WO2022215369A1 - Electric motor and electric air blower - Google Patents

Electric motor and electric air blower Download PDF

Info

Publication number
WO2022215369A1
WO2022215369A1 PCT/JP2022/006726 JP2022006726W WO2022215369A1 WO 2022215369 A1 WO2022215369 A1 WO 2022215369A1 JP 2022006726 W JP2022006726 W JP 2022006726W WO 2022215369 A1 WO2022215369 A1 WO 2022215369A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
rotating shaft
electric motor
commutator
rotor
Prior art date
Application number
PCT/JP2022/006726
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 小島
和雄 遠矢
圭策 中野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280022233.4A priority Critical patent/CN116998099A/en
Priority to JP2023512852A priority patent/JPWO2022215369A1/ja
Publication of WO2022215369A1 publication Critical patent/WO2022215369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/54Disc armature motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings

Definitions

  • the present disclosure relates to electric motors and electric blowers.
  • Electric motors are widely used not only in the field of household electric appliances, but also in the field of electrical equipment such as automobiles.
  • an electric motor is used as a cooling fan for cooling a radiator, a condenser, or the like.
  • An object of the present disclosure is to provide an electric motor having a coreless rotor and an electric blower capable of stably supporting a rotating shaft with one ball bearing.
  • one aspect of the electric motor according to the present disclosure includes: a rotor having a rotating shaft and coils extending in an axial direction; a commutator attached to the rotating shaft; at least one brush in contact with the commutator; a brush spring for pressing the at least one brush against the commutator; , is a constant force spring.
  • the rotor may be a coreless rotor that does not have a core.
  • One aspect of the electric blower according to the present disclosure includes the electric motor described above and a rotating fan attached to the rotating shaft of the electric motor, and the rotating fan includes the bearing and the commutator on the rotating shaft. It is attached to the end on the bearing side.
  • FIG. 1 is an external perspective view of an electric motor according to an embodiment.
  • FIG. 2 is a cross-sectional view (XZ cross-sectional view) of the electric motor according to the embodiment.
  • FIG. 3 is a cross-sectional view (XY cross-sectional view) of the electric motor according to the embodiment.
  • FIG. 4 is a partially enlarged cross-sectional view of the electric motor according to the embodiment.
  • FIG. 5 is a diagram showing the arrangement of brush springs of an electric motor according to a modification.
  • FIG. 6 is a conceptual diagram of the electric blower according to the embodiment.
  • the X-axis, Y-axis and Z-axis represent three axes of a three-dimensional orthogonal coordinate system.
  • the X-axis and the Y-axis are orthogonal to each other and both orthogonal to the Z-axis.
  • the Z-axis direction is the direction of the axis C of the rotating shaft 21 .
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • FIG. 1 is an external perspective view of an electric motor 1 according to an embodiment.
  • 2 and 3 are sectional views of the electric motor 1.
  • FIG. FIG. 2 shows a cross section (XZ cross section passing through the brush 40) taken along a plane passing through the axis C of the rotating shaft 21 and passing through the brush 40.
  • FIG. FIG. 3 shows a cross section (XY cross section passing through the brush 40) taken along a plane passing through the brush 40 and having the axis C of the rotating shaft 21 as a vertical line.
  • FIG. 4 is an enlarged cross-sectional view of a region IV surrounded by broken lines in FIG.
  • FIG. 6 is a conceptual diagram of the electric blower 90 according to the embodiment.
  • the electric blower 90 includes an electric motor 1 and a rotating fan 91.
  • the rotating fan 91 is attached to the rotating shaft 21 of the electric motor 1 .
  • the rotating fan 91 is attached to the bearing-side end of the bearing and the commutator on the rotating shaft 21 .
  • the motor 1 is a commutator motor with brushes.
  • the electric motor 1 includes a stator 10 (stator), a rotor 20 (rotor), a commutator 30 , at least one brush 40 , brush springs 50 and bearings 60 .
  • the rotor 20 is rotated by the magnetic force of the stator 10 .
  • the commutator 30 is attached to the rotating shaft 21 of the rotor 20 .
  • the brushes 40 are in sliding contact with the commutator 30 .
  • the brush spring 50 is for pressing the brush 40 against the commutator 30 .
  • Bearing 60 supports rotating shaft 21 of rotor 20 . In the following description, a pair of brushes 40 will be exemplified.
  • the electric motor 1 further includes a motor case 70 that forms an outer casing of the electric motor 1 and a cover plate 80 that covers the brushes 40 .
  • the motor case 70 has a first member 71 , a second member 72 , a third member 73 and a fourth member 74 .
  • the electric motor 1 is a type of direct current motor (DC motor) driven by direct current.
  • a magnet is used as the stator 10 in the electric motor 1 .
  • An armature having a coil 22 is used as the rotor 20 in the electric motor 1 .
  • the electric motor 1 is a flat brushed coreless motor (flat motor) mounted on a vehicle such as a two-wheeled vehicle or a four-wheeled vehicle. Therefore, the stator 10 and the rotor 20 do not have a core (iron core), and the electric motor 1 as a whole is thin and light. Specifically, the electric motor 1 is a small motor used for a radiator cooling fan in a vehicle.
  • the outer diameter (diameter) of the electric motor 1 is ⁇ 120 mm or less. As an example, the outer diameter of the electric motor 1 is ⁇ 60 mm, ⁇ 70 mm, ⁇ 90 mm, or the like.
  • the stator 10 is arranged with a minute air gap between it and the rotor 20 .
  • the stator 10 generates magnetic force acting on the rotor 20 .
  • the stator 10 is configured to generate magnetic flux on the air gap surface with the rotor 20 .
  • the stator 10 forms a magnetic circuit together with the rotor 20, which is an armature.
  • the stator 10 as a whole has a substantially donut shape.
  • the stator 10 is configured such that N poles and S poles alternately and evenly exist on the air gap surface with the rotor 20 along the circumferential direction of the rotating shaft 21 .
  • the stator 10 is a magnetic field that creates magnetic flux for generating torque.
  • the stator 10 is composed of a plurality of magnets (magnets).
  • the magnets forming the stator 10 are, for example, permanent magnets.
  • the direction of the main magnetic flux generated by the stator 10 (magnet) is along the axial center C direction along which the rotating shaft 21 extends. Note that the stator 10 is fixed to the first member 71 of the motor case 70 .
  • the rotor 20 has a rotating shaft 21 and coils 22 .
  • Rotor 20 is a coreless rotor that does not have a core.
  • the rotor 20 rotates around the direction of the axis C along which the rotating shaft 21 extends. Rotor 20 generates a magnetic force acting on stator 10 .
  • the direction of the main magnetic flux generated by the rotor 20 is along the axial center C direction along which the rotating shaft 21 extends.
  • the rotor 20 is arranged facing the stator 10 .
  • the rotor 20 faces the stator 10 in the axial center C direction along which the rotating shaft 21 extends.
  • the coil 22 of the rotor 20 and the stator 10 face each other in the direction of the axis C along which the rotating shaft 21 extends. That is, the coil 22 and the stator 10 are arranged in the direction of the axis C of the rotating shaft 21 .
  • the rotating shaft 21 is a shaft having an axis C.
  • the rotating shaft 21 is an elongated rod-shaped member.
  • the rotating shaft 21 is a metal rod made of a metal material such as SUS (Stainless Used Steel).
  • An axis C included in the rotating shaft 21 is the center of rotation of the rotor 20 .
  • the longitudinal direction of the rotating shaft 21, that is, the direction in which the rotating shaft 21 extends (stretching direction) is the direction of the axis C (also referred to simply as the "axis direction").
  • the rotary shaft 21 is supported by one bearing 60. That is, there is only one bearing 60 that supports the rotating shaft 21 .
  • the bearing 60 rotatably supports the rotating shaft 21 .
  • Bearing 60 is a ball bearing. Specifically, bearing 60 is a deep groove ball bearing.
  • the first end 21a of the rotating shaft 21 is the output-side end (output shaft).
  • the first end portion 21 a protrudes from the first member 71 of the motor case 70 and the bearing 60 .
  • the first end portion 21 a is the end portion of the bearing 60 and the commutator 30 on the rotating shaft 21 on the bearing 60 side.
  • a load such as a rotating fan is attached to the first end portion 21a.
  • Electric motor 1 in which a rotating fan is attached to rotating shaft 21 can be used, for example, as a cooling fan.
  • the second end 21b of the rotary shaft 21 is the end (counter-output shaft) on the non-output side. The second end 21 b does not protrude from the motor case 70 .
  • the coils 22 of the rotor 20 are wound coils.
  • the rotor 20 has multiple coils 22 .
  • the multiple coils 22 are armature windings configured by electric wires.
  • the plurality of coils 22 are wound so as to generate magnetic force acting on the stator 10 when current flows.
  • the direction of the main magnetic flux generated by each coil 22 is the axial center C direction along which the rotating shaft 21 extends.
  • the plurality of coils 22 are wound in a flat shape, and arranged in a posture in which the coil surfaces face the axial center C direction along which the rotating shaft 21 extends.
  • Each coil 22 is composed of an insulating covered wire having a core wire made of metal such as copper or aluminum and an insulating film covering the core wire.
  • the plurality of coils 22 are thin wound coils having coil layers in which the insulated wires are wound in a plane.
  • the plurality of coils 22 are configured by, for example, one or a plurality of coil layers in which an insulated wire is wound in a generally fan shape in a plan view.
  • the plurality of coils 22 configured in this way are arranged so as to surround the rotating shaft 21 when viewed from the axial center C direction along which the rotating shaft 21 extends.
  • the multiple coils 22 are electrically connected to the commutator 30 . Specifically, each of the multiple coils 22 is electrically connected to one of the multiple commutator segments 31 of the commutator 30 . Therefore, current flows through each of the plurality of coils 22 via the commutator segments 31 with which the brushes 40 are in contact.
  • a plurality of coils 22 are covered with molding resin 23 . That is, the plurality of coils 22 are integrally formed with the mold resin 23 by being covered with the mold resin 23 .
  • the outer shape of the mold resin 23 after molding the plurality of coils 22 is circular in plan view.
  • the mold resin 23 is made of an insulating resin material such as phenol resin or unsaturated polyester (Bulk Molding Compound, BMC).
  • the mold resin 23 may be either thermosetting resin or thermoplastic resin.
  • the commutator 30 is attached to the rotating shaft 21 . Therefore, the commutator 30 rotates together with the rotating shaft 21 as the rotor 20 rotates.
  • the commutator 30 is attached to the second end 21b of the rotating shaft 21 .
  • a commutator 30 attached to the rotating shaft 21 may be part of the rotor 20 .
  • the commutator 30 and the bearing 60 are located on opposite sides in the direction of the axis C along which the rotating shaft 21 extends, with the position of the coil 22 on the rotating shaft 21 as a reference. Since rotor 20 does not have a core, commutator 30 and bearing 60 are arranged close to each other. Note that the bearing 60 is positioned at the center of the rotating shaft 21 over the entire rotating shaft 21 including the portion protruding from the motor case 70 .
  • the commutator 30 has a plurality of commutator pieces 31 (commutator segments) provided along the rotating direction of the rotating shaft 21 .
  • the plurality of commutator segments 31 are annularly arranged along the rotation direction of the rotation shaft 21 so as to surround the rotation shaft 21 .
  • Each commutator piece 31 is an elongated member extending in the longitudinal direction of the rotating shaft 21 .
  • the plurality of commutator segments 31 are conductive terminals made of a metal material such as copper.
  • the multiple commutator segments 31 are electrically connected to the coils 22 of the rotor 20 .
  • the plurality of commutator segments 31 are arranged insulated from each other. However, the multiple commutator segments 31 are electrically connected by the coils 22 of the rotor 20 .
  • the commutator 30 is a molded commutator.
  • the commutator 30 has a configuration in which a plurality of commutator segments 31 are molded with molding resin. In this case, the plurality of commutator segments 31 are embedded in the molding resin so that their surfaces are exposed.
  • the mold resin is the commutator body.
  • the mold resin is a substantially tubular member having a through hole into which the rotary shaft 21 is inserted.
  • the mold resin is, for example, a resin molded body made of an insulating resin material such as a thermosetting resin.
  • At least one brush 40 is in contact with the commutator 30 .
  • the tip of the brush 40 is in contact with the commutator piece 31 of the commutator 30 . Since the commutator 30 rotates as the rotating shaft 21 rotates, the brush 40 keeps contacting all the commutator segments 31 sequentially.
  • the brush 40 is a power supply brush for supplying power to the coil 22. Specifically, the brushes 40 supply power to the coils 22 by contacting the commutator segments 31 of the commutator 30 .
  • the brush 40 is connected to a power terminal fixed to the motor case 70 by a pigtail wire. When the brushes 40 come into contact with the commutator segments 31 , the armature current supplied from the power supply terminals to the brushes 40 flows through the coils 22 via the commutator segments 31 .
  • the brush 40 is a conductive carbon brush made of carbon.
  • the brush 40 is an elongated substantially rectangular parallelepiped.
  • a plurality of brushes 40 are provided. In this case, it is preferable that a plurality of brushes 40 are provided at regular intervals along the rotation direction of the rotor 20 .
  • two brushes 40 are provided. The two brushes 40 are arranged to face each other with the commutator 30 interposed therebetween. That is, as shown in FIG. 3, the two brushes 40 are arranged at intervals of 180 degrees along the rotation direction of the rotor 20. As shown in FIG.
  • the brushes 40 are always in contact with the commutator segments 31 of the commutator 30 under pressure from the brush springs 50 . That is, the brushes 40 are pressed against the commutator 30 by the brush springs 50 . In this manner, the brushes 40 receive the pressing force from the brush springs 50 and come into sliding contact with the commutator 30 .
  • the brush 40 is arranged so as to be movable in a direction (radial direction) intersecting with the axial center C direction along which the rotating shaft 21 extends due to wear with the commutator 30 .
  • the brush spring 50 presses the brush 40 against the commutator 30 by applying pressure to the brush 40 .
  • the brush spring 50 applies pressure (spring pressure) to the brush 40 by spring elastic force (spring restoring force) to urge the brush 40 toward the commutator 30 .
  • a brush spring 50 is provided for each brush 40 . In this embodiment, since two brushes 40 are used, two brush springs 50 are also used.
  • the brush spring 50 is a constant force spring. Therefore, the brush spring 50 applies a uniform load to the brush 40 . That is, the brush spring 50, which is a constant force spring, applies a uniform pressing force to the brush 40. As shown in FIG.
  • the brush spring 50 which is a constant load spring, is made of a strip-shaped wire rod.
  • the brush spring 50 which is a constant force spring, is a spiral spring.
  • a brush spring 50 which is a constant force spring, has a spiral portion 51 (coil portion) in which a strip-shaped wire rod is spirally wound.
  • the brush spring 50 which is a constant force spring, is made of, for example, a strip-shaped wire rod made of a metal material or the like.
  • the brush spring 50 which is a constant force spring, is made of a long strip-shaped metal plate. Therefore, the spiral portion 51 is a portion of the constant force spring in which a long strip-shaped metal plate is spirally wound multiple times only in one direction.
  • the brush spring 50 which is a constant load spring, generates a force (spring restoring force) to return to the original spiral state by extending one end of the wire rod from the spiral portion 51 of the spiral.
  • the brush spring 50 presses the brush 40 against the commutator 30 with the spiral portion 51 .
  • the brush spring 50 applies a load to the brush 40 by the spring restoring force of the spiral portion 51 when the spiral portion 51 contacts the rear end portion of the brush 40 .
  • the load with which the brush springs 50 press the brushes 40 against the commutator 30 is preferably at least 1 time the radial load generated during the rotation of the rotor 20 .
  • the brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the axial center C direction along which the rotating shaft 21 extends are perpendicular to each other.
  • the brush spring 50 is installed such that the spiral portion 51 is placed vertically.
  • a spiral surface (coil surface) of the spiral portion 51 is parallel to an axis C included in the rotating shaft 21 .
  • the motor case 70 houses the stator 10, the coils 22 of the rotor 20, the commutator 30, the brushes 40, the brush springs 50 and the bearings 60.
  • the motor case 70 has the first member 71 , the second member 72 , the third member 73 and the fourth member 74 as described above.
  • the first member 71, the second member 72, the third member 73, and the fourth member 74 are made of a ferrous material such as a cold-rolled steel plate (Steel Plate Cold Commercial, SPC material) or a metal material such as aluminum. Alternatively, it may be made of an insulating resin material. In this embodiment, the first member 71, the second member 72 and the third member 73 are made of metal material.
  • the third member 73 is made of an insulating resin material.
  • the first member 71 is an outer shell member forming part of the outer shell of the electric motor 1 .
  • the first member 71 is formed in a flat, substantially bottomed cylindrical shape having a circular bottom and a thin cylindrical side wall.
  • the first member 71 also functions as a bracket holding the stator 10 and the bearing 60 .
  • the stator 10 is fixed to the bottom of the first member 71 .
  • the bearing 60 is fixed in a recess 71 a provided in the center of the bottom of the first member 71 .
  • the bearing 60 is press-fitted into the recess 71a of the first member 71 (bracket).
  • the rotating shaft 21 is press-fitted into the bearing 60 . That is, the bearing 60 is in a state in which both the inner ring and the outer ring are press-fitted.
  • the bearing 60 is fixed to the first member 71 by press-fitting the bearing 60 into the concave portion 71 a of the first member 71 .
  • the rotary shaft 21 to which the commutator 30 and the resin-molded coil 22 are attached is press-fitted into the bearing 60 fixed to the first member 71 .
  • the second member 72 is a thin plate member.
  • the second member 72 is arranged between the first member 71 and the third member 73 in the axial center C direction of the rotating shaft 21 .
  • the stator 10 and the coils 22 of the rotor 20 are arranged between the first member 71 and the second member 72 .
  • the third member 73 is an outer shell member forming part of the outer shell of the electric motor 1 .
  • the third member 73 is formed in a flat, substantially bottomed cylindrical shape having a circular bottom and a thin cylindrical side wall. A through hole is formed in the center of the bottom of the third member 73 .
  • the third member 73 also functions as a brush holder that holds the brush 40. Specifically, the third member 73 is provided with a brush storage portion 73a in which the brush 40 is stored.
  • the brush spring 50 is also housed in the brush housing portion 73a of the third member 73.
  • the brush spring 50 is arranged in the brush housing portion 73 a so that the spiral portion 51 is positioned behind the rear end portion of the brush 40 .
  • the outer end portion 52 of the brush spring 50 is pulled out toward the commutator 30 through the side of the brush 40 and fixed near the front opening of the brush housing portion 73a.
  • the outer end portion 52 of the brush spring 50 is provided with a through hole 52a.
  • a key-shaped protrusion is provided on the third member 73 as a locking portion 73b.
  • the outer end portion 52 of the brush spring 50 is fixed to the third member 73 by engaging the through hole 52a formed in the outer end portion 52 of the brush spring 50 with the engaging portion 73b.
  • a cover plate 80 is provided so as to cover the brushes 40 housed in the brush housing portion 73a.
  • the cover plate 80 covers the brushes 40 and the brush springs 50 housed in the brush housing portion 73a.
  • the cover plate 80 also has a function of guiding the spiral portion 51 of the brush spring 50 when the spiral portion 51 moves toward the commutator 30 as the brush 40 wears.
  • the fourth member 74 is an outer shell member forming part of the outer shell of the electric motor 1 .
  • the fourth member 74 is a thin plate member.
  • the fourth member 74 is provided so as to cover the through hole of the third member 73 .
  • the fourth member 74 and the third member 73 may be integrated instead of separate members.
  • the current supplied to the brushes 40 flows through the coils 22 of the rotor 20 via the commutator segments 31 of the commutator 30 as armature current (driving current).
  • armature current driving current
  • magnetic flux is generated in the rotor 20 (coil 22).
  • the magnetic force generated by the interaction between the magnetic flux generated in the rotor 20 and the magnetic flux generated from the stator 10 becomes the torque that rotates the rotor 20 .
  • the direction in which the current flows is switched depending on the positional relationship when the commutator segments 31 of the commutator 30 and the brushes 40 are in contact with each other.
  • constant force springs are used as the brush springs 50 for pressing the brushes 40 against the commutator.
  • the brush spring 50 When a torsion spring or a compression coil spring is used as the brush spring 50, if one ball bearing is used as the bearing 60 that supports the rotating shaft 21, the brush 40 is worn because the ball bearing has a small sliding area with the rotating shaft 21. The load that presses the commutator 30 due to the brush spring 50 is reduced. As a result, when the rotor 20 rotates, the rotating shaft 21 is shaken, and the stability of the rotating shaft 21 is lowered.
  • the brush spring 50 always applies a constant pressure to the brush 40 even if the brush 40 wears. Due to the pressure of the brush spring 50, the surface pressure applied by the brush 40 to the commutator 30 is constant. In other words, even if the brush 40 wears, the load pressing the commutator 30 by the brush spring 50 does not decrease. As a result, it is possible to suppress the occurrence of axial vibration of the rotating shaft 21 when the rotor 20 rotates. Therefore, the stability of the rotating shaft 21 is improved.
  • the electric motor 1 it is possible to realize a bearing structure that supports the rotating shaft 21 of the coreless rotor in a cantilever manner. Further, even with one ball bearing, the rotary shaft 21 can be stably supported. As a result, the electric motor 1 can be made thinner and more efficient than when a plurality of bearings are used. For example, in a conventional coreless flat motor using a compression spring, two ball bearings with a thickness of at least 4 mm had to be used in order to prevent the occurrence of axial runout of the rotating shaft. However, in the present embodiment, if the ball bearing had a thickness of 6 mm, no axial run-out of the rotating shaft occurred with a single ball bearing.
  • the bearing 60 is a deep groove ball bearing.
  • Deep groove ball bearings are inexpensive among ball bearings. Therefore, by using a deep groove ball bearing as the bearing 60, the electric motor 1 can be realized at a low cost while achieving a reduction in thickness and an increase in efficiency.
  • a plurality of brushes 40 are provided at regular intervals along the rotation direction of the rotor 20 .
  • two brushes 40 are arranged at intervals of 180 degrees along the rotation direction of the rotor 20 . That is, the two brushes 40 are arranged to face each other with the commutator 30 interposed therebetween.
  • the load with which the brush springs 50 press the brushes 40 against the commutator 30 should be at least 1 time the radial load generated during the rotation of the rotor 20 .
  • the commutator 30 and the bearing 60 are positioned on opposite sides of the rotating shaft 21 in the axial center C direction with reference to the position of the coil 22 on the rotating shaft 21 .
  • the electric motor 1 of the present embodiment includes the rotor 20 having the rotating shaft 21 extending in the axial direction and the coils 22, the commutator 30 attached to the rotating shaft 21, and the commutator 30 sliding. It comprises at least one brush 40 in contact, a brush spring 50 for pressing the at least one brush 40 against the commutator 30, and one bearing 60 for supporting the rotating shaft 21, wherein the bearing 60 is a ball bearing, Brush spring 50 is a constant force spring.
  • the rotor 20 may be a coreless rotor that does not have a core.
  • the coil 22 is a plurality of winding coils each wound in a flat shape. is preferably arranged.
  • the electric motor 1 further includes a magnet as the stator 10, and the stator 10 and the coil 22 face each other in the axial direction.
  • the electric blower 90 includes an electric motor 1 and a rotating fan 91 attached to the rotating shaft 21 of the electric motor 1 .
  • the rotating fan 91 is attached to the bearing 60 side end of the rotating shaft 21 and the commutator 30 .
  • the brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the direction of the axis C of the rotating shaft 21 are perpendicular to each other.
  • FIG. 5 is a diagram showing the arrangement of the brush springs 50 of the electric motor 1A according to the modification.
  • the brush spring 50 may be arranged such that the spiral axis of the spiral portion 51 and the direction of the axis C of the rotating shaft 21 are parallel.
  • the brush spring 50 may be installed so that the spiral portion 51 is placed horizontally.
  • the brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the axis C of the rotating shaft 21 are perpendicular to each other (that is, the spiral portion 51 is arranged vertically).
  • the electric motor 1 is a coreless motor in which the stator 10 and rotor 20 do not have cores.
  • the electric motor 1 may be an electric motor in which the stator 10 and the rotor 20 have cores.
  • the stator 10 is composed only of permanent magnets.
  • the stator 10 may be a stator composed of permanent magnets and an iron core.
  • the stator 10 may be an armature composed of stator windings and an iron core without using permanent magnets.
  • the electric motor 1 is a flat motor with an outer size whose thickness is smaller than its outer diameter.
  • the technology of the present disclosure can also be applied to, for example, a cylindrical electric motor having a cylindrical housing with an outer size whose thickness is greater than its outer diameter.
  • the direction of the main magnetic flux generated by the stator 10 and the rotor 20 is the axial center C direction of the rotating shaft 21 .
  • the direction of the main magnetic flux generated by the stator 10 and the rotor 20 may be a direction orthogonal to the axial center C direction of the rotating shaft 21 (radial direction of rotation of the rotating shaft 21).
  • the technology of the present disclosure can also be applied to an inner rotor type motor in which the rotor 20 is arranged inside the stator 10 .
  • the electric motor 1 is applied to a vehicle cooling fan as an example of an electric blower.
  • the technology of the present disclosure can also be applied to electric blowers other than those for vehicles, such as electric blowers mounted on electric vacuum cleaners, for example.
  • the technology of the present disclosure can also be applied to electric motors other than electric motors used in electric blowers. In other words, the technology of the present disclosure can be applied to electric motors mounted on various electric devices.
  • the technology of the present disclosure can be widely used in various products equipped with electric motors, including products in the field of electric equipment such as automobiles and the field of household electric appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The present invention provides an electric motor, etc., that can stably support a rotating shaft with a single ball bearing in an electric motor having a coreless rotor. The electric motor comprises: a rotor having a rotating shaft and a coil extending in the axial direction; a commutator attached to the rotating shaft; at least one brush in sliding contact with the commutator; a brush spring for pressing at least one brush against the commutator; and one bearing that supports the rotating shaft. The bearing is a ball bearing, and the brush spring is a constant load spring.

Description

電動機及び電動送風機Electric motor and electric blower
 本開示は、電動機及び電動送風機に関する。 The present disclosure relates to electric motors and electric blowers.
 電動機は、家庭用電気機器分野をはじめとして、自動車等の電装分野にも広く用いられている。例えば、二輪自動車又は四輪自動車等の車両には、ラジエータ又はコンデンサ等を冷却するための冷却ファンに電動機が用いられている。 Electric motors are widely used not only in the field of household electric appliances, but also in the field of electrical equipment such as automobiles. For example, in a vehicle such as a two-wheeled vehicle or a four-wheeled vehicle, an electric motor is used as a cooling fan for cooling a radiator, a condenser, or the like.
 車両に用いられる車載用の電動機は、限られたスペースの中に配置するために、小型化及び薄型化が要求されている。しかし、これに加えて、低燃費を実現するために高効率化及び軽量化が要求される場合もある。このため、車載用の電動機としては、コアを有さないコアレス回転子の回転軸を片持ちで支持する軸受構造を有する扁平型のブラシ付きコアレスモータを用いることが提案されている(例えば、特許文献1、特許文献2を参照)。  In-vehicle electric motors used in vehicles are required to be smaller and thinner in order to be placed in a limited space. However, in addition to this, there are cases where high efficiency and weight reduction are required in order to achieve low fuel consumption. For this reason, it has been proposed to use a flat brushed coreless motor having a bearing structure that supports the rotating shaft of a coreless rotor with no core in a cantilever manner (for example, patent See Document 1 and Patent Document 2).
 回転子の回転軸(シャフト)を片持ちで支持する軸受構造を有する従来の電動機では、特許文献2に開示されているように、1つの軸受で回転軸を支持する。このために、軸受として焼結含有軸受が用いられている。 In a conventional electric motor having a bearing structure that supports the rotating shaft (shaft) of the rotor in a cantilever manner, the rotating shaft is supported by one bearing, as disclosed in Patent Document 2. For this purpose, sintered bearings are used as bearings.
 しかしながら、軸受として焼結含有軸受を用いると、軸受と回転軸との摺動面積が大きくなって効率が低下したり、高温時にオイル漏れのリスクがあったり、低温時の起動トルク不足が発生したりする。 However, when a sintered bearing is used as a bearing, the sliding area between the bearing and the rotating shaft increases, resulting in a decrease in efficiency, a risk of oil leakage at high temperatures, and insufficient starting torque at low temperatures. or
 そこで、焼結含有軸受に代えて玉軸受を用いて、1つの軸受で回転軸を支持することが考えられる。しかし、玉軸受は回転軸との摺動面積が小さいために回転軸を安定して支持することが難しい。つまり、単純に焼結含有軸受を玉軸受に代えて、1つの玉軸受で回転軸を支持することは難しい。このため、従来は、玉軸受を用いる場合には、回転軸の両端を玉軸受で支持したり、玉軸受を2個連結したりする等して、2つの玉軸受を用いるしかなかった。 Therefore, it is conceivable to use a ball bearing instead of the sintered bearing to support the rotating shaft with one bearing. However, since the ball bearing has a small sliding area with the rotating shaft, it is difficult to stably support the rotating shaft. That is, it is difficult to simply replace the sintered bearing with a ball bearing and support the rotating shaft with one ball bearing. For this reason, conventionally, when using ball bearings, there was no choice but to use two ball bearings, such as supporting both ends of the rotating shaft with ball bearings or connecting two ball bearings.
特開昭61-49646号公報JP-A-61-49646 特開2014-36452号公報JP 2014-36452 A
 本開示は、このような問題を解決するためになされたものである。本開示は、コアレス回転子を有する電動機において、1つの玉軸受によって回転軸を安定して支持することができる電動機及び電動送風機を提供することを目的とする。 This disclosure was made to solve such problems. An object of the present disclosure is to provide an electric motor having a coreless rotor and an electric blower capable of stably supporting a rotating shaft with one ball bearing.
 上記目的を達成するために、本開示に係る電動機の一態様は、軸心方向に延伸する回転軸及びコイルを有する回転子と、前記回転軸に取り付けられた整流子と、前記整流子に摺接する少なくとも1つのブラシと、前記少なくとも1つのブラシを前記整流子に押し当てるためのブラシバネと、前記回転軸を支持する1つの軸受と、を備え、前記軸受は、玉軸受であり、前記ブラシバネは、定荷重バネである。 In order to achieve the above object, one aspect of the electric motor according to the present disclosure includes: a rotor having a rotating shaft and coils extending in an axial direction; a commutator attached to the rotating shaft; at least one brush in contact with the commutator; a brush spring for pressing the at least one brush against the commutator; , is a constant force spring.
 なお、回転子は、コアを有さないコアレス回転子であってもよい。 The rotor may be a coreless rotor that does not have a core.
 本開示に係る電動送風機の一態様は、上記の電動機と、前記電動機の前記回転軸に取り付けられた回転ファンと、を備え、前記回転ファンは、前記回転軸における前記軸受及び前記整流子のうち前記軸受側の端部に取り付けられている。 One aspect of the electric blower according to the present disclosure includes the electric motor described above and a rotating fan attached to the rotating shaft of the electric motor, and the rotating fan includes the bearing and the commutator on the rotating shaft. It is attached to the end on the bearing side.
 本開示によれば、1つの玉軸受であっても、回転軸を安定して支持することができる。 According to the present disclosure, even a single ball bearing can stably support the rotating shaft.
図1は、実施の形態に係る電動機の外観斜視図である。FIG. 1 is an external perspective view of an electric motor according to an embodiment. 図2は、実施の形態に係る電動機の断面図(XZ断面図)である。FIG. 2 is a cross-sectional view (XZ cross-sectional view) of the electric motor according to the embodiment. 図3は、実施の形態に係る電動機の断面図(XY断面図)である。FIG. 3 is a cross-sectional view (XY cross-sectional view) of the electric motor according to the embodiment. 図4は、実施の形態に係る電動機の一部拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view of the electric motor according to the embodiment. 図5は、変形例に係る電動機のブラシバネの配置を示す図である。FIG. 5 is a diagram showing the arrangement of brush springs of an electric motor according to a modification. 図6は、実施の形態に係る電動送風機の概念図である。FIG. 6 is a conceptual diagram of the electric blower according to the embodiment.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements.
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表している。X軸及びY軸は、互いに直交し、かつ、いずれもZ軸に直交する軸である。本実施の形態において、Z軸方向は、回転軸21の軸心Cの方向である。 In addition, in this specification and drawings, the X-axis, Y-axis and Z-axis represent three axes of a three-dimensional orthogonal coordinate system. The X-axis and the Y-axis are orthogonal to each other and both orthogonal to the Z-axis. In this embodiment, the Z-axis direction is the direction of the axis C of the rotating shaft 21 .
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。また、本明細書において、「上」及び「下」という用語は、必ずしも、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。 It should be noted that each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified. Also, in this specification, the terms "upper" and "lower" do not necessarily indicate upward (vertically upward) and downward (vertically downward) directions in absolute spatial recognition.
 (実施の形態)
 まず、実施の形態に係る電動機1の構成について、図1~図4を用いて説明する。図1は、実施の形態に係る電動機1の外観斜視図である。図2及び図3は、同電動機1の断面図である。図2は、回転軸21の軸心Cを通り且つブラシ40を通る平面で切断したときの断面(ブラシ40を通るXZ断面)を示している。図3は、回転軸21の軸心Cを垂直線とし且つブラシ40を通る平面で切断したときの断面(ブラシ40を通るXY断面)を示している。図4は、図2の破線で囲まれる領域IVの拡大断面図である。図6は、実施の形態に係る電動送風機90の概念図である。
(Embodiment)
First, the configuration of the electric motor 1 according to the embodiment will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is an external perspective view of an electric motor 1 according to an embodiment. 2 and 3 are sectional views of the electric motor 1. FIG. FIG. 2 shows a cross section (XZ cross section passing through the brush 40) taken along a plane passing through the axis C of the rotating shaft 21 and passing through the brush 40. FIG. FIG. 3 shows a cross section (XY cross section passing through the brush 40) taken along a plane passing through the brush 40 and having the axis C of the rotating shaft 21 as a vertical line. FIG. 4 is an enlarged cross-sectional view of a region IV surrounded by broken lines in FIG. FIG. 6 is a conceptual diagram of the electric blower 90 according to the embodiment.
 電動送風機90は、電動機1と、回転ファン91と、を備える。回転ファン91は、電動機1が有する回転軸21に取り付けられる。回転ファン91は、回転軸21における軸受及び整流子のうち軸受側の端部に取り付けられる。 The electric blower 90 includes an electric motor 1 and a rotating fan 91. The rotating fan 91 is attached to the rotating shaft 21 of the electric motor 1 . The rotating fan 91 is attached to the bearing-side end of the bearing and the commutator on the rotating shaft 21 .
 電動機1は、ブラシ付きの整流子電動機である。電動機1は、固定子10(ステータ)と、回転子20(ロータ)と、整流子30と、少なくとも1つのブラシ40と、ブラシバネ50と、軸受60とを備える。回転子20は、固定子10の磁力により回転する。整流子30は、回転子20が有する回転軸21に取り付けられている。ブラシ40は、整流子30に摺接する。ブラシバネ50は、ブラシ40を整流子30に押し当てるためのものである。軸受60は、回転子20が有する回転軸21を支持する。なお、以下の説明では、一対のブラシ40を例示して説明する。 The motor 1 is a commutator motor with brushes. The electric motor 1 includes a stator 10 (stator), a rotor 20 (rotor), a commutator 30 , at least one brush 40 , brush springs 50 and bearings 60 . The rotor 20 is rotated by the magnetic force of the stator 10 . The commutator 30 is attached to the rotating shaft 21 of the rotor 20 . The brushes 40 are in sliding contact with the commutator 30 . The brush spring 50 is for pressing the brush 40 against the commutator 30 . Bearing 60 supports rotating shaft 21 of rotor 20 . In the following description, a pair of brushes 40 will be exemplified.
 電動機1は、さらに、電動機1の外郭筐体をなすモータケース70と、ブラシ40を覆うカバープレート80とを備える。モータケース70は、第1部材71、第2部材72、第3部材73及び第4部材74を有する。 The electric motor 1 further includes a motor case 70 that forms an outer casing of the electric motor 1 and a cover plate 80 that covers the brushes 40 . The motor case 70 has a first member 71 , a second member 72 , a third member 73 and a fourth member 74 .
 電動機1は、直流により駆動する直流電動機(DCモータ)の一種である。電動機1には、固定子10として磁石が用いられている。電動機1には、回転子20としてコイル22を有する電機子が用いられている。 The electric motor 1 is a type of direct current motor (DC motor) driven by direct current. A magnet is used as the stator 10 in the electric motor 1 . An armature having a coil 22 is used as the rotor 20 in the electric motor 1 .
 電動機1は、二輪自動車又は四輪自動車等の車両に搭載される扁平型のブラシ付きコアレスモータ(フラットモータ)である。したがって、固定子10及び回転子20は、コア(鉄心)を有しておらず、電動機1は、全体として厚みが薄くて軽い構成になっている。具体的には、電動機1は、車両におけるラジエータの冷却ファンに用いられる小型モータである。電動機1の外径(直径)は、φ120mm以下である。一例として、電動機1の外径は、φ60mm、φ70mm又はφ90mm等である。 The electric motor 1 is a flat brushed coreless motor (flat motor) mounted on a vehicle such as a two-wheeled vehicle or a four-wheeled vehicle. Therefore, the stator 10 and the rotor 20 do not have a core (iron core), and the electric motor 1 as a whole is thin and light. Specifically, the electric motor 1 is a small motor used for a radiator cooling fan in a vehicle. The outer diameter (diameter) of the electric motor 1 is φ120 mm or less. As an example, the outer diameter of the electric motor 1 is φ60 mm, φ70 mm, φ90 mm, or the like.
 固定子10は、回転子20との間に微小なエアギャップを介して配置されている。固定子10は、回転子20に作用する磁力を発生させる。固定子10は、回転子20とのエアギャップ面に磁束を生成する構成になっている。固定子10は、電機子である回転子20とともに磁気回路を構成している。具体的には、固定子10は、全体として実質的なドーナツ状である。固定子10は、回転軸21の周方向に沿って回転子20とのエアギャップ面にN極とS極とが交互に均等に存在するように構成されている。固定子10は、トルクを発生するための磁束を作る界磁である。固定子10は、複数の磁石(マグネット)によって構成されている。固定子10を構成する磁石は、例えば永久磁石である。固定子10(磁石)が発生する主磁束の向きは、回転軸21が延伸する軸心C方向に沿った方向である。なお、固定子10は、モータケース70の第1部材71に固定されている。 The stator 10 is arranged with a minute air gap between it and the rotor 20 . The stator 10 generates magnetic force acting on the rotor 20 . The stator 10 is configured to generate magnetic flux on the air gap surface with the rotor 20 . The stator 10 forms a magnetic circuit together with the rotor 20, which is an armature. Specifically, the stator 10 as a whole has a substantially donut shape. The stator 10 is configured such that N poles and S poles alternately and evenly exist on the air gap surface with the rotor 20 along the circumferential direction of the rotating shaft 21 . The stator 10 is a magnetic field that creates magnetic flux for generating torque. The stator 10 is composed of a plurality of magnets (magnets). The magnets forming the stator 10 are, for example, permanent magnets. The direction of the main magnetic flux generated by the stator 10 (magnet) is along the axial center C direction along which the rotating shaft 21 extends. Note that the stator 10 is fixed to the first member 71 of the motor case 70 .
 回転子20は、回転軸21及びコイル22を有する。回転子20は、コアを有さないコアレス回転子である。 The rotor 20 has a rotating shaft 21 and coils 22 . Rotor 20 is a coreless rotor that does not have a core.
 回転子20は、回転軸21が延伸する軸心C方向を回転中心として回転する。回転子20は、固定子10に作用する磁力を発生させる。回転子20が発生する主磁束の向きは、回転軸21が延伸する軸心C方向に沿った方向である。 The rotor 20 rotates around the direction of the axis C along which the rotating shaft 21 extends. Rotor 20 generates a magnetic force acting on stator 10 . The direction of the main magnetic flux generated by the rotor 20 is along the axial center C direction along which the rotating shaft 21 extends.
 回転子20は、固定子10と対向して配置されている。回転子20は、回転軸21が延伸する軸心C方向において固定子10と対向している。具体的には、回転子20のコイル22と固定子10とが回転軸21が延伸する軸心C方向に対向している。つまり、コイル22と固定子10とは回転軸21の軸心Cの方向に並んでいる。 The rotor 20 is arranged facing the stator 10 . The rotor 20 faces the stator 10 in the axial center C direction along which the rotating shaft 21 extends. Specifically, the coil 22 of the rotor 20 and the stator 10 face each other in the direction of the axis C along which the rotating shaft 21 extends. That is, the coil 22 and the stator 10 are arranged in the direction of the axis C of the rotating shaft 21 .
 回転軸21は、軸心Cを有するシャフトである。回転軸21は、長尺状の棒状部材である。一例として、回転軸21は、SUS(Stainless Used Steel)等の金属材料によって構成された金属棒である。回転軸21が含む軸心Cは、回転子20が回転する際の中心となる。回転軸21の長手方向、すなわち回転軸21が延伸する方向(延伸方向)は、軸心C方向(単に「軸心方向」ともいう。)である。 The rotating shaft 21 is a shaft having an axis C. The rotating shaft 21 is an elongated rod-shaped member. As an example, the rotating shaft 21 is a metal rod made of a metal material such as SUS (Stainless Used Steel). An axis C included in the rotating shaft 21 is the center of rotation of the rotor 20 . The longitudinal direction of the rotating shaft 21, that is, the direction in which the rotating shaft 21 extends (stretching direction) is the direction of the axis C (also referred to simply as the "axis direction").
 回転軸21は、1つの軸受60によって支持されている。つまり、回転軸21を支持する軸受60は、1つのみである。軸受60は、回転軸21を回転自在に支持している。軸受60は、玉軸受である。具体的には、軸受60は、深溝玉軸受である。 The rotary shaft 21 is supported by one bearing 60. That is, there is only one bearing 60 that supports the rotating shaft 21 . The bearing 60 rotatably supports the rotating shaft 21 . Bearing 60 is a ball bearing. Specifically, bearing 60 is a deep groove ball bearing.
 回転軸21の第1端部21aは、出力側の端部(出力軸)である。第1端部21aは、モータケース70の第1部材71及び軸受60から突出している。第1端部21aは、回転軸21における軸受60及び整流子30のうち軸受60側の端部である。第1端部21aには、例えば回転ファン等の負荷が取り付けられる。回転軸21に回転ファンが取り付けられた電動機1は、例えば冷却ファンとして用いることができる。なお、回転軸21の第2端部21bは、反出力側の端部(反出力軸)である。第2端部21bは、モータケース70から突出していない。 The first end 21a of the rotating shaft 21 is the output-side end (output shaft). The first end portion 21 a protrudes from the first member 71 of the motor case 70 and the bearing 60 . The first end portion 21 a is the end portion of the bearing 60 and the commutator 30 on the rotating shaft 21 on the bearing 60 side. A load such as a rotating fan is attached to the first end portion 21a. Electric motor 1 in which a rotating fan is attached to rotating shaft 21 can be used, for example, as a cooling fan. The second end 21b of the rotary shaft 21 is the end (counter-output shaft) on the non-output side. The second end 21 b does not protrude from the motor case 70 .
 回転子20のコイル22は、巻線コイルである。回転子20は、複数のコイル22を有する。複数のコイル22は、電線によって構成された電機子巻線である。複数のコイル22は、電流が流れることで固定子10に作用する磁力を発生するように巻回されている。各コイル22が発生する主磁束の向きは、回転軸21が延伸する軸心C方向である。具体的には、複数のコイル22は、扁平状に巻回されており、コイル面が回転軸21が延伸する軸心C方向を向く姿勢で配置されている。 The coils 22 of the rotor 20 are wound coils. The rotor 20 has multiple coils 22 . The multiple coils 22 are armature windings configured by electric wires. The plurality of coils 22 are wound so as to generate magnetic force acting on the stator 10 when current flows. The direction of the main magnetic flux generated by each coil 22 is the axial center C direction along which the rotating shaft 21 extends. Specifically, the plurality of coils 22 are wound in a flat shape, and arranged in a posture in which the coil surfaces face the axial center C direction along which the rotating shaft 21 extends.
 各コイル22は、銅又はアルミニウム等の金属からなる芯線と芯線を被膜する絶縁膜とを有する絶縁被覆線によって構成されている。複数のコイル22は、この絶縁被覆線が平面状に巻回されたコイル層を有する薄形の巻線コイルである。具体的には、複数のコイル22は、例えば、絶縁被覆線が平面視で略扇状に巻回された1層又は複数のコイル層によって構成されている。このように構成された複数のコイル22は、回転軸21が延伸する軸心C方向から見たときに、回転軸21を囲むように配置されている。 Each coil 22 is composed of an insulating covered wire having a core wire made of metal such as copper or aluminum and an insulating film covering the core wire. The plurality of coils 22 are thin wound coils having coil layers in which the insulated wires are wound in a plane. Specifically, the plurality of coils 22 are configured by, for example, one or a plurality of coil layers in which an insulated wire is wound in a generally fan shape in a plan view. The plurality of coils 22 configured in this way are arranged so as to surround the rotating shaft 21 when viewed from the axial center C direction along which the rotating shaft 21 extends.
 複数のコイル22は、整流子30と電気的に接続されている。具体的には、複数のコイル22の各々は、整流子30の複数の整流子片31のいずれかと電気的に接続されている。したがって、複数のコイル22の各々には、ブラシ40が接する整流子片31を介して電流が流れる。 The multiple coils 22 are electrically connected to the commutator 30 . Specifically, each of the multiple coils 22 is electrically connected to one of the multiple commutator segments 31 of the commutator 30 . Therefore, current flows through each of the plurality of coils 22 via the commutator segments 31 with which the brushes 40 are in contact.
 複数のコイル22は、モールド樹脂23で覆われている。つまり、複数のコイル22は、モールド樹脂23で覆われることでモールド樹脂23とともに一体に成形されている。複数のコイル22をモールドした後のモールド樹脂23の外形の平面視形状は、円形である。モールド樹脂23は、例えばフェノール樹脂又は不飽和ポリエステル(Bulk Molding Compound,BMC)等の絶縁性樹脂材料によって構成されている。なお、モールド樹脂23は、熱硬化性樹脂及び熱可塑性樹脂のいずれであってもよい。 A plurality of coils 22 are covered with molding resin 23 . That is, the plurality of coils 22 are integrally formed with the mold resin 23 by being covered with the mold resin 23 . The outer shape of the mold resin 23 after molding the plurality of coils 22 is circular in plan view. The mold resin 23 is made of an insulating resin material such as phenol resin or unsaturated polyester (Bulk Molding Compound, BMC). The mold resin 23 may be either thermosetting resin or thermoplastic resin.
 整流子30は、回転軸21に取り付けられている。したがって、整流子30は、回転子20が回転することで回転軸21とともに回転する。整流子30は、回転軸21の第2端部21bに取り付けられている。回転軸21に取り付けられた整流子30は、回転子20の一部であってもよい。 The commutator 30 is attached to the rotating shaft 21 . Therefore, the commutator 30 rotates together with the rotating shaft 21 as the rotor 20 rotates. The commutator 30 is attached to the second end 21b of the rotating shaft 21 . A commutator 30 attached to the rotating shaft 21 may be part of the rotor 20 .
 整流子30と軸受60とは、回転軸21におけるコイル22の位置を基準にして、回転軸21が延伸する軸心C方向において反対側に位置している。回転子20は、コアを有していないので、整流子30と軸受60とは、近接して配置されている。なお、モータケース70から突出した部分を含めた回転軸21全体において、軸受60は、回転軸21の中央部に位置している。 The commutator 30 and the bearing 60 are located on opposite sides in the direction of the axis C along which the rotating shaft 21 extends, with the position of the coil 22 on the rotating shaft 21 as a reference. Since rotor 20 does not have a core, commutator 30 and bearing 60 are arranged close to each other. Note that the bearing 60 is positioned at the center of the rotating shaft 21 over the entire rotating shaft 21 including the portion protruding from the motor case 70 .
 整流子30は、回転軸21の回転方向に沿って設けられた複数の整流子片31(整流子セグメント)を有する。具体的には、複数の整流子片31は、回転軸21を囲むように回転軸21の回転方向に沿って円環状に配列されている。なお、各整流子片31の形状は、回転軸21の長手方向に延在する長尺状部材である。 The commutator 30 has a plurality of commutator pieces 31 (commutator segments) provided along the rotating direction of the rotating shaft 21 . Specifically, the plurality of commutator segments 31 are annularly arranged along the rotation direction of the rotation shaft 21 so as to surround the rotation shaft 21 . Each commutator piece 31 is an elongated member extending in the longitudinal direction of the rotating shaft 21 .
 複数の整流子片31は、銅等の金属材料によって構成された導電端子である。複数の整流子片31は、回転子20が有するコイル22と電気的に接続されている。複数の整流子片31は、互いに絶縁分離されて配置されている。しかし、複数の整流子片31は、回転子20のコイル22によって電気的に接続されている。 The plurality of commutator segments 31 are conductive terminals made of a metal material such as copper. The multiple commutator segments 31 are electrically connected to the coils 22 of the rotor 20 . The plurality of commutator segments 31 are arranged insulated from each other. However, the multiple commutator segments 31 are electrically connected by the coils 22 of the rotor 20 .
 一例として、整流子30は、モールド整流子である。整流子30は、複数の整流子片31がモールド樹脂によってモールドされた構成になっている。この場合、複数の整流子片31は、表面が露出するようにモールド樹脂に埋め込まれている。モールド樹脂は、整流子本体である。モールド樹脂は、回転軸21が挿入される貫通孔を有する実質的な筒状部材である。モールド樹脂は、例えば、熱硬化性樹脂等の絶縁性樹脂材料によって構成された樹脂成形体である。 As an example, the commutator 30 is a molded commutator. The commutator 30 has a configuration in which a plurality of commutator segments 31 are molded with molding resin. In this case, the plurality of commutator segments 31 are embedded in the molding resin so that their surfaces are exposed. The mold resin is the commutator body. The mold resin is a substantially tubular member having a through hole into which the rotary shaft 21 is inserted. The mold resin is, for example, a resin molded body made of an insulating resin material such as a thermosetting resin.
 整流子30には、少なくとも1つのブラシ40が接触している。具体的には、ブラシ40の先端部が整流子30の整流子片31に接している。ブラシ40は、回転軸21の回転により整流子30が回転するため、全ての整流子片31と順次接触し続ける。 At least one brush 40 is in contact with the commutator 30 . Specifically, the tip of the brush 40 is in contact with the commutator piece 31 of the commutator 30 . Since the commutator 30 rotates as the rotating shaft 21 rotates, the brush 40 keeps contacting all the commutator segments 31 sequentially.
 ブラシ40は、コイル22に電力を供給するための給電ブラシである。具体的には、ブラシ40は、整流子30の整流子片31に接することでコイル22に電力を供給する。ブラシ40は、ピグテール線によってモータケース70に固定された電源端子と接続されている。ブラシ40が整流子片31に接触することで、電源端子からブラシ40に供給される電機子電流が整流子片31を介してコイル22に流れる。一例として、ブラシ40は、カーボンによって構成された導電性を有するカーボンブラシである。ブラシ40は、長尺状の実質的な直方体である。 The brush 40 is a power supply brush for supplying power to the coil 22. Specifically, the brushes 40 supply power to the coils 22 by contacting the commutator segments 31 of the commutator 30 . The brush 40 is connected to a power terminal fixed to the motor case 70 by a pigtail wire. When the brushes 40 come into contact with the commutator segments 31 , the armature current supplied from the power supply terminals to the brushes 40 flows through the coils 22 via the commutator segments 31 . As an example, the brush 40 is a conductive carbon brush made of carbon. The brush 40 is an elongated substantially rectangular parallelepiped.
 本実施の形態において、ブラシ40は、複数設けられている。この場合、ブラシ40は、回転子20の回転方向に沿って等間隔に複数設けられているとよい。本実施の形態において、ブラシ40は、2つ設けられている。2つのブラシ40は、整流子30を挟むように対向して配置されている。つまり、図3に示すように、2つのブラシ40は、回転子20の回転方向に沿って180度間隔で配置されている。 In this embodiment, a plurality of brushes 40 are provided. In this case, it is preferable that a plurality of brushes 40 are provided at regular intervals along the rotation direction of the rotor 20 . In this embodiment, two brushes 40 are provided. The two brushes 40 are arranged to face each other with the commutator 30 interposed therebetween. That is, as shown in FIG. 3, the two brushes 40 are arranged at intervals of 180 degrees along the rotation direction of the rotor 20. As shown in FIG.
 ブラシ40は、ブラシバネ50からの押圧力を受けて、整流子30の整流子片31と常に接している。つまり、ブラシ40は、ブラシバネ50によって整流子30に押し付けられている。このように、ブラシ40は、ブラシバネ50からの押圧力を受けて整流子30に摺接する。ブラシ40は、整流子30との摩耗により回転軸21が延伸する軸心C方向とは交差する方向(径方向)に移動可能に配置されている。 The brushes 40 are always in contact with the commutator segments 31 of the commutator 30 under pressure from the brush springs 50 . That is, the brushes 40 are pressed against the commutator 30 by the brush springs 50 . In this manner, the brushes 40 receive the pressing force from the brush springs 50 and come into sliding contact with the commutator 30 . The brush 40 is arranged so as to be movable in a direction (radial direction) intersecting with the axial center C direction along which the rotating shaft 21 extends due to wear with the commutator 30 .
 ブラシバネ50は、ブラシ40に押圧を付与することでブラシ40を整流子30に押し当てている。具体的には、ブラシバネ50は、バネ弾性力(バネ復元力)によってブラシ40に押圧(バネ圧)を付与し、ブラシ40を整流子30に向けて付勢している。ブラシバネ50は、ブラシ40ごとに設けられている。本実施の形態において、2つのブラシ40を用いるので、ブラシバネ50も2つ用いている。 The brush spring 50 presses the brush 40 against the commutator 30 by applying pressure to the brush 40 . Specifically, the brush spring 50 applies pressure (spring pressure) to the brush 40 by spring elastic force (spring restoring force) to urge the brush 40 toward the commutator 30 . A brush spring 50 is provided for each brush 40 . In this embodiment, since two brushes 40 are used, two brush springs 50 are also used.
 ブラシバネ50は、定荷重バネである。したがって、ブラシバネ50は、ブラシ40に均一な荷重を付与している。つまり、定荷重バネであるブラシバネ50は、ブラシ40に均一な押圧力を付与している。 The brush spring 50 is a constant force spring. Therefore, the brush spring 50 applies a uniform load to the brush 40 . That is, the brush spring 50, which is a constant force spring, applies a uniform pressing force to the brush 40. As shown in FIG.
 定荷重バネであるブラシバネ50は、帯状の線材により構成されている。定荷重バネであるブラシバネ50は、渦巻バネである。定荷重バネであるブラシバネ50は、帯状の線材が渦巻状に巻回された渦巻部51(コイル部)を有する。定荷重バネであるブラシバネ50は、例えば、金属材料等からなる1枚の帯板状の線材によって構成されている。 The brush spring 50, which is a constant load spring, is made of a strip-shaped wire rod. The brush spring 50, which is a constant force spring, is a spiral spring. A brush spring 50, which is a constant force spring, has a spiral portion 51 (coil portion) in which a strip-shaped wire rod is spirally wound. The brush spring 50, which is a constant force spring, is made of, for example, a strip-shaped wire rod made of a metal material or the like.
 具体的には、定荷重バネであるブラシバネ50は、長尺状かつ帯状の金属板によって構成されている。したがって、渦巻部51は、定荷重バネにおいて、長尺状かつ帯状の金属板が一方向のみに渦巻状に複数回巻かれた部分である。定荷重バネであるブラシバネ50は、渦巻状の渦巻部51から線材の一方の端部を引き延ばすことで、元の渦巻状の状態に戻る力(バネ復元力)が発生する。 Specifically, the brush spring 50, which is a constant force spring, is made of a long strip-shaped metal plate. Therefore, the spiral portion 51 is a portion of the constant force spring in which a long strip-shaped metal plate is spirally wound multiple times only in one direction. The brush spring 50, which is a constant load spring, generates a force (spring restoring force) to return to the original spiral state by extending one end of the wire rod from the spiral portion 51 of the spiral.
 ブラシバネ50は、渦巻部51によってブラシ40を整流子30に押し付けている。具体的には、ブラシバネ50は、渦巻部51がブラシ40の後端部に接触することで、渦巻部51が有するバネ復元力によってブラシ40に荷重を付与している。この場合、ブラシバネ50によりブラシ40が整流子30を押圧する荷重は、回転子20の回転中に発生するラジアル荷重に対して1倍以上であるとよい。 The brush spring 50 presses the brush 40 against the commutator 30 with the spiral portion 51 . Specifically, the brush spring 50 applies a load to the brush 40 by the spring restoring force of the spiral portion 51 when the spiral portion 51 contacts the rear end portion of the brush 40 . In this case, the load with which the brush springs 50 press the brushes 40 against the commutator 30 is preferably at least 1 time the radial load generated during the rotation of the rotor 20 .
 ブラシバネ50は、渦巻部51の渦巻軸と回転軸21が延伸する軸心C方向とが直交するように配置されている。つまり、渦巻部51が縦置きとなるようにブラシバネ50が設置されている。渦巻部51の渦巻面(コイル面)は、回転軸21が含む軸心Cと平行になっている。 The brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the axial center C direction along which the rotating shaft 21 extends are perpendicular to each other. In other words, the brush spring 50 is installed such that the spiral portion 51 is placed vertically. A spiral surface (coil surface) of the spiral portion 51 is parallel to an axis C included in the rotating shaft 21 .
 モータケース70は、固定子10、回転子20のコイル22、整流子30、ブラシ40、ブラシバネ50及び軸受60を収納している。上述のとおり、モータケース70は、第1部材71、第2部材72、第3部材73及び第4部材74を有する。第1部材71、第2部材72、第3部材73及び第4部材74は、冷間圧延鋼板(Steel Plate Cold Commercial、SPC材)等の鉄系材料又はアルミニウム等の金属材料によって構成されていてもよいし、絶縁性樹脂材料によって構成されていてもよい。本実施の形態において、第1部材71、第2部材72及び第3部材73は、金属材料によって構成されている。第3部材73は、絶縁性樹脂材料によって構成されている。 The motor case 70 houses the stator 10, the coils 22 of the rotor 20, the commutator 30, the brushes 40, the brush springs 50 and the bearings 60. The motor case 70 has the first member 71 , the second member 72 , the third member 73 and the fourth member 74 as described above. The first member 71, the second member 72, the third member 73, and the fourth member 74 are made of a ferrous material such as a cold-rolled steel plate (Steel Plate Cold Commercial, SPC material) or a metal material such as aluminum. Alternatively, it may be made of an insulating resin material. In this embodiment, the first member 71, the second member 72 and the third member 73 are made of metal material. The third member 73 is made of an insulating resin material.
 第1部材71は、電動機1の外郭の一部をなす外郭部材である。第1部材71は、円形の底部と薄い円筒状の側壁部とを有する扁平型の実質的に有底筒状に形成されている。第1部材71は、固定子10及び軸受60を保持するブラケットとしても機能する。 The first member 71 is an outer shell member forming part of the outer shell of the electric motor 1 . The first member 71 is formed in a flat, substantially bottomed cylindrical shape having a circular bottom and a thin cylindrical side wall. The first member 71 also functions as a bracket holding the stator 10 and the bearing 60 .
 固定子10は、第1部材71の底部に固定されている。軸受60は、第1部材71の底部の中央に設けられた凹部71aに固定されている。具体的には、軸受60は、第1部材71(ブラケット)の凹部71aに圧入されている。軸受60には、回転軸21が圧入されている。つまり、軸受60は、内輪も外輪も圧入された状態になっている。この場合、軸受60を第1部材71の凹部71aに圧入することで軸受60を第1部材71に固定している。その後に、整流子30及び樹脂モールドされたコイル22が取り付けられた回転軸21を、第1部材71に固定された軸受60に圧入している。 The stator 10 is fixed to the bottom of the first member 71 . The bearing 60 is fixed in a recess 71 a provided in the center of the bottom of the first member 71 . Specifically, the bearing 60 is press-fitted into the recess 71a of the first member 71 (bracket). The rotating shaft 21 is press-fitted into the bearing 60 . That is, the bearing 60 is in a state in which both the inner ring and the outer ring are press-fitted. In this case, the bearing 60 is fixed to the first member 71 by press-fitting the bearing 60 into the concave portion 71 a of the first member 71 . After that, the rotary shaft 21 to which the commutator 30 and the resin-molded coil 22 are attached is press-fitted into the bearing 60 fixed to the first member 71 .
 第2部材72は、薄板状のプレート部材である。第2部材72は、回転軸21の軸心C方向において、第1部材71と第3部材73との間に配置されている。固定子10と回転子20のコイル22とは、第1部材71と第2部材72との間に配置される。 The second member 72 is a thin plate member. The second member 72 is arranged between the first member 71 and the third member 73 in the axial center C direction of the rotating shaft 21 . The stator 10 and the coils 22 of the rotor 20 are arranged between the first member 71 and the second member 72 .
 第3部材73は、電動機1の外郭の一部をなす外郭部材である。第3部材73は、円形の底部と薄い円筒状の側壁部とを有する扁平型の実質的に有底筒状に形成されている。第3部材73の底部の中央には、貫通孔が形成されている。 The third member 73 is an outer shell member forming part of the outer shell of the electric motor 1 . The third member 73 is formed in a flat, substantially bottomed cylindrical shape having a circular bottom and a thin cylindrical side wall. A through hole is formed in the center of the bottom of the third member 73 .
 第3部材73は、ブラシ40を保持するブラシホルダとしても機能する。具体的には、第3部材73には、ブラシ40が収納されるブラシ収納部73aが設けられている。 The third member 73 also functions as a brush holder that holds the brush 40. Specifically, the third member 73 is provided with a brush storage portion 73a in which the brush 40 is stored.
 第3部材73のブラシ収納部73aには、ブラシバネ50も収納されている。具体的には、ブラシバネ50は、渦巻部51がブラシ40の後端部の後方に位置するようにブラシ収納部73aに配置される。この場合、ブラシバネ50の外側端部52は、ブラシ40の側方を通って整流子30に向けて引き出されて、ブラシ収納部73aの前方開口部近傍に固定されている。具体的には、図4に示すように、ブラシバネ50の外側端部52には貫通孔52aが設けられている。第3部材73には係止部73bとして鍵状の突起が設けられている。ブラシバネ50の外側端部52に形成された貫通孔52aを係止部73bに係止させることで、ブラシバネ50の外側端部52が第3部材73に固定されている。 The brush spring 50 is also housed in the brush housing portion 73a of the third member 73. Specifically, the brush spring 50 is arranged in the brush housing portion 73 a so that the spiral portion 51 is positioned behind the rear end portion of the brush 40 . In this case, the outer end portion 52 of the brush spring 50 is pulled out toward the commutator 30 through the side of the brush 40 and fixed near the front opening of the brush housing portion 73a. Specifically, as shown in FIG. 4, the outer end portion 52 of the brush spring 50 is provided with a through hole 52a. A key-shaped protrusion is provided on the third member 73 as a locking portion 73b. The outer end portion 52 of the brush spring 50 is fixed to the third member 73 by engaging the through hole 52a formed in the outer end portion 52 of the brush spring 50 with the engaging portion 73b.
 さらに、ブラシ収納部73aに収納されたブラシ40を覆うようにカバープレート80が設けられている。カバープレート80は、ブラシ収納部73aに収納されたブラシ40及びブラシバネ50を覆っている。カバープレート80は、ブラシ40の摩耗とともに整流子30側に向かってブラシバネ50の渦巻部51が移動する際に、渦巻部51をガイドする機能も有する。 Further, a cover plate 80 is provided so as to cover the brushes 40 housed in the brush housing portion 73a. The cover plate 80 covers the brushes 40 and the brush springs 50 housed in the brush housing portion 73a. The cover plate 80 also has a function of guiding the spiral portion 51 of the brush spring 50 when the spiral portion 51 moves toward the commutator 30 as the brush 40 wears.
 第4部材74は、電動機1の外郭の一部をなす外郭部材である。第4部材74は、薄板状のプレート部材である。第4部材74は、第3部材73の貫通孔を覆うように設けられている。第4部材74と第3部材73とは、別体ではなく、一体であってもよい。 The fourth member 74 is an outer shell member forming part of the outer shell of the electric motor 1 . The fourth member 74 is a thin plate member. The fourth member 74 is provided so as to cover the through hole of the third member 73 . The fourth member 74 and the third member 73 may be integrated instead of separate members.
 以上のように構成される電動機1では、ブラシ40に供給される電流が電機子電流(駆動電流)として整流子30の整流子片31を介して回転子20のコイル22に流れる。これにより、回転子20(コイル22)に磁束が発生する。回転子20に生じた磁束と固定子10から生じる磁束との相互作用によって生じた磁気力が回転子20を回転させるトルクとなる。このとき、整流子30の整流子片31とブラシ40とが接する際の位置関係によって電流が流れる方向が切り替えられる。このように、電流が流れる方向が切り替えられることで、固定子10と回転子20との間に発生する磁力の反発力と吸引力とで一定方向の回転力が生成され、回転子20が回転軸21を中心として回転する。 In the electric motor 1 configured as described above, the current supplied to the brushes 40 flows through the coils 22 of the rotor 20 via the commutator segments 31 of the commutator 30 as armature current (driving current). As a result, magnetic flux is generated in the rotor 20 (coil 22). The magnetic force generated by the interaction between the magnetic flux generated in the rotor 20 and the magnetic flux generated from the stator 10 becomes the torque that rotates the rotor 20 . At this time, the direction in which the current flows is switched depending on the positional relationship when the commutator segments 31 of the commutator 30 and the brushes 40 are in contact with each other. In this way, by switching the direction of current flow, the repulsive force and the attractive force of the magnetic force generated between the stator 10 and the rotor 20 generate a rotational force in a fixed direction, causing the rotor 20 to rotate. It rotates about axis 21 .
 回転子20が回転すると、整流子30に接触するブラシ40の前端部が摩耗する。このとき、ブラシ40は、定荷重バネであるブラシバネ50から常に一定の押圧力(荷重)を受けて整流子30に押し付けられている。これにより、ブラシ40は、整流子片31との摩擦によってブラシ40の前端部が摩耗していくにしたがって、整流子30に向かって摺動することになる。このとき、ブラシバネ50を構成する線材は、ブラシ40が短くなるにつれて巻かれていくことになる。つまり、ブラシバネ50の渦巻部51が外側端部52に近づいていくことになる。 When the rotor 20 rotates, the front ends of the brushes 40 in contact with the commutator 30 wear out. At this time, the brush 40 is always pressed against the commutator 30 with a constant pressing force (load) from the brush spring 50, which is a constant load spring. As a result, the brush 40 slides toward the commutator 30 as the front end of the brush 40 wears due to friction with the commutator segments 31 . At this time, the wire constituting the brush spring 50 is wound as the brush 40 becomes shorter. That is, the spiral portion 51 of the brush spring 50 approaches the outer end portion 52 .
 このように、本実施の形態では、コアを有さないコアレス回転子である回転子20を用いた電動機1において、ブラシ40を整流子に押し当てるためのブラシバネ50として定荷重バネを用いている。 As described above, in the present embodiment, in the electric motor 1 using the rotor 20 which is a coreless rotor having no core, constant force springs are used as the brush springs 50 for pressing the brushes 40 against the commutator. .
 この構成により、軸受60として1つの玉軸受を用いているにもかかわらず、回転子20の回転軸21を安定して支持することができる。この点について、以下説明する。 With this configuration, the rotating shaft 21 of the rotor 20 can be stably supported even though one ball bearing is used as the bearing 60 . This point will be described below.
 ブラシバネ50としてトーションバネ又は圧縮コイルバネを用いた場合、回転軸21を支持する軸受60として1つの玉軸受を用いると、玉軸受は回転軸21との摺動面積が小さいため、ブラシ40が摩耗していったときにブラシバネ50によって整流子30を押圧する荷重が低下する。この結果、回転子20の回転時に回転軸21の軸振れが発生し、回転軸21の安定性が低下する。 When a torsion spring or a compression coil spring is used as the brush spring 50, if one ball bearing is used as the bearing 60 that supports the rotating shaft 21, the brush 40 is worn because the ball bearing has a small sliding area with the rotating shaft 21. The load that presses the commutator 30 due to the brush spring 50 is reduced. As a result, when the rotor 20 rotates, the rotating shaft 21 is shaken, and the stability of the rotating shaft 21 is lowered.
 これに対して、ブラシバネ50として定荷重バネを用いることで、ブラシ40が摩耗していってもブラシバネ50によってブラシ40には常に一定の押圧が付与される。ブラシバネ50の押圧によって、ブラシ40が整流子30に与える面圧が一定になっている。言い換えれば、ブラシ40が摩耗していってもブラシバネ50によって整流子30を押圧する荷重が低下しない。この結果、回転子20の回転時に回転軸21の軸振れが発生することを抑制することができる。よって、回転軸21の安定性が向上する。 On the other hand, by using a constant load spring as the brush spring 50, the brush spring 50 always applies a constant pressure to the brush 40 even if the brush 40 wears. Due to the pressure of the brush spring 50, the surface pressure applied by the brush 40 to the commutator 30 is constant. In other words, even if the brush 40 wears, the load pressing the commutator 30 by the brush spring 50 does not decrease. As a result, it is possible to suppress the occurrence of axial vibration of the rotating shaft 21 when the rotor 20 rotates. Therefore, the stability of the rotating shaft 21 is improved.
 このように、本実施の形態に係る電動機1によれば、コアレス回転子の回転軸21を片持ちで支持する軸受構造を実現することができる。また、1つの玉軸受であっても、回転軸21を安定して支持することができる。これにより、複数の軸受を用いる場合と比べて、電動機1の薄型化及び高効率化を図ることができる。例えば、回転軸の軸振れを発生させないようにする場合、圧縮バネを用いた従来のコアレスフラットモータでは、少なくとも厚さ4mmの玉軸受を2つ用いなければならなかった。しかし、本実施の形態では、厚さが6mmの玉軸受であれば1つの玉軸受で回転軸の軸振れが生じなかった。 Thus, according to the electric motor 1 according to the present embodiment, it is possible to realize a bearing structure that supports the rotating shaft 21 of the coreless rotor in a cantilever manner. Further, even with one ball bearing, the rotary shaft 21 can be stably supported. As a result, the electric motor 1 can be made thinner and more efficient than when a plurality of bearings are used. For example, in a conventional coreless flat motor using a compression spring, two ball bearings with a thickness of at least 4 mm had to be used in order to prevent the occurrence of axial runout of the rotating shaft. However, in the present embodiment, if the ball bearing had a thickness of 6 mm, no axial run-out of the rotating shaft occurred with a single ball bearing.
 本実施の形態に係る電動機1において、軸受60は、深溝玉軸受である。  In the electric motor 1 according to the present embodiment, the bearing 60 is a deep groove ball bearing.
 深溝玉軸受は、玉軸受の中でも安価である。したがって、軸受60として深溝玉軸受を用いることで、薄型化及び高効率化を図りながら、低コストの電動機1を実現することができる。 Deep groove ball bearings are inexpensive among ball bearings. Therefore, by using a deep groove ball bearing as the bearing 60, the electric motor 1 can be realized at a low cost while achieving a reduction in thickness and an increase in efficiency.
 本実施の形態に係る電動機1において、ブラシ40は、回転子20の回転方向に沿って等間隔に複数設けられている。具体的には、2つのブラシ40が回転子20の回転方向に沿って180度間隔で配置されている。つまり、2つのブラシ40が整流子30を挟むように対向して配置されている。 In the electric motor 1 according to the present embodiment, a plurality of brushes 40 are provided at regular intervals along the rotation direction of the rotor 20 . Specifically, two brushes 40 are arranged at intervals of 180 degrees along the rotation direction of the rotor 20 . That is, the two brushes 40 are arranged to face each other with the commutator 30 interposed therebetween.
 このように、ブラシ40を回転子20の回転方向に沿って等間隔に複数設けることで、ブラシバネ50によってブラシ40が整流子30を押圧する荷重は、回転子20の回転方向において均等になる。これにより、回転軸21の軸振れが発生することをさらに抑制することができる。 By providing a plurality of brushes 40 at equal intervals along the direction of rotation of the rotor 20 in this way, the load of the brushes 40 pressing the commutator 30 by the brush springs 50 becomes uniform in the direction of rotation of the rotor 20 . Thereby, it is possible to further suppress the occurrence of axial vibration of the rotating shaft 21 .
 この場合、ブラシバネ50によりブラシ40が整流子30を押圧する荷重は、回転子20の回転中に発生するラジアル荷重に対して1倍以上であるとよい。 In this case, the load with which the brush springs 50 press the brushes 40 against the commutator 30 should be at least 1 time the radial load generated during the rotation of the rotor 20 .
 これにより、回転軸21の軸振れが発生することを効果的に抑制することができる。 As a result, it is possible to effectively suppress the occurrence of axial vibration of the rotating shaft 21 .
 本実施の形態に係る電動機1において、整流子30と軸受60とは、回転軸21におけるコイル22の位置を基準にして、回転軸21の軸心C方向において反対側に位置している。 In the electric motor 1 according to the present embodiment, the commutator 30 and the bearing 60 are positioned on opposite sides of the rotating shaft 21 in the axial center C direction with reference to the position of the coil 22 on the rotating shaft 21 .
 この構成により、軸受60が1つの玉軸受であっても、整流子30が取り付けられた回転軸21を安定して保持することができる。したがって、回転軸21の軸振れが発生することを効果的に抑制することができる。よって、回転軸21の安定性をさらに向上させることができる。 With this configuration, even if the bearing 60 is a single ball bearing, it is possible to stably hold the rotating shaft 21 to which the commutator 30 is attached. Therefore, it is possible to effectively suppress the occurrence of axial vibration of the rotating shaft 21 . Therefore, the stability of the rotating shaft 21 can be further improved.
 以上のように、本実施の形態の電動機1は、軸心方向に延伸する回転軸21及びコイル22を有する回転子20と、回転軸21に取り付けられた整流子30と、整流子30に摺接する少なくとも1つのブラシ40と、少なくとも1つのブラシ40を整流子30に押し当てるためのブラシバネ50と、回転軸21を支持する1つの軸受60と、を備え、軸受60は、玉軸受であり、ブラシバネ50は、定荷重バネである。 As described above, the electric motor 1 of the present embodiment includes the rotor 20 having the rotating shaft 21 extending in the axial direction and the coils 22, the commutator 30 attached to the rotating shaft 21, and the commutator 30 sliding. It comprises at least one brush 40 in contact, a brush spring 50 for pressing the at least one brush 40 against the commutator 30, and one bearing 60 for supporting the rotating shaft 21, wherein the bearing 60 is a ball bearing, Brush spring 50 is a constant force spring.
 回転子20は、コアを有さないコアレス回転子であってもよい。 The rotor 20 may be a coreless rotor that does not have a core.
 これにより、1つの玉軸受であっても、回転軸を安定して支持することができる。 As a result, even a single ball bearing can stably support the rotating shaft.
 また、コイル22は、各々が扁平状に巻回された複数の巻線コイルであり、複数の巻線コイルは、各々のコイル面が軸心方向を向く姿勢で、回転軸21を囲むように配置されていることが好ましい。 In addition, the coil 22 is a plurality of winding coils each wound in a flat shape. is preferably arranged.
 また、電動機1は、さらに、固定子10として磁石を備え、固定子10とコイル22とは、前記軸心方向において対向していることが好ましい。 Further, it is preferable that the electric motor 1 further includes a magnet as the stator 10, and the stator 10 and the coil 22 face each other in the axial direction.
 電動送風機90は、電動機1と、電動機1の回転軸21に取り付けられた回転ファン91と、を備える。回転ファン91は、回転軸21における軸受60及び整流子30のうち軸受60側の端部に取り付けられている。 The electric blower 90 includes an electric motor 1 and a rotating fan 91 attached to the rotating shaft 21 of the electric motor 1 . The rotating fan 91 is attached to the bearing 60 side end of the rotating shaft 21 and the commutator 30 .
 (変形例)
 以上、本開示に係る電動機1及び電動送風機について、実施の形態に基づいて説明した。しかし、本開示は、上記実施の形態に限定されるものではない。
(Modification)
The electric motor 1 and the electric blower according to the present disclosure have been described above based on the embodiment. However, the present disclosure is not limited to the above embodiments.
 例えば、上記実施の形態において、ブラシバネ50は、渦巻部51の渦巻軸と回転軸21の軸心C方向とが直交するように配置されている。しかし、これに限らない。図5は、変形例に係る電動機1Aのブラシバネ50の配置を示す図である。例えば、図5に示される電動機1Aのように、ブラシバネ50は、渦巻部51の渦巻軸と回転軸21の軸心C方向とが平行になるように配置されていてもよい。つまり、渦巻部51が横置きとなるようにブラシバネ50が設置されていてもよい。 For example, in the above embodiment, the brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the direction of the axis C of the rotating shaft 21 are perpendicular to each other. However, it is not limited to this. FIG. 5 is a diagram showing the arrangement of the brush springs 50 of the electric motor 1A according to the modification. For example, as in the electric motor 1A shown in FIG. 5, the brush spring 50 may be arranged such that the spiral axis of the spiral portion 51 and the direction of the axis C of the rotating shaft 21 are parallel. In other words, the brush spring 50 may be installed so that the spiral portion 51 is placed horizontally.
 ただし、図2に示されるように、ブラシバネ50は、渦巻部51の渦巻軸と回転軸21の軸心Cとが直交するように(つまり、渦巻部51が縦置きとなるように)配置されている方がよい。 However, as shown in FIG. 2, the brush spring 50 is arranged so that the spiral axis of the spiral portion 51 and the axis C of the rotating shaft 21 are perpendicular to each other (that is, the spiral portion 51 is arranged vertically). Better to be
 これは、定荷重バネであるブラシバネ50を配置する場合、ブラシバネ50を構成する線材をブラシ40の側方を通るように引き出し、ブラシバネ50がオフセットした状態で配置されるからである。このようにブラシバネ50がオフセットした状態であると、ブラシ40の摩耗により渦巻部51が整流子30側に移動していったときに、渦巻部51によるブラシ40への荷重方向は、ブラシ40の長手方向と完全に平行になるのではなく、外側端部52側にやや傾くことになる。この場合、図5に示すように、渦巻部51が横置きである場合、渦巻部51によるブラシ40への荷重方向が外側端部52側に傾いていると、その荷重はラジアル方向に対して作用し、ブラシバネ50によってブラシ40が整流子30を押圧する荷重が、回転軸21の軸心Cの方向に対して直交する方向からずれて、回転軸21の安定性が低下する。 This is because when the brush spring 50, which is a constant force spring, is arranged, the wire constituting the brush spring 50 is pulled out so as to pass through the side of the brush 40, and the brush spring 50 is arranged in an offset state. When the brush spring 50 is in such an offset state, when the spiral portion 51 moves toward the commutator 30 due to wear of the brush 40, the direction of the load applied to the brush 40 by the spiral portion 51 is changed to that of the brush 40. Rather than being completely parallel to the longitudinal direction, it is slightly inclined toward the outer end 52 side. In this case, as shown in FIG. 5, when the spiral portion 51 is placed horizontally and the direction of the load applied to the brush 40 by the spiral portion 51 is inclined toward the outer end portion 52, the load is applied to the radial direction. As a result, the load by which the brush spring 50 presses the brushes 40 against the commutator 30 deviates from the direction orthogonal to the direction of the axis C of the rotating shaft 21, and the stability of the rotating shaft 21 decreases.
 一方、図2に示すように、渦巻部51が縦置きである場合、渦巻部51によるブラシ40への荷重方向が外側端部52側に傾いていても、その荷重はスラスト方向には作用するものの、ラジアル方向に対しては作用しない。つまり、ブラシバネ50によるブラシ40への荷重方向の傾きは、回転子20の回転方向には影響がない。このため、ブラシバネ50がオフセットした状態であっても、回転軸21の安定性には影響しない。したがって、ブラシバネ50は、渦巻部51が横置き(図5)ではなく、渦巻部51が縦置き(図2)となるように配置する方が、回転時に回転軸21は軸振れすることなく安定して回転することになる。つまり、渦巻部51が縦置きとなるようにブラシバネ50を配置することで、軸受60として1つの玉軸受を用いたとしても、回転軸21を安定して支持することができる。 On the other hand, as shown in FIG. 2, when the spiral portion 51 is placed vertically, even if the direction of the load applied to the brush 40 by the spiral portion 51 is inclined toward the outer end portion 52, the load acts in the thrust direction. However, it does not work in the radial direction. In other words, the inclination of the direction of load applied to the brushes 40 by the brush springs 50 does not affect the direction of rotation of the rotor 20 . Therefore, even if the brush spring 50 is in an offset state, the stability of the rotating shaft 21 is not affected. Therefore, when the brush spring 50 is arranged so that the spiral portion 51 is arranged vertically (FIG. 2) rather than horizontally (FIG. 5), the rotation shaft 21 is stable without axial vibration during rotation. and rotate. That is, by arranging the brush spring 50 so that the spiral portion 51 is vertical, even if one ball bearing is used as the bearing 60, the rotation shaft 21 can be stably supported.
 上記実施の形態において、電動機1は、固定子10及び回転子20がコアを有していないコアレスモータである。しかし、これに限らない。例えば、電動機1は、固定子10及び回転子20がコアを有する電動機であってもよい。 In the above embodiment, the electric motor 1 is a coreless motor in which the stator 10 and rotor 20 do not have cores. However, it is not limited to this. For example, the electric motor 1 may be an electric motor in which the stator 10 and the rotor 20 have cores.
 上記実施の形態において、固定子10は、永久磁石のみによって構成されている。しかし、これに限らない。例えば、固定子10は、永久磁石と鉄心とによって構成された固定子であってもよい。固定子10は、永久磁石を用いずに固定子巻線と鉄心とからなる電機子であってもよい。 In the above embodiment, the stator 10 is composed only of permanent magnets. However, it is not limited to this. For example, the stator 10 may be a stator composed of permanent magnets and an iron core. The stator 10 may be an armature composed of stator windings and an iron core without using permanent magnets.
 上記実施の形態において、電動機1は、厚みが外径より小さい外形サイズの扁平型のフラットモータである。しかし、これに限らない。本開示の技術は、例えば、厚みが外径よりも大きい外形サイズの円筒状の筐体を有する寸胴型の電動機等にも適用することができる。 In the above-described embodiment, the electric motor 1 is a flat motor with an outer size whose thickness is smaller than its outer diameter. However, it is not limited to this. The technology of the present disclosure can also be applied to, for example, a cylindrical electric motor having a cylindrical housing with an outer size whose thickness is greater than its outer diameter.
 上記実施の形態において、固定子10及び回転子20が発生する主磁束の向きは、回転軸21の軸心C方向である。しかし、これに限らない。具体的には、固定子10及び回転子20が発生する主磁束の向きは、回転軸21の軸心C方向と直交する方向(回転軸21の回転の径方向)であってもよい。例えば、本開示の技術は、回転子20が固定子10の内側に配置されたインナーロータ型のモータに適用することもできる。 In the above embodiment, the direction of the main magnetic flux generated by the stator 10 and the rotor 20 is the axial center C direction of the rotating shaft 21 . However, it is not limited to this. Specifically, the direction of the main magnetic flux generated by the stator 10 and the rotor 20 may be a direction orthogonal to the axial center C direction of the rotating shaft 21 (radial direction of rotation of the rotating shaft 21). For example, the technology of the present disclosure can also be applied to an inner rotor type motor in which the rotor 20 is arranged inside the stator 10 .
 上記実施の形態において、電動機1は、電動送風機の一例として車両用の冷却ファンに適用する場合を例示した。しかし、これに限らない。本開示の技術は、例えば、電気掃除機等に搭載される電動送風機等、車両用以外の電動送風機にも適用することができる。本開示の技術は、電動送風機に用いられる電動機以外の電動機にも適用することができる。つまり、本開示の技術は、種々の電気機器に搭載される電動機に適用することができる。 In the above embodiment, the electric motor 1 is applied to a vehicle cooling fan as an example of an electric blower. However, it is not limited to this. The technology of the present disclosure can also be applied to electric blowers other than those for vehicles, such as electric blowers mounted on electric vacuum cleaners, for example. The technology of the present disclosure can also be applied to electric motors other than electric motors used in electric blowers. In other words, the technology of the present disclosure can be applied to electric motors mounted on various electric devices.
 その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, forms obtained by applying various modifications to the above embodiments that a person skilled in the art can think of, or realized by arbitrarily combining the components and functions of each embodiment within the scope of the present disclosure. Also included in the present disclosure is the form of
 本開示の技術は、自動車等の電装分野及び家庭用電気機器分野の製品をはじめとして、電動機が搭載される種々の製品に広く利用することができる。 The technology of the present disclosure can be widely used in various products equipped with electric motors, including products in the field of electric equipment such as automobiles and the field of household electric appliances.
 1、1A 電動機
 10 固定子
 20 回転子
 21 回転軸
 21a 第1端部
 21b 第2端部
 22 コイル
 23 モールド樹脂
 30 整流子
 31 整流子片
 40 ブラシ
 50 ブラシバネ
 51 渦巻部
 52 外側端部
 52a 貫通孔
 60 軸受
 70 モータケース
 71 第1部材
 71a 凹部
 72 第2部材
 73 第3部材
 73a ブラシ収納部
 73b 係止部
 74 第4部材
 80 カバープレート
 90 電動送風機
 91 回転ファン
Reference Signs List 1, 1A Electric motor 10 Stator 20 Rotor 21 Rotating shaft 21a First end 21b Second end 22 Coil 23 Molded resin 30 Commutator 31 Commutator piece 40 Brush 50 Brush spring 51 Spiral part 52 Outer end 52a Through hole 60 Bearing 70 Motor case 71 First member 71a Recessed portion 72 Second member 73 Third member 73a Brush housing portion 73b Locking portion 74 Fourth member 80 Cover plate 90 Electric blower 91 Rotating fan

Claims (11)

  1.  軸心方向に延伸する回転軸及びコイルを有する回転子と、
     前記回転軸に取り付けられた整流子と、
     前記整流子に摺接する少なくとも1つのブラシと、
     前記少なくとも1つのブラシを前記整流子に押し当てるためのブラシバネと、
     前記回転軸を支持する1つの軸受と、を備え、
     前記軸受は、玉軸受であり、
     前記ブラシバネは、定荷重バネである、
     電動機。
    a rotor having a rotating shaft and coils extending in the axial direction;
    a commutator attached to the rotating shaft;
    at least one brush in sliding contact with the commutator;
    a brush spring for pressing the at least one brush against the commutator;
    and one bearing that supports the rotating shaft,
    the bearing is a ball bearing;
    The brush spring is a constant force spring,
    Electric motor.
  2.  前記回転子は、コアを有さないコアレス回転子である、
     請求項1に記載の電動機。
    The rotor is a coreless rotor without a core,
    The electric motor according to claim 1.
  3.  前記軸受は、深溝玉軸受である、
     請求項1又は2に記載の電動機。
    The bearing is a deep groove ball bearing,
    The electric motor according to claim 1 or 2.
  4.  前記少なくとも1つのブラシは、前記回転子の回転方向に沿って等間隔に複数設けられている、
     請求項1~3のいずれか一項に記載の電動機。
    A plurality of the at least one brush are provided at regular intervals along the direction of rotation of the rotor,
    The electric motor according to any one of claims 1 to 3.
  5.  前記少なくとも1つのブラシは、2つであり、
     前記少なくとも1つのブラシは、前記整流子を挟むように対向して配置されている、
     請求項4に記載の電動機。
    the at least one brush is two;
    The at least one brush is arranged opposite to sandwich the commutator.
    The electric motor according to claim 4.
  6.  前記ブラシバネは、金属板が渦巻状に巻かれた渦巻部を有し、
     前記ブラシバネは、前記渦巻部の渦巻軸と前記軸心方向とが直交するように配置されている、
     請求項1~5のいずれか1項に記載の電動機。
    The brush spring has a spiral portion in which a metal plate is spirally wound,
    The brush spring is arranged such that the spiral axis of the spiral portion and the axial direction are perpendicular to each other,
    The electric motor according to any one of claims 1 to 5.
  7.  前記整流子と前記軸受とは、前記回転軸における前記コイルの位置を基準にして、前記軸心方向において反対側に位置している、
     請求項1~6のいずれか1項に記載の電動機。
    The commutator and the bearing are positioned on opposite sides in the axial direction with respect to the position of the coil on the rotating shaft,
    The electric motor according to any one of claims 1-6.
  8.  前記ブラシバネにより前記少なくとも1つのブラシが前記整流子を押圧する荷重は、前記回転子の回転中に発生するラジアル荷重に対して1倍以上である、
     請求項1~7のいずれか1項に記載の電動機。
    The load with which the at least one brush presses the commutator due to the brush spring is 1 or more times the radial load generated during rotation of the rotor.
    The electric motor according to any one of claims 1-7.
  9.  前記コイルは、各々が扁平状に巻回された複数の巻線コイルであり、
     前記複数の巻線コイルは、各々のコイル面が前記軸心方向を向く姿勢で、前記回転軸を囲むように配置されている、
     請求項1~8のいずれか1項に記載の電動機。
    The coil is a plurality of winding coils each wound in a flat shape,
    The plurality of winding coils are arranged so as to surround the rotating shaft with each coil surface facing the axial direction.
    The electric motor according to any one of claims 1-8.
  10.  さらに、固定子として磁石を備え、
     前記固定子と前記コイルとは、前記軸心方向において対向している、
     請求項1~8のいずれか1項に記載の電動機。
    Furthermore, a magnet is provided as a stator,
    The stator and the coil face each other in the axial direction,
    The electric motor according to any one of claims 1-8.
  11.  請求項1~10のいずれか1項に記載の電動機と、
     前記電動機の前記回転軸に取り付けられた回転ファンと、を備え、
     前記回転ファンは、前記回転軸における前記軸受及び前記整流子のうち前記軸受側の端部に取り付けられている、
     電動送風機。
    The electric motor according to any one of claims 1 to 10;
    a rotating fan attached to the rotating shaft of the electric motor,
    The rotating fan is attached to the bearing-side end of the bearing and the commutator on the rotating shaft,
    electric blower.
PCT/JP2022/006726 2021-04-05 2022-02-18 Electric motor and electric air blower WO2022215369A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280022233.4A CN116998099A (en) 2021-04-05 2022-02-18 Motor and electric fan
JP2023512852A JPWO2022215369A1 (en) 2021-04-05 2022-02-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021064289 2021-04-05
JP2021-064289 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215369A1 true WO2022215369A1 (en) 2022-10-13

Family

ID=83546335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006726 WO2022215369A1 (en) 2021-04-05 2022-02-18 Electric motor and electric air blower

Country Status (3)

Country Link
JP (1) JPWO2022215369A1 (en)
CN (1) CN116998099A (en)
WO (1) WO2022215369A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092407A (en) * 1973-12-20 1975-07-23
JPH0529268U (en) * 1991-09-25 1993-04-16 アスモ株式会社 Brush spring
JP2004201374A (en) * 2002-12-17 2004-07-15 Nsk Ltd Motor built-in type roller bearing
JP2010136566A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Solar power generation dc motor with brush
JP2014036452A (en) * 2012-08-07 2014-02-24 Panasonic Corp Flat type brush coreless motor
JP2014054013A (en) * 2012-09-05 2014-03-20 Asmo Co Ltd Motor
WO2020255807A1 (en) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 Electric motor and electric blower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092407A (en) * 1973-12-20 1975-07-23
JPH0529268U (en) * 1991-09-25 1993-04-16 アスモ株式会社 Brush spring
JP2004201374A (en) * 2002-12-17 2004-07-15 Nsk Ltd Motor built-in type roller bearing
JP2010136566A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Solar power generation dc motor with brush
JP2014036452A (en) * 2012-08-07 2014-02-24 Panasonic Corp Flat type brush coreless motor
JP2014054013A (en) * 2012-09-05 2014-03-20 Asmo Co Ltd Motor
WO2020255807A1 (en) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 Electric motor and electric blower

Also Published As

Publication number Publication date
JPWO2022215369A1 (en) 2022-10-13
CN116998099A (en) 2023-11-03

Similar Documents

Publication Publication Date Title
US20110018380A1 (en) Dc motor
WO2023119924A1 (en) Electric motor and electric blower
WO2020255807A1 (en) Electric motor and electric blower
WO2022215369A1 (en) Electric motor and electric air blower
US6838801B2 (en) Rectifying structure and rotary machine employing the same
KR100645585B1 (en) Direct current motor
JPWO2022215369A5 (en)
KR100377562B1 (en) Flat coreless vibrator motor
JPWO2022137890A5 (en)
WO2023248586A1 (en) Electric motor
JP7542172B2 (en) Electric motor
WO2024084845A1 (en) Electric motor
WO2024084844A1 (en) Electric motor
WO2022202274A1 (en) Electric motor and electric blower
WO2024084849A1 (en) Electric motor
WO2023119839A1 (en) Electric motor and component housing box
WO2023223662A1 (en) Electric motor
JP2007189870A (en) Motor
WO2023188590A1 (en) Electric motor and method for manufacturing electric motor
JPWO2022202274A5 (en)
WO2023188779A1 (en) Electric motor
WO2023223661A1 (en) Electric motor
JP6543810B2 (en) Brush holder assembly and commutator motor comprising the brush holder assembly
JPWO2021084855A5 (en)
WO2022202272A1 (en) Electric motor and electric air blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022233.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202347072199

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784354

Country of ref document: EP

Kind code of ref document: A1