active ingredient.
  8. 제 7 항에 있어서, 8. The method of claim 7,
    상기 약학 조성물은 백신인, 약학 조성물.The pharmaceutical composition is a vaccine, pharmaceutical composition.
  9. 제 7 항에 있어서, 8. The method of claim 7,
    상기 약학 조성물은 단회 투여 또는 2회 투여되는 것인, 약학 조성물.The pharmaceutical composition is administered in a single dose or twice, the pharmaceutical composition.
  10. 제 7 항에 있어서, 8. The method of claim 7,
    상기 약학 조성물은 프라임-부스팅 접종법에서 프라이밍 백신으로 사용되는, 약학 조성물.The pharmaceutical composition is used as a priming vaccine in the prime-boosting inoculation method, pharmaceutical composition.
  11. 제 10 항에 있어서, 11. The method of claim 10,
    상기 부스팅 접종 시 SARS-CoV-2의 수용체 결합 도메인, 알룸(alum), 또는 이들의 조합이 사용되는, 약학 조성물.In the boosting inoculation, the receptor binding domain of SARS-CoV-2, alum, or a combination thereof is used, a pharmaceutical composition.
  12. 제 7 항에 있어서, 8. The method of claim 7,
    상기 균주는 생균인, 약학 조성물.The strain is a live cell, pharmaceutical composition.
  13. 제 7 항에 있어서, 8. The method of claim 7,
    상기 균주는 약독화 또는 불활화된 것인, 약학 조성물.The strain is attenuated or inactivated, the pharmaceutical composition.
  14. 제 1 항 내지 제 6 항 중 어느 한 항의 균주를 유효성분으로 포함하는 제 1 조성물; 및 SARS-CoV-2의 수용체 결합 도메인, 알룸(alum), 또는 이들의 조합을 유효성분으로 포함하는 제 2 조성물을 포함하는, SARS-CoV-2 감염의 치료 또는 예방용 키트.A first composition comprising the strain of any one of claims 1 to 6 as an active ingredient; and a second composition comprising a receptor binding domain of SARS-CoV-2, alum, or a combination thereof as an active ingredient, a kit for treating or preventing SARS-CoV-2 infection.
  15. 제 14 항에 있어서, 15. The method of claim 14,
    상기 키트가 프라임-부스트 접종을 위한 것인, 키트.The kit is for prime-boost inoculation.
  16. 제 15 항에 있어서, 16. The method of claim 15,
    제 1 조성물이 프라임 투여되고 제 2 조성물이 부스트 투여되는 것인, 키트.wherein the first composition is primed and the second composition is boost administered.
  17. SARS-CoV-2의 수용체 결합 도메인을 코딩하는 폴리뉴클레오티드가 hsp 유전자 프로모터에 작동가능하게 연결된 재조합 핵산 분자를 포함하는 벡터.A vector comprising a recombinant nucleic acid molecule wherein a polynucleotide encoding the receptor binding domain of SARS-CoV-2 is operably linked to an hsp gene promoter.
  18. 제 17 항에 있어서, 18. The method of claim 17,
    상기 hsp 유전자 프로모터는 마이코박테리움 보비스(Mycobacterium bovis) BCG 유래의 hsp65(heat shock protein 65) 유전자 프로모터인, 벡터.The hsp gene promoter is mycobacterium bovis (Mycobacterium bovis) hsp65 (heat shock protein 65) gene promoter derived from BCG, vector.
  19. 제 17 항에 있어서,18. The method of claim 17,
    상기 벡터가 마이코박테리움 균주 발현용인, 벡터.The vector is for expression of the Mycobacterium strain, the vector.
  20. 제 17 항에 있어서,18. The method of claim 17,
    상기 벡터는 도 3에 도시된 구조를 갖는 pMV306-Pshp:RBD인, 벡터.The vector is pMV306-Pshp:RBD having the structure shown in FIG. 3 .
  21. 제 17 항 내지 제 20 항 중 어느 한 항에 따른 벡터를 포함하는, 단리된 세포.21. An isolated cell comprising the vector according to any one of claims 17 to 20.
  22. 제 17 항 내지 제 20 항 중 어느 한 항에 따른 벡터로 마이코박테리움 파라고르도네 균주를 형질전환시키는 것을 포함하는, SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 파라고르도네 균주의 제조 방법.Claims 17 to 20 of the recombinant Mycobacterium paragordone strain expressing the SARS-CoV-2 antigen, comprising transforming the Mycobacterium paragordone strain with the vector according to any one of claims 17 to 20. manufacturing method.
PCT/KR2022/004915 2021-04-06 2022-04-06 Recombinant mycobacterium strain expressing sars-cov-2 antigen, and vaccine composition including same WO2022216025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0044888 2021-04-06
KR1020210044888A KR102401682B1 (en) 2021-04-06 2021-04-06 Recombinant mycobacterium strain expressing sars-cov-2 antigen and vaccine composition comprising same

Publications (1)

Publication Number Publication Date
WO2022216025A1 true WO2022216025A1 (en) 2022-10-13

Family

ID=81800558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004915 WO2022216025A1 (en) 2021-04-06 2022-04-06 Recombinant mycobacterium strain expressing sars-cov-2 antigen, and vaccine composition including same

Country Status (2)

Country Link
KR (1) KR102401682B1 (en)
WO (1) WO2022216025A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180080999A (en) * 2017-01-05 2018-07-13 서울대학교산학협력단 Recombinant Mycobacterium smegmatis with vector expressing Human Immunodeficiency Virus Type 1 p24 and vaccine comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696514B1 (en) 2014-08-18 2017-01-24 서울대학교산학협력단 Temperature Sensitive Mycobacterial strain and its use as vaccine against mycobacterial infection disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180080999A (en) * 2017-01-05 2018-07-13 서울대학교산학협력단 Recombinant Mycobacterium smegmatis with vector expressing Human Immunodeficiency Virus Type 1 p24 and vaccine comprising the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM BYOUNG-JUN, KIM BO-RAM, KOOK YOON-HOH, KIM BUM-JOON: "Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection", SCIENTIFIC REPORTS, vol. 9, no. 1, 1 December 2019 (2019-12-01), XP055976702, DOI: 10.1038/s41598-019-51875-6 *
LEE KWON-GOO: "RAPHAS, Started Development of a Coronavirus Vaccine Patch using Mycobacteria. ", THE YAKUP, KOREA, 9 April 2020 (2020-04-09), Korea, pages 1 - 3, XP055976706, Retrieved from the Internet <URL:https://www.yakup.com/news/index.html?mode=view&pmode=&cat=&cat2=&nid=242879> [retrieved on 20221101] *
LOES ANDREA, GENTLES LAUREN, GREANEY ALLISON, CRAWFORD KATHARINE, BLOOM JESSE: "Attenuated Influenza Virions Expressing the SARS-CoV-2 Receptor-Binding Domain Induce Neutralizing Antibodies in Mice", VIRUSES, vol. 12, no. 9, pages 987, XP055976701, DOI: 10.3390/v12090987 *
PARK BYUNG-WOO: "RAPHAS, Started Developing a COVID-19 Patch using Mycobacteria.", PHARMSTOCK, KOREA, 9 April 2020 (2020-04-09), Korea, pages 1 - 1, XP055976711, Retrieved from the Internet <URL:http://www.pharmstock.co.kr/news/articleView.html?idxno=26578> [retrieved on 20221101] *
SOO-KYUNG HAND. LA PAZ: "RAPHAS, Started Developing a COVID-19 Vaccine Patch using Mycobacteria.", MEDICAL TODAY, MEDICAL TODAY - M.HEALTHCARE.COM, KOREA, 9 April 2020 (2020-04-09), Korea, pages 1 - 2, XP055976699, Retrieved from the Internet <URL:https://m.healthcaren.com/news/news_article_yong.jsp?mn_idx=356189> [retrieved on 20221101] *

Also Published As

Publication number Publication date
KR102401682B1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
US10537621B2 (en) Vaccine comprising beta-herpesvirus
Skoberne et al. An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs
WO2019209079A1 (en) Nucleic acid molecules inserted expression regulation sequences, expression vector comprising nucleic acid moleclues and pharmaceutical use thereof
JP6844045B2 (en) Recombinant herpes simplex virus 2 (HSV-2) vaccine vector
CN106459931B (en) Attenuated African swine fever virus vaccine
Huang et al. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses
WO2009088256A2 (en) Baculovirus-based vaccines
US20230285540A1 (en) Polynucleotides encoding sars-cov-2 antigens and use thereof in the medical field as vaccines
Dangi et al. Pre-existing immunity modulates responses to mRNA boosters
WO2020005028A1 (en) Vaccine composition for preventing or treating diseases caused by severe fever with thrombocytopenia syndrome (sfts) viral infection
US20110117124A1 (en) Enhancement of transgene expression from viral-based vaccine vectors by expression of suppressors of the type i interferon response
Pacchioni et al. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines
WO2022216025A1 (en) Recombinant mycobacterium strain expressing sars-cov-2 antigen, and vaccine composition including same
WO2020246750A2 (en) Pharmaceutical composition containing stabilized nucleic acid adjuvant
WO2022045827A1 (en) Novel coronavirus recombinant spike protein, polynucleotide encoding same, vector comprising polynucleotide, and vaccine for preventing or treating coronavirus infection, comprising vector
BR112021012630A2 (en) MODIFIED POXVIRUS, METHOD FOR PRODUCING THE MODIFIED POXVIRUS AND COMPOSITION
Lloren et al. Salmonella-mediated oral delivery of multiple-target vaccine constructs with conserved and variable regions of SARS-CoV-2 protect against the Delta and Omicron variants in hamster
WO2019212312A1 (en) Chimeric zika virus vaccine
Aricò et al. MHV-68 producing mIFNα1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68
WO2022211373A1 (en) Recombinant chimeric adenoviral vector substituted by knob gene of chimpanzee adenovirus serotype 6, and application thereof
WO2022216028A1 (en) Vaccine composition for preventing severe acute respiratory syndrome coronavirus type 2 infectious disease, having improved neutralization potency
WO2023090772A1 (en) Recombinant foot-and-mouth disease type a virus inducing strong adaptive immune response and overcoming interference from maternally-derived antibodies, and foot-and-mouth disease vaccine composition comprising same
WO2023167487A1 (en) Recombinant expression vector for prevention of sars-cov-2 infection and application thereof
WO2022092921A1 (en) Viral vector comprising sars-cov-2 antigen, and use thereof
WO2022015124A1 (en) Vaccine composition for preventing severe acute respiratory syndrome coronavirus 2 infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784934

Country of ref document: EP

Kind code of ref document: A1