WO2022213537A1 - 一种通信系统仿真平台 - Google Patents

一种通信系统仿真平台 Download PDF

Info

Publication number
WO2022213537A1
WO2022213537A1 PCT/CN2021/116626 CN2021116626W WO2022213537A1 WO 2022213537 A1 WO2022213537 A1 WO 2022213537A1 CN 2021116626 W CN2021116626 W CN 2021116626W WO 2022213537 A1 WO2022213537 A1 WO 2022213537A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
oai
physical entity
module
entity network
Prior art date
Application number
PCT/CN2021/116626
Other languages
English (en)
French (fr)
Inventor
曾捷
粟欣
骆杰
韩莹
李红鑫
周世东
赵明
钟晓峰
许希斌
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2022213537A1 publication Critical patent/WO2022213537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication system simulation platform.
  • Open Air Interface is a relatively complete open source software-defined radio (Software Defined Radio, SDR) communication platform at present.
  • SDR Software Defined Radio
  • the OAI communication simulation platform can only realize the simulation evaluation of some 5G technologies and corresponding indicators, and the application scenarios are limited, which makes it difficult to meet the simulation evaluation needs of future communication systems and corresponding indicators.
  • the embodiment of the present invention provides a communication system simulation platform, which is used to solve the problem that the OAI communication simulation platform in the prior art can only realize the simulation evaluation of some 5G technologies and corresponding indicators, the application scenarios are limited, and it is difficult to meet the requirements for future communication systems and corresponding indicators. Simulation to assess the needs of the problem.
  • a communication system simulation platform including an open air interface OAI physical entity network, a communication middleware and a digital twin simulation module, wherein: the OAI physical entity network is used to perform simulation tasks and perform wireless communication indicated in the simulation tasks. Signal processing and sending and receiving; the communication middleware is used to collect data generated by the OAI physical entity network during the execution of the simulation task, and to generate the data generated by the OAI physical entity network during the execution of the simulation task.
  • the data is sent to the digital twin simulation module; the digital twin simulation module is used to receive the data generated during the execution of the simulation task from the OAI physical entity network forwarded by the communication middleware, and based on the The data generated during the execution of the simulation task by the OAI physical entity network is used to predict anomalies that may occur during the execution of the simulation task.
  • the communication system simulation platform includes an open air interface OAI physical entity network, a communication middleware, and a digital twin simulation module, wherein: the OAI physical entity network is used to perform simulation tasks and perform wireless communication indicated in the simulation tasks. Processing and sending and receiving of signals; communication middleware, used to collect the data generated by the OAI physical entity network during the execution of the simulation task, and send the data generated by the OAI physical entity network during the execution of the simulation task to the digital twin simulation module ;
  • the digital twin simulation module is used to receive the data generated by the OAI physical entity network forwarded from the communication middleware during the execution of the simulation task, as well as the data generated during the execution of the simulation task based on the OAI physical entity network, and predict the execution process of the simulation task.
  • the communication system can be simulated based on the OAI physical entity network and the digital twin simulation module, and the operation data of the OAI physical entity network can be obtained through the communication middleware through the digital twin simulation module, and the operation of the OAI physical entity network can be predicted in time.
  • the abnormal problems that may occur during the operation of the OAI physical entity network are predicted, which improves the real-time performance of the simulation platform and the ability to avoid risks.
  • FIG. 1 is a schematic structural diagram of a communication system simulation platform according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a communication middleware in a communication system simulation platform provided by an embodiment of the present invention.
  • the embodiment of the present application provides a communication system simulation platform, because the simulation of the communication system can be performed based on the OAI physical entity network and the digital twin simulation module, and the operation data of the OAI physical entity network can be obtained through the communication middleware through the digital twin simulation module, And predict the operation of the OAI physical entity network, can timely predict the abnormal problems that may occur during the operation of the OAI physical entity network, and improve the real-time performance of the simulation platform and the ability to avoid risks.
  • FIG. 1 a schematic structural diagram of a communication system simulation platform provided by one or more embodiments of this specification is shown in FIG. 1 , including an open air interface OAI physical entity network 130, a communication middleware 120 and a digital twin simulation module 110, wherein : the OAI physical entity network 130 is used to perform simulation tasks, and to process and send and receive wireless signals indicated in the simulation tasks; the communication middleware 120 is used to collect the OAI physical entity network when executing the simulation.
  • the data generated during the task, and the data generated during the execution of the simulation task by the OAI physical entity network are sent to the digital twin simulation module; the digital twin simulation module 110 is used to receive data from the communication
  • the digital twin simulation module 110 in order to deal with and deal with the possible exceptions that may occur during the execution of the simulation task by the OAI physical entity network, is also used to: : make a decision on the simulation task performed by the OAI physical entity network to improve the simulation task, and forward the decision to the OAI physical entity network through the communication middleware.
  • the digital twin simulation module 110 can improve the simulation task performed by the OAI physical entity network according to the abnormality that may occur during the execution of the simulation task by the OAI physical entity network. Some simulation parameters in the simulation tasks performed by the OAI physical entity network are improved, and the improved simulation parameters are forwarded to the OAI physical entity network through the communication middleware.
  • the communication middleware 120 includes a digital twin platform layer, a data center publish-subscribe DCPS layer, and a real-time publish-subscribe RTPS layer.
  • the DCPS layer is used to provide the connection between application services and publishers and subscribers, and provides an interface to adapt the QoS policy required by the application layer;
  • the RTPS layer is used to provide the DCPS layer.
  • the RTPS layer includes a discovery module, a message module, a behavior module, a structure module, a QoS negotiation module and a network interface;
  • the digital twin platform layer is used to realize data interaction with the digital twin simulation module, including co-simulation module, physical data interface and DCPS layer interface.
  • the discovery module is used to discover other objects that need to be communicated;
  • the message module is used to define the structure and content of the message to be exchanged;
  • the behavior module is used to define a legal message exchange set;
  • the structure module is used to define the participants of the protocol;
  • the QoS negotiation module is used to send the QoS requirements of the application received from the DCPS layer to the digital twin platform layer.
  • the co-simulation interface is used to provide the communication environment and simulation tasks provided by the digital twin platform layer to the OAI physical entity network;
  • the physical data interface is used to obtain data from the OAI physical entity network. , collect data generated during the execution of the simulation task by the OAI physical entity network.
  • the communication middleware sends the data generated by the OAI physical entity network during the execution of the simulation task to the digital twin simulation in the digital twin simulation module according to the FMI standard through the co-simulation interface. device.
  • the digital twin simulator in the digital twin simulation module 110 is used to: receive simulation data from the communication middleware, and forward the simulation parameters of the simulation task to the OAI through the communication middleware A physical entity network to control the simulation tasks performed by the OAI physical entity network.
  • FIG. 2 is a schematic structural diagram of a communication middleware in a communication system simulation platform provided by an embodiment of the present invention.
  • the data-centric communication middleware based on Data Distribution Service (DDS) has three layers. Among them, the DDS includes two layers, one is the data center publish and subscribe layer (Data-Centric Publish-Subscribe, DCPS), and the other is the real-time publish and subscribe layer (Real-Time Publish-Subscribe, RTPS).
  • DCPS Data-Centric Publish-Subscribe
  • RTPS Real-Time Publish-Subscribe
  • the DCPS layer provides the connection between application services and publishers and subscribers, and provides interfaces to adapt to the QoS policies required by the application layer.
  • the DCPS layer also sets up a DCPS interface for exchanging events and states.
  • the RTPS layer serves the DCPS layer to actually communicate with the OAI physical entity network over the physical network.
  • RTPS layer includes discovery module, message module, behavior module, structure module and QoS negotiation module.
  • the discovery module is used to discover other objects that need to be communicated;
  • the message module is used to define the structure and content of the messages to be exchanged;
  • the behavior module is used to define the legal message exchange set;
  • the structure module is used to define the communication endpoints, that is, the participants of the protocol ;
  • the QoS negotiation module is used to reflect the application QoS requirements received from the DCPS layer to meet the real-time performance required by the received application.
  • the network interface in the RTPS layer is used to provide the interface between the RTPS layer and the network layer.
  • the digital twin platform layer can be added to the communication middleware as the upper layer of the DCPS layer.
  • the digital twin platform layer includes co-simulation interfaces and physical data interfaces.
  • the co-simulation interface is used to provide the communication environment of the virtual model and the model of the co-simulation
  • the physical data interface is used to collect data from the OAI physical entity network.
  • the OAI physical entity network 130 at least includes a user, a base station, a core network, a universal software radio peripheral (Universal Software Radio Peripheral, USRP), a Synchronous Dynamic Random-Access Memory (Synchronous Dynamic Random-Access Memory, SDRAM) , accelerator cards and interface control boards, AD/DA converters, RF units, and FPGA chips for front-end digital signal processing and interface control.
  • a universal software radio peripheral Universal Software Radio Peripheral, USRP
  • Synchronous Dynamic Random-Access Memory Synchronous Dynamic Random-Access Memory
  • SDRAM Synchronous Dynamic Random-Access Memory
  • the communication system simulation platform includes an open air interface OAI physical entity network, a communication middleware, and a digital twin simulation module, wherein: the OAI physical entity network is used to perform simulation tasks and perform wireless communication indicated in the simulation tasks. Processing and sending and receiving of signals; communication middleware, used to collect the data generated by the OAI physical entity network during the execution of the simulation task, and send the data generated by the OAI physical entity network during the execution of the simulation task to the digital twin simulation module ;
  • the digital twin simulation module is used to receive the data generated by the OAI physical entity network forwarded from the communication middleware during the execution of the simulation task, as well as the data generated during the execution of the simulation task based on the OAI physical entity network, and predict the execution process of the simulation task.
  • the communication system can be simulated based on the OAI physical entity network and the digital twin simulation module, and the operation data of the OAI physical entity network can be obtained through the communication middleware through the digital twin simulation module, and the operation of the OAI physical entity network can be predicted in time.
  • the abnormal problems that may occur during the operation of the OAI physical entity network are predicted, which improves the real-time performance of the simulation platform and the ability to avoid risks.
  • a typical implementation device is a computer.
  • the computer can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or A combination of any of these devices.
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信系统仿真平台,该仿真平台包括开放空中接口OAI物理实体网络、通信中间件和数字孪生仿真模块,其中:所述OAI物理实体网络,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;所述通信中间件,用于收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据发送至所述数字孪生仿真模块;所述数字孪生仿真模块,用于接收来自所述通信中间件转发的所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及基于所述OAI物理实体网络执行所述仿真任务过程中产生的数据,预测所述仿真任务执行过程中可能产生的异常。

Description

一种通信系统仿真平台
交叉引用
本发明要求在2021年04月06日提交中国专利局、申请号为202110369357.7、发明名称为“一种通信系统仿真平台”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信系统仿真平台。
背景技术
未来通信系统将在网络容量和用户连接数上均实现巨大的增长。同时,基于网络可维护性、能效、用户体验等方面提出的全新网络愿景和设计原则,对空中接口技术的标准化、方案设计和仿真验证也提出了新的挑战。
空中开放接口(OpenAirInterface,OAI)是目前较为完善的开源软件定义无线电(Software Defined Radio,SDR)通信平台。然而,OAI通信仿真平台仅能实现部分5G技术和相应指标的仿真评估,应用场景有限,难以满足对未来通信系统和相应指标的仿真评估需求。
发明内容
本发明实施例提供一种通信系统仿真平台,用于解决现有技术中OAI通信仿真平台仅能实现部分5G技术和相应指标的仿真评估,应用场景有限,难以满足对未来通信系统和相应指标的仿真评估需求的问题。
本发明实施例采用下述技术方案。
提出了一种通信系统仿真平台,包括开放空中接口OAI物理实体网络、通信中间件和数字孪生仿真模块,其中:所述OAI物理实体网络,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;所述通信中 间件,用于收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据发送至所述数字孪生仿真模块;所述数字孪生仿真模块,用于接收来自所述通信中间件转发的所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及基于所述OAI物理实体网络执行所述仿真任务过程中产生的数据,预测所述仿真任务执行过程中可能产生的异常。
本发明实施例提供的通信系统仿真平台,包括开放空中接口OAI物理实体网络、通信中间件和数字孪生仿真模块,其中:OAI物理实体网络,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;通信中间件,用于收集OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将OAI物理实体网络在执行仿真任务过程中产生的数据发送至数字孪生仿真模块;数字孪生仿真模块,用于接收来自通信中间件转发的OAI物理实体网络在执行仿真任务过程中产生的数据,以及基于OAI物理实体网络执行仿真任务过程中产生的数据,预测仿真任务执行过程中可能产生的异常。由于能够基于OAI物理实体网络和数字孪生仿真模块进行通信系统的仿真,并通过数字孪生仿真模块通过通信中间件来获取OAI物理实体网络的运行数据,并预测OAI物理实体网络的运行情况,能够及时预测到OAI物理实体网络运行过程中可能产生的异常问题,提高了仿真平台的实时性和规避风险的能力。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种通信系统仿真平台的结构示意图;
图2为本发明实施例提供的通信系统仿真平台中的通信中间件的结构示 意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本发明各实施例提供的技术方案。
本申请实施例提供一种通信系统仿真平台,由于能够基于OAI物理实体网络和数字孪生仿真模块进行通信系统的仿真,并通过数字孪生仿真模块通过通信中间件来获取OAI物理实体网络的运行数据,并预测OAI物理实体网络的运行情况,能够及时预测到OAI物理实体网络运行过程中可能产生的异常问题,提高了仿真平台的实时性和规避风险的能力。
具体地,本说明书一个或多个实施例提供的一种通信系统仿真平台的结构示意图如图1所示,包括开放空中接口OAI物理实体网络130、通信中间件120和数字孪生仿真模块110,其中:所述OAI物理实体网络130,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;所述通信中间件120,用于收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据发送至所述数字孪生仿真模块;所述数字孪生仿真模块110,用于接收来自所述通信中间件转发的所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及基于所述OAI物理实体网络执行所述仿真任务过程中产生的数据,预测所述仿真任务执行过程中可能产生的异常。
可选地,为了及时应对并处理OAI物理实体网络执行所述仿真任务过程中可能产生的异常,所述数字孪生仿真模块110在预测所述仿真任务执行过 程中可能产生的异常之后,还用于:对所述OAI物理实体网络执行的所述仿真任务做出决策,以改进所述仿真任务,以及将所述决策通过所述通信中间件转发给所述OAI物理实体网络。
具体来说,所述数字孪生仿真模块110可根据所述OAI物理实体网络执行所述仿真任务过程中可能产生的异常,对上述OAI物理实体网络执行的所述仿真任务做出改进,比如可以将OAI物理实体网络执行的所述仿真任务中的一些仿真参数进行改进,并将改进后的仿真参数通过通信中间件转发给所述OAI物理实体网络。
可选地,所述通信中间件120包括数字孪生平台层、数据中心发布订阅DCPS层和实时发布订阅RTPS层。
可选地,所述DCPS层,用于提供应用程序服务与发布者和订阅者的连接,并提供接口来适配应用层所需的QoS策略;所述RTPS层,用于为所述DCPS层服务,所述RTPS层包括发现模块、消息模块、行为模块、结构模块、QoS协商模块和网络接口;所述数字孪生平台层,用于实现与所述数字孪生仿真模块的数据交互,包括联合仿真模块、物理数据接口和DCPS层接口。
可选地,所述发现模块,用于发现需要通信的其他对象;所述消息模块,用于定义要交换的消息的结构和内容;所述行为模块,用于定义合法的消息交换集合;所述结构模块,用于定义协议的参与者;所述QoS协商模块,用于向所述数字孪生平台层发送从所述DCPS层接收的应用程序的QoS需求。
可选地,所述联合仿真接口,用于向所述OAI物理实体网络提供所述数字孪生平台层提供的通信环境和仿真任务;所述物理数据接口,用于从所述OAI物理实体网络中,收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据。
可选地,所述通信中间件通过所述联合仿真接口,将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据按照FMI标准发送至所述数字孪生仿真模块中的数字孪生仿真器。
可选地,所述数字孪生仿真模块110中的数字孪生仿真器,用于:接收来自所述通信中间件的仿真数据,以及将仿真任务的仿真参数通过所述通信中间件转发至所述OAI物理实体网络,以实现对所述OAI物理实体网络执行的仿真任务的控制。
图2为本发明实施例提供的通信系统仿真平台中的通信中间件的结构示意图。该基于数据分发服务(Data Distribution Service,DDS)的以数据为中心的通信中间件具有三层。其中,DDS包括两层,一层是数据中心发布订阅层(Data-Centric Publish-Subscribe,DCPS),一层是实时发布订阅层(Real-Time Publish-Subscribe,RTPS)。
其中,DCPS层提供应用程序服务与发布者和订阅者的连接,并提供接口来适配应用层所需的QoS策略。此外,DCPS层还设置一个用于交换事件和状态的DCPS接口。RTPS层为DCPS层提供服务,以通过物理网络与OAI物理实体网络进行实际通信。
RTPS层包括发现模块、消息模块、行为模块、结构模块和QoS协商模块。其中,发现模块用于发现需要通信的其他对象;消息模块用于定义要交换的消息的结构和内容;行为模块用于定义合法的消息交换集合;结构模块用于定义通信端点即协议的参与者;QoS协商模块用于反映从DCPS层接收的应用程序QoS的需求,以满足接收的应用程序所需的实时性能。RTPS层中的网络接口用于提供RTPS层与网络层的接口。
此外,为了实现通信中间件与数字孪生软件之间的数据交互,可在通信中间件中添加数字孪生平台层作为DCPS层的上层。数字孪生平台层包括联合仿真接口和物理数据接口。其中,联合仿真接口用于提供虚拟模型的通信环境和联合仿真的模型,物理数据接口则用于从OAI物理实体网络中收集数据。
可选地,所述OAI物理实体网络130至少包括用户、基站、核心网、通用软件无线电外设(Universal Software Radio Peripheral,USRP)、同动态随 机存取存储器(Synchronous Dynamic Random-Access Memory,SDRAM)、加速卡和接口控制板、AD/DA转换器、RF单元以及用于前端数字信号处理和接口控制的FPGA芯片。
本发明实施例提供的通信系统仿真平台,包括开放空中接口OAI物理实体网络、通信中间件和数字孪生仿真模块,其中:OAI物理实体网络,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;通信中间件,用于收集OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将OAI物理实体网络在执行仿真任务过程中产生的数据发送至数字孪生仿真模块;数字孪生仿真模块,用于接收来自通信中间件转发的OAI物理实体网络在执行仿真任务过程中产生的数据,以及基于OAI物理实体网络执行仿真任务过程中产生的数据,预测仿真任务执行过程中可能产生的异常。由于能够基于OAI物理实体网络和数字孪生仿真模块进行通信系统的仿真,并通过数字孪生仿真模块通过通信中间件来获取OAI物理实体网络的运行数据,并预测OAI物理实体网络的运行情况,能够及时预测到OAI物理实体网络运行过程中可能产生的异常问题,提高了仿真平台的实时性和规避风险的能力。
总之,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、 程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (9)

  1. 一种通信系统仿真平台,其中,包括开放空中接口OAI物理实体网络、通信中间件和数字孪生仿真模块,其中:
    所述OAI物理实体网络,用于执行仿真任务,以及进行仿真任务中指示的无线信号的处理和收发;
    所述通信中间件,用于收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据发送至所述数字孪生仿真模块;
    所述数字孪生仿真模块,用于接收来自所述通信中间件转发的所述OAI物理实体网络在执行所述仿真任务过程中产生的数据,以及基于所述OAI物理实体网络执行所述仿真任务过程中产生的数据,预测所述仿真任务执行过程中可能产生的异常。
  2. 如权利要求1所述的方法,其中,所述数字孪生仿真模块在预测所述仿真任务执行过程中可能产生的异常之后,还用于:
    对所述OAI物理实体网络执行的所述仿真任务做出决策,以改进所述仿真任务,以及将所述决策通过所述通信中间件转发给所述OAI物理实体网络。
  3. 如权利要求1所述的方法,其中,所述通信中间件包括数字孪生平台层、数据中心发布订阅DCPS层和实时发布订阅RTPS层。
  4. 如权利要求3所述的方法,其中,
    所述DCPS层,用于提供应用程序服务与发布者和订阅者的连接,并提供接口来适配应用层所需的QoS策略;
    所述RTPS层,用于为所述DCPS层服务,所述RTPS层包括发现模块、消息模块、行为模块、结构模块、QoS协商模块和网络接口;
    所述数字孪生平台层,用于实现与所述数字孪生仿真模块的数据交互,包括联合仿真模块、物理数据接口和DCPS层接口。
  5. 如权利要求4所述的方法,其中,
    所述发现模块,用于发现需要通信的其他对象;
    所述消息模块,用于定义要交换的消息的结构和内容;
    所述行为模块,用于定义合法的消息交换集合;
    所述结构模块,用于定义协议的参与者;
    所述QoS协商模块,用于向所述数字孪生平台层发送从所述DCPS层接收的应用程序的QoS需求。
  6. 如权利要求4所述的方法,其中,
    所述联合仿真接口,用于向所述OAI物理实体网络提供所述数字孪生平台层提供的通信环境和仿真任务;
    所述物理数据接口,用于从所述OAI物理实体网络中,收集所述OAI物理实体网络在执行所述仿真任务过程中产生的数据。
  7. 如权利要求6所述的方法,其中,所述通信中间件通过所述联合仿真接口,将所述OAI物理实体网络在执行所述仿真任务过程中产生的数据按照FMI标准发送至所述数字孪生仿真模块中的数字孪生仿真器。
  8. 如权利要求7所述的方法,其中,所述数字孪生仿真模块中的数字孪生仿真器,用于:
    接收来自所述通信中间件的仿真数据,以及将仿真任务的仿真参数通过所述通信中间件转发至所述OAI物理实体网络,以实现对所述OAI物理实体网络执行的仿真任务的控制。
  9. 如权利要求1所述的方法,其中,所述OAI物理实体网络至少包括用户、基站、核心网、通用软件无线电外设USRP、同动态随机存取存储器SDRAM、加速卡和接口控制板、AD/DA转换器、RF单元以及用于前端数字信号处理和接口控制的FPGA芯片。
PCT/CN2021/116626 2021-03-29 2021-09-06 一种通信系统仿真平台 WO2022213537A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110334019 2021-03-29
CN202110369357.7 2021-04-06
CN202110369357.7A CN113193985A (zh) 2021-03-29 2021-04-06 一种通信系统仿真平台

Publications (1)

Publication Number Publication Date
WO2022213537A1 true WO2022213537A1 (zh) 2022-10-13

Family

ID=76975482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116626 WO2022213537A1 (zh) 2021-03-29 2021-09-06 一种通信系统仿真平台

Country Status (2)

Country Link
CN (1) CN113193985A (zh)
WO (1) WO2022213537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058736A1 (en) * 2022-09-15 2024-03-21 Bts Kurumsal Bi̇li̇şi̇m Teknoloji̇leri̇ Anoni̇m Şi̇rketi̇ Digital twin-based interference reduction system and method in local autonomous networks with dense access points

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193985A (zh) * 2021-03-29 2021-07-30 清华大学 一种通信系统仿真平台
CN114520781B (zh) * 2022-04-21 2022-09-30 中国科学技术大学 基于数字孪生的网络技术和协议测试平台及其测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160247129A1 (en) * 2015-02-25 2016-08-25 Siemens Corporation Digital twins for energy efficient asset maintenance
US20190294978A1 (en) * 2018-03-21 2019-09-26 Swim.IT Inc Inferring digital twins from captured data
CN110488629A (zh) * 2019-07-02 2019-11-22 北京航空航天大学 一种基于数字孪生技术的混合动力汽车的管控方法
CN111857065A (zh) * 2020-06-08 2020-10-30 北京邮电大学 基于边缘计算和数字孪生的智能生产系统和方法
CN113193985A (zh) * 2021-03-29 2021-07-30 清华大学 一种通信系统仿真平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130118593A (ko) * 2012-04-20 2013-10-30 한국전자통신연구원 데이터 분산 서비스를 위한 미들웨어에서 데이터를 처리하기 위한 장치 및 방법
EP3864383A4 (en) * 2019-07-10 2021-12-22 Vibrant Corporation DIGITAL TWIN MODEL INVERSION FOR TEST
CN111716353B (zh) * 2020-05-20 2022-01-25 西安交通大学 一种基于发布/订阅模式的数字孪生虚实同步运行方法
CN111835565B (zh) * 2020-07-06 2023-06-20 重庆金美通信有限责任公司 一种基于数字孪生的通信网络优化方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160247129A1 (en) * 2015-02-25 2016-08-25 Siemens Corporation Digital twins for energy efficient asset maintenance
US20190294978A1 (en) * 2018-03-21 2019-09-26 Swim.IT Inc Inferring digital twins from captured data
CN110488629A (zh) * 2019-07-02 2019-11-22 北京航空航天大学 一种基于数字孪生技术的混合动力汽车的管控方法
CN111857065A (zh) * 2020-06-08 2020-10-30 北京邮电大学 基于边缘计算和数字孪生的智能生产系统和方法
CN113193985A (zh) * 2021-03-29 2021-07-30 清华大学 一种通信系统仿真平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058736A1 (en) * 2022-09-15 2024-03-21 Bts Kurumsal Bi̇li̇şi̇m Teknoloji̇leri̇ Anoni̇m Şi̇rketi̇ Digital twin-based interference reduction system and method in local autonomous networks with dense access points

Also Published As

Publication number Publication date
CN113193985A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022213537A1 (zh) 一种通信系统仿真平台
WO2021103647A1 (zh) 一种信息处理方法及装置
WO2021208914A1 (zh) 基于网络调度的算力共享方法及相关产品
CN110166409A (zh) 设备接入方法、相关平台及计算机存储介质
US20070005739A1 (en) Method and apparatus for dynamically controlling the selection and redundancy of web service components
CN110313163A (zh) 分布式计算系统中的负载平衡
CN109218352A (zh) 一种区块链网络中交易信息的共识确认方法及装置
CN109996307A (zh) 一种数据路由方法以及终端
CN108255614A (zh) 一种基于微服务架构的接口调用系统及方法
CN110457141B (zh) 一种业务消息的处理方法、系统、装置及设备
JP2023536711A (ja) 計算力共有方法及び関連デバイス
CN110505311A (zh) 一种同构区块链跨链交互方法和系统
CN115408108A (zh) 一种云环境下的i/o卸载方法、设备、系统及存储介质
CN107133109A (zh) 一种模块间通信的方法、装置及计算设备
CN112422485B (zh) 一种传输控制协议的通信方法及装置
US9380627B2 (en) Distributed computing over a wireless ad hoc network
CN116828035A (zh) 一种基于云计算的数据集成系统
CN101909331A (zh) 一种移动数据业务控制方法、系统、终端和服务器
CN114301826B (zh) 一种消息传输的方法及装置
CN115623057A (zh) 基于rdma的建连方法、装置、设备及存储介质
CN113254160B (zh) 一种io资源请求方法和装置
CN114298840A (zh) 一种基于零知识证明的区块链交易背书方法及系统
CN103701943B (zh) Mac地址的控制方法及装置
CN114138622A (zh) 一种业务处理方法、系统、设备及计算机可读存储介质
CN114691382A (zh) 基于rdma的通信方法、节点、系统及介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935756

Country of ref document: EP

Kind code of ref document: A1