WO2022213982A1 - 配置方法、装置及设备 - Google Patents

配置方法、装置及设备 Download PDF

Info

Publication number
WO2022213982A1
WO2022213982A1 PCT/CN2022/085312 CN2022085312W WO2022213982A1 WO 2022213982 A1 WO2022213982 A1 WO 2022213982A1 CN 2022085312 W CN2022085312 W CN 2022085312W WO 2022213982 A1 WO2022213982 A1 WO 2022213982A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
qos
terminal
destination
parameter
Prior art date
Application number
PCT/CN2022/085312
Other languages
English (en)
French (fr)
Inventor
郑倩
吴建明
刘佳敏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022213982A1 publication Critical patent/WO2022213982A1/zh
Priority to US18/378,142 priority Critical patent/US20240049345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a configuration method, apparatus and device.
  • the transmitting terminal In order to ensure that the Rx UE can To receive the corresponding data packet, the transmitting terminal (Tx UE) must adjust the transmission time to transmit the data packet within the time when the Rx UE is activated. Due to the limited duration of the Rx UE (on Duration), the possibility of resource conflict selected by the Tx UE for transmission is greatly increased, resulting in reduced packet reception ratio (Packet Reception Ratio, PRR) performance.
  • PRR Packet Reception Ratio
  • Embodiments of the present application provide a configuration method, apparatus, and device, which can solve the problem that the existing DRX parameter configuration method may increase the possibility of resource conflict in transmission.
  • a configuration method including:
  • the terminal configures the first DRX parameter according to the QoS Profile information
  • the terminal configures the second DRX parameter according to the Destination L2 ID information
  • the QoS Profile information includes multiple QoS IDs
  • the terminal has multiple Destination L2 IDs
  • the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter
  • the second The DRX parameters include at least the sl-drx-StartOffset parameter.
  • a configuration device including:
  • the first configuration module is used for the terminal to configure the first DRX parameter according to the QoS Profile information
  • the second configuration module is used for the terminal to configure the second DRX parameter according to the Destination L2 ID information
  • the QoS Profile information includes multiple QoS IDs
  • the terminal has multiple Destination L2 IDs
  • the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter
  • the second The DRX parameters include at least the sl-drx-StartOffset parameter.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a terminal including a processor and a communication interface, wherein the processor is used for the terminal to configure the first discontinuous reception DRX parameter according to the quality of service configuration file QoS Profile information; the terminal identifies the Destination L2 according to the destination layer 2 The ID information configures the second DRX parameter; wherein, the QoS Profile information includes multiple QoS IDs, the terminal has multiple Destination L2 IDs, and the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx parameter -Cycle parameter, the second DRX parameter includes at least the sl-drx-StartOffset parameter.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect .
  • a computer program product is provided, the computer program product is stored in a non-volatile storage medium, the computer program product is executed by at least one processor to implement the method of the first aspect.
  • the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter are first configured according to the QoS Profile information, thereby increasing the granularity of the DRX parameter configuration and improving the energy saving effect. Then configure the sl-drx-StartOffset parameter according to the Destination L2 ID information, thereby greatly reducing the channel resource conflict rate without affecting the overall energy-saving effect of the system.
  • Fig. 1 is a schematic diagram of the relationship between DRX parameters
  • FIG. 2 is a schematic flowchart of a configuration method provided by an embodiment of the present application.
  • FIG. 3 is one of schematic diagrams of application scenarios provided by an embodiment of the present application.
  • FIG. 4a is a second schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4b is a third schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4c is a fourth schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4d is the fifth schematic diagram of the application scenario provided by the embodiment of the present application.
  • FIG. 4e is a sixth schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a configuration device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques can also be applied to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • the parameters related to DRX mainly include side link discontinuous reception duration timer (sl-drx-onDurationTimer), side link discontinuous reception cycle (sl-drx-Cycle), side link discontinuous reception start offset amount (sl-drx-StartOffset).
  • sl-drx-onDurationTimer is the duration at the beginning of the DRX cycle, and its size depends on how many Tx UEs need to transmit packets. In other words, it depends on the Congestion Rate (CR) value.
  • drx-Cycle is the DRX cycle, which depends on the smallest Packet Delay Budget (PDB) in the QoS profile group.
  • sl-drx-StartOffset is to determine the start time of sl-onDuration. The start time can be calculated according to the following formula:
  • QoS information For each data service, the upper layer will give QoS information related to the access stratum (AS) layer and the data service.
  • QoS information has priority (Priority Level) (ie, per-packet priority (ProSe Per-Packet Priority, PPPP)), packet error rate (Packet Error Rate, PER) (ie, per-packet reliability (ProSe Per-Packet Reliability) ,PPPR)), packet delay budget (Packet Delay Budget, PDB), communication range (Communication Range), etc.
  • DRX related parameters can be configured through QoS information.
  • drxCycles of different lengths can be configured according to the PDB latitude, that is, if the PDB latitude is large, the drxCycle size can be configured to be longer, and vice versa. Since QoS has a relatively high granularity, the granularity of the DRX parameters configured for the Rx UE can be correspondingly increased.
  • Tx UE performs unicast, multicast, and broadcast transmission of SL-related data packets through the corresponding Destination L2 ID. After receiving the data packet, the Rx UE determines whether to further decode the data packet and obtain the information it needs according to the Destination L2 ID that is related to itself. For the Rx UE, the information of the Destination L2 ID is relatively simple, and it is relatively simple to use the Destination L2 ID to configure the DRX parameters.
  • the configuration of the DRX Timer related to the same QoS will be the same. That is, Rx UEs with the same QoS will be activated at the same time and receive packets.
  • the Tx UE In order to ensure that the Rx UE can accept the corresponding data packet, the Tx UE must adjust the transmission time and send the data packet within the time when the Rx UE is activated. Due to the limited time of the Rx UE onDuration, the possibility of resource conflict selected by the Tx UE for transmission is greatly increased, resulting in reduced PRR performance.
  • the UE in multicast or broadcast, the UE generally has multiple upper-layer applications and/or services, but uses the same Destination L2 ID at the AS layer. Due to the granularity of DRX configuration, Rx UEs can only configure DRX parameters based on the QoS of the shortest PDB in a multicast or broadcast session, which greatly reduces the energy saving effect of Rx UEs.
  • the present application provides a configuration method, including:
  • Step 201 the terminal configures the first DRX parameter according to the QoS Profile information
  • Step 202 the terminal configures the second DRX parameter according to the Destination L2 ID information
  • the QoS Profile information includes multiple QoS IDs
  • the terminal has multiple Destination L2 IDs
  • the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter
  • the second DRX The parameters include at least the sl-drx-StartOffset parameter.
  • the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter are first configured according to the QoS Profile information, thereby increasing the granularity of the DRX parameter configuration and improving the energy saving effect. Then configure the sl-drx-StartOffset parameter according to the Destination L2 ID information, thereby greatly reducing the channel resource conflict rate without affecting the overall energy-saving effect of the system.
  • the embodiments of the present application combine the DRX configuration method according to the QoS Profile with the DRX configuration method according to the Destination L2 ID, that is, use the QoS information to configure a part of the DRX parameters, and use the Destination L2 ID to configure another part of the DRX parameters,
  • the effect of greatly reducing the conflict of selecting resources is achieved without affecting the overall power saving performance of the system.
  • the above-mentioned terminal refers to the Rx UE, and correspondingly, the opposite terminal of the above-mentioned terminal is the Tx UE.
  • the terminal configures the first DRX parameter according to the QoS Profile information, including:
  • the terminal groups multiple QoS IDs according to the PDB corresponding to each QoS ID to obtain multiple QoS ID subgroups;
  • the terminal configures a different first DRX parameter for each QoS ID subgroup according to the minimum value of the corresponding PDB in each QoS ID subgroup;
  • the realization of QoS of data packets is mainly reflected in whether the reliability of data packet transmission (ie, PER and PDB) can be guaranteed. These are mainly achieved by configuring the size of the corresponding onDurationTimer and drx-Cycle. Therefore, the embodiments of the present application consider using the QoS Profile information to configure some parameters in the DRX, that is, sl-drx-onDurationTimer and sl-drx-Cycle.
  • PQI pilot quality indicator
  • Standardized PQI standard PQI value and PC5 QoS ID one-to-one correspondence
  • non-standard PQI value non-standard PQI value
  • non-standard PQI is flexibly defined by a set of PC5 QoS parameters, and the non-standard PQI value also corresponds to PC5 QoS ID one-to-one
  • DRX parameters cannot be configured per PQI. Therefore, in this embodiment of the present application, a method based on grouping is used to flexibly configure the DRX parameters for the sl-drx-onDurationTimer and sl-drx-Cycle parameters.
  • the terminal groups QoS IDs according to the PDB tolerance.
  • the QoS ID subgroups are sorted according to the size arrangement principle of the PDB.
  • the QoS ID subgroup can be configured by the upper layer, pre-configured, or flexibly configured through the network. Among them, the QoS with a small PDB is arranged first, and the QoS with a large PDB is arranged last, that is, PDB for QoS-n ⁇ PDB for QoS-(n+1).
  • PDB for QoS-n ⁇ PDB for QoS-(n+1) For a specific grouping method, reference may be made to the scenario example in FIG. 3 .
  • each resource pool (Resource Pool) will be configured with a different Priority and a list of side link selection windows (sl-SelectionWindow).
  • the Priority is the information required for the reliability (Reliability) of the QoS of the implied data packet
  • the sl-SelectionWindow is the required information of the PDB that implied the QoS of the data packet.
  • the Priority indicated by SCI can achieve one-to-one mapping.
  • the Rx UE when the Rx UE receives the first data packet of the new service, the SCI in the data packet will imply the QoS information required for transmission.
  • the Rx UE performs flexible DRX configuration for the currently required QoS, and there will be no mismatching (Mismatching) between the Tx UE and the Rx UE(s).
  • each Destination L2 ID maps to one or more QoS IDs, at least one set of DRX parameters will be configured for each Destination L2 ID.
  • the DRX parameter is determined according to the QoS Profile with the smallest PDB in the Destination L2 ID. If the Rx UE is interested in the services of M Destination L2 IDs, each Destination L2 ID is mapped to one or more QoS IDs, the Rx UE shall be configured with at least M sets of DRX parameters.
  • the Rx UE determines the sl-drx-onDurationTimer and sl-drx-Cycle parameters, if the QoS Profile of the PDB in the Destination L2 ID-m1 is between QoS-1 and QoS-4, the Rx The UE shall configure DRX parameters sl-drx-onDurationTimer-m and sl-drx-Cycle-m for Destination L2 ID-m1.
  • the Rx UE will configure the second set of DRX parameters sl-drx-onDurationTimer-n and sl- drx-Cycle-n, and so on for other cases.
  • the Tx UE and the Rx UE since the Tx UE and the Rx UE know the QoS ID required for the corresponding service in advance, the Tx UE and the Rx UE naturally know the relevant DRX parameters according to the configuration of the QoS ID subgroup and DRX parameters, that is, the relevant implementation of the Rx UE Specific sl-drx-onDurationTimer and sl-drx-Cycle parameter values.
  • the sl-drx-Cycle parameters in different QoS ID subgroups have integers between them.
  • the terminal configures the second DRX parameter according to the Destination L2 ID information, including:
  • the terminal groups multiple Destination L2 IDs to obtain multiple Destination L2 ID sets;
  • the terminal configures different second DRX parameters for each Destination L2 ID set.
  • the Rx UE configures the sl-drx-onDurationTimer and sl-drx-Cycle parameters for each Destination L2 ID
  • the Rx UE configures the sl-drx parameter in the DRX parameters for each Destination L2 ID.
  • drx-StartOffset parameter the Rx UE configures the sl-drx parameter in the DRX parameters for each Destination L2 ID.
  • Destination L2 ID grouping can be configured by the upper layer, pre-configured, or flexibly configured through the network. Specifically, Destination L2 IDs can be assigned to different Destination L2 ID sets (Destination L2 ID Sets), and then each Destination L2 ID set will be configured with a corresponding sl-drx-StartOffset parameter. If the Destination L2 ID is the same as a member of a Destination L2 ID set, the Rx UE shall apply the sl-drx-StartOffset parameter associated with this Destination L2 ID set.
  • the Tx UE and Rx UE since the Tx UE and Rx UE know the Destination L2 ID used by the corresponding service in advance, the Tx UE and Rx UE naturally know the relevant DRX Timer parameters according to the Destination L2 ID set and the configuration of the DRX parameters, that is, the Rx UE implements The specific sl-drx-StartOffset parameter value.
  • the first DRX parameters corresponding to different QoS ID subgroups are different, and the second DRX parameters corresponding to different QoS ID subgroups are the same. In this way, the overall activation time (Active Time) of the terminal does not increase, but the channel resource conflict rate will drop significantly.
  • the method further includes: the terminal determines the activation period and the inactivation period of the first DRX parameter and the second DRX parameter according to a direct frame number (Direct Frame Number, DFN).
  • DFN Direct Frame Number
  • the DFN is used to derive the active period and the inactive period configured by the DRX parameters, so as to ensure that the TX UE and the RX UE are synchronized, that is, the understanding of the DRX pattern is consistent.
  • DFN is any of the following:
  • the DFN of the terminal that is, the DFN can be the DFN of the Rx UE side;
  • the DFN of the opposite terminal of the terminal that is, the DFN can be the DFN of the Tx UE side;
  • the DFN determined according to the PC5 RRC interaction process that is, the DFN can notify or negotiate the DFN using one of the UEs through the PC5 RRC interaction process.
  • Rx UE-1 owns Destination L2 ID-1 and Destination L2 ID-2, while Rx UE-2 owns Destination L2 ID-3 and Destination L2 ID-4.
  • Rx UE-1 and Rx UE-2 are interested in different Destination L2 IDs. Therefore, Rx UE-1 does not need to monitor the Destination L2 ID of Rx UE-2. Similarly, Rx UE-2 does not need to monitor the Destination L2 ID of Rx UE-1. .
  • the transmission of Destination L2 ID-1 needs to meet the requirements of QoS-2
  • the transmission of Destination L2 ID-2 needs to meet the requirements of QoS-3
  • the transmission of Destination L2 ID-3 needs to meet the requirements of QoS-6
  • the transmission of Destination L2 ID-3 needs to meet the requirements of QoS-6.
  • -4 transmission needs to meet the requirements of QoS-8.
  • Rx UE-1 will configure sl-drx-onDurationTimer and sl-drx-Cycle parameters related to QoS-1 and QoS-5 for Destination L2 ID-1 and Destination L2 ID-2 respectively.
  • Rx UE-2 will also configure sl-drx-onDurationTimer and sl-drx-Cycle parameters related to QoS-1 and QoS-5 for Destination L2 ID-3 and Destination L2 ID-4 respectively.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the SL system will perform the diversity of Destination L2 IDs according to the situation of the assigned Destination L2 IDs. Diversity can be upper-layer configuration, pre-configured, or flexibly configured through the network.
  • the SL system will configure two sets of Destination L2 IDs, namely Destination L2 ID Set-1 and Destination L2 ID Set-2. For each set, different sl-drx-StartOffsets, ie, Offset-1 and Offset-2, are configured respectively.
  • Rx UE-1 Since the Destination L2 IDs of Rx UE-1 are in Destination L2 ID Set-1, Rx UE-1 will configure the same Offset-1 for both Destination L2 ID-1 and Destination L2 ID-2. While the Destination L2 IDs of Rx UE-2 are in Destination L2 ID Set-2, Rx UE-2 will configure the same Offset-2 for both Destination L2 ID-3 and Destination L2 ID-4. That is, Rx UE-1 and Rx UE-2 will implement different Offset parameters.
  • this embodiment directly use the scenarios in the first and second embodiments above, which will not be repeated.
  • this embodiment is a comparison in terms of energy saving between the method of configuring DRX parameters only according to QoS Profile and the method of flexibly applying QoS Profile and Destination L2 ID to configure DRX parameters.
  • the Active Time (Active Time) of the Rx UE-1 and the Rx UE-2 will be exactly the same. That is, when the Tx UE sends data packets, the Tx UE will have to send data packets to Rx UE-1 and Rx UE-2 within the same activation time. Therefore, the channel resources that can be selected will be limited, and the natural channel resource collision rate will increase.
  • the Rx UE configures the DRX parameters according to the flexible application QoS Profile and Destination L2 ID
  • the Rx UE will use different sl-drx-onDurationTimer and sl-drx-Cycle parameters, but will use the same sl-drx -StartOffset parameter. It can be seen that, compared with the method of configuring DRX parameters only according to QoS Profile, the overall activation time (Active Time) of Rx UE-1 and Rx UE-2 does not increase, but the channel resource conflict rate will be greatly reduced.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the scenarios in this embodiment directly use the scenarios in the first and second embodiments above, which will not be repeated.
  • the relationship between drx-Cycle here can be the relationship between the numerical value of the drxCycle parameter, or the relationship between the drxCycle parameter and its length.
  • the energy saving efficiency can be further improved. It can be seen that the Rx UE can shorten the overall activation time by activating the partially overlapping onDuration method, and improve the energy saving efficiency without affecting the overall performance of the system.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the TX UE and the RX UE may be located in the same or different cells, online or offline, etc., the TX UE and the RX UE may not be able to obtain the synchronized SFN and subframe.
  • the SFN is used to calculate the SL
  • the active time in the DRX pattern is no longer suitable, the alternative is to use DFN and subframe to calculate the SL DRX pattern, for example:
  • the gap slot offset can be removed, starting from the initial position of the subframe.
  • DFN is on the TX UE side.
  • the active time is calculated according to the DRX configuration parameters and the DFN on the TX UE side, and SCI monitoring is performed at the active time.
  • the DFN synchronization of multiple TX UEs is guaranteed by the configuration and implementation of the network side.
  • the RX UE implementation decides how to monitor, such as selecting a DFN to calculate the DRX active time, or in all Wake up to SCI monitoring at the DRX active time calculated by DFN.
  • a UE When a UE is offline, it first obtains the synchronized DFN through the surrounding UEs, and then transmits and receives correspondingly according to the active time calculated by the DFN and DRX parameters. When a UE is completely unable to obtain the DFN synchronized with the surrounding UEs, the UE's transmission and monitoring are not specified, that is, it can continuously monitor or transmit at any resource location.
  • SL unicast unicast if the TX UE sends the SL DRX parameters to the RX UE for the definition of the DRX pattern in the TX UE->RX UE direction, these DRX parameters are calculated by default with the DFN of the TX UE to obtain the active time. If the RX UE sends SL DRX parameters or auxiliary information to the TX UE for the DRX pattern definition in the TX UE->RX UE direction, it is still stipulated that these DRX parameters are calculated by default with the DFN of the TX UE to obtain the active time.
  • the DRX calculation can be performed according to the DFN of the TX UE in its own direction, or the DFN of one of the UEs can be used for the calculation.
  • the PC5RRC interaction process is notified or negotiated.
  • the execution body may be a configuration device, or a control module in the configuration device for executing the configuration method.
  • the configuration device provided by the embodiment of the present application is described by taking the configuration device executing the configuration method as an example.
  • a configuration apparatus 500 includes:
  • the first configuration module 501 is used for the terminal to configure the first DRX parameter according to the QoS Profile information
  • the second configuration module 502 is used for the terminal to configure the second DRX parameter according to the Destination L2 ID information
  • the QoS Profile information includes multiple QoS IDs
  • the terminal has multiple Destination L2 IDs
  • the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter
  • the second The DRX parameters include at least the sl-drx-StartOffset parameter.
  • the first configuration module includes:
  • the first grouping unit is used for the terminal to group the multiple QoS IDs according to the PDB corresponding to each of the QoS IDs to obtain multiple QoS ID subgroups;
  • a first configuration unit used for the terminal to configure different first DRX parameters for each of the QoS ID subgroups according to the minimum value of the corresponding PDB in each of the QoS ID subgroups;
  • each of the Destination L2 IDs corresponds to at least one of the QoS ID subgroups.
  • the second configuration module includes:
  • the second grouping unit is used for the terminal to group the multiple Destination L2 IDs to obtain multiple Destination L2 ID sets;
  • a second configuration unit configured for the terminal to configure different second DRX parameters for each of the Destination L2 ID sets.
  • the relationship between the drxCycles can be the relationship between the values of the drxCycle parameters or the relationship between the drxCycle parameters in terms of their lengths.
  • the apparatus further comprises:
  • a determining module configured for the terminal to determine the activation period and the inactivation period of the first DRX parameter and the second DRX parameter according to the direct frame number DFN.
  • the DFN is any of the following:
  • the DFN determined according to the PC5 RRC interaction process. .
  • the first DRX parameters corresponding to different QoS ID subgroups are different, and the second DRX parameters corresponding to different QoS ID subgroups are the same.
  • the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter are first configured according to the QoS Profile information, thereby increasing the granularity of the DRX parameter configuration and improving the energy saving effect. Then configure the sl-drx-StartOffset parameter according to the Destination L2 ID information, thereby greatly reducing the channel resource conflict rate without affecting the overall energy-saving effect of the system.
  • the configuration apparatus in this embodiment of the present application may be an apparatus, an apparatus having an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the configuration apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment of FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the above configuration method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network side device, when the program or instruction is executed by the processor 601, each process of the above configuration method embodiment can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the embodiment of the present application further provides a terminal, including a processor and a communication interface, wherein the processor is used for the terminal to configure the first discontinuous reception DRX parameter according to the QoS Profile information of the quality of service configuration file; the terminal identifies the Destination L2 according to the destination layer 2 The ID information configures the second DRX parameter; wherein, the QoS Profile information includes multiple QoS IDs, the terminal has multiple Destination L2 IDs, and the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx parameter -Cycle parameter, the second DRX parameter includes at least the sl-drx-StartOffset parameter.
  • the terminal embodiment corresponds to the above-mentioned terminal method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to the terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710, etc. at least part of the components.
  • the terminal 700 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the processor 710 is used for the terminal to configure the first discontinuous reception DRX parameter according to the QoS Profile information of the quality of service configuration file;
  • the processor 710 is used for the terminal to configure the second DRX parameter according to the destination layer 2 identification Destination L2 ID information;
  • the QoS Profile information includes multiple QoS IDs
  • the terminal has multiple Destination L2 IDs
  • the first DRX parameter includes at least the sl-drx-onDurationTimer parameter and the sl-drx-Cycle parameter
  • the second The DRX parameters include at least the sl-drx-StartOffset parameter.
  • the processor 710 is configured to:
  • the terminal groups the multiple QoS IDs according to the PDB corresponding to each of the QoS IDs to obtain multiple QoS ID subgroups;
  • the terminal configures different first DRX parameters for each of the QoS ID subgroups according to the minimum value of the corresponding PDB in each of the QoS ID subgroups;
  • each of the Destination L2 IDs corresponds to at least one of the QoS ID subgroups.
  • the processor 710 is configured to:
  • the terminal groups the multiple Destination L2 IDs to obtain multiple Destination L2 ID sets;
  • the terminal configures different second DRX parameters for each of the Destination L2 ID sets.
  • the relationship between the drxCycles can be the relationship between the values of the drxCycle parameters or the relationship between the drxCycle parameters in terms of their lengths.
  • the processor 710 is configured to:
  • the terminal determines the activation period and the inactivation period of the first DRX parameter and the second DRX parameter according to the direct frame number DFN.
  • the DFN is any of the following:
  • the first DRX parameters corresponding to different QoS ID subgroups are different, and the second DRX parameters corresponding to different QoS ID subgroups are the same.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium. When the program or instruction is executed by a processor, each process of the foregoing configuration method embodiment can be implemented, and can achieve the same The technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement each of the foregoing configuration method embodiments process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the above configuration method.

Abstract

本申请公开了一种配置方法、装置及设备,属于通信技术领域,方法包括:终端根据QoS Profile信息配置第一DRX参数;终端根据Destination L2 ID信息配置第二DRX参数;其中,QoS Profile信息中包含多个QoS ID,终端具有多个Destination L2 ID,第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,第二DRX参数至少包括sl-drx-StartOffset参数。

Description

配置方法、装置及设备
相关申请的交叉引用
本申请主张在2021年04月09日在中国提交的中国专利申请No.202110384492.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种配置方法、装置及设备。
背景技术
对接收终端(Rx User Equipment,Rx UE)来说,在通过服务质量(Quality of Service,QoS)信息来配置非连续接收计时器(Discontinuous Reception Timer,DRX Timer)的情况下,为了保证Rx UE能接收相应的数据包,发送终端(Tx UE)必须调整发送时间,在Rx UE被激活的时间内发送数据包。由于Rx UE持续时间(on Duration)的时间有限,被Tx UE选择用于传输的资源冲突的可能性也就大大提高,导致包接收比(Packet Reception Ratio,PRR)性能降低。
发明内容
本申请实施例提供一种配置方法、装置及设备,能够解决现有DRX参数配置方式会导致传输的资源冲突的可能性提高的问题。
第一方面,提供了一种配置方法,包括:
终端根据QoS Profile信息配置第一DRX参数;
终端根据Destination L2 ID信息配置第二DRX参数;
其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。
第二方面,提供了一种配置装置,包括:
第一配置模块,用于终端根据QoS Profile信息配置第一DRX参数;
第二配置模块,用于终端根据Destination L2 ID信息配置第二DRX参数;
其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于终端根据服务质量配置文件QoS Profile信息配置第一非连续接收DRX参数;终端根据目的地层2标识Destination L2 ID信息配置第二DRX参数;其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法。
本申请实施例中,对于DRX参数配置,先根据QoS Profile信息配置sl-drx-onDurationTimer参数和sl-drx-Cycle参数,从而增加了对DRX参数配置的粒度,提高了节能效果。然后根据Destination L2 ID信息配置sl-drx-StartOffset参数,从而在不影响系统整体节能效果的情况下大幅降低了信道资源冲突率。
附图说明
图1为DRX参数间的关系示意图;
图2为本申请实施例提供的配置方法流程示意图;
图3为本申请实施例提供的应用场景示意图之一;
图4a为本申请实施例提供的应用场景示意图之二;
图4b为本申请实施例提供的应用场景示意图之三;
图4c为本申请实施例提供的应用场景示意图之四;
图4d为本申请实施例提供的应用场景示意图之五;
图4e为本申请实施例提供的应用场景示意图之六;
图5为本申请实施例提供的配置装置的结构示意图;
图6为本申请实施例提供的通信设备的结构示意图;
图7为本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier  Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
为更好理解本申请实施例的方案,首先对以下内容进行介绍:
侧链路(Sidelink,SL)DRX参数和配置
和DRX相关的参数主要有侧链路非连续接收持续时间计时器(sl-drx-onDurationTimer),侧链路非连续接收周期(sl-drx-Cycle),侧链路非连续接收起始偏移量(sl-drx-StartOffset)。各个参数的用处有所不同。sl-drx-onDurationTimer是DRX周期开始时的持续时间,它的大小取决于多少个Tx UE需要传输数据包。换句话说,它取决于拥塞率(Congestion Rate,CR)值。drx-Cycle是DRX周期,它取决于QoS配置文件组中最小的包时延预算(Packet Delay Budget,PDB)。sl-drx-StartOffset是决定sl-onDuration的开始时间。开始时间可以根据以下公式来计算:
[(SFN×10)+subframe number]modulo(sl-drx-Cycle)=sl-drx-StartOffset;
参见图1,图中示出DRX参数间的关系。
根据服务质量配置文件(QoS Profile)的DRX配置方法
针对每个数据服务,上层会给与接入层(access stratum,AS)层和数据服务相关的QoS信息。QoS信息有优先级(Priority Level)(即,每包优先级(ProSe Per-Packet Priority,PPPP)),包错误率(Packet Error Rate,PER)(即,每包可靠性(ProSe Per-Packet Reliability,PPPR)),包延时预算(Packet Delay Budget,PDB),通信范围(Communication Range)等。DRX相关参数可以通过QoS信息加以配置。如,根据PDB宽容度,可以配置不同长度的drxCycle,即,如果PDB宽容度大,则drxCycle大小可以配置长一些,反之亦然。由于QoS具有比较高的粒度,配置给Rx UE的DRX参数的粒度也就可以相应提高。
根据目的地层2标识(Destination L2 ID)的DRX配置方法
Tx UE对SL相关的数据包通过相应的Destination L2 ID来进行单播,组播,广播传输的。而Rx UE接收到数据包后根据判断是否与自己相关的Destination L2 ID从而决定是否进一步的解码数据包,得到自己所需要的信息。对Rx UE来说,Destination L2 ID的信息相对比较单一,利用Destination L2 ID来配置DRX参数也就相对比较简单。
对Rx UE来说,虽然利用QoS信息来配置DRX Timer具有比较高的粒度,但是属于同一QoS相关的DRX Timer配置将会相同。也就是说,拥有相同QoS的Rx UE将会在同样的时间被激活,接收数据包。为了保证Rx UE能接受相应的数据包,Tx UE必须调整发送时间,在Rx UE被激活的时间内发送数据包。由于Rx UE onDuration的时间有限,被Tx UE选择用于传输的资源冲突的可能性也就大大提高,导致PRR性能降低。
另外,在组播或广播中,UE一般会拥有多个上层应用和/或业务,但在AS层会使用一个相同的Destination L2 ID。由于DRX配置的粒度问题,Rx UE只能基于组播或广播会中最短PDB的QoS来配置DRX参数,使得Rx UE的节能效果大大下降。
综上,使用QoS信息来配置全部的DRX参数,或者使用Destination L2 ID来配置全部的DRX参数,均各有利弊。
参见图2,本申请实施提供一种配置方法,包括:
步骤201:终端根据QoS Profile信息配置第一DRX参数;
步骤202:终端根据Destination L2 ID信息配置第二DRX参数;
在本申请实施例中,QoS Profile信息中包含多个QoS ID,终端具有多个Destination L2 ID,上述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,上述第二DRX参数至少包括sl-drx-StartOffset参数。
本申请实施例中,对于DRX参数配置,先根据QoS Profile信息配置sl-drx-onDurationTimer参数和sl-drx-Cycle参数,从而增加了对DRX参数配置的粒度,提高了节能效果。然后根据Destination L2 ID信息配置sl-drx-StartOffset参数,从而在不影响系统整体节能效果的情况下大幅降低了信道资源冲突率。
即,本申请实施例将根据QoS Profile的DRX配置方法与根据Destination  L2 ID的DRX配置方法结合,即,使用QoS信息来配置一部分的DRX参数,并使用Destination L2 ID来配置另一部分的DRX参数,从而实现了在不影响系统整体省电性能的情况下大幅度降低选择资源的冲突的效果。
需要说明的是,上述终端指的是Rx UE,相应地,上述终端的对端终端即为Tx UE。
在一些实施方式中,终端根据QoS Profile信息配置第一DRX参数,包括:
(1)终端根据每个QoS ID对应的PDB,对多个QoS ID分组,得到多个QoS ID子组;
(2)终端根据每个QoS ID子组中对应的PDB的最小值,为每个QoS ID子组配置不同的第一DRX参数;
数据包的QoS实现主要是体现在是否能够保障数据包传输的可靠性(即,PER和PDB)。这些主要是通过配置相应的onDurationTimer和drx-Cycle的大小来实现的。因此本申请实施例考虑利用QoS Profile信息来配置DRX中的一部分参数,即,sl-drx-onDurationTimer和sl-drx-Cycle。
由于现有的协议中,标准导频质量指示符(Pavement Quality Indicator,PQI)值(Standardized PQI)(标准PQI值与PC5 QoS ID一一对应)就拥有17种,加上非标准PQI值(non-Standardized PQI)(非标准PQI通过一组PC5 QoS参数来灵活定义,非标PQI值也与PC5 QoS ID一一对应),最高可达256种。因此DRX参数不可能以每个PQI来配置。因此,在本申请实施例中,采用根据分组的方法来灵活对sl-drx-onDurationTimer和sl-drx-Cycle参数进行配置DRX参数。
在本申请实施例中,终端根据PDB宽容度,对QoS ID分组。具体地,根据PDB的大小排列原则对QoS ID子组。该QoS ID子组可以通过上层配置,预配置,也可以通过网络灵活配置。其中,PDB小的QoS排列在先,PDB大的QoS排列在后,即PDB for QoS-n≤PDB for QoS-(n+1)。具体分组的方法可以参照图3的场景举例。
此外,还可以通过隐示指示方法分组。例如,通过系统控制信息(System Control Information,SCI)指示的Priority(共8个Level)来分组。需要说明 的是,每个资源池(Resource Pool)将会被配置不同的Priority和侧链路选择窗(sl-SelectionWindow)的List。而Priority是隐含了数据包的QoS的可靠性(Reliability)所需信息,sl-SelectionWindow是隐含了数据包的QoS的PDB所需信息。而SCI指示的Priority能够实现一对一的隐射。所以当Rx UE收到新业务的第一个数据包后,数据包中的SCI将隐示了传输所需的QoS信息。通过这种隐示方法Rx UE针对目前所需的QoS进行灵活的DRX配置,而且Tx UE和Rx UE(s)之间不会产生不匹配(Mismatching)的情况。
由于每个Destination L2 ID映射到一个或多个QoS ID,针对每个Destination L2 ID将配置至少一套DRX参数。DRX参数是根据Destination L2 ID中拥有最小PDB的QoS Profile决定的。如果Rx UE对M个Destination L2 ID的服务感兴趣,每个Destination L2 ID映射到一个或多个QoS ID,此Rx UE将被配置至少M套DRX参数。如图3所示,Rx UE在决定sl-drx-onDurationTimer和sl-drx-Cycle参数的时候,如果Destination L2 ID-m1中拥有PDB的QoS Profile是在QoS-1和QoS-4之间,Rx UE将会为Destination L2 ID-m1配置DRX参数sl-drx-onDurationTimer-m和sl-drx-Cycle-m。如果Destination L2 ID-n1中拥有PDB的QoS Profile是在QoS-5和QoS-8之间,Rx UE将会为Destination L2 ID-n1配置第二套DRX参数sl-drx-onDurationTimer-n和sl-drx-Cycle-n,其他情况可以此类推。
需要说明的是,由于Tx UE和Rx UE事先知道相应服务所需的QoS ID,Tx UE和Rx UE根据QoS ID子组和DRX参数的配置自然知道相关的DRX参数,即,Rx UE相关实施的具体sl-drx-onDurationTimer和sl-drx-Cycle参数值。
进一步地,为了更有效的配置DRX参数,可以对QoS组间的sl-drx-Cycle加入一些限制,在一些实施方式中,不同的QoS ID子组中的sl-drx-Cycle参数之间具有整数倍关系,这里的drx-Cycle之间的关系可以是drx-Cycle参数在数值上的关系,也可以是drx-Cycle参数在其长度上的关系,即不同的drxCycle长度关系可以是N整数倍,也即sl-drx-Cycle-m=N×sl-drx-Cycle-n。
在一些实施方式中,终端根据Destination L2 ID信息配置第二DRX参数,包括:
(1)终端对多个Destination L2 ID分组,得到多个Destination L2 ID集;
(2)终端为每个Destination L2 ID集配置不同的第二DRX参数。
在本申请实施例中,当Rx UE在为每个Destination L2 ID配置好sl-drx-onDurationTimer和sl-drx-Cycle参数后,Rx UE会对的每个Destination L2 ID配置DRX参数中的sl-drx-StartOffset参数。
同样的,Destination L2 ID的数量会比较大,因此需要为Destination L2 ID分组。Destination L2 ID分组可以通过上层配置,预配置,也可以通过网络灵活配置。具体地,可以把Destination L2 ID分配到不同的Destination L2 ID集(Destination L2 ID Set),然后每个Destination L2 ID集将被配置一个相应的sl-drx-StartOffset参数。如果Destination L2 ID和某个Destination L2 ID集中的成员相同,Rx UE将应用此Destination L2 ID集相关的sl-drx-StartOffset参数。
值得注意的是,由于Tx UE和Rx UE事先知道相应服务所利用的Destination L2 ID,Tx UE和Rx UE根据Destination L2 ID集和DRX参数的配置自然知道相关的DRX Timer参数,即,Rx UE实施的具体sl-drx-StartOffset参数值。
在一些实施方式中,不同的QoS ID子组对应的第一DRX参数不同,不同的QoS ID子组对应的第二DRX参数相同。这样终端的总体激活时间(Active Time)没有增加,但信道资源冲突率将会大幅下降。
在一些实施方式中,本方法还包括:终端根据直接帧编号(Direct Frame Number,DFN)确定第一DRX参数和第二DRX参数的激活期和非激活期。
在本申请实施例中,使用DFN推导DRX参数配置的激活期和非激活期,从而确保TX UE和RX UE同步,即对DRX模式(pattern)理解一致。
进一步地,上述DFN为以下任意一项:
(1)终端的DFN,即DFN可以为Rx UE侧的DFN;
(2)终端的对端终端的DFN,即DFN可以为Tx UE侧的DFN;
(3)根据PC5 RRC交互过程确定出的DFN,即DFN可以通过PC5 RRC交互过程进行通知或者协商出使用其中一个UE的DFN。
下面结合具体实施例对本申请的方案进行描述,具体参见图4a至图4e。
实施例一:
参见图4a,在本实施例中:Rx UE-1拥有Destination L2 ID-1和Destination L2 ID-2,而Rx UE-2拥有Destination L2 ID-3和Destination L2 ID-4。Rx UE-1和Rx UE-2感兴趣的Destination L2 ID不同,因此Rx UE-1不需要监测Rx UE-2的Destination L2 ID,同样Rx UE-2不需要监测Rx UE-1的Destination L2 ID。另外利用Destination L2 ID-1的传输需要满足QoS-2的要求,Destination L2 ID-2的传输需要满足QoS-3的要求,Destination L2 ID-3的传输需要满足QoS-6的要求,Destination L2 ID-4的传输需要满足QoS-8的要求。
根据上述场景,Rx UE-1将会为Destination L2 ID-1和Destination L2 ID-2分别配置与QoS-1和QoS-5相关的sl-drx-onDurationTimer和sl-drx-Cycle参数。而Rx UE-2将也会为Destination L2 ID-3和Destination L2 ID-4分别配置与QoS-1和QoS-5相关的sl-drx-onDurationTimer和sl-drx-Cycle参数。
实施例二:
参见图4b,在本实施例中:SL系统会根据被分配的Destination L2 ID的情况,进行Destination L2 ID的分集。分集可以是上层配置,预配置,也可以通过网络灵活配置。SL系统将配置两套Destination L2 ID集,即Destination L2 ID Set-1和Destination L2 ID Set-2。针对每个集,分别配置不同的sl-drx-StartOffset,即,Offset-1和Offset-2。
由于Rx UE-1的Destination L2 ID都处在Destination L2 ID Set-1中,Rx UE-1将为配置Destination L2 ID-1和Destination L2 ID-2配置相同的Offset-1。而Rx UE-2的Destination L2 ID都处在Destination L2 ID Set-2中,Rx UE-2将为配置Destination L2 ID-3和Destination L2 ID-4配置相同的Offset-2。也就是说,Rx UE-1和Rx UE-2将实施不同的Offset参数。
实施例三:
本实施例的场景直接采用上述实施例一和二的场景,不再复述。另外,本实施例是对仅根据QoS Profile来配置DRX参数的方法和灵活应用QoS Profile和Destination L2 ID来配置DRX参数的方法在节能方面的比较。
参见图4c,如果Rx UE仅根据QoS Profile来配置DRX参数的话,Rx UE-1和Rx UE-2的激活时间(Active Time)将会完全相同。也就是,当Tx UE发 数据包的时候,Tx UE将必须在同一个激活时间内发数据包给Rx UE-1和Rx UE-2。因此能够选择的信道资源将被限制,自然信道资源冲突率将会升高。
参见图4d,如果Rx UE根据灵活应用QoS Profile和Destination L2 ID来配置DRX参数的话,Rx UE将会使用不同的sl-drx-onDurationTimer和sl-drx-Cycle参数,但会使用相同的sl-drx-StartOffset参数。可以看到,相比仅根据QoS Profile来配置DRX参数方法,Rx UE-1和Rx UE-2的总体激活时间(Active Time)没有增加,但信道资源冲突率将会大幅下降。
实施例四:
本实施例的场景直接采用上述实施例一和二的场景,不再复述。为了更有效的配置DRX参数,我们可以对QoS组间的sl-drx-Cycle加入一些相关的限制,如不同的drxCycle之间的关系可以是N整数倍,即sl-drx-Cycle-m=N×sl-drx-Cycle-n。这里的drx-Cycle之间的关系可以是drxCycle参数在数值上的关系,也可以是drxCycle参数在其长度上的关系。
在本实施例中,QoS组1和QoS组2的关系是sl-drx-Cycle-2=2×sl-drx-Cycle-1。
参见图4e,根据QoS Profile和Destination L2 ID的DRX参数配置,如果基于QoS-5的DRX周期是基于QoS-1的DRX周期的2倍,则可以使节能效率更加提高。可以看到Rx UE通过对部分重叠onDuration的激活方法,能够使整体激活时间相应缩短,在不影响系统整体性能的情况下提高了节能效率。
实施例五:
(1)组播和广播DRX pattern在TX UE和RX UE之间同步的方法:
在LTE空中接口(Uu接口)中,由于UE和gNB之间是严格同步的,对于系统帧号(System Frame Number,SFN)和子帧(subframe)理解完全相同,因此DRX pattern的计算基于SFN和subframe偏差来确定,对于active time在UE和gNB之间理解一致。
在SL操作中,由于TX UE和RX UE之间可以位于相同或者不同的小区、在网或者脱网等情况,TX UE和RX UE可能不能获得同步的SFN和subframe,此时用SFN来计算SL DRX pattern中的active time不再适合,替代方式是用 DFN和subframe来计算SL DRX pattern,例如:
(a)针对SL DRX,[(DFN×10)+subframe number]modulo(sl-drxCycle)=sl-drx-StartOffset;
(b)在从子帧开始的sl-drx-SlotOffset之后,为该SL DRX组启动drx-onDurationTimer(start drx-onDurationTimer for this SL DRX group after sl-drx-SlotOffset from the beginning of the subframe)。
或者在上述公式中,可以去掉间隙slot偏移,从子帧的初始位置开始。
其中,如果DFN为TX UE侧的。当RX UE准备接收广播broadcast和组播groupcast业务时,按照DRX配置参数和TX UE侧的DFN来计算active time,并在active time进行SCI监听。其中多个TX UE的DFN同步由网络侧配置和实现进行保证,当出现有TX UE DFN不同步情况时,RX UE实现来决定如何进行监听,例如选择一个DFN计算DRX active time,或者在所有的DFN计算出的DRX active time时都醒来进行SCI监听。
当一个UE处于脱网状态,它先通过周围的UE获取同步的DFN,再按照DFN和DRX参数计算出的active time进行相应的发送和接收。当一个UE完全无法获得与周围UE同步的DFN时,UE的发送和监听不做规定,即它可以持续监听或者任意资源位置发送。
(2)单播DRX pattern同步的方法:
SL单播unicast情况下,如果是TX UE发送SL DRX参数给RX UE用于TX UE->RX UE方向的DRX pattern定义,则这些DRX参数默认以TX UE的DFN来计算获得active time。如果是RX UE发送SL DRX参数或者辅助信息给TX UE用于TX UE->RX UE方向的DRX pattern定义,,仍旧规定这些DRX参数默认以TX UE的DFN来计算获得active time。
如果SL unicast两个方向,互为TX UE的两个UE,其DFN不同步,则可以各自按照自己方向的TX UE的DFN进行DRX计算,或者统一使用其中一个UE的DFN进行计算,这个UE由PC5RRC交互过程进行通知或者协商。
需要说明的是,本申请实施例提供的配置方法,执行主体可以为配置装置,或者,该配置装置中的用于执行配置方法的控制模块。本申请实施例中以配置装置执行配置方法为例,说明本申请实施例提供的配置装置。
参见图5,本申请实施例一种配置装置500,包括:
第一配置模块501,用于终端根据QoS Profile信息配置第一DRX参数;
第二配置模块502,用于终端根据Destination L2 ID信息配置第二DRX参数;
其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。
在一些实施方式中,所述第一配置模块,包括:
第一分组单元,用于所述终端根据每个所述QoS ID对应的PDB,对所述多个QoS ID分组,得到多个QoS ID子组;
第一配置单元,用于所述终端根据每个所述QoS ID子组中对应的PDB的最小值,为每个所述QoS ID子组配置不同的所述第一DRX参数;
其中,每个所述Destination L2 ID对应至少一个所述QoS ID子组。
在一些实施方式中,所述第二配置模块,包括:
第二分组单元,用于所述终端对所述多个Destination L2 ID分组,得到多个Destination L2 ID集;
第二配置单元,用于所述终端为每个所述Destination L2 ID集配置不同的所述第二DRX参数。
在一些实施方式中,不同的所述QoS ID子组中的sl-drx-Cycle参数之间具有整数倍关系。
这里的drxCycle之间的关系可以是drxCycle参数在数值上的关系,也可以是drxCycle参数在其长度上的关系。
在一些实施方式中,所述装置还包括:
确定模块,用于所述终端根据直接帧编号DFN确定所述第一DRX参数和所述第二DRX参数的激活期和非激活期。
在一些实施方式中,所述DFN为以下任意一项:
所述终端的DFN;
所述终端的对端终端的DFN;
根据PC5 RRC交互过程确定出的DFN。。
在一些实施方式中,不同的QoS ID子组对应的第一DRX参数不同,不同的QoS ID子组对应的第二DRX参数相同。
本申请实施例中,对于DRX参数配置,先根据QoS Profile信息配置sl-drx-onDurationTimer参数和sl-drx-Cycle参数,从而增加了对DRX参数配置的粒度,提高了节能效果。然后根据Destination L2 ID信息配置sl-drx-StartOffset参数,从而在不影响系统整体节能效果的情况下大幅降低了信道资源冲突率。
本申请实施例中的配置装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的配置装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述配置方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器及通信接口,其中,所述处理器用于终端根据服务质量配置文件QoS Profile信息配置第一非连续接收DRX参数;终端根据目的地层2标识Destination L2 ID信息配置第二DRX参数;其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。该 终端实施例是与上述终端方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于终端根据服务质量配置文件QoS Profile信息配置第一非连续接收DRX参数;
处理器710,用于终端根据目的地层2标识Destination L2 ID信息配置第二DRX参数;
其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数至少包括sl-drx-StartOffset参数。
可选地,处理器710,用于:
所述终端根据每个所述QoS ID对应的PDB,对所述多个QoS ID分组,得到多个QoS ID子组;
所述终端根据每个所述QoS ID子组中对应的PDB的最小值,为每个所述QoS ID子组配置不同的所述第一DRX参数;
其中,每个所述Destination L2 ID对应至少一个所述QoS ID子组。
可选地,处理器710,用于:
所述终端对所述多个Destination L2 ID分组,得到多个Destination L2 ID集;
所述终端为每个所述Destination L2 ID集配置不同的所述第二DRX参数。
可选地,不同的所述QoS ID子组中的sl-drx-Cycle参数之间具有整数倍关系。
这里的drxCycle之间的关系可以是drxCycle参数在数值上的关系,也可以是drxCycle参数在其长度上的关系。
可选地,处理器710,用于:
所述终端根据直接帧编号DFN确定所述第一DRX参数和所述第二DRX参数的激活期和非激活期。
可选地,所述DFN为以下任意一项:
所述终端的DFN;
所述终端的对端终端的DFN;
根据PC5 RRC交互过程确定出的DFN。
可选地,不同的QoS ID子组对应的第一DRX参数不同,不同的QoS ID子组对应的第二DRX参数相同。本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如上述配置方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、 方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (18)

  1. 一种配置方法,包括:
    终端根据服务质量配置文件QoS Profile信息配置第一非连续接收DRX参数;
    终端根据目的地层2标识Destination L2 ID信息配置第二DRX参数;
    其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数至少包括侧链路非连续接收持续时间计时器sl-drx-onDurationTimer参数和侧链路非连续接收周期sl-drx-Cycle参数,所述第二DRX参数至少包括侧链路非连续接收起始偏移量sl-drx-StartOffset参数。
  2. 根据权利要求1所述的方法,其中,
    所述终端根据QoS Profile信息配置第一DRX参数,包括:
    所述终端根据每个所述QoS ID对应的包时延预算PDB,对所述多个QoS ID分组,得到多个QoS ID子组;
    所述终端根据每个所述QoS ID子组中对应的PDB的最小值,为每个所述QoS ID子组配置不同的所述第一DRX参数;
    其中,每个所述Destination L2 ID对应至少一个所述QoS ID子组。
  3. 根据权利要求1所述的方法,其中,
    所述终端根据Destination L2 ID信息配置第二DRX参数,包括:
    所述终端对所述多个Destination L2 ID分组,得到多个Destination L2 ID集;
    所述终端为每个所述Destination L2 ID集配置不同的所述第二DRX参数。
  4. 根据权利要求2所述的方法,其中,不同的所述QoS ID子组中的sl-drx-Cycle参数之间具有整数倍关系。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端根据直接帧编号DFN确定所述第一DRX参数和所述第二DRX参数的激活期和非激活期。
  6. 根据权利要求5所述的方法,其中,所述DFN为以下任意一项:
    所述终端的DFN;
    所述终端的对端终端的DFN;
    根据PC5 RRC交互过程确定出的DFN。
  7. 根据权利要求2所述的方法,其中,不同的所述QoS ID子组对应的第一DRX参数不同,不同的所述QoS ID子组对应的第二DRX参数相同。
  8. 一种配置装置,包括:
    第一配置模块,用于终端根据QoS Profile信息配置第一DRX参数;
    第二配置模块,用于终端根据Destination L2 ID信息配置第二DRX参数;
    其中,所述QoS Profile信息中包含多个QoS ID,所述终端具有多个Destination L2 ID,所述第一DRX参数包括sl-drx-onDurationTimer参数和sl-drx-Cycle参数,所述第二DRX参数包括sl-drx-StartOffset参数。
  9. 根据权利要8所述的装置,其中,
    所述第一配置模块,包括:
    第一分组单元,用于所述终端根据每个所述QoS ID对应的PDB,对所述多个QoS ID分组,得到多个QoS ID子组;
    第一配置单元,用于所述终端根据每个所述QoS ID子组中对应的PDB的最小值,为每个所述QoS ID子组配置不同的所述第一DRX参数;
    其中,每个所述Destination L2 ID对应至少一个所述QoS ID子组。
  10. 根据权利要求8所述的装置,其中,
    所述第二配置模块,包括:
    第二分组单元,用于所述终端对所述多个Destination L2 ID分组,得到多个Destination L2 ID集;
    第二配置单元,用于所述终端为每个所述Destination L2 ID集配置不同的所述第二DRX参数。
  11. 根据权利要求9所述的装置,其中,不同的所述QoS ID子组中的sl-drx-Cycle参数之间具有整数倍关系。
  12. 根据权利要求8所述的装置,其中,所述装置还包括:
    确定模块,用于所述终端根据直接帧编号DFN确定所述第一DRX参数和所述第二DRX参数的激活期和非激活期。
  13. 根据权利要求12所述的装置,其中,所述DFN为以下任意一项:
    所述终端的DFN;
    所述终端的对端终端的DFN;
    根据PC5 RRC交互过程确定出的DFN。
  14. 根据权利要求9所述的装置,其中,不同的所述QoS ID子组对应的第一DRX参数不同,不同的所述QoS ID子组对应的第二DRX参数相同。
  15. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至7任一项所述的配置方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至7任一项所述的配置方法的步骤。
  17. 一种芯片,所述芯片包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如权利要求1至7任一项所述的配置方法的步骤。
  18. 一种计算机程序产品,所述计算机程序产品存储在非易失的存储介质中,其中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至7任一项所述的配置方法的步骤。
PCT/CN2022/085312 2021-04-09 2022-04-06 配置方法、装置及设备 WO2022213982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/378,142 US20240049345A1 (en) 2021-04-09 2023-10-09 Configuration method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110384492.9A CN115209472A (zh) 2021-04-09 2021-04-09 配置方法、装置及设备
CN202110384492.9 2021-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/378,142 Continuation US20240049345A1 (en) 2021-04-09 2023-10-09 Configuration method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2022213982A1 true WO2022213982A1 (zh) 2022-10-13

Family

ID=83545978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085312 WO2022213982A1 (zh) 2021-04-09 2022-04-06 配置方法、装置及设备

Country Status (3)

Country Link
US (1) US20240049345A1 (zh)
CN (1) CN115209472A (zh)
WO (1) WO2022213982A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116389940A (zh) * 2023-03-31 2023-07-04 广西上善若水发展有限公司 基于eDRX通讯技术的水表远程抄表方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314869A (zh) * 2018-08-24 2019-02-05 北京小米移动软件有限公司 非连续接收drx参数的配置方法及装置
CN110115101A (zh) * 2016-12-22 2019-08-09 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
CN111278171A (zh) * 2019-01-31 2020-06-12 维沃移动通信有限公司 一种非连续接收drx配置方法及终端
WO2021067814A1 (en) * 2019-10-02 2021-04-08 Qualcomm Incorporated Configuring discontinuous reception for different groups of cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115101A (zh) * 2016-12-22 2019-08-09 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
CN109314869A (zh) * 2018-08-24 2019-02-05 北京小米移动软件有限公司 非连续接收drx参数的配置方法及装置
CN111278171A (zh) * 2019-01-31 2020-06-12 维沃移动通信有限公司 一种非连续接收drx配置方法及终端
WO2021067814A1 (en) * 2019-10-02 2021-04-08 Qualcomm Incorporated Configuring discontinuous reception for different groups of cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "SL DRX for Groupcast and Broadcast", 3GPP DRAFT; R2-2102817, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 April 2021 (2021-04-02), XP052174401 *

Also Published As

Publication number Publication date
US20240049345A1 (en) 2024-02-08
CN115209472A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2021129507A1 (zh) 唤醒信号配置方法、唤醒信号处理方法及相关设备
WO2022042752A1 (zh) 物理下行控制信道的监听方法、装置和设备
US20230208563A1 (en) Discontinuous reception control method and apparatus, terminal, and readable storage medium
WO2021129508A1 (zh) 唤醒信号处理方法、唤醒信号配置方法及相关设备
WO2022017359A1 (zh) 直接通信启动控制方法及相关设备
US20240049345A1 (en) Configuration method and apparatus, and device
WO2022037564A1 (zh) 传输控制方法、装置及相关设备
WO2023274141A1 (zh) 非激活定时器的控制方法、装置及终端
WO2023030189A1 (zh) 监听方法、唤醒信号传输方法、装置、终端及网络侧设备
WO2022028597A1 (zh) 控制辅小区的方法、终端及网络侧设备
WO2022152054A1 (zh) 省电处理方法、装置及终端
WO2022127850A1 (zh) Pdcch监听方法、终端和网络侧设备
WO2022017351A1 (zh) 休眠指示方法、装置、终端及网络侧设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022194177A1 (zh) 监听控制方法及相关设备
WO2022206648A1 (zh) 侧链路非连续接收的实现方法、装置及终端
WO2023066308A1 (zh) Sl drx的配置方法、装置及终端
WO2022194176A1 (zh) 传输处理方法及相关设备
WO2022171085A1 (zh) 搜索空间组切换方法及装置
WO2022017506A1 (zh) 业务的处理方法、装置及相关设备
WO2022148431A1 (zh) 非连续接收drx配置切换的方法、装置及终端
WO2023280101A1 (zh) Sl处理方法、装置、终端及可读存储介质
WO2022042486A1 (zh) 副链路非连续接收的控制方法、装置、设备及可读存储介质
WO2022188771A1 (zh) 副链路的非连续接收配置方法、装置、设备及可读存储介质
WO2022199544A1 (zh) 上行传输方法、装置及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE