WO2022215919A1 - Chimeric antigen receptor specifically binding to cd47 and use thereof - Google Patents

Chimeric antigen receptor specifically binding to cd47 and use thereof Download PDF

Info

Publication number
WO2022215919A1
WO2022215919A1 PCT/KR2022/004246 KR2022004246W WO2022215919A1 WO 2022215919 A1 WO2022215919 A1 WO 2022215919A1 KR 2022004246 W KR2022004246 W KR 2022004246W WO 2022215919 A1 WO2022215919 A1 WO 2022215919A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
antigen receptor
chimeric antigen
cancer
Prior art date
Application number
PCT/KR2022/004246
Other languages
French (fr)
Korean (ko)
Inventor
진화섭
전태훈
양준
이창희
이나영
박인병
강석진
박시원
이현정
Original Assignee
주식회사 이뮤노로지컬디자이닝랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이뮤노로지컬디자이닝랩 filed Critical 주식회사 이뮤노로지컬디자이닝랩
Publication of WO2022215919A1 publication Critical patent/WO2022215919A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a chimeric antigen receptor (CAR) that specifically binds to CD47; a polynucleotide encoding the chimeric antigen receptor protein; a vector comprising the polynucleotide; T cells or natural killer cells transformed with the vector (Natural killer cell, NK cell); It relates to a cell therapeutic agent or a pharmaceutical composition for the treatment of cancer comprising the cell as an active ingredient.
  • CAR chimeric antigen receptor
  • CD47 is a 50 kDa integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and is observed in various malignant cells and immune cells (Sick et al., 2012; Brown). and Frazier, 2001).
  • cancer cells overexpress CD47 and bind to the signaling regulatory protein alpha (SIRP- ⁇ ) expressed in macrophages, and avoid phagocytosis by inhibiting macrophage activity according to the signaling mechanism of SIRP- ⁇ .
  • SIRP- ⁇ signaling regulatory protein alpha
  • cytotoxic T lymphocytes CTL
  • NK cells natural killer cells
  • a single-chain variable fragment (scFv) portion of an antigen-recognizing antibody is grafted onto a domain grafted to CD3 zeta or the cytoplasmic signaling domain of another protein. It was attempted as a method of delivering chimeric antigen receptor (CAR).
  • CAR chimeric antigen receptor
  • the chimeric antigen receptor is grafted onto T cells or natural killer cells, the anticancer action of T cells or natural killer cells is enhanced by the specific antigen recognition of single-chain Fv fragments regardless of signal transduction by antigen presenting cells (APCs). It can be activated, and it is not limited to the HLA type, so it can be used as a more efficient treatment method that can be used universally by many people. Indeed, these chimeric antigen receptor-expressing T cells or natural killer cells have shown efficacy in several cancers (Holzinger et al., 2016; Pettitt et al., 2018; Wang et al., 2020).
  • SIRP- ⁇ signaling regulatory protein alpha
  • Ig immunoglobulin
  • ITIM immunoreceptor tyrosine-based inhibitory motif
  • the present inventors took advantage of the fact that CD47 expression in various cancer cells is confirmed or induced and that CD47 and SIRP- ⁇ are capable of binding to CD47-expressing cancer using the extracellular domain of SIRP- ⁇ .
  • Specific chimeric antigen receptor-expressing T cells and natural killer cells were prepared, and it was confirmed through experiments that the T cells or natural killer cells have specific cytotoxicity to CD47-expressing cells.
  • the signal transduction strength was amplified by making a fusion protein linking each domain 1 of the extracellular domain of SIRP- ⁇ with the human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region).
  • the chimeric antigen receptor designed by the present inventors converts each of the extracellular domains of SIRP- ⁇ into human human immunoglobulin.
  • the G 1 heavy chain constant region IgG 1 heavy chain constant region
  • Another object of the present invention is to provide a polynucleotide encoding the chimeric antigen receptor protein, a vector containing the polynucleotide, and T cells or natural killer cells transformed with the vector.
  • Another object of the present invention is to provide a pharmaceutical composition for the treatment of cancer that kills cancer cells expressing cell therapeutics or CD47, including the transformed T cells or natural killer cells.
  • the present invention provides an antigen-binding site, an extracellular domain; transmembrane domain; and an intracellular signaling domain, wherein the antigen binding domain comprises an extracellular domain of SIRP- ⁇ that specifically binds to CD47. .
  • the present invention provides a polynucleotide encoding the chimeric antigen receptor protein, a vector containing the polynucleotide, and T cells or natural killer cells transformed with the vector.
  • the present invention provides a pharmaceutical composition for the treatment of cancer comprising the transformed T cells or natural killer cells, which kills cancer cells expressing a cell therapeutic agent or CD47.
  • the chimeric antigen receptor according to the present invention comprises an extracellular domain of SIRP- ⁇ that specifically binds to CD47. Therefore, in the case of cytotoxic T cells or natural killer cells transformed with a vector capable of overexpressing the chimeric antigen receptor, they have specific cytotoxicity to CD47-expressing carcinoma, so they are useful as immune cell therapeutics for cancer treatment. can be used
  • FIG. 1 is a schematic diagram showing the cDNA region of each domain expressing a chimeric antigen receptor according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of a lentiviral vector according to an embodiment of the present invention.
  • 2B is a schematic diagram of a retroviral vector according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a chimeric antigen receptor expressed on the surface of cytotoxic T cells or natural killer cells according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the results of measuring the expression level of CD47 in cancer cells expressing CD47, a target of the chimeric antigen receptor provided in the present invention, using flow cytometry.
  • Figure 5a is a diagram showing the result of comparing the expression rate of GFP in cytotoxic T cells (SIRP- ⁇ CAR-T cell) transduced with the expression vector according to an embodiment of the present invention using a lentiviral system. .
  • Figure 5b is a diagram showing the result of comparing the expression ratio of SIRP- ⁇ in natural killer cells (SIRP- ⁇ CAR-NK cells) transduced with the expression vector according to an embodiment of the present invention using a retroviral system to be.
  • FIG. 6a is a diagram showing whether CD47 is recognized by cytotoxic T cells (SIRP- ⁇ CAR-T cells) transduced with an expression vector according to an embodiment of the present invention using a lentiviral system using flow cytometry. .
  • FIG. 6b is a diagram showing whether natural killer cells (SIRP- ⁇ CAR-NK cells) transduced with an expression vector according to an embodiment of the present invention using a retroviral system recognize CD47 using flow cytometry.
  • Figure 7a shows CD47 CD47 using cytotoxic T cells (SIRP- ⁇ CAR-T cells) or cytotoxic T cells (Mock T cells) transduced with an empty vector according to an embodiment of the present invention as effector cells; It is a diagram showing the result of measuring the cytotoxicity to the cancer cells (Raji cells) expressing.
  • Figure 7b shows CD47 expression using natural killer cells (SIRP- ⁇ CAR-NK cells) or mock NK cells transduced with an empty vector as effector cells according to an embodiment of the present invention; It is a diagram showing the results of measuring the cytotoxicity to cancer cells (Raji cells).
  • the present invention provides an antigen-binding domain; transmembrane domain; and an intracellular signaling domain, wherein the antigen binding domain comprises an extracellular domain of SIRP- ⁇ that specifically binds to CD47.
  • chimeric antigen receptor binds to a desired antigen without the mediation of antigen presenting cells (APCs) or antibodies necessary for naturally activating T cells or natural killer cells, thereby producing an antigen-antibody reaction. It refers to a fusion protein for expression in T cells or natural killer cells in order to induce activation of T cells and attack cells expressing the corresponding antigen. That is, when expressed in T cells or natural killer cells, it can be considered as a protein that binds to an antigen and induces activation of these cells. Through this, it may be a protein recognizing an antigen specific to a cell to cause an immune response, and the cell to cause an immune response may refer to a cell existing in a specific tissue or constituting a tissue causing a lesion.
  • APCs antigen presenting cells
  • the chimeric antigen receptor protein according to an embodiment of the present invention may include a functional equivalent.
  • “Functional equivalent” means at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably the amino acid sequence of the chimeric antigen receptor protein as a result of the addition, substitution, or deletion of amino acids. refers to a protein having a sequence homology of 95% or more and exhibiting substantially homogeneous physiological activity. “Substantially homogenous physiological activity” means that it has an activity capable of specifically binding to CD47.
  • the present invention also includes fragments, derivatives and analogues of chimeric antigen receptors.
  • fragments, derivatives and analogues of chimeric antigen receptors As used herein, the terms 'fragment', 'derivative' and 'analog' refer to a polypeptide that retains substantially the same biological function or activity as the chimeric antigen receptor protein of the present invention. Fragments, derivatives and analogs of the present invention may comprise (1) polypeptides in which one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) are substituted, wherein the substituted amino acid residues are encoded by the genetic code.
  • polypeptide having substituent(s) at one or more amino acid residues may or may not be) or (2) a polypeptide having substituent(s) at one or more amino acid residues, or (3) another compound (a compound capable of extending the half-life of the polypeptide, such as polyethylene glycol); a polypeptide derived from the associated mature polypeptide, or (4) an additional amino acid sequence (eg, a leader sequence, a secretion sequence, a sequence used to purify the polypeptide, a proteinogen sequence, or a fusion protein); It may be a polypeptide derived from said polypeptide to which it is bound.
  • the fragments, derivatives and analogs as defined herein are well known to those skilled in the art.
  • SIRP- ⁇ protein is an integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and has three extracellular domains.
  • the antigen binding domain may be in the form of a dimer in which a pair of extracellular domains of SIRP - ⁇ are linked to a human immunoglobulin G 1 heavy chain constant region to amplify signal transduction, respectively. , but is not limited thereto.
  • the extracellular domain of SIRP- ⁇ may be any one of domains 1 to 3 or a combination thereof, and preferably domain 1, but is not limited thereto.
  • the extracellular domain 1 (domain 1) of the SIRP- ⁇ may consist of SEQ ID NO: 1 or an amino acid sequence having 95% or more homology thereto, but is not limited thereto.
  • the human immunoglobulin G 1 heavy chain constant region may consist of SEQ ID NO: 2 or an amino acid sequence showing 95% or more homology thereto, but is not limited thereto.
  • CD47 is a 50 kDa integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and is observed in various carcinomas (malignant cells) and immune cells. Carcinomas expressing CD47 so far have been ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, glioblastoma, and hepatocellular carcinoma. ), squamous cell carcinoma, leukemia, cancer stem cells and non-Hodgkin's lymphoma, but is not limited thereto.
  • Ig immunoglobulin
  • the "transmembrane domain” is a site that connects the extracellular domain of SIRP- ⁇ with the costimulatory and essential signaling domains between the cell membrane, and the intracellular signaling domain is formed by binding of the antigen-binding domain. It refers to a site that activates the immune response of immune cells.
  • the transmembrane domain is selected from the group consisting of CD28, CD3epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154. It may include one or more, preferably, the CD8 may be the transmembrane domain of CD8 ⁇ , which may consist of SEQ ID NO: 3 or an amino acid sequence showing 95% or more homology thereto, but is limited thereto not.
  • intracellular signaling domain refers to a site that activates an immune response of an immune cell by binding to an antigen-binding domain.
  • the intracellular domain may be CD28, 4-1BB, CD3 zeta, or a combination thereof, but is not limited thereto.
  • the chimeric antigen receptor according to the present invention can exhibit a killing effect on cancer cells, particularly cancer cells expressing CD47, with high activity by using CD28, 4-1BB, and CD3 zeta as intracellular signaling domains.
  • the CD28 is SEQ ID NO: 4 or 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more sequence homology thereto, and the amino acid sequence represented by SEQ ID NO: 4 and may consist of an amino acid sequence exhibiting a substantially equivalent function
  • 4-1BB (CD137) is SEQ ID NO: 5 or 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% thereof Having the above sequence homology, it may consist of an amino acid sequence exhibiting a function substantially equivalent to the amino acid sequence shown in SEQ ID NO: 5, CD3 zeta functions as an NK cell activation domain, and SEQ ID NO: 6 or 70 thereof % or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and an amino acid sequence that exhibits a substantially equivalent function to the amino acid sequence represented by SEQ ID NO: 6.
  • the antigen-binding domain may include a CD8 ⁇ signal peptide, and the CD8 ⁇ signal peptide may consist of SEQ ID NO: 7 or an amino acid sequence exhibiting 95% or more homology thereto, but is not limited thereto.
  • a polynucleotide encoding the chimeric antigen receptor protein in another aspect according to the present invention, there is provided a polynucleotide encoding the chimeric antigen receptor protein.
  • the polynucleotide encoding the antigen receptor of the present invention changes the amino acid sequence of the antigen receptor expressed from the coding region due to codon degeneracy or in consideration of the codon preferred in the organism to express the antigen receptor.
  • Various modifications may be made to the coding region within the range that does not occur, and various modifications or modifications may be made within the range that does not affect the expression of the gene in parts other than the coding region, and such modified genes are also within the scope of the present invention. It will be well understood by those skilled in the art.
  • nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, and these are also included in the scope of the present invention.
  • a vector comprising the polynucleotide, and a cell transformed with the vector.
  • the vector used in the present invention may use a variety of vectors known in the art, and may include a promoter, a terminator, an enhancer, etc., depending on the type of host cell to produce the antigen receptor. Expression control sequences, sequences for membrane targeting or secretion, etc. can be appropriately selected and variously combined according to the purpose.
  • the vector of the present invention includes, but is not limited to, a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector. Suitable vectors include a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as promoter, operator, start codon, stop codon, polyadenylation signal and enhancer, and may be prepared in various ways depending on the purpose.
  • a vector for a lenti-virus or a vector for a retro-virus can be used.
  • pLNCX2 retro-virus vector
  • a cell can be transformed by introducing a chimeric antigen receptor that specifically binds to CD47 into the cell through the vector.
  • the cells may be T cells, tumor-infiltrating lymphocytes, B cells, natural killer cells, or NKT cells, preferably cytotoxic T cells or natural killer cells.
  • the cell may be obtained or prepared from bone marrow, peripheral blood, peripheral blood mononuclear cells or umbilical cord blood, and the cell may be a human cell, but is not limited thereto.
  • the cells transformed by introducing the chimeric antigen receptor of the present invention recognize CD47 as an antigen and have a characteristic of strongly binding thereto.
  • chimeric antigen receptor T cells (hereinafter abbreviated as 'CAR-T cells')" or “chimeric antigen receptor NK cells (hereinafter referred to as chimeric antigen receptor NK cells)" 'CAR-NK cells') is a chimeric antigen receptor that specifically responds to cancer cells other than the original T cell receptor or NK cell receptor by transducing normal T cells or natural killer cells, etc. refers to T cells or NK cells expressing T cells or NK cells having this receptor induce apoptosis of target cells and exhibit cytotoxicity.
  • CAR-T cells or CAR-NK cells may be cytotoxic T cells or cells in which the chimeric antigen receptor of the present invention is introduced into NK cells.
  • the cells have the advantage of anticancer-specific targeted therapy, which is the existing advantage of CAR-T therapeutics.
  • the CAR-T cells or CAR-NK cells of the present invention can recognize and effectively destroy CD47-expressing cancer cells.
  • the present invention provides a cell therapeutic agent comprising the cell or a pharmaceutical composition for the treatment of cancer comprising the same as an active ingredient.
  • cell therapeutic refers to cells and tissues prepared through isolation, culture, and special manipulation from an individual, and as pharmaceuticals used for therapeutic purposes, living autologous, allogeneic, or xenogeneic cells or tissues are restored to function. It refers to a drug used for therapeutic purposes through a series of actions, such as in vitro proliferation and selection or changing the biological properties of cells in other ways.
  • treatment refers to any action in which symptoms of cancer are improved or beneficially changed by administration of the composition.
  • composition may include a pharmaceutically acceptable carrier.
  • the "pharmaceutically acceptable carrier” may mean a carrier or diluent that does not inhibit the biological activity and properties of the injected compound without irritating the organism.
  • the type of carrier usable in the present invention is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable may be used.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and the like. These may be used alone or in combination of two or more.
  • composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations.
  • formulation it is prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants that are usually used.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations include at least one excipient to the compound, for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc. may be mixed and prepared.
  • excipients for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc.
  • lubricants such as magnesium stearate and talc may also be used.
  • Liquid formulations for oral use include suspensions, solutions, emulsions, and syrups.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories.
  • Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • Witepsol, Macrogol, Tween 61, cacao butter, laurin fat, glycerogelatin, etc. may be used as the base of the suppository.
  • composition may be administered in a pharmaceutically effective amount.
  • the "pharmaceutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the subject's type and severity, age, sex, infected virus type, and drug. Activity, sensitivity to drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitant drugs and other factors well known in the medical field.
  • Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, may be administered intranasally, but is not limited thereto.
  • composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two to three times. When the two active ingredients are single drugs, the number of administrations may be the same or different.
  • the composition of the present invention may be used alone or in combination with other drug treatments for the treatment of CD47-expressing cancer. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the subject includes all humans, monkeys, cattle, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs that have or can develop cancer expressing CD47. means animals. If the disease can be effectively treated by administering the pharmaceutical composition of the present invention to the subject, the type of subject is included without limitation.
  • the types of cancer to be treated include ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, and glioblastoma. , hepatocellular carcinoma, squamous cell carcinoma, leukemia, cancer stem cell or non-Hodgkin's lymphoma.
  • a pair of domain 1 of the extracellular domain of SIRP- ⁇ is linked to the human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region), respectively, an antigen recognition site and CD8 ⁇
  • IgG 1 heavy chain constant region human immunoglobulin G 1 heavy chain constant region
  • FIG. 1 A schematic diagram showing the cDNA region of each domain expressing the chimeric antigen receptor is shown in FIG. 1 .
  • the gene is expressed in pCDH-CMV, a lentivirus-derived expression vector.
  • pCDH-CMV a lentivirus-derived expression vector.
  • -MCS-EF1-copGFP System Biosciences
  • pLNCX2 retrovirus-derived expression vector
  • a primer that creates a cleavage site sequence of restriction enzyme XbaI at the 5' end was synthesized, and a restriction enzyme cleavage site was created by polymerase chain reaction, and also restricted at the 3' end. Restriction enzyme cleavage site was created by polymerase chain reaction by synthesizing a primer making the cleavage site sequence of the enzyme NotI.
  • the 5' end of the gene having a restriction enzyme cleavage site was treated with XbaI, and the 3' end was treated with NotI due to the polymerase chain reaction.
  • the multicloning site of the expression vector was treated with XbaI and NotI to allow the gene to be inserted. After mixing the restriction enzyme-treated gene with the expression vector, it was ligated by treatment with a ligase.
  • a primer that creates a cleavage site sequence of restriction enzyme Bgl II at the 5' end was synthesized to create a restriction enzyme cleavage site by polymerase chain reaction, and the cleavage site sequence of restriction enzyme NotI was also synthesized at the 3' end.
  • a restriction enzyme cleavage site was created by synthesizing the primers to be made and by polymerase chain reaction.
  • the 5' end of the gene having a restriction enzyme cleavage site was treated with BglII, and the 3' end was treated with NotI due to the polymerase chain reaction.
  • the multicloning site of the expression vector was treated with BglII and NotI to allow the gene to be inserted. After mixing the restriction enzyme-treated gene with the expression vector, it was ligated by treatment with a ligase.
  • the B cell lymphoma-derived Raji (ATCC) cell line and the acute T cell leukemia-derived cell line Jurkat (ATCC) cell line CD47 expression was confirmed.
  • the cell line was treated with an antibody (Invitrogen) capable of binding to CD47 to which the fluorescent protein was attached, and then flow cytometry (fluorescence-activated cell sorting) was used. As a result of the analysis, it was confirmed that CD47 was strongly expressed in the Raji cell line and weakly expressed in the Jurkat cell line (see FIG. 4 ).
  • the Raji cell line strongly expressing CD47 among the two cells was used as a target cell, and the Jurkat cell line weakly expressing CD47 was used as a negative control.
  • cytotoxic T cells were first isolated from human peripheral blood mononuclear cells. After purchasing human peripheral blood mononuclear cells (Medilab Korea), magnetic-activated cell sorting was used to isolate cytotoxic T cells. Peripheral blood mononuclear cells were combined with an antibody (CD8 + T cell biotin-conjugated antibody cocktail, Miltenyi Biotec) capable of binding to other immune cells except for cytotoxic T cells, and then the antibodies were re-conjugated with magnetic microbeads (anti- biotin microbead) (Miltenyi Biotec).
  • an antibody CD8 + T cell biotin-conjugated antibody cocktail, Miltenyi Biotec
  • magnetic microbeads anti- biotin microbead
  • the microbeads, antibodies and cells attached thereto were passed through a magnetic seperation column (Miltenyi Biotec) to obtain cytotoxic T cells not labeled with the antibody.
  • a magnetic seperation column Miltenyi Biotec
  • flow cytometry using CD8 and CD3 ⁇ , which are cell surface factors of cytotoxic T cells was performed, and as a result, the purity was greater than 95%.
  • cytotoxic T cells For activation of isolated cytotoxic T cells, 1 ⁇ 10 6 pieces/ml of magnetic beads coated with human CD3 and CD28 antibodies (Thermo Fisher Scientific), and 10% calf serum supplemented with 100 U/ ⁇ l recombinant human IL-2 Cells were reconstituted in RPMI (Welgene) at a density of 1.5 ⁇ 10 6 pieces/ml and cultured for 24 hours after inoculation in a 24-well cell culture dish.
  • Example 5 Construction of chimeric antigen receptor-expressing cytotoxic T cells
  • Example 2 In order to introduce the recombinant vector prepared in Example 2 into cytotoxic T cells, a lentiviral system using 293FT cells (Thermo Fisher Scientific) was used.
  • 293FT cells were inoculated to become 2.5 ⁇ 10 6 cells in a 100 ⁇ cell culture dish, and then cultured in DMEM medium containing 10% calf serum. After 24 hours of incubation, when the cells have grown to cover 60-70% of the dish, 20 ⁇ g of SIRP- ⁇ .CAR-T.pCDH-CMV-MCS-EF1-copGFP vector DNA is mixed with 10 ⁇ g of psPAX2 (Addgene) and 3 ⁇ g pMD2.G (Addgene) vector was crystallized using calcium phosphate and Hepes-buffered solution, and then introduced into 293FT cells.
  • psPAX2 Additional phosphate
  • the culture supernatant containing the lentivirus was collected at intervals of 24 hours after 48 hours of the 293FT cells introduced with the expression vector.
  • the collected supernatant was centrifuged at 21,000 rpm in an ultra-high speed centrifuge for 2 hours to concentrate the virus.
  • the concentrated virus was mixed with 4 ⁇ g/ml of polybrene and added to the culture of activated cytotoxic T cells, the transduction was performed by centrifugation at 1,800 g for 75 minutes using a centrifuge. After centrifugation, the cytotoxic T cells were further cultured for 4 hours, and then replaced with an RPMI culture medium containing 10% calf serum.
  • transduced cytotoxic T cells After 48 hours, some of the transduced cytotoxic T cells were used to measure the transduction efficiency.
  • the transduction efficiency was measured by using flow cytometry to measure the expression level of GFP inside the cell, and cytotoxic T cells (Mock) transduced with a virus prepared by using a blank vector of transduced cytotoxic T cells (SIRP- ⁇ CAR-T cells). /T cell) is shown in Figure 5a the result compared with the transduction ratio.
  • 293GPG cells were dissolved in 10 ml of 10 ml of 10% calf serum-containing DMEM culture medium and inoculated in a 100 ⁇ cell culture dish and then cultured for 24 hours.
  • 20 ⁇ g of the previously prepared recombinant vector (SIRP- ⁇ .CAR-NK.pLNCX2 vector) was crystallized using calcium phosphate and HEPES-buffered solution, and then added to the culture medium of the previously cultured 293GPG cells. Thereafter, the culture medium was changed over 72 hours at 24 hour intervals, and the culture supernatant of 293GPG cells containing retrovirus was collected and stored.
  • the collected retrovirus-containing supernatant was centrifuged at 21,000 rpm for 2 hours using an ultra-high speed centrifuge, and then reconstituted in Myelocult H5100 culture medium (STEMCELL) containing 10% calf serum to be concentrated 100 times compared to before concentration.
  • NK92MI cells American type culture collection, ATCC
  • NK92MI cells were inoculated into a 24 well cell culture dish at a density of 5 ⁇ 10 5 /ml.
  • a mixed solution of 8 ug/ml of polybrene added to the concentrated retrovirus was added to the culture medium of NK92MI cells in culture and cultured for 24 hours.
  • the culture medium was replaced with a new culture medium, and from 24 hours after the culture medium replacement for selection of the cells into which the gene was introduced, the NK92MI cells treated with retrovirus were cultured using the Myelocult H5100 culture medium supplemented with neomycin antibiotic (600 ⁇ g/ml). After 14 days of neomycin selection, NK92MI cells were transferred to fresh culture medium and proliferated for 1 week.
  • SIRP- ⁇ expression levels of NK92MI cells were measured using flow cytometry.
  • the results of comparing the SIRP- ⁇ expression level of (Mock CAR-NK cells) using a flow cytometer using an anti-human SIRP- ⁇ antibody (Invitrogen) are shown in FIG. 5B .
  • Example 7 chimeric Affinity determination of antigen receptors and human cell lines expressing CD47
  • the SIRP- ⁇ CAR-T cells and SIRP- ⁇ CAR-NK cells prepared in Examples 6 and 7 were used for CD47.
  • soluble recombinant human CD47 IgG R&D system
  • SIRP- ⁇ CAR-NK cells soluble recombinant human CD47 IgG (R&D system) was treated with SIRP- ⁇ CAR-T cells and confirmed by flow cytometry.
  • soluble recombinant human CD47 IgG did not bind to mock CAR-T cells, but bound to SIRP- ⁇ CAR-T cells (see Fig. 6a), and soluble recombinant human CD47 IgG did not bind to mock CAR-NK cells.
  • FIG. 6b it was bound to SIRP- ⁇ CAR-NK cells (see FIG. 6b ).
  • SIRP- ⁇ CAR-T cells expressing chimeric antigen receptor and SIRP- ⁇ CAR-NK cells were used as effector cells, and the Raji cell line expressing CD47 was used as a target cell.
  • the CD47-specific cytotoxicity of SIRP- ⁇ CAR-T cells and SIRP- ⁇ CAR-NK cells was verified.
  • the cell expressing CD47 (CD47 positive cell) is selectively toxic
  • Raji cells which are the target cells selected in Example 3
  • Jurkat cells which are negative control cells
  • SIRP- ⁇ CAR-T cells chimeric antigen receptor-expressing cytotoxic T cells
  • cytotoxic T cells introduced with an empty vector.
  • Cells (Mock T cells) and co-cultured for 6 hours.
  • a non-radioactive cytotoxicity assay that measures the degree of cytotoxicity of cytotoxic T cells to target cells by the amount of lactate dehydrogenase present in the supernatant after co-culture was performed. was used.
  • cytotoxic T cells (1x10 5 cells) and target cells (1x10 4 cells) into the wells of a 96-well cell culture dish, set the effector: target ratio to 10:1, and inoculate so that the volume per well becomes 100 ⁇ l Centrifuge for 4 minutes at 250 g conditions using a centrifuge to close the intercellular space. After culturing for 6 hours, 50 ⁇ l of the supernatant from each well is removed, transferred to a transparent 96-well dish for absorbance measurement, and treated with an analysis solution and 1M hydrochloric acid solution to proceed and stop the enzymatic reaction.
  • the absorbance in the 490 nm wavelength band was measured and numerically converted using a fluorescence/luminescence/absorption meter (multi-detection plate reader) to quantify the degree of cytotoxicity of cytotoxic T cells in each well.
  • the prepared chimeric antigen receptor-expressing cytotoxic T cells (SIRP- ⁇ CAR-T cells) showed high toxicity of over 35% to the Raji cell line, whereas the toxicity was 3.5% to the Jurkat cell line. was shown (p ⁇ 0.01).
  • the cytotoxic T cells introduced with the empty vector as a control showed 11% toxicity to the Raji cell line, but 4.2% to the Jurkat cell line.
  • the chimeric antigen recognition receptor-expressing cytotoxic T cells containing the extracellular domain of SIRP- ⁇ showed cytotoxicity specific to the CD47 protein, so that the treatment of related cancer cells using the CAR-T cells was was able to confirm that it was possible.
  • a non-radioactive cytotoxicity assay was used to measure the degree of cytotoxicity of NK cells to target cells with the amount of lactate dehydrogenase present in the supernatant after co-culture. .
  • the absorbance of the 490 nm wavelength band was measured and numerically converted using a fluorescence/luminescence/absorption meter (multi-detection plate reader) to quantify the degree of cytotoxicity of NK cells in each well.
  • the prepared chimeric antigen receptor-expressing natural killer cells (SIRP- ⁇ CAR-NK cells) showed a high toxicity of 34% or more to the Raji cell line, whereas the toxicity was 4.1% to the Jurkat cell line. was shown (p ⁇ 0.01).
  • the cytotoxic T cells introduced with the empty vector as a control showed 8.1% toxicity to the Raji cell line, but 0.0% to the Jurkat cell line.

Abstract

The present invention relates to: a chimeric antigen receptor that specifically binds to CD47; a polynucleotide encoding the chimeric antigen receptor protein; a vector comprising the polynucleotide; a cell transformed with the vector; and a cellular therapeutic agent or a pharmaceutical composition for treating cancer, comprising the cell as an active ingredient. The chimeric antigen receptor according to the present invention comprises an extracellular domain of SIRP-α that specifically binds to CD47. Therefore, cytotoxic T cells or natural killer cells transformed with a vector capable of overexpressing the chimeric antigen receptor have cytotoxicity specifically to CD47-expressing carcinomas, and thus can be effectively used as an immune cell therapeutic agent for cancer treatment.

Description

CD47에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도Chimeric antigen receptor specifically binding to CD47 and uses thereof
본 발명은 CD47에 특이적으로 결합하는 키메릭 항원 수용체(chimeric antigen receptor, CAR); 상기 키메릭 항원 수용체 단백질을 코딩하는 폴리 뉴클레오티드; 상기 폴리 뉴클레오티드를 포함하는 벡터; 상기 벡터로 형질전환된 T 세포 또는 자연살생세포(Natural killer cell, NK cell); 상기 세포를 유효성분으로 포함하는 세포 치료제 또는 암의 치료용 약학적 조성물에 관한 것이다.The present invention relates to a chimeric antigen receptor (CAR) that specifically binds to CD47; a polynucleotide encoding the chimeric antigen receptor protein; a vector comprising the polynucleotide; T cells or natural killer cells transformed with the vector (Natural killer cell, NK cell); It relates to a cell therapeutic agent or a pharmaceutical composition for the treatment of cancer comprising the cell as an active ingredient.
CD47은 면역 글로불린(Ig) 수퍼 패밀리(immunoglobulin superfamily)에 속하는 50 kDa의 내재성 막 단백질(integral membrane protein)이며, 다양한 암종(malignant cells)과 면역세포에서 관찰된다(Sick et al., 2012; Brown and Frazier, 2001). 특히 암세포는 CD47을 과발현하여 대식세포에서 발현하는 signaling regulatory protein alpha (SIRP-α)와 결합하게 되고, SIRP-α의 신호 전달 기전에 따라 대식세포의 활성을 억제하여 식작용(phagocytosis)을 회피하게 된다(Weissman, 2016; Brightwell et al., 2016). 이에 따라, CD47 / SIRP-α 신호전달을 억제할 수 있는 중화항체가 개발되었고, 이러한 중화항체가 암을 좀 더 효과적으로 제거할 수 있다는 결과를 도출하였다(Weiskopf et al., 2016). 지금까지 CD47을 발현하는 암종은 난소암(ovarian cancer), 유방암(breast cancer), 방광암(bladder cancer), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 신경교아종(glioblastoma), 간암(hepatocellular carcinoma), 편평상피암(squamous cell carcinoma), 백혈병(leukemia), 암줄기세포(cancer stem cell), 비호지킨림프종(non-Hodgkin's lymphoma) 등이 있다(Campbell et al., 1992; Jaiswal et al., 2009; Li et al., 2018; Majeti et al., 2009; Michaels et al., 2018; pai et al., 2019; Theocharides et al., 2012; Willingham et al., 2012; Zhang et al., 2015).CD47 is a 50 kDa integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and is observed in various malignant cells and immune cells (Sick et al., 2012; Brown). and Frazier, 2001). In particular, cancer cells overexpress CD47 and bind to the signaling regulatory protein alpha (SIRP-α) expressed in macrophages, and avoid phagocytosis by inhibiting macrophage activity according to the signaling mechanism of SIRP-α. (Weissman, 2016; Brightwell et al., 2016). Accordingly, a neutralizing antibody capable of inhibiting CD47 / SIRP-α signaling was developed, and it was concluded that the neutralizing antibody could more effectively remove cancer (Weiskopf et al., 2016). Carcinomas expressing CD47 so far have been ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, glioblastoma, and hepatocellular carcinoma. ), squamous cell carcinoma, leukemia, cancer stem cells, and non-Hodgkin's lymphoma (Campbell et al., 1992; Jaiswal et al., 2009; Li et al., 2018; Majeti et al., 2009; Michaels et al., 2018; pai et al., 2019; Theocharides et al., 2012; Willingham et al., 2012; Zhang et al., 2015).
효과적인 암 치료를 위해서 직접적으로 암 세포를 표적하는 세포독성 T 세포(cytotoxic T lymphocytes, CTL)와 자연살생세포(natural killer cell, NK cell)가 중요하다는 사실이 보고되어왔다. 지금까지 세포독성 T 세포 또는 자연살생세포를 이용한 항암 치료에 대한 연구는 환자 유래 특정 암 항원을 환자의 세포독성 T 세포에 전달하여 활성을 유발하거나, 항체 의존성 세포 독성(antibody dependent cellular cytotoxicity)을 유발하고자 하였다(Galluzzi et al., 2018; Lu et al., 2020). 하지만, 최근에는 세포독성 T 세포와 자연살생세포를 이용한 새로운 항암 치료 방법이 도입되었다. 즉, 항원을 인식하는 항체의 단일사슬 Fv 단편(single-chain variable fragment, scFv) 부분을 CD3 제타(zeta) 또는 다른 단백질의 세포질내 신호전달 도메인(cytoplasmic signaling domain)에 접목시킨 도메인에 접목시킨 키메릭 항원 수용체(chimeric antigen receptor, CAR)를 전달하는 방법으로 시도되었다. 키메릭 항원 수용체를 T 세포 또는 자연살생세포에 접목시키면 항원 제시 세포(antigen presenting cell, APC)에 의한 신호 전달과 관계없이 단일사슬 Fv 단편의 특정 항원 인지만으로 T 세포 또는 자연살생세포의 항암 작용을 활성화시킬 수 있으며, 또한 HLA type에 제한적이지 않아 많은 사람들이 보편적으로 사용할 수 있는 보다 효율적인 치료 방법으로 이용할 수 있다. 실제로, 이러한 키메릭 항원 수용체 발현 T 세포나 자연살생세포는 여러 암에서 효능을 보이고 있다(Holzinger et al., 2016; Pettitt et al., 2018; Wang et al., 2020). It has been reported that cytotoxic T lymphocytes (CTL) and natural killer cells (NK cells) that directly target cancer cells are important for effective cancer treatment. Until now, studies on anticancer treatment using cytotoxic T cells or natural killer cells have either delivered specific cancer antigens derived from a patient to the patient's cytotoxic T cells to induce activity, or induce antibody-dependent cellular cytotoxicity. (Galluzzi et al., 2018; Lu et al., 2020). However, recently, a new anticancer treatment method using cytotoxic T cells and natural killer cells has been introduced. That is, a single-chain variable fragment (scFv) portion of an antigen-recognizing antibody is grafted onto a domain grafted to CD3 zeta or the cytoplasmic signaling domain of another protein. It was attempted as a method of delivering chimeric antigen receptor (CAR). When the chimeric antigen receptor is grafted onto T cells or natural killer cells, the anticancer action of T cells or natural killer cells is enhanced by the specific antigen recognition of single-chain Fv fragments regardless of signal transduction by antigen presenting cells (APCs). It can be activated, and it is not limited to the HLA type, so it can be used as a more efficient treatment method that can be used universally by many people. Indeed, these chimeric antigen receptor-expressing T cells or natural killer cells have shown efficacy in several cancers (Holzinger et al., 2016; Pettitt et al., 2018; Wang et al., 2020).
한편, signaling regulatory protein alpha (SIRP-α)는 면역 글로불린(Ig) 수퍼 패밀리(immunoglobulin superfamily)에 속하는 내재성 막 단백질(integral membrane protein)이며, 세포외 구역(extracellular region) (domain 1 ~ 3)을 가지고 있다(Barclay and Van den Berg, 2014). SIRP-α는 세포질 꼬리(cytoplasmic tail)에 immunoreceptor tyrosine-based inhibitory motif (ITIM)이 있어서, CD47과 결합하면 대식세포의 활성을 억제하여 식작용(phagocytosis)을 차단시키는 것으로 알려져 있다(Okazawa et al., 2005). On the other hand, signaling regulatory protein alpha (SIRP-α) is an integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and the extracellular region (domains 1 to 3) is have (Barclay and Van den Berg, 2014). SIRP-α has an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, and is known to block phagocytosis by inhibiting macrophage activity when it binds to CD47 (Okazawa et al., 2005).
현재, CD47을 종양항원으로 인식하는 CAR-T T세포(미국공개특허 제2019-0338028호)나 SIRP-α 폴리펩타이드 조성물과 사용 방법(미국공개특허 제2020-0270324호)가 공개되어 있으나, CD47이 발현되는 암세포에 대한 결합 특이성을 갖는 SIRP-α 세포외 도메인(extracellular domain)을 항원 결합 도메인에 포함하여 면역 항암 치료제로서 이용하는 발명에 대해서는 기재된 바 없다.Currently, CAR-T T cells that recognize CD47 as a tumor antigen (US Patent Publication No. 2019-0338028) or SIRP-α polypeptide compositions and methods of use (US Patent Publication No. 2020-0270324) have been disclosed, but CD47 The invention of using the SIRP-α extracellular domain having binding specificity for the expressed cancer cells as an antigen-binding domain as an immunocancer therapeutic agent has not been described.
이러한 배경 하에, 본 발명자들은 다양한 암세포에서의 CD47 발현이 확인 또는 유도된다는 점과, 상기 CD47과 SIRP-α의 결합이 가능하다는 점을 이용하여 SIRP-α의 세포외 도메인을 사용한 CD47을 발현하는 암 특이적 키메릭 항원 수용체 발현 T 세포와 자연살생세포를 제작하고, 상기 T 세포 또는 자연살생세포가 CD47을 발현하는 세포에 특이적으로 세포독성 능력이 있음을 실험을 통해 확인하였다. 이 때, SIRP-α의 세포외 도메인 중 domain 1 각각을 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)과 연결하는 융합 단백질을 만들어 신호 전달 강도를 증폭하였다. 즉, 기존의 키메릭 항원 수용체는 단일사슬 Fv 단편에 의해 항원을 인식하는 부위가 하나인 반면에, 본 발명자들이 고안한 키메릭 항원 수용체는 SIRP-α의 세포외 도메인 각각을 인간 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)과 연결시켜, 키메릭 항원 수용체 하나당 2개의 SIRP-α의 세포외 도메인이 항원을 인식하게 하여, 신호 전달 강도를 증폭하고자 하였다.Under this background, the present inventors took advantage of the fact that CD47 expression in various cancer cells is confirmed or induced and that CD47 and SIRP-α are capable of binding to CD47-expressing cancer using the extracellular domain of SIRP-α. Specific chimeric antigen receptor-expressing T cells and natural killer cells were prepared, and it was confirmed through experiments that the T cells or natural killer cells have specific cytotoxicity to CD47-expressing cells. At this time, the signal transduction strength was amplified by making a fusion protein linking each domain 1 of the extracellular domain of SIRP-α with the human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region). That is, while the existing chimeric antigen receptor has one site for recognizing an antigen by a single chain Fv fragment, the chimeric antigen receptor designed by the present inventors converts each of the extracellular domains of SIRP-α into human human immunoglobulin. By connecting with the G 1 heavy chain constant region (IgG 1 heavy chain constant region), the extracellular domain of two SIRP-α per chimeric antigen receptor recognizes the antigen, to amplify the signal transduction strength.
따라서 본 발명의 목적은 CD47에 특이적으로 결합하는 키메릭 항원 수용체를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a chimeric antigen receptor that specifically binds to CD47.
본 발명의 다른 목적은 상기 키메릭 항원 수용체 단백질을 코딩하는 폴리 뉴클레오티드, 상기 폴리 뉴클레오티드를 포함하는 벡터 및 상기 벡터로 형질전환된 T 세포 또는 자연살생세포를 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding the chimeric antigen receptor protein, a vector containing the polynucleotide, and T cells or natural killer cells transformed with the vector.
본 발명의 또 다른 목적은 상기 형질전환된 T 세포 또는 자연살생세포를 포함하는, 세포 치료제 또는 CD47을 발현하는 암세포를 사멸시키는 암의 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for the treatment of cancer that kills cancer cells expressing cell therapeutics or CD47, including the transformed T cells or natural killer cells.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 항원 결합 부위인 세포외 도메인; 막관통 도메인; 및 세포 내 신호전달 도메인을 포함하는 키메릭 항원 수용체(CAR)로서, 상기 항원 결합 도메인은 CD47에 특이적으로 결합하는 SIRP-α의 세포외 도메인을 포함하는 것인, 키메릭 항원 수용체를 제공한다.In order to achieve the object of the present invention as described above, the present invention provides an antigen-binding site, an extracellular domain; transmembrane domain; and an intracellular signaling domain, wherein the antigen binding domain comprises an extracellular domain of SIRP-α that specifically binds to CD47. .
또한, 본 발명은 상기 키메릭 항원 수용체 단백질을 코딩하는 폴리 뉴클레오티드, 상기 폴리 뉴클레오티드를 포함하는 벡터 및 상기 벡터로 형질전환된 T 세포 또는 자연살생세포를 제공한다.In addition, the present invention provides a polynucleotide encoding the chimeric antigen receptor protein, a vector containing the polynucleotide, and T cells or natural killer cells transformed with the vector.
또한, 본 발명은 상기 형질전환된 T 세포 또는 자연살생세포를 포함하는, 세포 치료제 또는 CD47을 발현하는 암세포를 사멸시키는 암의 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for the treatment of cancer comprising the transformed T cells or natural killer cells, which kills cancer cells expressing a cell therapeutic agent or CD47.
본 발명에 따른 키메릭 항원 수용체는 CD47에 특이적으로 결합하는 SIRP-α의 세포외 도메인을 포함한다. 따라서, 상기 키메릭 항원 수용체를 과발현시킬 수 있는 벡터로 형질전환된 세포독성 T 세포 또는 자연살생세포의 경우 CD47을 발현하는 암종에 특이적으로 세포독성을 갖게 되므로 암 치료를 위한 면역세포 치료제로서 유용하게 이용될 수 있다.The chimeric antigen receptor according to the present invention comprises an extracellular domain of SIRP-α that specifically binds to CD47. Therefore, in the case of cytotoxic T cells or natural killer cells transformed with a vector capable of overexpressing the chimeric antigen receptor, they have specific cytotoxicity to CD47-expressing carcinoma, so they are useful as immune cell therapeutics for cancer treatment. can be used
도 1은 본 발명의 일 실시예에 따른 키메릭 항원 수용체를 발현시키는 각 도메인의 cDNA 구역을 나타낸 모식도이다. 1 is a schematic diagram showing the cDNA region of each domain expressing a chimeric antigen receptor according to an embodiment of the present invention.
도 2a는 본 발명의 일 실시예에 따른 렌티바이럴 벡터의 모식도이다. 2A is a schematic diagram of a lentiviral vector according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시예에 따른 레트로바이럴 벡터의 모식도이다.2B is a schematic diagram of a retroviral vector according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 세포독성 T 세포 또는 자연살생세포 표면에 발현하는 키메릭 항원 수용체의 모식도이다.3 is a schematic diagram of a chimeric antigen receptor expressed on the surface of cytotoxic T cells or natural killer cells according to an embodiment of the present invention.
도 4는 본 발명에서 제공하는 키메릭 항원 수용체의 표적인 CD47을 발현하는 암세포에서 CD47의 발현량을 유세포 분석을 이용해 측정한 결과를 나타낸 도이다. 4 is a diagram showing the results of measuring the expression level of CD47 in cancer cells expressing CD47, a target of the chimeric antigen receptor provided in the present invention, using flow cytometry.
도 5a는 본 발명의 일 실시예에 따른 발현 벡터를 렌티바이러스 시스템을 이용하여 형질도입시킨 세포독성 T 세포(SIRP-α CAR-T cell)에서의 GFP의 발현 비율을 비교한 결과를 나타낸 도이다.Figure 5a is a diagram showing the result of comparing the expression rate of GFP in cytotoxic T cells (SIRP-α CAR-T cell) transduced with the expression vector according to an embodiment of the present invention using a lentiviral system. .
도 5b는 본 발명의 일 실시예에 따른 발현 벡터를 레트로바이러스 시스템을 이용하여 형질도입시킨 자연살생세포(SIRP-α CAR-NK cell)에서의 SIRP-α의 발현 비율을 비교한 결과를 나타낸 도이다.Figure 5b is a diagram showing the result of comparing the expression ratio of SIRP-α in natural killer cells (SIRP-α CAR-NK cells) transduced with the expression vector according to an embodiment of the present invention using a retroviral system to be.
도 6a는 본 발명의 일 실시예에 따른 발현 벡터를 렌티바이러스 시스템을 이용하여 형질도입시킨 세포독성 T 세포(SIRP-α CAR-T cell)가 CD47을 인식하는지 여부를 유세포 분석을 이용해 나타낸 도이다.FIG. 6a is a diagram showing whether CD47 is recognized by cytotoxic T cells (SIRP-α CAR-T cells) transduced with an expression vector according to an embodiment of the present invention using a lentiviral system using flow cytometry. .
도 6b는 본 발명의 일 실시예에 따른 발현 벡터를 레트로바이러스 시스템을 이용하여 형질도입시킨 자연살생세포(SIRP-α CAR-NK cell) 가 CD47을 인식하는지 여부를 유세포 분석을 이용해 나타낸 도이다.FIG. 6b is a diagram showing whether natural killer cells (SIRP-α CAR-NK cells) transduced with an expression vector according to an embodiment of the present invention using a retroviral system recognize CD47 using flow cytometry.
도 7a는 본 발명의 일 실시예에 따른 세포독성 T 세포(SIRP-α CAR-T cell) 또는 공벡터를 형질도입시킨 세포독성 T 세포(Mock T cell)를 작동세포(effector cell)로 하여 CD47을 발현하는 암세포(Raji cell)에 대한 세포독성을 측정한 결과를 나타낸 도이다.Figure 7a shows CD47 CD47 using cytotoxic T cells (SIRP-α CAR-T cells) or cytotoxic T cells (Mock T cells) transduced with an empty vector according to an embodiment of the present invention as effector cells; It is a diagram showing the result of measuring the cytotoxicity to the cancer cells (Raji cells) expressing.
도 7b는 본 발명의 일 실시예에 따른 자연살생세포(SIRP-α CAR-NK cell) 또는 공벡터를 형질도입시킨 자연살생세포(Mock NK cell)를 작동세포(effector cell)로 하여 CD47을 발현하는 암세포(Raji cell)에 대한 세포독성을 측정한 결과를 나타낸 도이다.Figure 7b shows CD47 expression using natural killer cells (SIRP-α CAR-NK cells) or mock NK cells transduced with an empty vector as effector cells according to an embodiment of the present invention; It is a diagram showing the results of measuring the cytotoxicity to cancer cells (Raji cells).
본 발명은 하나의 양태로서, 항원 결합 도메인; 막관통 도메인; 및 세포 내 신호전달 도메인을 포함하는 키메릭 항원 수용체(CAR)로서, 상기 항원 결합 도메인은 CD47에 특이적으로 결합하는 SIRP-α의 세포외 도메인을 포함하는, 키메릭 항원 수용체를 제공한다.The present invention provides an antigen-binding domain; transmembrane domain; and an intracellular signaling domain, wherein the antigen binding domain comprises an extracellular domain of SIRP-α that specifically binds to CD47.
본 발명에서 "키메릭 항원 수용체(Chimeric antigen receptor, CAR)"는 자연적으로 T 세포 또는 자연살생세포가 활성화하는데 필요한 항원 제시 세포(APC)나 항체의 매개 없이 원하는 항원에 결합하여 항원-항체 반응을 통해 T 세포의 활성화를 유도하고 해당 항원을 발현하는 세포를 공격할 수 있도록 하기 위해 T 세포 또는 자연살생세포에 발현시키기 위한 융합 단백질을 의미한다. 즉, T 세포 또는 자연살생세포에 발현시 항원에 결합하여 이들 세포들의 활성화를 유도하는 단백질이라고 볼 수 있다. 이를 통해 면역 반응을 일으키고자 하는 세포에 특이적인 항원을 인식하는 단백질일 수 있으며, 상기 면역 반응을 일으키고자 하는 세포는 특정 조직에 존재하거나 병변을 일으킨 조직을 이루는 세포를 의미할 수 있다.In the present invention, "chimeric antigen receptor (CAR)" binds to a desired antigen without the mediation of antigen presenting cells (APCs) or antibodies necessary for naturally activating T cells or natural killer cells, thereby producing an antigen-antibody reaction. It refers to a fusion protein for expression in T cells or natural killer cells in order to induce activation of T cells and attack cells expressing the corresponding antigen. That is, when expressed in T cells or natural killer cells, it can be considered as a protein that binds to an antigen and induces activation of these cells. Through this, it may be a protein recognizing an antigen specific to a cell to cause an immune response, and the cell to cause an immune response may refer to a cell existing in a specific tissue or constituting a tissue causing a lesion.
본 발명의 일 실시예에 따른 키메릭 항원 수용체 단백질은 기능적 동등물을 포함할 수 있다. '기능적 동등물’이란 아미노산의 부가, 치환, 또는 결실의 결과, 상기 키메릭 항원 수용체 단백질의 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. ‘실질적으로 동질의 생리활성’이란 CD47에 특이적으로 결합할 수 있는 활성을 가진 것을 의미한다.The chimeric antigen receptor protein according to an embodiment of the present invention may include a functional equivalent. "Functional equivalent" means at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably the amino acid sequence of the chimeric antigen receptor protein as a result of the addition, substitution, or deletion of amino acids. refers to a protein having a sequence homology of 95% or more and exhibiting substantially homogeneous physiological activity. “Substantially homogenous physiological activity” means that it has an activity capable of specifically binding to CD47.
본 발명은 또한 키메릭 항원 수용체의 단편, 유도체 및 유사체(analogues)를 포함한다. 본원에 사용된, 용어 '단편', '유도체' 및 '유사체'는 본 발명의 키메릭 항원 수용체 단백질과 실질적으로 같은 생물학적 기능 또는 활성을 보유하는 폴리펩티드를 말한다. 본 발명의 단편, 유도체 및 유사체는 (1) 하나 이상의 보존적(conservative) 또는 비보존적 아미노산 잔기(바람직하게는 보존적 아미노산 잔기)가 치환된 폴리펩티드(상기 치환된 아미노산 잔기는 유전 암호에 의해 암호화될 수도, 되지 않을 수도 있다) 또는 (2) 하나 이상의 아미노산 잔기에서 치환기(들)를 가지는 폴리펩티드, 또는 (3) 또 다른 화합물(폴리펩티드의 반감기를 연장할 수 있는 화합물, 예를 들면 폴리에틸렌 글리콜)과 결합된 성숙 폴리펩티드로부터 유래된 폴리펩티드, 또는 (4) 부가적인 아미노산 서열(예를 들면, 선도 서열, 분비 서열, 상기 폴리펩티드를 정제하는데 사용된 서열, 프로테이노젠(proteinogen) 서열 또는 융합 단백질)과 결합된 상기 폴리펩티드로부터 유래된 폴리펩티드일 수 있다. 본 발명에 정의된 상기 단편, 유도체 및 유사체는 당업자에 잘 알려져 있다.The present invention also includes fragments, derivatives and analogues of chimeric antigen receptors. As used herein, the terms 'fragment', 'derivative' and 'analog' refer to a polypeptide that retains substantially the same biological function or activity as the chimeric antigen receptor protein of the present invention. Fragments, derivatives and analogs of the present invention may comprise (1) polypeptides in which one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) are substituted, wherein the substituted amino acid residues are encoded by the genetic code. may or may not be) or (2) a polypeptide having substituent(s) at one or more amino acid residues, or (3) another compound (a compound capable of extending the half-life of the polypeptide, such as polyethylene glycol); a polypeptide derived from the associated mature polypeptide, or (4) an additional amino acid sequence (eg, a leader sequence, a secretion sequence, a sequence used to purify the polypeptide, a proteinogen sequence, or a fusion protein); It may be a polypeptide derived from said polypeptide to which it is bound. The fragments, derivatives and analogs as defined herein are well known to those skilled in the art.
SIRP-α 단백질은 면역 글로불린(Ig) 수퍼 패밀리(immunoglobulin superfamily)에 속하는 내재성 막 단백질(integral membrane protein)이며, 3개의 세포외 도메인(extracellular domain)을 가지고 있다. 상기 항원 결합 도메인은 신호전달을 증폭하기 위해 SIRP-α의 세포외 도메인 한 쌍을 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)에 각각 연결시킨 이합체(dimer) 형태일 수 있으나, 이에 제한되는 것은 아니다.SIRP-α protein is an integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and has three extracellular domains. The antigen binding domain may be in the form of a dimer in which a pair of extracellular domains of SIRP - α are linked to a human immunoglobulin G 1 heavy chain constant region to amplify signal transduction, respectively. , but is not limited thereto.
상기 SIRP-α의 세포외 도메인은 도메인 1 내지 3 중 어느 하나 또는 이들의 조합일 수 있으며 바람직하게는 도메인 1일 수 있으나, 이에 제한되는 것은 아니다.The extracellular domain of SIRP-α may be any one of domains 1 to 3 or a combination thereof, and preferably domain 1, but is not limited thereto.
상기 SIRP-α의 세포외 도메인 1(domain 1)은 서열번호 1 또는 이와 95% 이상의 상동성을 나타내는 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.The extracellular domain 1 (domain 1) of the SIRP-α may consist of SEQ ID NO: 1 or an amino acid sequence having 95% or more homology thereto, but is not limited thereto.
상기 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)은 서열번호 2 또는 이와 95% 이상의 상동성을 나타내는 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.The human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region) may consist of SEQ ID NO: 2 or an amino acid sequence showing 95% or more homology thereto, but is not limited thereto.
본 발명에서 "CD47"은 면역 글로불린(Ig) 수퍼 패밀리(immunoglobulin superfamily)에 속하는 50 kDa의 내재성 막 단백질(integral membrane protein)이며, 다양한 암종(malignant cells)과 면역세포에서 관찰된다. 지금까지 CD47을 발현하는 암종은 난소암(ovarian cancer), 유방암(breast cancer), 방광암(bladder cancer), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 신경교아종(glioblastoma), 간암(hepatocellular carcinoma), 편평상피암(squamous cell carcinoma), 백혈병(leukemia), 암줄기세포(cancer stem cell) 및 비호지킨림프종(non-Hodgkin's lymphoma)으로 이루어지는 군으로부터 선택될 수 있으나, 이에 제한되지 않는다.In the present invention, "CD47" is a 50 kDa integral membrane protein belonging to the immunoglobulin (Ig) superfamily, and is observed in various carcinomas (malignant cells) and immune cells. Carcinomas expressing CD47 so far have been ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, glioblastoma, and hepatocellular carcinoma. ), squamous cell carcinoma, leukemia, cancer stem cells and non-Hodgkin's lymphoma, but is not limited thereto.
본 발명에서, "막관통 도메인(Transmembrane domain)"은 SIRP-α의 세포외 도메인과 보조자극, 필수 신호전달 도메인을 세포막 사이로 연결하는 부위이며, 세포내 신호 전달 도메인은 항원 결합 도메인의 결합에 의해 면역 세포의 면역반응을 활성화시키는 부위를 의미한다.In the present invention, the "transmembrane domain" is a site that connects the extracellular domain of SIRP-α with the costimulatory and essential signaling domains between the cell membrane, and the intracellular signaling domain is formed by binding of the antigen-binding domain. It refers to a site that activates the immune response of immune cells.
일 실시예에서, 상기 막관통 도메인은 CD28, CD3엡실론, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 및 CD154로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 바람직하게는, 상기 CD8은 CD8α의 막관통 도메인일 수 있고, 이는 서열번호 3 또는 이와 95% 이상의 상동성을 나타내는 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the transmembrane domain is selected from the group consisting of CD28, CD3epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154. It may include one or more, preferably, the CD8 may be the transmembrane domain of CD8α, which may consist of SEQ ID NO: 3 or an amino acid sequence showing 95% or more homology thereto, but is limited thereto not.
본 발명에서 "세포내 신호전달 도메인"은 항원 결합 도메인에 결합에 의해 면역 세포의 면역반응을 활성화시키는 부위를 의미한다. 일 실시예에서, 상기 세포내 도메인은 CD28, 4-1BB, CD3 제타(zeta) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, "intracellular signaling domain" refers to a site that activates an immune response of an immune cell by binding to an antigen-binding domain. In one embodiment, the intracellular domain may be CD28, 4-1BB, CD3 zeta, or a combination thereof, but is not limited thereto.
본 발명에 따른 키메릭 항원 수용체는 세포내 신호전달 도메인으로 CD28, 4-1BB, CD3 제타(zeta)를 이용함으로써 높은 활성으로 암 세포, 특히 CD47을 발현하는 암세포에 대한 사멸 효과를 나타낼 수 있다. The chimeric antigen receptor according to the present invention can exhibit a killing effect on cancer cells, particularly cancer cells expressing CD47, with high activity by using CD28, 4-1BB, and CD3 zeta as intracellular signaling domains.
상기 CD28은 서열번호 4 또는 이와 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 4로 표시되는 아미노산 서열과 실질적으로 동등한 기능을 나타내는 아미노산 서열로 이루어질 수 있고, 4-1BB(CD137)은 서열번호 5 또는 이와 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 5로 표시되는 아미노산 서열과 실질적으로 동등한 기능을 나타내는 아미노산 서열로 이루어질 수 있으며, CD3 제타(zeta)는 NK 세포 활성화 도메인으로 기능하며, 서열번호 6 또는 이와 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 6으로 표시되는 아미노산 서열과 실질적으로 동등한 기능을 나타내는 아미노산 서열로 이루어 질 수 있다.The CD28 is SEQ ID NO: 4 or 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more sequence homology thereto, and the amino acid sequence represented by SEQ ID NO: 4 and may consist of an amino acid sequence exhibiting a substantially equivalent function, and 4-1BB (CD137) is SEQ ID NO: 5 or 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% thereof Having the above sequence homology, it may consist of an amino acid sequence exhibiting a function substantially equivalent to the amino acid sequence shown in SEQ ID NO: 5, CD3 zeta functions as an NK cell activation domain, and SEQ ID NO: 6 or 70 thereof % or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and an amino acid sequence that exhibits a substantially equivalent function to the amino acid sequence represented by SEQ ID NO: 6. can be done
상기 항원 결합 도메인은 CD8α 신호 펩타이드를 포함할 수 있으며, 상기 CD8α 신호 펩타이드는 서열번호 7 또는 이와 95% 이상의 상동성을 나타내는 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.The antigen-binding domain may include a CD8α signal peptide, and the CD8α signal peptide may consist of SEQ ID NO: 7 or an amino acid sequence exhibiting 95% or more homology thereto, but is not limited thereto.
또한, 본 발명에 따른 다른 하나의 양태로서, 상기 키메릭 항원 수용체 단백질을 코딩하는 폴리 뉴클레오티드를 제공한다.In another aspect according to the present invention, there is provided a polynucleotide encoding the chimeric antigen receptor protein.
본 발명의 항원 수용체를 암호화하는 폴리 뉴클레오티드는 코돈의 축퇴성 (degeneracy)으로 인하여 또는 상기 항원 수용체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 항원 수용체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함됨을 당업자는 잘 이해할 수 있을 것이다. 즉, 본 발명의 폴리 뉴클레오티드는 이와 동등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다. The polynucleotide encoding the antigen receptor of the present invention changes the amino acid sequence of the antigen receptor expressed from the coding region due to codon degeneracy or in consideration of the codon preferred in the organism to express the antigen receptor. Various modifications may be made to the coding region within the range that does not occur, and various modifications or modifications may be made within the range that does not affect the expression of the gene in parts other than the coding region, and such modified genes are also within the scope of the present invention. It will be well understood by those skilled in the art. That is, as long as the polynucleotide of the present invention encodes a protein having an equivalent activity, one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, and these are also included in the scope of the present invention.
또한, 본 발명에 따른 또 다른 하나의 양태로서 상기 폴리 뉴클레오티드를 포함하는 벡터, 상기 벡터로 형질전환된 세포를 제공한다.In addition, as another aspect according to the present invention, there is provided a vector comprising the polynucleotide, and a cell transformed with the vector.
본 발명에서 사용되는 벡터는 당 분야에 공지된 벡터를 다양하게 사용할 수 있고, 상기 항원 수용체를 생산하고자 하는 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다. 본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오 파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다.The vector used in the present invention may use a variety of vectors known in the art, and may include a promoter, a terminator, an enhancer, etc., depending on the type of host cell to produce the antigen receptor. Expression control sequences, sequences for membrane targeting or secretion, etc. can be appropriately selected and variously combined according to the purpose. The vector of the present invention includes, but is not limited to, a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector. Suitable vectors include a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as promoter, operator, start codon, stop codon, polyadenylation signal and enhancer, and may be prepared in various ways depending on the purpose.
본 발명에서는 바람직한 일 실시예로서, 렌티-바이러스용 벡터 또는 레트로-바이러스용 벡터를 사용할 수 있으며, 본 발명의 하기 실시예에서는 pCDH-CMV-MCS-EF1-copGFP 벡터(렌티-바이러스용 벡터)와 pLNCX2(레트로-바이러스용 벡터)를 사용하였으나, 이에 제한되는 것은 아니다.As a preferred embodiment of the present invention, a vector for a lenti-virus or a vector for a retro-virus can be used. pLNCX2 (retro-virus vector) was used, but is not limited thereto.
일 일시예에서, CD47에 특이적으로 결합하는 키메릭 항원 수용체를 상기 벡터를 통해 세포에 도입하여 세포를 형질전환시킬 수 있다. 상기 세포는 T 세포, 종양 침윤 림프구, B 세포, 자연살생세포, 또는 NKT 세포일 수 있으며, 바람직하게는, 세포독성 T 세포(cytotoxic T cell) 또는 자연살생세포 일 수 있다. 상기 세포는 골수, 말초혈액, 말초혈액단핵세포 또는 제대혈로부터 얻거나 제조될 수 있으며, 세포는 인간 세포일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, a cell can be transformed by introducing a chimeric antigen receptor that specifically binds to CD47 into the cell through the vector. The cells may be T cells, tumor-infiltrating lymphocytes, B cells, natural killer cells, or NKT cells, preferably cytotoxic T cells or natural killer cells. The cell may be obtained or prepared from bone marrow, peripheral blood, peripheral blood mononuclear cells or umbilical cord blood, and the cell may be a human cell, but is not limited thereto.
상기와 같이 본 발명의 키메릭 항원 수용체가 도입되어 형질전환된 세포는 CD47을 항원으로 인식하고 이와 강하게 결합하는 특징을 가진다.As described above, the cells transformed by introducing the chimeric antigen receptor of the present invention recognize CD47 as an antigen and have a characteristic of strongly binding thereto.
본 발명에서, "키메릭 항원 수용체 발현 T 세포(chimeric antigen receptor T cell, 이하 간략하게 'CAR-T 세포'라 약칭함)" 또는 "키메릭 항원 수용체 발현 NK 세포(chimeric antigen receptor NK cell, 이하 간략하게 'CAR-NK 세포'라 약칭함)"란 정상의 T 세포 또는 자연살생세포를 형질도입 등의 방법으로 본래의 T 세포 수용체 또는 NK cell 수용체가 아닌 암세포에 특이적으로 반응하는 키메라 항원 수용체를 발현하는 T 세포 또는 NK cell을 의미한다. 이 수용체를 갖는 T 세포 또는 NK 세포는 표적세포(target cell)의 세포자살을 유도하여 세포독성을 나타낸다.In the present invention, "chimeric antigen receptor T cells (hereinafter abbreviated as 'CAR-T cells')" or "chimeric antigen receptor NK cells (hereinafter referred to as chimeric antigen receptor NK cells)" 'CAR-NK cells') is a chimeric antigen receptor that specifically responds to cancer cells other than the original T cell receptor or NK cell receptor by transducing normal T cells or natural killer cells, etc. refers to T cells or NK cells expressing T cells or NK cells having this receptor induce apoptosis of target cells and exhibit cytotoxicity.
본 발명에 있어서, 특히 CAR-T 세포나 CAR-NK 세포는 세포독성 T 세포(cytotoxic T cell) 또는 NK cell에 본 발명의 키메릭 항원 수용체가 도입된 세포일 수 있다. 상기 세포는 CAR-T 치료제의 기존 장점인 항암 특이적 표적 치료의 장점을 가지며, 특히, 본 발명의 CAR-T 세포나 CAR-NK 세포는 CD47을 발현하는 암세포를 인지하여 효과적으로 파괴할 수 있다.In the present invention, in particular, CAR-T cells or CAR-NK cells may be cytotoxic T cells or cells in which the chimeric antigen receptor of the present invention is introduced into NK cells. The cells have the advantage of anticancer-specific targeted therapy, which is the existing advantage of CAR-T therapeutics. In particular, the CAR-T cells or CAR-NK cells of the present invention can recognize and effectively destroy CD47-expressing cancer cells.
따라서 본 발명은 또 다른 하나의 양태로서, 상기 세포를 포함하는 세포 치료제 또는 이를 유효성분으로 포함하는 암의 치료용 약학적 조성물을 제공한다. Therefore, as another aspect, the present invention provides a cell therapeutic agent comprising the cell or a pharmaceutical composition for the treatment of cancer comprising the same as an active ingredient.
본 발명에서, "세포 치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료의 목적으로 사용되는 의약품으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종 세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료의 목적으로 사용되는 의약품을 의미한다.In the present invention, "cell therapeutic" refers to cells and tissues prepared through isolation, culture, and special manipulation from an individual, and as pharmaceuticals used for therapeutic purposes, living autologous, allogeneic, or xenogeneic cells or tissues are restored to function. It refers to a drug used for therapeutic purposes through a series of actions, such as in vitro proliferation and selection or changing the biological properties of cells in other ways.
본 발명의 용어, "치료"는 상기 조성물의 투여에 의해 암에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term “treatment” refers to any action in which symptoms of cancer are improved or beneficially changed by administration of the composition.
상기 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다.The composition may include a pharmaceutically acceptable carrier.
상기 "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미할 수 있다. 본 발명에 사용 가능한 상기 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2종 이상을 혼합하여 사용될 수 있다.The "pharmaceutically acceptable carrier" may mean a carrier or diluent that does not inhibit the biological activity and properties of the injected compound without irritating the organism. The type of carrier usable in the present invention is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable may be used. Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and the like. These may be used alone or in combination of two or more.
약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.The composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations. In the case of formulation, it is prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants that are usually used.
상세하게는, 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로오스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.Specifically, solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations include at least one excipient to the compound, for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc. may be mixed and prepared. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Liquid formulations for oral use include suspensions, solutions, emulsions, and syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base of the suppository, Witepsol, Macrogol, Tween 61, cacao butter, laurin fat, glycerogelatin, etc. may be used.
상기 조성물은 약학적으로 유효한 양으로 투여할 수 있다.The composition may be administered in a pharmaceutically effective amount.
상기 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 감염된 바이러스 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.The "pharmaceutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the subject's type and severity, age, sex, infected virus type, and drug. Activity, sensitivity to drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitant drugs and other factors well known in the medical field.
상기 투여는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강 내 투여, 정맥내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비 내 투여될 수 있으나, 이에 제한되지는 않는다.The administration means introducing the composition of the present invention to the patient by any suitable method, and the administration route of the composition may be administered through any general route as long as it can reach the target tissue. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, may be administered intranasally, but is not limited thereto.
본 발명의 조성물을 매일 투여 또는 간헐적으로 투여해도 좋고, 1일당 투여 횟수는 1회 또는 2~3회로 나누어 투여하는 것이 가능하다. 두 유효성분이 각각 단제인 경우의 투여횟수는 같은 횟수여도 좋고, 다른 횟수로 해도 된다. 또한, 본 발명의 조성물은 CD47를 발현하는 암의 치료를 위하여 단독으로, 또는 다른 약물 치료와 병용하여 사용할 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.The composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two to three times. When the two active ingredients are single drugs, the number of administrations may be the same or different. In addition, the composition of the present invention may be used alone or in combination with other drug treatments for the treatment of CD47-expressing cancer. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, and can be easily determined by those skilled in the art.
상기 개체란, CD47을 발현하는 암이 발병하였거나 발병할 수 있는 인간과, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그를 포함한 모든 동물을 의미한다. 본 발명의 약학적 조성물을 개체에게 투여함으로써 상기 질환을 효과적으로 치료할 수 있다면 개체의 종류는 제한 없이 포함된다.The subject includes all humans, monkeys, cattle, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs that have or can develop cancer expressing CD47. means animals. If the disease can be effectively treated by administering the pharmaceutical composition of the present invention to the subject, the type of subject is included without limitation.
본 발명에 있어 치료 대상이 되는 암의 종류로는 난소암(ovarian cancer), 유방암(breast cancer), 방광암(bladder cancer), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 신경교아종(glioblastoma), 간암(hepatocellular carcinoma), 편평상피암(squamous cell carcinoma), 백혈병(leukemia), 암줄기세포(cancer stem cell) 또는 비호지킨림프종(non-Hodgkin's lymphoma)일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the types of cancer to be treated include ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, and glioblastoma. , hepatocellular carcinoma, squamous cell carcinoma, leukemia, cancer stem cell or non-Hodgkin's lymphoma.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예 1. 유전자 합성 방법에 의한 키메릭 항원 수용체Example 1. Chimeric antigen receptor by gene synthesis method 유전자의 클로닝cloning of genes
본 발명의 키메릭 항원 수용체를 제조하기 위해서 SIRP-α의 세포외 도메인 중 도메인 1 한 쌍을 각각 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)에 연결시킨 항원 인식 부위와 CD8α의 막관통 도메인, CD28, 4-1BB, CD3 제타(zeta) 각각의 세포내 도메인 부분의 단백질 암호화 서열을 유전자 데이터베이스(database)에서 확인하였다. In order to prepare the chimeric antigen receptor of the present invention, a pair of domain 1 of the extracellular domain of SIRP-α is linked to the human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region), respectively, an antigen recognition site and CD8α The protein coding sequence of each intracellular domain of the transmembrane domain of CD28, 4-1BB, and CD3 zeta was identified in the gene database.
그 후 상기 도메인들을 이루는 염기서열의 종결 코돈 부분을 제외한 나머지 서열들을 하나로 이어 유전자 합성을 진행하였다. 유전자 합성의 정확도는 단백질 발현 플라스미드를 제작한 후 시퀀싱을 통하여 확인하였다. 상기 키메릭 항원 수용체를 발현시키는 각 도메인의 cDNA 구역을 나타낸 모식도를 도 1에 나타내었다.Thereafter, the remaining sequences except for the stop codon portion of the nucleotide sequence constituting the domains were joined together to perform gene synthesis. The accuracy of gene synthesis was confirmed through sequencing after a protein expression plasmid was prepared. A schematic diagram showing the cDNA region of each domain expressing the chimeric antigen receptor is shown in FIG. 1 .
실시예 2. 키메릭 항원 수용체Example 2. Chimeric Antigen Receptor 단백질 발현 플라스미드 제조Preparation of protein expression plasmids
CD47을 인식하고, 인간 이뮤노글로불린 G1 중쇄 불변 영역과 신호전달 단백질 도메인을 융합시킨 재조합 단백질을 세포독성 T 세포와 자연살생세포에 발현시키기 위해, 해당 유전자를 렌티바이러스 유래 발현벡터인 pCDH-CMV-MCS-EF1-copGFP(System Biosciences) 또는 레트로바이러스 유래 발현벡터인 pLNCX2(Addgene)에 클로닝하였다. In order to recognize CD47 and express the recombinant protein in which the human immunoglobulin G 1 heavy chain constant region and the signaling protein domain are fused to cytotoxic T cells and natural killer cells, the gene is expressed in pCDH-CMV, a lentivirus-derived expression vector. -MCS-EF1-copGFP (System Biosciences) or a retrovirus-derived expression vector pLNCX2 (Addgene) was cloned.
먼저, pCDH-CMV-MCS-EF1-copGFP 벡터에 클로닝하기 위해서 5′말단에 제한효소 XbaI의 절단 부위 서열을 만드는 프라이머를 합성하여 중합효소연쇄반응으로 제한효소 절단 부위를 만들고, 3′말단에도 제한효소 NotI의 절단 부위 서열을 만드는 프라이머를 합성하여 중합효소연쇄반응으로 제한효소 절단 부위를 만들었다. 그 후 중합효소연쇄반응으로 인해 제한효소 절단 부위를 가진 유전자를 5′말단은 XbaI을 처리하였으며, 3′말단은 NotI을 처리하였다. 그리고 발현 벡터의 다중클로닝 자리를 XbaI과 NotI을 처리하여 유전자가 삽입될 수 있게 만들었다. 제한효소가 처리된 유전자와 발현 벡터를 섞어 준 다음, 결합 효소(ligase)를 처리하여 연결하였다. First, for cloning into the pCDH-CMV-MCS-EF1-copGFP vector, a primer that creates a cleavage site sequence of restriction enzyme XbaI at the 5' end was synthesized, and a restriction enzyme cleavage site was created by polymerase chain reaction, and also restricted at the 3' end. Restriction enzyme cleavage site was created by polymerase chain reaction by synthesizing a primer making the cleavage site sequence of the enzyme NotI. After that, the 5' end of the gene having a restriction enzyme cleavage site was treated with XbaI, and the 3' end was treated with NotI due to the polymerase chain reaction. Then, the multicloning site of the expression vector was treated with XbaI and NotI to allow the gene to be inserted. After mixing the restriction enzyme-treated gene with the expression vector, it was ligated by treatment with a ligase.
다음, pLNCX2 벡터에 클로닝하기 위해서 5′말단에 제한효소 Bgl II의 절단 부위 서열을 만드는 프라이머를 합성하여 중합효소연쇄반응으로 제한효소 절단 부위를 만들고, 3′말단에도 제한효소 NotI의 절단 부위 서열을 만드는 프라이머를 합성하여 중합효소연쇄반응으로 제한효소 절단 부위를 만들었다. 그 후 중합효소연쇄반응으로 인해 제한효소 절단 부위를 가진 유전자를 5′말단은 BglII를 처리하였으며, 3′말단은 NotI을 처리하였다. 그리고 발현 벡터의 다중클로닝 자리를 BglII과 NotI을 처리하여 유전자가 삽입될 수 있게 만들었다. 제한효소가 처리된 유전자와 발현 벡터를 섞어 준 다음, 결합 효소(ligase)를 처리하여 연결하였다. Next, for cloning into the pLNCX2 vector, a primer that creates a cleavage site sequence of restriction enzyme Bgl II at the 5' end was synthesized to create a restriction enzyme cleavage site by polymerase chain reaction, and the cleavage site sequence of restriction enzyme NotI was also synthesized at the 3' end. A restriction enzyme cleavage site was created by synthesizing the primers to be made and by polymerase chain reaction. After that, the 5' end of the gene having a restriction enzyme cleavage site was treated with BglII, and the 3' end was treated with NotI due to the polymerase chain reaction. And the multicloning site of the expression vector was treated with BglII and NotI to allow the gene to be inserted. After mixing the restriction enzyme-treated gene with the expression vector, it was ligated by treatment with a ligase.
그 결과, CD47을 인식하고, 인간 이뮤노글로불린 G1 중쇄 불변 영역과 신호전달 단백질 도메인을 융합시킨 단백질(도 3 참조)을 발현하는 재조합 벡터 CD47.CAR-T.pCDH-CMV-MCS-EF1-copGFP 및 CD47.CAR-NK.pLNCX2를 완성하였다(도 2a 및 2b 참조).As a result, the recombinant vector CD47.CAR-T.pCDH-CMV-MCS-EF1- that recognizes CD47 and expresses a protein in which a human immunoglobulin G 1 heavy chain constant region and a signaling protein domain are fused (see FIG. 3 ). copGFP and CD47.CAR-NK.pLNCX2 were completed (see Figures 2a and 2b).
실시예 3. CD47을 발현하는 사람 세포주 screeningExample 3. Screening of human cell lines expressing CD47
CD47을 세포 표면에 발현하는 사람 세포주를 screening하기 위해서, B 세포 림프종(B cell lymphoma)유래 세포주인 Raji (ATCC) 세포주와 급성 T림프성백혈병(acute T cell leukemia) 유래 세포주인 Jurkat (ATCC) 세포주에서 CD47의 발현을 확인하였다. 발현 확인을 위해 형광단백질이 부착된 CD47과 결합이 가능한 항체(Invitrogen)를 세포주에 처리한 후, 유세포 분석(fluorescence-activated cell sorting)을 이용하였다. 분석결과, Raji 세포주에서 CD47을 강하게 발현하는 것을 확인하였으며, Jurkat 세포주에서 약하게 발현하는 것을 확인하였다(도 4참조). In order to screen human cell lines expressing CD47 on the cell surface, the B cell lymphoma-derived Raji (ATCC) cell line and the acute T cell leukemia-derived cell line Jurkat (ATCC) cell line CD47 expression was confirmed. In order to confirm the expression, the cell line was treated with an antibody (Invitrogen) capable of binding to CD47 to which the fluorescent protein was attached, and then flow cytometry (fluorescence-activated cell sorting) was used. As a result of the analysis, it was confirmed that CD47 was strongly expressed in the Raji cell line and weakly expressed in the Jurkat cell line (see FIG. 4 ).
상기 결과를 근거로 두 세포 중 CD47을 강하게 발현하는 Raji 세포주를 표적세포(target cell)로 이용하였으며 CD47를 약하게 발현하는 Jurkat 세포주를 음성 대조군으로 사용하였다.Based on the above results, the Raji cell line strongly expressing CD47 among the two cells was used as a target cell, and the Jurkat cell line weakly expressing CD47 was used as a negative control.
실시예 4. 세포독성 T 세포 분리 및 활성화Example 4. Cytotoxic T Cell Isolation and Activation
본 발명의 일 실시예에 따른 키메릭 항원 수용체를 발현하는 T 세포를 제작하기 위해 먼저 세포 독성 T 세포를 사람의 말초 혈액 단핵세포에서 분리하였다. 사람의 말초 혈액 단핵세포(메디랩 코리아)를 구입한 후, 세포독성 T 세포를 분리하기 위해서 자력이용 세포 분리법(magnetic-activated cell sorting)을 이용하였다. 말초 혈액 단핵세포들을 세포독성 T 세포를 제외한 다른 면역세포들과 결합 가능한 항체(CD8+ T cell biotin-conjugated antibody cocktail, Miltenyi Biotec)와 결합시킨 다음, 상기 항체들을 다시 자성을 가진 마이크로비드(anti-biotin microbead)(Miltenyi Biotec)와 결합시켰다. 상기 마이크로비드와 그에 붙은 항체, 세포들을 자기장 분리 칼럼(magnetic seperation column) (Miltenyi Biotec)에 통과시켜 그 중 항체로 표지되지 않은 세포독성 T 세포를 얻었다. 분리한 세포독성 T 세포의 순도를 확인하기 위하여 세포독성 T 세포의 세포표면 인자인 CD8과 CD3ε을 이용한 유세포 분석을 실시하였고, 그 결과 95% 이상의 순도를 보였다.To prepare T cells expressing a chimeric antigen receptor according to an embodiment of the present invention, cytotoxic T cells were first isolated from human peripheral blood mononuclear cells. After purchasing human peripheral blood mononuclear cells (Medilab Korea), magnetic-activated cell sorting was used to isolate cytotoxic T cells. Peripheral blood mononuclear cells were combined with an antibody (CD8 + T cell biotin-conjugated antibody cocktail, Miltenyi Biotec) capable of binding to other immune cells except for cytotoxic T cells, and then the antibodies were re-conjugated with magnetic microbeads (anti- biotin microbead) (Miltenyi Biotec). The microbeads, antibodies and cells attached thereto were passed through a magnetic seperation column (Miltenyi Biotec) to obtain cytotoxic T cells not labeled with the antibody. In order to confirm the purity of the isolated cytotoxic T cells, flow cytometry using CD8 and CD3ε, which are cell surface factors of cytotoxic T cells, was performed, and as a result, the purity was greater than 95%.
분리한 세포독성 T 세포의 활성화를 위해 1Х106개/ml의 사람 CD3와 CD28 항체가 코팅된 자석비드(Thermo Fisher Scientific), 그리고 100 U/μl recombinant human IL-2가 첨가된 10% 송아지 혈청 함유 RPMI (Welgene)에 1.5Х106개/ml의 밀도로 세포를 재구성하여 24 웰(well) 세포 배양 접시에 접종 후 24시간 동안 배양하였다. For activation of isolated cytotoxic T cells, 1Х10 6 pieces/ml of magnetic beads coated with human CD3 and CD28 antibodies (Thermo Fisher Scientific), and 10% calf serum supplemented with 100 U/μl recombinant human IL-2 Cells were reconstituted in RPMI (Welgene) at a density of 1.5Х10 6 pieces/ml and cultured for 24 hours after inoculation in a 24-well cell culture dish.
실시예 5. 키메릭 항원 수용체 발현 세포독성 T 세포 제작Example 5. Construction of chimeric antigen receptor-expressing cytotoxic T cells
상기 실시예 2를 통해 제작한 재조합 벡터를 세포독성 T 세포에 도입하기 위하여 293FT 세포(Thermo Fisher Scientific)를 사용한 렌티바이러스 시스템을 이용하였다. In order to introduce the recombinant vector prepared in Example 2 into cytotoxic T cells, a lentiviral system using 293FT cells (Thermo Fisher Scientific) was used.
먼저, 293FT 세포를 100π 세포 배양 접시에 2.5Х106 세포가 되도록 접종한 후, 10% 송아지 혈청을 함유한 DMEM 배지에서 배양하였다. 배양 24시간 후, 세포가 접시의 60~70% 정도를 덮을 정도로 자라면, 20μg의 SIRP-α.CAR-T.pCDH-CMV-MCS-EF1-copGFP 벡터 DNA를 10μg의 psPAX2(Addgene)와 3μg의 pMD2.G(Addgene) 벡터를 Calcium phosphate 및 Hepes-buffered solution을 이용하여 결정화시킨 후 293FT 세포에 도입하였다. 그 후, 상기 발현 벡터가 도입된 293FT 세포를 48시간 후 24시간 간격으로 렌티바이러스를 포함하는 배양 상층액을 모았다. 모은 상층액을 초고속 원심분리기를 21,000rpm으로 2시간 동안 원심분리하여 바이러스를 농축시켰다. 농축된 바이러스를 polybrene 4μg/ml과 혼합하여 활성화시킨 세포독성 T 세포의 배양액에 추가한 후 원심분리기를 이용해 1,800g로 75분 동안 원심분리하여 형질도입을 진행하였다. 원심 분리를 마친 세포독성 T 세포는 4시간 동안 추가 배양 후 10% 송아지 혈청 함유 RPMI 배양액으로 교체하였으며 48시간 후에는 형질도입한 세포독성 T 세포의 일부를 형질도입 효율 측정에 사용하였다. 형질도입 효율은 세포 내부의 GFP 발현량을 유세포 분석을 이용해 측정했으며 형질도입된 세포독성 T 세포(SIRP-α CAR-T cell)를 공벡터로 제작한 바이러스를 형질도입한 세포독성 T 세포(Mock/T cell)의 형질도입 비율과 비교한 결과를 도 5a에 나타내었다.First, 293FT cells were inoculated to become 2.5Х10 6 cells in a 100π cell culture dish, and then cultured in DMEM medium containing 10% calf serum. After 24 hours of incubation, when the cells have grown to cover 60-70% of the dish, 20 µg of SIRP-α.CAR-T.pCDH-CMV-MCS-EF1-copGFP vector DNA is mixed with 10 µg of psPAX2 (Addgene) and 3 µg pMD2.G (Addgene) vector was crystallized using calcium phosphate and Hepes-buffered solution, and then introduced into 293FT cells. Thereafter, the culture supernatant containing the lentivirus was collected at intervals of 24 hours after 48 hours of the 293FT cells introduced with the expression vector. The collected supernatant was centrifuged at 21,000 rpm in an ultra-high speed centrifuge for 2 hours to concentrate the virus. After the concentrated virus was mixed with 4 μg/ml of polybrene and added to the culture of activated cytotoxic T cells, the transduction was performed by centrifugation at 1,800 g for 75 minutes using a centrifuge. After centrifugation, the cytotoxic T cells were further cultured for 4 hours, and then replaced with an RPMI culture medium containing 10% calf serum. After 48 hours, some of the transduced cytotoxic T cells were used to measure the transduction efficiency. The transduction efficiency was measured by using flow cytometry to measure the expression level of GFP inside the cell, and cytotoxic T cells (Mock) transduced with a virus prepared by using a blank vector of transduced cytotoxic T cells (SIRP-α CAR-T cells). /T cell) is shown in Figure 5a the result compared with the transduction ratio.
실시예 6. 키메릭 항원 수용체 발현 자연살해세포 제작Example 6. Preparation of chimeric antigen receptor-expressing natural killer cells
상기 실시예 2를 통해 제작한 재조합 벡터를 NK 세포에 도입하기 위하여 293GPG 세포를 사용한 레트로바이러스 시스템을 이용하였다. In order to introduce the recombinant vector prepared in Example 2 into NK cells, a retroviral system using 293GPG cells was used.
먼저, 293GPG 세포 3Х106개를 10ml의 10% 송아지 혈청 함유 DMEM 배양액 10ml에 풀어 100π 세포 배양 접시에 접종 후 24시간 동안 배양하였다. 앞서 제작한 재조합 벡터(SIRP-α.CAR-NK.pLNCX2 벡터) 20μg을 calcium phosphate 및 HEPES-buffered solution을 이용하여 결정화시킨 후 앞서 배양한 293GPG 세포의 배양액에 첨가해주었다. 이후 24시간 간격으로 72시간에 걸쳐 배양액을 교체하며 레트로바이러스를 함유한 293GPG 세포의 배양 상층액을 채취 및 보관하였다. 상기 채취한 레트로바이러스 함유 상층액은 초고속 원심분리기를 이용하여 21,000 rpm으로 2시간 동안 원심분리 후 농축 이전 대비 100배로 농축될 수 있도록 10% 송아지 혈청 함유 Myelocult H5100 배양액(STEMCELL)에 재구성하였다. 농축한 레트로바이러스를 NK92MI 세포(American type culture collection, ATCC)에 형질도입하기 위해 NK92MI 세포를 24 well 세포 배양 접시에 5Х105/ml의 밀도로 접종하였다. 그 다음 농축된 레트로바이러스에 polybrene을 8ug/ml만큼 첨가한 혼합액을 배양 중인 NK92MI세포의 배양액에 추가한 후 24시간 동안 배양하였다. 배양 후 새 배양액으로 교체하였으며 유전자가 도입된 세포의 선별을 위해 배양액 교체 후 24시간 후부터는 neomycin 항생제(600μg/ml)가 첨가된 Myelocult H5100 배양액을 이용하여 레트로바이러스를 처리해준 NK92MI세포를 배양하였다. 14일 간의 neomycin 선별과정을 마친 NK92MI 세포는 다시 신선한 배양액에 옮겨 1주일간 증식시켰다. First, 3Х10 6 293GPG cells were dissolved in 10 ml of 10 ml of 10% calf serum-containing DMEM culture medium and inoculated in a 100π cell culture dish and then cultured for 24 hours. 20 μg of the previously prepared recombinant vector (SIRP-α.CAR-NK.pLNCX2 vector) was crystallized using calcium phosphate and HEPES-buffered solution, and then added to the culture medium of the previously cultured 293GPG cells. Thereafter, the culture medium was changed over 72 hours at 24 hour intervals, and the culture supernatant of 293GPG cells containing retrovirus was collected and stored. The collected retrovirus-containing supernatant was centrifuged at 21,000 rpm for 2 hours using an ultra-high speed centrifuge, and then reconstituted in Myelocult H5100 culture medium (STEMCELL) containing 10% calf serum to be concentrated 100 times compared to before concentration. In order to transduce the concentrated retrovirus into NK92MI cells (American type culture collection, ATCC), NK92MI cells were inoculated into a 24 well cell culture dish at a density of 5Х10 5 /ml. Then, a mixed solution of 8 ug/ml of polybrene added to the concentrated retrovirus was added to the culture medium of NK92MI cells in culture and cultured for 24 hours. After culturing, the culture medium was replaced with a new culture medium, and from 24 hours after the culture medium replacement for selection of the cells into which the gene was introduced, the NK92MI cells treated with retrovirus were cultured using the Myelocult H5100 culture medium supplemented with neomycin antibiotic (600 μg/ml). After 14 days of neomycin selection, NK92MI cells were transferred to fresh culture medium and proliferated for 1 week.
증식 후 유세포 분석을 이용해 NK92MI세포의 SIRP-α 발현량을 측정하였으며 SIRP-α.CAR-NK.pLNCX2를 도입한 NK92MI 세포(SIRP-α CAR-NK cell)와 공벡터인 pLNCX2를 도입한 NK92MI 세포(Mock CAR-NK cell)의 SIRP-α 발현량을 항 인간 SIRP-α 항체(Invitrogen)를 이용한 유세포분석기를 이용하여 비교한 결과를 도 5b에 나타내었다.After proliferation, SIRP-α expression levels of NK92MI cells were measured using flow cytometry. NK92MI cells introduced with SIRP-α.CAR-NK.pLNCX2 (SIRP-α CAR-NK cells) and NK92MI cells introduced with empty vector pLNCX2. The results of comparing the SIRP-α expression level of (Mock CAR-NK cells) using a flow cytometer using an anti-human SIRP-α antibody (Invitrogen) are shown in FIG. 5B .
실시예Example 7. 7. 키메릭chimeric 항원 수용체와 CD47을 발현하는 사람 세포주의 친화도 측정 Affinity determination of antigen receptors and human cell lines expressing CD47
상기 제작한 키메릭 항원 수용체가 CD47을 발현하는 사람 세포주와 친화도가 있는지 확인하기 위하여, 실시예 6 및 실시예 7에서 제작한 SIRP-α CAR-T cell과 SIRP-α CAR-NK cell이 CD47과 결합하는가를 측정하기 위해, 수용성 재조합 human CD47 IgG (R&D system)를 SIRP-α CAR-T cell과 SIRP-α CAR-NK cell에 처리하여 유세포 분석을 통하여 확인하였다. 그 결과, 수용성 재조합 human CD47 IgG는 Mock CAR-T cell과 결합하지 않지만, SIRP-α CAR-T cell과 결합하며(도 6a 참조), 또한 수용성 재조합 human CD47 IgG는 Mock CAR-NK cell과 결합하지 않지만, SIRP-α CAR-NK cell과는 결합하였다(도 6b 참조). In order to confirm whether the prepared chimeric antigen receptor has affinity with a human cell line expressing CD47, the SIRP-α CAR-T cells and SIRP-α CAR-NK cells prepared in Examples 6 and 7 were used for CD47. In order to measure the binding to SIRP-α CAR-NK cells, soluble recombinant human CD47 IgG (R&D system) was treated with SIRP-α CAR-T cells and confirmed by flow cytometry. As a result, soluble recombinant human CD47 IgG did not bind to mock CAR-T cells, but bound to SIRP-α CAR-T cells (see Fig. 6a), and soluble recombinant human CD47 IgG did not bind to mock CAR-NK cells. However, it was bound to SIRP-α CAR-NK cells (see FIG. 6b ).
상기 결과를 근거로 제작한 키메릭 항원 수용체를 발현하는 SIRP-α CAR-T cell과 SIRP-α CAR-NK cell을 작동세포(effector cell)로 CD47을 발현하는 Raji 세포주를 표적세포(target cell)로, SIRP-α CAR-T cell과 SIRP-α CAR-NK cell의 CD47 특이적 세포독성을 검증하였다.Based on the above results, SIRP-α CAR-T cells expressing chimeric antigen receptor and SIRP-α CAR-NK cells were used as effector cells, and the Raji cell line expressing CD47 was used as a target cell. Thus, the CD47-specific cytotoxicity of SIRP-α CAR-T cells and SIRP-α CAR-NK cells was verified.
실시예 8. CAR-T 세포의 CD47+ cell 특이적 세포독성 검증Example 8. CD47+ cell-specific cytotoxicity verification of CAR-T cells
상기 제작한 키메릭 항원 수용체 발현 세포독성 T 세포가 CD47을 발현하는 세포를 특이적으로 인지하여 독성을 나타내는지 확인하기 위해 CD47을 발현하는 세포(CD47 positive cell)를 선택적으로 독성을 나타내는지 확인하기 위해 실시예 3에서 선정한 표적세포(target cell)인 Raji 세포와 음성 대조군 세포인 Jurkat 세포를 키메릭 항원 수용체 발현 세포독성 T 세포(SIRP-α CAR-T cell) 혹은 공벡터를 도입한 세포독성 T 세포(Mock T cell)와 6시간 동안 공배양하였다. 공배양 후 상층액에 존재하는 젖산 탈수소 효소(lactate dehydrogenase)의 양으로 세포독성 T 세포의 표적세포(target cell)에 대한 세포독성 정도를 측정하는 비방사성 세포독성 분석법(non-radioactive cytotoxicity assay)을 이용하였다. To confirm that the prepared chimeric antigen receptor-expressing cytotoxic T cell specifically recognizes the CD47-expressing cell and shows toxicity, the cell expressing CD47 (CD47 positive cell) is selectively toxic For this purpose, Raji cells, which are the target cells selected in Example 3, and Jurkat cells, which are negative control cells, are chimeric antigen receptor-expressing cytotoxic T cells (SIRP-α CAR-T cells) or cytotoxic T cells introduced with an empty vector. Cells (Mock T cells) and co-cultured for 6 hours. A non-radioactive cytotoxicity assay that measures the degree of cytotoxicity of cytotoxic T cells to target cells by the amount of lactate dehydrogenase present in the supernatant after co-culture was performed. was used.
먼저, 96 well 세포 배양 접시의 well에 세포독성 T 세포(1x105 cell)와 표적 세포(1x104 cell)를 각각 넣어 effector: target ratio를 10:1로 맞추고, well당 부피는 100μl가 되도록 접종 후 원심분리기를 이용해 250g 조건에서, 4분 동안 원심분리하여 세포 간 간격을 가깝게 만든다. 그 후 6시간 동안 배양 진행 후 각 well의 상층액을 50μl씩 걷어내어 흡광도 측정용 투명 96 well 접시에 옮긴 후 분석용액 및 1M 염산용액을 처리하여 효소 반응을 진행 및 정지시킨다. 효소 반응을 정지시키고 난 후에는 형광/발광/흡광 측정기(multi-detection plate reader)를 이용하여 490nm 파장대의 흡광도를 측정 및 수치 변환하여 각 well의 세포독성 T 세포의 세포독성 정도를 정량화하였다.First, put cytotoxic T cells (1x10 5 cells) and target cells (1x10 4 cells) into the wells of a 96-well cell culture dish, set the effector: target ratio to 10:1, and inoculate so that the volume per well becomes 100μl Centrifuge for 4 minutes at 250 g conditions using a centrifuge to close the intercellular space. After culturing for 6 hours, 50 μl of the supernatant from each well is removed, transferred to a transparent 96-well dish for absorbance measurement, and treated with an analysis solution and 1M hydrochloric acid solution to proceed and stop the enzymatic reaction. After stopping the enzymatic reaction, the absorbance in the 490 nm wavelength band was measured and numerically converted using a fluorescence/luminescence/absorption meter (multi-detection plate reader) to quantify the degree of cytotoxicity of cytotoxic T cells in each well.
그 결과 도 7a에서 나타낸 바와 같이, 제작한 키메릭 항원 수용체 발현 세포독성 T 세포(SIRP-α CAR-T cell)는 Raji 세포주에 35% 이상의 높은 독성을 보인 반면, Jurkat 세포주에 대해서는 3.5%의 독성을 나타내었다(p<0.01). 반면, 대조군인 공벡터를 도입한 세포독성 T 세포의 경우 Raji 세포주에 11%의 독성을 보인 반면, Jurkat 세포주에 대해서는 4.2%의 독성을 나타내었다.As a result, as shown in Figure 7a, the prepared chimeric antigen receptor-expressing cytotoxic T cells (SIRP-α CAR-T cells) showed high toxicity of over 35% to the Raji cell line, whereas the toxicity was 3.5% to the Jurkat cell line. was shown (p<0.01). On the other hand, the cytotoxic T cells introduced with the empty vector as a control showed 11% toxicity to the Raji cell line, but 4.2% to the Jurkat cell line.
상기 결과를 통해 SIRP-α의 세포외 도메인을 포함하고 있는 키메릭 항원 인지 수용체 발현 세포독성 T 세포가 CD47 단백질에 특이적인 세포독성을 보임으로써, 상기 CAR-T 세포를 이용하여 관련된 암 세포 치료가 가능함을 확인할 수 있었다.Through the above results, the chimeric antigen recognition receptor-expressing cytotoxic T cells containing the extracellular domain of SIRP-α showed cytotoxicity specific to the CD47 protein, so that the treatment of related cancer cells using the CAR-T cells was was able to confirm that it was possible.
실시예 9. CAR-NK 세포의 CD47+ cell 특이적 세포독성 검증Example 9. CD47+ cell-specific cytotoxicity verification of CAR-NK cells
상기 제작한 키메릭 항원 수용체 발현 NK 세포가 CD47 발현 세포를 특이적으로 인지하여 독성을 나타내는지 확인하기 위해, 실시예 3에서 선정한 표적세포(target cell)인 Raji 세포와 음성 대조군 세포인 Jurkat 세포를 키메릭 항원 수용체 발현 NK 세포(SIRP-α CAR-NK cell) 혹은 공벡터를 도입한 NK 세포(Mock NK cell)와 공배양하였다.In order to confirm whether the prepared chimeric antigen receptor-expressing NK cells specifically recognize CD47-expressing cells and show toxicity, Raji cells, which are target cells selected in Example 3, and Jurkat cells, which are negative control cells, were used. It was co-cultured with chimeric antigen receptor-expressing NK cells (SIRP-α CAR-NK cells) or NK cells introduced with an empty vector (mock NK cells).
공배양 후 상층액에 존재하는 젖산 탈수소 효소(lactate dehydrogenase)의 양으로 NK 세포의 표적세포(target cell)에 대한 세포독성 정도를 측정하는 비방사성 세포독성 분석법(non-radioactive cytotoxicity assay)을 이용하였다. A non-radioactive cytotoxicity assay was used to measure the degree of cytotoxicity of NK cells to target cells with the amount of lactate dehydrogenase present in the supernatant after co-culture. .
먼저, 96 well 세포 배양 접시의 well에 자연살해세포(1x105 cell)와 표적 세포(1x104 cell)를 각각 넣어 effector: target ratio를 10:1로 맞추고, well당 부피는 100μl가 되도록 접종 후 원심분리기를 이용해 250g의 조건에서, 4분 동안 원심분리하여 세포 간 간격을 가깝게 만든다. 6시간 배양 진행 후 각 well의 상층액을 50μl씩 걷어내어 흡광도 측정용 투명 96 well 접시에 옮긴 후 분석용액 및 1M 염산용액을 처리하여 효소 반응을 진행 및 정지시킨다. 효소 반응을 정지시키고 난 후에는 형광/발광/흡광 측정기(multi-detection plate reader)를 이용하여 490nm 파장대의 흡광도를 측정 및 수치 변환하여 각 well의 NK 세포의 세포독성 정도를 정량화하였다.First, put natural killer cells (1x10 5 cells) and target cells (1x10 4 cells) into the wells of a 96-well cell culture dish, set the effector: target ratio to 10:1, and inoculate it so that the volume per well becomes 100μl and centrifuge Centrifuge for 4 minutes at 250 g using a separator to close the intercellular space. After culturing for 6 hours, 50 μl of the supernatant from each well is removed and transferred to a transparent 96-well dish for absorbance measurement. After stopping the enzymatic reaction, the absorbance of the 490 nm wavelength band was measured and numerically converted using a fluorescence/luminescence/absorption meter (multi-detection plate reader) to quantify the degree of cytotoxicity of NK cells in each well.
그 결과 도 7b에서 나타낸 바와 같이, 제작한 키메릭 항원 수용체 발현 w자연살해세포(SIRP-α CAR-NK cell)는 Raji 세포주에 34% 이상의 높은 독성을 보인 반면, Jurkat 세포주에 대해서는 4.1%의 독성을 나타내었다(p<0.01). 반면, 대조군인 공벡터를 도입한 세포독성 T 세포의 경우 Raji 세포주에 8.1%의 독성을 보인 반면, Jurkat 세포주에 대해서는 0.0%의 독성을 나타내었다.As a result, as shown in FIG. 7b, the prepared chimeric antigen receptor-expressing natural killer cells (SIRP-α CAR-NK cells) showed a high toxicity of 34% or more to the Raji cell line, whereas the toxicity was 4.1% to the Jurkat cell line. was shown (p<0.01). On the other hand, the cytotoxic T cells introduced with the empty vector as a control showed 8.1% toxicity to the Raji cell line, but 0.0% to the Jurkat cell line.
상기 결과를 통해 SIRP-α의 세포외 도메인을 포함하고 있는 키메릭 항원 인지 수용체 발현 NK 세포가 CD47 단백질에 특이적인 세포독성을 보임으로써, 상기 CAR-NK 세포를 이용하여 관련된 암 세포 치료가 가능함을 확인할 수 있었다.Through the above results, it was found that chimeric antigen-recognizing receptor-expressing NK cells containing the extracellular domain of SIRP-α showed cytotoxicity specific to CD47 protein, so that it is possible to treat related cancer cells using the CAR-NK cells. could check
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (16)

  1. 항원 결합 도메인;antigen binding domain;
    막관통 도메인; 및transmembrane domain; and
    세포 내 신호전달 도메인을 포함하는 키메릭 항원 수용체(CAR)로서, 상기 항원 결합 도메인은 CD47에 특이적으로 결합하는 SIRP-α의 세포외 도메인을 포함하는 것인, 키메릭 항원 수용체.A chimeric antigen receptor (CAR) comprising an intracellular signaling domain, wherein the antigen binding domain comprises an extracellular domain of SIRP-α that specifically binds to CD47.
  2. 제1항에 있어서,According to claim 1,
    상기 항원 결합 도메인은 SIRP-α의 세포외 도메인 한 쌍이 이합체(dimer)의 형태로 각각 인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)에 연결된 것을 특징으로 하는 키메릭 항원 수용체.The antigen binding domain is a pair of extracellular domains of SIRP-α in the form of a dimer, respectively, in the form of a human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region) Chimeric antigen receptor, characterized in that connected to.
  3. 제1항에 있어서,According to claim 1,
    상기 SIRP-α의 세포외 도메인은 세포외 구역 중 도메인 1(domain 1)인 것인, 키메릭 항원 수용체.The extracellular domain of the SIRP-α is domain 1 (domain 1) of the extracellular region, the chimeric antigen receptor.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 SIRP-α의 세포외 도메인 1(domain 1)은 서열번호 1로 표시되는 아미노산 서열을 포함하는 것인, 키메릭 항원 수용체.The extracellular domain 1 (domain 1) of the SIRP-α will include the amino acid sequence shown in SEQ ID NO: 1, a chimeric antigen receptor.
  5. 제2항에 있어서,3. The method of claim 2,
    인간 이뮤노글로불린 G1 중쇄 불변 영역(IgG1 heavy chain constant region)은 서열번호 2로 표시되는 아미노산 서열을 포함하는 것인, 키메릭 항원 수용체.Human immunoglobulin G 1 heavy chain constant region (IgG 1 heavy chain constant region) is a chimeric antigen receptor comprising the amino acid sequence represented by SEQ ID NO: 2.
  6. 제1항에 있어서,According to claim 1,
    상기 막관통 도메인은 CD8α이며, 서열번호 3으로 표시되는 아미노산 서열을 포함하는 것인, 키메릭 항원 수용체.The transmembrane domain is CD8α, the chimeric antigen receptor comprising the amino acid sequence shown in SEQ ID NO: 3.
  7. 제1항에 있어서,According to claim 1,
    상기 세포 내 신호전달 도메인은 CD28, 4-1BB 및 CD3-zeta로 이루어진 것 또는 이들의 조합을 포함하는 것인, 키메릭 항원 수용체.The intracellular signaling domain is a chimeric antigen receptor comprising one consisting of CD28, 4-1BB and CD3-zeta or a combination thereof.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 CD28은 서열번호 4; 4-1BB은 서열번호 5; 및 CD3-zeta은 서열번호 6으로 표시되는 아미노산 서열을 포함하는 것인, 키메릭 항원 수용체.The CD28 is SEQ ID NO: 4; 4-1BB is SEQ ID NO: 5; And CD3-zeta is a chimeric antigen receptor comprising the amino acid sequence shown in SEQ ID NO: 6.
  9. 제1항에 있어서, According to claim 1,
    상기 항원 결합 도메인은 CD8α 신호 펩타이드를 포함하며, 서열번호 7로 표시되는 아미노산 서열을 포함하는 것인, 키메릭 항원 수용체.The antigen-binding domain comprises a CD8α signal peptide, and the amino acid sequence shown in SEQ ID NO: 7, the chimeric antigen receptor.
  10. 제1항 내지 제9항 중 어느 한 항의 키메릭 항원 수용체 단백질을 코딩하는 폴리 뉴클레오티드.A polynucleotide encoding the chimeric antigen receptor protein of any one of claims 1 to 9.
  11. 제10항의 폴리 뉴클레오티드를 포함하는 벡터.A vector comprising the polynucleotide of claim 10 .
  12. 제11항의 벡터로 형질전환된 세포.A cell transformed with the vector of claim 11 .
  13. 제12항에 있어서,13. The method of claim 12,
    상기 세포는 세포독성 T 세포 또는 NK 세포인 것을 특징으로 하는 세포.The cell, characterized in that the cell is a cytotoxic T cell or NK cell.
  14. 제13항의 세포를 유효성분으로 포함하는 CD47을 발현하는 암의 치료용 약학적 조성물.A pharmaceutical composition for the treatment of cancer expressing CD47 comprising the cell of claim 13 as an active ingredient.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 CD47을 발현하는 암은 난소암(ovarian cancer), 유방암(breast cancer), 방광암(bladder cancer), 전립선암(prostate cancer), 췌장암(pancreatic cancer), 신경교아종(glioblastoma), 간암(hepatocellular carcinoma), 편평상피암(squamous cell carcinoma), 백혈병(leukemia), 암줄기세포(cancer stem cell) 및 비호지킨림프종(non-Hodgkin's lymphoma)으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 조성물.The CD47-expressing cancer is ovarian cancer, breast cancer, bladder cancer, prostate cancer, pancreatic cancer, glioblastoma, liver cancer (hepatocellular carcinoma) , squamous cell carcinoma, leukemia, cancer stem cell (cancer stem cell) and non-Hodgkin's lymphoma (non-Hodgkin's lymphoma), characterized in that the composition is selected from the group consisting of.
  16. 제12항의 세포를 포함하는 세포 치료제.A cell therapeutic agent comprising the cell of claim 12 .
PCT/KR2022/004246 2021-04-06 2022-03-25 Chimeric antigen receptor specifically binding to cd47 and use thereof WO2022215919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0044608 2021-04-06
KR1020210044608A KR20220138909A (en) 2021-04-06 2021-04-06 Chimeric antigen receptor specifically binding to CD47 and use thereof

Publications (1)

Publication Number Publication Date
WO2022215919A1 true WO2022215919A1 (en) 2022-10-13

Family

ID=83546447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004246 WO2022215919A1 (en) 2021-04-06 2022-03-25 Chimeric antigen receptor specifically binding to cd47 and use thereof

Country Status (2)

Country Link
KR (1) KR20220138909A (en)
WO (1) WO2022215919A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790282B2 (en) * 2013-03-25 2017-10-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD276 polypeptides, proteins, and chimeric antigen receptors
KR20180051651A (en) * 2015-10-01 2018-05-16 히트 바이오로직스, 인코퍼레이티드 Compositions and methods for adjacent I and II extracellular domains as heterologous chimeric proteins
KR20190122660A (en) * 2017-01-05 2019-10-30 카 메디컬 리미티드 SIRPalpha-41BBL fusion protein and methods of using the same
US20190338028A1 (en) * 2017-02-14 2019-11-07 Promab Biotechnologies, Inc. Cd47-car-t cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3298043T3 (en) 2015-05-18 2021-02-15 Ab Initio Biotherapeutics Inc SIRP polypeptide compositions and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790282B2 (en) * 2013-03-25 2017-10-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD276 polypeptides, proteins, and chimeric antigen receptors
KR20180051651A (en) * 2015-10-01 2018-05-16 히트 바이오로직스, 인코퍼레이티드 Compositions and methods for adjacent I and II extracellular domains as heterologous chimeric proteins
KR20190122660A (en) * 2017-01-05 2019-10-30 카 메디컬 리미티드 SIRPalpha-41BBL fusion protein and methods of using the same
US20190338028A1 (en) * 2017-02-14 2019-11-07 Promab Biotechnologies, Inc. Cd47-car-t cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINDNER S. E, JOHNSON S. M., BROWN C. E., WANG L. D.: "Chimeric antigen receptor signaling: Functional consequences and design implications", SCIENCE ADVANCES, vol. 6, no. 21, 22 May 2020 (2020-05-22), pages 1 - 8, XP055975073, DOI: 10.1126/sciadv.aaz3223 *
SONIA GUEDAN, CALDERON HUGO, POSEY AVERY D., MAUS MARCELA V.: "Engineering and Design of Chimeric Antigen Receptors", MOLECULAR THERAPY- METHODS & CLINICAL DEVELOPMENT, vol. 12, 15 March 2019 (2019-03-15), GB , pages 145 - 156, XP055605656, ISSN: 2329-0501, DOI: 10.1016/j.omtm.2018.12.009 *
VITA GOLUBOVSKAYA, BERAHOVICH ROBERT, ZHOU HUA, XU SHIRLEY, HARTO HIZKIA, LI LE, CHAO CHENG-CHI, MAO MIKE MING, WU LIJUN: "CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth", CANCERS, vol. 9, no. 12, 1 January 2017 (2017-01-01), pages 1 - 15, XP055537232, DOI: 10.3390/cancers9100139 *

Also Published As

Publication number Publication date
KR20220138909A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US20220211756A1 (en) T cell which expresses a gamma-delta t cell receptor (tcr) and a chimeric antigen receptor (car)
AU2014259675B2 (en) CS1-specific chimeric antigen receptor engineered immune effector cells
NO316923B1 (en) Bifunctional protein and DNA, vectors, host cells, antibody, compositions and methods thereof
WO2021057823A1 (en) Ror1 specific chimeric antigen receptors and their therapeutic applications
CN113195535A (en) Bispecific polypeptides for linking CAR-expressing immune cells to antigen presenting cells and uses thereof
WO2023003404A1 (en) Novel chimeric antigen receptor and immune cells expressing same
WO2022215919A1 (en) Chimeric antigen receptor specifically binding to cd47 and use thereof
WO2022220433A1 (en) Chimeric antigen receptor binding specifically to programmed death-ligand 1 (pd-l1) and use thereof
WO2023075177A1 (en) Chimeric antigen receptor specifically binding to cadm1 and uses thereof
US20240082400A1 (en) Cd64 chimeric receptor and uses thereof
KR102231284B1 (en) Chimeric antigen receptor specifically binding to CD38 and use thereof
KR102231285B1 (en) Chimeric antigen receptor specifically binding to VLA-4 and use thereof
WO2023068584A1 (en) Chimeric antigen receptor specifically binding to cd138 and uses thereof
WO2023287049A1 (en) Chimeric antigen receptor binding specifically to cd30 and use thereof
WO2022182059A1 (en) Chimeric antigen receptor specifically binding to hla class ii and use thereof
WO2022211376A1 (en) Transformed antigen-specific professional antigen presenting cells comprising chimeric antigen receptor (car) and use thereof
WO2022186682A1 (en) Chimeric antigen receptor specifically binding to rank ligand, and use thereof
WO2022215920A1 (en) Transformed antigen-specific professional antigen-presenting cells comprising chimeric antigen receptor (car) and use thereof
WO2022239986A1 (en) Chimeric antigen receptor comprising extracellular domain of baff and use thereof
WO2023113293A1 (en) Transformed antigen-specific professional antigen-presenting cell containing chimeric antigen receptor (car) and use thereof
WO2023113292A1 (en) Transformed antigen-specific professional antigen-presenting cell comprising chimeric antigen receptor (car) and use thereof
WO2022203226A1 (en) Transformed antigen-specific professional antigen presenting cell including chimeric antigen receptor (car) and use thereof
CN115216449A (en) Engineered immune cells and uses thereof
WO2022203227A1 (en) Transformed antigen-specific professional antigen-presenting cell comprising chimeric antigen receptor (car) and use thereof
WO2022234976A1 (en) Transformed antigen-specific professional antigen-presenting cell containing chimeric antigen receptor (car) and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784829

Country of ref document: EP

Kind code of ref document: A1