WO2022215149A1 - Rotor, electric motor, blower, and air conditioning device - Google Patents

Rotor, electric motor, blower, and air conditioning device Download PDF

Info

Publication number
WO2022215149A1
WO2022215149A1 PCT/JP2021/014578 JP2021014578W WO2022215149A1 WO 2022215149 A1 WO2022215149 A1 WO 2022215149A1 JP 2021014578 W JP2021014578 W JP 2021014578W WO 2022215149 A1 WO2022215149 A1 WO 2022215149A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
rare earth
distance
peripheral surface
Prior art date
Application number
PCT/JP2021/014578
Other languages
French (fr)
Japanese (ja)
Inventor
隆徳 渡邉
和慶 土田
貴也 下川
諒伍 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023512537A priority Critical patent/JPWO2022215149A1/ja
Priority to PCT/JP2021/014578 priority patent/WO2022215149A1/en
Publication of WO2022215149A1 publication Critical patent/WO2022215149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present disclosure relates to rotors, electric motors, fans, and air conditioners.
  • Patent Documents 1 and 2 have ferrite bond magnets and rare earth bond magnets arranged outside the ferrite bond magnets.
  • the shape of the bonded rare earth magnets of Patent Documents 1 and 2 when viewed in the axial direction is annular.
  • the rotor described in Patent Document 3 has a ferrite bond magnet and a plurality of rare earth bond magnets supported by the ferrite bond magnet and arranged in the circumferential direction. Therefore, the cost of the rotor of Patent Document 3 is lower than that of the rotors of Patent Documents 1 and 2.
  • the present disclosure aims to prevent the occurrence of distortion of the effective magnetic flux.
  • a rotor includes a rotating shaft, a magnet main body portion supported by the rotating shaft, and a first outer peripheral surface that is a radially outward surface of the magnet main body portion.
  • a first permanent magnet having a plurality of grooves provided so as to be arranged at equal intervals in a circumferential direction centered on a magnetic pole stronger than the magnetic pole of the first permanent magnet, and a plurality of second permanent magnets arranged, wherein a first distance, which is a maximum distance between the first outer peripheral surface and the rotation axis, is determined for each of the plurality of second permanent magnets. It is longer than a second distance, which is the maximum distance between the second outer peripheral surface, which is the radially outward surface of the two permanent magnets, and the rotating shaft.
  • FIG. 1 is a plan view showing a configuration of an electric motor according to Embodiment 1;
  • FIG. FIG. 2 is a partial cross-sectional view showing the configuration of the electric motor shown in FIG. 1;
  • FIG. 2 is a plan view showing the configuration of the rotor shown in FIG. 1;
  • FIG. 4 is a cross-sectional view showing the configuration of the rotor shown in FIG. 3;
  • FIG. 4 is a plan view showing the configuration of ferrite bond magnets of the rotor shown in FIG. 3;
  • 8A is a plan view showing the configuration of a rotor according to Comparative Example 1.
  • FIG. (B) is a side view showing a configuration of a rotor according to Comparative Example 1;
  • (A) is a plan view showing a configuration of a rotor according to Comparative Example 2.
  • FIG. (B) is a side view showing the configuration of a rotor according to Comparative Example 2.
  • FIG. 7 is a graph showing the distribution of the surface magnetic flux density of the rotor according to Comparative Example 1 and the distribution of the surface magnetic flux density of the rotor according to Comparative Example 2;
  • FIG. 4 is an enlarged plan view showing part of the configuration of the rotor shown in FIG. 3;
  • FIG. 10 is an enlarged plan view showing the configuration of the rare earth bonded magnet shown in FIG. 9;
  • FIG. 10 is a plan view showing a part of the rare earth bonded magnet and ferrite bonded magnet shown in FIG. 9; 4 is a flow chart showing a manufacturing process of the rotor according to Embodiment 1.
  • FIG. 4 is a flow chart showing a manufacturing process of the rotor main body of the rotor according to Embodiment 1.
  • FIG. 4 is a plan view showing a part of the configuration of a rotor according to a modified example of Embodiment 1;
  • FIG. 8 is a plan view showing a part of the configuration of a rotor according to Embodiment 2;
  • FIG. 11 is a plan view showing a part of the configuration of a rotor according to Embodiment 3;
  • FIG. 11 is a plan view showing a part of the configuration of a rotor according to Embodiment 4;
  • FIG. 11 is a plan view showing the configuration of a rotor according to Embodiment 5;
  • FIG. 11 is a side view showing the configuration of a rotor according to Embodiment 5;
  • FIG. 19 is a cross-sectional view of the rotor shown in FIG. 18 taken along line B20-B20;
  • FIG. 11 is a plan view showing a configuration of a rotor according to a modified example of Embodiment 5;
  • FIG. 22 is a cross-sectional view of the rotor shown in FIG. 21 taken along line B22-B22;
  • FIG. 12 is a diagram schematically showing the configuration of a blower according to Embodiment 6;
  • FIG. 11 is a diagram schematically showing the configuration of an air conditioner according to Embodiment 7;
  • each drawing may show an xyz orthogonal coordinate system.
  • the z-axis is the coordinate axis parallel to the axis A of the rotor.
  • the x-axis is a coordinate axis orthogonal to the z-axis.
  • the y-axis is a coordinate axis orthogonal to both the x-axis and the z-axis.
  • FIG. 1 is a plan view showing the configuration of electric motor 100 according to Embodiment 1.
  • FIG. FIG. 2 is a partial cross-sectional view showing the configuration of electric motor 100 shown in FIG.
  • Electric motor 100 is, for example, a permanent magnet synchronous motor.
  • Electric motor 100 has rotor 1 and stator 6 .
  • the rotor 1 is arranged inside the stator 6 . That is, the electric motor 100 is an inner rotor type electric motor.
  • An air gap G is formed between the rotor 1 and the stator 6 .
  • Air gap G is, for example, a gap of 0.5 mm.
  • the rotor 1 has a shaft 10 as a rotating shaft.
  • the shaft 10 extends in the z-axis direction.
  • the z-axis direction is also referred to as the "axial direction”.
  • the direction along the circumference of a circle centered on the axis A of the shaft 10 is called the "circumferential direction C”
  • the direction of a straight line passing through the axis A perpendicular to the z-axis direction is called the "radial direction”.
  • the stator 6 has a stator core 61 and coils 62 wound around the stator core 61 .
  • the stator core 61 has an annular yoke 61a centered on the axis A and a plurality of teeth 61b extending radially inward from the yoke 61a.
  • the plurality of teeth 61b are arranged in the circumferential direction C at equal angular intervals.
  • the teeth 61b face the outer peripheral surface 1c of the rotor 1 with an air gap G therebetween.
  • the number of teeth 61b is twelve, for example. Note that the number of teeth 61b is not limited to twelve, and may be set to any number of two or more.
  • FIG. 3 is a plan view showing the configuration of rotor 1 shown in FIG.
  • FIG. 4 is a cross-sectional view showing the configuration of rotor 1 shown in FIG.
  • the rotor 1 has a shaft 10, ferrite bonded magnets 20 as first permanent magnets, and a plurality of rare earth bonded magnets 31 as a plurality of second permanent magnets.
  • a rotor main body 50 supported by the shaft 10 is configured by the ferrite bond magnet 20 and the plurality of rare earth bond magnets 31 .
  • the length L1 of the rotor main body 50 in the z-axis direction is longer than the length L6 of the stator core 61 of the stator 6 in the z-axis direction.
  • the amount of effective magnetic flux interlinking with the stator core 61 of the stator 6 from the bond magnets (that is, the ferrite bond magnets 20 and the rare earth bond magnets 31) forming the rotor main body 50 can be increased.
  • the length L1 may be the same as the length L6 .
  • the ferrite bond magnet 20 includes a ferrite magnet and resin.
  • the resin contained in the ferrite bond magnet 20 is, for example, nylon resin, PPS (Poly Phenylene Sulfide) resin, epoxy resin, or the like.
  • the rare earth bonded magnet 31 includes a rare earth magnet and resin.
  • Rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B), or samarium iron nitrogen magnets containing samarium (Sm), Fe and nitrogen (N).
  • the resin contained in rare earth bonded magnet 31 is the same as the resin contained in ferrite bonded magnet 20, such as nylon resin, PPS resin, or epoxy resin.
  • the magnetic pole strength (that is, the amount of magnetism) of the rare earth bonded magnet 31 is different from the magnetic pole strength of the ferrite bonded magnet 20 .
  • rare earth bonded magnet 31 has a magnetic pole stronger than the magnetic pole of ferrite bonded magnet 20 .
  • the magnetic force of rare earth bonded magnet 31 is greater than the magnetic force of ferrite bonded magnet 20 .
  • the coefficient of linear expansion of rare earth bonded magnet 31 is different from the coefficient of linear expansion of ferrite bonded magnet 20 .
  • the resin portion 7 has an inner tubular portion 71 , an outer tubular portion 72 , and a plurality of (for example, four) ribs 73 .
  • the inner cylindrical portion 71 has a cylindrical shape and is fixed to the outer peripheral surface 10 a of the shaft 10 .
  • the outer cylindrical portion 72 has a cylindrical shape and is fixed to the inner peripheral surface 20 b of the ferrite bond magnet 20 .
  • a plurality of ribs 73 connect the inner tubular portion 71 and the outer tubular portion 72 .
  • the plurality of ribs 73 radially extend radially outward from the outer periphery of the inner cylindrical portion 71 .
  • the plurality of ribs 73 are arranged at equiangular positions in the circumferential direction C, for example.
  • the resin portion 7 is made of, for example, unsaturated polyester resin. Note that the ferrite bond magnet 20 may be directly fixed to the shaft 10 without interposing the resin portion 7 .
  • FIG. 5 is a plan view showing the configuration of the ferrite bond magnet 20 shown in FIG.
  • the planar shape of the ferrite bonded magnet 20 parallel to the xy plane is an annular shape with the axis A as the center.
  • the outer peripheral surface of the ferrite bond magnet 20 (that is, the outer peripheral surface 21c of the magnet main body 21 to be described later) forms a part of the outer peripheral surface 1c of the rotor 1 (see FIG. 1).
  • the ferrite bond magnet 20 has a cylindrical magnet main body 21 and a plurality of (for example, eight) grooves 22 .
  • Magnet main body 21 is a portion of ferrite bond magnet 20 that is supported by shaft 10 (see FIG. 1).
  • a plurality of grooves 22 are formed in an outer peripheral surface 21 c as a first outer peripheral surface of the magnet main body 21 .
  • the outer peripheral surface 21 c is a radially outward surface of the magnet body portion 21 .
  • the groove portion 22 is a long groove elongated in the z-axis direction.
  • the plurality of grooves 22 are arranged at regular intervals in the circumferential direction C. As shown in FIG. In the example shown in FIG. 5, the plurality of grooves 22 are arranged in the circumferential direction C at regular intervals.
  • a plurality of rare earth bonded magnets 31 are arranged in the plurality of grooves 22, respectively.
  • the ferrite bond magnet 20 is oriented so as to have polar anisotropy.
  • the two grooves 22 adjacent in the circumferential direction C have magnetic poles with different polarities.
  • the N-pole grooves 22 and the S-pole grooves 22 are alternately arranged.
  • a magnetic flux (not shown) that has flowed in from the radially outer side of the S-pole groove portion 22 proceeds to the adjacent N-pole groove portion 22 in the circumferential direction C.
  • the rotor 1 (see FIG. 3) does not require a rotor core forming a magnetic path inside the ferrite bond magnets 20 in the radial direction.
  • the number of parts in the rotor 1 can be reduced, and the weight of the rotor 1 can be reduced.
  • the plurality of rare earth bonded magnets 31 are arranged in the circumferential direction C at intervals.
  • a plurality of rare earth bonded magnets 31 are arranged in the circumferential direction C at equal intervals.
  • An outer peripheral surface 31c as a second outer peripheral surface of the rare earth bonded magnet 31 forms a part of the outer peripheral surface 1c of the rotor 1 (see FIG. 1).
  • the outer peripheral surface 31 c is a radially outward surface of the bonded rare earth magnet 31 .
  • Each of the plurality of rare earth bonded magnets 31 is oriented to have polar anisotropy.
  • a plurality of rare earth bonded magnets 31 adjacent in the circumferential direction C have magnetic poles with different polarities.
  • Circular arrow F shown in FIG. 3 indicates the direction of magnetic flux in rare earth bonded magnet 31 .
  • the magnetic flux flowing from the radially outer side of the south pole rare earth bonded magnet 31 advances to the adjacent north pole rare earth bonded magnet 31 in the circumferential direction C.
  • rotor 1 has eight magnetic poles.
  • the center of the rare earth bonded magnet 31 in the circumferential direction C is the pole center of the rotor 1 .
  • the number of poles of the rotor 1 is not limited to eight, and may be 2n or more.
  • n is a natural number of 1 or more.
  • the rare earth bonded magnet 31 is joined to the ferrite bonded magnet 20 .
  • rare earth bonded magnet 31 is joined to groove 22 of ferrite bonded magnet 20 by integrally molding (also referred to as “two-color molding”) ferrite bonded magnet 20 and rare earth bonded magnet 31 . Further, in Embodiment 1, rare earth bonded magnet 31 is filled in groove portion 22 .
  • integral molding of the ferrite bonded magnet 20 and the rare earth bonded magnet 31 means that the rare earth bonded magnet 31 is molded while the previously manufactured ferrite bonded magnet 20 is placed in a mold.
  • a plurality of rare earth bonded magnets 31 are arranged one by one. The work of arranging it in the mold becomes unnecessary. Therefore, productivity of the rotor main body 50 can be improved.
  • FIG. 6A is a plan view showing the configuration of a rotor 101a according to Comparative Example 1.
  • FIG. 6B is a side view showing the configuration of the rotor 101a according to Comparative Example 1.
  • FIG. 6A and 6B illustration of the shaft 10 is omitted.
  • annular rare earth bonded magnet 130a is arranged on the outer peripheral surface 120c of the annular ferrite bonded magnet 120a. That is, in rotor 101a, all of outer peripheral surface 101c of rotor 101a is formed of rare earth bonded magnet 130a.
  • the outer peripheral surface 1c of the rotor 1 includes the outer peripheral surface 20c of the ferrite bonded magnet 20 and the outer peripheral surface 31c of each of the plurality of rare earth bonded magnets 31. formed by As a result, in the rotor 1, the amount of rare earth bonded magnets 31 used can be reduced compared to the rotor 101a. Specifically, in rotor 1, the amount of rare earth bonded magnets 31 used can be reduced by about 20% compared to rotor 101a.
  • the rare earth bonded magnet 31 is more expensive than the ferrite bonded magnet 20 .
  • the material unit price of the rare earth bonded magnet 31 is ten times or more the material unit price of the ferrite bonded magnet 20 . Therefore, the outer peripheral surface 1c of the rotor 1 is formed by the outer peripheral surface 21c of the magnet main body 21 of the ferrite bonded magnet 20 and the outer peripheral surface 31c of the rare earth bonded magnet 31, thereby reducing the usage of the rare earth bonded magnet 31. can do. Therefore, the cost of the rotor 1 can be reduced.
  • FIG. 7A is a plan view showing the configuration of a rotor 101b according to Comparative Example 2.
  • FIG. 7B is a side view showing the configuration of a rotor 101b according to Comparative Example 2.
  • FIG. 7A and 7B illustration of the shaft 10 is omitted.
  • the rotor 101b has a ferrite bond magnet 120b and a plurality of rare earth bond magnets 131b.
  • the plurality of rare earth bonded magnets 131b are arranged in the circumferential direction C at intervals. Therefore, the usage of rare earth bonded magnets 131b of rotor 101b is different from the usage of rare earth bonded magnets 130a of rotor 101a.
  • FIG. 8 is a graph showing the distribution of the surface magnetic flux density of the rotor 101a according to Comparative Example 1 and the distribution of the surface magnetic flux density of the rotor 101b according to Comparative Example 2.
  • the horizontal axis indicates the position [degrees] in the circumferential direction C on the outer peripheral surface 101c of the rotor 101a or the outer peripheral surface 101d of the rotor 101b
  • the vertical axis indicates the surface magnetic flux density [a. u. ] is shown.
  • the dashed line indicates the distribution of the surface magnetic flux density of the rotor 101a according to Comparative Example 1
  • the solid line indicates the distribution of the surface magnetic flux density of the rotor 101b according to the second comparative example.
  • the distribution of the surface magnetic flux density of the rotor 101a is represented by the waveform S1
  • the distribution of the surface magnetic flux density of the rotor 101b is represented by the waveform S2.
  • the waveform S1 is represented by a sinusoidal waveform. In other words, in the rotor 101a, the change in surface magnetic flux density in the circumferential direction C is uniform.
  • the waveform S2 is less smooth than the waveform S1. In other words, in the rotor 101b, changes in the surface magnetic flux density in the circumferential direction C are uneven.
  • distortion occurs in a portion of the waveform S2 that corresponds to the interpolar portion of the rotor 1 .
  • a pole-to-pole portion of the rotor 1 is a boundary between the north pole and the south pole.
  • the pole-to-pole portion of rotor 1 is portion 21e (see FIG. 5) between two rare earth bonded magnets 31 adjacent in circumferential direction C in magnet body portion 21 of ferrite bonded magnet 20. .
  • the distribution of the surface magnetic flux density is represented by the waveform S2, there is a problem that the effective magnetic flux interlinking with the stator core 61 (see FIG. 2) is distorted.
  • the rotor 1 according to Embodiment 1 has ferrite bond magnets 20 and a plurality of rare earth bond magnets 31 arranged at intervals in the circumferential direction C, like the rotor 101b according to Comparative Example 2.
  • the distortion of the effective magnetic flux can be reduced by the configuration described below.
  • FIG. 9 is a plan view showing a part of the configuration of rotor 1 according to the first embodiment.
  • the first distance between point P1 on outer peripheral surface 21c of ferrite bond magnet 20 and axis A of shaft 10 is distance OD1.
  • Distance OD1 is the maximum distance between outer peripheral surface 21c of ferrite bond magnet 20 and axis A.
  • a second distance between point P2 on outer peripheral surface 31c of rare earth bonded magnet 31 and axis A is defined as distance OD2.
  • Distance OD2 is the maximum distance between outer peripheral surface 31c of rare earth bonded magnet 31 and axis A.
  • Distance OD1 is longer than distance OD2. That is, the distance OD1 and the distance OD2 satisfy the following formula (1). OD1>OD2 (1)
  • the air gap G (see FIG. 1) between the outer peripheral surface 21c of the ferrite bond magnet 20 and the stator core 61 can be narrowed by the distance OD1 and the distance OD2 satisfying formula (1). As a result, the amount of effective magnetic flux interlinking with the stator core 61 increases. Therefore, the distortion of the effective magnetic flux in the interpolar portion of the rotor 1 can be reduced.
  • the groove portion 22 of the ferrite bond magnet 20 has a bottom surface 22a, a first side surface 22b, and a second side surface 22c.
  • the bottom surface 22a is a surface facing radially outward.
  • the first side surface 22b and the second side surface 22c extend radially outward from both widthwise ends of the bottom surface 22a.
  • the first side surface 22b and the second side surface 22c extend radially outward from both ends in the width direction of the bottom surface 22a so that the width of the groove 22 is narrowed. This prevents the rare-earth bonded magnets 31 placed in the grooves 22 from coming off due to interface peeling due to expansion or contraction due to temperature changes, or centrifugal force acting on the rotor 1 .
  • the outer peripheral surface 21c of the magnet main body 21 is composed of a plurality of connecting surfaces 21d.
  • 21 d of connection surfaces are surfaces which connect the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 adjacent to the circumferential direction C.
  • FIG. As described above, the distance OD1 and the distance OD2 satisfy the formula (1), so that the connecting surface 21d is located radially outside the outer peripheral surface 31c of the rare earth bonded magnet 31. As shown in FIG.
  • FIG. 10 is an enlarged plan view showing the configuration of rare earth bonded magnet 31 shown in FIG.
  • the radial thickness at the central portion in the circumferential direction C of the rare earth bonded magnet 31 is t 1
  • the radial thickness at the end portion in the circumferential direction C is t 2
  • An end portion of the rare earth bonded magnet 31 in the circumferential direction C is a boundary portion between the rare earth bonded magnet 31 and the magnet main body portion 21 .
  • Thickness t1 is thicker than thickness t2. That is, the thickness t1 and the thickness t2 satisfy the following formula ( 2 ).
  • the radial thickness of the rare earth bonded magnet 31 becomes thinner from the center in the circumferential direction C toward the ends.
  • the magnetic force of the rare-earth bonded magnet 31 can be weakened at the boundary between the rare-earth bonded magnet 31 and the magnet main body 21 while ensuring a sufficient amount of effective magnetic flux at the pole center portion of the rotor 1 . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
  • the width W1 in the circumferential direction C of the outer peripheral surface 31c of the rare earth bonded magnet 31 is narrower than the width W2 in the circumferential direction C of the inner peripheral surface 31d of the rare earth bonded magnet 31, which is the radially inward surface. That is, the width W1 and the width W2 satisfy the following formula ( 3 ). W2> W1 ( 3 )
  • the thickness t2 at the ends in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t1 at the central portion in the circumferential direction C. . Therefore, the amount of expensive rare earth bonded magnet 31 used can be suppressed.
  • the rare earth bonded magnet 31 is prevented from interfacial peeling due to expansion or contraction due to temperature change, or centrifugal force acting on the rotor 1. 9) can be prevented from falling off.
  • FIG. 11 is an enlarged plan view showing a part of the configuration of rare earth bonded magnet 31 and ferrite bonded magnet 20 shown in FIG.
  • the first point on the central portion of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C is the point Q 1
  • the second point on the end portion of the inner peripheral surface 31d in the circumferential direction C is the point Q 1 .
  • Q2 the distance between the point Q1 and the axis A
  • the distance between the point Q2 and the axis A is r4
  • the distance r3 is shorter than the distance r4 . That is, the distance r 3 and the distance r 4 satisfy the following equation (4).
  • the thickness t2 at the end in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t1 at the center in the circumferential direction C. . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
  • the outer peripheral surface 31c of the rare earth bonded magnet 31 also has a smaller diameter from the central portion toward the end portions in the circumferential direction C while ensuring the distance OD2.
  • the air gap G (see FIG. 1) between the rare earth bonded magnet 31 and the stator 6 gradually widens from the pole center to the magnet boundary. Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced.
  • FIG. 12 is a flow chart showing the manufacturing process of the rotor 1. As shown in FIG. A magnetizer is used in the manufacturing process of the rotor 1 .
  • step ST1 the rotor main body 50 is formed. Details of step ST1 will be described later.
  • step ST2 the rotor main body 50 is connected to the shaft 10.
  • the rotor main body 50 and the shaft 10 are integrated via the resin portion 7 , so that the rotor main body 50 is connected to the shaft 10 .
  • step ST3 for example, the rotor main body 50 is magnetized using a magnetizer. Specifically, the ferrite bonded magnet 20 and the rare earth bonded magnet 31 are magnetized so that the ferrite bonded magnet 20 and the rare earth bonded magnet 31 have polar anisotropy.
  • FIG. 13 is a flow chart showing the steps of forming the rotor body 50.
  • a first mold for molding the ferrite bonded magnets 20 a second mold for molding the rare earth bonded magnets 31, and magnets for orientation are used. .
  • step ST11 the inside of the first mold for molding the ferrite bond magnet 20 is filled with the raw material of the ferrite bond magnet 20.
  • the ferrite bond magnet 20 is molded by injection molding, for example. Note that the ferrite bond magnet 20 may be molded by other molding methods such as press molding instead of injection molding.
  • step ST12 while orienting the ferrite bond magnet 20, the ferrite bond magnet 20 having a predetermined shape is molded.
  • step ST12 for example, using a magnet for orientation, a magnetic field having polar anisotropy is generated inside the first mold, and while the raw material of the ferrite bond magnet 20 is oriented, the ferrite bond magnet Mold 20. As a result, a ferrite bonded magnet 20 having polar anisotropy is formed.
  • step ST13 the formed ferrite bond magnet 20 is cooled.
  • the ferrite bond magnet 20 is taken out from the first mold.
  • step ST15 the ferrite bond magnet 20 taken out is demagnetized.
  • step ST16 the ferrite bond magnet 20 is placed inside the second mold for injection molding the rare earth bond magnet 31.
  • step ST17 the raw material of the rare earth bonded magnet 31 is filled into the groove 22 of the ferrite bonded magnet 20 placed in the second mold.
  • Rare-earth bonded magnet 31 is formed by, for example, injection molding. Note that the rare earth bonded magnet 31 may be molded by other molding methods such as press molding instead of injection molding.
  • step ST18 while orienting the raw material of rare earth bonded magnet 31, rare earth bonded magnet 31 having a predetermined shape is molded.
  • step ST18 for example, a magnetic field having polar anisotropy is generated inside the second mold using an orienting magnet, and while the raw material of the rare earth bonded magnet 31 is oriented, the rare earth bonded magnet 31 is molded. Thereby, the rotor main body 50 in which the ferrite bond magnet 20 and the plurality of rare earth bond magnets 31 are integrally formed is formed.
  • step ST19 the rotor main body 50 formed in step ST18 is cooled.
  • step ST20 the cooled rotor main body 50 is taken out from the second mold.
  • step ST21 the rotor main body 50 taken out in step ST20 is demagnetized.
  • the distance OD1 between the first point P1 on the outer peripheral surface 21c of the ferrite bonded magnet 20 and the axis A of the shaft 10 is equal to the distance OD1 on the outer peripheral surface 31c of the rare earth bonded magnet 31. is longer than the distance OD2 between the second point P2 of and the axis A.
  • the air gap G between the ferrite bond magnet 20 and the stator 6 is narrowed, so that the amount of effective magnetic flux interlinking with the stator core 61 is increased. Therefore, the distortion of the effective magnetic flux in the interpolar portion of the rotor 1 can be reduced.
  • the radial thickness of rare earth bonded magnet 31 becomes thinner from the central portion in circumferential direction C toward the end portions.
  • the magnetic force of the rare-earth bonded magnet 31 can be weakened at the boundary between the rare-earth bonded magnet 31 and the magnet main body 21 while ensuring a sufficient amount of effective magnetic flux at the pole center portion of the rotor 1 . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
  • the distance r3 between the point Q1 on the central portion of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C and the axis A is less than the distance r4 between the point Q2 on the end of C and the axis A;
  • the thickness t 2 at the ends in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t 1 at the central portion in the circumferential direction C.
  • electric motor 100 has rotor 1 and stator 6 . As described above, in the rotor 1, it is possible to reduce the occurrence of distortion of the effective magnetic flux in the interpolar portion. Since the electric motor 100 has the rotor 1, it is possible to prevent the electric motor 100 from being vibrated and to prevent the output from being lowered.
  • FIG. 14 is a plan view showing a configuration of rotor 1A according to a modification of Embodiment 1.
  • FIG. 14 the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG.
  • a rotor 1A according to a modification of the first embodiment differs from the rotor 1 according to the first embodiment in the shape of ferrite bond magnets 20A.
  • Other points are the same as the rotor 1 according to the first embodiment. Therefore, FIG. 3 will be referred to in the following description.
  • the rotor 1A has a ferrite bond magnet 20A and a plurality of rare earth bond magnets 31A.
  • the ferrite bond magnet 20A has a magnet main body 21A supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22.
  • 21 A of magnet main-body parts have the connection surface 121d which connects the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 adjacent to the circumferential direction C.
  • the width W1 of the outer peripheral surface 31c of the rare earth bonded magnet 31 is wider than the width W3 of the connecting surface 121d of the ferrite bonded magnet 20 in the circumferential direction C.
  • the width W1 and the width W3 satisfy the following formula ( 5 ). W1>W3 ( 5 )
  • the ratio of the rare earth bonded magnets 31 to the interpolar portion of the rotor 1A is increased, so that the decrease in the magnetic force in the interpolar portion can be suppressed.
  • the width W1 of the outer peripheral surface 31c of the rare earth bonded magnet 31 in the circumferential direction C is equal to the width W1 of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C. Narrower than W2. Therefore, in the example shown in FIG. 14, width W 1 , width W 2 and width W 3 satisfy the following equation (6). W2> W1 >W3 ( 6 ) As a result, it is possible to suppress the decrease in the magnetic force in the interpolar portion of the rotor 1A while suppressing the usage amount of the expensive rare earth bonded magnets 31 .
  • the width W1 in the circumferential direction C of the outer peripheral surface 31c of the rare earth bonded magnet 31 is greater than the width W3 in the circumferential direction C of the connecting surface 121d of the ferrite bonded magnet 20A. wide.
  • the ratio of the rare earth bonded magnets 31 to the interpolar portion of the rotor 1A is increased, so that the decrease in the magnetic force in the interpolar portion can be suppressed.
  • FIG. 15 is a plan view showing part of the configuration of the rotor 2 according to the second embodiment. 15, the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG.
  • Rotor 2 according to Embodiment 2 differs from rotor 1 according to Embodiment 1 in the shape of ferrite bond magnets 220 . Except for this point, the rotor 2 according to the second embodiment is the same as the rotor 1 according to the first embodiment. Therefore, FIG. 3 will be referred to in the following description.
  • the rotor 2 has a ferrite bond magnet 220 and a plurality of rare earth bond magnets 31.
  • the ferrite bond magnet 220 has a magnet main body 221 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 .
  • Magnet main body 221 partially covers outer peripheral surface 31 c of rare earth bonded magnet 31 .
  • the magnet main body 221 covers the end in the circumferential direction C of the outer peripheral surface 31c. This prevents the rare earth bonded magnet 31 from falling off from the ferrite bonded magnet 220 due to interface separation due to expansion or contraction due to temperature change or centrifugal force acting on the rotor 2 .
  • the magnet main body 221 extends circumferentially from a plane V including the side surface of the groove 22 (specifically, one of the first side surface 22b and the second side surface 22c). It has an overhanging portion 221f that protrudes toward C. The projecting portion 221f is in contact with the end portion in the circumferential direction C of the outer peripheral surface 31c.
  • the magnet main body 221 may cover the entire outer peripheral surface 31 c of the rare earth bonded magnet 31 . That is, the magnet body 221 may cover at least a portion of the outer peripheral surface 31c.
  • magnet main body 221 partially covers outer peripheral surface 31 c of rare earth bonded magnet 31 . This prevents the rare earth bonded magnet 31 from falling off from the ferrite bonded magnet 220 due to interface separation due to expansion or contraction due to temperature change or centrifugal force acting on the rotor 2 .
  • FIG. 16 is a plan view showing part of the configuration of the rotor 3 according to the third embodiment. 16, the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG.
  • Rotor 3 according to Embodiment 3 differs from rotor 1 according to Embodiment 1 in the shape of ferrite bond magnets 320 . Except for this point, the rotor 3 according to the third embodiment is the same as the rotor 1 according to the first embodiment. 1 and 3 are therefore referred to in the following description.
  • the rotor 3 has a ferrite bond magnet 320 and a plurality of rare earth bond magnets 31.
  • the ferrite bond magnet 320 has a magnet main body 321 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 .
  • the outer peripheral surface of the magnet body portion 321 is composed of a plurality of connecting surfaces 321d. 321 d of connection surfaces connect the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 which adjoin the circumferential direction C. As shown in FIG.
  • a point as a third point on the end portion of the connecting surface 321d in the circumferential direction C is designated as P5.
  • a point P5 is a point located at the magnet boundary of the rotor 3 .
  • the fourth point is a point on the central portion of the connecting surface 321d in the circumferential direction C, and the point is P6.
  • a point P6 is a point positioned between poles of the rotor 3 .
  • the distance between the point P5 and the axis A is defined as a distance OD5
  • the distance between the point P6 and the axis A is defined as a distance OD6.
  • distance OD5 is longer than distance OD6. That is, the distance OD5 and the distance OD6 satisfy the following formula (7). OD5>OD6 (7)
  • the air gap between the ferrite bond magnet 320 and the stator 6 increases as the rotor 3 approaches the magnet boundary from the pole-to-pole portion. G gradually narrows. Therefore, it is possible to suppress the amount of ferrite bond magnet 320 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnet boundary portion.
  • the distance OD5 between the point P5 on the end portion of the connecting surface 321d in the circumferential direction C and the axis A is the point on the central portion of the connecting surface 321d in the circumferential direction C. longer than the distance OD6 between P6 and axis A;
  • the air gap G between the ferrite bond magnet 320 and the stator 6 gradually narrows from the interpolar portion to the magnet boundary portion. Therefore, it is possible to suppress the amount of ferrite bond magnet 320 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnet boundary portion.
  • FIG. 17 is a plan view showing part of the configuration of the rotor 4 according to the fourth embodiment. 17, the same or corresponding components as those shown in FIG. 16 are given the same reference numerals as those shown in FIG.
  • Rotor 4 according to the fourth embodiment differs from rotor 3 according to the third embodiment in the shape of ferrite bond magnets 420 . Except for this point, the rotor 4 according to the fourth embodiment is the same as the rotor 3 according to the third embodiment.
  • the rotor 4 has a ferrite bond magnet 420 and a plurality of rare earth bond magnets 31.
  • the ferrite bond magnet 420 has a magnet main body 421 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 .
  • the outer peripheral surface of the magnet body portion 421 is composed of a plurality of connecting surfaces 421d.
  • the connecting surface 421d connects the first side surface 22b of one of the two grooves 22 adjacent in the circumferential direction C and the second side surface 22c of the other groove 22.
  • a portion 421g of the connecting surface 421d between the points P5 and P6 is a curved surface projecting outward in the radial direction.
  • the shape of the ferrite bond magnet 20 when viewed in the z-axis direction becomes a substantially petal shape.
  • the air gap G between the ferrite bond magnet 420 and the stator 6 gradually narrows from the pole-to-pole portion of the rotor 4 toward the magnet boundary portion.
  • the radius of curvature of the portion 421g between the points P5 and P6 of the connecting surface 421d near the point P6 is smaller than the radius of curvature of the outer peripheral surface 31c of the rare earth bonded magnet 31.
  • the radius of curvature of a portion of connecting surface 421 d is smaller than the radius of curvature of outer peripheral surface 31 c of rare earth bonded magnet 31 .
  • the portion between the point P5 and the point P6 in the connecting surface 421d is a curved surface that projects outward in the radial direction.
  • the air gap G (see FIG. 1) between the ferrite bond magnet 420 and the stator 6 can be gradually narrowed from the pole-to-pole portion of the rotor 4 toward the magnet boundary portion. Therefore, it is possible to reduce the amount of ferrite bond magnets 420 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnetic boundary portion of the rotor 4 .
  • FIG. 18 is a plan view showing the configuration of the rotor 5 according to Embodiment 5.
  • FIG. 19 is a side view showing the configuration of the rotor 5 according to Embodiment 5.
  • FIG. FIG. 20 is a cross-sectional view of the rotor 5 shown in FIG. 18 taken along line B20-B20. 18-20, components identical or corresponding to those shown in FIGS. 1-3 are labeled with the same reference numerals as those shown in FIGS. 1-3.
  • a rotor 5 according to the fifth embodiment is different from the rotors 1 to 4 according to any one of the first to fourth embodiments in that it further has ring members 8 and 9 . 18 to 20, illustration of the shaft 10 and the resin portion 7 (see FIG. 3) is omitted.
  • the rotor 5 has a ferrite bond magnet 20, a plurality of rare earth bond magnets 31, and a plurality of ring members 8 and 9 as a plurality of first resin portions.
  • the ring members 8 and 9 are annular members centered on the axis A, respectively.
  • the ring members 8 and 9 are made of resin such as unsaturated polyester resin, for example.
  • the ring member 8 is arranged to cover the +z-axis side end face 20j of the ferrite bond magnet 20 and the +z-axis side end face 31j of the rare earth bond magnet 31 .
  • end surface 31 j of rare earth bonded magnet 31 is connected to end surface 20 j of ferrite bonded magnet 20 via ring member 8 . Therefore, peeling of the bonded rare earth magnet 31 due to temperature change can be further prevented.
  • ring member 8 is fixed to ferrite bond magnet 20 and rare earth bond magnet 31 . Specifically, the ring member 8 is fixed to the +z-axis side end face 20j of the ferrite bond magnet 20 and the +z-axis side end face 31j of the rare earth bond magnet 31 .
  • the ring member 9 is arranged so as to cover the end face 20k of the ferrite bond magnet 20 on the -z axis side and the end face 31k of the rare earth bond magnet 31 on the -z axis side. As a result, end surface 31 k of rare earth bonded magnet 31 is connected to end surface 20 k of ferrite bonded magnet 20 via ring member 9 . As a result, peeling of the rare earth bonded magnet 31 due to temperature change can be further prevented.
  • ring member 9 is fixed to ferrite bond magnet 20 and rare earth bond magnet 31 . Specifically, the ring member 9 is fixed to an end face 20k of the ferrite bond magnet 20 facing the -z-axis direction and an end face 31k of the rare earth bond magnet 31 facing the -z-axis direction. Note that the rotor 5 can be realized without having either one of the plurality of ring members 8 and 9 .
  • rotor 5 has ring members 8 and 9 arranged to cover the end surfaces of ferrite bond magnet 20 and rare earth bond magnet 31 in the z-axis direction, respectively.
  • rare earth bonded magnet 31 is connected to ferrite bonded magnet 20 via ring members 8 and 9 . Therefore, it is possible to further prevent the rare earth bonded magnet 31 from coming off due to the centrifugal force acting during rotation. Moreover, it is possible to further prevent peeling of the bonded rare earth magnet 31 due to temperature changes.
  • FIG. 21 is a plan view showing the configuration of a rotor 5A according to a modification of the fifth embodiment.
  • FIG. 22 is a cross-sectional view of the rotor 5A shown in FIG. 21 taken along line B22-B22.
  • a rotor 5A according to a modification of the fifth embodiment differs from the rotor 5 according to the fifth embodiment in that ring members 8A and 9A are integrally formed with a resin portion 7A.
  • the rotor 5A includes a shaft 10, ferrite bond magnets 20, a plurality of rare earth bond magnets 31, ring members 8A and 9A as first resin portions, and second and a resin portion 7A as a resin portion.
  • the resin portion 7A includes an inner cylinder portion 71 supported by the shaft 10, an outer cylinder portion 72A fixed to the inner peripheral surface 20b of the ferrite bond magnet 20, and a plurality of components connecting the inner cylinder portion 71 and the outer cylinder portion 72A. and ribs 73A.
  • the resin portion 7A is integrally formed with the ring members 8A and 9A.
  • the resin portion 7A is connected to the ring members 8A and 9A.
  • the outer cylindrical portion 72A and ribs 73A of the resin portion 7A are connected to the ring members 8A and 9A. Therefore, in the modification of Embodiment 5, shaft 10, ferrite bond magnet 20 and rare earth bond magnet 31 are connected via resin portion 7A and ring members 8A and 9A.
  • the ring members 8A and 9A can also be molded at the same time. Therefore, the manufacturing process of the rotor 5A can be simplified.
  • the natural frequency of the rotor 5A changes depending on the rigidity of the rotor 5A.
  • the rigidity of the rotor 5A can be adjusted, for example, by changing the width in the circumferential direction C, the length in the radial direction, and the number of ribs 73A in the resin portion 7A.
  • the rib 73A of the resin portion 7A is connected to the ring members 8A and 9A by integrally forming the resin portion 7A with the ring members 8A and 9A. Thereby, the radial length of the rib 73A is increased.
  • the rigidity of the rotor 5A can be changed, and the natural frequency of the rotor 5A can be changed. Therefore, the occurrence of resonance can be suppressed, and the vibration characteristics of the rotor 5A can be adjusted to appropriate characteristics.
  • the moment of inertia of the rotor 5A changes depending on the mass of the rotor 5A.
  • the mass of the rotor 5A can be adjusted by changing the width in the circumferential direction C, the length in the radial direction, and the number of ribs 73A. As the moment of inertia increases, a greater starting torque is required, but the rotation of the rotor 5A can be stabilized.
  • the resin portion 7A is connected to the ring members 8 and 9, so the radial length of the rib 73A is increased. Thereby, the moment of inertia of the rotor 5A can be increased. Since the resin portion 7A is integrally formed with the ring members 8A and 9A in this manner, the natural frequency and moment of inertia of the rotor 5A can be adjusted to appropriate values.
  • FIG. 23 is a diagram schematically showing the configuration of blower 600 according to the sixth embodiment.
  • blower 600 has electric motor 100 and fan 601 as an impeller driven by electric motor 100 .
  • Fan 601 is attached to the shaft of electric motor 100 .
  • fan 601 rotates and an airflow is generated.
  • the blower 600 is used, for example, as an outdoor blower for an outdoor unit 720 of an air conditioner 700 shown in FIG. 24 which will be described later.
  • fan 601 is, for example, a propeller fan.
  • blower 600 has electric motor 100 described in the first embodiment. As described above, the reliability of the electric motor 100 according to Embodiment 1 is improved, so the reliability of the blower 600 including the electric motor 100 can also be improved.
  • FIG. 24 is a diagram showing the configuration of an air conditioner 700 according to Embodiment 7. As shown in FIG.
  • the air conditioner 700 has an indoor unit 710, an outdoor unit 720, and refrigerant pipes 730.
  • the indoor unit 710 and the outdoor unit 720 are connected by a refrigerant pipe 730 to form a refrigerant circuit in which refrigerant circulates.
  • the air conditioner 700 can operate, for example, a cooling operation in which cool air is blown from the indoor unit 710, or a heating operation in which warm air is blown.
  • the indoor unit 710 has an indoor fan 711 and a housing 712 that accommodates the indoor fan 711 .
  • the indoor fan 711 has an electric motor 711a and a fan 711b driven by the electric motor 711a.
  • the fan 711b is attached to the shaft of the electric motor 711a. Rotation of the shaft of the electric motor 711a rotates the fan 711b to generate airflow.
  • Fan 711b is, for example, a cross-flow fan.
  • the outdoor unit 720 has a fan 600 as an outdoor fan, a compressor 721, and a housing 722 that accommodates the fan 600 and the compressor 721.
  • the compressor 721 has a compression mechanism portion 721a that compresses refrigerant and an electric motor 721b that drives the compression mechanism portion 721a.
  • the compression mechanism portion 721a and the electric motor 721b are connected to each other by a rotating shaft 721c. Note that the electric motor 100 according to the first embodiment may be used as the electric motor 721b of the compressor 721.
  • the heat released when the refrigerant compressed by the compressor 721 is condensed by the condenser (not shown) is released to the outside by the blower 600.
  • the fan 600 according to Embodiment 6 may be used not only as the outdoor fan of the outdoor unit 720 but also as the indoor fan 711 described above.
  • the blower 600 may be provided not only in the air conditioner 700 but also in other devices.
  • the outdoor unit 720 further has a four-way valve (not shown) that switches the flow direction of the refrigerant.
  • the four-way valve of the outdoor unit 720 allows the high-temperature, high-pressure refrigerant gas delivered from the compressor 721 to flow through the heat exchanger of the outdoor unit 720 during cooling operation, and through the heat exchanger of the indoor unit 710 during heating operation.
  • air conditioner 700 has fan 600 .
  • air blower 600 has improved reliability by including electric motor 100 described in Embodiment 1. Therefore, the reliability of air conditioner 700 can also be improved.

Abstract

This rotor (1) has a first permanent magnet (20) that has a rotating shaft (10), a magnet main body (21) supported by the rotating shaft (10), and a plurality of grooves (22) provided so as to be arranged at equal intervals in a circumferential direction about the rotating shaft (10) on a first outer circumferential surface (21c) that is a radially outward surface of the magnet main body (21), and a plurality of second permanent magnets (31) that have a stronger magnetic pole than that of the first permanent magnet (20) and are respectively disposed in the plurality of grooves (22). A first distance (OD1) that is the maximum distance between the first outer circumferential surface (21c) and the rotating shaft (10) is greater than a second distance (OD2) that is the maximum distance between the rotating shaft (10) and a second outer circumferential surface (31c) that is a radially outward surface of each second permanent magnet (31) of the plurality of second permanent magnets (31).

Description

回転子、電動機、送風機及び空気調和装置Rotors, electric motors, blowers and air conditioners
 本開示は、回転子、電動機、送風機及び空気調和装置に関する。 The present disclosure relates to rotors, electric motors, fans, and air conditioners.
 電動機に用いられる回転子において、回転軸に支持された回転子本体が、磁気特性の異なる2種類の永久磁石を有する構成が知られている。例えば、特許文献1~3を参照。 In a rotor used for an electric motor, there is known a configuration in which the rotor main body supported by the rotating shaft has two types of permanent magnets with different magnetic properties. See, for example, Patent Documents 1-3.
 特許文献1及び2に記載の回転子は、フェライトボンド磁石と、フェライトボンド磁石の外側に配置された希土類ボンド磁石とを有する。軸方向に見たときの特許文献1及び2の希土類ボンド磁石の形状は、環状である。 The rotors described in Patent Documents 1 and 2 have ferrite bond magnets and rare earth bond magnets arranged outside the ferrite bond magnets. The shape of the bonded rare earth magnets of Patent Documents 1 and 2 when viewed in the axial direction is annular.
 特許文献3に記載の回転子は、フェライトボンド磁石と、フェライトボンド磁石に支持されて且つ周方向に配置された複数の希土類ボンド磁石とを有する。そのため、特許文献3の回転子のコストは、特許文献1及び2の回転子のコストより低減される。 The rotor described in Patent Document 3 has a ferrite bond magnet and a plurality of rare earth bond magnets supported by the ferrite bond magnet and arranged in the circumferential direction. Therefore, the cost of the rotor of Patent Document 3 is lower than that of the rotors of Patent Documents 1 and 2.
特開2005-151757号公報JP 2005-151757 A 特開2011-87393号公報JP 2011-87393 A 特開2007-208104号公報JP 2007-208104 A
 しかしながら、特許文献3に記載の回転子では、表面磁束密度の変化が不均一となる。具体的には、特許文献3の回転子において、フェライトボンド磁石の磁力は希土類ボンド磁石の磁力より弱いため、当該回転子における表面磁束密度の分布は、均一な正弦波の波形とはならない。そのため、固定子鉄心に鎖交する有効磁束に歪みが生じるという課題がある。 However, in the rotor described in Patent Document 3, changes in the surface magnetic flux density are uneven. Specifically, in the rotor of Patent Document 3, since the magnetic force of the ferrite bonded magnet is weaker than the magnetic force of the rare earth bonded magnet, the distribution of the surface magnetic flux density in the rotor does not have a uniform sinusoidal waveform. Therefore, there is a problem that the effective magnetic flux interlinking with the stator core is distorted.
 本開示は、有効磁束の歪みの発生を防止することを目的とする。 The present disclosure aims to prevent the occurrence of distortion of the effective magnetic flux.
 本開示の一態様に係る回転子は、回転軸と、前記回転軸に支持された磁石本体部と、前記磁石本体部の径方向の外向きの面である第1の外周面に前記回転軸を中心とする周方向に等間隔に並ぶように設けられた複数の溝部とを有する第1の永久磁石と、前記第1の永久磁石の磁極より強い磁極を有し、前記複数の溝部にそれぞれ配置された複数の第2の永久磁石とを有し、前記第1の外周面と前記回転軸との間の最大距離である第1の距離は、前記複数の第2の永久磁石の各第2の永久磁石の前記径方向の外向きの面である第2の外周面と前記回転軸との間の最大距離である第2の距離より長い。 A rotor according to an aspect of the present disclosure includes a rotating shaft, a magnet main body portion supported by the rotating shaft, and a first outer peripheral surface that is a radially outward surface of the magnet main body portion. A first permanent magnet having a plurality of grooves provided so as to be arranged at equal intervals in a circumferential direction centered on a magnetic pole stronger than the magnetic pole of the first permanent magnet, and a plurality of second permanent magnets arranged, wherein a first distance, which is a maximum distance between the first outer peripheral surface and the rotation axis, is determined for each of the plurality of second permanent magnets. It is longer than a second distance, which is the maximum distance between the second outer peripheral surface, which is the radially outward surface of the two permanent magnets, and the rotating shaft.
 本開示によれば、有効磁束の歪みの発生を低減することができる。 According to the present disclosure, it is possible to reduce the occurrence of distortion of the effective magnetic flux.
実施の形態1に係る電動機の構成を示す平面図である。1 is a plan view showing a configuration of an electric motor according to Embodiment 1; FIG. 図1に示される電動機の構成を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing the configuration of the electric motor shown in FIG. 1; 図1に示される回転子の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of the rotor shown in FIG. 1; 図3に示される回転子の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the rotor shown in FIG. 3; 図3に示される回転子のフェライトボンド磁石の構成を示す平面図である。FIG. 4 is a plan view showing the configuration of ferrite bond magnets of the rotor shown in FIG. 3; (A)は、比較例1に係る回転子の構成を示す平面図である。(B)は、比較例1に係る回転子の構成を示す側面図である。8A is a plan view showing the configuration of a rotor according to Comparative Example 1. FIG. (B) is a side view showing a configuration of a rotor according to Comparative Example 1; (A)は、比較例2に係る回転子の構成を示す平面図である。(B)は、比較例2に係る回転子の構成を示す側面図である。(A) is a plan view showing a configuration of a rotor according to Comparative Example 2. FIG. (B) is a side view showing the configuration of a rotor according to Comparative Example 2. FIG. 比較例1に係る回転子の表面磁束密度の分布と、比較例2に係る回転子の表面磁束密度の分布とを示すグラフである。7 is a graph showing the distribution of the surface magnetic flux density of the rotor according to Comparative Example 1 and the distribution of the surface magnetic flux density of the rotor according to Comparative Example 2; 図3に示される回転子の構成の一部を示す拡大平面図である。FIG. 4 is an enlarged plan view showing part of the configuration of the rotor shown in FIG. 3; 図9に示される希土類ボンド磁石の構成を示す拡大平面図である。FIG. 10 is an enlarged plan view showing the configuration of the rare earth bonded magnet shown in FIG. 9; 図9に示される希土類ボンド磁石及びフェライトボンド磁石の一部を示す平面図である。FIG. 10 is a plan view showing a part of the rare earth bonded magnet and ferrite bonded magnet shown in FIG. 9; 実施の形態1に係る回転子の製造工程を示すフローチャートである。4 is a flow chart showing a manufacturing process of the rotor according to Embodiment 1. FIG. 実施の形態1に係る回転子の回転子本体の製造工程を示すフローチャートである。4 is a flow chart showing a manufacturing process of the rotor main body of the rotor according to Embodiment 1. FIG. 実施の形態1の変形例に係る回転子の構成の一部を示す平面図である。FIG. 4 is a plan view showing a part of the configuration of a rotor according to a modified example of Embodiment 1; 実施の形態2に係る回転子の構成の一部を示す平面図である。FIG. 8 is a plan view showing a part of the configuration of a rotor according to Embodiment 2; 実施の形態3に係る回転子の構成の一部を示す平面図である。FIG. 11 is a plan view showing a part of the configuration of a rotor according to Embodiment 3; 実施の形態4に係る回転子の構成の一部を示す平面図である。FIG. 11 is a plan view showing a part of the configuration of a rotor according to Embodiment 4; 実施の形態5に係る回転子の構成を示す平面図である。FIG. 11 is a plan view showing the configuration of a rotor according to Embodiment 5; 実施の形態5に係る回転子の構成を示す側面図である。FIG. 11 is a side view showing the configuration of a rotor according to Embodiment 5; 図18に示される回転子をB20-B20線で切断した断面図である。FIG. 19 is a cross-sectional view of the rotor shown in FIG. 18 taken along line B20-B20; 実施の形態5の変形例に係る回転子の構成を示す平面図である。FIG. 11 is a plan view showing a configuration of a rotor according to a modified example of Embodiment 5; 図21に示される回転子をB22-B22線で切断した断面図である。FIG. 22 is a cross-sectional view of the rotor shown in FIG. 21 taken along line B22-B22; 実施の形態6に係る送風機の構成を概略的に示す図である。FIG. 12 is a diagram schematically showing the configuration of a blower according to Embodiment 6; 実施の形態7に係る空気調和装置の構成を概略的に示す図である。FIG. 11 is a diagram schematically showing the configuration of an air conditioner according to Embodiment 7;
 以下に、本開示の実施の形態に係る回転子、電動機、送風機及び空気調和装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本開示の範囲内で種々の変更が可能である。 A rotor, an electric motor, a fan, and an air conditioner according to embodiments of the present disclosure will be described below with reference to the drawings. The following embodiments are merely examples, and various modifications are possible within the scope of the present disclosure.
 図面相互の関係を理解し易くするために、各図には、xyz直交座標系が示されている場合がある。z軸は、回転子の軸線Aに平行な座標軸である。x軸は、z軸に直交する座標軸である。y軸は、x軸及びz軸の両方に直交する座標軸である。 In order to make it easier to understand the relationship between drawings, each drawing may show an xyz orthogonal coordinate system. The z-axis is the coordinate axis parallel to the axis A of the rotor. The x-axis is a coordinate axis orthogonal to the z-axis. The y-axis is a coordinate axis orthogonal to both the x-axis and the z-axis.
 《実施の形態1》
 図1は、実施の形態1に係る電動機100の構成を示す平面図である。図2は、図1に示される電動機100の構成を示す部分断面図である。電動機100は、例えば、永久磁石同期電動機である。電動機100は、回転子1と、固定子6とを有する。回転子1は、固定子6の内側に配置されている。すなわち、電動機100は、インナロータ型の電動機である。回転子1と固定子6との間には、エアギャップGが形成されている。エアギャップGは、例えば、0.5mmの空隙である。
<<Embodiment 1>>
FIG. 1 is a plan view showing the configuration of electric motor 100 according to Embodiment 1. FIG. FIG. 2 is a partial cross-sectional view showing the configuration of electric motor 100 shown in FIG. Electric motor 100 is, for example, a permanent magnet synchronous motor. Electric motor 100 has rotor 1 and stator 6 . The rotor 1 is arranged inside the stator 6 . That is, the electric motor 100 is an inner rotor type electric motor. An air gap G is formed between the rotor 1 and the stator 6 . Air gap G is, for example, a gap of 0.5 mm.
 回転子1は、回転軸としてのシャフト10を有する。シャフト10は、z軸方向に伸びている。以下の説明では、z軸方向を「軸方向」とも呼ぶ。また、シャフト10の軸線Aを中心とする円の円周に沿った方向を「周方向C」、z軸方向に直交して軸線Aを通る直線の方向を「径方向」と呼ぶ。 The rotor 1 has a shaft 10 as a rotating shaft. The shaft 10 extends in the z-axis direction. In the following description, the z-axis direction is also referred to as the "axial direction". Also, the direction along the circumference of a circle centered on the axis A of the shaft 10 is called the "circumferential direction C", and the direction of a straight line passing through the axis A perpendicular to the z-axis direction is called the "radial direction".
 〈固定子〉
 固定子6は、固定子鉄心61と、固定子鉄心61に巻き付けられたコイル62とを有する。固定子鉄心61は、軸線Aを中心とする環状のヨーク61aと、ヨーク61aから径方向の内側に伸びる複数のティース61bとを有する。複数のティース61bは、周方向Cに等角度の間隔で配置されている。ティース61bは、エアギャップGを介して回転子1の外周面1cに対向している。図1では、ティース61bの個数は、例えば、12個である。なお、ティース61bの個数は12個に限られず、2個以上の任意の個数に設定されていればよい。
<stator>
The stator 6 has a stator core 61 and coils 62 wound around the stator core 61 . The stator core 61 has an annular yoke 61a centered on the axis A and a plurality of teeth 61b extending radially inward from the yoke 61a. The plurality of teeth 61b are arranged in the circumferential direction C at equal angular intervals. The teeth 61b face the outer peripheral surface 1c of the rotor 1 with an air gap G therebetween. In FIG. 1, the number of teeth 61b is twelve, for example. Note that the number of teeth 61b is not limited to twelve, and may be set to any number of two or more.
 〈回転子〉
 次に、回転子1の構成の詳細について説明する。図3は、図1に示される回転子1の構成を示す平面図である。図4は、図3に示される回転子1の構成を示す断面図である。図2~4に示されるように、回転子1は、シャフト10と、第1の永久磁石としてのフェライトボンド磁石20と、複数の第2の永久磁石としての複数の希土類ボンド磁石31とを有する。フェライトボンド磁石20と複数の希土類ボンド磁石31とによって、シャフト10に支持される回転子本体50が構成される。
<Rotor>
Next, the details of the configuration of the rotor 1 will be described. FIG. 3 is a plan view showing the configuration of rotor 1 shown in FIG. FIG. 4 is a cross-sectional view showing the configuration of rotor 1 shown in FIG. As shown in FIGS. 2-4, the rotor 1 has a shaft 10, ferrite bonded magnets 20 as first permanent magnets, and a plurality of rare earth bonded magnets 31 as a plurality of second permanent magnets. . A rotor main body 50 supported by the shaft 10 is configured by the ferrite bond magnet 20 and the plurality of rare earth bond magnets 31 .
 図2に示されるように、実施の形態1では、回転子本体50のz軸方向の長さLは、固定子6の固定子鉄心61のz軸方向の長さLより長い。これにより、回転子本体50を構成するボンド磁石(すなわち、フェライトボンド磁石20及び希土類ボンド磁石31)から固定子6の固定子鉄心61に鎖交する有効磁束の磁束量を増加させることができる。なお、長さLは、長さLと同じであってもよい。 As shown in FIG. 2, in Embodiment 1 , the length L1 of the rotor main body 50 in the z-axis direction is longer than the length L6 of the stator core 61 of the stator 6 in the z-axis direction. As a result, the amount of effective magnetic flux interlinking with the stator core 61 of the stator 6 from the bond magnets (that is, the ferrite bond magnets 20 and the rare earth bond magnets 31) forming the rotor main body 50 can be increased. Note that the length L1 may be the same as the length L6 .
 フェライトボンド磁石20は、フェライト磁石と樹脂とを含む。フェライトボンド磁石20に含まれる樹脂は、例えば、ナイロン樹脂、PPS(Poly Phenylene Sulfide)樹脂、エポキシ樹脂などである。 The ferrite bond magnet 20 includes a ferrite magnet and resin. The resin contained in the ferrite bond magnet 20 is, for example, nylon resin, PPS (Poly Phenylene Sulfide) resin, epoxy resin, or the like.
 希土類ボンド磁石31は、希土類磁石と樹脂とを含む。希土類磁石は、例えば、ネオジム(Nd)、鉄(Fe)及びホウ素(B)を含むネオジム磁石、又はサマリウム(Sm)、Fe及び窒素(N)を含むサマリウム鉄窒素磁石などである。希土類ボンド磁石31に含まれる樹脂は、フェライトボンド磁石20に含まれる樹脂と同じであり、例えば、ナイロン樹脂、PPS樹脂、エポキシ樹脂などである。 The rare earth bonded magnet 31 includes a rare earth magnet and resin. Rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B), or samarium iron nitrogen magnets containing samarium (Sm), Fe and nitrogen (N). The resin contained in rare earth bonded magnet 31 is the same as the resin contained in ferrite bonded magnet 20, such as nylon resin, PPS resin, or epoxy resin.
 希土類ボンド磁石31の磁極の強さ(すなわち、磁気量)は、フェライトボンド磁石20の磁極の強さと異なる。具体的には、希土類ボンド磁石31は、フェライトボンド磁石20の磁極より強い磁極を有する。言い換えれば、希土類ボンド磁石31の磁力は、フェライトボンド磁石20の磁力より大きい。また、希土類ボンド磁石31の線膨張係数は、フェライトボンド磁石20の線膨張係数と異なる。 The magnetic pole strength (that is, the amount of magnetism) of the rare earth bonded magnet 31 is different from the magnetic pole strength of the ferrite bonded magnet 20 . Specifically, rare earth bonded magnet 31 has a magnetic pole stronger than the magnetic pole of ferrite bonded magnet 20 . In other words, the magnetic force of rare earth bonded magnet 31 is greater than the magnetic force of ferrite bonded magnet 20 . Also, the coefficient of linear expansion of rare earth bonded magnet 31 is different from the coefficient of linear expansion of ferrite bonded magnet 20 .
 図3に示されるように、フェライトボンド磁石20は、樹脂部7を介在させてシャフト10に支持されている。樹脂部7は、内筒部71と、外筒部72と、複数(例えば、4つ)のリブ73とを有する。内筒部71は円筒状であり、シャフト10の外周面10aに固定されている。外筒部72は円筒状であり、フェライトボンド磁石20の内周面20bに固定されている。複数のリブ73は、内筒部71と外筒部72とを接続している。複数のリブ73は、内筒部71の外周から径方向の外側に放射状に伸びている。複数のリブ73は、例えば、周方向Cに等角度の位置に配置されている。樹脂部7は、例えば、不飽和ポリエステル樹脂から形成されている。なお、フェライトボンド磁石20は、樹脂部7を介在させずにシャフト10に直接固定されていてもよい。 As shown in FIG. 3, the ferrite bond magnet 20 is supported by the shaft 10 with the resin portion 7 interposed. The resin portion 7 has an inner tubular portion 71 , an outer tubular portion 72 , and a plurality of (for example, four) ribs 73 . The inner cylindrical portion 71 has a cylindrical shape and is fixed to the outer peripheral surface 10 a of the shaft 10 . The outer cylindrical portion 72 has a cylindrical shape and is fixed to the inner peripheral surface 20 b of the ferrite bond magnet 20 . A plurality of ribs 73 connect the inner tubular portion 71 and the outer tubular portion 72 . The plurality of ribs 73 radially extend radially outward from the outer periphery of the inner cylindrical portion 71 . The plurality of ribs 73 are arranged at equiangular positions in the circumferential direction C, for example. The resin portion 7 is made of, for example, unsaturated polyester resin. Note that the ferrite bond magnet 20 may be directly fixed to the shaft 10 without interposing the resin portion 7 .
 図5は、図3に示されるフェライトボンド磁石20の構成を示す平面図である。図5に示されるように、xy平面に平行なフェライトボンド磁石20の平面形状は、軸線Aを中心とする環状である。フェライトボンド磁石20の外周面(すなわち、後述する磁石本体部21の外周面21c)は、回転子1の外周面1c(図1参照)の一部を形成する。 FIG. 5 is a plan view showing the configuration of the ferrite bond magnet 20 shown in FIG. As shown in FIG. 5, the planar shape of the ferrite bonded magnet 20 parallel to the xy plane is an annular shape with the axis A as the center. The outer peripheral surface of the ferrite bond magnet 20 (that is, the outer peripheral surface 21c of the magnet main body 21 to be described later) forms a part of the outer peripheral surface 1c of the rotor 1 (see FIG. 1).
 フェライトボンド磁石20は、円筒状の磁石本体部21と、複数(例えば、8つ)の溝部22とを有する。磁石本体部21は、フェライトボンド磁石20のうちシャフト10(図1参照)に支持される部分である。磁石本体部21の第1の外周面としての外周面21cに、複数の溝部22が形成されている。外周面21cは、磁石本体部21の径方向の外向きの面である。 The ferrite bond magnet 20 has a cylindrical magnet main body 21 and a plurality of (for example, eight) grooves 22 . Magnet main body 21 is a portion of ferrite bond magnet 20 that is supported by shaft 10 (see FIG. 1). A plurality of grooves 22 are formed in an outer peripheral surface 21 c as a first outer peripheral surface of the magnet main body 21 . The outer peripheral surface 21 c is a radially outward surface of the magnet body portion 21 .
 溝部22は、z軸方向に長い長溝である。複数の溝部22は、周方向Cに一定の間隔をあけて配置されている。図5に示す例では、複数の溝部22は、周方向Cに等間隔に並ぶように設けられている。複数の溝部22内には、複数の希土類ボンド磁石31(図3参照)がそれぞれ配置される。 The groove portion 22 is a long groove elongated in the z-axis direction. The plurality of grooves 22 are arranged at regular intervals in the circumferential direction C. As shown in FIG. In the example shown in FIG. 5, the plurality of grooves 22 are arranged in the circumferential direction C at regular intervals. A plurality of rare earth bonded magnets 31 (see FIG. 3) are arranged in the plurality of grooves 22, respectively.
 フェライトボンド磁石20は、極異方性を有するように配向されている。これにより、周方向Cに隣接する2つの溝部22は、互いに極性が異なる磁極を有する。言い換えれば、周方向Cにおいて、N極の溝部22とS極の溝部22とが交互に配置されている。S極の溝部22の径方向の外側から流れ込んだ磁束(図示しない)が、周方向Cに隣接するN極の溝部22へと進む。そのため、回転子1(図3参照)は、フェライトボンド磁石20より径方向の内側に磁路を構成する回転子鉄心を必要としない。これにより、回転子1における部品点数を削減することができ、且つ回転子1を軽量化することができる。 The ferrite bond magnet 20 is oriented so as to have polar anisotropy. As a result, the two grooves 22 adjacent in the circumferential direction C have magnetic poles with different polarities. In other words, in the circumferential direction C, the N-pole grooves 22 and the S-pole grooves 22 are alternately arranged. A magnetic flux (not shown) that has flowed in from the radially outer side of the S-pole groove portion 22 proceeds to the adjacent N-pole groove portion 22 in the circumferential direction C. As shown in FIG. Therefore, the rotor 1 (see FIG. 3) does not require a rotor core forming a magnetic path inside the ferrite bond magnets 20 in the radial direction. As a result, the number of parts in the rotor 1 can be reduced, and the weight of the rotor 1 can be reduced.
 図3に戻って、希土類ボンド磁石31の構成について説明する。複数の希土類ボンド磁石31は、周方向Cに間隔をあけて配置されている。図3に示す例では、複数の希土類ボンド磁石31は、周方向Cに等間隔に並ぶように設けられている。希土類ボンド磁石31の第2の外周面としての外周面31cは、回転子1の外周面1c(図1参照)の一部を形成している。外周面31cは、希土類ボンド磁石31の径方向の外向きの面である。 Returning to FIG. 3, the configuration of the rare earth bonded magnet 31 will be described. The plurality of rare earth bonded magnets 31 are arranged in the circumferential direction C at intervals. In the example shown in FIG. 3, a plurality of rare earth bonded magnets 31 are arranged in the circumferential direction C at equal intervals. An outer peripheral surface 31c as a second outer peripheral surface of the rare earth bonded magnet 31 forms a part of the outer peripheral surface 1c of the rotor 1 (see FIG. 1). The outer peripheral surface 31 c is a radially outward surface of the bonded rare earth magnet 31 .
 複数の希土類ボンド磁石31はそれぞれ、極異方性を有するように配向されている。周方向Cに隣接する複数の希土類ボンド磁石31は、互いに極性が異なる磁極を有する。図3に示される円弧状の矢印Fは、希土類ボンド磁石31における磁束の向きを示している。S極の希土類ボンド磁石31の径方向の外側から流れ込んだ磁束が、周方向Cに隣接するN極の希土類ボンド磁石31へと進む。実施の形態1では、希土類ボンド磁石31は8個の希土類ボンド磁石31を有するため、回転子1は8個の磁極を有する。希土類ボンド磁石31の周方向Cの中心は、回転子1の極中心部である。なお、回転子1の極数は8個に限らず、2n個以上であればよい。ここで、nは、1以上の自然数である。 Each of the plurality of rare earth bonded magnets 31 is oriented to have polar anisotropy. A plurality of rare earth bonded magnets 31 adjacent in the circumferential direction C have magnetic poles with different polarities. Circular arrow F shown in FIG. 3 indicates the direction of magnetic flux in rare earth bonded magnet 31 . The magnetic flux flowing from the radially outer side of the south pole rare earth bonded magnet 31 advances to the adjacent north pole rare earth bonded magnet 31 in the circumferential direction C. As shown in FIG. In Embodiment 1, since rare earth bonded magnets 31 have eight rare earth bonded magnets 31, rotor 1 has eight magnetic poles. The center of the rare earth bonded magnet 31 in the circumferential direction C is the pole center of the rotor 1 . Note that the number of poles of the rotor 1 is not limited to eight, and may be 2n or more. Here, n is a natural number of 1 or more.
 希土類ボンド磁石31は、フェライトボンド磁石20に接合されている。実施の形態1では、フェライトボンド磁石20及び希土類ボンド磁石31が一体成形(「2色成形」ともいう)されることによって、希土類ボンド磁石31がフェライトボンド磁石20の溝部22に接合されている。また、実施の形態1では、希土類ボンド磁石31は、溝部22内に充填されている。 The rare earth bonded magnet 31 is joined to the ferrite bonded magnet 20 . In Embodiment 1, rare earth bonded magnet 31 is joined to groove 22 of ferrite bonded magnet 20 by integrally molding (also referred to as “two-color molding”) ferrite bonded magnet 20 and rare earth bonded magnet 31 . Further, in Embodiment 1, rare earth bonded magnet 31 is filled in groove portion 22 .
 以下の説明において、フェライトボンド磁石20及び希土類ボンド磁石31が一体成形されるとは、予め製造されたフェライトボンド磁石20を金型に配置した状態で希土類ボンド磁石31を成型することである。これにより、予め製造した複数の希土類ボンド磁石31を金型に配置した状態でフェライトボンド磁石20を成型する製造工程と比較して、実施の形態1では、複数の希土類ボンド磁石31を1つずつ金型に配置する作業が不要となる。そのため、回転子本体50の生産性を向上させることができる。 In the following description, integral molding of the ferrite bonded magnet 20 and the rare earth bonded magnet 31 means that the rare earth bonded magnet 31 is molded while the previously manufactured ferrite bonded magnet 20 is placed in a mold. Thus, in comparison with the manufacturing process of molding ferrite bonded magnet 20 in a state in which a plurality of rare earth bonded magnets 31 manufactured in advance are arranged in a mold, in the first embodiment, a plurality of rare earth bonded magnets 31 are arranged one by one. The work of arranging it in the mold becomes unnecessary. Therefore, productivity of the rotor main body 50 can be improved.
 次に、実施の形態1に係る回転子1のコストについて、比較例1に係る回転子101aと対比しながら説明する。図6(A)は、比較例1に係る回転子101aの構成を示す平面図である。図6(B)は、比較例1に係る回転子101aの構成を示す側面図である。なお、図6(A)及び(B)では、シャフト10の図示が省略されている。 Next, the cost of the rotor 1 according to Embodiment 1 will be explained in comparison with the rotor 101a according to Comparative Example 1. FIG. 6A is a plan view showing the configuration of a rotor 101a according to Comparative Example 1. FIG. FIG. 6B is a side view showing the configuration of the rotor 101a according to Comparative Example 1. FIG. 6A and 6B, illustration of the shaft 10 is omitted.
 図6(A)及び(B)に示されるように、回転子101aでは、環状のフェライトボンド磁石120aの外周面120cに、環状の希土類ボンド磁石130aが配置されている。すなわち、回転子101aでは、回転子101aの外周面101cの全てが、希土類ボンド磁石130aによって形成されている。 As shown in FIGS. 6A and 6B, in the rotor 101a, an annular rare earth bonded magnet 130a is arranged on the outer peripheral surface 120c of the annular ferrite bonded magnet 120a. That is, in rotor 101a, all of outer peripheral surface 101c of rotor 101a is formed of rare earth bonded magnet 130a.
 これに対し、上述した図2に示されるように、実施の形態1では、回転子1の外周面1cは、フェライトボンド磁石20の外周面20c及び複数の希土類ボンド磁石31のそれぞれの外周面31cによって形成されている。これにより、回転子1では、回転子101aと比べて、希土類ボンド磁石31の使用量を削減することができる。具体的には、回転子1では、回転子101aと比べて、希土類ボンド磁石31の使用量を約20%削減することができる。 On the other hand, as shown in FIG. 2 described above, in Embodiment 1, the outer peripheral surface 1c of the rotor 1 includes the outer peripheral surface 20c of the ferrite bonded magnet 20 and the outer peripheral surface 31c of each of the plurality of rare earth bonded magnets 31. formed by As a result, in the rotor 1, the amount of rare earth bonded magnets 31 used can be reduced compared to the rotor 101a. Specifically, in rotor 1, the amount of rare earth bonded magnets 31 used can be reduced by about 20% compared to rotor 101a.
 また、希土類ボンド磁石31は、フェライトボンド磁石20に比べて、高価である。例えば、希土類ボンド磁石31の材料単価は、フェライトボンド磁石20の材料単価の10倍以上である。そのため、回転子1の外周面1cが、フェライトボンド磁石20の磁石本体部21の外周面21c及び希土類ボンド磁石31の外周面31cによって形成されていることで、希土類ボンド磁石31の使用量を削減することができる。よって、回転子1のコストを低減することができる。 Also, the rare earth bonded magnet 31 is more expensive than the ferrite bonded magnet 20 . For example, the material unit price of the rare earth bonded magnet 31 is ten times or more the material unit price of the ferrite bonded magnet 20 . Therefore, the outer peripheral surface 1c of the rotor 1 is formed by the outer peripheral surface 21c of the magnet main body 21 of the ferrite bonded magnet 20 and the outer peripheral surface 31c of the rare earth bonded magnet 31, thereby reducing the usage of the rare earth bonded magnet 31. can do. Therefore, the cost of the rotor 1 can be reduced.
 次に、実施の形態1に係る回転子1の表面磁束密度について、比較例1に係る回転子101a及び比較例2に係る回転子101bと対比しながら説明する。図7(A)は、比較例2に係る回転子101bの構成を示す平面図である。図7(B)は、比較例2に係る回転子101bの構成を示す側面図である。なお、図7(A)及び(B)では、シャフト10の図示が省略されている。 Next, the surface magnetic flux density of the rotor 1 according to Embodiment 1 will be described in comparison with the rotor 101a according to Comparative Example 1 and the rotor 101b according to Comparative Example 2. FIG. 7A is a plan view showing the configuration of a rotor 101b according to Comparative Example 2. FIG. FIG. 7B is a side view showing the configuration of a rotor 101b according to Comparative Example 2. FIG. 7A and 7B, illustration of the shaft 10 is omitted.
 図7(A)及び(B)に示されるように、回転子101bは、フェライトボンド磁石120bと、複数の希土類ボンド磁石131bとを有する。複数の希土類ボンド磁石131bは、周方向Cに間隔をあけて配置されている。よって、回転子101bの希土類ボンド磁石131bの使用量は、回転子101aの希土類ボンド磁石130aの使用量と相違する。 As shown in FIGS. 7A and 7B, the rotor 101b has a ferrite bond magnet 120b and a plurality of rare earth bond magnets 131b. The plurality of rare earth bonded magnets 131b are arranged in the circumferential direction C at intervals. Therefore, the usage of rare earth bonded magnets 131b of rotor 101b is different from the usage of rare earth bonded magnets 130a of rotor 101a.
 図8は、比較例1に係る回転子101aの表面磁束密度の分布と、比較例2に係る回転子101bの表面磁束密度の分布とを示すグラフである。図8において、横軸は、回転子101aの外周面101c又は回転子101bの外周面101dにおける周方向Cの位置[度]を示し、縦軸は、表面磁束密度[a.u.]を示す。また、図8において、破線は比較例1に係る回転子101aの表面磁束密度の分布を示し、実線は比較例2に係る回転子101bの表面磁束密度の分布を示す。 FIG. 8 is a graph showing the distribution of the surface magnetic flux density of the rotor 101a according to Comparative Example 1 and the distribution of the surface magnetic flux density of the rotor 101b according to Comparative Example 2. In FIG. 8, the horizontal axis indicates the position [degrees] in the circumferential direction C on the outer peripheral surface 101c of the rotor 101a or the outer peripheral surface 101d of the rotor 101b, and the vertical axis indicates the surface magnetic flux density [a. u. ] is shown. 8, the dashed line indicates the distribution of the surface magnetic flux density of the rotor 101a according to Comparative Example 1, and the solid line indicates the distribution of the surface magnetic flux density of the rotor 101b according to the second comparative example.
 図8において、回転子101aの表面磁束密度の分布は、波形S1によって表され、回転子101bの表面磁束密度の分布は、波形S2によって表される。波形S1は、正弦波の波形によって表される。言い換えれば、回転子101aでは、周方向Cにおいて、表面磁束密度の変化は均一である。一方、波形S2は、波形S1と比べて、なだらかではない。言い換えれば、回転子101bでは、周方向Cにおいて、表面磁束密度の変化は不均一である。 In FIG. 8, the distribution of the surface magnetic flux density of the rotor 101a is represented by the waveform S1, and the distribution of the surface magnetic flux density of the rotor 101b is represented by the waveform S2. The waveform S1 is represented by a sinusoidal waveform. In other words, in the rotor 101a, the change in surface magnetic flux density in the circumferential direction C is uniform. On the other hand, the waveform S2 is less smooth than the waveform S1. In other words, in the rotor 101b, changes in the surface magnetic flux density in the circumferential direction C are uneven.
 具体的には、波形S2のうち回転子1の極間部に対応する部分において歪みが生じている。回転子1の極間部は、N極とS極の境界である。実施の形態1では、回転子1の極間部は、フェライトボンド磁石20の磁石本体部21のうち周方向Cに隣接する2つの希土類ボンド磁石31の間の部分21e(図5参照)である。表面磁束密度の分布が波形S2によって表された場合、固定子鉄心61(図2参照)に鎖交する有効磁束に歪みが生じるという課題がある。 Specifically, distortion occurs in a portion of the waveform S2 that corresponds to the interpolar portion of the rotor 1 . A pole-to-pole portion of the rotor 1 is a boundary between the north pole and the south pole. In Embodiment 1, the pole-to-pole portion of rotor 1 is portion 21e (see FIG. 5) between two rare earth bonded magnets 31 adjacent in circumferential direction C in magnet body portion 21 of ferrite bonded magnet 20. . When the distribution of the surface magnetic flux density is represented by the waveform S2, there is a problem that the effective magnetic flux interlinking with the stator core 61 (see FIG. 2) is distorted.
 実施の形態1に係る回転子1は、比較例2に係る回転子101bと同様に、フェライトボンド磁石20と、周方向Cに間隔をあけて配置された複数の希土類ボンド磁石31とを有する。しかしながら、実施の形態1では、以下に述べる構成により、有効磁束の歪みを低減することができる。 The rotor 1 according to Embodiment 1 has ferrite bond magnets 20 and a plurality of rare earth bond magnets 31 arranged at intervals in the circumferential direction C, like the rotor 101b according to Comparative Example 2. However, in Embodiment 1, the distortion of the effective magnetic flux can be reduced by the configuration described below.
 図9は、実施の形態1に係る回転子1の構成の一部を示す平面図である。図9において、フェライトボンド磁石20の外周面21c上の点P1とシャフト10の軸線Aとの間の第1の距離を距離OD1とする。距離OD1は、フェライトボンド磁石20の外周面21cと軸線Aとの間の最大距離である。希土類ボンド磁石31の外周面31c上の点P2と軸線Aとの間の第2の距離を距離OD2とする。距離OD2は、希土類ボンド磁石31の外周面31cと軸線Aとの間の最大距離である。距離OD1は、距離OD2より長い。すなわち、距離OD1及び距離OD2は、以下の式(1)を満たす。
 OD1>OD2     (1)
FIG. 9 is a plan view showing a part of the configuration of rotor 1 according to the first embodiment. In FIG. 9, the first distance between point P1 on outer peripheral surface 21c of ferrite bond magnet 20 and axis A of shaft 10 is distance OD1. Distance OD1 is the maximum distance between outer peripheral surface 21c of ferrite bond magnet 20 and axis A. As shown in FIG. A second distance between point P2 on outer peripheral surface 31c of rare earth bonded magnet 31 and axis A is defined as distance OD2. Distance OD2 is the maximum distance between outer peripheral surface 31c of rare earth bonded magnet 31 and axis A. As shown in FIG. Distance OD1 is longer than distance OD2. That is, the distance OD1 and the distance OD2 satisfy the following formula (1).
OD1>OD2 (1)
 距離OD1及び距離OD2が式(1)を満たすことにより、フェライトボンド磁石20の外周面21cと固定子鉄心61との間のエアギャップG(図1参照)を狭くすることができる。これにより、固定子鉄心61に鎖交する有効磁束の磁束量が増加する。よって、回転子1の極間部における有効磁束の歪みを低減することができる。 The air gap G (see FIG. 1) between the outer peripheral surface 21c of the ferrite bond magnet 20 and the stator core 61 can be narrowed by the distance OD1 and the distance OD2 satisfying formula (1). As a result, the amount of effective magnetic flux interlinking with the stator core 61 increases. Therefore, the distortion of the effective magnetic flux in the interpolar portion of the rotor 1 can be reduced.
 また、フェライトボンド磁石20の溝部22は、底面22aと、第1の側面22bと、第2の側面22cとを有する。底面22aは、径方向の外側を向く面である。第1の側面22b及び第2の側面22cは、底面22aの幅方向の両端から径方向の外側に伸びている。 Further, the groove portion 22 of the ferrite bond magnet 20 has a bottom surface 22a, a first side surface 22b, and a second side surface 22c. The bottom surface 22a is a surface facing radially outward. The first side surface 22b and the second side surface 22c extend radially outward from both widthwise ends of the bottom surface 22a.
 図9に示す例では、第1の側面22b及び第2の側面22cは、溝部22の幅が狭まるように、底面22aの幅方向の両端から径方向の外側に伸びている。これにより、溝部22に配置される希土類ボンド磁石31が、温度変化による膨張若しくは収縮による界面剥離、又は回転子1に作用する遠心力によって、脱落することを防止できる。 In the example shown in FIG. 9, the first side surface 22b and the second side surface 22c extend radially outward from both ends in the width direction of the bottom surface 22a so that the width of the groove 22 is narrowed. This prevents the rare-earth bonded magnets 31 placed in the grooves 22 from coming off due to interface peeling due to expansion or contraction due to temperature changes, or centrifugal force acting on the rotor 1 .
 磁石本体部21の外周面21cは、複数の連結面21dによって構成されている。連結面21dは、周方向Cに隣接する2つの溝部22のうち一方の溝部22の第1の側面22bと他方の溝部22の第2の側面22cとを繋ぐ面である。上述したように、距離OD1及び距離OD2が式(1)を満たすことにより、連結面21dは、希土類ボンド磁石31の外周面31cより径方向の外側に位置している。 The outer peripheral surface 21c of the magnet main body 21 is composed of a plurality of connecting surfaces 21d. 21 d of connection surfaces are surfaces which connect the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 adjacent to the circumferential direction C. FIG. As described above, the distance OD1 and the distance OD2 satisfy the formula (1), so that the connecting surface 21d is located radially outside the outer peripheral surface 31c of the rare earth bonded magnet 31. As shown in FIG.
 次に、希土類ボンド磁石31の形状について説明する。図10は、図9に示される希土類ボンド磁石31の構成を示す拡大平面図である。図10において、希土類ボンド磁石31の周方向Cの中央部における径方向の厚みをt、周方向Cの端部における径方向の厚みをtとする。希土類ボンド磁石31の周方向Cの端部は、希土類ボンド磁石31における磁石本体部21との境界部分である。厚みtは、厚みtより厚い。すなわち、厚みt及び厚みtは、以下の式(2)を満たす。
 t>t       (2)
Next, the shape of rare earth bonded magnet 31 will be described. FIG. 10 is an enlarged plan view showing the configuration of rare earth bonded magnet 31 shown in FIG. In FIG. 10, the radial thickness at the central portion in the circumferential direction C of the rare earth bonded magnet 31 is t 1 , and the radial thickness at the end portion in the circumferential direction C is t 2 . An end portion of the rare earth bonded magnet 31 in the circumferential direction C is a boundary portion between the rare earth bonded magnet 31 and the magnet main body portion 21 . Thickness t1 is thicker than thickness t2. That is, the thickness t1 and the thickness t2 satisfy the following formula ( 2 ).
t 1 >t 2 (2)
 このように、希土類ボンド磁石31の径方向の厚みは、周方向Cの中央部から端部に近づくほど薄くなる。これにより、回転子1の極中心部における有効磁束の磁束量を十分に確保しつつ、希土類ボンド磁石31における磁石本体部21との境界部分における磁力を弱めることができる。よって、高価な希土類ボンド磁石31の使用量を抑制しつつ、希土類ボンド磁石31の周方向Cの端部における磁力と回転子1の極間部における磁力との差を低減することができる。 In this way, the radial thickness of the rare earth bonded magnet 31 becomes thinner from the center in the circumferential direction C toward the ends. As a result, the magnetic force of the rare-earth bonded magnet 31 can be weakened at the boundary between the rare-earth bonded magnet 31 and the magnet main body 21 while ensuring a sufficient amount of effective magnetic flux at the pole center portion of the rotor 1 . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
 また、希土類ボンド磁石31の外周面31cの周方向Cの幅Wは、希土類ボンド磁石31の径方向の内向きの面である内周面31dの周方向Cの幅Wより狭い。すなわち、幅W及び幅Wは、以下の式(3)を満たす。
 W>W       (3)
In addition, the width W1 in the circumferential direction C of the outer peripheral surface 31c of the rare earth bonded magnet 31 is narrower than the width W2 in the circumferential direction C of the inner peripheral surface 31d of the rare earth bonded magnet 31, which is the radially inward surface. That is, the width W1 and the width W2 satisfy the following formula ( 3 ).
W2> W1 ( 3 )
 幅W及び幅Wが式(3)を満たすことにより、希土類ボンド磁石31の周方向Cの端部における厚みtを、周方向Cの中央部における厚みtより薄くすることができる。よって、高価な希土類ボンド磁石31の使用量を抑制することができる。また、幅W及び幅Wが式(3)を満たすことにより、希土類ボンド磁石31が、温度変化による膨張若しくは収縮による界面剥離、又は回転子1に作用する遠心力によって、溝部22(図9参照)から脱落することを防止できる。 When the width W1 and the width W2 satisfy the expression ( 3 ), the thickness t2 at the ends in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t1 at the central portion in the circumferential direction C. . Therefore, the amount of expensive rare earth bonded magnet 31 used can be suppressed. In addition, when the width W1 and the width W2 satisfy the expression ( 3 ), the rare earth bonded magnet 31 is prevented from interfacial peeling due to expansion or contraction due to temperature change, or centrifugal force acting on the rotor 1. 9) can be prevented from falling off.
 図11は、図9に示される希土類ボンド磁石31及びフェライトボンド磁石20の構成の一部を示す拡大平面図である。図11において、希土類ボンド磁石31の内周面31dの周方向Cの中央部上の第1の点を点Q、内周面31dの周方向Cの端部上の第2の点を点Qとする。また、点Qと軸線Aとの間の距離をr、点Qと軸線Aとの間の距離をrとしたとき、距離rは、距離rより短い。すなわち、距離r及び距離rは、以下の式(4)を満たす。
 r<r       (4)
FIG. 11 is an enlarged plan view showing a part of the configuration of rare earth bonded magnet 31 and ferrite bonded magnet 20 shown in FIG. In FIG. 11, the first point on the central portion of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C is the point Q 1 , and the second point on the end portion of the inner peripheral surface 31d in the circumferential direction C is the point Q 1 . Let Q2 . When the distance between the point Q1 and the axis A is r3 , and the distance between the point Q2 and the axis A is r4 , the distance r3 is shorter than the distance r4 . That is, the distance r 3 and the distance r 4 satisfy the following equation (4).
r 3 <r 4 (4)
 距離r及び距離rが式(4)を満たすことにより、希土類ボンド磁石31の周方向Cの端部における厚みtを、周方向Cの中央部における厚みtより薄くすることができる。よって、高価な希土類ボンド磁石31の使用量を抑制しつつ、希土類ボンド磁石31の周方向Cの端部における磁力と回転子1の極間部における磁力との差を低減することができる。 When the distance r3 and the distance r4 satisfy formula ( 4 ), the thickness t2 at the end in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t1 at the center in the circumferential direction C. . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
 また、希土類ボンド磁石31の外周面31cについても、距離OD2を確保しつつ、周方向Cの中央部から端部に向かうほど径が小さい。これにより、極中心部から磁石境界部にかけて希土類ボンド磁石31と固定子6とのエアギャップG(図1参照)が徐々に広くなる。よって、希土類ボンド磁石31の周方向Cの端部における磁力と回転子1の極間部における磁力との差を低減することができる。 Further, the outer peripheral surface 31c of the rare earth bonded magnet 31 also has a smaller diameter from the central portion toward the end portions in the circumferential direction C while ensuring the distance OD2. As a result, the air gap G (see FIG. 1) between the rare earth bonded magnet 31 and the stator 6 gradually widens from the pole center to the magnet boundary. Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced.
 次に、図12を用いて回転子1の製造方法について、説明する。図12は、回転子1の製造工程を示すフローチャートである。回転子1の製造工程では、着磁器が用いられる。 Next, a method for manufacturing the rotor 1 will be described using FIG. FIG. 12 is a flow chart showing the manufacturing process of the rotor 1. As shown in FIG. A magnetizer is used in the manufacturing process of the rotor 1 .
 ステップST1では、回転子本体50を形成する。なお、ステップST1の詳細については、後述する。 In step ST1, the rotor main body 50 is formed. Details of step ST1 will be described later.
 ステップST2では、回転子本体50をシャフト10に連結する。実施の形態1では、回転子本体50とシャフト10とが樹脂部7を介して一体化されることで、回転子本体50がシャフト10に連結される。 In step ST2, the rotor main body 50 is connected to the shaft 10. In Embodiment 1, the rotor main body 50 and the shaft 10 are integrated via the resin portion 7 , so that the rotor main body 50 is connected to the shaft 10 .
 ステップST3では、例えば、着磁器を用いて、回転子本体50を着磁する。具体的には、フェライトボンド磁石20及び希土類ボンド磁石31が極異方性を有するように、フェライトボンド磁石20及び希土類ボンド磁石31を着磁する。 In step ST3, for example, the rotor main body 50 is magnetized using a magnetizer. Specifically, the ferrite bonded magnet 20 and the rare earth bonded magnet 31 are magnetized so that the ferrite bonded magnet 20 and the rare earth bonded magnet 31 have polar anisotropy.
 次に、図13を用いて回転子本体50を形成する工程(すなわち、図12に示されるステップST1)の詳細について説明する。図13は、回転子本体50を形成する工程を示すフローチャートである。回転子本体50を形成する工程では、フェライトボンド磁石20を成形するための第1の金型と、希土類ボンド磁石31を成形するための第2の金型と、配向用の磁石とが用いられる。 Next, the details of the step of forming the rotor main body 50 (that is, step ST1 shown in FIG. 12) will be described with reference to FIG. FIG. 13 is a flow chart showing the steps of forming the rotor body 50. As shown in FIG. In the step of forming the rotor main body 50, a first mold for molding the ferrite bonded magnets 20, a second mold for molding the rare earth bonded magnets 31, and magnets for orientation are used. .
 ステップST11では、フェライトボンド磁石20を成形するための第1の金型の内部に、フェライトボンド磁石20の原料を充填する。フェライトボンド磁石20は、例えば、射出成形により成形される。なお、フェライトボンド磁石20は、射出成形に限らず押圧成形などの他の成形方法によって成形されてもよい。 In step ST11, the inside of the first mold for molding the ferrite bond magnet 20 is filled with the raw material of the ferrite bond magnet 20. The ferrite bond magnet 20 is molded by injection molding, for example. Note that the ferrite bond magnet 20 may be molded by other molding methods such as press molding instead of injection molding.
 ステップST12では、フェライトボンド磁石20を配向しつつ、予め決められた形状を有するフェライトボンド磁石20を成形する。ステップST12では、例えば、配向用の磁石を用いて、第1の金型の内部に極異方性を有する磁場を発生させた状態で、フェライトボンド磁石20の原料を配向しつつ、フェライトボンド磁石20を成形する。これにより、極異方性を有するフェライトボンド磁石20が成形される。 In step ST12, while orienting the ferrite bond magnet 20, the ferrite bond magnet 20 having a predetermined shape is molded. In step ST12, for example, using a magnet for orientation, a magnetic field having polar anisotropy is generated inside the first mold, and while the raw material of the ferrite bond magnet 20 is oriented, the ferrite bond magnet Mold 20. As a result, a ferrite bonded magnet 20 having polar anisotropy is formed.
 ステップST13では、成形されたフェライトボンド磁石20を冷却する。 In step ST13, the formed ferrite bond magnet 20 is cooled.
 ステップST14では、フェライトボンド磁石20を第1の金型から取り出す。 At step ST14, the ferrite bond magnet 20 is taken out from the first mold.
 ステップST15では、取り出されたフェライトボンド磁石20を脱磁する。 At step ST15, the ferrite bond magnet 20 taken out is demagnetized.
 ステップST16では、希土類ボンド磁石31を射出成形するための第2の金型の内部に、フェライトボンド磁石20を配置する。 In step ST16, the ferrite bond magnet 20 is placed inside the second mold for injection molding the rare earth bond magnet 31.
 ステップST17では、第2の金型に配置されたフェライトボンド磁石20の溝部22に、希土類ボンド磁石31の原料を充填する。希土類ボンド磁石31は、例えば、射出成形により成形される。なお、希土類ボンド磁石31は、射出成形に限らず押圧成形などの他の成形方法によって成形されてもよい。 In step ST17, the raw material of the rare earth bonded magnet 31 is filled into the groove 22 of the ferrite bonded magnet 20 placed in the second mold. Rare-earth bonded magnet 31 is formed by, for example, injection molding. Note that the rare earth bonded magnet 31 may be molded by other molding methods such as press molding instead of injection molding.
 ステップST18では、希土類ボンド磁石31の原料を配向しつつ、予め決められた形状を有する希土類ボンド磁石31を成形する。ステップST18では、例えば、配向用の磁石を用いて、第2の金型の内部に極異方性を有する磁場を発生させた状態で、希土類ボンド磁石31の原料を配向しつつ、希土類ボンド磁石31を成形する。これにより、フェライトボンド磁石20及び複数の希土類ボンド磁石31が一体成形された回転子本体50が形成される。 In step ST18, while orienting the raw material of rare earth bonded magnet 31, rare earth bonded magnet 31 having a predetermined shape is molded. In step ST18, for example, a magnetic field having polar anisotropy is generated inside the second mold using an orienting magnet, and while the raw material of the rare earth bonded magnet 31 is oriented, the rare earth bonded magnet 31 is molded. Thereby, the rotor main body 50 in which the ferrite bond magnet 20 and the plurality of rare earth bond magnets 31 are integrally formed is formed.
 ステップST19では、ステップST18において形成された回転子本体50を冷却する。 In step ST19, the rotor main body 50 formed in step ST18 is cooled.
 ステップST20では、第2の金型から冷却された回転子本体50を取り出す。 At step ST20, the cooled rotor main body 50 is taken out from the second mold.
 ステップST21では、ステップST20において取り出された回転子本体50を脱磁する。 In step ST21, the rotor main body 50 taken out in step ST20 is demagnetized.
 〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、フェライトボンド磁石20の外周面21c上の第1の点P1とシャフト10の軸線Aとの間の距離OD1が、希土類ボンド磁石31の外周面31c上の第2の点P2と軸線Aとの間の距離OD2より長い。これにより、フェライトボンド磁石20と固定子6との間のエアギャップGが狭くなるため、固定子鉄心61に鎖交する有効磁束の磁束量が増加する。よって、回転子1の極間部における有効磁束の歪みを低減することができる。
<Effect of Embodiment 1>
According to the first embodiment described above, the distance OD1 between the first point P1 on the outer peripheral surface 21c of the ferrite bonded magnet 20 and the axis A of the shaft 10 is equal to the distance OD1 on the outer peripheral surface 31c of the rare earth bonded magnet 31. is longer than the distance OD2 between the second point P2 of and the axis A. As a result, the air gap G between the ferrite bond magnet 20 and the stator 6 is narrowed, so that the amount of effective magnetic flux interlinking with the stator core 61 is increased. Therefore, the distortion of the effective magnetic flux in the interpolar portion of the rotor 1 can be reduced.
 また、実施の形態1によれば、希土類ボンド磁石31の径方向の厚みは、周方向Cの中央部から端部に近づくほど薄くなる。これにより、回転子1の極中心部における有効磁束の磁束量を十分に確保しつつ、希土類ボンド磁石31における磁石本体部21との境界部分における磁力を弱めることができる。よって、高価な希土類ボンド磁石31の使用量を抑制しつつ、希土類ボンド磁石31の周方向Cの端部における磁力と回転子1の極間部における磁力との差を低減することができる。 Further, according to Embodiment 1, the radial thickness of rare earth bonded magnet 31 becomes thinner from the central portion in circumferential direction C toward the end portions. As a result, the magnetic force of the rare-earth bonded magnet 31 can be weakened at the boundary between the rare-earth bonded magnet 31 and the magnet main body 21 while ensuring a sufficient amount of effective magnetic flux at the pole center portion of the rotor 1 . Therefore, the difference between the magnetic force at the end of the rare earth bonded magnet 31 in the circumferential direction C and the magnetic force at the interpolar portion of the rotor 1 can be reduced while suppressing the amount of the expensive rare earth bonded magnet 31 used.
 また、実施の形態1によれば、希土類ボンド磁石31の内周面31dにおける周方向Cの中央部上の点Qと軸線Aとの間の距離rが、内周面31dにおける周方向Cの端部上の点Qと軸線Aとの間の距離rより短い。これにより、希土類ボンド磁石31の周方向Cの端部における厚みtを、周方向Cの中央部における厚みtより薄くすることができる。 Further, according to Embodiment 1 , the distance r3 between the point Q1 on the central portion of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C and the axis A is less than the distance r4 between the point Q2 on the end of C and the axis A; As a result, the thickness t 2 at the ends in the circumferential direction C of the rare earth bonded magnet 31 can be made thinner than the thickness t 1 at the central portion in the circumferential direction C.
 また、実施の形態1によれば、電動機100は、回転子1と、固定子6とを有する。上述したように、回転子1では、極間部における有効磁束の歪みの発生を低減することができる。電動機100が当該回転子1を有することにより、電動機100における振動の発生を防止しつつ、出力の低下を防止することができる。 Further, according to Embodiment 1, electric motor 100 has rotor 1 and stator 6 . As described above, in the rotor 1, it is possible to reduce the occurrence of distortion of the effective magnetic flux in the interpolar portion. Since the electric motor 100 has the rotor 1, it is possible to prevent the electric motor 100 from being vibrated and to prevent the output from being lowered.
 《実施の形態1の変形例》
 図14は、実施の形態1の変形例に係る回転子1Aの構成を示す平面図である。図14において、図9に示される構成要素と同一又は対応する構成要素には、図9に示される符号と同じ符号が付される。実施の形態1の変形例に係る回転子1Aは、フェライトボンド磁石20Aの形状の点で、実施の形態1に係る回転子1と相違する。これ以外の点については、実施の形態1に係る回転子1と同じである。そのため、以下の説明では、図3を参照する。
<<Modification of Embodiment 1>>
FIG. 14 is a plan view showing a configuration of rotor 1A according to a modification of Embodiment 1. FIG. 14, the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG. A rotor 1A according to a modification of the first embodiment differs from the rotor 1 according to the first embodiment in the shape of ferrite bond magnets 20A. Other points are the same as the rotor 1 according to the first embodiment. Therefore, FIG. 3 will be referred to in the following description.
 図14に示されるように、回転子1Aは、フェライトボンド磁石20Aと、複数の希土類ボンド磁石31Aとを有する。 As shown in FIG. 14, the rotor 1A has a ferrite bond magnet 20A and a plurality of rare earth bond magnets 31A.
 フェライトボンド磁石20Aは、シャフト10(図3参照)に支持された磁石本体部21Aと、複数の溝部22とを有する。磁石本体部21Aは、周方向Cに隣接する2つの溝部22のうち一方の溝部22の第1の側面22bと他方の溝部22の第2の側面22cとを結ぶ連結面121dを有する。 The ferrite bond magnet 20A has a magnet main body 21A supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22. 21 A of magnet main-body parts have the connection surface 121d which connects the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 adjacent to the circumferential direction C. FIG.
 図14に示す例では、希土類ボンド磁石31の外周面31cの幅Wは、フェライトボンド磁石20の連結面121dの周方向Cの幅Wより広い。すなわち、幅W及び幅Wは、以下の式(5)を満たす。
 W>W       (5)
 これにより、回転子1Aの極間部において、希土類ボンド磁石31が占める割合が増加するため、当該極間部における磁力の低下を抑制することができる。
In the example shown in FIG. 14, the width W1 of the outer peripheral surface 31c of the rare earth bonded magnet 31 is wider than the width W3 of the connecting surface 121d of the ferrite bonded magnet 20 in the circumferential direction C. As shown in FIG. That is , the width W1 and the width W3 satisfy the following formula ( 5 ).
W1>W3 ( 5 )
As a result, the ratio of the rare earth bonded magnets 31 to the interpolar portion of the rotor 1A is increased, so that the decrease in the magnetic force in the interpolar portion can be suppressed.
 また、図14に示す例では、実施の形態1と同様に、希土類ボンド磁石31の外周面31cの周方向Cの幅Wは、希土類ボンド磁石31の内周面31dの周方向Cの幅Wより狭い。よって、図14に示す例では、幅W、幅W及び幅Wは、以下の式(6)を満たす。
 W>W>W    (6)
 これにより、高価な希土類ボンド磁石31の使用量を抑制しつつ、回転子1Aの極間部における磁力の低下を抑制することができる。
In the example shown in FIG. 14, as in the first embodiment, the width W1 of the outer peripheral surface 31c of the rare earth bonded magnet 31 in the circumferential direction C is equal to the width W1 of the inner peripheral surface 31d of the rare earth bonded magnet 31 in the circumferential direction C. Narrower than W2. Therefore, in the example shown in FIG. 14, width W 1 , width W 2 and width W 3 satisfy the following equation (6).
W2> W1 >W3 ( 6 )
As a result, it is possible to suppress the decrease in the magnetic force in the interpolar portion of the rotor 1A while suppressing the usage amount of the expensive rare earth bonded magnets 31 .
 〈実施の形態1の変形例の効果〉
 以上に説明した実施の形態1の変形例によれば、希土類ボンド磁石31の外周面31cの周方向Cの幅Wは、フェライトボンド磁石20Aの連結面121dの周方向Cの幅Wより広い。これにより、回転子1Aの極間部において、希土類ボンド磁石31が占める割合が増加するため、当該極間部における磁力の低下を抑制することができる。
<Effects of Modification of Embodiment 1>
According to the modified example of Embodiment 1 described above, the width W1 in the circumferential direction C of the outer peripheral surface 31c of the rare earth bonded magnet 31 is greater than the width W3 in the circumferential direction C of the connecting surface 121d of the ferrite bonded magnet 20A. wide. As a result, the ratio of the rare earth bonded magnets 31 to the interpolar portion of the rotor 1A is increased, so that the decrease in the magnetic force in the interpolar portion can be suppressed.
 《実施の形態2》
 図15は、実施の形態2に係る回転子2の構成の一部を示す平面図である。図15において、図9に示される構成要素と同一又は対応する構成要素には、図9に示される符号と同じ符号が付される。実施の形態2に係る回転子2は、フェライトボンド磁石220の形状の点で、実施の形態1に係る回転子1と相違する。これ以外の点については、実施の形態2に係る回転子2は、実施の形態1に係る回転子1と同じである。そのため、以下の説明では、図3を参照する。
<<Embodiment 2>>
FIG. 15 is a plan view showing part of the configuration of the rotor 2 according to the second embodiment. 15, the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG. Rotor 2 according to Embodiment 2 differs from rotor 1 according to Embodiment 1 in the shape of ferrite bond magnets 220 . Except for this point, the rotor 2 according to the second embodiment is the same as the rotor 1 according to the first embodiment. Therefore, FIG. 3 will be referred to in the following description.
 図15に示されるように、回転子2は、フェライトボンド磁石220と、複数の希土類ボンド磁石31とを有する。 As shown in FIG. 15, the rotor 2 has a ferrite bond magnet 220 and a plurality of rare earth bond magnets 31.
 フェライトボンド磁石220は、シャフト10(図3参照)に支持された磁石本体部221と、複数の溝部22とを有する。磁石本体部221は、希土類ボンド磁石31の外周面31cの一部を覆っている。具体的には、磁石本体部221は、外周面31cの周方向Cの端部を覆っている。これにより、温度変化による膨張若しくは収縮による界面剥離、又は回転子2に作用する遠心力によって、フェライトボンド磁石220から希土類ボンド磁石31が脱落することを防止できる。 The ferrite bond magnet 220 has a magnet main body 221 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 . Magnet main body 221 partially covers outer peripheral surface 31 c of rare earth bonded magnet 31 . Specifically, the magnet main body 221 covers the end in the circumferential direction C of the outer peripheral surface 31c. This prevents the rare earth bonded magnet 31 from falling off from the ferrite bonded magnet 220 due to interface separation due to expansion or contraction due to temperature change or centrifugal force acting on the rotor 2 .
 図15に示す例では、磁石本体部221は、溝部22の側面(具体的には、第1の側面22b及び第2の側面22cのうちのいずれか一方の側面)を含む平面Vより周方向Cに突出する張り出し部221fを有する。張り出し部221fは、外周面31cの周方向Cの端部に当接している。なお、磁石本体部221は、希土類ボンド磁石31の外周面31cの全体を覆っていてもよい。すなわち、磁石本体部221は、外周面31cの少なくとも一部を覆っていてもよい。 In the example shown in FIG. 15 , the magnet main body 221 extends circumferentially from a plane V including the side surface of the groove 22 (specifically, one of the first side surface 22b and the second side surface 22c). It has an overhanging portion 221f that protrudes toward C. The projecting portion 221f is in contact with the end portion in the circumferential direction C of the outer peripheral surface 31c. Note that the magnet main body 221 may cover the entire outer peripheral surface 31 c of the rare earth bonded magnet 31 . That is, the magnet body 221 may cover at least a portion of the outer peripheral surface 31c.
 〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、磁石本体部221が、希土類ボンド磁石31の外周面31cの一部を覆っている。これにより、温度変化による膨張若しくは収縮による界面剥離、又は回転子2に作用する遠心力によって、フェライトボンド磁石220から希土類ボンド磁石31が脱落することを防止できる。
<Effect of Embodiment 2>
According to the second embodiment described above, magnet main body 221 partially covers outer peripheral surface 31 c of rare earth bonded magnet 31 . This prevents the rare earth bonded magnet 31 from falling off from the ferrite bonded magnet 220 due to interface separation due to expansion or contraction due to temperature change or centrifugal force acting on the rotor 2 .
 《実施の形態3》
 図16は、実施の形態3に係る回転子3の構成の一部を示す平面図である。図16において、図9に示される構成要素と同一又は対応する構成要素には、図9に示される符号と同じ符号が付される。実施の形態3に係る回転子3は、フェライトボンド磁石320の形状の点で、実施の形態1に係る回転子1と相違する。これ以外の点については、実施の形態3に係る回転子3は、実施の形態1に係る回転子1と同じである。そのため、以下の説明では、図1及び3を参照する。
<<Embodiment 3>>
FIG. 16 is a plan view showing part of the configuration of the rotor 3 according to the third embodiment. 16, the same or corresponding components as those shown in FIG. 9 are given the same reference numerals as those shown in FIG. Rotor 3 according to Embodiment 3 differs from rotor 1 according to Embodiment 1 in the shape of ferrite bond magnets 320 . Except for this point, the rotor 3 according to the third embodiment is the same as the rotor 1 according to the first embodiment. 1 and 3 are therefore referred to in the following description.
 図16に示されるように、回転子3は、フェライトボンド磁石320と、複数の希土類ボンド磁石31とを有する。 As shown in FIG. 16, the rotor 3 has a ferrite bond magnet 320 and a plurality of rare earth bond magnets 31.
 フェライトボンド磁石320は、シャフト10(図3参照)に支持された磁石本体部321と、複数の溝部22とを有する。磁石本体部321の外周面は、複数の連結面321dによって構成されている。連結面321dは、周方向Cに隣接する2つの溝部22のうち一方の溝部22の第1の側面22bと他方の溝部22の第2の側面22cとを繋いでいる。 The ferrite bond magnet 320 has a magnet main body 321 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 . The outer peripheral surface of the magnet body portion 321 is composed of a plurality of connecting surfaces 321d. 321 d of connection surfaces connect the 1st side surface 22b of one groove part 22 and the 2nd side surface 22c of the other groove part 22 among the two groove parts 22 which adjoin the circumferential direction C. As shown in FIG.
 図16において、連結面321dの周方向Cの端部上の第3の点としての点をP5とする。点P5は、回転子3における磁石境界部に位置する点である。連結面321dの周方向Cの中央部上の点を第4の点としての点をP6とする。点P6は、回転子3における極間部に位置する点である。また、点P5と軸線Aとの間の距離を距離OD5とし、点P6と軸線Aとの間の距離を距離OD6とする。図16に示す例では、距離OD5は、距離OD6より長い。すなわち、距離OD5及び距離OD6は、以下の式(7)を満たす。
 OD5>OD6     (7)
In FIG. 16, a point as a third point on the end portion of the connecting surface 321d in the circumferential direction C is designated as P5. A point P5 is a point located at the magnet boundary of the rotor 3 . The fourth point is a point on the central portion of the connecting surface 321d in the circumferential direction C, and the point is P6. A point P6 is a point positioned between poles of the rotor 3 . Also, the distance between the point P5 and the axis A is defined as a distance OD5, and the distance between the point P6 and the axis A is defined as a distance OD6. In the example shown in FIG. 16, distance OD5 is longer than distance OD6. That is, the distance OD5 and the distance OD6 satisfy the following formula (7).
OD5>OD6 (7)
 距離OD5及び距離OD6が式(7)を満たすことにより、回転子3において、極間部から磁石境界部に近づくほど、フェライトボンド磁石320と固定子6(図1参照)との間のエアギャップGが徐々に狭くなる。よって、磁石境界部近傍における有効磁束の磁束量を増加させつつ、極間部におけるフェライトボンド磁石320の使用量を抑制することができる。 Since the distance OD5 and the distance OD6 satisfy the expression (7), the air gap between the ferrite bond magnet 320 and the stator 6 (see FIG. 1) increases as the rotor 3 approaches the magnet boundary from the pole-to-pole portion. G gradually narrows. Therefore, it is possible to suppress the amount of ferrite bond magnet 320 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnet boundary portion.
 〈実施の形態3の効果〉
 以上に説明した実施の形態3によれば、連結面321dの周方向Cの端部上の点P5と軸線Aとの間の距離OD5が、連結面321dの周方向Cの中央部上の点P6と軸線Aとの間の距離OD6より長い。これにより、回転子3において、極間部から磁石境界部に近づくほど、フェライトボンド磁石320と固定子6との間のエアギャップGが徐々に狭くなる。よって、磁石境界部近傍における有効磁束の磁束量を増加させつつ、極間部におけるフェライトボンド磁石320の使用量を抑制することができる。
<Effect of Embodiment 3>
According to the third embodiment described above, the distance OD5 between the point P5 on the end portion of the connecting surface 321d in the circumferential direction C and the axis A is the point on the central portion of the connecting surface 321d in the circumferential direction C. longer than the distance OD6 between P6 and axis A; As a result, in the rotor 3 , the air gap G between the ferrite bond magnet 320 and the stator 6 gradually narrows from the interpolar portion to the magnet boundary portion. Therefore, it is possible to suppress the amount of ferrite bond magnet 320 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnet boundary portion.
 《実施の形態4》
 図17は、実施の形態4に係る回転子4の構成の一部を示す平面図である。図17において、図16に示される構成要素と同一又は対応する構成要素には、図16に示される符号と同じ符号が付される。実施の形態4に係る回転子4は、フェライトボンド磁石420の形状の点で、実施の形態3に係る回転子3と相違する。これ以外の点については、実施の形態4に係る回転子4は、実施の形態3に係る回転子3と同じである。
<<Embodiment 4>>
FIG. 17 is a plan view showing part of the configuration of the rotor 4 according to the fourth embodiment. 17, the same or corresponding components as those shown in FIG. 16 are given the same reference numerals as those shown in FIG. Rotor 4 according to the fourth embodiment differs from rotor 3 according to the third embodiment in the shape of ferrite bond magnets 420 . Except for this point, the rotor 4 according to the fourth embodiment is the same as the rotor 3 according to the third embodiment.
 図17に示されるように、回転子4は、フェライトボンド磁石420と、複数の希土類ボンド磁石31とを有する。 As shown in FIG. 17, the rotor 4 has a ferrite bond magnet 420 and a plurality of rare earth bond magnets 31.
 フェライトボンド磁石420は、シャフト10(図3参照)に支持された磁石本体部421と、複数の溝部22とを有する。磁石本体部421の外周面は、複数の連結面421dによって構成されている。 The ferrite bond magnet 420 has a magnet main body 421 supported by the shaft 10 (see FIG. 3) and a plurality of grooves 22 . The outer peripheral surface of the magnet body portion 421 is composed of a plurality of connecting surfaces 421d.
 連結面421dは、周方向Cに隣接する2つの溝部22のうち一方の溝部22の第1の側面22bと他方の溝部22の第2の側面22cとを繋いでいる。磁石本体部421をz軸方向に見たときに、連結面421dのうち点P5と点P6との間の部分421gは、径方向の外側に凸を向けた曲面である。これにより、z軸方向に見たときのフェライトボンド磁石20の形状は、略花弁形状となる。この場合にも、回転子4における極間部から磁石境界部に向かうほど、フェライトボンド磁石420と固定子6(図1参照)との間のエアギャップGが徐々に狭くなる。よって、回転子4の磁石境界部近傍における有効磁束の磁束量を増加させつつ、極間部におけるフェライトボンド磁石420の使用量を抑制することができる。また、図17に示す例では、連結面421dのうち点P5と点P6との間の部分421gのうち点P6近傍における曲率半径は、希土類ボンド磁石31の外周面31cの曲率半径より小さい。すなわち、実施の形態4では、連結面421dの一部の曲率半径は、希土類ボンド磁石31の外周面31cの曲率半径より小さい。 The connecting surface 421d connects the first side surface 22b of one of the two grooves 22 adjacent in the circumferential direction C and the second side surface 22c of the other groove 22. When the magnet main body 421 is viewed in the z-axis direction, a portion 421g of the connecting surface 421d between the points P5 and P6 is a curved surface projecting outward in the radial direction. Thereby, the shape of the ferrite bond magnet 20 when viewed in the z-axis direction becomes a substantially petal shape. Also in this case, the air gap G between the ferrite bond magnet 420 and the stator 6 (see FIG. 1) gradually narrows from the pole-to-pole portion of the rotor 4 toward the magnet boundary portion. Therefore, it is possible to reduce the amount of ferrite bond magnets 420 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnetic boundary portion of the rotor 4 . In the example shown in FIG. 17, the radius of curvature of the portion 421g between the points P5 and P6 of the connecting surface 421d near the point P6 is smaller than the radius of curvature of the outer peripheral surface 31c of the rare earth bonded magnet 31. In the example shown in FIG. That is, in the fourth embodiment, the radius of curvature of a portion of connecting surface 421 d is smaller than the radius of curvature of outer peripheral surface 31 c of rare earth bonded magnet 31 .
 〈実施の形態4の効果〉
 以上に説明した実施の形態4によれば、連結面421dのうち点P5と点P6との間の部分は、径方向の外側に凸を向けた曲面である。これにより、回転子4における極間部から磁石境界部に向かうほど、フェライトボンド磁石420と固定子6との間のエアギャップG(図1参照)を徐々に狭くすることができる。よって、回転子4の磁石境界部近傍における有効磁束の磁束量を増加させつつ、極間部におけるフェライトボンド磁石420の使用量を抑制することができる。
<Effect of Embodiment 4>
According to the fourth embodiment described above, the portion between the point P5 and the point P6 in the connecting surface 421d is a curved surface that projects outward in the radial direction. As a result, the air gap G (see FIG. 1) between the ferrite bond magnet 420 and the stator 6 can be gradually narrowed from the pole-to-pole portion of the rotor 4 toward the magnet boundary portion. Therefore, it is possible to reduce the amount of ferrite bond magnets 420 used in the interpolar portion while increasing the amount of effective magnetic flux in the vicinity of the magnetic boundary portion of the rotor 4 .
 《実施の形態5》
 図18は、実施の形態5に係る回転子5の構成を示す平面図である。図19は、実施の形態5に係る回転子5の構成を示す側面図である。図20は、図18に示される回転子5をB20-B20線で切断した断面図である。図18~20において、図1~3に示される構成要素と同一又は対応する構成要素には、図1~3に示される符号と同じ符号が付される。実施の形態5に係る回転子5は、リング部材8、9を更に有する点で、実施の形態1から4のいずれかに係る回転子1~4と相違する。なお、図18~20において、シャフト10及び樹脂部7(図3参照)の図示は省略されている。
<<Embodiment 5>>
18 is a plan view showing the configuration of the rotor 5 according to Embodiment 5. FIG. 19 is a side view showing the configuration of the rotor 5 according to Embodiment 5. FIG. FIG. 20 is a cross-sectional view of the rotor 5 shown in FIG. 18 taken along line B20-B20. 18-20, components identical or corresponding to those shown in FIGS. 1-3 are labeled with the same reference numerals as those shown in FIGS. 1-3. A rotor 5 according to the fifth embodiment is different from the rotors 1 to 4 according to any one of the first to fourth embodiments in that it further has ring members 8 and 9 . 18 to 20, illustration of the shaft 10 and the resin portion 7 (see FIG. 3) is omitted.
 図18~20に示されるように、回転子5は、フェライトボンド磁石20と、複数の希土類ボンド磁石31と、複数の第1の樹脂部としての複数のリング部材8、9とを有する。 As shown in FIGS. 18-20, the rotor 5 has a ferrite bond magnet 20, a plurality of rare earth bond magnets 31, and a plurality of ring members 8 and 9 as a plurality of first resin portions.
 リング部材8、9はそれぞれ、軸線Aを中心とする環状の部材である。リング部材8、9は、例えば、不飽和ポリエステル樹脂などの樹脂から形成されている。 The ring members 8 and 9 are annular members centered on the axis A, respectively. The ring members 8 and 9 are made of resin such as unsaturated polyester resin, for example.
 リング部材8は、フェライトボンド磁石20の+z軸側の端面20j及び希土類ボンド磁石31の+z軸側の端面31jを覆うように配置されている。これにより、希土類ボンド磁石31の端面31jがリング部材8を介してフェライトボンド磁石20の端面20jに連結される。よって、温度変化による希土類ボンド磁石31の剥離を一層防止することができる。 The ring member 8 is arranged to cover the +z-axis side end face 20j of the ferrite bond magnet 20 and the +z-axis side end face 31j of the rare earth bond magnet 31 . As a result, end surface 31 j of rare earth bonded magnet 31 is connected to end surface 20 j of ferrite bonded magnet 20 via ring member 8 . Therefore, peeling of the bonded rare earth magnet 31 due to temperature change can be further prevented.
 実施の形態5では、リング部材8は、フェライトボンド磁石20及び希土類ボンド磁石31に固定されている。具体的には、リング部材8は、フェライトボンド磁石20の+z軸側の端面20j及び希土類ボンド磁石31の+z軸側の端面31jに固定されている。 In Embodiment 5, ring member 8 is fixed to ferrite bond magnet 20 and rare earth bond magnet 31 . Specifically, the ring member 8 is fixed to the +z-axis side end face 20j of the ferrite bond magnet 20 and the +z-axis side end face 31j of the rare earth bond magnet 31 .
 リング部材9は、フェライトボンド磁石20の-z軸側の端面20k及び希土類ボンド磁石31の-z軸側の端面31kを覆うように配置されている。これにより、希土類ボンド磁石31の端面31kがリング部材9を介してフェライトボンド磁石20の端面20kに連結される。これにより、温度変化による希土類ボンド磁石31の剥離を一層防止することができる。 The ring member 9 is arranged so as to cover the end face 20k of the ferrite bond magnet 20 on the -z axis side and the end face 31k of the rare earth bond magnet 31 on the -z axis side. As a result, end surface 31 k of rare earth bonded magnet 31 is connected to end surface 20 k of ferrite bonded magnet 20 via ring member 9 . As a result, peeling of the rare earth bonded magnet 31 due to temperature change can be further prevented.
 実施の形態5では、リング部材9は、フェライトボンド磁石20及び希土類ボンド磁石31に固定されている。具体的には、リング部材9は、フェライトボンド磁石20の-z軸方向を向く端面20k及び希土類ボンド磁石31の-z軸方向を向く端面31kに固定されている。なお、回転子5は、複数のリング部材8、9のうちのいずれか一方のリング部材を有していなくても実現することができる。 In Embodiment 5, ring member 9 is fixed to ferrite bond magnet 20 and rare earth bond magnet 31 . Specifically, the ring member 9 is fixed to an end face 20k of the ferrite bond magnet 20 facing the -z-axis direction and an end face 31k of the rare earth bond magnet 31 facing the -z-axis direction. Note that the rotor 5 can be realized without having either one of the plurality of ring members 8 and 9 .
 〈実施の形態5の効果〉
 以上に説明した実施の形態5によれば、回転子5は、フェライトボンド磁石20及び希土類ボンド磁石31のそれぞれのz軸方向の端面を覆うように配置されたリング部材8、9を有する。これにより、希土類ボンド磁石31がリング部材8、9を介してフェライトボンド磁石20に連結される。よって、回転中に作用する遠心力による希土類ボンド磁石31の脱落を一層防止することができる。また、温度変化による希土類ボンド磁石31の剥離を一層防止することができる。
<Effect of Embodiment 5>
According to the fifth embodiment described above, rotor 5 has ring members 8 and 9 arranged to cover the end surfaces of ferrite bond magnet 20 and rare earth bond magnet 31 in the z-axis direction, respectively. As a result, rare earth bonded magnet 31 is connected to ferrite bonded magnet 20 via ring members 8 and 9 . Therefore, it is possible to further prevent the rare earth bonded magnet 31 from coming off due to the centrifugal force acting during rotation. Moreover, it is possible to further prevent peeling of the bonded rare earth magnet 31 due to temperature changes.
 《実施の形態5の変形例》
 図21は、実施の形態5の変形例に係る回転子5Aの構成を示す平面図である。図22は、図21に示される回転子5AをB22-B22線で切断した断面図である。実施の形態5の変形例に係る回転子5Aは、リング部材8A、9Aが樹脂部7Aと一体に形成されている点で、実施の形態5に係る回転子5と相違する。
<<Modification of Embodiment 5>>
FIG. 21 is a plan view showing the configuration of a rotor 5A according to a modification of the fifth embodiment. FIG. 22 is a cross-sectional view of the rotor 5A shown in FIG. 21 taken along line B22-B22. A rotor 5A according to a modification of the fifth embodiment differs from the rotor 5 according to the fifth embodiment in that ring members 8A and 9A are integrally formed with a resin portion 7A.
 図20及び21に示されるように、回転子5Aは、シャフト10と、フェライトボンド磁石20と、複数の希土類ボンド磁石31と、第1の樹脂部としてのリング部材8A、9Aと、第2の樹脂部としての樹脂部7Aとを有する。 As shown in FIGS. 20 and 21, the rotor 5A includes a shaft 10, ferrite bond magnets 20, a plurality of rare earth bond magnets 31, ring members 8A and 9A as first resin portions, and second and a resin portion 7A as a resin portion.
 樹脂部7Aは、シャフト10に支持された内筒部71と、フェライトボンド磁石20の内周面20bに固定された外筒部72Aと、内筒部71と外筒部72Aとを繋ぐ複数のリブ73Aとを有する。 The resin portion 7A includes an inner cylinder portion 71 supported by the shaft 10, an outer cylinder portion 72A fixed to the inner peripheral surface 20b of the ferrite bond magnet 20, and a plurality of components connecting the inner cylinder portion 71 and the outer cylinder portion 72A. and ribs 73A.
 樹脂部7Aは、リング部材8A、9Aと一体に形成されている。言い換えれば、樹脂部7Aは、リング部材8A、9Aと繋がっている。実施の形態5の変形例では、樹脂部7Aの外筒部72A及びリブ73Aが、リング部材8A、9Aと繋がっている。そのため、実施の形態5の変形例では、シャフト10、フェライトボンド磁石20及び希土類ボンド磁石31は、樹脂部7A及びリング部材8A、9Aを介して連結されている。これにより、シャフト10とフェライトボンド磁石20とを樹脂部7Aを介して一体成形する際に、リング部材8A、9Aも同時に成形することができる。よって、回転子5Aの製造工程を簡易化することができる。 The resin portion 7A is integrally formed with the ring members 8A and 9A. In other words, the resin portion 7A is connected to the ring members 8A and 9A. In the modification of Embodiment 5, the outer cylindrical portion 72A and ribs 73A of the resin portion 7A are connected to the ring members 8A and 9A. Therefore, in the modification of Embodiment 5, shaft 10, ferrite bond magnet 20 and rare earth bond magnet 31 are connected via resin portion 7A and ring members 8A and 9A. Thereby, when integrally molding the shaft 10 and the ferrite bond magnet 20 with the resin portion 7A interposed therebetween, the ring members 8A and 9A can also be molded at the same time. Therefore, the manufacturing process of the rotor 5A can be simplified.
 〈実施の形態5の変形例の効果〉
 以上に説明した実施の形態5の変形例によれば、回転子5Aにおいて、樹脂部7Aは、リング部材8A、9Aと一体に形成されている。これにより、シャフト10とフェライトボンド磁石20とを樹脂部7Aを介して一体成形する際に、リング部材8A、9Aも同時に成形することができる。よって、回転子5Aの製造工程を簡易化することができる。
<Effects of Modification of Embodiment 5>
According to the modified example of the fifth embodiment described above, in rotor 5A, resin portion 7A is integrally formed with ring members 8A and 9A. Thereby, when integrally molding the shaft 10 and the ferrite bond magnet 20 with the resin portion 7A interposed therebetween, the ring members 8A and 9A can also be molded at the same time. Therefore, the manufacturing process of the rotor 5A can be simplified.
 ここで、回転子5Aの固有振動数は、回転子5Aの剛性によって変化する。回転子5Aの剛性は、例えば、樹脂部7Aにおけるリブ73Aの周方向Cの幅、径方向の長さ及び本数を変化させることで調整することができる。実施の形態5の変形例では、樹脂部7Aがリング部材8A、9Aと一体に形成されていることによって、樹脂部7Aのリブ73Aがリング部材8A、9Aと繋がっている。これにより、リブ73Aの径方向の長さが長くなっている。これにより、回転子5Aの剛性を変化させることができ、回転子5Aの固有振動数を変化させることができる。よって、共振の発生を抑制することができ、回転子5Aの振動特性を適切な特性に調整することができる。 Here, the natural frequency of the rotor 5A changes depending on the rigidity of the rotor 5A. The rigidity of the rotor 5A can be adjusted, for example, by changing the width in the circumferential direction C, the length in the radial direction, and the number of ribs 73A in the resin portion 7A. In the modification of Embodiment 5, the rib 73A of the resin portion 7A is connected to the ring members 8A and 9A by integrally forming the resin portion 7A with the ring members 8A and 9A. Thereby, the radial length of the rib 73A is increased. Thereby, the rigidity of the rotor 5A can be changed, and the natural frequency of the rotor 5A can be changed. Therefore, the occurrence of resonance can be suppressed, and the vibration characteristics of the rotor 5A can be adjusted to appropriate characteristics.
 また、回転子5Aの慣性モーメントは、回転子5Aの質量によって変化する。回転子5Aの質量は、リブ73Aの周方向Cの幅、径方向の長さ及び本数を変化させることで調整することができる。慣性モーメントが大きいほど、大きな始動トルクが必要となるが、回転子5Aの回転を安定させることができる。上述した通り、実施の形態5の変形例では、樹脂部7Aがリング部材8、9と繋がっているため、リブ73Aの径方向の長さが長くなっている。これにより、回転子5Aの慣性モーメントを大きくすることができる。このように、樹脂部7Aがリング部材8A、9Aと一体に形成されていることによって、回転子5Aの固有振動数及び慣性モーメントを適切な値に調整することができる。 Also, the moment of inertia of the rotor 5A changes depending on the mass of the rotor 5A. The mass of the rotor 5A can be adjusted by changing the width in the circumferential direction C, the length in the radial direction, and the number of ribs 73A. As the moment of inertia increases, a greater starting torque is required, but the rotation of the rotor 5A can be stabilized. As described above, in the modified example of the fifth embodiment, the resin portion 7A is connected to the ring members 8 and 9, so the radial length of the rib 73A is increased. Thereby, the moment of inertia of the rotor 5A can be increased. Since the resin portion 7A is integrally formed with the ring members 8A and 9A in this manner, the natural frequency and moment of inertia of the rotor 5A can be adjusted to appropriate values.
 《実施の形態6》
 次に、実施の形態1に係る電動機100を有する送風機600について説明する。図23は、実施の形態6に係る送風機600の構成を概略的に示す図である。
<<Embodiment 6>>
Next, blower 600 having electric motor 100 according to Embodiment 1 will be described. FIG. 23 is a diagram schematically showing the configuration of blower 600 according to the sixth embodiment.
 図23に示されるように、送風機600は、電動機100と、電動機100によって駆動される羽根車としてのファン601とを有する。ファン601は、電動機100のシャフトに取り付けられている。電動機100のシャフトが回転すると、ファン601が回転し、気流が生成される。送風機600は、例えば、後述する図24に示される空気調和装置700の室外機720の室外送風機として用いられる。この場合、ファン601は、例えば、プロペラファンである。 As shown in FIG. 23 , blower 600 has electric motor 100 and fan 601 as an impeller driven by electric motor 100 . Fan 601 is attached to the shaft of electric motor 100 . When the shaft of electric motor 100 rotates, fan 601 rotates and an airflow is generated. The blower 600 is used, for example, as an outdoor blower for an outdoor unit 720 of an air conditioner 700 shown in FIG. 24 which will be described later. In this case, fan 601 is, for example, a propeller fan.
 〈実施の形態6の効果〉
 以上に説明した実施の形態6によれば、送風機600は、実施の形態1で説明した電動機100を有する。上述した通り、実施の形態1に係る電動機100では信頼性が向上しているため、当該電動機100を有する送風機600の信頼性も向上させることができる。
<Effect of Embodiment 6>
According to the sixth embodiment described above, blower 600 has electric motor 100 described in the first embodiment. As described above, the reliability of the electric motor 100 according to Embodiment 1 is improved, so the reliability of the blower 600 including the electric motor 100 can also be improved.
 《実施の形態7》
 次に、図23に示される送風機600を有する空気調和装置700について説明する。図24は、実施の形態7に係る空気調和装置700の構成を示す図である。
<<Embodiment 7>>
Next, air conditioner 700 having fan 600 shown in FIG. 23 will be described. FIG. 24 is a diagram showing the configuration of an air conditioner 700 according to Embodiment 7. As shown in FIG.
 図24に示されるように、空気調和装置700は、室内機710と、室外機720と、冷媒配管730とを有する。室内機710及び室外機720は、冷媒配管730によって接続されることで、冷媒が循環する冷媒回路を構成する。空気調和装置700は、例えば、室内機710から冷たい空気を送風する冷房運転又は温かい空気を送風する暖房運転等の運転を行うことができる。 As shown in FIG. 24, the air conditioner 700 has an indoor unit 710, an outdoor unit 720, and refrigerant pipes 730. The indoor unit 710 and the outdoor unit 720 are connected by a refrigerant pipe 730 to form a refrigerant circuit in which refrigerant circulates. The air conditioner 700 can operate, for example, a cooling operation in which cool air is blown from the indoor unit 710, or a heating operation in which warm air is blown.
 室内機710は、室内送風機711と、室内送風機711を収容するハウジング712とを有する。室内送風機711は、電動機711aと、電動機711aによって駆動されるファン711bとを有する。ファン711bは、電動機711aのシャフトに取り付けられている。電動機711aのシャフトが回転することで、ファン711bが回転し、気流が生成される。ファン711bは、例えば、クロスフローファンである。 The indoor unit 710 has an indoor fan 711 and a housing 712 that accommodates the indoor fan 711 . The indoor fan 711 has an electric motor 711a and a fan 711b driven by the electric motor 711a. The fan 711b is attached to the shaft of the electric motor 711a. Rotation of the shaft of the electric motor 711a rotates the fan 711b to generate airflow. Fan 711b is, for example, a cross-flow fan.
 室外機720は、室外送風機としての送風機600と、圧縮機721と、送風機600及び圧縮機721を収容するハウジング722とを有する。圧縮機721は、冷媒を圧縮する圧縮機構部721aと、圧縮機構部721aを駆動する電動機721bとを有する。圧縮機構部721aと電動機721bとは、回転軸721cによって互いに連結されている。なお、圧縮機721の電動機721bには、実施の形態1に係る電動機100が用いられてもよい。 The outdoor unit 720 has a fan 600 as an outdoor fan, a compressor 721, and a housing 722 that accommodates the fan 600 and the compressor 721. The compressor 721 has a compression mechanism portion 721a that compresses refrigerant and an electric motor 721b that drives the compression mechanism portion 721a. The compression mechanism portion 721a and the electric motor 721b are connected to each other by a rotating shaft 721c. Note that the electric motor 100 according to the first embodiment may be used as the electric motor 721b of the compressor 721. FIG.
 例えば、空気調和装置700の冷房運転時に、圧縮機721で圧縮された冷媒が凝縮器(図示せず)で凝縮する際に放出された熱が、送風機600の送風によって室外に放出される。なお、実施の形態6に係る送風機600は、室外機720の室外送風機に限らず、上述した室内送風機711として用いられてもよい。また、送風機600は、空気調和装置700に限らず、他の機器に備えられていてもよい。 For example, when the air conditioner 700 is in cooling operation, the heat released when the refrigerant compressed by the compressor 721 is condensed by the condenser (not shown) is released to the outside by the blower 600. It should be noted that the fan 600 according to Embodiment 6 may be used not only as the outdoor fan of the outdoor unit 720 but also as the indoor fan 711 described above. In addition, the blower 600 may be provided not only in the air conditioner 700 but also in other devices.
 室外機720は、冷媒の流れ方向を切り替える四方弁(図示しない)を更に有する。室外機720の四方弁は、圧縮機721から送り出された高温高圧の冷媒ガスを、冷房運転時には室外機720の熱交換器に流し、暖房運転時には室内機710の熱交換器に流す。 The outdoor unit 720 further has a four-way valve (not shown) that switches the flow direction of the refrigerant. The four-way valve of the outdoor unit 720 allows the high-temperature, high-pressure refrigerant gas delivered from the compressor 721 to flow through the heat exchanger of the outdoor unit 720 during cooling operation, and through the heat exchanger of the indoor unit 710 during heating operation.
 〈実施の形態7の効果〉
 以上に説明した実施の形態7によれば、空気調和装置700は、送風機600を有する。上述した通り、送風機600は、実施の形態1で説明した電動機100を有することで信頼性が向上しているため、よって、空気調和装置700の信頼性も向上させることができる。
<Effect of Embodiment 7>
According to Embodiment 7 described above, air conditioner 700 has fan 600 . As described above, air blower 600 has improved reliability by including electric motor 100 described in Embodiment 1. Therefore, the reliability of air conditioner 700 can also be improved.
 1、1A、2、3、4、5、5A 回転子、 6 固定子、 7 樹脂部、 8、8A、9、9A リング部材、 10 シャフト、 20、20A、220、320、420 フェライトボンド磁石、 20j、20k、31j、31k 端面、 21 磁石本体部、 21c、31c 外周面、 21d、321d、421d 連結面、 22 溝部、 22a 底面、 22b 第1の側面、 22c 第2の側面、 31 希土類ボンド磁石、 100 電動機、 600 送風機、 601 ファン、 700 空気調和装置、 710 室内機、 720 室外機、 A 軸線、 OD1、OD2、r、r、OD5、OD6 距離、 P1、P2、Q3、Q4、P5、P6 点、 t、t 厚み、 W、W、W 幅。 1, 1A, 2, 3, 4, 5, 5A rotor 6 stator 7 resin portion 8, 8A, 9, 9A ring member 10 shaft 20, 20A, 220, 320, 420 ferrite bond magnet, 20j, 20k, 31j, 31k end face 21 magnet main body 21c, 31c outer peripheral face 21d, 321d, 421d connecting face 22 groove 22a bottom face 22b first side face 22c second side face 31 rare earth bond magnet , 100 Electric motor 600 Blower 601 Fan 700 Air conditioner 710 Indoor unit 720 Outdoor unit , P6 points, t 1 , t 2 thicknesses, W 1 , W 2 , W 3 widths.

Claims (16)

  1.  回転軸と、
     前記回転軸に支持された磁石本体部と、前記磁石本体部の径方向の外向きの面である第1の外周面に前記回転軸を中心とする周方向に等間隔に並ぶように設けられた複数の溝部とを有する第1の永久磁石と、
     前記第1の永久磁石の磁極より強い磁極を有し、前記複数の溝部にそれぞれ配置された複数の第2の永久磁石と
     を有し、
     前記第1の外周面と前記回転軸との間の最大距離である第1の距離は、前記複数の第2の永久磁石の各第2の永久磁石の前記径方向の外向きの面である第2の外周面と前記回転軸との間の最大距離である第2の距離より長い
     回転子。
    a rotating shaft;
    A magnet main body portion supported by the rotating shaft, and a first outer peripheral surface, which is a radially outward surface of the magnet main body portion, are provided so as to be arranged at equal intervals in a circumferential direction around the rotating shaft. a first permanent magnet having a plurality of grooves;
    a plurality of second permanent magnets having magnetic poles stronger than the magnetic poles of the first permanent magnets and arranged in the plurality of grooves;
    A first distance, which is the maximum distance between the first outer peripheral surface and the rotation axis, is the radially outward surface of each second permanent magnet of the plurality of second permanent magnets. A rotor longer than a second distance, which is the maximum distance between a second outer peripheral surface and the rotating shaft.
  2.  前記第2の永久磁石の前記径方向の厚みは、前記回転軸を中心とする周方向の中央部から前記周方向の端部に近づくほど薄くなる
     請求項1に記載の回転子。
    The rotor according to claim 1, wherein the thickness of the second permanent magnet in the radial direction becomes thinner from a central portion in the circumferential direction about the rotation axis toward an end portion in the circumferential direction.
  3.  前記第2の永久磁石の前記径方向の内向きの面である内周面の前記周方向の中央部上の第1の点と前記回転軸との間の距離は、前記径方向の内向きの面の前記周方向の端部上の第2の点と前記回転軸との間の距離より短い
     請求項1又は2に記載の回転子。
    The distance between a first point on the center portion in the circumferential direction of the inner peripheral surface of the second permanent magnet, which is the surface facing inward in the radial direction, and the rotation axis 3. The rotor according to claim 1 or 2, which is shorter than the distance between a second point on the circumferential edge of the surface of and the rotation axis.
  4.  前記第2の外周面の前記周方向の幅は、前記内周面の前記周方向の幅より狭い
     請求項3に記載の回転子。
    The rotor according to claim 3, wherein the circumferential width of the second outer peripheral surface is narrower than the circumferential width of the inner peripheral surface.
  5.  前記磁石本体部は、前記第2の外周面の少なくとも一部を覆っている
     請求項1から4のいずれか1項に記載の回転子。
    The rotor according to any one of claims 1 to 4, wherein the magnet body portion covers at least part of the second outer peripheral surface.
  6.  前記複数の溝部の各溝部は、
     前記第1の永久磁石の前記径方向の外側を向く面である底面と、
     前記底面の幅方向の両端から前記径方向の外側に向けて伸びる面である第1及び第2の側面と
     を有し、
     前記磁石本体部は、前記回転軸を中心とする周方向に隣接する2つの溝部のうち一方の溝部の第1の側面と他方の溝部の第2の側面を繋ぐ連結面を有する
     請求項1に記載の回転子。
    Each groove of the plurality of grooves,
    a bottom surface, which is a surface facing outward in the radial direction of the first permanent magnet;
    first and second side surfaces extending outward in the radial direction from both ends of the bottom surface in the width direction;
    2. The magnet main body has a connecting surface that connects a first side surface of one of two grooves adjacent in a circumferential direction around the rotation axis and a second side surface of the other groove. Rotor as described.
  7.  前記連結面の前記周方向の幅は、前記第2の外周面の前記周方向の幅より長い
     請求項6に記載の回転子。
    The rotor according to claim 6, wherein the width of the connecting surface in the circumferential direction is longer than the width of the second outer circumferential surface in the circumferential direction.
  8.  前記連結面の前記周方向の端部上の第3の点と前記回転軸との間の距離は、前記連結面の前記周方向の中央部上の第4の点と前記回転軸との間の距離より長い
     請求項6又は7に記載の回転子。
    A distance between a third point on the circumferential end portion of the connecting surface and the rotation axis is a distance between a fourth point on the circumferential center portion of the connection surface and the rotation axis. 8. The rotor according to claim 6 or 7, which is longer than the distance of .
  9.  前記連結面のうち前記第3の点と前記第4の点との間の部分は、前記径方向の外側に凸を向けた曲面であり、
     前記曲面の一部の曲率半径は、前記第2の外周面の曲率半径より小さい
     請求項8に記載の回転子。
    a portion of the connection surface between the third point and the fourth point is a curved surface that is convex outward in the radial direction;
    The rotor according to claim 8, wherein the radius of curvature of the portion of the curved surface is smaller than the radius of curvature of the second outer peripheral surface.
  10.  前記第1の永久磁石及び前記第2の永久磁石のそれぞれの前記回転軸の軸方向の端面に接続された第1の樹脂部を更に有する
     請求項1から9のいずれか1項に記載の回転子。
    10. The rotation according to any one of claims 1 to 9, further comprising a first resin portion connected to an axial end face of each of said rotating shafts of said first permanent magnet and said second permanent magnet. Child.
  11.  前記回転軸と前記第1の永久磁石とを連結する第2の樹脂部を更に有し、
     前記第2の樹脂部は、前記第1の樹脂部と一体に形成されている
     請求項10に記載の回転子。
    further comprising a second resin portion connecting the rotating shaft and the first permanent magnet;
    The rotor according to claim 10, wherein the second resin portion is formed integrally with the first resin portion.
  12.  前記第1の永久磁石は、フェライトボンド磁石であり、
     前記第2の永久磁石は、希土類ボンド磁石である
     請求項1から11のいずれか1項に記載の回転子。
    The first permanent magnet is a ferrite bond magnet,
    The rotor according to any one of claims 1 to 11, wherein the second permanent magnet is a rare earth bonded magnet.
  13.  前記回転子は、2n(nは、1以上の自然数)個の磁極を有する回転子であって、
     前記第1の永久磁石及び前記第2の永久磁石はそれぞれ、極異方性を有する
     請求項1から12のいずれか1項に記載の回転子。
    The rotor is a rotor having 2n (n is a natural number equal to or greater than 1) magnetic poles,
    The rotor according to any one of claims 1 to 12, wherein each of said first permanent magnet and said second permanent magnet has polar anisotropy.
  14.  請求項1から13のいずれか1項に記載の回転子と、
     固定子と
     を有する電動機。
    A rotor according to any one of claims 1 to 13;
    An electric motor having a stator and
  15.  請求項14に記載の電動機と、
     前記電動機によって駆動される羽根車と
     を有する送風機。
    an electric motor according to claim 14;
    and an impeller driven by the electric motor.
  16.  室内機と、
     前記室内機に接続される室外機と
     を有し、
     前記室内機及び前記室外機のうちの少なくとも一方は、請求項14に記載の前記電動機を有する
     空気調和装置。
    indoor unit and
    and an outdoor unit connected to the indoor unit,
    At least one of the indoor unit and the outdoor unit has the electric motor according to claim 14. An air conditioner.
PCT/JP2021/014578 2021-04-06 2021-04-06 Rotor, electric motor, blower, and air conditioning device WO2022215149A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023512537A JPWO2022215149A1 (en) 2021-04-06 2021-04-06
PCT/JP2021/014578 WO2022215149A1 (en) 2021-04-06 2021-04-06 Rotor, electric motor, blower, and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014578 WO2022215149A1 (en) 2021-04-06 2021-04-06 Rotor, electric motor, blower, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2022215149A1 true WO2022215149A1 (en) 2022-10-13

Family

ID=83545256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014578 WO2022215149A1 (en) 2021-04-06 2021-04-06 Rotor, electric motor, blower, and air conditioning device

Country Status (2)

Country Link
JP (1) JPWO2022215149A1 (en)
WO (1) WO2022215149A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166141A (en) * 1998-11-25 2000-06-16 Hitachi Ltd Brushless motor
JP2011055584A (en) * 2009-08-31 2011-03-17 Hitachi Metals Ltd Rotor for ipm motor
WO2020261420A1 (en) * 2019-06-26 2020-12-30 三菱電機株式会社 Rotor, motor, blower, air conditioner, and manufacturing method for rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166141A (en) * 1998-11-25 2000-06-16 Hitachi Ltd Brushless motor
JP2011055584A (en) * 2009-08-31 2011-03-17 Hitachi Metals Ltd Rotor for ipm motor
WO2020261420A1 (en) * 2019-06-26 2020-12-30 三菱電機株式会社 Rotor, motor, blower, air conditioner, and manufacturing method for rotor

Also Published As

Publication number Publication date
JPWO2022215149A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
AU2018453979B2 (en) Rotor, electric motor, fan, air conditioner, and method for manufacturing rotor
US20080074009A1 (en) Fan system, electric motor, and claw-pole motor
JP7072726B2 (en) How to manufacture rotors, motors, blowers, air conditioners, and rotors
WO2022215149A1 (en) Rotor, electric motor, blower, and air conditioning device
JP7415024B2 (en) Electric motors, blowers and air conditioners
US20230163648A1 (en) Rotor, motor, blower, air conditioner, and manufacturing method of rotor
JP7442688B2 (en) Rotor, electric motor, blower and air conditioner
WO2023144919A1 (en) Rotor, electric motor, blower, and air-conditioning device
JP7090740B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
JP7098047B2 (en) Motors, fans, and air conditioners
JP7026805B2 (en) Manufacturing method of stator, motor, fan, air conditioner and stator
WO2023042366A1 (en) Rotor, electric motor, fan, air-conditioning device, and rotor manufacturing method
US20230246492A1 (en) Compressor
US20230378829A1 (en) Rotor, motor, blower, air conditioner, and manufacturing method of rotor
EP4068576A1 (en) Hybrid axial/radial electric motor
JP7239738B2 (en) Rotors, electric motors, fans, and air conditioners
WO2023195076A1 (en) Electric motor, blower, and air conditioning device
CN116349116A (en) Motor, fan and air conditioner
CN115136460A (en) Alternating pole type rotor, motor, fan, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935957

Country of ref document: EP

Kind code of ref document: A1