WO2022213563A1 - 地图更新方法及设备 - Google Patents

地图更新方法及设备 Download PDF

Info

Publication number
WO2022213563A1
WO2022213563A1 PCT/CN2021/122858 CN2021122858W WO2022213563A1 WO 2022213563 A1 WO2022213563 A1 WO 2022213563A1 CN 2021122858 W CN2021122858 W CN 2021122858W WO 2022213563 A1 WO2022213563 A1 WO 2022213563A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
network device
edge network
area
updated
Prior art date
Application number
PCT/CN2021/122858
Other languages
English (en)
French (fr)
Inventor
李森
马坤
裴俊龙
Original Assignee
中移智行网络科技有限公司
中移(上海)信息通信科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移智行网络科技有限公司, 中移(上海)信息通信科技有限公司, 中国移动通信集团有限公司 filed Critical 中移智行网络科技有限公司
Priority to EP21935781.1A priority Critical patent/EP4322024A1/en
Publication of WO2022213563A1 publication Critical patent/WO2022213563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating

Definitions

  • the present application relates to the technical field of intelligent transportation, and in particular, to a method and device for updating a map.
  • the traditional solution (see Figure 1) is to collect original surveying and mapping data through surveying and mapping equipment, upload it to a cloud platform for map modeling and generate high-precision maps, and then output map services. The same method is used when updating.
  • This traditional high-precision map update method basically adopts the full-scale construction mode. The cycle of updating the high-definition map is long, and the road status and related changes cannot be reflected in real time.
  • embodiments of the present application provide a map update method and device.
  • the embodiments of the present application provide a map update method, which is applied to edge network devices, including:
  • the updated area map is sent to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the updating of the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information includes:
  • the base layer in the area map is updated according to the road static information and/or the road surrounding static information in the road traffic information.
  • the updating of the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information includes:
  • the event layer in the area map is updated.
  • the method before receiving the road traffic information collected and sent by the vehicle-end device and/or the roadside device, the method further includes:
  • the unit map corresponding to the jurisdiction area of the roadside equipment in the area map is sent to the roadside equipment.
  • the method also includes:
  • the embodiments of the present application further provide a map update method, which is applied to a core network device, including:
  • the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is based on the vehicle-end device and/or roadside
  • the road traffic information collected and sent by the device is updated;
  • the global map is updated according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the method before receiving the updated area map sent by one or more edge network devices, the method further includes:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • the method also includes:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • the embodiments of the present application also provide a map update method, which is applied to roadside equipment, including:
  • the road traffic information collected by the vehicle-end device and/or the roadside device is sent to the edge network device, so that the edge network device updates the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information.
  • the area map includes an event layer; the method further includes:
  • the updated event layer is the event information in the road traffic information reported by the edge network device according to the roadside device and/or the vehicle-end device within the jurisdiction of the edge network device.
  • the event layer in the area map is updated to obtain;
  • the method before sending the road traffic information collected by the vehicle-end device and/or the roadside device to the edge network device, the method further includes:
  • the receiving edge network device sends a unit map, where the unit map is a partial map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device.
  • an embodiment of the present application further provides an edge network device, including:
  • a road traffic information receiving module configured to receive road traffic information collected and sent by vehicle-end equipment and/or roadside equipment;
  • a first update module configured to update the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information
  • the first sending module is configured to send the updated area map to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the first update module includes:
  • the first updating unit is configured to update the base layer in the area map according to the road static information and/or the road surrounding static information in the road traffic information.
  • the first update module includes:
  • the second updating unit is configured to update the event layer in the area map according to the event information in the road traffic information.
  • the edge network device further includes:
  • a second receiving module configured to receive the area map corresponding to the jurisdiction area of the edge network device sent by the core network device
  • the first distribution module is configured to send the unit map corresponding to the jurisdiction area of the roadside equipment in the area map to the roadside equipment.
  • the edge network device further includes:
  • the third receiving module is configured to receive the road static information and/or road surrounding static information collected by the core network device according to the map data acquisition device, and sent after updating the global map, corresponding to the jurisdiction area of the edge network device area map.
  • an embodiment of the present application further provides a core network device, including:
  • the first receiving module is configured to receive an updated area map sent by one or more edge network devices, the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is based on the vehicle Update the road traffic information collected and sent by terminal equipment and/or roadside equipment;
  • the second update module is configured to update the global map according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the core network device further includes:
  • the initial building block configured to build the initial global map
  • the second distribution module is configured to send the area map corresponding to the jurisdiction area of the edge network device in the initial global map to the edge network device.
  • the core network device further includes:
  • a third update module configured to update the global map according to the road static information and/or the road surrounding static information collected by the map data acquisition device;
  • the third distribution module is configured to send an area map corresponding to the jurisdiction area of the edge network device in the updated global map to the edge network device.
  • an embodiment of the present application further provides a roadside device, including:
  • a road traffic information sending module configured to send the road traffic information collected by the vehicle-end device and/or the roadside device to the edge network device, so that the edge network device has jurisdiction over the edge network device according to the road traffic information
  • the area map corresponding to the area is updated.
  • the area map includes an event layer; the roadside equipment further includes:
  • a fourth receiving module configured to receive an updated event layer, where the updated event layer is the road traffic reported by the edge network device according to roadside devices and/or vehicle-end devices within the jurisdiction of the edge network device
  • the event information in the information is obtained by updating the event layer in the area map
  • the broadcasting module is configured to broadcast the updated event layer to the vehicle-end device.
  • the roadside equipment further includes:
  • the fifth receiving module is configured to receive a unit map sent by the edge network device, where the unit map is a partial map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device.
  • the embodiments of the present application further provide an edge network device, including: a transceiver and a processor;
  • the transceiver is configured to receive road traffic information collected and sent by vehicle-end equipment and/or roadside equipment;
  • the processor is configured to update the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information;
  • the transceiver is further configured to send the updated area map to the core network equipment and/or the roadside equipment within the jurisdiction of the edge network equipment.
  • the processor is configured to update the basic layer in the area map according to the road static information and/or the road surrounding static information in the road traffic information.
  • the processor is configured to update the event layer in the area map according to the event information in the road traffic information.
  • the transceiver is further configured to receive an area map corresponding to the jurisdiction area of the edge network device sent by the core network device;
  • the transceiver is further configured to send the unit map corresponding to the jurisdiction area of the roadside equipment in the area map to the roadside equipment.
  • the transceiver is further configured to receive the information sent by the core network device after updating the global map according to the road static information and/or road surrounding static information collected by the map data acquisition device, and the edge A map of the area corresponding to the jurisdiction area of the network device.
  • an embodiment of the present application further provides a core network device, including: a transceiver and a processor;
  • the transceiver is configured to receive an updated area map sent by one or more edge network devices, the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is based on the vehicle. Update the road traffic information collected and sent by terminal equipment and/or roadside equipment;
  • the processor is configured to update the global map according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the processor is also configured to construct an initial global map
  • the transceiver is further configured to send an area map corresponding to the jurisdiction area of the edge network device in the initial global map to the edge network device.
  • the processor is further configured to update the global map according to road static information and/or road surrounding static information collected by a map data collection device;
  • the transceiver is further configured to send an area map corresponding to the jurisdiction area of the edge network device in the updated global map to the edge network device.
  • the present application further provides a roadside device, including: a transceiver and a processor;
  • the transceiver is configured to send the road traffic information collected by the vehicle-end device and/or the roadside device to the edge network device, so that the edge network device has jurisdiction over the edge network device according to the road traffic information
  • the corresponding area map is updated.
  • the area map includes an event layer
  • the transceiver is further configured to receive an updated event layer, where the updated event layer is a road reported by the edge network device according to roadside devices and/or vehicle-end devices within the jurisdiction of the edge network device
  • the event information in the traffic information is obtained by updating the event layer in the area map;
  • the transceiver is further configured to broadcast the updated event layer to the vehicle end device.
  • the transceiver is further configured to receive a cell map sent by the edge network device, where the cell map is a partial map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device.
  • embodiments of the present application further provide an edge network device, including a memory, a processor, and a program stored on the memory and executable on the processor; the processor implements the program when the processor executes the program. Any of the above steps are applied to the map update method for edge network equipment.
  • an embodiment of the present application further provides a core network device, including a memory, a processor, and a program stored on the memory and executable on the processor; when the processor executes the program.
  • an embodiment of the present application further provides a roadside device, including a memory, a processor, and a program stored on the memory and executable on the processor; when the processor executes the program.
  • an embodiment of the present application further provides a readable storage medium on which a program is stored, and when the program is executed by a processor, implements the steps in any of the above-mentioned map updating methods.
  • the edge network device updates the regional map within the jurisdiction of the edge network device according to the road traffic information collected by the vehicle-end device and/or the roadside device, and does not need to be updated like a traditional map.
  • use professional map data surveying and mapping equipment to collect map data in the global area and build a global map in a full-scale construction mode. Since the vehicle-end equipment and/or roadside equipment can collect road traffic information in real time, the data collection period is short, and in addition , updating the regional map can reduce the computational cost of the update, so that the update cycle is short and the map has high immediacy.
  • the embodiment of the present application obtains diversified road traffic information from the vehicle-end equipment and the roadside equipment, which can reduce the cost of map data collection, thereby reducing the difficulty and difficulty of later updating, operation and maintenance of the map.
  • the cost can at least solve the problem of the high-precision map update method in the related technology, the update cycle is long, and the road status and related changes cannot be reflected in real time.
  • Figure 1 is a schematic diagram of the traditional map construction and use architecture
  • Figure 2 is a schematic diagram of a traditional map construction process
  • Fig. 3 is a schematic diagram of a traditional map using process
  • FIG. 4 is a schematic flowchart of a first map update method in an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a second map update method in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an initial global map construction process in an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a third map update method in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an overall map update process in an embodiment of the application.
  • FIG. 9 is a schematic diagram of a map system architecture in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first edge network device in an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a first core network device in an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a first roadside device in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a second type of edge network device in an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a second core network device in an embodiment of the application.
  • 15 is a schematic structural diagram of a second type of roadside equipment in an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a third edge network device in an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a third core network device in an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a third type of roadside equipment in an embodiment of the present application.
  • Professional map data surveying and mapping equipment collects road and surrounding environment information through radar, cameras, and positioning equipment.
  • the professional map data surveying and mapping equipment can be in the form of vehicles, drones, etc.
  • the map data surveying and mapping equipment can also be satellites.
  • the processing server needs to combine the collected data and video with the Global Positioning System (GPS, Global Positioning System) to calculate the position of objects outside the road and model the road and objects on the road.
  • GPS Global Positioning System
  • the update process of traditional high-precision maps is basically the same as the above-mentioned modeling process.
  • the user obtains the high-precision map information of the area in which it is located through online (download from the central library) or offline.
  • High-precision map display is carried out according to its own positioning information and interactive terminal requirements.
  • the embodiments of the present application propose the following map update method in view of the large amount of data collection, long cycle, and slow map update in the traditional high-precision map update process, resulting in poor map immediacy.
  • FIG. 4 is a schematic flowchart of a map updating method provided in Embodiment 1 of the present application. The method is applied to an edge network device and includes the following steps:
  • Step 41 Receive road traffic information collected and sent by the vehicle-end device and/or the roadside device;
  • the road traffic information includes traffic road surface and surrounding state information, which may be specifically classified into road and/or road surrounding static information and event information.
  • the collection of road traffic information by the vehicle-end equipment and/or the roadside equipment may be performed in real time.
  • Step 42 Update the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information
  • Step 43 Send the updated area map to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the roadside device may include other roadside devices other than the roadside device, and may also include the roadside device that sends the road traffic information in step 41 .
  • the edge network device may also send the updated area map to the edge network device adjacent to the jurisdiction area.
  • the edge network device may be an edge cloud, or an edge cloud platform.
  • the edge network device updates the regional map within the jurisdiction of the edge network device according to the road traffic information collected by the vehicle-end device and/or the roadside device, and does not need to be updated like a traditional map.
  • updating the regional map can reduce the computational cost of the update, so that the update cycle is short and the map has high immediacy.
  • the embodiment of the present application obtains diversified road traffic information from the vehicle-end equipment and the roadside equipment, which can reduce the cost of map data collection, thereby reducing the difficulty and difficulty of later updating, operation and maintenance of the map. cost.
  • the collection of road traffic information can be based on the collection of roadside equipment, and the collection of on-board equipment supplements the blind area of roadside equipment, that is, the on-board equipment and the road test equipment are coordinated and complementary, so that the map can be comprehensively , No dead ends, full coverage, high-quality, real-time and effective updates are possible.
  • the information collected repeatedly by on-board equipment and roadside equipment in the process of map update, better update quality and effect will be obtained due to the diverse data sources.
  • the updating of the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information includes:
  • the base layer in the area map is updated.
  • the base layer mainly includes some basic static information such as roads, lanes, intersections, etc.
  • the update of the basic layer in the regional map by the edge network device not only needs to be reported to the core network device so that the core network device can update the global map, but can also be sent to the roadside device within the jurisdiction.
  • the updated area map is delivered to the roadside equipment, the area map can be divided into unit maps according to the jurisdiction of the roadside equipment, and each unit map is delivered to the corresponding roadside equipment.
  • the road traffic information collected and sent by the vehicle-end equipment and/or the roadside equipment is divided into conventional information and event information according to the emergency type, and the conventional information may include ordinary video, GPS positioning data, traffic flow data, etc.
  • event information is warning information that affects traffic and driving safety, such as road icing information, road surface water information, road construction information, weather status information (heavy rain, heavy fog), vehicle congestion information, traffic accidents, etc.
  • the edge network device determines the type of road traffic information collected and sent by the vehicle-end device and/or the roadside device. If it is conventional information, it will be stored first, and if it is event information, it will be processed immediately.
  • edge network equipment will regularly pull map information stored by roadside equipment in the area under its jurisdiction, divide the overall real environment into grids, match according to latitude and longitude, and calculate whether each area needs to update the basic layer. If it needs to be updated (the requirements for updating the base layer include: static, long-term, traffic impact, etc.), then perform modeling, model splicing and replacement, verification and synchronization, and upload the generated area update map at the same time to the core network equipment.
  • the updating of the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information includes:
  • the event layer in the area map is updated.
  • the event layer may also include at least one of notification information, reminder information and warning information for traffic participants obtained according to the event information.
  • the period at which the edge network device updates the basic layer in the regional map based on the road traffic information collected by the vehicle-end equipment and/or the roadside equipment may be a short period of days or hours. , while updates to the event layer are made in real time.
  • an artificial intelligence system can be introduced to analyze and determine the road traffic information collected by the vehicle-end equipment and/or roadside equipment, identify the event information therein, and perform more targeted updates, thereby greatly improving the map update efficiency.
  • the confidence level and the accuracy of event information recognition can be gradually improved through the collection of a large amount of experimental data and model training.
  • the information collection device such as a sensor
  • the roadside equipment may be a calibration device, so as to facilitate more purposeful data filtering during point cloud construction, and improve the efficiency of map update and modeling and success rate.
  • the edge network device can update the event layer in the regional map according to the type, scope of impact, and severity of the event.
  • the updated event layer needs to be delivered to the roadside equipment within the jurisdiction of the edge network equipment in time. That is to say, the edge network device will perform event analysis based on the road traffic information collected by the on-board devices and/or roadside devices within its jurisdiction, and alert the on-board devices within its jurisdiction of the event.
  • the artificial intelligence system it is possible to identify the traffic environment, whether the road surface state has changed and the level of impact on the traffic participants from the road traffic information collected by the vehicle-end equipment and/or the roadside equipment. This is used to update and respond to different layers.
  • the regional map update will synchronize upward and distribute the latest regional map data downward after the edge network device is constructed. It is divided into different levels for processing based on the layer type. For example, the basic layer will be synchronized upward and distributed downward, and its update cycle The longest, but the biggest impact, and the event layer update is only distributed down to the subscribed roadside devices, and then broadcasted by the roadside devices to the on-board devices.
  • the method before receiving the road traffic information collected and sent by the vehicle-end device and/or the roadside device, the method may further include:
  • the area map is a partial map in the global map initially constructed by the core network device
  • the unit map corresponding to the jurisdiction area of the roadside equipment in the area map is sent to the roadside equipment.
  • map storage, distribution, and synchronization use a single global server or cloud platform, ignoring the resource consumption and delay of data communication at all levels of the access network, backbone network, and support network.
  • the map server When the map is distributed and synchronized, it is considered that the map server only distributes the map data to the vehicle end, or only distributes the map data to the road end. Since the memory capacity of the vehicle-end equipment is often small, it cannot support the storage of massive global map data. In addition to the ultra-high bandwidth required to transmit the massive map data to the vehicle-end, it also brings the problem of long transmission delay, and the Decoding/converting massive map data into content that can be recognized by autonomous vehicles also requires a large amount of computing power, which brings unnecessary consumption to the driving behavior decision-making of autonomous vehicles during driving.
  • a hierarchical grid and layer-by-layer distribution mode is adopted, and the global map is gradually decomposed into regional maps and unit maps according to the grid.
  • Storage and distribution are carried out on network equipment, edge network equipment and roadside equipment, which greatly improves the real-time performance of map distribution and scene application efficiency.
  • the method may further include:
  • the edge network device updates the area map corresponding to its jurisdiction based on the road traffic information collected by the vehicle-end device and/or the roadside device, but also reports the update to the core network device for
  • the core network device will also update the global map based on road static information and/or road surrounding static information collected by professional map data acquisition devices.
  • the update can be used as a supplement to update the map based on the road traffic information collected by the vehicle-end device and/or the roadside device, which can further improve the accuracy and comprehensiveness of the map update.
  • the map is updated based on road static information and/or road surrounding static information collected by a professional map data collection device, it may not be the full amount of data in the whole area.
  • the map may further include a dynamic layer (or referred to as a positioning layer), which is mainly used to display dynamic location information of traffic participants.
  • a dynamic layer or referred to as a positioning layer
  • FIG. 5 is a schematic flowchart of a map update method provided in Embodiment 2 of the present application. The method is applied to a core network device and includes the following steps:
  • Step 51 Receive the updated regional map sent by one or more edge network devices
  • the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is updated according to the road traffic information collected and sent by the vehicle-end device and/or the roadside device;
  • Step 52 Update the global map according to the received updated regional map.
  • the core network device may be a core cloud or a core cloud platform.
  • the edge network device updates the area map within the jurisdiction of the edge network device according to the road traffic information collected by the vehicle-end device and/or the roadside device, and reports to the core after the update
  • the network device and the core network device update the global map based on the updated regional map.
  • updating the regional map and then updating the global map based on the updated regional map can reduce the computational cost of the update, so that the update cycle is short and the map has high immediacy.
  • the embodiment of the present application obtains diversified road traffic information from the vehicle-end equipment and/or roadside equipment based on the vehicle-road collaboration scenario, which can reduce the cost of map data collection, thereby reducing the later update, operation and maintenance of the map. difficulty and cost.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the core network device can update the base layer in the global map according to the updated base layer in the regional map.
  • the method before receiving the updated area map sent by one or more edge network devices, the method may further include:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • the core network device adopts the traditional high-precision map modeling method when constructing the initial global map. Referring to FIG. 6 , the process is as follows:
  • the surveying and mapping equipment classifies and uploads the surveying and mapping data to the core network equipment
  • the core network equipment uses its own powerful computing power for data calculation and modeling
  • the method may further include:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • the edge network device updates the area map corresponding to its jurisdiction based on the road traffic information collected by the vehicle-end device and/or the roadside device, but also reports the update to the core network device for
  • the core network device will also update the global map based on road static information and/or road surrounding static information collected by professional map data acquisition devices.
  • the update can be used as a supplement to update the map based on the road traffic information collected by the vehicle-end device and/or the roadside device, which can further improve the accuracy and comprehensiveness of the map update.
  • the map is updated based on road static information and/or road surrounding static information collected by a professional map data collection device, it may not be the full amount of data in the whole area.
  • the core network equipment uniformly collects the basic layers updated by each edge network equipment, and updates the global map data (mainly including road static information and/or road surrounding static information) collected by professional map data collection equipment.
  • the global map is segmented and synchronized according to the area under the jurisdiction of the edge network device.
  • the maps on each edge network device and the map of the core network device are managed by unified version control, and are used as the identification of map update.
  • the map has a version number in the segmentation grid. If the core network device finds that the map versions are inconsistent during the periodical synchronization process, it will update and synchronize, using the version number link as the upgrade standard.
  • a hierarchical grid and layer-by-layer distribution mode is adopted, and the initial global map and the road traffic collected based on the vehicle-end equipment and/or roadside equipment are combined.
  • the global map of information update is gradually decomposed into regional maps and unit maps according to the grid, and is stored and distributed on the core network equipment, edge network equipment and roadside equipment respectively, which greatly improves the real-time map distribution and scene application efficiency. .
  • the updated global map based on the updated regional map reported by the edge network device may not be delivered to the edge network device.
  • the core network equipment can also output global traffic situation analysis and related prediction decision information based on big data analysis and mining according to the road traffic information collected by the vehicle-end equipment and/or the roadside equipment, especially the event information, such as , optimization suggestions for traffic signal timing in a wide area, overall urban traffic situation, road traffic efficiency analysis, bottleneck optimization strategies and travel suggestions.
  • event information such as , optimization suggestions for traffic signal timing in a wide area, overall urban traffic situation, road traffic efficiency analysis, bottleneck optimization strategies and travel suggestions.
  • the embodiment of the present application provides a technical solution corresponding to the above-mentioned first embodiment, having the same application concept, and can achieve the same technical effect.
  • FIG. 7 is a schematic flowchart of a map updating method provided in Embodiment 3 of the present application. The method is applied to roadside equipment and includes the following steps:
  • Step 71 Send the road traffic information collected by the vehicle end device and/or the roadside device to the edge network device, so that the edge network device can map the area corresponding to the jurisdiction area of the edge network device according to the road traffic information. to update.
  • the edge network device updates the area map within the jurisdiction of the edge network device according to the road traffic information collected by the vehicle-end device and/or the roadside device, and reports to the core after the update
  • the network device and the core network device update the global map based on the updated regional map.
  • updating the regional map and then updating the global map based on the updated regional map can reduce the computational cost of the update, so that the update cycle is short and the map has high immediacy.
  • the embodiment of the present application obtains diversified road traffic information from the vehicle-end equipment and/or roadside equipment based on the vehicle-road collaboration scenario, which can reduce the cost of map data collection, thereby reducing the later update, operation and maintenance of the map. difficulty and cost.
  • the roadside equipment includes roadside sensors (or roadside sensing equipment) and roadside computing units.
  • the roadside sensors are used to collect road traffic information and upload it to the roadside.
  • the computing unit and the roadside computing unit are closely connected with the edge network device, and the road traffic information will be uploaded to the edge network device immediately.
  • the roadside computing unit is not only responsible for connecting with roadside sensors and collecting information collected by roadside sensors, but also for processing the information collected by roadside sensors and/or information collected and reported by vehicle end devices to generate emergency events , distribute synchronized warning events, and store and broadcast unit map data.
  • the on-board device may also include on-board sensors (or referred to as on-board sensing device) and on-board computing unit.
  • Vehicle-end sensors are used to collect road traffic information and upload it to the roadside computing unit, which will immediately upload it to the edge network device.
  • the vehicle-end device directly sends the collected road traffic information to the edge network device.
  • This method may be applicable to the case where the road traffic information collected by the vehicle-end sensor is event information.
  • the in-vehicle computing unit determines whether the road traffic information collected by the vehicle-end sensor is event information, and if so, sends it directly to the edge network device without going through the roadside device.
  • the on-board computing unit is responsible for connecting the on-board sensors, collecting the information collected by the on-board sensors, processing and generating emergency events and distributing synchronous early warning events.
  • the above-mentioned roadside sensors and vehicle-end sensors may specifically include cameras and/or radars.
  • the roadside device may perform data preprocessing and fusion processing on the collected road traffic information before sending the vehicle-end device and/or the road traffic information collected by the roadside device to the edge network device.
  • the area map includes an event layer; the method may further include:
  • the updated event layer is the event information in the road traffic information reported by the edge network device according to the roadside device and/or the vehicle-end device within the jurisdiction of the edge network device.
  • the event layer in the area map is updated to obtain;
  • the vehicle-end device monitors the event layer broadcast by the roadside device, and the event layer includes event information.
  • the vehicle-end device can mark the event in time.
  • the method before the sending to the edge network device the road traffic information collected by the vehicle-end device and/or the roadside device, the method may further include:
  • the receiving edge network device sends a unit map, where the unit map is a partial map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device.
  • the area map corresponding to the edge network device may be a partial map corresponding to the jurisdiction area of the edge network device in the initial global map constructed by the core network device.
  • map data is transmitted as much as possible in a private network or virtual channel between core network devices, edge network devices, and roadside computing units.
  • map data itself should also adopt a certain encryption strategy and authentication mechanism to ensure data security.
  • the map updating method provided by the embodiment of the present application (see FIG. 8 ) and the map system architecture (see FIG. 9 ) on which the map updating method is based are exemplified below.
  • the method for map updating in the embodiment of the present application includes the following steps:
  • Step 1 Roadside sensors collect road traffic information and upload it to the roadside computing unit;
  • step 1 includes the following steps:
  • Step 1.1 The drive test calculation unit reports the road traffic information in step 1 to the edge network device;
  • step 1.1 includes the following steps:
  • Step 1.1.1 If the road traffic information collected by the roadside sensor includes event information, the edge network device immediately updates the event layer in the area map corresponding to its jurisdiction;
  • Step 1.1.2 The edge network device synchronizes the updated event layer to the roadside computing unit
  • Step 1.2 The roadside computing unit stores the updated event layer and broadcasts it to the vehicle (specifically, the vehicle computing unit);
  • Step 2 The vehicle end (specifically, the vehicle end computing unit) monitors the broadcast of the roadside computing unit;
  • Step 3 The vehicle end (specifically, the vehicle end computing unit) updates the event layer after monitoring the updated event layer broadcast by the roadside computing unit.
  • Step 4 The vehicle-end sensor collects road traffic information and uploads it to the vehicle-end computing unit;
  • step 4 includes the following steps:
  • Step 4.1 If the road traffic information collected by the vehicle-side sensor includes event information, the vehicle-side computing unit directly uploads the road traffic information collected by the vehicle-side sensor to the edge network device;
  • step 4.1 includes the following steps:
  • Step 4.1.1 The edge network device updates the event layer in the area map corresponding to the jurisdiction area according to the road traffic information uploaded in step 4.1;
  • Step 4.1.2 The edge network device synchronizes the updated event layer to the roadside computing unit
  • Step 4.2 If the road traffic information collected by the vehicle-end sensor does not include event information, the vehicle-end computing unit uploads the road traffic information collected by the vehicle-end sensor to the roadside computing unit;
  • step 4.2 includes the following steps:
  • Step 4.2.1 The roadside computing unit uploads the road traffic information received in step 4.2 to the edge network device;
  • Step 5 The drive test calculation unit stores the road traffic information received in step 4.2;
  • Step 6 If the update conditions of the base layer in the area map are met, for example, the update cycle is reached, the edge network device updates the base layer of the area map within its jurisdiction;
  • Step 7 The edge network device uploads the updated base layer to the core network device
  • Step 8 The edge network device stores the updated base layer
  • Step 9 The core network device checks the map version and operation
  • Step 10 If synchronization is required, the core network device delivers and synchronizes map data
  • step 10 includes the following steps:
  • Step 10.1 The edge network device updates the map data based on the core network device
  • Step 11 The edge network device uploads the updated map data to the core network device.
  • the embodiments of the present application provide a map update method based on a vehicle-road collaboration scenario and an edge computing system, involving a vehicle-road network cloud architecture.
  • the embodiment of the present application adopts a map layered architecture system constructed by fused perception data collection, decision-making, analysis, and modeling in the road-end and vehicle-end composite mode, which can effectively utilize the end-side computing unit (including the vehicle-end computing unit and/or or roadside computing unit) low-latency and real-time computing, edge network equipment regional modeling and elastic computing, and core network equipment global modeling and overall situation analysis and other edge-cloud synergy characteristics, optimize map modeling and data distribution from the top
  • the traditional mode effectively improves real-time performance and distribution efficiency; in the face of massive map data files, adopting a hierarchical collection, processing, storage and distribution strategy can effectively solve the difficulty of storing massive map data and low distribution efficiency in the centralized mode.
  • the edge network device After the edge network device generates a local map (ie, a regional map), it can quickly and timely distribute map data to the area where it is located; compared with the traditional mode, the map has a higher degree of matching, accuracy and immediacy of the actual road information; Combined with vehicle-road collaboration and fusion perception technology, real-time road condition information can be effectively collected on the terminal side, the area and unit layers can be updated incrementally based on priorities, and timely feedback to the road and vehicle sides to synchronize real-time map data to provide more accurate, Smart and efficient map service.
  • Using the edge computing system framework it effectively solves the real-time and effectiveness problems of traditional high-precision map data storage, distribution and update, laying a foundation for the application and practice of high-precision maps in a wide area.
  • the embodiments of the present application give full play to the respective advantages of core network equipment and edge nodes. Compared with the traditional solution, not only the application level of the edge computing architecture is deepened, but also the collection of map and road information is diversified, and the map generation mechanism is also improved. Implemented a strategy of focusing on the edge to the core.
  • the map update method provided in the embodiment of the present application can be applied to high-precision map update.
  • high-precision maps have higher precision and more dimensions. The higher precision is reflected in that the map is accurate to the centimeter level, while the The dimension is more reflected in that it includes surrounding static information related to traffic in addition to road information.
  • the solutions provided by the embodiments of this application can be widely used in the fields of smart transportation and surveying and mapping, providing real-time, high-precision, and diversified information map service support for scenarios such as vehicle monitoring and autonomous driving, and providing real-time road condition judgment and driving for autonomous vehicles.
  • Behavioral decision-making provides rigid input to ensure driving safety and efficiency.
  • FIG. 10 is a schematic structural diagram of an edge network device according to Embodiment 4 of the present application.
  • the edge network device 100 includes:
  • the road traffic information receiving module 101 is configured to receive road traffic information collected and sent by the vehicle-end device and/or the roadside device;
  • the first update module 102 is configured to update the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information;
  • the first sending module 103 is configured to send the updated area map to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the first update module 102 includes:
  • the first updating unit is configured to update the base layer in the area map according to the road static information and/or the road surrounding static information in the road traffic information.
  • the first update module 102 includes:
  • the second updating unit is configured to update the event layer in the area map according to the event information in the road traffic information.
  • the edge network device 100 further includes:
  • a second receiving module configured to receive the area map corresponding to the jurisdiction area of the edge network device sent by the core network device
  • the first distribution module is configured to send the unit map corresponding to the jurisdiction area of the roadside equipment in the area map to the roadside equipment.
  • the edge network device 100 further includes:
  • the third receiving module is configured to receive the road static information and/or road surrounding static information collected by the core network device according to the map data acquisition device, and sent after updating the global map, corresponding to the jurisdiction area of the edge network device area map.
  • This embodiment of the present application is a product embodiment corresponding to the first embodiment of the above-mentioned method, and thus will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a core network device according to Embodiment 5 of the present application.
  • the core network device 110 includes:
  • the first receiving module 111 is configured to receive an updated regional map sent by one or more edge network devices, where the regional map is a map corresponding to the jurisdiction area of the edge network device, and the updated regional map is based on Update the road traffic information collected and sent by the on-board equipment and/or roadside equipment;
  • the second update module 112 is configured to update the global map according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the core network device 110 further includes:
  • the initial building block configured to build the initial global map
  • the core network device 110 further includes:
  • a third update module configured to update the global map according to the road static information and/or the road surrounding static information collected by the map data acquisition device;
  • the third distribution module is configured to send an area map corresponding to the jurisdiction area of the edge network device in the updated global map to the edge network device.
  • the embodiment of the present application is a product embodiment corresponding to the second embodiment of the above method, and thus will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a roadside device provided in Embodiment 6 of the present application.
  • the roadside device 120 includes:
  • the road traffic information sending module 121 is configured to send the road traffic information collected by the vehicle end device and/or the roadside device to the edge network device, so that the edge network device can send the edge network device to the edge network device according to the road traffic information.
  • the area map corresponding to the jurisdiction is updated.
  • the area map includes an event layer; the roadside device 120 further includes:
  • a fourth receiving module configured to receive an updated event layer, where the updated event layer is the road traffic reported by the edge network device according to roadside devices and/or vehicle-end devices within the jurisdiction of the edge network device
  • the event information in the information is obtained by updating the event layer in the area map
  • the broadcasting module is configured to broadcast the updated event layer to the vehicle-end device.
  • the roadside device 120 further includes:
  • the fifth receiving module is configured to receive a unit map sent by the edge network device, where the unit map is a partial map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device.
  • the embodiment of the present application is a product embodiment corresponding to the third embodiment of the above-mentioned method, so it is not repeated here.
  • FIG. 13 is a schematic structural diagram of an edge network device according to Embodiment 7 of the present application.
  • the edge network device 130 includes: a transceiver 131 and a processor 132;
  • the transceiver 131 is configured to receive road traffic information collected and sent by the vehicle-end equipment and/or the roadside equipment;
  • the processor 132 is configured to update the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information;
  • the transceiver 131 is further configured to send the updated area map to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the processor 132 is configured to update the base layer in the area map according to the road static information and/or the road surrounding static information in the road traffic information.
  • the processor 132 is configured to update the event layer in the area map according to the event information in the road traffic information.
  • the transceiver 131 is further configured to receive an area map corresponding to the jurisdiction area of the edge network device sent by the core network device;
  • the transceiver 131 is further configured to send the unit map corresponding to the jurisdiction area of the roadside equipment in the area map to the roadside equipment.
  • the transceiver 131 is further configured to receive the data sent by the core network device after updating the global map according to the road static information and/or road surrounding static information collected by the map data acquisition device, and the data sent by the core network device.
  • the area map corresponding to the jurisdiction area of the edge network device.
  • This embodiment of the present application is a product embodiment corresponding to the first embodiment of the above-mentioned method, and thus will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a core network device according to Embodiment 8 of the present application.
  • the core network device 140 includes: a transceiver 141 and a processor 142;
  • the transceiver 141 is configured to receive an updated area map sent by one or more edge network devices, where the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is based on Update the road traffic information collected and sent by the on-board equipment and/or roadside equipment;
  • the processor 142 is configured to update the global map according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the processor 142 is further configured to construct an initial global map
  • the transceiver 141 is further configured to send, in the initial global map, an area map corresponding to the jurisdiction area of the edge network device to the edge network device.
  • the processor 142 is further configured to update the global map according to the road static information and/or the road surrounding static information collected by the map data collection device;
  • the transceiver 141 is further configured to send an area map corresponding to the jurisdiction area of the edge network device in the updated global map to the edge network device.
  • the embodiment of the present application is a product embodiment corresponding to the second embodiment of the above method, and thus will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a roadside device according to Embodiment 9 of the present application.
  • the roadside device 150 includes: a transceiver 151 and a processor 152 ;
  • the transceiver 151 is configured to send the road traffic information collected by the vehicle-end device and/or the roadside device to the edge network device, so that the edge network device has jurisdiction over the edge network device according to the road traffic information.
  • the area map corresponding to the area is updated.
  • the area map includes an event layer
  • the transceiver 151 is further configured to receive an updated event layer, the updated event layer is reported by the edge network device according to the roadside device and/or the vehicle-end device within the jurisdiction of the edge network device.
  • the event information in the road traffic information is obtained by updating the event layer in the area map;
  • the transceiver 151 is further configured to broadcast the updated event layer to the vehicle-end device.
  • the transceiver 151 is further configured to receive a cell map sent by the edge network device, where the cell map is the area map corresponding to the jurisdiction area of the roadside device in the area map corresponding to the jurisdiction area of the edge network device. Part of the map.
  • the embodiment of the present application is a product embodiment corresponding to the third embodiment of the above-mentioned method, so it is not repeated here.
  • FIG. 16 is a schematic structural diagram of an edge network device provided in Embodiment 10 of the present application.
  • the edge network device 160 includes a processor 161, a memory 162, and is stored on the memory 162 and can be used in the processor.
  • the program running on 161; the processor 161 implements the following steps when executing the program:
  • the updated area map is sent to the core network device and/or the roadside device within the jurisdiction of the edge network device.
  • the processor 161 may further implement the following steps when executing the program:
  • the base layer in the area map is updated according to the road static information and/or the road surrounding static information in the road traffic information.
  • the processor 161 may further implement the following steps when executing the program:
  • the event layer in the area map is updated.
  • the processor 161 may further implement the following steps when executing the program:
  • the unit map corresponding to the jurisdiction area of the roadside equipment in the area map is sent to the roadside equipment.
  • the processor 161 may further implement the following steps when executing the program:
  • FIG. 17 is a schematic structural diagram of a core network device provided in Embodiment 11 of the present application.
  • the core network device 170 includes a processor 171, a memory 172, and is stored in the memory 172 and can be processed in the process.
  • the program running on the processor 171; the processor 171 implements the following steps when executing the program:
  • the area map is a map corresponding to the jurisdiction area of the edge network device, and the updated area map is based on the vehicle-end device and/or roadside
  • the road traffic information collected and sent by the device is updated;
  • the global map is updated according to the received updated regional map.
  • the updated area map includes a base layer updated according to road static information and/or road surrounding static information in the road traffic information.
  • the processor 171 may further implement the following steps when executing the program:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • the processor 171 may further implement the following steps when executing the program:
  • the area map corresponding to the jurisdiction area of the edge network device is sent to the edge network device.
  • FIG. 18 is a schematic structural diagram of a roadside device according to Embodiment 12 of the present application.
  • the roadside device 180 includes a processor 181, a memory 182, and is stored in the memory 182 and can be processed in the process.
  • the program running on the processor 181; the processor 181 implements the following steps when executing the program:
  • the road traffic information collected by the vehicle-end device and/or the roadside device is sent to the edge network device, so that the edge network device updates the area map corresponding to the jurisdiction area of the edge network device according to the road traffic information.
  • the area map includes an event layer; when the processor 181 executes the program, the following steps may also be implemented:
  • the updated event layer is the event information in the road traffic information reported by the edge network device according to the roadside device and/or the vehicle-end device within the jurisdiction of the edge network device.
  • the event layer in the area map is updated to obtain;
  • the processor 181 may further implement the following steps when executing the program:
  • the edge network device Before sending the road traffic information collected by the vehicle-end device and/or the roadside device to the edge network device, receive a unit map sent by the edge network device, and the unit map is in the area map corresponding to the jurisdiction area of the edge network device. A partial map corresponding to the jurisdiction of the roadside equipment.
  • the thirteenth embodiment of the present application provides a readable storage medium on which a program is stored, and when the program is executed by a processor, implements the steps in any one of the above-mentioned map updating methods in the first to third embodiments.
  • a program is stored, and when the program is executed by a processor, implements the steps in any one of the above-mentioned map updating methods in the first to third embodiments.
  • the above-mentioned readable storage medium includes a computer-readable storage medium.
  • Computer-readable storage media includes both persistent and non-permanent, removable and non-removable media, and storage of information can be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM) ), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, magnetic cartridges Magnetic tape, magnetic tape storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • magnetic cartridges Magnetic tape magnetic tape storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Abstract

本申请提供一种地图更新方法、设备和可读存储介质,能够实现地图更新周期短、及时性高。地图更新方法包括:接收车端设备和/或路侧设备采集并发送的道路交通信息;根据道路交通信息对边缘网络设备管辖区域对应的区域地图进行更新;将更新后的区域地图发送至核心网络设备和/或边缘网络设备管辖区域内的路侧设备。

Description

地图更新方法及设备
相关申请的交叉引用
本申请基于申请号为202110387502.4、申请日为2021年04月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智慧交通技术领域,特别涉及一种地图更新方法及设备。
背景技术
据预测,至2040年,智慧交通出行服务提供商对PKMT(按车型划分的总旅客公里数)的占比将占高达55%,2025年自动驾驶市场规模预计超3000亿元。自动驾驶汽车成为新兴业态的重要载体,围绕汽车的数据增值、共享出行、协同管理等新兴商业模式具有较大的市场价值,然而私人拥有的自动驾驶车辆仅占11%,自动驾驶的推广将和出行服务同步增长,而高精度地图作为高精度定位技术的刚性需求,是实现自动驾驶的关键能力之一,将成为对自动驾驶相关传感器的有效补充,为车辆提供了更加安全可靠的感知能力与驾驶体验。与传统的导航电子地图相比,服务于自动驾驶的高精度地图在各方面要求更高,并能配合传感器与算法,为决策层提供支持。
相关技术中,传统方案(参阅图1)是通过测绘设备采集原始测绘数据,上传至云平台进行地图建模并生成高精度地图,然后向外输出地图服务。更新的时候也是采用同样的方式,这种基本采取全量构建模式的传统高精度地图更新方式,更新高清地图的周期较长,无法实时反映道路状态及相关变化。
发明内容
有鉴于此,本申请实施例提供一种地图更新方法及设备。
为解决相关技术问题,第一方面,本申请实施例提供一种地图更新方法,应用于边缘网络设备,包括:
接收车端设备和/或路侧设备采集并发送的道路交通信息;
根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图 进行更新;
将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
上述方案中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
上述方案中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
上述方案中,所述接收车端设备和/或路侧设备采集并发送的道路交通信息之前,所述方法还包括:
接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
上述方案中,所述方法还包括:
接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
第二方面,本申请实施例还提供一种地图更新方法,应用于核心网络设备,包括:
接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
根据接收到的所述更新后的区域地图,更新全局地图。
上述方案中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
上述方案中,所述接收一个或多个边缘网络设备发送的更新后的区域地图之前,所述方法还包括:
构建初始全局地图;
将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
上述方案中,所述方法还包括:
根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区 域地图发送至所述边缘网络设备。
第三方面,本申请实施例还提供一种地图更新方法,应用于路侧设备,包括:
向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
上述方案中,所述区域地图中包括事件图层;所述方法还包括:
接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
将所述更新的事件图层,向车端设备广播。
上述方案中,所述向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息之前,所述方法还包括:
接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
第四方面,本申请实施例还提供一种边缘网络设备,包括:
道路交通信息接收模块,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
第一更新模块,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
第一发送模块,配置为将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
上述方案中,所述第一更新模块包括:
第一更新单元,配置为根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
上述方案中,所述第一更新模块包括:
第二更新单元,配置为根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
上述方案中,所述边缘网络设备还包括:
第二接收模块,配置为接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
第一分发模块,配置为将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
上述方案中,所述边缘网络设备还包括:
第三接收模块,配置为接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
第五方面,本申请实施例还提供一种核心网络设备,包括:
第一接收模块,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
第二更新模块,配置为根据接收到的所述更新后的区域地图,更新全局地图。
上述方案中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
上述方案中,所述核心网络设备还包括:
初始构建模块,配置为构建初始全局地图;
第二分发模块,配置为将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
上述方案中,所述核心网络设备还包括:
第三更新模块,配置为根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
第三分发模块,配置为将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
第六方面,本申请实施例还提供一种路侧设备,包括:
道路交通信息发送模块,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
上述方案中,所述区域地图中包括事件图层;所述路侧设备还包括:
第四接收模块,配置为接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
广播模块,配置为将所述更新的事件图层,向车端设备广播。
上述方案中,所述路侧设备还包括:
第五接收模块,配置为接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
第七方面,本申请实施例还提供一种边缘网络设备,包括:收发器和处理器;
所述收发器,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
所述处理器,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
所述收发器,还配置为将更新后的区域地图发送至核心网络设备和/或 所述边缘网络设备管辖区域内的路侧设备。
上述方案中,所述处理器,配置为根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
上述方案中,所述处理器,配置为根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
上述方案中,所述收发器,还配置为接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
所述收发器,还配置为将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
上述方案中,所述收发器,还配置为接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
第八方面,本申请实施例还提供一种核心网络设备,包括:收发器和处理器;
所述收发器,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
所述处理器,配置为根据接收到的所述更新后的区域地图,更新全局地图。
上述方案中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
上述方案中,所述处理器,还配置为构建初始全局地图;
所述收发器,还配置为将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
上述方案中,所述处理器,还配置为根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
所述收发器,还配置为将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
第九方面,本申请还提供一种路侧设备,包括:收发器和处理器;
所述收发器,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
上述方案中,所述区域地图中包括事件图层;
所述收发器,还配置为接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
所述收发器,还配置为将所述更新的事件图层,向车端设备广播。
上述方案中,所述收发器,还配置为接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
第十方面,本申请实施例还提供一种边缘网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现上述任一种应用于边缘网络设备的地图更新方法中的步骤。
第十一方面,本申请实施例还提供一种核心网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现上述任一种应用于核心网络设备的地图更新方法中的步骤。
第十二方面,本申请实施例还提供一种路侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现上述任一种应用于路侧设备的地图更新方法中的步骤。
第十三方面,本申请实施例还提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现上述任一种地图更新方法中的步骤。
本申请的上述技术方案的有益效果如下:
本申请实施例提供的地图更新方法,由边缘网络设备根据车端设备和/或路侧设备采集的道路交通信息对该边缘网络设备管辖区域内的区域地图进行更新,不需要像传统地图更新那样,利用专业的地图数据测绘设备对全局区域内的地图数据进行采集并采取全量构建模式构建全局地图,由于车端设备和/或路侧设备可以实时采集道路交通信息,因此数据采集周期短,另外,针对区域地图进行更新,可以降低更新的计算成本,使得更新周期短、地图即时性高。另外,本申请实施例基于车路协同场景,从车端设备和路侧设备获取多元化的道路交通信息,能够降低地图数据采集的成本,从而降低了地图在后期更新、运维方面的难度和成本,至少能够解决相关技术中高精度地图更新方式,更新周期较长,无法实时反映道路状态及相关变化的问题。
附图说明
图1为传统地图构建和使用架构示意图;
图2为传统地图构建流程示意图;
图3为传统地图使用流程示意图;
图4为本申请实施例中的第一种地图更新方法的流程示意图;
图5为本申请实施例中的第二种地图更新方法的流程示意图;
图6为本申请实施例中的一种初始全局地图构建流程示意图;
图7为本申请实施例中的第三种地图更新方法的流程示意图;
图8为本申请实施例中的一种整体的地图更新流程示意图;
图9为本申请实施例中的一种地图系统架构示意图;
图10为本申请实施例中的第一种边缘网络设备的结构示意图;
图11为本申请实施例中的第一种核心网络设备的结构示意图;
图12为本申请实施例中的第一种路侧设备的结构示意图;
图13为本申请实施例中的第二种边缘网络设备的结构示意图;
图14为本申请实施例中的第二种核心网络设备的结构示意图;
图15为本申请实施例中的第二种路侧设备的结构示意图;
图16为本申请实施例中的第三种边缘网络设备的结构示意图;
图17为本申请实施例中的第三种核心网络设备的结构示意图;
图18为本申请实施例中的第三种路侧设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
参阅图2,传统高精度地图建模流程如下:
1、专业的地图数据测绘设备通过雷达、摄像头、定位设备采集道路和周围环境信息,该专业的地图数据测绘设备可以是车辆形式、无人机形式等,地图数据测绘设备还可以是卫星。
2、将采集数据按类归类并上传至专业地图建模处理服务器。
3、处理服务器需要对采集的数据、视频结合全球定位系统(GPS,Global Positioning System)进行道路外物体的位置计算和道路、以及道路上物体的建模。
4、建模完成后,需要结合原始视频、GPS来验证高精度地图的正确性、完整性。
5、最终存储在服务器,以供后续使用。
传统高精度地图的更新流程与上述的建模流程基本一致。
参阅图3,传统高精度地图的使用流程如下:
1、使用者通过在线(中心库下载)或者离线的方式获取所在区域高精度地图信息。
2、接入自定义系统。
3、根据自有定位信息和交互终端要求进行高精度地图展示。
由上述描述可以看出,传统高精度地图更新采取单一服务器静态全局 建模,这种方式需要构建大规模的数据中心,导致更新的计算成本高,更新周期也长,无法满足自动驾驶车辆对地图实时性的需求。
本申请实施例针对传统高精度地图更新过程中数据采集量大、周期长,地图更新缓慢,导致地图即时性差问题,提出了以下地图更新方法。
参阅图4,图4为本申请实施例一提供的一种地图更新方法的流程示意图,该方法应用于边缘网络设备,包括以下步骤:
步骤41:接收车端设备和/或路侧设备采集并发送的道路交通信息;
其中,道路交通信息包括交通路面及周围状态信息,具体可以分为道路和/或道路周边静态信息、事件信息。
车端设备和/或路侧设备对道路交通信息的采集可以实时进行。
步骤42:根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
步骤43:将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
其中,所述路侧设备可以包括除该路侧设备以外的其他路侧设备,也可以包括步骤41中发送道路交通信息的路侧设备。
另外,所述边缘网络设备还可以将更新后的区域地图发送至管辖区域相邻的边缘网络设备。
本申请实施例中,所述边缘网络设备可以是边缘云,或称为边缘云平台。
本申请实施例提供的地图更新方法,由边缘网络设备根据车端设备和/或路侧设备采集的道路交通信息对该边缘网络设备管辖区域内的区域地图进行更新,不需要像传统地图更新那样,利用专业的地图数据测绘设备对全局区域内的地图数据进行采集并采取全量构建模式构建全局地图,由于车端设备和/或路侧设备可以实时采集道路交通信息,因此数据采集周期短。另外,针对区域地图进行更新,可以降低更新的计算成本,使得更新周期短、地图即时性高。另外,本申请实施例基于车路协同场景,从车端设备和路侧设备获取多元化的道路交通信息,能够降低地图数据采集的成本,从而降低了地图在后期更新、运维方面的难度和成本。
下面举例说明上述地图更新方法。
本申请实施例中,关于道路交通信息的采集,可以以路侧设备采集为基础,车端设备采集补充路侧设备盲区,也即车端设备与路测设备协同互补,使得对地图进行全方位、无死角、全覆盖、高质量、实时有效的更新成为可能。另外,针对车端设备和路侧设备交叉重复采集的信息,在地图更新过程中会因为数据源多样而获得更好的更新质量及效果。
在一实施例中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更 新所述区域地图中的基础图层。
其中,所述基础图层主要包含道路、车道、路口等一些基本静态信息。
边缘网络设备对区域地图中基础图层的更新,不仅需要上报至核心网络设备,以使得核心网络设备更新全局地图,还可以下发至管辖区域内的路侧设备。在将更新后的区域地图下发至路侧设备时可以按照路侧设备的管辖区域将区域地图划分为单元地图,并将各单元地图下发至相应的路侧设备。
本申请实施例中,将车端设备和/或路侧设备采集并发送的道路交通信息根据紧急类型分为常规信息和事件信息,常规信息可以包括普通的视频、GPS定位数据、车流量数据等,而事件信息是影响交通驾驶安全的告警类信息,例如包括路面结冰信息、路面积水信息、道路施工信息、气象状态信息(大雨、大雾)、车辆拥堵信息、交通事故等。边缘网络设备对车端设备和/或路侧设备采集并发送的道路交通信息进行类型判断,如果是常规信息则首先进行存储,如果是事件信息则会立刻处理。
具体地,边缘网络设备针对非事件会定期拉取所辖区域路侧设备存储的地图类信息,将整体的真实环境进行网格切分,按照经纬度匹配,计算各区域是否需要更新基础图层,如果需要更新(更新基础图层需要满足的要求包括:静态性、长期性、交通影响性等),则进行建模、模型拼接与替换、验证及同步下发,同时将生成的区域更新地图上传至核心网络设备。
在一实施例中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
其中,所述事件图层除了包括事件信息外,还可以包括根据事件信息得到的针对交通参与者的通知信息、提醒信息和告警信息中的至少之一。
本申请实施例中,边缘网络设备基于车端设备和/或路侧设备采集的道路交通信息对区域地图中的基础图层进行更新的周期可以是以天为单位或以小时为单位的短周期,而对事件图层的更新是实时进行。
具体地,可以引入人工智能系统,对车端设备和/或路侧设备采集的道路交通信息进行分析与判定,识别其中的事件信息,进行更有针对性的更新,较大提高地图更新效率。对于人工智能系统,可以通过大量实验数据的收集与模型训练来逐步提升其置信度和事件信息识别的准确性。其中,车端设备和/或路侧设备中的信息采集装置(例如传感器)可以是标定设备,从而便于在进行点云构建时能够更有目的性地开展数据过滤,提高地图更新建模的效率与成功率。
具体地,边缘网络设备可以根据事件的类型、影响范围以及严重程度更新区域地图中的事件图层。
另外,更新的事件图层需要及时下发至边缘网络设备管辖区域内的路 侧设备。也就是说,边缘网络设备会基于其管辖区域内的车端设备和/或路侧设备采集的道路交通信息进行事件分析,并对其管辖区域内的车端设备进行事件提醒。
本申请实施例中,通过人工智能系统,可以从车端设备和/或路侧设备采集的道路交通信息识别出交通环境、路面状态是否发生变化及其对交通参与者所产生的影响级别,由此进行不同图层的更新与响应。区域地图更新在边缘网络设备完成构建后会向上同步及向下分发最新区域地图数据,基于图层类别分为不同层次处理,例如,基础图层会被向上同步及向下分发处理,其更新周期最长,但影响最大,而事件图层更新后仅向下分发至订阅的路侧设备,然后由路侧设备广播至车端设备。
在一实施例中,所述接收车端设备和/或路侧设备采集并发送的道路交通信息之前,所述方法还可以包括:
接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;该区域地图是核心网络设备初始构建的全局地图中的部分地图;
将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
这里,传统地图存储、分发、同步采用单一全局服务器或云平台,忽略了数据通信在接入网、骨干网、支撑网各级别网络中的资源消耗和时延。在地图分发与同步时单一地考虑了地图服务器仅分发地图数据到车端,或仅分发地图数据到路端。由于车端设备的存储器容量往往较小,不能支撑存储全局的海量地图数据,将海量地图数据传送到车端除了需要超高的带宽以外,也带来了传输时延较长的问题,而且将海量地图数据进行解码/转换为自动驾驶汽车能够识别的内容也需要消耗较大的算力,给自动驾驶汽车在行驶过程中驾驶行为决策带来不必要的消耗。
本申请实施例中,基于地图海量数据文件及地图低时延需求的特性,采取分级网格、逐层分发的模式,将全局地图按照网格逐步分解为区域地图和单元地图,并分别在核心网络设备、边缘网络设备及路侧设备上进行存储与分发,极大地提高了地图分发实时性及场景应用效率。
在一实施例中,所述方法还可以包括:
接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
也就是说,本申请实施例中,不仅由边缘网络设备基于车端设备和/或路侧设备采集的道路交通信息对其管辖区域对应的区域地图进行更新,然后将更新上报至核心网络设备进行全局地图更新,核心网络设备还会基于专业的地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新。该更新可以作为基于车端设备和/或路侧设备采集的道路交通信息对地图进行更新的补充,能够进一步提升地图更新的准确性和 全面性。在基于专业的地图数据采集设备采集的道路静态信息和/或道路周边静态信息对地图进行更新时可以不是全域范围内的全量数据。
本申请实施例中,所述地图还可以包括动态图层(或称为定位图层),主要用于展示交通参与者动态位置信息。
参阅图5,图5是本申请实施例二提供的一种地图更新方法的流程示意图,该方法应用于核心网络设备,包括以下步骤:
步骤51:接收一个或多个边缘网络设备发送的更新后的区域地图;
其中,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
步骤52:根据接收到的所述更新后的区域地图,更新全局地图。
其中,核心网络设备可以是核心云或核心云平台。
本申请实施例提供的地图更新方法,由边缘网络设备根据车端设备和/或路侧设备采集的道路交通信息对该边缘网络设备管辖区域内的区域地图进行更新,并在更新之后上报至核心网络设备,核心网络设备基于更新的区域地图进行全局地图的更新。不需要像传统地图更新那样,利用专业的地图数据测绘设备对全局区域内的地图数据进行采集并采取全量构建模式构建全局地图,由于车端设备和/或路侧设备可以实时采集道路交通信息,因此数据采集周期短。另外,针对区域地图进行更新,然后基于更新的区域地图进行全局地图的更新,可以降低更新的计算成本,使得更新周期短、地图即时性高。另外,本申请实施例基于车路协同场景,从车端设备和/或路侧设备获取多元化的道路交通信息,能够降低地图数据采集的成本,从而降低了地图在后期更新、运维方面的难度和成本。
在一实施例中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
然后,核心网络设备可以根据区域地图中更新的基础图层,更新全局地图中的基础图层。
在一实施例中,所述接收一个或多个边缘网络设备发送的更新后的区域地图之前,所述方法还可以包括:
构建初始全局地图;
将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
本申请实施例中,核心网络设备在构建初始全局地图时,采用传统高精度地图建模方式,参阅图6,流程如下:
1、测绘设备将测绘数据归类并上传至核心网络设备;
2、核心网络设备使用自身强大的计算能力进行数据计算和建模;
3、建模完成后,进行校验、校准;
4、最终存储在服务器。
在一实施例中,所述方法还可以包括:
根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
也就是说,本申请实施例中,不仅由边缘网络设备基于车端设备和/或路侧设备采集的道路交通信息对其管辖区域对应的区域地图进行更新,然后将更新上报至核心网络设备进行全局地图更新,核心网络设备还会基于专业的地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新。该更新可以作为基于车端设备和/或路侧设备采集的道路交通信息对地图进行更新的补充,能够进一步提升地图更新的准确性和全面性。在基于专业的地图数据采集设备采集的道路静态信息和/或道路周边静态信息对地图进行更新时可以不是全域范围内的全量数据。
本申请实施例中,核心网络设备统一收集各边缘网络设备更新的基础图层,结合专业的地图数据采集设备采集的非全量地图数据(主要包括道路静态信息和/或道路周边静态信息)更新全局地图,按边缘网络设备所管辖区域进行全局地图切分与下发同步。各个边缘网络设备上的地图以及核心网络设备地图都以统一的版本控制进行管理,并作为地图更新的标识,地图在切分网格中都有一个版本号。如果核心网络设备在周期性同步过程中,发现地图版本不一致,则进行更新同步,以版本号链路为升级标准。
本申请实施例中,基于地图海量数据文件及地图低时延需求的特性,采取分级网格、逐层分发的模式,将初始全局地图和基于车端设备和/或路侧设备采集的道路交通信息更新的全局地图,按照网格逐步分解为区域地图和单元地图,并分别在核心网络设备、边缘网络设备及路侧设备上进行存储与分发,极大地提高了地图分发实时性及场景应用效率。对于基于边缘网络设备上报的更新的区域地图进行更新的全局地图可以不下发至边缘网络设备。
另外,核心网络设备还可以根据车端设备和/或所述路侧设备采集的道路交通信息,尤其是其中的事件信息,基于大数据分析及挖掘输出全域交通态势分析及相关预测决策信息,例如,广域范围交通信号灯配时优化建议、城市交通状况整体态势、道路通行效率分析、瓶颈优化策略及出行建议。
本申请实施例提供的是与上述实施例一对应的、具有相同申请构思的技术方案,且能达到相同的技术效果,详细可参阅上述实施例一,此处不再赘述。
参阅图7,图7是本申请实施例三提供的一种地图更新方法的流程示意图,该方法应用于路侧设备,包括以下步骤:
步骤71:向边缘网络设备发送车端设备和/或所述路侧设备采集的道路 交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
本申请实施例提供的地图更新方法,由边缘网络设备根据车端设备和/或路侧设备采集的道路交通信息对该边缘网络设备管辖区域内的区域地图进行更新,并在更新之后上报至核心网络设备,核心网络设备基于更新的区域地图进行全局地图的更新。不需要像传统地图更新那样,利用专业的地图数据测绘设备对全局区域内的地图数据进行采集并采取全量构建模式构建全局地图,由于车端设备和/或路侧设备可以实时采集道路交通信息,因此数据采集周期短。另外,针对区域地图进行更新,然后基于更新的区域地图进行全局地图的更新,可以降低更新的计算成本,使得更新周期短、地图即时性高。另外,本申请实施例基于车路协同场景,从车端设备和/或路侧设备获取多元化的道路交通信息,能够降低地图数据采集的成本,从而降低了地图在后期更新、运维方面的难度和成本。
实际应用时,参阅图8和图9,所述路侧设备包括路侧传感器(或称为路侧感知设备)和路侧计算单元,路侧传感器用于采集道路交通信息,并上传至路侧计算单元,路侧计算单元同边缘网络设备紧密相连,道路交通信息会立刻上传至边缘网络设备。路侧计算单元,不仅负责与路侧传感器连接,收集路侧传感器采集到的信息,还用于对路侧传感器采集到的信息和/或车端设备采集并上报的信息进行处理,生成紧急事件,分发同步预警事件,以及存储与广播单元地图数据。
另外,参阅图8和图9,车端设备(也可以称为车载设备)也可以包括车端传感器(或称为车载感知设备)和车载计算单元。车端传感器用于采集道路交通信息,并上传至路侧计算单元,路侧计算单元会立即上传至边缘网络设备。或者,车端设备直接将采集的道路交通信息发送至边缘网络设备,这种方式可以适用于车端传感器采集的道路交通信息是事件信息的情况。例如,车载计算单元判断车端传感器采集的道路交通信息是否是事件信息,如果是,则不经过路侧设备直接发送至边缘网络设备。车载计算单元,负责连接车端传感器,收集车端传感器采集的信息,并处理生成紧急事件、分发同步预警事件。
上述路侧传感器、车端传感器具体可以包括摄像头和/或雷达等。
实际应用时,所述路侧设备在向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息之前,可以对采集到的道路交通信息进行数据预处理和融合处理。
在一实施例中,所述区域地图中包括事件图层;所述方法还可以包括:
接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
将所述更新的事件图层,向车端设备广播。
本申请实施例中,车端设备监听路侧设备广播的事件图层,事件图层包括事件信息。另外,车端设备在监听到路侧广播的事件信息后,可以及时进行事件标记。
在一实施例中,所述向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息之前,所述方法还可以包括:
接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
其中,所述边缘网络设备对应的区域地图可以是核心网络设备构建的初始全局地图中与所述边缘网络设备管辖区域对应的部分地图。
本申请实施例中,考虑到地图数据涉及高安全需求,在核心网络设备、边缘网络设备及路侧计算单元之间尽可能采用专网或虚拟通道的方式进行地图数据传输。另外,地图数据本身也应采取一定的加密策略与认证机制,确保数据安全。
下面举例说明本申请实施例提供的地图更新方法(参阅图8)和该地图更新方法所基于的地图系统架构(参阅图9)。本申请实施例地图更新的方法,包括以下步骤:
步骤1:路侧传感器采集道路交通信息并上传至路侧计算单元;
具体地,步骤1包括以下步骤:
步骤1.1:路测计算单元将步骤1中的道路交通信息上报至边缘网络设备;
其中,步骤1.1包括以下步骤:
步骤1.1.1:如果路侧传感器采集的道路交通信息中包括事件信息,则边缘网络设备立即更新其管辖区域对应的区域地图中的事件图层;
步骤1.1.2:边缘网络设备将更新的事件图层同步至路侧计算单元;
步骤1.2:路侧计算单元存储更新的事件图层并向车端(具体是车端计算单元)广播;
步骤2:车端(具体是车端计算单元)监听路侧计算单元的广播;
步骤3:车端(具体是车端计算单元)在监听到路侧计算单元广播的更新的事件图层后,更新事件图层。
步骤4:车端传感器采集道路交通信息并上传至车端计算单元;
具体地,步骤4包括以下步骤:
步骤4.1:如果车端传感器采集的道路交通信息包括事件信息,则车端计算单元直接将车端传感器采集的道路交通信息上传至边缘网络设备;
其中,步骤4.1包括以下步骤:
步骤4.1.1:边缘网络设备根据步骤4.1上传的道路交通信息更新管辖区域对应的区域地图中的事件图层;
步骤4.1.2:边缘网络设备将更新的事件图层同步至路侧计算单元;
步骤4.2:如果车端传感器采集的道路交通信息不包括事件信息,则车 端计算单元将车端传感器采集的道路交通信息上传至路侧计算单元;
其中,步骤4.2包括以下步骤:
步骤4.2.1:路侧计算单元将在步骤4.2收到的道路交通信息上传至边缘网络设备;
步骤5:路测计算单元对在步骤4.2收到的道路交通信息进行存储;
步骤6:如果满足区域地图中的基础图层更新条件,例如达到更新周期,则边缘网络设备对其管辖区域内的区域地图的基础图层进行更新;
步骤7:边缘网络设备将更新的基础图层上传至核心网络设备;
步骤8:边缘网络设备对更新的基础图层进行存储;
步骤9:核心网络设备检查地图版本、运行情况;
步骤10:如果需要同步,核心网络设备下发、同步地图数据;
具体地,步骤10包括以下步骤:
步骤10.1:边缘网络设备基于核心网络设备下发的地图数据进行更新;
步骤11:边缘网络设备将更新后的地图数据上传至核心网络设备。
综上所述,本申请实施例提供了一种基于车路协同场景与边缘计算体系的地图更新方法,涉及车路网云体系结构。本申请实施例采取由路端、车端复合模式下的融合感知数据采集、决策、分析、建模所构建的地图分层架构体系,能够有效利用端侧计算单元(包括车端计算单元和/或路侧计算单元)低时延与实时计算、边缘网络设备区域建模与弹性计算、以及核心网络设备全局建模与总体态势分析等边云协同特性,优化了地图建模与数据分发自上而下的传统模式,有效地提升了实时性与分发效率;面对地图海量数据文件,采取分级收集、处理、存储及分发策略,可以有效解决集中模式下海量地图数据存储难,分发效率低等问题;边缘网络设备生成局部地图(即区域地图)后,能够快速、及时的向所在区域进行地图数据分发;相比传统模式,地图与实际道路信息的匹配度、准确性和即时性更高;结合车路协同、融合感知技术,在端侧能够有效收集实时路况信息,基于优先级增量更新区域及单元图层,并及时反馈至路端和车端,同步实时地图数据,提供更准确、智能、高效的地图服务。利用边缘计算体系框架,有效解决了传统高精度地图数据存储、分发和更新的实时性和有效性问题,为高精度地图在广域范围内的应用实践奠定了基础。
本申请实施例基于边云协同充分发挥核心网络设备与边缘节点各自的优势,相比传统方案不但深化了边缘计算架构的应用层次,而且实现了地图、道路信息的采集多元化,地图生成机制也实施了边缘向核心集中的策略。
本申请实施例提供的地图更新方法可以适用于高精度地图更新,高精度地图相比传统电子导航地图拥有更高的精度及更多的维度,其中精度更高体现在地图精确到厘米级别,而维度更多体现在其包括了除道路信息之外的与交通相关的周围静态信息。
本申请实施例提供的方案可广泛应用于智慧交通及测绘领域,为运载工具监控、自动驾驶等场景提供实时、高精度、多元化信息的地图服务支撑,为自动驾驶汽车进行实时路况判断、行驶行为决策提供刚性的输入,保障行驶的安全与效率。
参阅图10,图10是本申请实施例四提供的一种边缘网络设备的结构示意图,该边缘网络设备100包括:
道路交通信息接收模块101,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
第一更新模块102,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
第一发送模块103,配置为将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
其中,在一实施例中,所述第一更新模块102包括:
第一更新单元,配置为根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
其中,在一实施例中,所述第一更新模块102包括:
第二更新单元,配置为根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
在一实施例中,所述边缘网络设备100还包括:
第二接收模块,配置为接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
第一分发模块,配置为将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
在一实施例中,所述边缘网络设备100还包括:
第三接收模块,配置为接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
本申请实施例是与上述方法实施例一对应的产品实施例,故在此不再赘述,详细请参阅上述实施例一。
参阅图11,图11是本申请实施例五提供的一种核心网络设备的结构示意图,该核心网络设备110包括:
第一接收模块111,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
第二更新模块112,配置为根据接收到的所述更新后的区域地图,更新全局地图。
在一实施例中,所述更新后的区域地图包括根据所述道路交通信息中 的道路静态信息和/或道路周边静态信息更新的基础图层。
在一实施例中,所述核心网络设备110还包括:
初始构建模块,配置为构建初始全局地图;
在一实施例中,所述核心网络设备110还包括:
第三更新模块,配置为根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
第三分发模块,配置为将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
本申请实施例是与上述方法实施例二对应的产品实施例,故在此不再赘述,详细请参阅上述实施例二。
参阅图12,图12是本申请实施例六提供的一种路侧设备的结构示意图,该路侧设备120包括:
道路交通信息发送模块121,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
在一实施例中,所述区域地图中包括事件图层;所述路侧设备120还包括:
第四接收模块,配置为接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
广播模块,配置为将所述更新的事件图层,向车端设备广播。
在一实施例中,所述路侧设备120还包括:
第五接收模块,配置为接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
本申请实施例是与上述方法实施例三对应的产品实施例,故在此不再赘述,详细请参阅上述实施例三。
参阅图13,图13是本申请实施例七提供的一种边缘网络设备的结构示意图,该边缘网络设备130包括:收发器131和处理器132;
所述收发器131,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
所述处理器132,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
所述收发器131,还配置为将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
在一实施例中,所述处理器132,配置为根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
在一实施例中,所述处理器132,配置为根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
在一实施例中,所述收发器131,还配置为接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
所述收发器131,还配置为将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
在一实施例中,所述收发器131,还配置为接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
本申请实施例是与上述方法实施例一对应的产品实施例,故在此不再赘述,详细请参阅上述实施例一。
参阅图14,图14是本申请实施例八提供的一种核心网络设备的结构示意图,该核心网络设备140包括:收发器141和处理器142;
所述收发器141,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
所述处理器142,配置为根据接收到的所述更新后的区域地图,更新全局地图。
其中,在一实施例中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
在一实施例中,所述处理器142,还配置为构建初始全局地图;
所述收发器141,还配置为将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
其中,所述处理器142,还配置为根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
所述收发器141,还配置为将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
本申请实施例是与上述方法实施例二对应的产品实施例,故在此不再赘述,详细请参阅上述实施例二。
参阅图15,图15是本申请实施例九提供的一种路侧设备的结构示意图,该路侧设备150包括:收发器151和处理器152;
所述收发器151,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
在一实施例中,所述区域地图中包括事件图层;
所述收发器151,还配置为接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车 端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
所述收发器151,还配置为将所述更新的事件图层,向车端设备广播。
在一实施例中,所述收发器151,还配置为接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
本申请实施例是与上述方法实施例三对应的产品实施例,故在此不再赘述,详细请参阅上述实施例三。
参阅图16,图16是本申请实施例十提供的一种边缘网络设备的结构示意图,该边缘网络设备160包括处理器161、存储器162及存储在所述存储器162上并可在所述处理器161上运行的程序;所述处理器161执行所述程序时实现如下步骤:
接收车端设备和/或路侧设备采集并发送的道路交通信息;
根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
在一实施例中,所述处理器161执行所述程序时还可实现如下步骤:
根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
在一实施例中,所述处理器161执行所述程序时还可实现如下步骤:
根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
在一实施例中,所述处理器161执行所述程序时还可实现如下步骤:
所述接收车端设备和/或路侧设备采集并发送的道路交通信息之前,接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
在一实施例中,所述处理器161执行所述程序时还可实现如下步骤:
接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
本申请实施例的具体工作过程与上述方法实施例一中的一致,故在此不再赘述,详细请参阅上述实施例一中方法步骤的说明。
参阅图17,图17是本申请实施例十一提供的一种核心网络设备的结构示意图,该核心网络设备170包括处理器171、存储器172及存储在所述存储器172上并可在所述处理器171上运行的程序;所述处理器171执行所述程序时实现如下步骤:
接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
根据接收到的所述更新后的区域地图,更新全局地图。
其中,在一实施例中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
在一实施例中,所述处理器171执行所述程序时还可实现如下步骤:
所述接收一个或多个边缘网络设备发送的更新后的区域地图之前,构建初始全局地图;
将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
在一实施例中,所述处理器171执行所述程序时还可实现如下步骤:
根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
本申请实施例的具体工作过程与上述方法实施例二中的一致,故在此不再赘述,详细请参阅上述实施例二中方法步骤的说明。
参阅图18,图18是本申请实施例十二提供的一种路侧设备的结构示意图,该路侧设备180包括处理器181、存储器182及存储在所述存储器182上并可在所述处理器181上运行的程序;所述处理器181执行所述程序时实现如下步骤:
向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
在一实施例中,所述区域地图中包括事件图层;所述处理器181执行所述程序时还可实现如下步骤:
接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
将所述更新的事件图层,向车端设备广播。
在一实施例中,所述处理器181执行所述程序时还可实现如下步骤:
所述向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息之前,接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
本申请实施例的具体工作过程与上述方法实施例三中的一致,故在此不再赘述,详细请参阅上述实施例三中方法步骤的说明。
本申请实施例十三提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现上述实施例一至实施例三中任一种地图更新方法中的步骤。详细请参阅以上对应实施例中方法步骤的说明。
上述可读存储介质,包括计算机可读存储介质。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
以上所述是本申请的较佳实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (22)

  1. 一种地图更新方法,应用于边缘网络设备,包括:
    接收车端设备和/或路侧设备采集并发送的道路交通信息;
    根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
    将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
  2. 根据权利要求1所述的方法,其中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
    根据所述道路交通信息中的道路静态信息和/或道路周边静态信息,更新所述区域地图中的基础图层。
  3. 根据权利要求1或2所述的方法,其中,所述根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新,包括:
    根据所述道路交通信息中的事件信息,更新所述区域地图中的事件图层。
  4. 根据权利要求1所述的方法,其中,所述接收车端设备和/或路侧设备采集并发送的道路交通信息之前,所述方法还包括:
    接收所述核心网络设备发送的所述边缘网络设备管辖区域对应的区域地图;
    将所述区域地图中的与路侧设备管辖区域对应的单元地图发送至所述路侧设备。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    接收所述核心网络设备在根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对全局地图进行更新后发送的、与所述边缘网络设备管辖区域对应的区域地图。
  6. 一种地图更新方法,应用于核心网络设备,包括:
    接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
    根据接收到的所述更新后的区域地图,更新全局地图。
  7. 根据权利要求6所述的方法,其中,所述更新后的区域地图包括根据所述道路交通信息中的道路静态信息和/或道路周边静态信息更新的基础图层。
  8. 根据权利要求6所述的方法,其中,所述接收一个或多个边缘网络设备发送的更新后的区域地图之前,所述方法还包括:
    构建初始全局地图;
    将所述初始全局地图中,与所述边缘网络设备管辖区域对应的区域 地图发送至所述边缘网络设备。
  9. 根据权利要求6所述的方法,其中,所述方法还包括:
    根据地图数据采集设备采集的道路静态信息和/或道路周边静态信息,对所述全局地图进行更新;
    将更新后的所述全局地图中,与所述边缘网络设备管辖区域对应的区域地图发送至所述边缘网络设备。
  10. 一种地图更新方法,应用于路侧设备,包括:
    向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
  11. 根据权利要求10所述的方法,其中,所述区域地图中包括事件图层;所述方法还包括:
    接收更新的事件图层,所述更新的事件图层是所述边缘网络设备根据所述边缘网络设备管辖区域内的路侧设备和/或车端设备上报的道路交通信息中的事件信息,对所述区域地图中的所述事件图层进行更新得到;
    将所述更新的事件图层,向车端设备广播。
  12. 根据权利要求10所述的方法,其中,所述向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息之前,所述方法还包括:
    接收边缘网络设备发送单元地图,所述单元地图是所述边缘网络设备管辖区域对应的区域地图中与所述路侧设备管辖区域对应的部分地图。
  13. 一种边缘网络设备,包括:
    道路交通信息接收模块,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
    第一更新模块,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
    第一发送模块,配置为将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
  14. 一种核心网络设备,包括:
    第一接收模块,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
    第二更新模块,配置为根据接收到的所述更新后的区域地图,更新全局地图。
  15. 一种路侧设备,包括:
    道路交通信息发送模块,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述 道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
  16. 一种边缘网络设备,包括:收发器和处理器;
    所述收发器,配置为接收车端设备和/或路侧设备采集并发送的道路交通信息;
    所述处理器,配置为根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新;
    所述收发器,还配置为将更新后的区域地图发送至核心网络设备和/或所述边缘网络设备管辖区域内的路侧设备。
  17. 一种核心网络设备,包括:收发器和处理器;
    所述收发器,配置为接收一个或多个边缘网络设备发送的更新后的区域地图,所述区域地图为所述边缘网络设备管辖区域对应的地图,且所述更新后的区域地图是根据车端设备和/或路侧设备采集并发送的道路交通信息进行更新;
    所述处理器,配置为根据接收到的所述更新后的区域地图,更新全局地图。
  18. 一种路侧设备,包括:收发器和处理器;
    所述收发器,配置为向边缘网络设备发送车端设备和/或所述路侧设备采集的道路交通信息,以使得所述边缘网络设备根据所述道路交通信息对所述边缘网络设备管辖区域对应的区域地图进行更新。
  19. 一种边缘网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现如权利要求1至5中任一项所述的地图更新方法中的步骤。
  20. 一种核心网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现如权利要求6至9中任一项所述的地图更新方法中的步骤。
  21. 一种路侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现如权利要求10至12中任一项所述的地图更新方法中的步骤。
  22. 一种可读存储介质,其上存储有程序,该程序被处理器执行时实现如权利要求1至9中任一项所述的地图更新方法中的步骤。
PCT/CN2021/122858 2021-04-09 2021-10-09 地图更新方法及设备 WO2022213563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21935781.1A EP4322024A1 (en) 2021-04-09 2021-10-09 Map updating method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110387502.4 2021-04-09
CN202110387502.4A CN113127590B (zh) 2021-04-09 2021-04-09 地图更新方法及设备

Publications (1)

Publication Number Publication Date
WO2022213563A1 true WO2022213563A1 (zh) 2022-10-13

Family

ID=76775916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122858 WO2022213563A1 (zh) 2021-04-09 2021-10-09 地图更新方法及设备

Country Status (3)

Country Link
EP (1) EP4322024A1 (zh)
CN (1) CN113127590B (zh)
WO (1) WO2022213563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117292551A (zh) * 2023-11-27 2023-12-26 辽宁邮电规划设计院有限公司 基于物联网的城市交通态势调节系统与方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113127590B (zh) * 2021-04-09 2021-11-26 中移智行网络科技有限公司 地图更新方法及设备
CN113791619B (zh) * 2021-09-14 2024-04-12 北京航空航天大学 一种机场自动驾驶牵引车调度导航系统及方法
CN113727434B (zh) * 2021-11-03 2022-04-22 深圳市城市交通规划设计研究中心股份有限公司 一种基于边缘计算网关的车路协同辅助定位系统及方法
CN114413914A (zh) * 2022-01-18 2022-04-29 上汽通用五菱汽车股份有限公司 高精度地图的精度提升方法、系统和计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190311611A1 (en) * 2011-11-16 2019-10-10 Autoconnect Holdings Llc System and Method for Dynamic Map Updating in a Conveyance.
CN111367292A (zh) * 2020-03-20 2020-07-03 特路(北京)科技有限公司 自动驾驶汽车智能道路系统
CN111402588A (zh) * 2020-04-10 2020-07-10 河北德冠隆电子科技有限公司 基于时空轨迹重构异常道路高精地图快速生成系统与方法
CN111540237A (zh) * 2020-05-19 2020-08-14 河北德冠隆电子科技有限公司 基于多数据融合的车辆安全行驶保障方案自动生成的方法
CN111583630A (zh) * 2020-04-10 2020-08-25 河北德冠隆电子科技有限公司 基于时空轨迹重构全新道路高精地图快速生成系统与方法
CN111601266A (zh) * 2020-03-31 2020-08-28 浙江吉利汽车研究院有限公司 协同控制方法及系统
CN112013863A (zh) * 2020-07-06 2020-12-01 浙江省交通规划设计研究院有限公司 基于路侧设施提供实时数据的导航系统及方法
CN113127590A (zh) * 2021-04-09 2021-07-16 中移智行网络科技有限公司 地图更新方法及设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615453B (zh) * 2014-09-26 2018-02-09 腾讯科技(深圳)有限公司 一种地图数据处理方法、装置及系统
CN104949684A (zh) * 2015-06-23 2015-09-30 西华大学 基于车路协同的车载导航系统
CN106885578A (zh) * 2015-12-16 2017-06-23 北京奇虎科技有限公司 地图更新方法和装置
CN110388929B (zh) * 2018-04-20 2022-04-15 比亚迪股份有限公司 导航地图更新方法、装置及系统
CN109084785A (zh) * 2018-07-25 2018-12-25 吉林大学 多车辆协同定位与地图构建方法、装置、设备及存储介质
CN109781122B (zh) * 2019-01-31 2022-03-01 北京经纬恒润科技股份有限公司 高精度地图更新方法及装置
US20200292324A1 (en) * 2019-03-13 2020-09-17 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
CN110470311A (zh) * 2019-07-08 2019-11-19 浙江吉利汽车研究院有限公司 一种地图生成方法、装置及计算机存储介质
CN112347206A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 地图更新方法、装置及存储介质
CN110648548A (zh) * 2019-09-12 2020-01-03 重庆邮电大学 一种基于路侧设备的路面安全性检测系统及方法
CN112530156A (zh) * 2019-09-18 2021-03-19 中移智行网络科技有限公司 基于边缘计算的智能网联汽车开放道路系统和建设方法
CN112579716A (zh) * 2019-09-30 2021-03-30 沈阳美行科技有限公司 地图更新方法、装置及存储介质
CN111179621B (zh) * 2019-12-30 2021-12-31 同济大学 一种基于路测设备的高精度地图制作系统及方法
CN111881244A (zh) * 2020-07-30 2020-11-03 戴姆勒股份公司 用于使v2x技术与加密和/或加偏转的高精度地图匹配的方法和设备
CN112417953B (zh) * 2020-10-12 2022-07-19 腾讯科技(深圳)有限公司 道路状况检测和地图数据更新方法、装置、系统及设备
CN112289059A (zh) * 2020-10-22 2021-01-29 中电智能技术南京有限公司 一种车路协同道路交通系统
CN112380312B (zh) * 2020-11-30 2022-08-05 北京智行者科技股份有限公司 基于栅格检测的激光地图更新方法、终端及计算机设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190311611A1 (en) * 2011-11-16 2019-10-10 Autoconnect Holdings Llc System and Method for Dynamic Map Updating in a Conveyance.
CN111367292A (zh) * 2020-03-20 2020-07-03 特路(北京)科技有限公司 自动驾驶汽车智能道路系统
CN111601266A (zh) * 2020-03-31 2020-08-28 浙江吉利汽车研究院有限公司 协同控制方法及系统
CN111402588A (zh) * 2020-04-10 2020-07-10 河北德冠隆电子科技有限公司 基于时空轨迹重构异常道路高精地图快速生成系统与方法
CN111583630A (zh) * 2020-04-10 2020-08-25 河北德冠隆电子科技有限公司 基于时空轨迹重构全新道路高精地图快速生成系统与方法
CN111540237A (zh) * 2020-05-19 2020-08-14 河北德冠隆电子科技有限公司 基于多数据融合的车辆安全行驶保障方案自动生成的方法
CN112013863A (zh) * 2020-07-06 2020-12-01 浙江省交通规划设计研究院有限公司 基于路侧设施提供实时数据的导航系统及方法
CN113127590A (zh) * 2021-04-09 2021-07-16 中移智行网络科技有限公司 地图更新方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117292551A (zh) * 2023-11-27 2023-12-26 辽宁邮电规划设计院有限公司 基于物联网的城市交通态势调节系统与方法
CN117292551B (zh) * 2023-11-27 2024-02-23 辽宁邮电规划设计院有限公司 基于物联网的城市交通态势调节系统与方法

Also Published As

Publication number Publication date
CN113127590B (zh) 2021-11-26
EP4322024A1 (en) 2024-02-14
CN113127590A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022213563A1 (zh) 地图更新方法及设备
WO2022237866A1 (zh) 一种车路协同系统、模拟仿真方法、车载设备和路侧设备
Nguyen et al. An efficient traffic congestion monitoring system on internet of vehicles
US11550623B2 (en) Distributed system task management using a simulated clock
CN109688224A (zh) 一种智能网联汽车云控平台架构
US11480964B2 (en) Distributed system execution using a serial timeline
Liu et al. Towards fully intelligent transportation through infrastructure-vehicle cooperative autonomous driving: Challenges and opportunities
CN115952692B (zh) 道路交通的仿真方法和装置、存储介质及电子设备
CN115063978B (zh) 一种基于数字孪生的公交到站时间预测方法
CN110308716A (zh) 一种基于集群的自动驾驶车辆的方法、装置及车辆
CN116308153B (zh) 一种基于数字孪生的全息路口管理系统及方法
US11409927B2 (en) Architecture for configurable distributed system simulation timing
CN113920739A (zh) 基于信息物理融合系统的交通数据驱动框架及构建方法
CN112150832A (zh) 一种基于5g的分布式交通信号控制系统
US20220132501A1 (en) Modifying a vehicular radio based on a schedule of point-to-point vehicular communications
CN107395757A (zh) 基于acp方法和社会物理信息系统的平行车联网系统
US11809790B2 (en) Architecture for distributed system simulation timing alignment
CN116543563A (zh) 一种基于云计算和深度学习的数据分析方法
CN104680821A (zh) 一种智能交通系统及其导航方法
CN115909716A (zh) 基于网联云控平台的交通路口调度系统、方法及设备
US11669657B2 (en) Architecture for distributed system simulation with realistic timing
Guo et al. Research on optimization model of multisource traffic information collection combination based on genetic algorithm
Chen et al. A preliminary discussion on the application of big data in urban residents travel guidance
Deng Application of intelligent transportation system based on 5G
Zhu et al. Cost Analysis of Vehicle‐Road Cooperative Intelligence Solutions for High‐Level Autonomous Driving: A Beijing Case Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021935781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935781

Country of ref document: EP

Effective date: 20231109