WO2022213658A1 - 固态激光雷达及使用其进行探测的方法 - Google Patents

固态激光雷达及使用其进行探测的方法 Download PDF

Info

Publication number
WO2022213658A1
WO2022213658A1 PCT/CN2021/138327 CN2021138327W WO2022213658A1 WO 2022213658 A1 WO2022213658 A1 WO 2022213658A1 CN 2021138327 W CN2021138327 W CN 2021138327W WO 2022213658 A1 WO2022213658 A1 WO 2022213658A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
detection
solid
emitting
Prior art date
Application number
PCT/CN2021/138327
Other languages
English (en)
French (fr)
Inventor
刘豪
朱雪洲
许森
刘旭岗
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110378462.7A external-priority patent/CN115201844A/zh
Priority claimed from CN202120714418.4U external-priority patent/CN214795207U/zh
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Priority to EP21935874.4A priority Critical patent/EP4321903A1/en
Priority to KR1020237032644A priority patent/KR20230150331A/ko
Priority to JP2023561895A priority patent/JP2024514576A/ja
Priority to DE112021007023.1T priority patent/DE112021007023T5/de
Publication of WO2022213658A1 publication Critical patent/WO2022213658A1/zh
Priority to US18/377,134 priority patent/US20240069162A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention generally relates to the technical field of laser detection, and in particular, to a solid-state laser radar and a detection method using the same.
  • Lidar can acquire information such as distance and speed of targets with high precision and high accuracy or realize target imaging, which plays an important role in surveying, mapping, navigation and other fields.
  • lidar can be divided into two categories: mechanical lidar and solid-state lidar.
  • Mechanical LiDAR uses mechanical rotating parts as the implementation of beam scanning, which can achieve large-angle scanning, but it is difficult to assemble and the scanning frequency is low.
  • Solid-state lidar the current implementation methods include micro-electromechanical systems, area array solid-state radar and optical phased array technology.
  • the light source of the area array solid-state lidar is usually a high-density vertical cavity surface emitting laser (VCSEL) array, and multiple lasers are connected in parallel to form a light-emitting unit, which is driven to emit light at the same time.
  • the length of the light-emitting unit is very long, the width is very narrow, and the aspect ratio is very high, which leads to the voltage drop caused by the resistance and parasitic inductance on the driving line under the condition of high current and high frequency driving, so that along the propagation direction of the driving signal,
  • the driving current of the plurality of lasers gradually decreases, and the luminous brightness also decreases gradually.
  • the intensity distribution of the detection light in the extension direction of the light-emitting unit is uneven within the field of view of the lidar, which affects the distance measurement capability and detection accuracy of the solid-state lidar.
  • the present invention provides a solid-state laser radar, including:
  • the light-emitting unit includes a plurality of lasers configured to simultaneously emit a detection beam
  • a receiving module comprising at least one detection unit, the detection unit comprising a plurality of photodetectors, configured to receive echoes of the detection beam reflected by the target;
  • the plurality of transmitting modules are arranged around the receiving module, the light-emitting units of the plurality of transmitting modules are located on the same plane, and one of the detection units is configured to receive detections sent by the light-emitting units of the plurality of transmitting modules The echo of the beam reflected by the target.
  • the emitting module includes a plurality of light emitting units, and the plurality of light emitting units are arranged in a direction perpendicular to the extending direction of the strip shape.
  • the transmitting modules are disposed on both sides of the receiving module, and the number of transmitting modules located on both sides of the receiving module is the same or different.
  • each of the emission modules includes a plurality of light-emitting units with the same number, and the light-emitting units corresponding to the same detection unit are located on the same straight line.
  • the fields of view corresponding to the plurality of light emitting units located on the same straight line are partially overlapped.
  • the solid-state lidar includes two transmitting modules, and the two transmitting modules are located on both sides of the receiving module.
  • the light emitting unit includes a VCSEL array
  • the detection unit includes a SPAD array
  • a blind-compensating laser is provided on a side of the light-emitting unit that is away from the receiving module in the strip-shaped extension direction, and the detection ranges of the blind-compensating laser and the light-emitting unit are different, and the The echoes of the detection light emitted by the blind-compensating laser reflected by the target can be received by the detection unit corresponding to the light-emitting unit.
  • the emission module further includes an electrode unit
  • the electrode unit is electrically connected to the plurality of lasers of the light-emitting unit
  • the electrode unit includes a plurality of driving ends, through which the plurality of driving ends Driving signals are simultaneously applied to the plurality of lasers of the light-emitting unit.
  • the electrode unit further includes pads provided at both ends of the stripe-shaped extending direction of the light-emitting unit, the pads are used for loading the driving signal.
  • the transmitting module further comprises a transmitting optical assembly
  • at least one light emitting unit of the transmitting module is located on a focal plane of the transmitting optical assembly
  • the transmitting optical assembly is configured to receive the at least one The probe beam emitted by the light-emitting unit is shaped and then sent to the target space.
  • the transmitting optical components of the plurality of transmitting modules are the same.
  • the transmitting module further includes a microlens array disposed downstream of the optical paths of the plurality of lasers.
  • the receiving module further comprises:
  • a receiving optical component configured to receive and condense the echoes of the detection beam of the first waveband emitted by the solid-state lidar and reflected by the target object and the beam of the second waveband, wherein the second waveband does not include the first waveband;
  • a light splitting unit disposed downstream of the optical path of the receiving optical component, configured to separate the reflected echo of the probe beam and the optical path of the light beam of the second wavelength band;
  • the at least one detection unit is disposed downstream of the optical path of the spectroscopic unit, and is configured to receive a reflected echo of the detection beam from the spectroscopic unit and convert it into an electrical signal;
  • At least one imaging unit disposed downstream of the optical path of the spectroscopic unit, is configured to receive and image the light beam of the second wavelength band from the spectroscopic unit.
  • each of the imaging units includes a plurality of image sensors, and a plurality of Each image sensor is activated simultaneously to receive the light beam of the second wavelength band and image, and the detection unit and the imaging unit corresponding to the same field of view are activated simultaneously to perform detection and exposure.
  • the spectroscopic unit includes a spectroscopic mirror, so that the reflected echo of the probe beam is reflected, the beam of the second wavelength band is transmitted, or the reflected echo of the probe beam is reflected The transmitted light beams of the second wavelength band are reflected.
  • the present invention also provides a method for detection using the solid-state laser radar as described above, comprising:
  • the light-emitting unit of the emission module emits a detection beam to detect the target
  • the detection unit of the receiving module receives the echoes of the detection beam reflected by the target object
  • the distance to the target is determined.
  • the solid-state lidar includes two transmitting modules, the two transmitting modules are located on both sides of the receiving module, and the two transmitting modules include a plurality of light-emitting units of the same number, corresponding to The light-emitting units of the same detection unit are located on the same straight line, and the method further includes:
  • the two light-emitting units corresponding to the same detection unit emit light simultaneously or alternately.
  • the plurality of lasers of the light-emitting unit are arranged in a strip shape, and a blind-compensating laser is provided on a side of the light-emitting unit that is away from the receiving module in the extending direction of the strip shape, and the blind-compensating laser Different from the detection range of the light-emitting unit, the detection light emitted by the blind-filling laser can be received by a detection unit corresponding to the light-emitting unit, and the echo reflected by the target object, and the method further comprises: the blind-filling laser and the light-emitting unit emit light at the same time.
  • the emission module further includes an electrode unit, the electrode unit is electrically connected with the plurality of lasers of the light-emitting unit, the electrode unit Including a plurality of driving ends, the method further includes:
  • the plurality of lasers of the light-emitting unit are simultaneously loaded with driving signals through the plurality of driving terminals.
  • the electrode unit further includes pads disposed at both ends of the stripe-shaped extending direction of the light-emitting unit, and the method further includes:
  • the driving signal is loaded through the pad.
  • the receiving module further comprises: a receiving optical assembly; a light splitting unit, disposed downstream of the optical path of the receiving optical assembly; the at least one detection unit is disposed downstream of the optical path of the light splitting unit; at least An imaging unit is arranged downstream of the light path of the spectroscopic unit, and the method further includes:
  • the light beam of the second wavelength band is received from the spectroscopic unit by the at least one imaging unit and imaged.
  • a preferred embodiment of the present invention provides a solid-state laser radar.
  • the length of the line-row light-emitting units that emit light at the same time is greatly reduced by setting multiple emission modules, thereby greatly reducing the light-emitting of the light-emitting units.
  • Inhomogeneity thereby reducing the ranging error of the solid-state lidar within the set field of view, and improving the distance measuring performance.
  • the number of lasers that emit light at the same time is reduced, the emission power of a single light-emitting unit is reduced, the heat dissipation of the emission end can be reduced, and the temperature fluctuation can be reduced.
  • the emission power of a single light emission can be reduced, which is beneficial to the safety of human eyes.
  • the power of the laser can be increased, the power of detection light can be increased, and the ranging capability of the lidar can be enhanced.
  • the detection light emitted by the multiple emission modules is shaped and emitted, there is a certain overlapping area in the center of the field of view, which can increase the detection accuracy in the center area.
  • the length of the linear light-emitting units in part of the transmitting modules can be appropriately extended, thereby effectively reducing the blind area of the solid-state laser radar, and no special design for the laser surface array is required, and no additional design and The complexity of the process.
  • FIG. 1 schematically shows a solid-state lidar in the prior art
  • Fig. 2 schematically shows the partial surface structure schematic diagram of the vertical cavity surface emitting laser (VCSEL) surface array light source of top emission type;
  • VCSEL vertical cavity surface emitting laser
  • FIG. 3 schematically shows the uneven light emission of a series of parallel lasers
  • FIG. 4A schematically shows a side view of a solid-state lidar according to a preferred embodiment of the present invention
  • FIG. 4B schematically shows a front view of a solid-state lidar according to a preferred embodiment of the present invention
  • FIG. 5A schematically shows a side view of a solid-state lidar according to a preferred embodiment of the present invention
  • FIG. 5B schematically shows a front view of a solid-state lidar according to a preferred embodiment of the present invention
  • FIG. 6A schematically shows a solid-state laser radar scanning line by line in a vertical direction according to a preferred embodiment of the present invention
  • FIG. 6B schematically shows a solid-state laser radar scanning column-by-column along the horizontal direction according to a preferred embodiment of the present invention
  • FIG. 7 schematically shows the field of view range of a solid-state lidar according to a preferred embodiment of the present invention
  • FIG. 8 schematically shows the formation of a bypass lidar blind spot
  • FIG. 9 schematically shows a schematic diagram of an optical path of a blind-filling laser according to a preferred embodiment of the present invention.
  • Fig. 10 schematically shows the position of the blind-filling laser on the line-line light-emitting unit according to a preferred embodiment of the present invention
  • FIG. 11 schematically illustrates setting bidirectional driving for line-column light-emitting units according to a preferred embodiment of the present invention
  • FIG. 12 schematically illustrates integrating a laser array with a microlens array according to a preferred embodiment of the present invention
  • Fig. 13 schematically shows a receiving module according to a preferred embodiment of the present invention
  • Fig. 14 schematically shows a receiving module according to a preferred embodiment of the present invention.
  • FIG. 15 schematically shows a solid-state lidar according to a preferred embodiment of the present invention.
  • FIG. 16 shows a detection method according to a preferred embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and diagonally above the second feature, or simply means that the first feature is level above the second feature.
  • the first feature “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature has a lower level than the second feature.
  • the transceiver structure and working principle of the area array solid-state lidar are shown in Figure 1.
  • the transmitting module TX includes a laser array
  • the receiving module RX includes a detector array.
  • the laser array and the detector array are respectively arranged in the transmitting lens group and the receiving lens group (Fig. On the focal plane (not shown), the laser array emits a probe beam to detect the object (OB), the echo beam reflected by the probe beam is received by the detector array, and the optical signal is converted into an electrical signal, and then the time passes After conversion and histogram processing, the distance information is finally obtained, which is sent to the monitoring system to form a point cloud image.
  • the laser array of the transmitting module is simultaneously driven to emit detection light covering the detection range, and the detector array of the receiving module is activated to receive the echo signal.
  • the laser array of the transmitting module and the detector array of the receiving module can be grouped to emit light/detect in sequence.
  • each column of lasers is activated at the same time as a light-emitting unit, and each column of detectors is activated at the same time as a detection unit.
  • the first column of lasers emits light
  • the echo signal detection is performed corresponding to the activation of the first column of detectors
  • the second column of lasers emits light
  • the echo signal detection is performed corresponding to the activation of the second column of detectors... This can reduce the simultaneous emission of all lasers. Crosstalk caused by detection.
  • Each group of lasers emits light at the same time, and a corresponding group of detectors are activated at the same time to detect echo signals, and the grouping methods are not limited to the above-mentioned methods.
  • the light source of large-scale area-array solid-state lidar is a high-density laser array, which can make full use of the advantages of vertical cavity surface-emitting lasers compared with edge-emitting lasers, which are easy to integrate large-scale planes, while improving power density. Reduce packaging, assembly complexity and cost.
  • the laser is a vertical-cavity surface-emitting laser (VCSEL), and the detector is a single photon avalanche diode (SPAD).
  • VCSEL vertical-cavity surface-emitting laser
  • SPAD single photon avalanche diode
  • FIG. 2 shows a schematic diagram of a partial surface structure of a top-emitting vertical cavity surface emitting laser (VCSEL) surface array light source.
  • the VCSELs in FIG. 2 are arranged in a matrix and designed as a column addressing structure. That is, each row of VCSELs is used as a light-emitting unit of the emitting module TX in Figure 1.
  • the anode contact metals of each row of VCSELs are connected to each other through the interconnecting metal layer, and the end of the interconnecting metal layer is used as a wire bonding pad (marked in Figure 2).
  • the driver chip In order to increase the current conduction area and reduce the resistance, the pad area is relatively large, and the width is about twice the width of the light-emitting unit.
  • the upper edge structure shown is symmetrical.
  • the Vertical Cavity Surface Emitting Laser (VCSEL) surface array light source shown in Figure 2 achieves the high-density integration required for a large light-emitting area, but the accompanying problem is that each column of parallel-emitting lasers (ie, one light-emitting unit)
  • the length is very long, the width is very narrow, and the aspect ratio is very high, which leads to the voltage drop caused by the resistance and parasitic inductance on the metal layer under the condition of high current and high frequency driving, which in turn causes the bias voltage of the same column of lasers to gradually increase. decrease, and the luminous brightness gradually decreases.
  • pixel-1 is the laser closest to the pad
  • pixel-21 is the laser farthest from the pad. Due to the voltage drop caused by the resistance and parasitic inductance on the metal layer, the luminous brightness of each laser is different. The luminous brightness of pixel-21 is significantly lower than that of pixel-1.
  • the luminous intensity of multiple lasers of a light-emitting unit is different, which will cause different ranging capabilities within the corresponding field of view of the light-emitting unit.
  • the laser with lower luminous intensity limits the lidar.
  • the distance measurement ability of the point cloud image is distorted and the detection accuracy of the lidar is reduced.
  • each transmitting module 110 includes at least one light-emitting unit 111
  • the light-emitting unit 111 includes a plurality of lasers , configured to emit a probe beam simultaneously.
  • the receiving module 120 includes at least one detection unit 121, and the detection unit 121 includes a plurality of photodetectors configured to receive echoes of the detection beam reflected by the target.
  • a plurality of transmitting modules 110 are arranged around the receiving module 120 , the light-emitting units 111 of the plurality of transmitting modules 110 are located on the same plane, and one detection unit 121 is configured to receive the light-emitting units 111 of the plurality of transmitting modules 110 The echo of the emitted probe beam reflected by the target.
  • one detection unit 121 corresponds to one light-emitting unit 111 in each emission module 110 , and the detection unit 121 is configured to receive reflected echoes of the detection beams emitted by the corresponding plurality of light-emitting units 111 .
  • the light-emitting unit 111 of the solid-state lidar 100 includes a VCSEL line array
  • the detection unit 121 includes a SPAD line array.
  • two VCSEL area arrays are symmetrically arranged on both sides of the SPAD area array.
  • each row of VCSEL lines is activated at the same time as a light-emitting unit, and one row of SPAD lines is correspondingly divided into two parts according to the setting positions of the two emitting modules 110 , as shown in FIG.
  • the detection sub-unit corresponds to the same field of view as the light-emitting unit indicated by the slanted hatching of the emission module 110 on the left side of the figure, and receives the echoes of the detection light emitted by a light-emitting unit of the emission module 110 on the left side of the figure and reflected by the target object .
  • the other half of the SPAD in the row shaded by the squares is used as another detection sub-unit, which corresponds to the same field of view as the light-emitting unit represented by the shaded squares of the transmitter module 110 on the right side of the figure, and receives one of the transmitter modules 110 on the right side of the figure.
  • the detection light emitted by the light-emitting unit is the echo reflected by the target.
  • the detection method of the solid-state laser radar 100 of the present invention may be as follows: the light-emitting units equivalent to the same row in the two transmitting modules 110 emit light in sequence, and the detection sub-units corresponding to the receiving module 120 respectively perform detection. Alternatively, the light-emitting units equivalent to the same row in the two transmitting modules 110 emit light at the same time, and a row of detectors corresponding to the field of view of the receiving module 120 is activated to simultaneously receive and detect the reflected echoes of the two light-emitting units.
  • the transmitting module 110 further includes a transmitting optical component, at least one light-emitting unit 111 of the transmitting module 110 is located on the focal plane of the transmitting optical component, and the transmitting optical component is configured to receive at least one The probe beam emitted by the light-emitting unit 111 is shaped and emitted to the target space.
  • the transmitting module 110 further includes a transmitting lens group corresponding to the laser area array; the receiving module 120 further includes a receiving lens group corresponding to the detector area array.
  • a plurality of lasers of the light-emitting unit 111 are arranged in a strip shape (the x direction shown in FIG. 4B ), and the transmitting module 110 includes a plurality of lasers Light-emitting units 111, a plurality of light-emitting units 111 are arranged in a direction perpendicular to the extending direction of the strip (the y direction as shown in FIG. 4B).
  • the multiple lasers of the light-emitting units 111 are arranged along the x direction, and the multiple light-emitting units 111 are arranged along the y direction (oblique viewing angle in the figure, the actual x direction perpendicular to the y direction).
  • the length of the laser array in the y direction is greater than the length in the x direction.
  • the solid-state lidar 100 includes two emitting modules 110, the laser arrays of the two emitting modules 110 are N ⁇ 1/2N arrays respectively, and the lasers in one row/column extending along the 1/2N direction are used as a light-emitting unit. glow.
  • the length of the light-emitting unit 111 of the transmitting module 110 in the embodiment of FIG. 4B is only half the length of the light-emitting unit of the single-lens solid-state lidar in FIG. 1 , so the transmission path length of the laser driving signal can be shortened and the transmission The difference in the driving signal intensity of the lasers at both ends of the path effectively reduces the unevenness of the luminous intensity of the lasers at different positions in the light-emitting unit.
  • FIGS. 4A and 4B schematically show that the lengths of the light-emitting units 111 of the emission modules 110 are both half of the length of the original light-emitting units before the improvement.
  • This division method is only a preferred embodiment.
  • the lengths of the two emitting modules 110 may be equal or unequal, for example, the length ratio of the light emitting units 111 of the two emission modules 110 is 4:6, 4.5:5.5, or other ratios, which are also within the protection scope of the present invention.
  • the transmitting modules 110 are disposed on both sides of the receiving module 120, and the number of transmitting modules 110 located on both sides of the receiving module 120 is the same or different.
  • the laser surface array in the transmitting module is divided into multiple ones along the arrangement direction of the lasers, which is easy for those skilled in the art. It is understood that, further, the laser surface array is further divided along the arrangement direction of the plurality of light-emitting units, thereby reducing the area of the laser chip, reducing heat dissipation, and improving the yield. This embodiment is also feasible, which is also within the protection scope of the present invention. Inside.
  • FIG. 4A and FIG. 4B show the situation in which the solid-state lidar 100 includes two transmitting modules 110.
  • the transmitting modules 110 are further divided so that the length of each column of parallel-emitting lasers (one light-emitting unit) is It is shorter, and multiple transmitting modules 110 are arranged around the receiving module 120, and the light emitting units 111 of the multiple transmitting modules 110 are located on the same plane.
  • FIG. 5A the transmitting modules 110 are further divided so that the length of each column of parallel-emitting lasers (one light-emitting unit) is It is shorter, and multiple transmitting modules 110 are arranged around the receiving module 120, and the light emitting units 111 of the multiple transmitting modules 110 are located on the same plane.
  • each transmitting module 110 includes at least one light-emitting unit 111, and the light-emitting unit 111 includes a plurality of lasers configured to emit detection beams simultaneously; the receiving module 120 includes at least one detection unit 121, and the detection unit 121 includes a plurality of A photodetector configured to receive echoes of the probe beam reflected by the target.
  • one detection unit 121 corresponds to one light-emitting unit 111 in each emission module 110 , and the detection unit 121 is configured to receive reflected echoes of the detection beams emitted by the corresponding plurality of light-emitting units 111 . That is, the technical solution that the solid-state laser radar 100 includes a larger number of transmitting modules 110 is also within the protection scope of the present invention.
  • each transmitting module 110 corresponds to one transmitting optical component; alternatively, two or more adjacent transmitting modules 110 located on one side of the receiving module 120 may share one transmitting optical component.
  • each transmitting module 110 includes a plurality of light-emitting units 111 with the same number, and the light-emitting units 111 corresponding to the same detection unit 121 are located on the same straight line.
  • the solid-state lidar 100 includes two transmitting modules 110 and one receiving module 120, each transmitting module 110 includes a plurality of light-emitting units 111 in the same number, and each receiving module 120 includes a plurality of detection units 121 , and each detection unit 121 corresponds to one light-emitting unit 111 in each emission module 110 .
  • the two transmitting modules 110 and one receiving module 120 of the solid-state laser radar 100 are arranged in a horizontal direction (the horizontal direction shown in the figure), and the solid-state laser radar 100 performs line-by-line in the vertical direction (the vertical direction shown in the figure). scanning.
  • the light emitting units 111 corresponding to the same detection unit 121 are located on the same horizontal line (the horizontal direction shown in the figure), and the light emitting units 111 corresponding to the same detection unit 121 correspond to the same vertical angle of view.
  • the solid-state lidar 100 includes two transmitting modules 110 and one receiving module 120 , each transmitting module 110 includes a plurality of light-emitting units 111 in the same number, and each receiving module 120 includes a plurality of detection units 121 , and each detection unit 121 corresponds to one light-emitting unit 111 in each emission module 110 .
  • the two transmitting modules 110 and one receiving module 120 of the solid-state laser radar 100 are arranged in a vertical direction (the vertical direction shown in the figure), and the solid-state laser radar 100 is carried out column by column along the horizontal direction (the horizontal direction shown in the figure). scanning. Then, the light emitting units 111 corresponding to the same detection unit 121 are located on the same vertical line (the vertical direction shown in the figure). Moreover, the light emitting units 111 corresponding to the same detection unit 121 correspond to the same horizontal field of view.
  • the light-emitting circuit of the solid-state laser radar 100 is shown in FIG. 7 .
  • the light emitted by the laser on the side of the transmitting module 110-1 closest to the receiving module 120 is shaped by the transmitting lens group and then exits parallel to the optical axis. , constituting the field of view FOV1 shown in FIG. 7 .
  • the light emitted by the laser on the side of the transmitting module 110-2 closest to the receiving module 120 is shaped by the transmitting lens group and then exits parallel to the optical axis. folded to form the field of view FOV2 shown in FIG. 7 .
  • the field of view angles of the transmitting module 110-1 and the transmitting module 110-2 overlap to a certain extent (shown by the solid area on the ob in FIG. 7 ), and the transmitting module 110-1 and the transmitting module 110-2 correspond to
  • the light intensity of the overlapping area is doubled, which can improve the distance measuring ability of the area.
  • the detection frequency in this area is doubled.
  • the transmitting module 110-1, the receiving module 120 and the transmitting module 110-2 are arranged in the vertical direction, the field of view angles of the transmitting module 110-1 and the transmitting module 110-2 overlap to a certain extent in the vertical direction.
  • the overlapping area is located in the center of the vertical field of view of the lidar.
  • Vehicle lidar mainly detects pedestrians and vehicles on the ground, and the target is concentrated in the center of the vertical field of view. The above embodiment can improve the distance measurement capability or detection frequency in the central area, and is more suitable for vehicle lidar application scenarios.
  • the transmitting module 110-1, the receiving module 120, and the transmitting module 110-2 are arranged in the horizontal direction, the field of view angles of the transmitting module 110-1 and the transmitting module 110-2 overlap to a certain extent in the horizontal direction.
  • the area is located at the center of the horizontal field of view of the lidar, that is, directly in front of the lidar. The above embodiment can improve the distance measuring capability or detection frequency of the forward area of the radar.
  • a preferred embodiment of the present invention provides a solid-state laser radar.
  • the length of the line-row light-emitting units that emit light at the same time is greatly reduced by setting multiple emission modules, thereby greatly reducing the light-emitting of the light-emitting units.
  • Inhomogeneity thereby reducing the ranging error of the solid-state lidar within the set field of view, and improving the distance measuring performance.
  • the number of lasers that emit light at the same time is reduced, the emission power of a single light-emitting unit is reduced, the heat dissipation of the emission end can be reduced, and the temperature fluctuation can be reduced.
  • the emission power of a single light emission can be reduced, which is beneficial to the safety of human eyes.
  • the power of the laser can be increased, the power of detection light can be increased, and the ranging capability of the lidar can be enhanced.
  • the number of detectors performing detection at the same time is correspondingly reduced, which can reduce signal crosstalk among multiple detectors.
  • the detection light emitted by the multiple emission modules is shaped and emitted, there is a certain overlapping area in the center of the field of view, which can increase the detection accuracy in the center area.
  • the length of the linear light-emitting units in part of the transmitting modules can be appropriately extended, thereby effectively reducing the blind area of the solid-state laser radar, and no special design for the laser surface array is required, and no additional design and The complexity of the process.
  • a blind-compensating laser is provided on the side of the light-emitting unit 111 away from the receiving module 120 in the strip extending direction, and the detection ranges of the blind-compensating laser and the light-emitting unit 111 are different, The echoes of the detection light emitted by the blind-compensating laser reflected by the target object can be received by the detection unit 121 corresponding to the light-emitting unit 111 .
  • the lidar with paraxial optical path has a near-far effect, that is, when the distance of the target changes, the spot of the echo beam on the photosensitive surface will move.
  • the light spot will move out of the photosensitive surface of the area array detector and cannot be detected by the radar, that is, the light rays of the transmitting module TX and the receiving module RX in Figure 8 do not intersect
  • the overlapping area is the blind spot of the lidar.
  • the image point formed by the reflected echo light through the receiving lens is not on the focal plane of the receiving lens (where the area array detector of the receiving module RX is located in the figure), but is behind the focal plane.
  • the short-range target is below the optical axis of the receiving lens, so the image point formed by it passing through the receiving lens must be above the optical axis of the receiving lens. Taking these two aspects into consideration, the relative position of the focal point of the reflected light of the short-range target and the receiving module RX is as shown in FIG. 8 . In the short-range blind area of the lidar, the receiving module RX of the lidar cannot receive the reflected signal of the target at all.
  • the transmitter module TX is provided with a blind spot laser, and the blind spot laser is located on the side of the transmitter module TX away from the receiver module RX, and the detection light is deflected to the blind zone range after passing through the emission lens. It is used for supplementary testing of the blind area.
  • the emitting module TX is arranged on the focal plane of the emitting optical assembly, and since the multiple lasers are at different positions on the focal plane, the emitted light thereof is collimated by the emitting optical assembly and then deflected in different directions.
  • the side of the transmitting module TX2 away from the receiving module RX is also provided with a blind-compensating laser, and the optical path is shown in FIG. 7 along the detection beam emitted by the blind-compensating laser.
  • the blind-compensating laser is arranged on the side of the light-emitting unit that is farthest from the optical axis of the emission optical assembly in the direction of the strip arrangement, and the beam emitted by the laser is shaped and collimated by the emission optical assembly.
  • the exit angle is clamped with the optical axis. The angle is the largest, forming blind detection light.
  • the echo spot of the blind-filling laser will be focused outside the area array detector and cannot be detected; however, as the distance of the target decreases, the echo spot occurs as shown in Figure 9 It is shifted to the RX direction and falls on the RX detector. At this time, the short-range target echo of the blind-filling laser can be received by the detector because of the upward offset, thereby reducing the blind area of the lidar.
  • the side of the transmitting module TX1 away from the receiving module RX may also be provided with a blind-filling laser at the same time, to further reduce the blind area range.
  • the blind-filling laser is equivalent to increasing a certain length in the extension direction of the linear light-emitting unit, that is, increasing a certain number of lasers without changing the arrangement of the lasers, and the realization method is simple, low cost.
  • the optical path can be calculated according to the optical design.
  • the transmitting module 110 further includes an electrode unit, the electrode unit is electrically connected to the plurality of lasers of the light-emitting unit 111, and the electrode unit includes a plurality of driving ends, through the plurality of lasers The driving end simultaneously loads driving signals to the multiple lasers of the light emitting unit 111 .
  • the electrode unit further includes pads disposed at both ends of the strip-shaped extending direction of the light-emitting unit 111, and the pads are used for loading the driving signal.
  • the present invention adopts double-side driving for the line-row light-emitting unit.
  • the two sides of the line-row light-emitting unit in the extending direction of the strip are respectively The pads are arranged and connected to the driving circuits respectively.
  • the two driving circuits connected to the same light-emitting unit are controlled by the same emission control signal, and the driving switches are turned on at the same time.
  • drive circuit 1 and drive circuit 2 respectively generate drive signal components that act on the same laser, and the two drive signal components are superimposed to form a drive that controls the laser to emit light. Signal. Therefore, one driving signal component can compensate for the attenuation of the driving line suffered by the other driving signal component, so that the difference of the driving currents flowing through the plurality of lasers on the driving line is smaller, and the unevenness of light emission is further reduced.
  • the transmitting module 110 further includes a microlens array, which is disposed downstream of the optical paths of the plurality of lasers.
  • the laser array can be used with the microlens array. As shown in Figure 12, the microlens array is fixed in front of the laser array, or the substrate of the laser chip is prepared into a microlens array, and the beam emitted by the laser is collimated to improve the beam quality.
  • the receiving module 120 further includes: a receiving optical component 122 , a spectroscopic unit 123 , at least one detection unit 121 and at least one imaging unit 124 . in:
  • the receiving optical component 122 is configured to receive and condense the echo L1 of the detection beam of the first waveband emitted by the solid-state lidar 100 and reflected by the target object and the light beam L2 of the second waveband, wherein the second waveband does not include the first waveband.
  • the receiving optical component 11 has no wavelength selectivity, and both infrared and visible light beams can be transmitted through without distinction.
  • the light splitting unit 123 is disposed downstream of the optical path of the receiving optical component 122, and is configured to separate the optical paths of the reflected echo L1 of the probe beam and the light beam L2 of the second wavelength band.
  • At least one detection unit 121 is disposed downstream of the optical path of the spectroscopic unit 123, and is configured to receive the reflected echo L1 of the probe beam from the spectroscopic unit 123 and convert it into an electrical signal.
  • At least one imaging unit 124 is disposed downstream of the optical path of the light splitting unit 123, and is configured to receive and image the light beam L2 of the second wavelength band from the light splitting unit 123.
  • each detection unit 121 a plurality of photodetectors of each detection unit 121 are simultaneously activated to receive the reflected echo L1
  • each imaging unit 124 includes a plurality of image sensors, and each imaging unit The multiple image sensors of 124 are simultaneously activated to receive and image the light beam L2 of the second wavelength band, and the detection unit 121 and the imaging unit 124 corresponding to the same field of view are simultaneously activated for detection and exposure.
  • the light splitting unit 123 includes a light splitting mirror, so that the reflected echo of the detection beam is reflected, the light beam of the second wavelength band is transmitted, or the The reflected echo of the probe beam is transmitted, and the beam of the second wavelength band is reflected.
  • a wavelength-splitting mirror is used as the light-splitting unit 123.
  • a high-reflection film of 940 nm is coated on the surface of the wavelength-splitting mirror, so that the laser light in the 940 nm band is reflected, at least One detection unit 121 is arranged on the focal plane where the reflected beam converges; other wavelengths of light can be transmitted and focused on at least one imaging unit 124 at the position of the focal plane.
  • a dichroic coating is applied to the surface of the wavelength splitting mirror, so that the echo beam of 940 nm is transmitted and received by the detection unit 121 for distance detection; other wavelengths of light are reflected to the imaging unit 124 for use in in imaging.
  • the receiving module RX includes a distance sensor array and an image sensor array (such as a CMOS array with RGGB filters), and a light splitting device is arranged on the receiving light path, and the light splitting device
  • the light beam condensed by the receiving lens group is divided into two parts: the detection band light and the other band light.
  • the detection band light is the echo light emitted by the transmitter module TX and reflected by the target object, which is received by the distance sensor array of the receiver module RX for echo signal detection; other wavelength bands are received by the image sensor array of the receiver module RX, and color can be obtained.
  • the distance sensor array and the image sensor array of the receiving module RX are both arranged on the focal plane of the receiving lens group, and the light splitting element separates the detection band light and other band lights and illuminates them on different sensors.
  • the preferred embodiment of the present invention uses two transmitting modules, does not need to change the design of the detector array of the receiving module, and is easy to combine with the solution of spectroscopic element + SPAD/CMOS array, in the full measurement range, both sensor arrays can be viewed at the same time.
  • the results of the two sensors basically do not require physical location registration.
  • depth information and color images are simultaneously obtained, the algorithm is simple, and the two sensor arrays share the receiving optical components, which greatly reduces the cost of production, assembly and adjustment.
  • the present invention also provides a method 10 for detection using the solid-state lidar 100 as described above, including:
  • step S101 the light-emitting unit 111 of the emission module 110 emits a detection beam to detect the target;
  • step S102 the detection unit 121 of the receiving module 120 receives the echoes of the detection beam reflected by the target object;
  • step S103 the distance of the target object is determined based on the time when the probe beam is emitted and the time when the echo is received.
  • the solid-state lidar 100 includes two transmitting modules 110, the two transmitting modules 110 are located on both sides of the receiving module 120, and the two transmitting modules 110 include the same number of multiple light-emitting units 111, corresponding to The light-emitting units 111 of the same detection unit 121 are located on the same straight line, and the detection method 10 further includes:
  • the two light-emitting units 111 corresponding to the same detection unit 121 emit light simultaneously or alternately.
  • a plurality of lasers of the light-emitting unit 111 are arranged in a strip shape, and a blind-compensating laser is provided on the side of the strip-shaped extending direction of the light-emitting unit 111 away from the receiving module 120.
  • the detection ranges of the units 111 are different, and the echoes of the detection light emitted by the blind-compensating laser being reflected by the target can be received by the detection unit 121 corresponding to the light-emitting unit 111, and the detection method 10 further includes: the blind-compensating laser and the light-emitting unit 111 simultaneously glow.
  • the transmitting module 110 further includes an electrode unit, the electrode unit is electrically connected with the plurality of lasers of the light-emitting unit 111, and the electrode unit includes a plurality of At the driving end, the detection method 10 further includes:
  • the plurality of lasers of the light-emitting unit 111 are simultaneously loaded with driving signals through the plurality of driving terminals.
  • the detection method 10 further includes:
  • the drive signal is loaded through the pad.
  • the receiving module 120 further includes: a receiving optical assembly; a light splitting unit, disposed downstream of the optical path of the receiving optical assembly; at least one detection unit disposed downstream of the optical path of the light splitting unit; at least one imaging unit, disposed Downstream of the optical path of the spectroscopic unit, the detection method 10 further includes:
  • the light beam of the second wavelength band is received from the spectroscopic unit by at least one imaging unit and imaged.
  • the detection method 10 provided by the present invention and its technical effects have been described at the same time in the description of the solid-state laser radar 100 provided by the present invention, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种固态激光雷达(100),包括:多个发射模块(110),每个发射模块(110)包括至少一个发光单元(111),发光单元(111)包括多个激光器,配置成同时发射出探测光束;接收模块(120),包括至少一个探测单元(121),探测单元(121)包括多个光电探测器,配置成接收探测光束被目标物反射的回波;其中,多个发射模块(110)设置在接收模块(120)周围,多个发射模块(110)的发光单元(111)位于同一平面上,一个探测单元(121)配置为接收多个发射模块(110)的发光单元(111)发出的探测光束被目标物反射的回波。对于设定范围的视场角,通过设置多个发射模块(110)将同时发光的线列发光单元(111)的长度大大缩小,从而大大减少了发光单元(111)的发光不均匀性,减小了固态激光雷达(100)在设定视场角内的测距误差,提高了测远性能。

Description

固态激光雷达及使用其进行探测的方法 技术领域
本发明大致涉及激光探测技术领域,尤其涉及一种固态激光雷达以及使用其进行探测的方法。
背景技术
激光雷达可以高精度、高准确度地获取目标的距离、速度等信息或者实现目标成像,在测绘、导航等领域具有重要的作用。通常激光雷达可以分为两大类:机械式激光雷达和固态激光雷达。机械式激光雷达采用机械旋转部件作为光束扫描的实现方式,可以实现大角度扫描,但是装配困难、扫描频率低。固态激光雷达,目前的实现方式有微机电系统、面阵固态雷达和光学相控阵技术。
面阵固态激光雷达的光源通常为高密度垂直腔面发射激光器(VCSEL)阵列,多个激光器并联形成发光单元,同时受驱发光。发光单元的长度很长,宽度很窄,长宽比很高,导致在大电流、高频率驱动的情形下,驱动线路上的电阻及寄生电感产生压降,使得沿着驱动信号的传播方向,多个激光器的驱动电流逐渐降低,发光亮度也随之逐渐降低。进而导致了在激光雷达的视场范围内,探测光在发光单元延伸方向上的强度分布不均匀,从而影响了固态激光雷达的测远能力和探测精度。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个缺陷,本发明提供一种固态激光雷达,包括:
多个发射模块,每个所述发射模块包括至少一个发光单元,所述发光单 元包括多个激光器,配置成同时发射出探测光束;
接收模块,包括至少一个探测单元,所述探测单元包括多个光电探测器,配置成接收所述探测光束被目标物反射的回波;
其中,所述多个发射模块设置在所述接收模块周围,所述多个发射模块的发光单元位于同一平面上,一个所述探测单元配置为接收多个所述发射模块的发光单元发出的探测光束被目标物反射的回波。
根据本发明的一个方面,其中所述发光单元的多个激光器沿条形排列,所述发射模块包括多个发光单元,所述多个发光单元沿垂直于所述条形延伸方向的方向排列。
根据本发明的一个方面,其中所述发射模块设置在所述接收模块的两侧,且位于所述接收模块两侧的发射模块的数量相同或不同。
根据本发明的一个方面,其中每个所述发射模块包括数量相同的多个发光单元,对应同一个探测单元的发光单元位于同一直线上。
根据本发明的一个方面,其中位于同一直线上的多个发光单元对应的视场部分重叠。
根据本发明的一个方面,其中所述固态激光雷达包括两个发射模块,所述两个发射模块位于所述接收模块的两侧。
根据本发明的一个方面,其中所述发光单元包括VCSEL阵列,所述探测单元包括SPAD阵列。
根据本发明的一个方面,其中,在所述发光单元的条形延伸方向上远离所述接收模块的一侧设置补盲激光器,所述补盲激光器和所述发光单元的探测范围不同,所述补盲激光器发出的探测光被目标物反射的回波能够被与所述发光单元对应的探测单元接收。
根据本发明的一个方面,其中所述发射模块还包括电极单元,所述电极单元与所述发光单元的多个激光器电连接,所述电极单元包括多个驱动端,通过所述多个驱动端同时向所述发光单元的多个激光器加载驱动信号。
根据本发明的一个方面,其中所述电极单元还包括在所述发光单元的条 形延伸方向的两端设置的焊盘,所述焊盘用于加载所述驱动信号。
根据本发明的一个方面,其中所述发射模块还包括发射光学组件,所述发射模块的至少一个发光单元位于所述发射光学组件的焦平面上,所述发射光学组件配置成接收所述至少一个发光单元发射出的探测光束,整形后发射至目标空间。
根据本发明的一个方面,其中所述多个发射模块的发射光学组件相同。
根据本发明的一个方面,其中所述发射模块还包括微透镜阵列,设置于所述多个激光器的光路下游。
根据本发明的一个方面,其中所述接收模块还包括:
接收光学组件,配置成接收并会聚所述固态激光雷达发出的第一波段的探测光束被目标物反射的回波以及第二波段的光束,其中所述第二波段不包括所述第一波段;
分光单元,设置在所述接收光学组件的光路下游,配置成将所述探测光束的反射回波和所述第二波段的光束的光路分离;
所述至少一个探测单元设置在所述分光单元的光路下游,配置成从所述分光单元接收所述探测光束的反射回波并转换为电信号;和
至少一个成像单元,设置在所述分光单元的光路下游,配置成从所述分光单元接收所述第二波段的光束并成像。
根据本发明的一个方面,其中每个所述探测单元的多个光电探测器被同时激活接收所述反射回波,每个所述成像单元包括多个图像传感器,每个所述成像单元的多个图像传感器被同时激活接收所述第二波段的光束并成像,对应同一视场范围的探测单元和成像单元被同时激活进行探测和曝光。
根据本发明的一个方面,其中所述分光单元包括分光透反镜,使所述探测光束的反射回波被反射、所述第二波段的光束被透射,或者使所述探测光束的反射回波被透射、所述第二波段的光束被反射。
本发明还提供一种使用如上文所述的固态激光雷达进行探测的方法,包括:
所述发射模块的发光单元发射出探测光束,用以探测目标物;
所述接收模块的探测单元接收所述探测光束被目标物反射的回波;
基于发射探测光束的时间和接收回波的时间,确定所述目标物的距离。
根据本发明的一个方面,其中所述固态激光雷达包括两个发射模块,所述两个发射模块位于所述接收模块的两侧,所述两个发射模块包括数量相同的多个发光单元,对应同一探测单元的发光单元位于同一直线上,所述方法进一步包括:
对应同一个探测单元的两个发光单元同时或交替发光。
根据本发明的一个方面,其中所述发光单元的多个激光器沿条形排列,在所述发光单元的条形延伸方向上远离所述接收模块的一侧设置补盲激光器,所述补盲激光器和所述发光单元的探测范围不同,所述补盲激光器发出的探测光被目标物反射的回波能够被与所述发光单元对应的探测单元接收,所述方法进一步包括:所述补盲激光器和所述发光单元同时发光。
根据本发明的一个方面,其中所述发光单元的多个激光器沿条形排列,所述发射模块还包括电极单元,所述电极单元与所述发光单元的多个激光器电连接,所述电极单元包括多个驱动端,所述方法进一步包括:
通过所述多个驱动端同时向所述发光单元的多个激光器加载驱动信号。
根据本发明的一个方面,其中所述电极单元还包括在所述发光单元的条形延伸方向的两端设置的焊盘,所述方法进一步包括:
通过所述焊盘加载所述驱动信号。
根据本发明的一个方面,其中所述接收模块还包括:接收光学组件;分光单元,设置在所述接收光学组件的光路下游;所述至少一个探测单元设置在所述分光单元的光路下游;至少一个成像单元,设置在所述分光单元的光路下游,所述方法进一步包括:
通过所述接收光学组件接收并会聚所述固态激光雷达发出的第一波段的探测光束被目标物反射的回波以及第二波段的光束,其中所述第二波段不包括所述第一波段;
通过所述分光单元将所述探测光束的反射回波和所述第二波段的光束的光路分离;
通过所述至少一个探测单元从所述分光单元接收所述探测光束的反射回波并转换为电信号;
通过所述至少一个成像单元从所述分光单元接收所述第二波段的光束并成像。
本发明的优选实施例提供了一种固态激光雷达,对于设定范围的视场角,通过设置多个发射模块将同时发光的线列发光单元的长度大大缩小,从而大大减少了发光单元的发光不均匀性,从而减小了固态激光雷达在设定视场角内的测距误差,提高了测远性能。
本发明的优选实施例中,同时发光的激光器数量减少,降低了单个发光单元的发射功率,能够减少发射端的散热,降低温度波动。
本发明的优选实施例中,对于多个发射模块对应的发光单元不同时发光的情况,可以降低单次发光的发射功率,有利于人眼安全。在满足人眼安全要求的前提下,由于同时发光的激光器的数量减少,因而可以增大激光器功率,提高探测光功率,增强激光雷达的测距能力。
本发明的优选实施例中,多个发射模块发射出的探测光经整形出射后,中心处视场存在一定的交叠区域,可以增加中心区域的探测精度。
本发明的优选实施例中,可以适当延长部分发射模块中的线列发光单元的长度,从而能够有效减小固态激光雷达的盲区范围,不需要再对激光器面阵作特殊设计,不增加设计和工艺的复杂度。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1示意性地示出了现有技术中的固态激光雷达;
图2示意性地示出了顶发射型的垂直腔面发射激光器(VCSEL)面阵光源 的部分表面结构示意图;
图3示意性地示出了一列并联的激光器发光不均匀的情况;
图4A示意性地示出了根据本发明的一个优选实施例的固态激光雷达的侧视图;
图4B示意性地示出了根据本发明的一个优选实施例的固态激光雷达的正视图;
图5A示意性地示出了根据本发明的一个优选实施例的固态激光雷达的侧视图;
图5B示意性地示出了根据本发明的一个优选实施例的固态激光雷达的正视图;
图6A示意性地示出了根据本发明的一个优选实施例的沿竖直方向逐行扫描的固态激光雷达;
图6B示意性地示出了根据本发明的一个优选实施例的沿水平方向逐列扫描的固态激光雷达;
图7示意性地示出了根据本发明的一个优选实施例的固态激光雷达的视场范围;
图8示意性地示出了旁路激光雷达盲区的形成;
图9示意性地示出了根据本发明的一个优选实施例的补盲激光器光路示意图;
图10示意性地示出了根据本发明的一个优选实施例的补盲激光器在线列发光单元上的位置;
图11示意性地示出了根据本发明的一个优选实施例的对于线列发光单元设置双向驱动;
图12示意性地示出了根据本发明的一个优选实施例的将激光器阵列与微透镜阵列集成;
图13示意性地示出了根据本发明的一个优选实施例的接收模块;
图14示意性地示出了根据本发明的一个优选实施例的接收模块;
图15示意性地示出了根据本发明的一个优选实施例的固态激光雷达;
图16示出了根据本发明的一个优选实施例的探测方法。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特 征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的实施例进行说明,应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
面阵固态激光雷达的收发结构及工作原理如图1所示,发射模块TX包括激光器阵列,接收模块RX包括探测器阵列,激光器阵列和探测器阵列分别设置于发射透镜组和接收透镜组(图未示)的焦平面上,激光器阵列发出探测光束,以探测目标物(OB),探测光束被目标物反射的回波光束被探测器阵列接收,并将光信号转化为电信号,再经过时间转换、直方图处理,最终得到距离信息,送达监视系统形成点云图像。
作为面阵固态激光雷达的探测方式之一,发射模块的激光器阵列同时受驱发出覆盖探测范围的探测光,接收模块的探测器阵列激活接收回波信号。
作为面阵固态激光雷达的探测方式之一,发射模块的激光器阵列和接收模块的探测器阵列可以进行分组,依次发光/探测。如图1所示,每一列激光器同时激活、作为一个发光单元,每一列探测器同时激活、作为一个探测单元。t1时刻第一列激光器发光,对应第一列探测器激活进行回波信号探测;t2时刻第二列激光器发光,对应第二列探测器激活进行回波信号探测……从 而可以降低所有激光器同时发光探测造成的串扰。也可以按行分组、按子阵列分组……每组激光器同时发光,对应的一组探测器同时激活进行回波信号探测,其分组方式不限于上述几种方式。
较大规模的面阵固态激光雷达的光源是高密度的激光器阵列,这种阵列可以充分利用到垂直腔面发射激光器相比于边发射激光器易于大规模平面集成的优势,在提升功率密度的同时降低封装、装调复杂度和成本。
作为一种实施方式,激光器为垂直腔面发射激光器(vertical-cavity surface-emitting laser,VCSEL),探测器为单光子雪崩二极管(single photon avalanche diode,SPAD)。
图2示出了一个顶发射型的垂直腔面发射激光器(VCSEL)面阵光源的部分表面结构示意图,图2中的VCSEL以矩阵排列,并设计为列寻址结构。即每一列VCSEL作为图1中发射模块TX的一个发光单元,每一列VCSEL的阳极接触金属通过互连金属层相互连接,互连金属层端部作为打线的焊盘(如图2中标注),通过金属打线连接到驱动芯片,同一列VCSEL基于同一个驱动信号(来自驱动芯片上的驱动电路)受激发光。为了增加电流传导面积,减小电阻,焊盘面积相对较大,宽度约为发光单元宽度的两倍,相邻一个线列的焊盘设置在面阵下边缘(图未示),与图2示出的上边缘结构对称。
如图2所示的垂直腔面发射激光器(VCSEL)面阵光源实现了大的发光区域所需的高密度集成,但随之带来的问题是每一列并联发光的激光器(即一个发光单元)长度很长,宽度很窄,长宽比很高,这就导致在大电流、高频率驱动的情形下,金属层上的电阻及寄生电感会产生压降,进而导致同一列激光器的偏压逐渐降低,于是发光亮度逐渐降低。如图3所示,pixel-1为最靠近焊盘的激光器,pixel-21为最远离焊盘的激光器,由于金属层上的电阻及寄生电感导致的压降,使得各个激光器的发光亮度不同,pixel-21的发光亮度明显低于pixel-1的发光亮度。
在面阵固态激光雷达的应用中,一个发光单元的多个激光器的发光强度不同,会造成该发光单元对应的视场范围内的测距能力不同,其中发光强度 较低的激光器限制了激光雷达的测远能力,造成了点云图像失真,降低了激光雷达的探测精度。
为了解决面阵固态激光雷达中的线列发光单元发光强度不均匀的问题,如图4A所示,本发明提供一种固态激光雷达100,包括多个发射模块110和接收模块120。如图4B所示(图4A为固态激光雷达100的侧视图,而图4B为倾斜一定角度的正视图),其中,每个发射模块110包括至少一个发光单元111,发光单元111包括多个激光器,配置成同时发射出探测光束。接收模块120包括至少一个探测单元121,探测单元121包括多个光电探测器,配置成接收探测光束被目标物反射的回波。
如图4A所示,其中,多个发射模块110设置在接收模块120周围,多个发射模块110的发光单元111位于同一平面上,一个探测单元121配置为接收多个发射模块110的发光单元111发出的探测光束被目标物反射的回波。如图4B所示,优选地,一个探测单元121对应每个发射模块110中的一个发光单元111,探测单元121配置成接收对应的多个发光单元111发出的探测光束的反射回波。
根据本发明的一个优选实施例,固态激光雷达100的发光单元111包括VCSEL线列,探测单元121包括SPAD线列。如图4A、图4B所示,两个VCSEL面阵,在SPAD面阵两侧对称设置。其中,每一行VCSEL线列同时激活、作为一个发光单元,一行SPAD线列根据两个发射模块110的设置位置相应地分为两部分,如图4B所示,斜线阴影表示的一半SPAD作为一个探测子单元,与图中左侧的发射模块110斜线阴影表示的发光单元对应相同的视场,接收图中左侧的发射模块110的一个发光单元发出的探测光被目标物反射的回波。方格阴影表示的一行中另一半SPAD作为另一探测子单元,与图中右侧的发射模块110方格阴影表示的发光单元对应相同的视场,接收图中右侧的发射模块110的一个发光单元发出的探测光被目标物反射的回波。
本发明的固态激光雷达100的探测方法可以为:两个发射模块110中等效为同一行的发光单元依次发光,接收模块120对应的探测子单元分别进行 探测。也可以为:两个发射模块110中等效为同一行的发光单元同时发光,接收模块120对应视场的一行探测器激活同时进行两个发光单元反射回波的接收探测。
根据本发明的一个优选实施例,固态激光雷达100中,发射模块110还包括发射光学组件,发射模块110的至少一个发光单元111位于发射光学组件的焦平面上,发射光学组件配置成接收至少一个发光单元111发射出的探测光束,整形后发射至目标空间。
根据本发明的一个优选实施例,固态激光雷达100中,发射模块110还包括发射透镜组,与激光器面阵对应;接收模块120还包括接收透镜组,与探测器面阵相对应。
根据本发明的一个优选实施例,如图4B所示,固态激光雷达100中,发光单元111的多个激光器沿条形排列(如图4B中所示的x方向),发射模块110包括多个发光单元111,多个发光单元111沿垂直于该条形延伸方向的方向排列(如图4B中所示的y方向)。
参见图4B中的标注,在两个发射模块110中,发光单元111的多个激光器均沿x方向排列,多个发光单元111均沿y方向排布(图中为斜向视角,实际x方向与y方向相垂直)。作为优选,激光器阵列在y方向的长度均大于在x方向的长度。
回到图1所示的只包含一个发射模块的固态激光雷达,假设发射模块的激光器阵列为N×N阵列,在采用本发明所提供的优选实施例对固态激光雷达进行改进后,如图4B所示,固态激光雷达100包括两个发射模块110,两个发射模块110的激光器阵列分别为N×1/2N阵列,且沿1/2N方向延伸的一行/列的激光器作为一个发光单元,同时发光。
对于相同的探测范围,图4B的实施例中发射模块110的发光单元111的长度只有图1中单镜头固态激光雷达的发光单元长度的一半,因而可以缩短激光器驱动信号的传输路径长度,降低传输路径两端激光器的驱动信号强度差异,有效降低发光单元中不同位置的激光器发光强度的不均匀程度。
图4A、图4B示意性地示出了发射模块110的发光单元111的长度均为改进前原发光单元长度的一半,该划分方式仅为一种优选实施方式,多个发射模块110的发光单元111的长度可以相等或不相等,如两个发射模块110的发光单元111的长度比为4:6、4.5:5.5,或其他比例,这些也在本发明的保护范围之内。
根据本发明的一个优选实施例,其中发射模块110设置在接收模块120的两侧,且位于接收模块120两侧的发射模块110的数量相同或不同。为了解决固态激光雷达中的线列发光单元发光强度不均匀的问题,本发明所提供的优选实施例,将发射模块中的激光器面阵沿激光器的排列方向分为多个,本领域技术人员容易理解,进一步地,将激光器面阵沿多个发光单元的排列方向进一步划分,从而减小激光器芯片的面积,减少散热,提高良率,该实施方式也是可行的,同样在本发明的保护范围之内。
图4A、图4B的实施例示出了固态激光雷达100包括两个发射模块110的情形,如图5A所示,将发射模块110进一步划分,使得每一列并联发光的激光器(一个发光单元)的长度更短,并将多个发射模块110设置于接收模块120的周围,多个发射模块110的发光单元111位于同一平面上。如图5B所示,每个发射模块110包括至少一个发光单元111,发光单元111包括多个激光器,配置成同时发射出探测光束;接收模块120包括至少一个探测单元121,探测单元121包括多个光电探测器,配置成接收探测光束被目标物反射的回波。优选地,一个探测单元121对应每个发射模块110中的一个发光单元111,探测单元121配置成接收对应的多个发光单元111发出的探测光束的反射回波。即,固态激光雷达100包括数量更多的发射模块110的技术方案,也在本发明的保护范围之内。
如图5A、图5B所示的实施例中,每个发射模块110对应一个发射光学组件;或者,位于接收模块120一侧的相邻两个或更多发射模块110可以共用一个发射光学组件。
根据本发明的一个优选实施例,固态激光雷达100中,每个发射模块110 包括数量相同的多个发光单元111,对应同一个探测单元121的发光单元111位于同一直线上。
如图6A所示,根据本发明的一个优选实施例,固态激光雷达100包括两个发射模块110和一个接收模块120,每个发射模块110包括数量相同的多个发光单元111,每个接收模块120包括多个探测单元121,每个探测单元121对应每个发射模块110中的一个发光单元111。固态激光雷达100的两个发射模块110和一个接收模块120沿水平方向排列(图中所示的水平方向),固态激光雷达100沿竖直方向(图中所示的竖直方向)进行逐行扫描。则对应同一个探测单元121的发光单元111位于同一水平线上(图中所示的水平方向),并且,对应同一探测单元121的发光单元111对应同一竖直视场角。
如图6B所示,根据本发明的一个优选实施例,固态激光雷达100包括两个发射模块110和一个接收模块120,每个发射模块110包括数量相同的多个发光单元111,每个接收模块120包括多个探测单元121,每个探测单元121对应每个发射模块110中的一个发光单元111。固态激光雷达100的两个发射模块110和一个接收模块120沿竖直方向排列(图中所示的竖直方向),固态激光雷达100沿水平方向(图中所示的水平方向)进行逐列扫描。则对应同一个探测单元121的发光单元111位于同一竖直线上(图中所示的竖直方向)。并且,对应同一探测单元121的发光单元111对应同一水平视场角。
根据本发明的一个优选实施例,固态激光雷达100的收发光路如图7所示。其中,发射模块110-1最靠近接收模块120一侧的激光器发出的光经发射透镜组整形后平行于光轴出射,随着激光器远离接收模块120,出射光束依次向接收模块120的方向偏折,构成图7中所示的视场角FOV1。同样地,发射模块110-2最靠近接收模块120一侧的激光器发出的光经发射透镜组整形后平行于光轴出射,随着激光器远离接收模块120,出射光束依次向接收模块120的方向偏折,构成图7中所示的视场角FOV2。
由此可见,发射模块110-1和发射模块110-2的视场角存在一定的交叠(图7中ob上的实心区域所示),在发射模块110-1和发射模块110-2对应 的发光单元同时发光时,该交叠区域的光强度加倍,可以提高该区域的测远能力;在发射模块110-1和发射模块110-2对应的发光单元不同时发光时,在一定时间内该区域的探测频率加倍。
若发射模块110-1、接收模块120和发射模块110-2沿竖直方向排列,则发射模块110-1和发射模块110-2的视场角在竖直方向上存在一定的交叠,该交叠区域位于激光雷达竖直视场的中心位置。车载激光雷达主要检测地面上的行人和车辆等,目标物集中于垂直视场的中心位置,上述实施例能够提高中心区域测远能力或探测频率,更适合于车载激光雷达的应用场景。
若发射模块110-1、接收模块120和发射模块110-2沿水平方向排列,则发射模块110-1和发射模块110-2的视场角在水平方向上存在一定的交叠,该交叠区域位于激光雷达水平视场的中心位置,即激光雷达的正前方,上述实施例能够提高雷达正前向区域的测远能力或探测频率。
本发明的优选实施例提供了一种固态激光雷达,对于设定范围的视场角,通过设置多个发射模块将同时发光的线列发光单元的长度大大缩小,从而大大减少了发光单元的发光不均匀性,从而减小了固态激光雷达在设定视场角内的测距误差,提高了测远性能。
本发明的优选实施例中,同时发光的激光器数量减少,降低了单个发光单元的发射功率,能够减少发射端的散热,降低温度波动。
本发明的优选实施例中,对于多个发射模块对应的发光单元不同时发光的情况,可以降低单次发光的发射功率,有利于人眼安全。在满足人眼安全要求的前提下,由于同时发光的激光器的数量减少,因而可以增大激光器功率,提高探测光功率,增强激光雷达的测距能力。并且,相应的同时进行探测的探测器数量随之减少,可以降低多个探测器之间的信号串扰。
本发明的优选实施例中,多个发射模块发射出的探测光经整形出射后,中心处视场存在一定的交叠区域,可以增加中心区域的探测精度。
本发明的优选实施例中,可以适当延长部分发射模块中的线列发光单元的长度,从而能够有效减小固态激光雷达的盲区范围,不需要再对激光器面 阵作特殊设计,不增加设计和工艺的复杂度。
根据本发明的一个优选实施例,固态激光雷达100中,在发光单元111的条形延伸方向上远离接收模块120的一侧设置补盲激光器,该补盲激光器和发光单元111的探测范围不同,该补盲激光器发出的探测光被目标物反射的回波能够被与发光单元111对应的探测单元121接收。
旁轴光路的激光雷达存在远近效应,即当目标物的距离变化时,回波光束在光敏面上的光斑会发生移动。如图8所示,当目标物距离减小到一临界距离时,光斑会移出面阵探测器的光敏面,无法被雷达探测到,即图8中发射模块TX和接收模块RX的光线不交叠区域,为激光雷达的盲区。对于盲区内一目标,反射回来的回波光通过接收透镜所成的像点不在接收透镜的焦平面(图中接收模块RX的面阵探测器所在位置)上,而是在焦平面之后。另外,在图8的视角中,近距离目标在接收透镜光轴的下方,所以它通过接收透镜所成的像点一定在接收透镜光轴的上方。综合这两方面的考虑,近距离目标反射光聚焦点与接收模块RX的相对位置,如图8中所示意。在激光雷达的近距离盲区范围内,激光雷达的接收模块RX完全接收不到目标的反射信号。
本发明提供一种减小盲区的方案,如图9所示,发射模块TX设有补盲激光器,补盲激光器在发射模块TX远离接收模块RX的一侧,探测光经发射透镜后偏向盲区范围内,用于对盲区进行补测。其中发射模块TX设置在发射光学组件的焦平面上,因为多个激光器在焦平面的不同位置,其发射光经过发射光学组件准直后向不同方向偏转。如上文图7所示的固态激光雷达100中,发射模块TX2远离接收模块RX的一侧同样设置了补盲激光器,光路如图7中沿补盲激光器发射出的探测光束所示意。
如图10所示,补盲激光器设置在发光单元沿条形排列方向上距离发射光学组件光轴最远的一侧,其发出的光束经发射光学组件整形准直后的出射角度与光轴夹角最大,形成补盲探测光。对于远场回波来说,补盲激光器的回波光光斑会被聚焦在面阵探测器的之外,无法被探测到;而随着目标物距离减小,回波光斑发生如图9所示的向RX方向偏移,落在RX的探测器上,此 时补盲激光器的近距离目标物回波因为向上偏移而能够被探测器接收,从而能够减小激光雷达的盲区范围。
作为另一优选方案,在图7中发射模块TX1远离接收模块RX的一侧也可以同时设置补盲激光器,进一步减小盲区范围。
结合附图7、图8、9和图10,补盲激光器相当于在线列发光单元的延伸方向上增加一定长度,即增加一定数量的激光器,而不需要改变激光器的排布,实现方式简单、成本低。为减小盲区所需增加的激光器数量,可以根据光学设计对光路进行计算获得。
根据本发明的一个优选实施例,固态激光雷达100中,发射模块110还包括电极单元,该电极单元与发光单元111的多个激光器电连接,该电极单元包括多个驱动端,通过该多个驱动端同时向发光单元111的多个激光器加载驱动信号。
优选地,该电极单元还包括在发光单元111的条形延伸方向的两端设置的焊盘,该焊盘用于加载该驱动信号。
为进一步减小线列发光单元的发光不均匀性,本发明对线列发光单元采用双侧驱动。不同于图2所示现有技术的线列发光单元一侧焊盘通入驱动信号,如图11所示,根据本发明的一个优选实施例,在线列发光单元的条形延伸方向两侧分别设置焊盘,并分别连接驱动电路,与同一发光单元连接的两个驱动电路由同一发射控制信号控制,同时导通驱动开关。从同一发光单元的两端同时注入驱动信号,如图11所述,驱动电路1和驱动电路2分别产生作用于同一激光器的驱动信号分量,两个驱动信号分量叠加成作用于控制激光器发光的驱动信号。从而,一个驱动信号分量可补偿另一个驱动信号分量所受到的驱动线路衰减,使流过驱动线路上的多个激光器的驱动电流差异更小,进一步减小发光不均匀性。
根据本发明的一个优选实施例,固态激光雷达100中,发射模块110还包括微透镜阵列,设置于多个激光器的光路下游。
激光器阵列可以配合微透镜阵列使用,如图12所示,激光器阵列前固定 微透镜阵列,或将激光器芯片的衬底制备成微透镜阵列,对激光器发出的光束进行准直,以提高光束质量。
根据本发明的一个优选实施例,如图13所示,固态激光雷达100中,接收模块120还包括:接收光学组件122、分光单元123、至少一个探测单元121和至少一个成像单元124。其中:
接收光学组件122配置成接收并会聚固态激光雷达100发出的第一波段的探测光束被目标物反射的回波L1以及第二波段的光束L2,其中第二波段不包括所述第一波段。优选地,接收光学组件11不具有波长选择性,红外和可见光波段的光束都可以无差别地透过。分光单元123设置在接收光学组件122的光路下游,配置成将探测光束的反射回波L1和第二波段的光束L2的光路分离。至少一个探测单元121设置在分光单元123的光路下游,配置成从分光单元123接收探测光束的反射回波L1并转换为电信号。至少一个成像单元124设置在分光单元123的光路下游,配置成从分光单元123接收第二波段的光束L2并成像。
根据本发明的一个优选实施例,固态激光雷达100中,每个探测单元121的多个光电探测器被同时激活接收反射回波L1,每个成像单元124包括多个图像传感器,每个成像单元124的多个图像传感器被同时激活接收第二波段的光束L2并成像,对应同一视场范围的探测单元121和成像单元124被同时激活进行探测和曝光。
根据本发明的一个优选实施例,固态激光雷达100中,分光单元123包括分光透反镜,使所述探测光束的反射回波被反射、所述第二波段的光束被透射,或者使所述探测光束的反射回波被透射、所述第二波段的光束被反射。
如图13所示,采用波长分光透反镜作为分光单元123,以940nm波长的探测光为例,在波长分光透反镜表面涂覆940nm的高反射膜,使940nm波段的激光被反射,至少一个探测单元121设置于反射束会聚的焦平面上;其他波段光可以透射过去,会聚于焦平面位置的至少一个成像单元124上。
如图14所示,在波长分光透反镜表面涂覆二向色涂层,使940nm的回波 光束透射过去,被探测单元121接收进行距离探测;其他波段光被反射至成像单元124上用于成像。
根据本发明的一个优选实施例,如图15所示,接收模块RX包括距离传感器阵列和图像传感器阵列(如加RGGB滤光片的CMOS阵列),在接收光路上设置分光装置,通过分光装置将接收透镜组会聚的光束分为两部分:探测波段光和其他波段光。探测波段光为发射模块TX发射的探测光被目标物反射的回波光,由接收模块RX的距离传感器阵列接收进行回波信号探测;其他波段光被接收模块RX的图像传感器阵列接收,可获得彩色图像。接收模块RX的距离传感器阵列和图像传感器阵列均设置于接收透镜组的焦平面上,分光元件将探测波段光和其他波段光分离并照射在不同传感器上。
本发明的优选实施例采用两个发射模块,不需要改变接收模块的探测器阵列的设计,容易结合分光元件+SPAD/CMOS阵列的方案,在全测量范围内,两个传感器阵列都可以同时看到完全相同目标,两个传感器的结果基本不需要进行物理位置的配准。进而同时获得深度信息和彩色图像,算法简单,两个传感器阵列共用接收光学组件,极大的降低的生产、装配和装调的成本。
根据本发明的一个优选实施例,如图16所示,本发明还提供一种使用如上文所述的固态激光雷达100进行探测的方法10,包括:
在步骤S101中,发射模块110的发光单元111发射出探测光束,用以探测目标物;
在步骤S102中,接收模块120的探测单元121接收探测光束被目标物反射的回波;
在步骤S103中,基于发射探测光束的时间和接收回波的时间,确定目标物的距离。
根据本发明的一个优选实施例,其中固态激光雷达100包括两个发射模块110,两个发射模块110位于接收模块120的两侧,两个发射模块110包括数量相同的多个发光单元111,对应同一探测单元121的发光单元111位于同一直线上,探测方法10进一步包括:
对应同一个探测单元121的两个发光单元111同时或交替发光。
根据本发明的一个优选实施例,其中发光单元111的多个激光器沿条形排列,在发光单元111的条形延伸方向上远离接收模块120的一侧设置补盲激光器,该补盲激光器和发光单元111的探测范围不同,该补盲激光器发出的探测光被目标物反射的回波能够被与发光单元111对应的探测单元121接收,探测方法10进一步包括:该补盲激光器和发光单元111同时发光。
根据本发明的一个优选实施例,其中发光单元111的多个激光器沿条形排列,发射模块110还包括电极单元,该电极单元与发光单元111的多个激光器电连接,该电极单元包括多个驱动端,探测方法10进一步包括:
通过多个驱动端同时向发光单元111的多个激光器加载驱动信号。
根据本发明的一个优选实施例,其中该电极单元还包括在发光单元111的条形延伸方向的两端设置的焊盘,探测方法10进一步包括:
通过该焊盘加载该驱动信号。
根据本发明的一个优选实施例,其中接收模块120还包括:接收光学组件;分光单元,设置在接收光学组件的光路下游;至少一个探测单元设置在分光单元的光路下游;至少一个成像单元,设置在分光单元的光路下游,探测方法10进一步包括:
通过接收光学组件接收并会聚固态激光雷达发出的第一波段的探测光束被目标物反射的回波以及第二波段的光束,其中第二波段不包括所述第一波段;
通过分光单元将探测光束的反射回波和第二波段的光束的光路分离;
通过至少一个探测单元从分光单元接收探测光束的反射回波并转换为电信号;
通过至少一个成像单元从分光单元接收第二波段的光束并成像。
本发明所提供的探测方法10及其技术效果,在介绍本发明所提供的固态激光雷达100的内容中已经同时进行了阐述,在此不再赘述。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种固态激光雷达,包括:
    多个发射模块,每个所述发射模块包括至少一个发光单元,所述发光单元包括多个激光器,配置成同时发射出探测光束;
    接收模块,包括至少一个探测单元,所述探测单元包括多个光电探测器;
    其中,所述多个发射模块设置在所述接收模块周围,所述多个发射模块的发光单元位于同一平面上,一个所述探测单元配置为接收多个所述发射模块的发光单元发出的探测光束被目标物反射的回波。
  2. 如权利要求1所述的固态激光雷达,其中所述发光单元的多个激光器沿条形排列,所述发射模块包括多个发光单元,所述多个发光单元沿垂直于所述条形延伸方向的方向排列。
  3. 如权利要求1所述的固态激光雷达,其中所述发射模块设置在所述接收模块的两侧,且位于所述接收模块两侧的发射模块的数量相同或不同。
  4. 如权利要求3所述的固态激光雷达,其中每个所述发射模块包括数量相同的多个发光单元,对应同一个探测单元的发光单元位于同一直线上。
  5. 如权利要求4所述的固态激光雷达,其中位于同一直线上的多个发光单元对应的视场部分重叠。
  6. 如权利要求1-5中任一项所述的固态激光雷达,其中所述固态激光雷达包括两个发射模块,所述两个发射模块位于所述接收模块的两侧。
  7. 如权利要求1-5中任一项所述的固态激光雷达,其中所述发光单元包括VCSEL阵列,所述探测单元包括SPAD阵列。
  8. 如权利要求2所述的固态激光雷达,其中,在所述发光单元的条形延伸方向上远离所述接收模块的一侧设置补盲激光器,所述补盲激光器和所述发光单元的探测范围不同,所述补盲激光器发出的探测光被目标物反射的回波能够被与所述发光单元对应的探测单元接收。
  9. 如权利要求2所述的固态激光雷达,其中所述发射模块还包括电极单元,所述电极单元与所述发光单元的多个激光器电连接,所述电极单元包括多个驱动端,通过所述多个驱动端同时向所述发光单元的多个激光器加载驱动信号。
  10. 如权利要求9所述的固态激光雷达,其中所述电极单元还包括在所述发光单元的条形延伸方向的两端设置的焊盘,所述焊盘用于加载所述驱动信号。
  11. 如权利要求1-5中任一项所述的固态激光雷达,其中所述发射模块还包括发射光学组件,所述发射模块的至少一个发光单元位于所述发射光学组件的焦平面上,所述发射光学组件配置成接收所述至少一个发光单元发射出的探测光束,整形后发射至目标空间。
  12. 如权利要求11所述的固态激光雷达,其中所述多个发射模块的发射光学组件相同。
  13. 如权利要求1-5中任一项所述的固态激光雷达,其中所述发射模块还包括微透镜阵列,设置于所述多个激光器的光路下游。
  14. 如权利要求1-5中任一项所述的固态激光雷达,其中所述接收模块还包括:
    接收光学组件,配置成接收并会聚所述固态激光雷达发出的第一波段的 探测光束被目标物反射的回波以及第二波段的光束,其中所述第二波段不包括所述第一波段;
    分光单元,设置在所述接收光学组件的光路下游,配置成将所述探测光束的反射回波和所述第二波段的光束的光路分离;
    所述至少一个探测单元设置在所述分光单元的光路下游,配置成从所述分光单元接收所述探测光束的反射回波并转换为电信号;和
    至少一个成像单元,设置在所述分光单元的光路下游,配置成从所述分光单元接收所述第二波段的光束并成像。
  15. 如权利要求14所述的固态激光雷达,其中每个所述探测单元的多个光电探测器被同时激活接收所述反射回波,每个所述成像单元包括多个图像传感器,每个所述成像单元的多个图像传感器被同时激活接收所述第二波段的光束并成像,对应同一视场范围的探测单元和成像单元被同时激活进行探测和曝光。
  16. 如权利要求14或15所述的固态激光雷达,其中所述分光单元包括分光透反镜,使所述探测光束的反射回波被反射、所述第二波段的光束被透射,或者使所述探测光束的反射回波被透射、所述第二波段的光束被反射。
  17. 一种使用如权利要求1-16中任一项所述的固态激光雷达进行探测的方法,包括:
    所述发射模块的发光单元发射出探测光束,用以探测目标物;
    所述接收模块的探测单元接收所述探测光束被目标物反射的回波;
    基于发射探测光束的时间和接收回波的时间,确定所述目标物的距离。
  18. 如权利要求17所述的方法,其中所述固态激光雷达包括两个发射模块,所述两个发射模块位于所述接收模块的两侧,所述两个发射模块包括数量相同的多个发光单元,对应同一探测单元的发光单元位于同一直线上,所述方法进一步包括:
    对应同一个探测单元的两个发光单元同时或交替发光。
  19. 如权利要求17或18所述的方法,其中所述发光单元的多个激光器沿条形排列,在所述发光单元的条形延伸方向上远离所述接收模块的一侧设置补盲激光器,所述补盲激光器和所述发光单元的探测范围不同,所述补盲激光器发出的探测光被目标物反射的回波能够被与所述发光单元对应的探测单元接收,所述方法进一步包括:所述补盲激光器和所述发光单元同时发光。
  20. 如权利要求17或18所述的方法,其中所述发光单元的多个激光器沿条形排列,所述发射模块还包括电极单元,所述电极单元与所述发光单元的多个激光器电连接,所述电极单元包括多个驱动端,所述方法进一步包括:
    通过所述多个驱动端同时向所述发光单元的多个激光器加载驱动信号。
  21. 如权利要求20所述的方法,其中所述电极单元还包括在所述发光单元的条形延伸方向的两端设置的焊盘,所述方法进一步包括:
    通过所述焊盘加载所述驱动信号。
  22. 如权利要求17或18所述的方法,其中所述接收模块还包括:接收光学组件;分光单元,设置在所述接收光学组件的光路下游;所述至少一个探测单元设置在所述分光单元的光路下游;至少一个成像单元,设置在所述分光单元的光路下游,所述方法进一步包括:
    通过所述接收光学组件接收并会聚所述固态激光雷达发出的第一波段的探测光束被目标物反射的回波以及第二波段的光束,其中所述第二波段不包括所述第一波段;
    通过所述分光单元将所述探测光束的反射回波和所述第二波段的光束的光路分离;
    通过所述至少一个探测单元从所述分光单元接收所述探测光束的反射回波并转换为电信号;
    通过所述至少一个成像单元从所述分光单元接收所述第二波段的光束并成像。
PCT/CN2021/138327 2021-04-08 2021-12-15 固态激光雷达及使用其进行探测的方法 WO2022213658A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21935874.4A EP4321903A1 (en) 2021-04-08 2021-12-15 Solid-state laser radar and method for detecting by using same
KR1020237032644A KR20230150331A (ko) 2021-04-08 2021-12-15 고체 레이저 레이더 및 이를 사용한 탐지 방법
JP2023561895A JP2024514576A (ja) 2021-04-08 2021-12-15 ソリッドステートライダー及びそれを用いて探知する方法
DE112021007023.1T DE112021007023T5 (de) 2021-04-08 2021-12-15 Festkörperlidar und Detektionsverfahren unter Verwendung eines derartigen Festkörperlidars
US18/377,134 US20240069162A1 (en) 2021-04-08 2023-10-05 Solid-state lidar and method for detection using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110378462.7 2021-04-08
CN202110378462.7A CN115201844A (zh) 2021-04-08 2021-04-08 固态激光雷达及使用其进行探测的方法
CN202120714418.4U CN214795207U (zh) 2021-04-08 2021-04-08 固态激光雷达
CN202120714418.4 2021-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/377,134 Continuation US20240069162A1 (en) 2021-04-08 2023-10-05 Solid-state lidar and method for detection using same

Publications (1)

Publication Number Publication Date
WO2022213658A1 true WO2022213658A1 (zh) 2022-10-13

Family

ID=83544967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138327 WO2022213658A1 (zh) 2021-04-08 2021-12-15 固态激光雷达及使用其进行探测的方法

Country Status (6)

Country Link
US (1) US20240069162A1 (zh)
EP (1) EP4321903A1 (zh)
JP (1) JP2024514576A (zh)
KR (1) KR20230150331A (zh)
DE (1) DE112021007023T5 (zh)
WO (1) WO2022213658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685147A (zh) * 2022-12-14 2023-02-03 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471071A (zh) * 2019-08-30 2019-11-19 天津大学 一种多线状光型全固态激光雷达
CN111289995A (zh) * 2018-11-21 2020-06-16 北京万集科技股份有限公司 三维激光雷达装置及系统
CN111708040A (zh) * 2020-06-02 2020-09-25 Oppo广东移动通信有限公司 测距装置、测距方法及电子设备
EP3789787A1 (en) * 2019-09-03 2021-03-10 Xenomatix NV Solid-state lidar system for determining distances to a scene
CN112543875A (zh) * 2018-08-03 2021-03-23 欧普赛斯技术有限公司 分布式模块化固态lidar系统
CN214795207U (zh) * 2021-04-08 2021-11-19 上海禾赛科技股份有限公司 固态激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543875A (zh) * 2018-08-03 2021-03-23 欧普赛斯技术有限公司 分布式模块化固态lidar系统
CN111289995A (zh) * 2018-11-21 2020-06-16 北京万集科技股份有限公司 三维激光雷达装置及系统
CN110471071A (zh) * 2019-08-30 2019-11-19 天津大学 一种多线状光型全固态激光雷达
EP3789787A1 (en) * 2019-09-03 2021-03-10 Xenomatix NV Solid-state lidar system for determining distances to a scene
CN111708040A (zh) * 2020-06-02 2020-09-25 Oppo广东移动通信有限公司 测距装置、测距方法及电子设备
CN214795207U (zh) * 2021-04-08 2021-11-19 上海禾赛科技股份有限公司 固态激光雷达

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685147A (zh) * 2022-12-14 2023-02-03 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备

Also Published As

Publication number Publication date
US20240069162A1 (en) 2024-02-29
KR20230150331A (ko) 2023-10-30
EP4321903A1 (en) 2024-02-14
DE112021007023T5 (de) 2023-11-30
JP2024514576A (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
JP7479737B2 (ja) 多波長lidarシステム
CN214795207U (zh) 固态激光雷达
US10928486B2 (en) VCSEL array LIDAR transmitter with small angular divergence
US11579289B2 (en) Distance measuring apparatus and mobile body including the same
WO2021196194A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
KR102523975B1 (ko) 광원 일체형 광 센싱 시스템 및 이를 포함하는 전자 기기
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
US20240069162A1 (en) Solid-state lidar and method for detection using same
CN212872895U (zh) 激光光源、光发射单元和激光雷达
KR20220097220A (ko) 서로 다른 지향각을 갖는 복수의 채널을 구비하는 라이다 광원용 발광장치
WO2022042078A1 (zh) 激光光源、光发射单元和激光雷达
CN117607830A (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
WO2022041137A1 (zh) 激光雷达和测距方法
CN115201844A (zh) 固态激光雷达及使用其进行探测的方法
WO2020215577A1 (zh) 激光雷达及其探测装置
CN114641907A (zh) 激光雷达发射器、系统和方法
WO2022127078A1 (zh) 接收装置、包括其的激光雷达及探测方法
CN114185054A (zh) 用于激光雷达的激光单元以及激光雷达
CN116068531A (zh) 一种用于激光雷达的自适应发射系统
KR20230101632A (ko) 3차원 거리 정보 획득 장치 및 이를 포함하는 전자 장치
KR20230155523A (ko) 레이저 레이더
KR20220147978A (ko) 표면발광 레이저소자 및 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032644

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112021007023

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011882

Country of ref document: MX

Ref document number: 2023561895

Country of ref document: JP

Ref document number: 2301006569

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2021935874

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021935874

Country of ref document: EP

Effective date: 20231108