WO2022213397A1 - 一种多输出恒流控制电路及驱动电源 - Google Patents

一种多输出恒流控制电路及驱动电源 Download PDF

Info

Publication number
WO2022213397A1
WO2022213397A1 PCT/CN2021/086698 CN2021086698W WO2022213397A1 WO 2022213397 A1 WO2022213397 A1 WO 2022213397A1 CN 2021086698 W CN2021086698 W CN 2021086698W WO 2022213397 A1 WO2022213397 A1 WO 2022213397A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
equalizing
loop
output
Prior art date
Application number
PCT/CN2021/086698
Other languages
English (en)
French (fr)
Inventor
王小军
Original Assignee
深圳市立创普电源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市立创普电源技术有限公司 filed Critical 深圳市立创普电源技术有限公司
Publication of WO2022213397A1 publication Critical patent/WO2022213397A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/35Balancing circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the technical field of power supply driving, and more particularly, to a multi-output constant current control circuit and a driving power supply.
  • the first way is to use multiple switching power supplies to realize multiple constant current and current control; the second way is to use one constant voltage power supply to connect multiple constant current switches in series. way of power supply.
  • the third way is to use the way of linear control current.
  • these methods all have certain defects: for the first method, the assembly is complicated, the cost is high, and the current balance and consistency are poor; for the second method, the circuit cost is high and the conversion efficiency is low; for the third method, the load cannot be controlled. Unbalanced, the unbalanced load is consumed in the form of heat, and the reliability is extremely poor.
  • the technical problem to be solved by the present invention is to provide a multi-output constant current control circuit and a driving power supply in view of the above-mentioned defects of the prior art.
  • the technical scheme adopted by the present invention to solve the technical problem is to construct a multi-output constant current control circuit, including: a switching power supply circuit, a voltage conversion circuit and an equalization circuit;
  • the input end of the switching power supply circuit is connected to the input signal input end, the output end of the switching power supply circuit is connected to the input end of the voltage conversion circuit, and the output end of the voltage conversion circuit is connected to the input end of the equalization circuit, so
  • the output ends of the balancing circuit are respectively connected to the input ends of a plurality of loads, and output multi-channel balancing currents respectively;
  • the voltage conversion circuit After the voltage conversion circuit performs conversion processing on the input signal signal according to the control of the switching power supply circuit, the voltage conversion circuit outputs the voltage signal to the equalization circuit;
  • the equalization circuit performs equalization processing according to the voltage signal, so as to output the multi-path equalized currents respectively to a plurality of loads connected thereto.
  • the multi-output constant-current control circuit of the present invention further comprises: a detection circuit connected to the equalization circuit for performing voltage and current detection and outputting a detection signal.
  • the multi-output constant current control circuit of the present invention further comprises: a feedback control circuit connected with the detection circuit and the switching power supply circuit;
  • the feedback control circuit receives the detection signal and outputs a feedback control signal to the switching power supply circuit according to the detection signal; the switching power supply circuit adjusts and controls the voltage conversion circuit according to the feedback control signal.
  • the multiple loads include: a first load and a second load;
  • the equalization circuit includes: a DC blocking circuit, a first loop and a second loop;
  • the input terminal of the DC blocking circuit is connected to the positive output terminal of the voltage conversion circuit, the output terminal of the DC blocking circuit is connected to the input terminal of the first loop, and the output terminal of the first loop is connected to the input terminal of the first loop.
  • a first load is connected, and the return end of the first loop is connected to the negative output end of the voltage conversion circuit;
  • the input end of the second loop is connected to the negative output end of the voltage conversion circuit, the output end of the second loop is connected to the second load, and the return end of the second loop is connected to the voltage conversion circuit connected to the positive output.
  • the DC blocking circuit includes: a DC blocking capacitor;
  • the first loop includes: a first equalization diode, a first equalization capacitor and a third equalization diode;
  • the secondary circuit includes: a second equalization diode, a second equalization capacitor and a fourth equalization diode;
  • the first terminal of the DC blocking capacitor is connected to the positive output terminal of the voltage conversion circuit as the input terminal of the DC blocking circuit, and the second terminal of the DC blocking capacitor is connected to the output terminal of the DC blocking circuit as the output terminal of the DC blocking circuit.
  • the anode of the first equalization diode, the cathode of the first equalization diode is connected to the first load and the positive end of the first equalization capacitor, and the negative end of the first equalization capacitor is connected to the anode of the third equalization diode and the negative terminal of the second equalizing capacitor, and the cathode of the third equalizing diode is connected to the negative output terminal of the voltage conversion circuit;
  • the cathode of the second equalizing diode is connected to the second end of the DC blocking capacitor, the anode of the second equalizing diode is connected to the anode of the third equalizing diode and the negative end of the second equalizing capacitor, and the first equalizing diode is connected to the negative terminal of the second equalizing capacitor.
  • the positive terminal of the two equalizing capacitors is connected to the cathode of the fourth equalizing diode, the cathode of the fourth equalizing diode is connected to the second load, and the anode of the fourth equalizing diode is connected to the negative output terminal of the voltage conversion circuit;
  • the anode of the first equalization diode is the input end of the first loop
  • the cathode of the first equalization diode is the output end of the first loop
  • the cathode of the third equalization diode is the first loop
  • the cathode of the second equalizing diode is the return end of the second loop
  • the cathode of the fourth equalizing diode is the output end of the second loop
  • the anode of the fourth equalizing diode is the input of the second loop.
  • the multiple loads include: a first load, a second load, a third load and a fourth load;
  • the equalization circuit includes: a DC blocking circuit, a first loop and a second loop;
  • the input terminal of the DC blocking circuit is connected to the positive output terminal of the voltage conversion circuit, the output terminal of the DC blocking circuit is connected to the input terminal of the first loop, and the first output terminal of the first loop is connected to For the first load, the second output end of the first loop is connected to the third load, and the return end of the first loop is connected to the negative output end of the voltage conversion circuit;
  • the input end of the second loop is connected to the negative output end of the voltage conversion circuit, the first output end of the second loop is connected to the fourth load, and the second output end of the second loop is connected to the fourth load.
  • Two loads, the return end of the second loop is connected to the output end of the DC blocking circuit.
  • the DC blocking circuit includes: a DC blocking capacitor;
  • the first loop includes: a first equalizing diode, a first equalizing capacitor, a third equalizing capacitor and a third equalizing capacitor a diode;
  • the second loop includes: a second equalization diode, a second equalization capacitor, a fourth equalization capacitor and a fourth equalization diode;
  • the first terminal of the DC blocking capacitor is connected to the positive output terminal of the voltage conversion circuit as the input terminal of the DC blocking circuit, and the second terminal of the DC blocking capacitor is connected to the output terminal of the DC blocking circuit as the output terminal of the DC blocking circuit.
  • the cathode of the first equalizing diode is connected to the first load and the positive terminal of the first equalizing capacitor, the negative terminal of the first equalizing capacitor is connected to the positive terminal of the third equalizing capacitor, and the third equalizing capacitor is connected to the positive terminal of the third equalizing capacitor.
  • the negative end of the capacitor is connected to the anode of the third equalizing diode and the third load, and the cathode of the third equalizing diode is connected to the negative output end of the voltage conversion circuit;
  • the anode of the fourth balancing diode is connected to the negative output end of the voltage conversion circuit, the cathode of the fourth balancing diode is connected to the positive end of the fourth balancing capacitor and the fourth load, and the fourth balancing capacitor
  • the positive terminal of the second balancing capacitor is connected to the second load, and the negative terminal of the second balancing capacitor is connected to the anode of the second balancing diode;
  • the anode of the first equalizing diode is the input end of the first loop
  • the cathode of the first equalizing diode is the first output end of the first loop
  • the negative end of the third equalizing capacitor is the second output end of the first loop
  • the anode of the second equalizing diode is the input end of the second loop
  • the cathode of the fourth equalizing diode is the first output end of the second loop
  • the negative terminal of the four equalizing capacitors is the second output terminal of the second loop.
  • the detection circuit includes: a current detection circuit and a voltage detection circuit; the detection signal includes: a current sampling signal and a voltage sampling signal;
  • the current detection circuit is used to collect the output current of the equalization circuit and output a current sampling signal
  • the voltage detection circuit is used to collect the output voltage of the equalization circuit and output a voltage sampling signal.
  • the switching power supply circuit includes any one of a full-bridge circuit, a symmetrical half-bridge circuit, an asymmetrical half-bridge circuit, and a resonant half-bridge circuit.
  • the present invention also provides a driving power supply, including the above-mentioned multi-output constant current control circuit.
  • the multi-output constant current control circuit and the driving power supply of the present invention have the following beneficial effects: including: a switching power supply circuit, a voltage conversion circuit, and an equalization circuit; the input end of the switching power supply circuit is connected to the input signal input end, and the output end of the switching power supply circuit The input end of the voltage conversion circuit is connected, the output end of the voltage conversion circuit is connected to the input end of the balancing circuit, and the output ends of the balancing circuit are respectively connected to the input ends of the multiple loads, and respectively output multiple balanced currents; the voltage conversion circuit is based on the switching power supply circuit.
  • the controller After the control of the controller converts the input signal, it outputs the voltage signal to the equalization circuit; the equalization circuit performs equalization processing according to the voltage signal, so as to output multi-channel equalization currents to the multiple loads connected to it respectively.
  • the invention can realize multi-channel constant current output through the equalization circuit, and has the advantages of simple circuit structure, low cost, good balance and consistency of each output current, high reliability and high power conversion efficiency.
  • FIG. 1 is a schematic block diagram of a multi-output constant-current control circuit provided by an embodiment of the present invention
  • Fig. 2 is the circuit diagram of the first embodiment of the equalization circuit of the present invention.
  • Fig. 3 is the circuit diagram of the second embodiment of the equalization circuit of the present invention.
  • 4 to 6 are circuit diagrams of an alternative embodiment of the multi-output constant current control circuit of the present invention.
  • FIG. 1 is a schematic block diagram of a multi-output constant current control circuit provided by the present invention.
  • the multi-output constant current control circuit can realize multiple outputs, and can be applied to the field of LED lighting technology, or other applications that require current controllable or constant current.
  • the multi-output constant current control circuit includes a switching power supply circuit 11 , a voltage conversion circuit 12 and an equalization circuit 13 .
  • the input end of the switching power supply circuit 11 is connected to the input signal input end, the output end of the switching power supply circuit 11 is connected to the input end of the voltage conversion circuit 12, and the output end of the voltage conversion circuit 12 is connected to the equalization
  • the input end of the circuit 13, the output end of the equalization circuit 13 is respectively connected to the input ends of the multiple loads, and outputs multiple balanced currents respectively.
  • the voltage conversion circuit 12 After the voltage conversion circuit 12 performs conversion processing on the input signal signal according to the control of the switching power supply circuit 11, it outputs a voltage signal to the equalization circuit 13; The multiple loads connected thereto output the multiple balanced currents respectively.
  • the multi-output constant current control circuit further includes: a detection circuit 14 connected to the equalization circuit 13 for detecting voltage and current and outputting a detection signal.
  • the multi-output constant current control circuit further includes: a feedback control circuit 15 connected to the detection circuit 14 and the switching power supply circuit 11 .
  • the feedback control circuit 15 receives the detection signal and outputs a feedback control signal to the switching power supply circuit 11 according to the detection signal; the switching power supply circuit 11 adjusts and controls the voltage conversion circuit 12 according to the feedback control signal .
  • the switching power supply circuit 11 can control current or voltage by controlling the voltage conversion circuit 12 .
  • the voltage conversion circuit 12 outputs the corresponding voltage signal to the equalization circuit 13 after the input signal (VBUS in FIG. 1 ) according to the control of the switching power supply circuit 11 , and the equalization circuit 13 performs corresponding equalization processing according to the voltage signal, Therefore, the multi-channel balanced currents can be obtained, and the obtained multi-channel balanced currents can be respectively output to a plurality of loads connected thereto, so as to realize the multi-channel constant current output.
  • the detection circuit 14 also detects the voltage and current output by the balanced current and outputs the corresponding detection signal to the feedback control circuit 15.
  • the feedback control circuit 15 performs feedback control according to the received detection signal and outputs the corresponding feedback control signal to the feedback control circuit 15.
  • the switching power supply circuit 11 and the switching power supply circuit 11 adjusts and controls the voltage conversion circuit 12 based on the feedback control signal, thereby realizing constant current control and voltage control.
  • the switching power supply circuit 11 may adopt, but is not limited to, any one of a full-bridge circuit, a symmetrical half-bridge circuit, an asymmetrical half-bridge circuit, and a resonant half-bridge circuit.
  • the voltage conversion circuit 12 may be implemented by a transformer.
  • the detection circuit 14 includes: a current detection circuit 14 and a voltage detection circuit 14; the detection signal includes: a current sampling signal and a voltage sampling signal.
  • the current detection circuit 14 is used to collect the output current of the equalization circuit 13 and output a current sampling signal.
  • the voltage detection circuit 14 is used to collect the output voltage of the equalization circuit 13 and output a voltage sampling signal.
  • the equalizing circuit 13 of the present invention can be realized by a combination of capacitors and diodes.
  • the circuit structure can be simplified, the assembly complexity and cost can be reduced, and the The circuit structure of PFC+LLC can achieve high conversion efficiency, which is about 4 ⁇ 6% higher than that of transmitting multiple Class2 power supplies.
  • the present invention does not need to control the load, and has high reliability.
  • the space occupied by the power supply is greatly saved, and the installation and use of the user are simplified. Further, the present invention also improves the current balance of multi-channel control and the current consistency of multi-channel loads.
  • FIG. 2 is a circuit diagram of Embodiment 1 of the equalization circuit 13 provided by the present invention.
  • the multiple loads include: a first load (load 1 in FIG. 2 ) and a second load (load 2 in FIG. 2 ), so that two loads can be loaded.
  • the voltage conversion circuit 12 includes a transformer. A transformer converts the input signal into an AC signal.
  • the equalization circuit 13 includes a DC blocking circuit, a first loop and a second loop.
  • the input terminal of the DC blocking circuit is connected to the positive output terminal of the voltage conversion circuit 12 , the output terminal of the DC blocking circuit is connected to the input terminal of the first loop, and the output terminal of the first loop is connected to the output terminal of the first circuit.
  • the first load the return end of the first loop is connected to the negative output end of the voltage conversion circuit 12 ;
  • the input end of the second loop is connected to the negative output end of the voltage conversion circuit 12 ,
  • the output end of the second loop is connected to the second load, and the return end of the second loop is connected to the positive output end of the voltage conversion circuit 12 .
  • the DC blocking circuit includes: a DC blocking capacitor C32; the first loop includes: a first equalization diode D16, a first equalization capacitor EC3 and a third equalization diode D5 ; The second loop includes: a second equalizing diode D17, a second equalizing capacitor EC4 and a fourth equalizing diode D6.
  • the first terminal of the DC blocking capacitor C32 is connected to the positive output terminal of the voltage conversion circuit 12 as the input terminal of the DC blocking circuit, and the second terminal of the DC blocking capacitor C32 is used as the output terminal of the DC blocking circuit.
  • the anode of the first equalization diode D16 is connected, the cathode of the first equalization diode D16 is connected to the first load and the positive end of the first equalization capacitor EC3, and the negative end of the first equalization capacitor EC3 is connected to the The anode of the third equalization diode D5 and the negative end of the second equalization capacitor EC4, the cathode of the third equalization diode D5 is connected to the negative output end of the voltage conversion circuit 12; the cathode of the second equalization diode D17 Connect the second end of the DC blocking capacitor C32, the anode of the second equalization diode D17 is connected to the anode of the third equalization diode D5 and the negative end of the second equalization capacitor EC4, the
  • the anode of the first equalization diode D16 is the input end of the first loop
  • the cathode of the first equalization diode D16 is the output end of the first loop
  • the cathode of the third equalization diode D5 is The return end of the first loop
  • the cathode of the second equalization diode D17 is the return end of the second loop
  • the cathode of the fourth equalization diode D6 is the output end of the second loop
  • the anodes of the four equalization diodes D6 are the input terminals of the second loop.
  • the DC blocking capacitor C32 filters out the DC component in the circuit, so as to ensure that the charges passing through the first equalizing capacitor EC3 and the second equalizing capacitor EC4 are the same in the positive half cycle and the negative half cycle. Therefore, it is also guaranteed
  • the charge of the first loop formed by the first equalizing diode D16, the first equalizing capacitor EC3 and the third equalizing diode D5 is the same as that of the second loop formed by the second equalizing diode D17, the second equalizing capacitor EC4 and the fourth equalizing diode D6, Thus, the current consistency of the first load and the second load is ensured.
  • the detection circuit 14 sends the detected current sampling signal and voltage sampling signal to the feedback control circuit 15, and the feedback control circuit 15 sends the feedback control signal to the switching power supply circuit 11, which is realized by controlling the duty cycle or frequency of the switch. Constant current control of current and voltage control.
  • FIG. 3 is a circuit diagram of Embodiment 2 of the equalization circuit 13 provided by the present invention.
  • the multiple loads include: a first load (load 1 in FIG. 3 ), a second load (load 2 in FIG. 3 ), a third load (load 3 in FIG. 3 ), and a fourth load (load 3 in FIG. 3 ) load 4).
  • the equalization circuit 13 includes: a DC blocking circuit, a first loop and a second loop.
  • the input terminal of the DC blocking circuit is connected to the positive output terminal of the voltage conversion circuit 12 , the output terminal of the DC blocking circuit is connected to the input terminal of the first loop, and the first The output terminal is connected to the first load, the second output terminal of the first loop is connected to the third load, and the return terminal of the first loop is connected to the negative output terminal of the voltage conversion circuit 12 .
  • the input end of the second loop is connected to the negative output end of the voltage conversion circuit 12, the first output end of the second loop is connected to the fourth load, and the second output end of the second loop is connected to the For the second load, the return end of the second loop is connected to the output end of the DC blocking circuit.
  • the DC blocking circuit includes: a DC blocking capacitor C32; the first loop includes: a first equalizing diode D16, a first equalizing capacitor EC3, and a third equalizing capacitor EX3 and a third equalization diode D5; the second loop includes: a second equalization diode D17, a second equalization capacitor EC4, a fourth equalization capacitor EX4 and a fourth equalization diode D6.
  • the first terminal of the DC blocking capacitor C32 is connected to the positive output terminal of the voltage conversion circuit 12 as the input terminal of the DC blocking circuit, and the second terminal of the DC blocking capacitor C32 is used as the output terminal of the DC blocking circuit.
  • the anode of the first equalization diode D16 is connected to the cathode of the second equalization diode D17; the cathode of the first equalization diode D16 is connected to the first load and the positive terminal of the first equalization capacitor EC3, and the The negative end of the first equalizing capacitor EC3 is connected to the positive end of the third equalizing capacitor EX3, the negative end of the third equalizing capacitor EX3 is connected to the anode of the third equalizing diode D5 and the third load, and the third equalizing capacitor EX3 is connected to the anode of the third equalizing diode D5 and the third load.
  • the cathode of the three equalization diodes D5 is connected to the negative output terminal of the voltage conversion circuit 12; the anode of the fourth equalization diode D6 is connected to the negative output terminal of the voltage conversion circuit 12, and the cathode of the fourth equalization diode D6 is connected to the negative output terminal of the voltage conversion circuit 12.
  • the positive terminal of the fourth balancing capacitor EX4 and the fourth load, the positive terminal of the fourth balancing capacitor EX4 is connected to the positive terminal of the second balancing capacitor EC4 and the second load, and the second balancing capacitor EC4
  • the negative terminal is connected to the anode of the second equalizing diode D17.
  • the anode of the first equalizing diode D16 is the input end of the first loop
  • the cathode of the first equalizing diode D16 is the first output end of the first loop
  • the third equalizing capacitor EX3 The negative end is the second output end of the first loop
  • the anode of the second equalization diode D17 is the input end of the second loop
  • the cathode of the fourth equalization diode D6 is the first end of the second loop.
  • An output terminal, the negative terminal of the fourth equalizing capacitor EX4 is the second output terminal of the second loop.
  • a capacitor is added to the loops of the second equalization diode D17 and the third equalization diode D5 respectively, and the forward current flows through the first equalization diode.
  • D16 and the first load and the third balancing diode D5 and the third load the negative current passes through the second balancing diode D17 and the second load and the fourth balancing diode D6 and the fourth load, therefore, the first load and the third load are guaranteed The current consistency of the load, the current consistency of the second load and the fourth load.
  • the DC blocking capacitor C32 filters out the DC component in the circuit to ensure that the charge passing through the capacitor is the same in the positive half cycle and the negative half cycle, thus ensuring that the first equalizing diode D16, the third equalizing diode D5 and the second equalizing diode D17 The charge is the same as that of the fourth balancing diode D6, thereby ensuring the current consistency of the first load, the second load, the third load and the fourth load.
  • FIG. 4 to FIG. 6 it is a circuit diagram of an optional embodiment of the multi-output constant current control circuit provided by the present invention.
  • the switching power supply circuit 11 includes: a controller U1, a third MOS transistor Q3, a fourth MOS transistor Q4, a twenty-second capacitor C22, a fourth inductor L4, a tenth Three diodes D13, eleventh diode D11, twelfth diode D12, fifty-ninth resistor R59, second capacitor EC2, sixty-first resistor R61, sixty-third resistor R63, tenth Eight diodes D18, one hundred and five resistors R105 and one hundred and six resistors R106.
  • the voltage conversion circuit 12 includes a transformer L3.
  • the current detection circuit 14 includes a detection resistor RS3.
  • the voltage detection circuit 14 includes: a twelfth resistor R12, a twenty-fourth diode R24, a twenty-third diode R23, and a one-hundred and tenth resistor R110.
  • the feedback control circuit 15 includes: a third comparator U3-B, a fifty-eighth resistor R58, a feedback control chip U4, a fifty-first capacitor C51, a fifty-seventh resistor R57, a fifty-eighth capacitor C50, and an eighth diode Tube D8, eighty-fifth resistor R85, eighty-fourth resistor R84, optocoupler Q9, fourth resistor R4 and thirtieth capacitor C30.
  • the second control terminal of the controller U1 is connected to the gate of the fourth MOS transistor Q4, the source of the fourth MOS transistor Q4 is grounded, and the drain of the fourth MOS transistor Q4 is connected to the source of the third MOS transistor Q3
  • the gate of the third MOS transistor Q3 is connected to the first control terminal of the controller U1, and the drain of the third MOS transistor Q3 is connected to the input signal (VBUS).
  • the adjustment end of the controller U1 is connected to the first end of the fourth inductor L4 through the twenty-second capacitor C22, the second end of the fourth inductor L4 is connected to the first end of the primary winding of the transformer L3, and the primary winding of the transformer L3 is connected to the first end of the primary winding of the transformer L3.
  • the second end is connected to the cathode of the eleventh diode D11, the anode of the eleventh diode D11 is grounded, the anode of the twelfth diode D12 is connected to the cathode of the eleventh diode D11, and the twelfth diode D11 is connected to the cathode of the twelfth diode D11.
  • the cathode of the transistor D12 is connected to the drain of the third MOS transistor Q3.
  • the first end of the auxiliary winding of the transformer L3 is connected to the anode of the thirteenth diode D13, and the cathode of the thirteenth diode D13 is connected to the second end and the second end of the sixty-first resistor R61 through the fifty-ninth resistor R59.
  • the positive terminal of the capacitor EC2, the first terminal of the sixty-first resistor R61 is connected to a high level (VCC), and the second terminal of the second capacitor EC2 is grounded through the sixty-third resistor R63.
  • the second end of the fifty-ninth resistor R59 is also connected to the anode of the eighteenth diode D18 through the one hundred and fifth resistor R105, and the cathode of the eighteenth diode D18 is connected to the power supply end of the controller U1, and the first The first end of the one-hundred and sixth resistor R106 is connected to the anode of the eighteenth diode D18, and the second end of the one-hundred and sixth resistor R106 is grounded.
  • the third end of the optocoupler Q9 is connected to the feedback end (ie, the third pin) of the controller U1 through the fourth resistor R4, the first end of the thirtieth capacitor C30 is connected to the first end of the fourth resistor R4, and the thirtieth capacitor C30 is connected to the first end of the fourth resistor R4.
  • the second end of the capacitor C30 and the fourth end of the photocoupler Q9 are grounded.
  • the first end of the photocoupler Q9 is connected to the feedback output end of the feedback control chip U4 through the eighty-fifth resistor R85.
  • the second end of the photocoupler Q9 The terminal is connected to the anode of the eighth diode D8, and the cathode of the eighth diode D8 is sequentially connected to the third comparator U3-B through the fifty-first capacitor C51, the fifty-seventh resistor R57 and the fifty-eighth resistor R58.
  • the output terminal of the third comparator U3-B is also grounded through the forty-second resistor R42 and the thirty-seventh resistor R37 in sequence, and the second input terminal of the third comparator U3-B is connected to the ground through the thirty-seventh resistor R37.
  • the first input end of the third comparator U3-B is connected to the negative end of the second load and the second end of the detection resistor RS3 through the thirty-fifth resistor R35, and the first end of the detection resistor RS3 is connected to the second equalizing capacitor EC4 the negative terminal of .
  • the anode of the twenty-third diode R23 is connected to the cathode of the fourth equalizing diode D6, the cathode of the twenty-third diode R23 is connected to the cathode of the twenty-fourth diode R24 and is connected to the one-hundred and tenth resistor R110
  • the first end of the 110th resistor R110 is connected to the voltage sampling end of the feedback control chip U4, the anode of the 24th diode R24 is connected to the cathode of the first equalization diode D16 through the twelfth resistor R12 .
  • the circuit architecture disclosed in the embodiment of the present invention can achieve high conversion efficiency, greatly reduce the circuit cost of multi-channel constant current applications, and the circuit structure is simple, which greatly saves the space occupied by the power supply and simplifies the installation and use of users. At the same time, the circuit also improves the current balance of multi-channel control and the current consistency of multi-channel loads.
  • the present invention also provides a driving power supply including the multi-output constant current control circuit disclosed in the embodiment of the present invention.
  • the conversion efficiency of the driving power supply can be improved, and the cost is also reduced. Due to the simplified circuit structure, the volume and layout of the driving power supply are made smaller, the installation of the user is simplified, and the The current balance of the multi-channel control of the driving power supply and the current consistency of the multi-channel loads.
  • the driving power supply may include, but is not limited to, an LED driving power supply, an industrial power supply driving device, and the like.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM compact disc-read only memory

Abstract

本发明涉及一种多输出恒流控制电路及驱动电源,包括:开关电源电路、电压转换电路、均衡电路;开关电源电路的输入端连接输入信号输入端,开关电源电路的输出端连接电压转换电路的输入端,电压转换电路的输出端连接均衡电路的输入端,均衡电路的输出端分别连接至多个负载的输入端、并分别输出多路均衡电流;电压转换电路根据开关电源电路的控制对输入信号进行转换处理后,输出电压信号至均衡电路;均衡电路根据电压信号进行均衡处理,以向与其连接的多个负载分别输出多路均衡电流。本发明通过该均衡电路可以实现多路恒流输出,且电路结构简单、成本低、各路输出电流均衡性和一致性好,可靠性高,电源转换效率高。

Description

一种多输出恒流控制电路及驱动电源 技术领域
本发明涉及电源驱动的技术领域,更具体地说,涉及一种多输出恒流控制电路及驱动电源。
背景技术
现有的驱动电源,如LED驱动电源等,为了满足负载的需求,在某些场合或者领域需要进行多路输出,如多路恒定电流输出或者可调输出电流等。因此,为了满足市场需求,需设计具有多路输出电流的驱动电源。
目前,多路输出电流的驱动电源有多种方式,第一种方式为使用多个开关电源实现多路恒定电流与电流控制;第二种方式为使用一个恒压电源串接多个恒流开关电源的方式实现。第三种方式为使用线性控制电流的方式实现。然而,这些方式均存在一定的缺陷:对于第一种方式装配复杂,成本高,电流均衡性和一致性差;对于第二种方式电路成本高,转换效率低;对于第三种方式无法控制负载的不平衡性,将负载的不均衡以热的形式消耗,可靠性极差。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种多输出恒流控制电路及驱动电源。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种多输出恒流控制电路,包括:开关电源电路、电压转换电路和均衡电路;
所述开关电源电路的输入端连接输入信号输入端,所述开关电源电路的输出端连接所述电压转换电路的输入端,所述电压转换电路的输出端连接所述均衡电路的输入端,所述均衡电路的输出端分别连接至多个负载的输入端、并分别输出多路均衡电流;
所述电压转换电路根据所述开关电源电路的控制对输入信号号进行转换处理后,输出电压信号至所述均衡电路;
所述均衡电路根据所述电压信号进行均衡处理,以向与其连接的多个负载分别输出所述多路均衡电流。
在本发明所述的多输出恒流控制电路中,还包括:与所述均衡电路连接、用于进行电压电流检测并输出检测信号的检测电路。
在本发明所述的多输出恒流控制电路中,还包括:与所述检测电路和所述开关电源电路连接的反馈控制电路;
所述反馈控制电路接收所述检测信号并根据所述检测信号输出反馈控制信号至所述开关电源电路;所述开关电源电路根据所述反馈控制信号调节控制所述电压转换电路。
在本发明所述的多输出恒流控制电路中,所述多个负载包括:第一负载和第二负载;
所述均衡电路包括:隔直电路、第一回路和第二回路;
所述隔直电路的输入端与所述电压转换电路的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的输出端与所述第一负载连接,所述第一回路的返回端与所述电压转换电路的负输出端连接;
所述第二回路的输入端与所述电压转换电路的负输出端连接,所述第二回路的输出端与所述第二负载连接,所述第二回路的返回端与所述电压转换电路的正输出端连接。
在本发明所述的多输出恒流控制电路中,所述隔直电路包括:隔直电容;所述第一回路包括:第一均衡二极管、第一均衡电容和第三均衡二极管;所述第二回路包括:第二均衡二极管、第二均衡电容和第四均衡二极管;
所述隔直电容的第一端作为所述隔直电路的输入端连接所述电压转换电路的正输出端,所述隔直电容的第二端作为所述隔直电路的输出端连接所述第一均衡二极管的阳极,所述第一均衡二极管的阴极连接所述第一负载和所述第一均衡电容的正端,所述第一均衡电容的负端连接所述第三均衡二极管的阳极和所述第二均衡电容的负端,所述第三均衡二极管的阴极连接所述电压转换电路的负输出端;
所述第二均衡二极管的阴极连接所述隔直电容的第二端,所述第二均衡二极管的阳极连接所述第三均衡二极管的阳极和所述第二均衡电容的负端,所述第二均衡电容的正端连接所述第四均衡二极管的阴极,所述第四均衡二极管的阴极连接所述第二负载,所述第四均衡二极管的阳极连接所述电压转换电路的负输出端;
所述第一均衡二极管的阳极为所述第一回路的输入端,所述第一均衡二极管的阴极为所述第一回路的输出端,所述第三均衡二极管的阴极为所述第一回路的返回端;所述第二均衡二极管的阴极为所述第二回路的返回端,所述第四均衡二极管的阴极为所述第二回路的输出端,所述第四均衡二极管的阳极为所述第二回路的输入端。
在本发明所述的多输出恒流控制电路中,所述多个负载包括:第一负载、第二负载、第三负载和第四负载;
所述均衡电路包括:隔直电路、第一回路和第二回路;
所述隔直电路的输入端与所述电压转换电路的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的第一输出端连接所述第一负载,所述第一回路的第二输出端连接所述第三负载,所述第一回路的返回端连接所述电压转换电路的负输出端;
所述第二回路的输入端连接所述电压转换电路的负输出端,所述第二回路的第一输出端连接所述第四负载,所述第二回路的第二输出端连接所述第二负载,所述第二回路的返回端连接所述隔直电路的输出端。
在本发明所述的多输出恒流控制电路中,所述隔直电路包括:隔直电容;所述第一回路包括:第一均衡二极管、第一均衡电容、第三均衡电容和第三均衡二极管;所述第二回路包括:第二均衡二极管、第二均衡电容、第四均衡电容和第四均衡二极管;
所述隔直电容的第一端作为所述隔直电路的输入端连接所述电压转换电路的正输出端,所述隔直电容的第二端作为所述隔直电路的输出端连接所述第一均衡二极管的阳极和所述第二均衡二极管的阴极;
所述第一均衡二极管的阴极连接所述第一负载和所述第一均衡电容的正端,所述第一均衡电容的负端连接所述第三均衡电容的正端,所述第三均衡电容的负端连接所述第三均衡二极管的阳极和所述第三负载,所述第三均衡二极管的阴极连接所述电压转换电路的负输出端;
所述第四均衡二极管的阳极连接所述电压转换电路的负输出端,所述第四均衡二极管的阴极连接所述第四均衡电容的正端和所述第四负载,所述第四均衡电容的连接所述第二均衡电容的正端和所述第二负载,所述第二均衡电容的负端连接所述第二均衡二极管的阳极;
所述第一均衡二极管的阳极为所述第一回路的输入端,所述第一均衡二极管的阴极为所述第一回路的第一输出端,所述第三均衡电容的负端为所述第一回路的第二输出端;所述第二均衡二极管的阳极为所述第二回路的输入端,所述第四均衡二极管的阴极为所述第二回路的第一输出端,所述第四均衡电容的负端为所述第二回路的第二输出端。
在本发明所述的多输出恒流控制电路中,所述检测电路包括:电流检测电路和电压检测电路;所述检测信号包括:电流采样信号和电压采样信号;
所述电流检测电路用于采集所述均衡电路的输出电流并输出电流采样信号;
所述电压检测电路用于采集所述均衡电路的输出电压并输出电压采样信号。
在本发明所述的多输出恒流控制电路中,所述开关电源电路包括:全桥电路、对称半桥电路、非对称半桥电路、谐振半桥电路中的任意一种。
本发明还提供一种驱动电源,包括以上所述的多输出恒流控制电路。
有益效果
实施本发明的多输出恒流控制电路及驱动电源,具有以下有益效果:包括:开关电源电路、电压转换电路、均衡电路;开关电源电路的输入端连接输入信号输入端,开关电源电路的输出端连接电压转换电路的输入端,电压转换电路的输出端连接均衡电路的输入端,均衡电路的输出端分别连接至多个负载的输入端、并分别输出多路均衡电流;电压转换电路根据开关电源电路的控制对输入信号进行转换处理后,输出电压信号至均衡电路;均衡电路根据电压信号进行均衡处理,以向与其连接的多个负载分别输出多路均衡电流。本发明通过该均衡电路可以实现多路恒流输出,且电路结构简单、成本低、各路输出电流均衡性和一致性好,可靠性高,电源转换效率高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例提供的多输出恒流控制电路的原理框图;
图2是本发明均衡电路实施例一的电路图;
图3是本发明均衡电路实施例二的电路图;
图4至图6是本发明多输出恒流控制电路一可选实施例的电路图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
参考图1,图1为本发明提供的多输出恒流控制电路的原理框图。该多输出恒流控制电路可以实现多路输出,可应用于LED照明技术领域,或者其他需要电流可控或者恒流的应用中。
具体的,如图1所示,该多输出恒流控制电路包括:开关电源电路11、电压转换电路12和均衡电路13。
其中,所述开关电源电路11的输入端连接输入信号输入端,所述开关电源电路11的输出端连接所述电压转换电路12的输入端,所述电压转换电路12的输出端连接所述均衡电路13的输入端,所述均衡电路13的输出端分别连接至多个负载的输入端、并分别输出多路均衡电流。
所述电压转换电路12根据所述开关电源电路11的控制对输入信号号进行转换处理后,输出电压信号至所述均衡电路13;所述均衡电路13根据所述电压信号进行均衡处理,以向与其连接的多个负载分别输出所述多路均衡电流。
进一步地,如图1所示,该多输出恒流控制电路还包括:与所述均衡电路13连接、用于进行电压电流检测并输出检测信号的检测电路14。
进一步地,如图1所示,该多输出恒流控制电路还包括:与所述检测电路14和所述开关电源电路11连接的反馈控制电路15。该所述反馈控制电路15接收所述检测信号并根据所述检测信号输出反馈控制信号至所述开关电源电路11;所述开关电源电路11根据所述反馈控制信号调节控制所述电压转换电路12。
如图1所示,开关电源电路11通过控制电压转换电路12可实现对电流或者电压控制。具体的,电压转换电路12根据开关电源电路11的控制对输入信号(如图1中的VBUS)后,输出相应的电压信号至均衡电路13,由均衡电路13根据电压信号进行相应的均衡处理,从而可以得到多路均衡电流,并将所得到的多路均衡电流分别输出至与其连接的多个负载,以实现多路恒流输出。同时,检测电路14还对均衡电流输出的电压和电流进行检测并输出相应的检测信号至反馈控制电路15,由反馈控制电路15根据所接收的检测信号进行反馈控制并输出相应的反馈控制信号至开关电源电路11,开关电源电路11再基于反馈控制信号对电压转换电路12进行调节控制,从而实现恒流控制和电压控制。
可选的,本发明实施例中,开关电源电路11可以采用但不限于:全桥电路、对称半桥电路、非对称半桥电路、谐振半桥电路中的任意一种。
可选的,本发明实施例中,电压转换电路12可以通过变压器实现。
可选的,检测电路14包括:电流检测电路14和电压检测电路14;所述检测信号包括:电流采样信号和电压采样信号。其中,所述电流检测电路14用于采集所述均衡电路13的输出电流并输出电流采样信号。所述电压检测电路14用于采集所述均衡电路13的输出电压并输出电压采样信号。
一些实施例中,本发明的均衡电路13可以采用电容器和二极管的组合实现,通过采用电容器和二极管的组合实现多输出恒流控制电路,可以简化电路结构,降低装配复杂度,降低成本,且采用PFC+LLC的电路架构,可以实现高转换效率,比传输多路Class2电源提高了大约4~6个百分点。而且本发明不需要控制负载,可靠性高,同时由于电路结构简单,大大节约了电源占用空间,简化用户安装使用。进一步地,本发明还提升了多路控制的电流平衡性和多路负载的电流一致性。
参考图2,图2为本发明提供的均衡电路13实施例一的电路图。
如图2所示,该实施例中,可实现两路恒流输出。其中,多个负载包括:第一负载(图2中的负载1)和第二负载(图2中的负载2),即可实现两个负载的带载。电压转换电路12包括变压器。变压器将输入信号转换为交流信号。
如图2所示,所述均衡电路13包括:隔直电路、第一回路和第二回路。
其中,所述隔直电路的输入端与所述电压转换电路12的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的输出端与所述第一负载连接,所述第一回路的返回端与所述电压转换电路12的负输出端连接;所述第二回路的输入端与所述电压转换电路12的负输出端连接,所述第二回路的输出端与所述第二负载连接,所述第二回路的返回端与所述电压转换电路12的正输出端连接。
具体的,如图2所示,该实施例中,所述隔直电路包括:隔直电容C32;所述第一回路包括:第一均衡二极管D16、第一均衡电容EC3和第三均衡二极管D5;所述第二回路包括:第二均衡二极管D17、第二均衡电容EC4和第四均衡二极管D6。
所述隔直电容C32的第一端作为所述隔直电路的输入端连接所述电压转换电路12的正输出端,所述隔直电容C32的第二端作为所述隔直电路的输出端连接所述第一均衡二极管D16的阳极,所述第一均衡二极管D16的阴极连接所述第一负载和所述第一均衡电容EC3的正端,所述第一均衡电容EC3的负端连接所述第三均衡二极管D5的阳极和所述第二均衡电容EC4的负端,所述第三均衡二极管D5的阴极连接所述电压转换电路12的负输出端;所述第二均衡二极管D17的阴极连接所述隔直电容C32的第二端,所述第二均衡二极管D17的阳极连接所述第三均衡二极管D5的阳极和所述第二均衡电容EC4的负端,所述第二均衡电容EC4的正端连接所述第四均衡二极管D6的阴极,所述第四均衡二极管D6的阴极连接所述第二负载,所述第四均衡二极管D6的阳极连接所述电压转换电路12的负输出端。
其中,所述第一均衡二极管D16的阳极为所述第一回路的输入端,所述第一均衡二极管D16的阴极为所述第一回路的输出端,所述第三均衡二极管D5的阴极为所述第一回路的返回端;所述第二均衡二极管D17的阴极为所述第二回路的返回端,所述第四均衡二极管D6的阴极为所述第二回路的输出端,所述第四均衡二极管D6的阳极为所述第二回路的输入端。
如图2所示,隔直电容C32将电路中的直流分量滤除掉,从而保证在正半周期和负半周期通过第一均衡电容EC3和第二均衡电容EC4的电荷相同,因此,也保证了第一均衡二极管D16、第一均衡电容EC3和第三均衡二极管D5形成的第一回路与第二均衡二极管D17、第二均衡电容EC4和第四均衡二极管D6形成的第二回路的电荷相同,从而保证了第一负载和第二负载的电流一致性。检测电路14把检测到的电流采样信号和电压采样信号发送给反馈控制电路15,反馈控制电路15把反馈控制信号发送给开关电源电路11,开关电源电路11通过控制开关的占空比或者频率实现对电流的恒流控制和电压的控制。
参考图3,图3为本发明提供的均衡电路13实施例二的电路图。
如图3所示,该实施例中,可实现四路恒流输出。其中,多个负载包括:第一负载(图3中的负载1)、第二负载(图3中的负载2)、第三负载(图3中的负载3)和第四负载(图3中的负载4)。
所述均衡电路13包括:隔直电路、第一回路和第二回路。
其中,所述隔直电路的输入端与所述电压转换电路12的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的第一输出端连接所述第一负载,所述第一回路的第二输出端连接所述第三负载,所述第一回路的返回端连接所述电压转换电路12的负输出端。所述第二回路的输入端连接所述电压转换电路12的负输出端,所述第二回路的第一输出端连接所述第四负载,所述第二回路的第二输出端连接所述第二负载,所述第二回路的返回端连接所述隔直电路的输出端。
具体的,如图3所示,该实施例中,所述隔直电路包括:隔直电容C32;所述第一回路包括:第一均衡二极管D16、第一均衡电容EC3、第三均衡电容EX3和第三均衡二极管D5;所述第二回路包括:第二均衡二极管D17、第二均衡电容EC4、第四均衡电容EX4和第四均衡二极管D6。
所述隔直电容C32的第一端作为所述隔直电路的输入端连接所述电压转换电路12的正输出端,所述隔直电容C32的第二端作为所述隔直电路的输出端连接所述第一均衡二极管D16的阳极和所述第二均衡二极管D17的阴极;所述第一均衡二极管D16的阴极连接所述第一负载和所述第一均衡电容EC3的正端,所述第一均衡电容EC3的负端连接所述第三均衡电容EX3的正端,所述第三均衡电容EX3的负端连接所述第三均衡二极管D5的阳极和所述第三负载,所述第三均衡二极管D5的阴极连接所述电压转换电路12的负输出端;所述第四均衡二极管D6的阳极连接所述电压转换电路12的负输出端,所述第四均衡二极管D6的阴极连接所述第四均衡电容EX4的正端和所述第四负载,所述第四均衡电容EX4的连接所述第二均衡电容EC4的正端和所述第二负载,所述第二均衡电容EC4的负端连接所述第二均衡二极管D17的阳极。
其中,所述第一均衡二极管D16的阳极为所述第一回路的输入端,所述第一均衡二极管D16的阴极为所述第一回路的第一输出端,所述第三均衡电容EX3的负端为所述第一回路的第二输出端;所述第二均衡二极管D17的阳极为所述第二回路的输入端,所述第四均衡二极管D6的阴极为所述第二回路的第一输出端,所述第四均衡电容EX4的负端为所述第二回路的第二输出端。
如图3所示,该实施例在图2的实施例一的基础上,通过分别在第二均衡二极管D17和第三均衡二极管D5的回路中各增加一个电容器,正向电流通过第一均衡二极管D16和第一负载以及第三均衡二极管D5和第三负载,负向电流通过第二均衡二极管D17和第二负载以及第四均衡二极管D6和第四负载,因此,保证了第一负载和第三负载的电流一致性,第二负载和第四负载的电流一致性。隔直电容C32将电路中的直流分量滤除掉,保证在正半周期和负半周期通过电容器的电荷相同,也因此保证了第一均衡二极管D16和第三均衡二极管D5与第二均衡二极管D17和第四均衡二极管D6的电荷相同,进而保证第一负载、第二负载、第三负载和第四负载的电流一致性。
参考图4至图6,为本发明提供的多输出恒流控制电路一可选实施例的电路图。
如图4至图6所示,该实施例中,开关电源电路11包括:控制器U1、第三MOS管Q3、第四MOS管Q4、第二十二电容C22、第四电感L4、第十三二极管D13、第十一二极管D11、第十二二极管D12、第五十九电阻R59、第二电容EC2、第六十一电阻R61、第六十三电阻R63、第十八二极管D18、第一百零五电阻R105以及第一百零六电阻R106。
电压转换电路12包括变压器L3。
电流检测电路14包括:检测电阻RS3。电压检测电路14包括:第十二电阻R12、第二十四二极管R24、第二十三二极管R23和第一百一十电阻R110。
反馈控制电路15包括:第三比较器U3-B、第五十八电阻R58、反馈控制芯片U4、第五十一电容C51、第五十七电阻R57、第五十电容C50、第八二极管D8、第八十五电阻R85、第八十四电阻R84、光电耦合器Q9、第四电阻R4和第三十电容C30。
如图4所示,控制器U1的第二控制端连接第四MOS管Q4的栅极,第四MOS管Q4的源极接地,第四MOS管Q4的漏极连接第三MOS管Q3的源极,第三MOS管Q3的栅极连接控制器U1的第一控制端,第三MOS管Q3的漏极连接输入信号(VBUS)。控制器U1的调节端通过第二十二电容C22连接第四电感L4的第一端,第四电感L4的第二端连接变压器L3的原边绕组的第一端,变压器L3的原边绕组的第二端连接第十一二极管D11的阴极,第十一二极管D11的阳极接地,第十二二极管D12的阳极连接第十一二极管D11的阴极,第十二二极管D12的阴极连接第三MOS管Q3的漏极。变压器L3的辅助绕组的第一端连接第十三二极管D13的阳极,第十三二极管D13的阴极通过第五十九电阻R59连接第六十一电阻R61的第二端和第二电容EC2的正端,第六十一电阻R61的第一端连接高电平(VCC),第二电容EC2的第二端通过第六十三电阻R63接地。第五十九电阻R59的第二端还通过第一百零五电阻R105连接第十八二极管D18的阳极,第十八二极管D18的阴极连接至控制器U1的供电端,第一百零六电阻R106的第一端连接第十八二极管D18的阳极,第一百零六电阻R106的第二端接地。
光电耦合器Q9的第三端通过第四电阻R4连接控制器U1的反馈端(即第三引脚),第三十电容C30的第一端连接第四电阻R4的第一端,第三十电容C30的第二端和光电耦合器Q9的第四端接地,光电耦合器Q9的第一端通过第八十五电阻R85连接至反馈控制芯片U4的反馈输出端,光电耦合器Q9的第二端连接第八二极管D8的阳极,第八二极管D8的阴极依次通过第五十一电容C51、第五十七电阻R57和第五十八电阻R58连接第三比较器U3-B的输出端,第三比较器U3-B的输出端还依次通过第四十二电阻R42和第三十七电阻R37接地,第三比较器U3-B的第二输入端通过第三十七电阻R37接地,第三比较器U3-B的第一输入端通过第三十五电阻R35连接第二负载的负端和检测电阻RS3的第二端,检测电阻RS3的第一端连接第二均衡电容EC4的负端。第二十三二极管R23的阳极连接第四均衡二极管D6的阴极,第二十三二极管R23的阴极连接第二十四二极管R24的阴极并连接至第一百一十电阻R110的第一端,第一百一十电阻R110的第二端连接反馈控制芯片U4的电压采样端,第二十四二极管R24的阳极通过第十二电阻R12连接第一均衡二极管D16的阴极。
可以本发明实施例公开的电路架构,可实现高转换效率,可大大降低多路恒流应用的电路成本,且电路结构简单,大大节约了电源占用空间,简化了用户安装使用。同时,本电路还提升了多路控制的电流平衡性和多路负载的电流一致性。
本发明还提供一种驱动电源,包括本发明实施例公开的多输出恒流控制电路。
通过设置该多输出恒流控制电路,可以提供驱动电源的转换效率,同时还降低了成本,由于简化了电路结构,使得驱动电源的体积和布局更小,简化了用户安装使,而且还可以提升驱动电源多路控制的电流平衡性和多路负载的电流一致性。
可选的,该驱动电源可包括但不限于LED驱动电源、工业类供电驱动装置等。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。 

Claims (10)

  1. 一种多输出恒流控制电路,其特征在于,包括:开关电源电路、电压转换电路和均衡电路;
    所述开关电源电路的输入端连接输入信号输入端,所述开关电源电路的输出端连接所述电压转换电路的输入端,所述电压转换电路的输出端连接所述均衡电路的输入端,所述均衡电路的输出端分别连接至多个负载的输入端、并分别输出多路均衡电流;
    所述电压转换电路根据所述开关电源电路的控制对输入信号号进行转换处理后,输出电压信号至所述均衡电路;
    所述均衡电路根据所述电压信号进行均衡处理,以向与其连接的多个负载分别输出所述多路均衡电流。
  2. 根据权利要求1所述的多输出恒流控制电路,其特征在于,还包括:与所述均衡电路连接、用于进行电压电流检测并输出检测信号的检测电路。
  3. 根据权利要求2所述的多输出恒流控制电路,其特征在于,还包括:与所述检测电路和所述开关电源电路连接的反馈控制电路;
    所述反馈控制电路接收所述检测信号并根据所述检测信号输出反馈控制信号至所述开关电源电路;所述开关电源电路根据所述反馈控制信号调节控制所述电压转换电路。
  4. 根据权利要求3所述的多输出恒流控制电路,其特征在于,所述多个负载包括:第一负载和第二负载;
    所述均衡电路包括:隔直电路、第一回路和第二回路;
    所述隔直电路的输入端与所述电压转换电路的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的输出端与所述第一负载连接,所述第一回路的返回端与所述电压转换电路的负输出端连接;
    所述第二回路的输入端与所述电压转换电路的负输出端连接,所述第二回路的输出端与所述第二负载连接,所述第二回路的返回端与所述电压转换电路的正输出端连接。
  5. 根据权利要求4所述的多输出恒流控制电路,其特征在于,所述隔直电路包括:隔直电容;所述第一回路包括:第一均衡二极管、第一均衡电容和第三均衡二极管;所述第二回路包括:第二均衡二极管、第二均衡电容和第四均衡二极管;
    所述隔直电容的第一端作为所述隔直电路的输入端连接所述电压转换电路的正输出端,所述隔直电容的第二端作为所述隔直电路的输出端连接所述第一均衡二极管的阳极,所述第一均衡二极管的阴极连接所述第一负载和所述第一均衡电容的正端,所述第一均衡电容的负端连接所述第三均衡二极管的阳极和所述第二均衡电容的负端,所述第三均衡二极管的阴极连接所述电压转换电路的负输出端;
    所述第二均衡二极管的阴极连接所述隔直电容的第二端,所述第二均衡二极管的阳极连接所述第三均衡二极管的阳极和所述第二均衡电容的负端,所述第二均衡电容的正端连接所述第四均衡二极管的阴极,所述第四均衡二极管的阴极连接所述第二负载,所述第四均衡二极管的阳极连接所述电压转换电路的负输出端;
    所述第一均衡二极管的阳极为所述第一回路的输入端,所述第一均衡二极管的阴极为所述第一回路的输出端,所述第三均衡二极管的阴极为所述第一回路的返回端;所述第二均衡二极管的阴极为所述第二回路的返回端,所述第四均衡二极管的阴极为所述第二回路的输出端,所述第四均衡二极管的阳极为所述第二回路的输入端。
  6. 根据权利要求1所述的多输出恒流控制电路,其特征在于,所述多个负载包括:第一负载、第二负载、第三负载和第四负载;
    所述均衡电路包括:隔直电路、第一回路和第二回路;
    所述隔直电路的输入端与所述电压转换电路的正输出端连接,所述隔直电路的输出端与所述第一回路的输入端连接,所述第一回路的第一输出端连接所述第一负载,所述第一回路的第二输出端连接所述第三负载,所述第一回路的返回端连接所述电压转换电路的负输出端;
    所述第二回路的输入端连接所述电压转换电路的负输出端,所述第二回路的第一输出端连接所述第四负载,所述第二回路的第二输出端连接所述第二负载,所述第二回路的返回端连接所述隔直电路的输出端。
  7. 根据权利要求6所述的多输出恒流控制电路,其特征在于,所述隔直电路包括:隔直电容;所述第一回路包括:第一均衡二极管、第一均衡电容、第三均衡电容和第三均衡二极管;所述第二回路包括:第二均衡二极管、第二均衡电容、第四均衡电容和第四均衡二极管;
    所述隔直电容的第一端作为所述隔直电路的输入端连接所述电压转换电路的正输出端,所述隔直电容的第二端作为所述隔直电路的输出端连接所述第一均衡二极管的阳极和所述第二均衡二极管的阴极;
    所述第一均衡二极管的阴极连接所述第一负载和所述第一均衡电容的正端,所述第一均衡电容的负端连接所述第三均衡电容的正端,所述第三均衡电容的负端连接所述第三均衡二极管的阳极和所述第三负载,所述第三均衡二极管的阴极连接所述电压转换电路的负输出端;
    所述第四均衡二极管的阳极连接所述电压转换电路的负输出端,所述第四均衡二极管的阴极连接所述第四均衡电容的正端和所述第四负载,所述第四均衡电容的连接所述第二均衡电容的正端和所述第二负载,所述第二均衡电容的负端连接所述第二均衡二极管的阳极;
    所述第一均衡二极管的阳极为所述第一回路的输入端,所述第一均衡二极管的阴极为所述第一回路的第一输出端,所述第三均衡电容的负端为所述第一回路的第二输出端;所述第二均衡二极管的阳极为所述第二回路的输入端,所述第四均衡二极管的阴极为所述第二回路的第一输出端,所述第四均衡电容的负端为所述第二回路的第二输出端。
  8. 根据权利要求2所述的多输出恒流控制电路,其特征在于,所述检测电路包括:电流检测电路和电压检测电路;所述检测信号包括:电流采样信号和电压采样信号;
    所述电流检测电路用于采集所述均衡电路的输出电流并输出电流采样信号;
    所述电压检测电路用于采集所述均衡电路的输出电压并输出电压采样信号。
  9. 根据权利要求1-8任一项所述的多输出恒流控制电路,其特征在于,所述开关电源电路包括:全桥电路、对称半桥电路、非对称半桥电路、谐振半桥电路中的任意一种。
  10. 一种驱动电源,其特征在于,包括权利要求1-9任一项所述的多输出恒流控制电路。
PCT/CN2021/086698 2021-04-09 2021-04-12 一种多输出恒流控制电路及驱动电源 WO2022213397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110384013.3 2021-04-09
CN202110384013.3A CN113179568B (zh) 2021-04-09 2021-04-09 一种多输出恒流控制电路及驱动电源

Publications (1)

Publication Number Publication Date
WO2022213397A1 true WO2022213397A1 (zh) 2022-10-13

Family

ID=76924942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086698 WO2022213397A1 (zh) 2021-04-09 2021-04-12 一种多输出恒流控制电路及驱动电源

Country Status (2)

Country Link
CN (1) CN113179568B (zh)
WO (1) WO2022213397A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202026494U (zh) * 2010-09-20 2011-11-02 浙江大学 电容隔离型多路恒流输出谐振式直流/直流变流器
US20120286678A1 (en) * 2009-12-28 2012-11-15 Inventronics (Hangzhou) Co., Ltd. Drive circuit for realizing accurate constant current of multiple leds
CN106712542A (zh) * 2015-07-31 2017-05-24 常州明石晶电科技有限公司 一种开关电源
CN109195261A (zh) * 2018-10-08 2019-01-11 深圳市崧盛电子股份有限公司 一种多路输出恒流驱动电路及驱动电源
CN111436174A (zh) * 2018-12-25 2020-07-21 中山市牛宝电子科技有限公司 一种高效恒流驱动电源设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201821553U (zh) * 2010-09-19 2011-05-04 英飞特电子(杭州)有限公司 一种发光二极管恒流驱动电路的开路保护电路
CN202005012U (zh) * 2010-11-30 2011-10-05 深圳创维-Rgb电子有限公司 一种多路led电流平衡控制电路、led液晶屏及电视机
CN201984786U (zh) * 2011-01-28 2011-09-21 福建捷联电子有限公司 一种采用电容平衡的led背光钧流电路
CN104125674A (zh) * 2013-04-26 2014-10-29 国钰电子(北海)有限公司 发光二极管驱动系统
WO2017020189A1 (zh) * 2015-07-31 2017-02-09 常州明石晶电科技有限公司 开关电源
CN207166819U (zh) * 2017-07-07 2018-03-30 中山市领航光电科技有限公司 实现大功率led照明的均衡同步驱动电路
CN109392210A (zh) * 2017-08-02 2019-02-26 深圳市暗能量电源有限公司 无数级电流输出的led照明驱动电路
CN211240180U (zh) * 2019-07-12 2020-08-11 深圳麦格米特电气股份有限公司 一种宽电压范围输出电路及电子装置
US10917088B1 (en) * 2019-12-20 2021-02-09 Suzhou Mean Well Technology Co., Ltd. Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120286678A1 (en) * 2009-12-28 2012-11-15 Inventronics (Hangzhou) Co., Ltd. Drive circuit for realizing accurate constant current of multiple leds
CN202026494U (zh) * 2010-09-20 2011-11-02 浙江大学 电容隔离型多路恒流输出谐振式直流/直流变流器
CN106712542A (zh) * 2015-07-31 2017-05-24 常州明石晶电科技有限公司 一种开关电源
CN109195261A (zh) * 2018-10-08 2019-01-11 深圳市崧盛电子股份有限公司 一种多路输出恒流驱动电路及驱动电源
CN111436174A (zh) * 2018-12-25 2020-07-21 中山市牛宝电子科技有限公司 一种高效恒流驱动电源设备

Also Published As

Publication number Publication date
CN113179568B (zh) 2022-12-20
CN113179568A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
Qiu et al. Bipolar ripple cancellation method to achieve single-stage electrolytic-capacitor-less high-power LED driver
Li et al. Novel self-configurable current-mirror techniques for reducing current imbalance in parallel light-emitting diode (LED) strings
US8896214B2 (en) LED driving system for driving multi-string LEDs and the method thereof
Fang et al. A single-stage primary-side-controlled off-line flyback LED driver with ripple cancellation
US7969752B2 (en) Switching power supply device using current sharing transformer
CN107231097B (zh) 功率变换装置及其设置方法
US8878499B2 (en) Power factor correction boost converter and frequency switching modulation method thereof
US20100296319A1 (en) Power source module with broad input voltage range
CN104205604A (zh) 用于工业介质阻挡放电发生器应用的多功能零电压开关谐振逆变器
KR20160125945A (ko) 단일 인덕터 정부(正負) 전압 출력장치
CN102752902B (zh) 发光二极管驱动电路
TWI678607B (zh) 圖騰柱無橋功率因數轉換裝置及其操作方法
US20040037092A1 (en) DC-DC converter
Zhang et al. Capacitor-isolated multistring LED driver with daisy-chained transformers
US20120268976A1 (en) Three-phase rectifier circuit
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
CN104578820B (zh) 一种高功率密度交流大电流发生器
CN101888731A (zh) 发光二极管的驱动电路和驱动方法
US9648682B1 (en) Current control circuits
US20110121740A1 (en) Led lighting system and power system thereof
Lin et al. Light‐emitting diode driver with a combined energy transfer inductor for current balancing control
US20140085943A1 (en) Controller with Quasi-Resonant Mode and Continuous Conduction Mode and Operating Method Thereof
WO2022213397A1 (zh) 一种多输出恒流控制电路及驱动电源
Wu et al. Integrated circuits of a PFC controller for interleaved critical-mode boost converters
JP2022544983A (ja) Dc供給電圧を複数の平衡dc出力電圧に変換するためのスイッチング電力変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE