WO2022212744A2 - Pregnancy detection from wearable-based physiological data - Google Patents

Pregnancy detection from wearable-based physiological data Download PDF

Info

Publication number
WO2022212744A2
WO2022212744A2 PCT/US2022/022891 US2022022891W WO2022212744A2 WO 2022212744 A2 WO2022212744 A2 WO 2022212744A2 US 2022022891 W US2022022891 W US 2022022891W WO 2022212744 A2 WO2022212744 A2 WO 2022212744A2
Authority
WO
WIPO (PCT)
Prior art keywords
user
pregnancy
temperature
data
indication
Prior art date
Application number
PCT/US2022/022891
Other languages
French (fr)
Inventor
Nina Thigpen
Neta GOTLIEB
Gerald PHO
Kirstin ASCHBACHER
Original Assignee
Oura Health Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oura Health Oy filed Critical Oura Health Oy
Priority to EP22720818.8A priority Critical patent/EP4312724A2/en
Priority to AU2022246658A priority patent/AU2022246658A1/en
Priority to JP2023560359A priority patent/JP2024514496A/en
Priority to CA3215867A priority patent/CA3215867A1/en
Priority claimed from US17/709,938 external-priority patent/US20220313146A1/en
Publication of WO2022212744A2 publication Critical patent/WO2022212744A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the following relates to wearable devices and data processing, including pregnancy detection from wearable-based physiological data.
  • Some wearable devices may be configured to collect data from users associated with body temperature and heart rate. For example, some wearable devices may be configured to detect cycles associated with reproductive health. However, conventional cycle detection techniques implemented by wearable devices are deficient.
  • FIG. 1 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a timing diagram that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates examples of timing diagrams that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a timing diagram that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates an example of a graphical user interface (GUI) that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • GUI graphical user interface
  • FIG. 8 shows a block diagram of an apparatus that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a wearable application that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • FIGs. 11 through 13 show flowcharts illustrating methods that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • Some wearable devices may be configured to collect physiological data from users, including temperature data, heart rate data, and the like. Acquired phy siological data may be used to analyze the user’s movement and other activities, such as sleeping patterns. Many users have a desire for more insight regarding their physical health, including their sleeping patterns, activity, and overall physical well-being. In particular, many users may have a desire for more insight regarding women’s health, including their menstrual cycle, ovulation, fertility patterns, and pregnancy. However, typical cycle tracking or women’s health devices and applications lack the ability to provide robust prediction, detection, and insight for several reasons.
  • computing devices of the present disclosure may receive physiological data including temperature data from the wearable device associated with the user and determine a time series of temperature values taken over a plurality of days.
  • aspects of the present disclosure may identify one or more morphological features from a graphical representation of the time series of temperature values, such as temperature elevations of the time series of temperature values.
  • aspects of the present disclosure detect an indication of pregnancy in the time series based on identifying the morphological features (e.g., temperature elevations).
  • the detected indication of pregnancy may be associated with a temperature elevation in the time series and/or one or more additional morphological features in the time senes of temperature values relative to a temperature baseline of the user.
  • the temperature baseline of the user may be based on a non-pregnancy temperature baseline of the user, a menstrual cycle-specific temperature baseline of the user, or both.
  • detecting an early pregnancy may be indicative of an indication of pregnancy that is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. For example, early pregnancy detection may be detectable before a user’s missed period, before confirmation using an at-home pregnancy test, or both.
  • the system may analyze historical temperature data from a user, detect the indication of pregnancy, and generate an indication to a user that indicates the user’s detected pregnancy.
  • the user may confirm whether the pregnancy is confirmed as indicated by the system from the historical data, and the system may incorporate this user input into a predictive function (e.g., a machine learning model for detecting the indication of pregnancy).
  • the system may also analyze temperature series data in real time and may detect the pregnancy in real time based on identifying one or more morphological features in the time senes of the temperature data and/or based on the user’s input from the pregnancy confirmations.
  • “early pregnancy detection,” “pregnancy,” and the like may be used to refer to a time during which one or more offspring develops inside the womb.
  • the user may experience a series of changes in hormone production and the structures of the uterus of the female reproductive system throughout the pregnancy. Pregnancy begins with conception in which the sperm fertilize the egg and typically ends with childbirth around 40 weeks.
  • An early pregnancy may refer to the detection of the pregnancy before hormone elevations relative to a hormone baseline of the user are detectable using conventional at-home pregnancy tests.
  • early pregnancy detection may occur prior to confirming the pregnancy with conventional methods that detect the hormone elevations such as an at-home pregnancy test, a blood test, an ultrasound, or a combination thereof.
  • the early pregnancy detection may occur prior to the user experiencing a missed period (e.g., menstrual cycle) which indicates hormone elevations relative to a hormone baseline of the user.
  • Some aspects of the present disclosure are directed to the detection of the indication of pregnancy before the user experiences symptoms and effects of the pregnancy.
  • techniques described herein may also be used to detect the indication of pregnancy in cases where the user does not become symptomatic, or does not become aware of their symptoms.
  • the computing devices may detect the indication of pregnancy using a temperature sensor. In such cases, the computing devices may detect the indication of pregnancy without the user tagging or labeling these events.
  • pregnancy may be detected by an at-home pregnancy test, a blood test, an ultrasound, or a combination thereof after one or more hormones that indicate pregnancy (e.g., Human Chorionic Gonadotropin (HCG)) elevates relative to a hormone baseline of the user.
  • hormones that indicate pregnancy e.g., Human Chorionic Gonadotropin (HCG)
  • HCG Human Chorionic Gonadotropin
  • pregnancy may be detected based on symptoms experienced by the user (e.g., missed period, nausea, fatigue, tender breasts, etc.).
  • the pregnancy may be detected after the user’s hormone levels change (e.g., increase) and/or confirmed at an appointment with a clinician.
  • Techniques described herein may continuously collect the physiological data from the user based on measurements taken from a wearable that continuously measures a user’s surface temperature and signals extracted from blood flow' such as arterial blood flow (e.g., via PPG).
  • the computing devices may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per minute) throughout the night (or at certain phases of the night and/or during certain phases of a sleep cycle, as described in more detail below) may provide sufficient temperature data for analysis described herein.
  • continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature.
  • continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day.
  • data collected by the computing devices may be used to detect when the user is pregnant.
  • a system may cause a graphical user interface (GUI) of a user device to display a message or other notification to notify the user of the detected indication of pregnancy and make recommendations to the user.
  • GUI graphical user interface
  • the GUI may display a time interval during which the pregnancy was detected and recommendations that the user prepare for different stages of the pregnancy.
  • the system may make tag recommendations to a user.
  • the system may recommend mood and symptom tags (e.g., nausea, fatigue, etc.) to users at determined times in their pregnancy (e.g., in a personalized manner).
  • the system may recommend the tags based on their prior history of temperature data, personalized cycling patterns, and/or their prior symptom history.
  • the system may also include graphics or text that indicate the data used to make the detection of the indication of pregnancy.
  • the GUI may display a notification that a pregnancy has been detected based on temperature deviations from a normal baseline of the user.
  • the GUI may display a notification that the pregnancy has been detected based on heart rate deviations from a normal baseline of the user, breath rate deviations from a normal baseline of the user, or both.
  • a user may take early steps that may help reduce the severity of upcoming symptoms associated with the pregnancy.
  • a user may modify/schedule their daily activities (e.g., work and leisure time) based on the early warnings of the pregnancy.
  • aspects of the disclosure are initially described in the context of systems supporting physiological data collection from users via wearable devices. Additional aspects of the disclosure are described in the context of example timing diagrams and example GUIs. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to pregnancy detection from wearable-based physiological data.
  • FIG. 1 illustrates an example of a system 100 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the system 100 includes a plurality of electronic devices (e.g., wearable devices 104, user devices 106) that may be worn and/or operated by one or more users 102.
  • the system 100 further includes anetwork 108 and one or more servers 110
  • the electronic devices may include any electronic devices known in the art, including wearable devices 104 (e.g., ring wearable devices, watch wearable devices, etc.), user devices 106 (e.g., smartphones, laptops, tablets).
  • the electronic devices associated with the respective users 102 may include one or more of the following functionalities: 1) measuring physiological data, 2) storing the measured data, 3) processing the data, 4) providing outputs (e.g., via GUIs) to a user 102 based on the processed data, and 5) communicating data with one another and/or other computing devices. Different electronic devices may perform one or more of the functionalities.
  • Example wearable devices 104 may include wearable computing devices, such as a ring computing device (hereinafter ring " ) configured to be worn on a user’s 102 finger, a wrist computing device (e.g., a smart watch, fitness band, or bracelet) configured to be worn on a user’s 102 wrist, and/or a head mounted computing device (e.g., glasses/goggles).
  • ring computing device hereinafter ring "
  • wrist computing device e.g., a smart watch, fitness band, or bracelet
  • head mounted computing device e.g., glasses/goggles
  • Wearable devices 104 may also include bands, straps (e.g., flexible or inflexible bands or straps), stick-on sensors, and the like, that may be positioned in other locations, such as bands around the head (e.g., a forehead headband), arm (e.g., a forearm band and/or bicep band), and/or leg (e.g., a thigh or calf band), behind the ear, under the armpit, and the like. Wearable devices 104 may also be attached to, or included in, articles of clothing. For example, wearable devices 104 may be included in pockets and/or pouches on clothing.
  • wearable device 104 may be clipped and/or pinned to clothing, or may otherwise be maintained within the vicinity of the user 102.
  • Example articles of clothing may include, but are not limited to, hats, shirts, gloves, pants, socks, outerwear (e.g., jackets), and undergarments.
  • wearable devices 104 may be included with other types of devices such as training/sporting devices that are used during physical activity.
  • wearable devices 104 may be attached to, or included in, a bicycle, skis, a tennis racket, a golf club, and/or training weights.
  • ring wearable device 104 Much of the present disclosure may be described in the context of a ring wearable device 104. Accordingly, the terms “ring 104,” “wearable device 104,” and like terms, may be used interchangeably, unless noted otherwise herein. However, the use of the term “ring 104” is not to be regarded as limiting, as it is contemplated herein that aspects of the present disclosure may be performed using other wearable devices (e.g., watch wearable devices, necklace wearable device, bracelet wearable devices, earring wearable devices, anklet wearable devices, and the like).
  • wearable devices e.g., watch wearable devices, necklace wearable device, bracelet wearable devices, earring wearable devices, anklet wearable devices, and the like.
  • user devices 106 may include handheld mobile computing devices, such as smartphones and tablet computing devices. User devices 106 may also include personal computers, such as laptop and desktop computing devices. Other example user devices 106 may include server computing devices that may communicate with other electronic devices (e g., via the Internet).
  • computing devices may include medical devices, such as external wearable computing devices (e.g., Holter monitors). Medical devices may also include implantable medical devices, such as pacemakers and cardioverter defibrillators.
  • IoT internet of things
  • smart televisions smart speakers
  • smart displays e.g., video call displays
  • hubs e.g., wireless communication hubs
  • security systems e.g., thermostats and refrigerators
  • smart appliances e.g., thermostats and refrigerators
  • fitness equipment e.g., thermostats and refrigerators
  • Some electronic devices may measure physiological parameters of respective users 102, such as photoplethysmography waveforms, continuous skin temperature, a pulse waveform, respiration rate, heart rate, heart rate variability (HRV), actigraphy, galvanic skin response, pulse oximetry, and/or other physiological parameters.
  • Some electronic devices that measure physiological parameters may also perform some/all of the calculations described herein.
  • Some electronic devices may not measure physiological parameters, but may perform some/all of the calculations described herein.
  • a ring e.g., wearable device 104
  • mobile device application or a server computing device may process received physiological data that was measured by other devices.
  • a user 102 may operate, or may be associated with, multiple electronic devices, some of which may measure physiological parameters and some of which may process the measured physiological parameters.
  • a user 102 may have a ring (e.g., wearable device 104) that measures physiological parameters.
  • the user 102 may also have, or be associated with, a user device 106 (e.g., mobile device, smartphone), where the wearable device 104 and the user device 106 are communicatively coupled to one another.
  • the user device 106 may receive data from the wearable device 104 and perform some/all of the calculations described herein.
  • the user device 106 may also measure physiological parameters described herein, such as motion/activity parameters.
  • a first user 102 -a may operate, or may be associated with, a wearable device 104-a (e.g., ring 104-a) and a user device 106-a that may operate as described herein.
  • the user device 106-a associated with user 102-a may process/store physiological parameters measured by the ring 104-a.
  • a second user 102-b may be associated with a ring 104-b, a watch wearable device 104-c (e.g., watch 104-c), and a user device 106-b, where the user device 106-b associated with user 102-b may process/store physiological parameters measured by the ring 104-b and/or the watch 104-c.
  • an nth user 102-n may be associated with an arrangement of electronic devices described herein (e.g., ring 104-n, user device 106-n).
  • wearable devices 104 e.g., rings 104, watches 104
  • other electronic devices may be communicatively coupled to the user devices 106 of the respective users 102 via Bluetooth, Wi-Fi, and other wireless protocols.
  • the rings 104 (e.g., wearable devices 104) of the system 100 may be configured to collect physiological data from the respective users 102 based on arterial blood flow within the user’s finger.
  • a ring 104 may utilize one or more LEDs (e.g., red LEDs, green LEDs) that emit light on the palm-side of a user’s finger to collect physiological data based on arterial blood flow within the user’s finger.
  • the ring 104 may acquire the physiological data using a combination of both green and red LEDs.
  • the physiological data may include any physiological data known in the art including, but not limited to, temperature data, accelerometer data (e.g., movement/motion data), heart rate data, HRV data, blood oxygen level data, or any combination thereof.
  • red and red LEDs may provide several advantages over other solutions, as red and green LEDs have been found to have their own distinct advantages when acquiring physiological data under different conditions (e.g., light/dark, active/inactive) and via different parts of the body, and the like.
  • green LEDs have been found to exhibit better performance during exercise.
  • using multiple LEDs (e.g., green and red LEDs) distributed around the ring 104 has been found to exhibit superior performance as compared to wearable devices that utilize LEDs that are positioned close to one another, such as within a watch wearable device.
  • the blood vessels in the finger e.g., arteries, capillaries
  • arteries in the wrist are positioned on the bottom of the wrist (e.g., palm-side of the wrist), meaning only capillaries are accessible on the top of the wrist (e.g., back of hand side of the wrist), where wearable watch devices and similar devices are typically worn.
  • utilizing LEDs and other sensors within a ring 104 has been found to exhibit superior performance as compared to wearable devices worn on the wrist, as the ring 104 may have greater access to arteries (as compared to capillaries), thereby resulting in stronger signals and more valuable physiological data.
  • the electronic devices of the system 100 may be communicatively coupled to one or more servers 110 via wired or wireless communication protocols.
  • the electronic devices e.g., user devices 106
  • the network 108 may implement transfer control protocol and internet protocol (TCP/IP), such as the Internet, or may implement other network 108 protocols.
  • TCP/IP transfer control protocol and internet protocol
  • Network connections between the network 108 and the respective electronic devices may facilitate transport of data via email, web, text messages, mail, or any other appropriate form of interaction within a computer network 108.
  • the ring 104-a associated with the first user 102-a may be communicatively coupled to the user device 106-a, where the user device 106-a is communicatively coupled to the servers 110 via the network 108.
  • wearable devices 104 e.g., rings 104, watches 104
  • the system 100 may offer an on-demand database service between the user devices 106 and the one or more servers 110.
  • the servers 110 may receive data from the user devices 106 via the network 108, and may store and analyze the data. Similarly, the servers 110 may provide data to the user devices 106 via the network 108. In some cases, the servers 110 may be located at one or more data centers. The servers 110 may be used for data storage, management, and processing. In some implementations, the servers 110 may provide a web-based interface to the user device 106 via web browsers.
  • the system 100 may detect periods of time during which a user 102 is asleep, and classify periods of time during which the user 102 is asleep into one or more sleep stages (e.g., sleep stage classification).
  • User 102-a may be associated with a wearable device 104-a (e.g., ring 104-a) and a user device 106-a.
  • the ring 104-a may collect physiological data associated with the user 102-a, including temperature, heart rate, HRV, respiratory rate, and the like.
  • data collected by the ring 104-a may be input to a machine learning classifier, where the machine learning classifier is configured to determine periods of time during which the user 102-a is (or was) asleep. Moreover, the machine learning classifier may be configured to classify periods of time into different sleep stages, including an awake sleep stage, a rapid eye movement (REM) sleep stage, a light sleep stage (non-REM (NREM)), and a deep sleep stage (NREM). In some aspects, the classified sleep stages may be displayed to the user 102-a via a GUI of the user device 106-a. Sleep stage classification may be used to provide feedback to a user 102-a regarding the user’s sleeping patterns, such as recommended bedtimes, recommended wake-up times, and the like. Moreover, in some implementations, sleep stage classification techniques described herein may be used to calculate scores for the respective user, such as Sleep Scores, Readiness Scores, and the like.
  • the system 100 may utilize circadian rhythm-derived features to further improve physiological data collection, data processing procedures, and other techniques described herein.
  • circadian rhythm may refer to a natural, internal process that regulates an individual’s sleep-wake cycle, that repeats approximately every 24 hours.
  • techniques described herein may utilize circadian rhythm adjustment models to improve physiological data collection, analysis, and data processing.
  • a circadian rhythm adjustment model may be input into a machine learning classifier along with physiological data collected from the user 102-a via the wearable device 104-a.
  • the circadian rhythm adjustment model may be configured to “weight,” or adjust, physiological data collected throughout a user’s natural, approximately 24-hour circadian rhythm.
  • the system may initially start with a “baseline” circadian rhythm adjustment model, and may modify the baseline model using physiological data collected from each user 102 to generate tailored, individualized circadian rhythm adjustment models that are specific to each respective user 102.
  • the system 100 may utilize other biological rhythms to further improve physiological data collection, analysis, and processing by phase of these other rhythms. For example, if a weekly rhythm is detected within an individual’s baseline data, then the model may be configured to adjust “weights” of data by day of the week.
  • Biological rhythms that may require adjustment to the model by this method include: 1) ultradian (faster than a day rhythms, including sleep cycles in a sleep state, and oscillations from less than an hour to several hours periodicity in the measured physiological variables during wake state; 2) circadian rhythms; 3) non-endogenous daily rhythms shown to be imposed on top of circadian rhythms, as in work schedules;
  • the biological rhythms are not always stationary rhythms. For example, many women experience variability in ovarian cycle length across cycles, and ultradian rhythms are not expected to occur at exactly the same time or periodicity across days even within a user. As such, signal processing techniques sufficient to quantify the frequency composition while preserving temporal resolution of these rhythms in physiological data may be used to improve detection of these rhythms, to assign phase of each rhythm to each moment in time measured, and to thereby modify adjustment models and comparisons of time intervals.
  • the biological rhythm-adjustment models and parameters can be added in linear or non-linear combinations as appropriate to more accurately capture the dynamic physiological baselines of an individual or group of individuals.
  • the respective devices of the system 100 may support techniques for pregnancy detection based on data collected by a wearable device 104.
  • the system 100 illustrated in FIG. 1 may support techniques for detecting the indication of pregnancy of a user 102, and causing a user device 106 corresponding to the user 102 to display the indication of the detected pregnancy.
  • User 1 user 102 -a
  • a wearable device 104-a e.g., ring 104-a
  • the ring 104-a may collect data associated with the user 102-a, including temperature, heart rate, respiratory rate, HRV, and the like.
  • data collected by the ring 104-a may be used to detect an indication of pregnancy during which User 1 experiences pregnancy. Detecting the indication of pregnancy may be performed by any of the components of the system 100, including the ring 104-a, the user device 106-a associated with User 1, the one or more servers 110, or any combination thereof. Upon detecting the pregnancy, the system 100 may selectively cause the GUI of the user device 106-a to display the indication of pregnancy.
  • the system 100 may determine a time series of temperature values taken over a plurality of days.
  • the system 100 may identify temperature elevations in the time series of the temperature values relative to a temperature baseline for the user.
  • the system 100 may detect the indication of pregnancy based on the identified temperature elevations.
  • the indication of the pregnancy is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the indication of pregnancy may be an example of detecting that the user is currently pregnant and/or has already become pregnant.
  • the system 100 may prompt User 1 (e.g., via a GUI of the user device 106) to confirm whether the user 102-a experienced a confirmed pregnancy (e.g., blood test, at-home pregnancy test, ultrasound, etc.) or not, and may selectively adjust Readiness Scores for the user 102-a based on confirmation that the user is pregnant.
  • the system 100 may generate alerts, messages, or recommendations for User 1 (e.g., via the ring 104-a, user device 106-a, or both) based on the detected indication of pregnancy, where the alerts may provide insights regarding the detected pregnancy, such as a timing and/or duration of the pregnancy.
  • the messages may provide insight regarding symptoms associated with the detected pregnancy, one or more medical conditions associated with the detected pregnancy, educational videos and/or text (e.g., content) associated with the detected pregnancy, or a combination thereof related to any phase of the pregnancy.
  • FIG. 2 illustrates an example of a system 200 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the system 200 may implement, or be implemented by, system 100.
  • system 200 illustrates an example of a ring 104 (e.g., wearable device 104), a user device 106, and a server 110, as described with reference to FIG. 1.
  • the ring 104 may be configured to be worn around a user's finger, and may determine one or more user physiological parameters when worn around the user’s finger.
  • Example measurements and determinations may include, but are not limited to, user skin temperature, pulse waveforms, respiratory rate, heart rate, HRV, blood oxygen levels, and the like.
  • System 200 further includes a user device 106 (e.g., a smartphone) in communication with the ring 104.
  • the ring 104 may be in wireless and/or wired communication with the user device 106.
  • the ring 104 may send measured and processed data (e.g., temperature data, photoplethysmogram (PPG) data, motion/accelerometer data, ring input data, and the like) to the user device 106.
  • PPG photoplethysmogram
  • the user device 106 may also send data to the ring 104, such as ring 104 firmware/configuration updates.
  • the user device 106 may process data.
  • the user device 106 may transmit data to the server 110 for processing and/or storage.
  • the ring 104 may include a housing 205 that may include an inner housing 205-a and an outer housing 205-b.
  • the housing 205 of the ring 104 may store or otherwise include various components of the ring including, but not limited to, device electronics, a power source (e.g., battery 210, and/or capacitor), one or more substrates (e.g., printable circuit boards) that interconnect the device electronics and/or power source, and the like.
  • the device electronics may include device modules (e.g., hardware/software), such as: a processing module 230-a, a memory 215, a communication module 220-a, a power module 225, and the like.
  • the device electronics may also include one or more sensors.
  • Example sensors may include one or more temperature sensors 240, a PPG sensor assembly (e.g., PPG system 235), and one or more motion sensors 245.
  • the sensors may include associated modules (not illustrated) configured to communicate with the respective components/modules of the ring 104, and generate signals associated with the respective sensors.
  • each of the components/modules of the ring 104 may be communicatively coupled to one another via wired or wireless connections.
  • the ring 104 may include additional and/or alternative sensors or other components that are configured to collect physiological data from the user, including light sensors (e.g., LEDs), oximeters, and the like.
  • the ring 104 shown and described with reference to FIG. 2 is provided solely for illustrative purposes. As such, the ring 104 may include additional or alternative components as those illustrated in FIG. 2.
  • Other rings 104 that provide functionality described herein may be fabricated.
  • rings 104 with few er components e.g., sensors
  • a ring 104 with a single temperature sensor 240 (or other sensor), a power source, and device electronics configured to read the single temperature sensor 240 (or other sensor) may be fabricated.
  • a temperature sensor 240 (or other sensor) may be attached to a user’s finger (e.g., using a clamps, spring loaded clamps, etc.). In this case, the sensor may be wired to another computing device, such as a wrist worn computing device that reads the temperature sensor 240 (or other sensor).
  • a ring 104 that includes additional sensors and processing functionality may be fabricated.
  • the housing 205 may include one or more housing 205 components.
  • the housing 205 may include an outer housing 205-b component (e.g., a shell) and an inner housing 205-a component (e.g., a molding).
  • the housing 205 may include additional components (e.g., additional layers) not explicitly illustrated in FIG. 2.
  • the ring 104 may include one or more insulating layers that electrically insulate the device electronics and other conductive materials (e.g., electrical traces) from the outer housing 205-b (e.g., a metal outer housing 205-b).
  • the housing 205 may provide structural support for the device electronics, battery 210, substrate(s), and other components.
  • the housing 205 may protect the device electronics, battery 210, and substrate(s) from mechanical forces, such as pressure and impacts.
  • the housing 205 may also protect the device electronics, battery 210, and substrate(s) from water and/or other chemicals.
  • the outer housing 205-b may be fabricated from one or more materials.
  • the outer housing 205-b may include a metal, such as titanium, that may provide strength and abrasion resistance at a relatively light weight.
  • the outer housing 205-b may also be fabricated from other materials, such polymers.
  • the outer housing 205-b may be protective as well as decorative.
  • the inner housing 205-a may be configured to interface with the user’s finger.
  • the inner housing 205-a may be formed from a polymer (e.g., a medical grade polymer) or other material.
  • the inner housing 205-a may be transparent.
  • the inner housing 205-a may be transparent to light emitted by the PPG light emitting diodes (LEDs).
  • the inner housing 205-a component may be molded onto the outer housing 205-b.
  • the inner housing 205-a may include a polymer that is molded (e.g., injection molded) to fit into an outer housing 205-b metallic shell.
  • the ring 104 may include one or more substrates (not illustrated).
  • the device electronics and battery 210 may be included on the one or more substrates.
  • the device electronics and battery 210 may be mounted on one or more substrates.
  • Example substrates may include one or more printed circuit boards (PCBs), such as flexible PCB (e.g., polyimide).
  • the electronics/battery 210 may include surface mounted devices (e.g., surface-mount technology (SMT) devices) on a flexible PCB.
  • the one or more substrates e.g., one or more flexible PCBs
  • the device electronics, battery 210, and substrates may be arranged in the ring 104 in a variet of ways.
  • one substrate that includes device electronics may be mounted along the bottom of the ring 104 (e.g., the bottom half), such that the sensors (e.g., PPG system 235, temperature sensors 240, motion sensors 245, and other sensors) interface with the underside of the user’s finger.
  • the battery 210 may be included along the top portion of the ring 104 (e.g., on another substrate).
  • the various components/modules of the ring 104 represent functionality (e.g., circuits and other components) that may be included in the ring 104.
  • Modules may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to the modules herein.
  • the modules may include analog circuits (e.g., amplification circuits, filtering circuits, analog/digital conversion circuits, and/or other signal conditioning circuits).
  • the modules may also include digital circuits (e.g., combinational or sequential logic circuits, memory circuits etc.).
  • the memory 215 (memory module) of the ring 104 may include any volatile, non-volatile, magnetic, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other memory device.
  • the memory 215 may store any of the data described herein.
  • the memory 215 may be configured to store data (e.g., motion data, temperature data, PPG data) collected by the respective sensors and PPG system 235.
  • memory 215 may include instructions that, when executed by one or more processing circuits, cause the modules to perform various functions attributed to the modules herein.
  • the device electronics of the ring 104 described herein are only example device electronics. As such, the types of electronic components used to implement the device electronics may vary based on design considerations.
  • modules of the ring 104 may be embodied as one or more processors, hardware, firmware, software, or any combination thereof. Depiction of different features as modules is intended to highlight different functional aspects and does not necessarily imply that such modules must be realized by separate hardware/software components. Rather, functionality associated with one or more modules may be performed by separate hardware/software components or integrated within common hardware/software components.
  • the processing module 230-a of the ring 104 may include one or more processors (e.g., processing units), microcontrollers, digital signal processors, systems on a chip (SOCs), and/or other processing devices.
  • the processing module 230-a communicates with the modules included in the ring 104.
  • the processing module 230-a may transmit/receive data to/from the modules and other components of the ring 104, such as the sensors.
  • the modules may be implemented by various circuit components. Accordingly, the modules may also be referred to as circuits (e.g., a communication circuit and power circuit).
  • the processing module 230-a may communicate with the memory 215.
  • the memory 215 may include computer-readable instructions that, when executed by the processing module 230-a, cause the processing module 230-a to perform the various functions attributed to the processing module 230-a herein.
  • the processing module 230-a e.g., a microcontroller
  • the processing module 230-a may include additional features associated with other modules, such as communication functionality provided by the communication module 220-a (e.g., an integrated Bluetooth Low Energy transceiver) and/or additional onboard memory 215.
  • the communication module 220-a may include circuits that provide wireless and/or wired communication with the user device 106 (e.g., communication module 220-b of the user device 106).
  • the communication modules 220-a, 220-b may include wireless communication circuits, such as Bluetooth circuits and/or Wi-Fi circuits.
  • the communication modules 220-a, 220-b can include wired communication circuits, such as Universal Serial Bus (USB) communication circuits.
  • USB Universal Serial Bus
  • Example data may include, but is not limited to, motion data, temperature data, pulse waveforms, heart rate data, HRY data, PPG data, and status updates (e.g., charging status, battery charge level, and/or ring 104 configuration settings).
  • the processing module 230-a of the ring may also be configured to receive updates (e.g., software/firmware updates) and data from the user device 106.
  • An example battery 210 may include a Lithium-Ion or Lithium-Polymer type battery 210, although a variety of battery 210 options are possible.
  • the battery 210 may be wirelessly charged.
  • the ring 104 may include a power source other than the battery 210, such as a capacitor.
  • the power source e.g., battery 210 or capacitor
  • the power source may have a curved geometry that matches the curve of the ring 104.
  • a charger or other power source may include additional sensors that may be used to collect data in addition to, or which supplements, data collected by the ring 104 itself.
  • a charger or other power source for the ring 104 may function as a user device 106, in which case the charger or other power source for the ring 104 may be configured to receive data from the ring 104, store and/or process data received from the ring 104, and communicate data between the ring 104 and the servers 110.
  • the ring 104 includes a power module 225 that may control charging of the battery 210.
  • the power module 225 may interface with an external wireless charger that charges the battery 210 when interfaced with the ring 104.
  • the charger may include a datum structure that mates with a ring 104 datum structure to create a specified orientation with the ring 104 during 104 charging.
  • the power module 225 may also regulate voltage(s) of the device electronics, regulate power output to the device electronics, and monitor the state of charge of the battery 210.
  • the battery 210 may include a protection circuit module (PCM) that protects the battery 210 from high current discharge, over voltage during 104 charging, and under voltage during 104 discharge.
  • the power module 225 may also include electro-static discharge (ESD) protection.
  • ESD electro-static discharge
  • the one or more temperature sensors 240 may be electrically coupled to the processing module 230-a.
  • the temperature sensor 240 may be configured to generate a temperature signal (e.g., temperature data) that indicates a temperature read or sensed by the temperature sensor 240.
  • the processing module 230-a may determine a temperature of the user in the location of the temperature sensor 240.
  • temperature data generated by the temperature sensor 240 may indicate a temperature of a user at the user’s finger (e.g., skin temperature). In some implementations, the temperature sensor 240 may contact the user’s skin.
  • a portion of the housing 205 may form a barrier (e.g., a thin, thermally conductive barrier) between the temperature sensor 240 and the user’s skin.
  • portions of the ring 104 configured to contact the user’s finger may have thermally conductive portions and thermally insulative portions.
  • the thermally conductive portions may conduct heat from the user’s finger to the temperature sensors 240.
  • the thermally insulative portions may insulate portions of the ring 104 (e.g., the temperature sensor 240) from ambient temperature.
  • the temperature sensor 240 may generate a digital signal (e.g., temperature data) that the processing module 230-a may use to determine the temperature.
  • the processing module 230-a (or a temperature sensor 240 module) may measure a current/voltage generated by the temperature sensor 240 and determine the temperature based on the measured current/voltage.
  • Example temperature sensors 240 may include a thermistor, such as a negative temperature coefficient (NTC) thermistor, or other types of sensors including resistors, transistors, diodes, and/or other electrical/electronic components.
  • NTC negative temperature coefficient
  • the processing module 230-a may sample the user’s temperature over time. For example, the processing module 230-a may sample the user’s temperature according to a sampling rate.
  • An example sampling rate may include one sample per second, although the processing module 230-a may be configured to sample the temperature signal at other sampling rates that are higher or lower than one sample per second.
  • the processing module 230-a may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per second, one sample per minute, etc.) throughout the day may provide sufficient temperature data for analysis described herein.
  • the processing module 230-a may store the sampled temperature data in memory 215.
  • the processing module 230-a may process the sampled temperature data. For example, the processing module 230-a may determine average temperature values over a period of time. In one example, the processing module 230-a may determine an average temperature value each minute by summing all temperature values collected over the minute and dividing by the number of samples over the minute. In a specific example where the temperature is sampled at one sample per second, the average temperature may be a sum of all sampled temperatures for one minute divided by sixty seconds.
  • the memory 215 may store the average temperature values over time. In some implementations, the memory 215 may store average temperatures (e.g., one per minute) instead of sampled temperatures in order to conserve memory 215.
  • the sampling rate which may be stored in memory 215, may be configurable. In some implementations, the sampling rate may be the same throughout the day and night. In other implementations, the sampling rate may be changed throughout the day/night. In some implementations, the ring 104 may filter/reject temperature readings, such as large spikes in temperature that are not indicative of physiological changes (e.g., a temperature spike from a hot shower). In some implementations, the ring 104 may filter/reject temperature readings that may not be reliable due to other factors, such as excessive motion during 104 exercise (e.g., as indicated by a motion sensor 245).
  • the ring 104 may transmit the sampled and/or average temperature data to the user device 106 for storage and/or further processing.
  • the user device 106 may transfer the sampled and/or average temperature data to the server 110 for storage and/or further processing.
  • the ring 104 may include multiple temperature sensors 240 in one or more locations, such as arranged along the inner housing 205-a near the user’s finger.
  • the temperature sensors 240 may be stand-alone temperature sensors 240.
  • one or more temperature sensors 240 may be included with other components (e.g., packaged with other components), such as with the accelerometer and/or processor.
  • the processing module 230-a may acquire and process data from multiple temperature sensors 240 in a similar manner described with respect to a single temperature sensor 240. For example, the processing module 230 may individually sample, average, and store temperature data from each of the multiple temperature sensors 240. In other examples, the processing module 230-a may sample the sensors at different rates and average/store different values for the different sensors. In some implementations, the processing module 230-a may be configured to determine a single temperature based on the average of two or more temperatures determined by two or more temperature sensors 240 in different locations on the finger.
  • the temperature sensors 240 on the ring 104 may acquire distal temperatures at the user’s finger (e.g., any finger). For example, one or more temperature sensors 240 on the ring 104 may acquire a user’s temperature from the underside of a finger or at a different location on the finger. In some implementations, the ring 104 may continuously acquire distal temperature (e.g., at a sampling rate). Although distal temperature measured by a ring 104 at the finger is described herein, other devices may measure temperature at the same/different locations. In some cases, the distal temperature measured at a user’s finger may differ from the temperature measured at a user’s wrist or other external body location.
  • the distal temperature measured at a user’s finger may differ from the user’s core temperature.
  • the ring 104 may provide a useful temperature signal that may not be acquired at other intemal/extemal locations of the body.
  • continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature.
  • continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body.
  • the ring 104 may include a PPG system 235.
  • the PPG system 235 may include one or more optical transmitters that transmit light.
  • the PPG system 235 may also include one or more optical receivers that receive light transmitted by the one or more optical transmitters.
  • An optical receiver may generate a signal (hereinafter “PPG” signal) that indicates an amount of light received by the optical receiver.
  • the optical transmitters may illuminate a region of the user’s finger.
  • the PPG signal generated by the PPG system 235 may indicate the perfusion of blood in the illuminated region.
  • the PPG signal may indicate blood volume changes in the illuminated region caused by a user’s pulse pressure.
  • the processing module 230-a may sample the PPG signal and determine a user’s pulse waveform based on the PPG signal.
  • the processing module 230-a may determine a variety of physiological parameters based on the user’s pulse waveform, such as a user’s respiratory rate, heart rate, HRV, oxygen saturation, and other circulatory parameters.
  • the PPG system 235 may be configured as a reflective PPG system 235 in which the optical receiver(s) receive transmitted light that is reflected through the region of the user’s finger.
  • the PPG system 235 may be configured as a transmissive PPG system 235 in which the optical transmiher(s) and optical receiver(s) are arranged opposite to one another, such that light is transmitted directly through a portion of the user's finger to the optical receiver(s).
  • Example optical transmitters may include light-emitting diodes (LEDs).
  • the optical transmitters may transmit light in the infrared spectrum and/or other spectrums.
  • Example optical receivers may include, but are not limited to, photosensors, phototransistors, and photodiodes.
  • the optical receivers may be configured to generate PPG signals in response to the wavelengths received from the optical transmitters.
  • the location of the transmitters and receivers may vary. Additionally, a single device may include reflective and/or transmissive PPG systems 235.
  • the PPG system 235 illustrated in FIG. 2 may include a reflective PPG system 235 in some implementations.
  • the PPG system 235 may include a centrally located optical receiv er (e.g., at the bottom of the ring 104) and two optical transmitters located on each side of the optical receiver.
  • the PPG system 235 e.g., optical receiver
  • the PPG system 235 may generate the PPG signal based on light received from one or both of the optical transmitters.
  • other placements, combinations, and/or configurations of one or more optical transmitters and/or optical receivers are contemplated.
  • the processing module 230-a may control one or both of the optical transmitters to transmit light while sampling the PPG signal generated by the optical receiver.
  • the processing module 230-a may cause the optical transmitter with the stronger received signal to transmit light while sampling the PPG signal generated by the optical receiver.
  • the selected optical transmitter may continuously emit light while the PPG signal is sampled at a sampling rate (e.g., 250 Hz).
  • Sampling the PPG signal generated by the PPG system 235 may result in a pulse waveform that may be referred to as a “PPG.”
  • the pulse waveform may indicate blood pressure vs time for multiple cardiac cycles.
  • the pulse waveform may include peaks that indicate cardiac cycles. Additionally, the pulse waveform may include respiratory induced variations that may be used to determine respiration rate.
  • the processing module 230-a may store the pulse waveform in memory 215 in some implementations.
  • the processing module 230-a may process the pulse waveform as it is generated and/or from memory 215 to determine user physiological parameters described herein.
  • the processing module 230-a may determine the user’s heart rate based on the pulse waveform. For example, the processing module 230-a may determine heart rate (e.g., in beats per minute) based on the time between peaks in the pulse waveform. The time between peaks may be referred to as an interbeat interval (IBI). The processing module 230-a may store the determined heart rate values and IBI values in memory 215.
  • heart rate e.g., in beats per minute
  • IBI interbeat interval
  • the processing module 230-a may store the determined heart rate values and IBI values in memory 215.
  • the processing module 230-a may determine HRV over time. For example, the processing module 230-a may determine HRV based on the variation in the IBls.
  • the processing module 230-a may store the HRV values over time in the memory 215. Moreover, the processing module 230-a may determine the user’s respiratory rate over time. For example, the processing module 230-a may determine respiratory rate based on frequency modulation, amplitude modulation, or baseline modulation of the user’s IBI values over a period of time. Respiratory rate may be calculated in breaths per minute or as another breathing rate (e.g., breaths per 30 seconds). The processing module 230-a may store user respiratory rate values over time in the memory 215.
  • the ring 104 may include one or more motion sensors 245, such as one or more accelerometers (e.g., 6-D accelerometers) and/or one or more gyroscopes (gyros).
  • the motion sensors 245 may generate motion signals that indicate motion of the sensors.
  • the ring 104 may include one or more accelerometers that generate acceleration signals that indicate acceleration of the accelerometers.
  • the ring 104 may include one or more gyro sensors that generate gyro signals that indicate angular motion (e.g., angular velocity) and/or changes in orientation.
  • the motion sensors 245 may be included in one or more sensor packages.
  • An example accelerometer/gyro sensor is a Bosch BM1160 inertial micro electro-mechanical system (MEMS) sensor that may measure angular rates and accelerations in three perpendicular axes
  • the processing module 230-a may sample the motion signals at a sampling rate (e.g., 50Hz) and determine the motion of the ring 104 based on the sampled motion signals.
  • the processing module 230-a may sample acceleration signals to determine acceleration of the ring 104.
  • the processing module 230-a may sample a gyro signal to determine angular motion.
  • the processing module 230-a may store motion data in memory 215.
  • Motion data may include sampled motion data as well as motion data that is calculated based on the sampled motion signals (e.g., acceleration and angular values).
  • the ring 104 may store a variety of data described herein.
  • the ring 104 may store temperature data, such as raw sampled temperature data and calculated temperature data (e.g., average temperatures).
  • the ring 104 may store PPG signal data, such as pulse waveforms and data calculated based on the pulse waveforms (e.g., heart rate values, IBI values, HRV values, and respiratory rate values).
  • the ring 104 may also store motion data, such as sampled motion data that indicates linear and angular motion.
  • the ring 104 may calculate and store additional values based on the sampled/calculated physiological data.
  • the processing module 230 may calculate and store various metrics, such as sleep metrics (e.g., a Sleep Score), activity metrics, and readiness metrics.
  • additional values/metrics may be referred to as “derived values.”
  • the ring 104, or other computing/wearable device may calculate a variety of values/metrics with respect to motion.
  • Example derived values for motion data may include, but are not limited to, motion count values, regularity values, intensity values, metabolic equivalence of task values (METs), and orientation values.
  • Motion counts, regularity values, intensity values, and METs may indicate an amount of user motion (e.g., velocity/acceleration) over time.
  • Orientation values may indicate how the ring 104 is oriented on the user’s finger and if the ring 104 is worn on the left hand or right hand.
  • motion counts and regularity values may be determined by counting a number of acceleration peaks within one or more periods of time (e.g., one or more 30 second to 1 minute periods).
  • Intensity values may indicate a number of movements and the associated intensity (e.g., acceleration values) of the movements.
  • the intensity values may be categorized as low, medium, and high, depending on associated threshold acceleration values.
  • METs may be determined based on the intensity of movements during a period of time (e g., 30 seconds), the regularity/irregularity of the movements, and the number of movements associated with the different intensities.
  • the processing module 230-a may compress the data stored in memory 215. For example, the processing module 230-a may delete sampled data after making calculations based on the sampled data. As another example, the processing module 230-a may average data over longer periods of time in order to reduce the number of stored values. In a specific example, if average temperatures for a user over one minute are stored in memory 215, the processing module 230-a may calculate average temperatures over a five minute time period for storage, and then subsequently erase the one minute average temperature data. The processing module 230-a may compress data based on a variety of factors, such as the total amount of used/available memory 215 and/or an elapsed time since the ring 104 last transmitted the data to the user device 106.
  • a user’s physiological parameters may be measured by sensors included on a ring 104
  • other devices may measure a user’s physiological parameters.
  • a user’s temperature may be measured by a temperature sensor 240 included in a ring 104
  • other devices may measure a user’s temperature.
  • other wearable devices e.g., wrist devices
  • other wearable devices may include sensors that measure user physiological parameters.
  • medical devices such as external medical devices (e g., wearable medical devices) and/or implantable medical devices, may measure a user’s physiological parameters.
  • One or more sensors on any type of computing device may be used to implement the techniques described herein.
  • the physiological measurements may be taken continuously throughout the day and/or night. In some implementations, the physiological measurements may be taken during 104 portions of the day and/or portions of the night. In some implementations, the physiological measurements may be taken in response to determining that the user is in a specific state, such as an active state, resting state, and/or a sleeping state.
  • the ring 104 can make physiological measurements in a resting/sleep state in order to acquire cleaner physiological signals.
  • the ring 104 or other device/system may detect when a user is resting and/or sleeping and acquire physiological parameters (e.g., temperature) for that detected state.
  • the devices/sy stems may use the resting/sleep physiological data and/or other data when the user is in other states in order to implement the techniques of the present disclosure.
  • the ring 104 may be configured to collect, store, and/or process data, and may transfer any of the data described herein to the user device 106 for storage and/or processing.
  • the user device 106 includes a wearable application 250, an operating system (OS), a web browser application (e.g., web browser 280), one or more additional applications, and a GUI 275.
  • the user device 106 may further include other modules and components, including sensors, audio devices, haptic feedback devices, and the like.
  • the wearable application 250 may include an example of an application (e.g., " app ) that may be installed on the user device 106.
  • the wearable application 250 may be configured to acquire data from the ring 104, store the acquired data, and process the acquired data as described herein.
  • the wearable application 250 may include a user interface (UI) module 255, an acquisition module 260, a processing module 230-b, a communication module 220-b, and a storage module (e.g., database 265) configured to store application data.
  • UI user interface
  • the various data processing operations described herein may be performed by the ring 104, the user device 106, the servers 110, or any combination thereof.
  • data collected by the ring 104 may be pre-processed and transmitted to the user device 106.
  • the user device 106 may perform some data processing operations on the received data, may transmit the data to the servers 110 for data processing, or both.
  • the user device 106 may perform processing operations that require relatively low processing power and/or operations that require a relatively low latency, whereas the user device 106 may transmit the data to the servers 110 for processing operations that require relatively high processing power and/or operations that may allow relatively higher latency.
  • the ring 104, user device 106, and server 110 of the system 200 may be configured to evaluate sleep patterns for a user.
  • the respective components of the system 200 may be used to collect data from a user via the ring 104, and generate one or more scores (e.g., Sleep Score, Readiness Score) for the user based on the collected data.
  • the ring 104 of the system 200 may be worn by a user to collect data from the user, including temperature, heart rate, HRV, and the like.
  • Data collected by the ring 104 may be used to determine when the user is asleep in order to evaluate the user’s sleep for a given “sleep day.”
  • scores may be calculated for the user for each respective sleep day, such that a first sleep day is associated with a first set of scores, and a second sleep day is associated with a second set of scores.
  • Scores may be calculated for each respective sleep day based on data collected by the ring 104 during the respective sleep day. Scores may include, but are not limited to, Sleep Scores, Readiness Scores, and the like.
  • sleep days may align with the traditional calendar days, such that a given sleep day runs from midnight to midnight of the respective calendar day.
  • sleep days may be offset relative to calendar days. For example, sleep days may run from 6:00 pm (18:00) of a calendar day until 6:00 pm (18:00) of the subsequent calendar day. In this example, 6:00 pm may serve as a “cut-off time,” where data collected from the user before 6:00 pm is counted for the current sleep day, and data collected from the user after 6:00 pm is counted for the subsequent sleep day. Due to the fact that most individuals sleep the most at night, offsetting sleep days relative to calendar days may enable the system 200 to evaluate sleep patterns for users in such a manner that is consistent with their sleep schedules. In some cases, users may be able to selectively adjust (e.g., via the GUI) a timing of sleep days relative to calendar days so that the sleep days are aligned with the duration of time in which the respective users typically sleep.
  • each overall score for a user for each respective day may be determined/calculated based on one or more “contributors,” “factors,” or “contributing factors.”
  • a user may be calculated based on a set of contributors, including: total sleep, efficiency, restfulness, REM sleep, deep sleep, latency, timing, or any combination thereof.
  • the Sleep Score may include any quantity of contributors.
  • the “total sleep” contributor may refer to the sum of all sleep periods of the sleep day.
  • the “efficiency” contributor may reflect the percentage of time spent asleep compared to time spent awake while in bed, and may be calculated using the efficiency average of long sleep periods (e.g., pnmary sleep period) of the sleep day, weighted by a duration of each sleep period.
  • the “restfulness” contributor may indicate how restful the user’s sleep is, and may be calculated using the average of all sleep periods of the sleep day, weighted by a duration of each period.
  • the restfulness contributor may be based on a “wake up count” (e.g., sum of all the wake-ups (when user wakes up) detected during different sleep periods), excessive movement, and a “got up count” (e.g., sum of all the got-ups (when user gets out of bed) detected during the different sleep periods).
  • a “wake up count” e.g., sum of all the wake-ups (when user wakes up) detected during different sleep periods
  • excessive movement e.g., sum of all the got-ups (when user gets out of bed) detected during the different sleep periods.
  • the “REM sleep” contributor may refer to a sum total of REM sleep durations across all sleep periods of the sleep day including REM sleep.
  • the “deep sleep” contributor may refer to a sum total of deep sleep durations across all sleep periods of the sleep day including deep sleep.
  • the “latency” contributor may signify how long (e.g., average, median, longest) the user takes to go to sleep, and may be calculated using the average of long sleep periods throughout the sleep day, weighted by a duration of each period and the number of such periods (e.g., consolidation of a given sleep stage or sleep stages may be its own contributor or weight other contributors).
  • the “timing” contributor may refer to a relative timing of sleep periods within the sleep day and/or calendar day, and may be calculated using the average of all sleep periods of the sleep day, weighted by a duration of each period.
  • a user may be calculated based on a set of contnbutors, including: sleep, sleep balance, heart rate,
  • the Readiness Score may include any quantity of contributors.
  • the “sleep” contributor may refer to the combined Sleep Score of all sleep periods within the sleep day.
  • the “sleep balance” contributor may refer to a cumulative duration of all sleep periods within the sleep day.
  • sleep balance may indicate to a user whether the sleep that the user has been getting over some duration of time (e.g., the past two weeks) is in balance with the user’s needs.
  • some duration of time e.g., the past two weeks
  • adults need 7-9 hours of sleep a night to stay healthy, alert, and to perform at their best both mentally and physically.
  • the sleep balance contributor takes into account long-term sleep patterns to determine whether each user’s sleep needs are being met.
  • the “resting heart rate” contributor may indicate a lowest heart rate from the longest sleep period of the sleep day (e.g., primary sleep period) and/or the lowest heart rate from naps occurring after the primary sleep period.
  • the “HRV balance” contributor may indicate a highest HRV average from the pnmary sleep penod and the naps happening after the primary sleep period.
  • the HRV balance contributor may help users keep track of their recovery status by comparing their HRV trend over a first time period (e.g., two weeks) to an average HRV over some second, longer time period (e.g., three months).
  • the “recovery index” contributor may be calculated based on the longest sleep period. Recovery index measures how long it takes for a user’s resting heart rate to stabilize during the night. A sign of a very good recovery is that the user’s resting heart rate stabilizes during the first half of the night, at least six hours before the user wakes up, leaving the body time to recover for the next day.
  • the “body temperature” contributor may be calculated based on the longest sleep period (e.g., pnmary sleep penod) or based on a nap happening after the longest sleep period if the user’s highest temperature during the nap is at least 0.5°C higher than the highest temperature during the longest period.
  • the ring may measure a user’s body temperature while the user is asleep, and the system 200 may display the user’s average temperature relative to the user’s baseline temperature. If a user’s body temperature is outside of their normal range (e.g., clearly above or below 0.0), the body temperature contributor may be highlighted (e.g., go to a “Pay attention” state) or otherwise generate an alert for the user.
  • the system 200 may support techniques for pregnancy detection.
  • the respective components of the system 200 may be used to detect the indication of pregnancy in a time series representing the user’s temperature over time.
  • a pregnancy of the user may be predicted by leveraging temperature sensors on the ring 104 of the system 200.
  • the pregnancy may be detected by identifying one or more morphological features such as temperature elevations in the time series representing the user’s temperature over time and detecting the indication of the pregnancy that corresponds to the temperature elevations of the time series.
  • the indication of early pregnancy may be an example of detecting that the user is currently pregnant and/or has already become pregnant before the user’s hormone changes (e.g., elevations) are detectable (e.g., via a conventional at-home pregnancy test).
  • the ring 104 of the system 200 may be worn by a user to collect data from the user, including temperature, heart rate, respirator ⁇ ⁇ data, HRV data, and the like.
  • the ring 104 of the system 200 may collect the physiological data from the user based on temperature sensors and measurements extracted from arterial blood flow (e.g., using PPG signals).
  • the physiological data may be collected continuously.
  • the processing module 230-a may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per minute) throughout the day and/or night may provide sufficient temperature data for analysis described herein.
  • the ring 104 may continuously acquire temperature data (e.g., at a sampling rate). In some examples, even though temperature is collected continuously, the system 200 may leverage other information about the user that it has collected or otherwise derived (e.g., sleep stage, activity levels, illness onset, etc.) to select a representative temperature for a particular day that is an accurate representation of the underlying physiological phenomenon.
  • temperature data e.g., at a sampling rate.
  • the system 200 may leverage other information about the user that it has collected or otherwise derived (e.g., sleep stage, activity levels, illness onset, etc.) to select a representative temperature for a particular day that is an accurate representation of the underlying physiological phenomenon.
  • FIG. 3 illustrates an example of a system 300 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the system 300 may implement, or be implemented by, system 100, system 200, or both.
  • system 300 illustrates an example of a ring 104 (e.g., wearable device 104), a user device 106, and a server 110, as described with reference to FIG. 1.
  • the ring 305 may acquire temperature data 320, heart rate data 325, respirator ⁇ ' rate data 330, and HRV data 335, among other forms of physiological data as described herein. In such cases, the ring 305 may transmit temperature data 320, heart rate data 325, respiratory rate data 330, and HRV data 335 to the user device 310.
  • the temperature data 320 may include continuous nighttime temperature data, continuous daytime temperature data, or both.
  • the respiratory rate data 330 may be an example of continuous nighttime breath rate data. In some cases, multiple devices may acquire physiological data.
  • a first computing device e g., user device 310 and a second computing device (e.g., the ring 305) may acquire temperature data 320, heart rate data 325, respiratory rate data 330, HRV data 335, or a combination thereof.
  • the ring 305 may acquire user physiological data, such as user temperature data 320, respiratory rate data 330, heart rate data 325, HRV data 335, galvanic skin response, blood oxygen saturation, actigraphy, and/or other user physiological data.
  • user physiological data such as user temperature data 320, respiratory rate data 330, heart rate data 325, HRV data 335, galvanic skin response, blood oxygen saturation, actigraphy, and/or other user physiological data.
  • the ring 305 may acquire raw data and convert the raw data to features with daily granularity. In some implementations, different granularity input data may be used.
  • the ring 305 may send the data to another computing device, such as a mobile device (e.g., user device 310) for further processing.
  • a mobile device e.g., user device 310
  • data features for processing may include temperature detected during sleep by computing the maximal value of temperature over each half hour of sleep after cleaning and artifact removal, computing the second maximal value from that series of 30 min maximums, computing the delta from the prior day’s value, and, optionally, overlaying a smoothing over a 3-day period with weightings.
  • the system 300 may alternatively use the temperature deviation without the smoothing window or combine this information with raw values for the temperature second max and mins after outlier removal or statistical quantiles (e.g., 1% and 99%).
  • the system 300 may add additional features, such as heart rate and breath rate.
  • a multivariate time series method such as a shapelet classifier, may identify the shape of the pregnancy- associated increase in temperature and concomitant or phase-independently correlated changes in other signals.
  • the system 300 may input the user data and/or feature set (e.g., a last few months of data) into a processing pipeline.
  • the pipeline may smooth the data (e.g., using a 7-day smoothing window or other window). Missing values may be imputed (e.g., using the forecaster Impute method from the python package sktime).
  • the system may derive features from a multivariate matrix that may detect either the cessation of and/or absence of the cyclicity in combination with a change or elevation in sleeping skin temperature values relative to a within-user distribution of prior temperature values over a relevant baseline period.
  • the system 300 may detect that the minimum temperature levels (nadir or trough levels of the menstrual cycle) may not reach the threshold that indicates that a menstrual cycle is being initiated.
  • the threshold may be defined based on within-user data (e.g., if a user previously exhibited cycles and they stopped) or between-user data (e.g., a statistical threshold of a distribution of temperature derived from users of a similar age and having similar signal characteristics).
  • the system 300 may detect the decline in temperature from a within-user peak value as the start of a new menstrual cycle. The system may flag observations as possibly pregnant if a user exhibits a cessation of menstruation or the absence of periods after having previously documented sufficiently regular periods over several cycles, as described with reference to FIG. 5.
  • the user device 310 may determine pregnancy tracking data (e.g., early pregnancy detection) based on the received data.
  • the system 300 may determine pregnancy tracking data based on temperature data 320, respiratory rate data 330, heart rate data 325, HRV data 335, galvanic skin response, blood oxygen saturation, activity, sleep architecture, or a combination thereof.
  • the system 300 may determine which features are useful identifiers for early pregnancy detection.
  • the system may be implemented by a ring 305 and a user device 310, any combination of computing devices described herein may implement the features attributed to the system 300.
  • the user device 310-a may include a ring application 350.
  • the ring application 350 may include at least modules 340 and application data 345.
  • the application data 345 may include historical temperature patterns for the user and other data.
  • the other data may include temperature data 320, heart rate data 325, respiratoi rate data 330, HRV data 335, or a combination thereof.
  • the ring application 350 may present the detected indication of pregnancy to the user.
  • the ring application 350 may include an application data processing module that may perform data processing.
  • the application data processing module may include modules 340 that provide functions attributed to the system 300.
  • Example modules 340 may include a daily temperature determination module, a time series processing module, a temperature elevation module, and a pregnancy detection module.
  • the daily temperature determination module may determine daily temperature values (e.g., by selecting a representative temperature value for that day from a series of temperature values that were collected continuously throughout the day and/or night).
  • the time series processing module may process time series data to detect the indication of pregnancy.
  • the temperature elevation module may identify temperature elevations relative to a temperature baseline for the user based on the processed time series data.
  • the pregnancy detection module may detect the indication of pregnancy based on the processed time series data.
  • the system 300 may receive user physiological data (e.g., from a ring 305) and output daily classification of whether the user is pregnant.
  • the ring application 350 may store application data 345, such as acquired temperature data, other physiological data, and pregnancy tracking data (e.g., event data).
  • the system 300 may generate pregnancy tracking data based on user physiological data (e.g., temperature data 320 and/or motion data).
  • the pregnancy tracking data may include the indication of pregnancy for the user, which may be determined based on acquired user temperature data (e.g., daily temperature data 320) over an analysis time period (e.g., a period of weeks/months).
  • the system 300 may receive physiological data associated with a user from a wearable device (e.g., ring 305).
  • the physiological data may include at least temperature data 320, heart rate data 325, respiratory rate data 330, HRV data 335, or a combination thereof.
  • the system 300 acquires user physiological data over an analysis time period (e.g., a plurality of days). In such cases, the system 300 may acquire and process user physiological data over an analysis time period to generate one or more time series of user physiological data.
  • the system 300 may acquire daily user temperature data 320 over an analysis time period. For example, the system 300 may calculate a single temperature value for each day. The system 300 may acquire a plurality of temperature values during the day and/or night and process the acquired temperature values to determine the single daily temperature value. In some implementations, the system 300 may determine a time series of a plurality of temperature values taken over a plurality of days based on the received temperature data 320. The system 300 may detect the indication of pregnancy in the time series of the temperature values based on the identified temperature elevations of the time series of the temperature values, as described with reference to FIG. 4.
  • the system 300 may cause a GUI of the user devices 310-a, 310-b to display the detected indication of pregnancy.
  • the system 300 may cause the GUI to display the time series.
  • the system 300 may generate pregnancy tracking data output.
  • the system 300 may generate a tracking GUI that includes physiological data (e.g., at least temperature data 320), tagged events, and/or other GUI elements described herein with reference to FIG. 7. In such cases, the system 300 may render the detected indication of pregnancy in a pregnancy tracking GUI.
  • the system 300 may generate a message 365 for display on a GUI on a user device 310-a or 310-b that indicates the indication of pregnancy.
  • the system 300 e g., user device 310-a or server 315) may transmit the message 365 that indicates the detected indication of pregnancy to the user device 310-b.
  • the user device 310-b may be associated with a clinician, a fertility specialist, a caretaker, a partner, or a combination thereof.
  • the detection of a probable pregnancy may trigger a personalized message 365 to a user highlighting the pattern detected in the temperature data 320 and providing an educational link about pregnancy.
  • the ring application 350 may notify the user of detected indication of pregnancy and/or prompt the user to perform a variety of tasks in the activity GUI.
  • the notifications and prompts may include text, graphics, and/or other user interface elements.
  • the notifications and prompts may be included in the ring application 350 such as when there is a pregnancy that has just been detected, the ring application 350 may display notifications and prompts.
  • the user device 310 may display notifications and prompts in a separate window on the home screen and/or overlaid onto other screens (e.g., at the very top of the home screen). In some cases, the user device 310 may display the notifications and prompts on a mobile device, a user’s watch device, or both.
  • the user device 310 may store historical user data.
  • the historical user data may include historical data 355.
  • the historical data 355 may include historical temperature patterns of the user, historical heart rate patterns of the user, historical respiratory rate patterns of the user, historical HRV patterns of the user, historical menstrual cycle onset events (e.g., cycle length, cycle start date, etc.) of the user, or a combination thereof.
  • the historical data 355 may be selected from the last few months.
  • the historical data 355 may be used (e.g., by the user device 310 or server 315) to determine a threshold (e.g., non-pregnancy baseline) for the user, determine temperature values of the user, detect an early pregnancy of the user, or a combination thereof.
  • Using the historical data 355 may allow the user device 310 and/or server 315 to personalize the GUI by taking into consideration user’s historical data 355.
  • the non-pregnancy baselines may be tailored-specific to the user based on historical data 355 acquired by the system 300.
  • the non-pregnancy baselines for the user may be based on physiological data continuously collected by the system 300 prior to the user becoming pregnant.
  • the system 300 may determine the nonpregnancy baselines (e.g., temperature, heart rate, HRV, respiratory rate) for the user.
  • the non-pregnancy baselines may be relative to the user’s menstrual cycle.
  • the baselines for the user may be based on physiological data continuously collected by the system 300 prior to the user becoming pregnant and/or during the user’s menstrual cycle.
  • the system 300 may determine the baselines (e.g., temperature, heart rate, HRV, respiratory rate) for the user based on the values of physiological data determined during different portions of the user’s menstrual cycle.
  • the user device 310 may transmit historical data 355 to the server 315.
  • the transmitted historical data 355 may be the same historical data stored in the ring application 350.
  • the historical data 355 may be different than the histoncal data stored in the ring application 350.
  • the server 315 may receive the historical data 355.
  • the server 315 may store the historical data 355 in server data 360.
  • the user device 310 and/or server 315 may also store other data which may be an example of user information.
  • the user information may include, but is not limited to, user age, weight, height, and gender. In some implementations, the user information may be used as features for identifying ovulatory cycles and anovulatory cycles.
  • the server data 360 may include the other data such as user information.
  • the system 300 may include one or more user devices 310 for different users. For example, the system 300 may include user device 310-a for a primary user and user device 310-b for a second user 302 associated with the primary user (e.g., partner).
  • the user devices 310 may measure physiological parameters of the different users, provide GUIs for the different users, and receive user input from the different users.
  • the different user devices 310 may acquire physiological information and provide output related to a woman's health, such as menstrual cycles, ovarian cycles, illness, fertility, and/or pregnancy.
  • the user device 310-b may acquire physiological information related to the second user 302, such as male illness and fertility.
  • the system 300 may provide GUIs that inform the second user 302 of relevant information.
  • the first user and the second user 302 may share their information with one another via one or more user devices 310, such as via a server device, mobile device, or other device.
  • the second user 302 may share one or more of their accounts (e.g., usernames, login information, etc.) and/or associated data with one another (e.g., the first user).
  • the system 300 may assist second users 302 in making health decisions related to pregnancy.
  • the users may be prompted (e.g., in a GUI) to share specific information.
  • the user may use a GUI to opt into sharing her pregnancy information with the second user 302.
  • the user and the second user 302 may receive notifications related to the stage of pregnancy on their respective user devices 310.
  • a second user 302 may make their information (e.g., illness, fertility data, etc.) available to the user via a notification or other sharing arrangement.
  • the second user 302 may be an example of a clinician, a fertility specialist, a care-taker, a partner, or a combination thereof.
  • FIG. 4 illustrates an example of a timing diagram 400 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the timing diagram 400 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof.
  • the timing diagram 400 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2.
  • the system may be configured to detect the indication of pregnancy.
  • the user’s body temperature pattern throughout the day and night may be an indicator that may characterize pregnancy. For example, skin temperature during the day and night may identify the indication of pregnancy.
  • the timing diagram 400 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of days and/or months).
  • the vertical bars illustrated in the timing diagram 400 may be understood to refer to the “temperature values 405.”
  • the solid vertical line illustrated in the timing diagram 400 may be understood to refer to the “confirmed pregnancy 410.”
  • the user’s temperature values 405 may be relative to a baseline temperature.
  • the system may receive physiological data associated with a user from a wearable device.
  • the physiological data may include at least temperature data.
  • the system may determine a time series of a plurality of temperature values 405 taken over a plurality of days based on the received temperature data.
  • the system may process original time series temperature data (e.g., temperature values 405) to detect the indication of pregnancy 415.
  • the temperature values 405 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, heart rate, HRV data, respirator)' rate data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day /sleep day.
  • physiological data e.g., temperature data, sleep data, heart rate, HRV data, respirator
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature.
  • continuous temperature measurement at the finger may capture minute-to- minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day.
  • the system may detect the indication of pregnancy 415 by observing a user’s relative body temperature for many days and marking the rise in temperature, which may indicate pregnancy. Demarcating the phases of the menstrual cycle and detecting the indication of pregnancy 415 using individualized continuous physiology may provide for accurate pregnancy detections. In such cases, the system may detect the indication of pregnancy 415 based on identifying the temperature elevations in the temperature values 405.
  • the indication of pregnancy 415 may occur prior to and/or at the time of temperature elevations in the temperature values 405.
  • the indication of pregnancy 415 may include a duration of time (e.g., one or more days) that the pregnancy was likely to occur.
  • the system may determine each temperature value of the temperature values 405 in response to receiving the temperature data.
  • the temperature data may include continuous nighttime temperature data.
  • the temperature values 405 may be an example of nocturnal sleeping temperature values (e.g., one per day) acquired by a ring.
  • the temperature values 405 may depict pregnancy as detected by temperature elevations in the temperature values relative to a non-pregnancy temperature baseline of the user.
  • the non-pregnancy temperature baseline for the user may be representative of the temperature values 405 before the indication of pregnancy 415. For example, the temperature values 405 may increase from the non-pregnancy temperature baseline for the user, thereby indicating that the user is pregnant.
  • the temperature values 405 may be plotted over several months for a user who received a positive pregnancy test (e.g., confirmed pregnancy 410) at the time demarcated by the vertical line.
  • the timing diagram 400 which may be included in the application described with reference to FIG. 7, may illustrate how temperature data may be used to detect pregnancy onset as much as 2 weeks prior to traditional at-home testing methods.
  • physiological data acquired from devices e.g., a ring device
  • the indication of pregnancy 415 may be detected before the confirmed pregnancy 410.
  • the system may be configured to detect pregnancy before a hormonal test would confirm the pregnancy (e.g., prior to hormonal changes detectable by the user).
  • the user’s body temperature pattern throughout the night may be an indicator that may characterize pregnancy.
  • skin temperature during the night may detect the indication of pregnancy 415.
  • the timing diagram 400 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of days).
  • FIG. 5 illustrates examples of timing diagrams 500 that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the timing diagrams 500 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof.
  • the timing diagrams 500 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2.
  • the system may be configured to detect an indication of pregnancy 510 based on deviations in temperature values, HRV values, respiratoiy rate values, heart rate values, or a combination thereof.
  • the user s body temperature pattern, HRV pattern, respiratory rate pattern, heart rate pattern, or a combination thereof throughout the day and night may be an indicator that may characterize pregnancy. For example, skin temperature, HRV, respirator ⁇ rate, heart rate, or a combination thereof during the day and night may detect the indication of pregnancy 510.
  • the timing diagram 500-a illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of months).
  • the solid curved line illustrated in the timing diagram 500 may be understood to refer to the “temperature values 505.”
  • the user’s temperature values 505 may be relative to a baseline temperature.
  • the dashed vertical line illustrated in the timing diagram 500 may be understood to refer to the “indication of pregnancy 510.”
  • the short dashed vertical lines illustrated in the timing diagram 500 may be understood to refer to the “periods 515.”
  • the system may receive physiological data associated with a user from a wearable device.
  • the physiological data may include at least temperature data.
  • the system may determine a time series of a plurality of temperature values 505 taken over a plurality of days based on the received temperature data.
  • the plurality of days may be an example of seven months.
  • the timing diagram 500-a may include at least two periods 515, an indication of pregnancy 510, and temperature values 505 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks).
  • the timing diagram 500-a may illustrate a user with two periods 515, the indication of pregnancy 510, followed by temperature values 505 through at least the first trimester.
  • the system may process original time series temperature data (e.g., temperature values 505) to detect the indication of pregnancy 510.
  • the time series may include a plurality of events tagged by the user in the system.
  • the time series may include periods 515 which may be tagged by the user.
  • periods 515 may be determined by the system based on physiological data continuously collected by the system.
  • the timing diagram 500-a may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application.
  • the user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant.
  • the user's temperature trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
  • the temperature values 505 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day.
  • physiological data e.g., temperature data, sleep data, MET data, and the like
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature.
  • continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day.
  • the system may detect the indication of pregnancy 510 by observing a user’s relative body temperature for many days and marking the increase in temperature relative to a non-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received temperature data (e.g., temperature values 505) exceeds a non-pregnancy baseline temperature for the user for at least a portion of the plurality of days.
  • the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data exceeds the non-pregnancy baseline temperature for the user. For example, the system may identify that the user’s temperature is raised about 0.4 0 C above the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the temperature rise in the user’s previous luteal phase (e.g., before the next period 515 starts). In some examples, the system may identify the temperature values 505 after determining the time series, and identify the non-pregnancy baseline of temperature values.
  • the baseline e.g., non-pregnancy baseline, a menstrual cycle baseline, or both
  • the system may identify the temperature values 505 after determining the time series, and identify the non-pregnancy baseline of temperature values.
  • the system may identify and/or determine the menstrual cycle baseline for a physiological parameter.
  • the menstrual cycle baseline may be an example of a trend indicating how a physiological parameter typically varies for the user throughout the user’s menstrual cycle based on the received physiological data.
  • the menstrual cycle baseline for a user’s temperature may include typical temperature values for each day or phase of a user’s menstrual cycle.
  • the system may compare the received temperature data to a temperature expected for the day of the user’s menstrual cycle based on the menstrual cycle baseline.
  • the system may determine that the received temperature data (e.g., temperature values 505) is greater than the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data is greater than the menstrual cycle baseline temperature for the user.
  • the system may determine that the received temperature data (e.g., temperature values 505) has increased earlier in the cycle or at a faster rate than is typical based on the menstrual cycle baseline for the user. For example, the system may determine that the received temperature data (e.g., temperature values 505) is greater than atypical value for the user on this day or during this phase of the menstrual cycle based on the menstrual cycle baseline, which may indicate that the temperature rise is indicative of something other than the normal fluctuations experienced during the menstrual cycle (e.g., the user may be pregnant). In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data is increasing earlier than the menstrual cycle baseline temperature for the user.
  • the received temperature data e.g., temperature values 505
  • the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data is increasing earlier than the menstrual cycle baseline temperature for the user.
  • the system may detect the pregnancy in the time series of the temperature values 505 based on one or more positive slopes of the time series of the temperature values 505. For example, the system may identify one or positive slopes of the time series of the plurality of temperature values 505 after determining the time series. The system may detect the pregnancy in the time series of temperature values 505 in response to identifying the one or more positive slopes of the time series.
  • the indication of pregnancy 510 is associated with a positive slope in the time series of temperature values 505. For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
  • the system may determine, or estimate, the temperature maximum and/or minimum for a user after determining the time series of the temperature values 505 for the user collected via the ring.
  • the system may identify the one or more positive slopes of the time series of the plurality of temperature values 505 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positiv e slopes of the time series of the plurality of temperature values 505 may be in response to computing a deriv ative of the original time series temperature data (e g., temperature values 505).
  • the system may identify a cessation of cyclicity of the time series of the temperature values 505 in response to determining the time series.
  • the system may detect the pregnancy in response to identifying the cessation of cyclicity.
  • the system may determine that the temperature values 505 may deviate from the cyclicity of the time series of the temperature values during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the temperature values 505 continue to increase rather than decreasing after the user experiences a period 515.
  • the system may be configured to track menstrual cycles, ovulation, pregnancy, and the like.
  • the user’s body temperature pattern throughout the night may be an indicator that may characterize pregnancy.
  • skin temperature during the night may identify the indication of the pregnancy.
  • the timing diagram 500-a illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of months).
  • the timing diagram 500-b illustrates a relationship between a user’s HRV data and a time (e g., over a plurality of months).
  • the solid curved line illustrated in the timing diagram 500-b may be understood to refer to the “HRV values 520.”
  • the user’s HRV values 520 may be relative to a baseline HRV.
  • the dashed vertical line illustrated in the timing diagram 500-b may be understood to refer to the “indication of pregnancy 510.”
  • the short dashed vertical lines illustrated in the timing diagram 500-b may be understood to refer to the “periods 515.”
  • the system may receive physiological data associated with a user from a wearable device.
  • the physiological data may include at least HRV data.
  • the system may determine a time series of a plurality of HRV values 520 taken over a plurality of days based on the received HRV data.
  • the plurality of days may be an example of seven months.
  • the timing diagram 500-b may include at least two periods 515, the indication of pregnancy 510, and HRV values 520 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks).
  • the timing diagram 500-b may illustrate a user with two periods 515, the indication of pregnancy 510, followed by HRV values 520 throughout at least the first trimester.
  • the system may process original time series HRV data (e.g., HRV values 520) to detect the indication of pregnancy 510.
  • the time series may include a plurality of events tagged by the user in the system.
  • the time series may include periods 515 which may be tagged by the user.
  • periods 515 may be determined by the system based on physiological data continuously collected by the system.
  • the timing diagram 500-b may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application.
  • the user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within fewer than 9 months after becoming pregnant, thereby indicating that the user is pregnant.
  • the user's HRV trajectory around the time of the indication of pregnancy 510 may be generally lower than the peak around the times of the periods 515.
  • the HRV values 520 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., HRV data, sleep data, MET data, and the like) continuously in accordance with one or more measurement penodicities throughout the entirety of each day/sleep day.
  • physiological data e.g., HRV data, sleep data, MET data, and the like
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • the system may detect the indication of pregnancy 510 by observing a user’s relative HRV for many days and marking the decrease in HRV relative to a non-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received HRV data (e.g., HRV values 520) is less than a non-pregnancy baseline HRV for the user for at least a portion of the plurality of days. In such cases, detecting the indication of the pregnancy may be in response to determining that the received HRV data is less than the non-pregnancy baseline HRV for the user.
  • the received HRV data e.g., HRV values 520
  • the system may identify that the user’s HRV is decreased below the baseline (e.g., the non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the HRV decrease in the user’s previous luteal phase.
  • the system may identify' the HRV values 520 after determining the time series, and identify the non-pregnancy baseline of HRV values.
  • the system may determine a menstrual cycle baseline for HRV.
  • the menstrual cycle baseline for HRV may be an example of a HRV trend that indicates how the user’s HRV typically varies throughout the user’s menstrual cycle based on the received physiological data.
  • the system may compare the received HRV data to a HRV expected for the day of the user’s menstrual cycle based on the menstrual cycle baseline.
  • the system may determine that the received HRV data (e.g., HRV values 520) is less than the menstrual cycle baseline (or that the HRV is trending down more quickly) for the user for the identified day or phase of the user’s menstrual cycle.
  • the system may detect the indication of the pregnancy 510 in response to determining that the received HRV data is less than the menstrual cycle baseline HRV for the user.
  • the system may determine that the received HRV data (e.g., HRV values 520) decreases earlier than the menstrual cycle baseline for the user. For example, the system may determine that the HRV values 520 are trending lower at a faster rate than is typical based on the menstrual cycle baseline HRV for the user. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received HRV values 520 are decreasing earlier than the menstrual cycle baseline HRV for the user.
  • the received HRV data e.g., HRV values 520
  • the system may detect the indication of the pregnancy 510 in response to determining that the received HRV values 520 are decreasing earlier than the menstrual cycle baseline HRV for the user.
  • the system may detect the pregnancy in the time series of the HRV values 520 based on one or more negative slopes of the time series of the HRV values 520. For example, the system may identify one or negative slopes of the time series of the plurality of HRV values 520 after determining the time series. The system may detect the pregnancy in the time series of HRV values 520 in response to identifying the one or more negative slopes of the time series.
  • the indication of pregnancy 510 is associated with a less negative slope in the time series of HRV values 520 as compared to a negative slope in the time series during the menstrual cycle (e.g., period 515). For example, the indication of pregnancy 510 may occur at the end of the negative slope. In such cases, the negative slope may indicate that pregnancy occurred.
  • the system may determine, or estimate, the HRV maximum and/or minimum for a user after determining the time series of the HRV values 520 for the user collected via the ring.
  • the system may identify the one or more negative slopes of the time series of the HRV values 520 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the negative slope. In other examples, identifying the one or more negative slopes of the time series of the HRV values 520 may be in response to computing a derivative of the original time series HRV data (e.g., HRV values 520).
  • the system may identify a cessation of cyclicity of the time series of the HRV values 520 in response to determining the time series.
  • the system may detect the pregnancy in response to identifying the cessation of cyclicity.
  • the system may determine that the HRV values 520 may deviate from the cyclicity of the time series of the HRV values 520 during the menstrual cycles (e.g., penods 515).
  • the system may determine that the HRV values 520 continue to decrease rather than increasing after the user experiences a period 515.
  • the user’s HRV pattern throughout the night may be an indicator that may characterize pregnancy.
  • HRV during the night may identify the indication of the pregnancy 510.
  • the timing diagram 500-b illustrates a relationship between a user’s HRV data and a time (e.g., over a plurality of months).
  • one or more physiological measurements may be combined to detect pregnancy (e.g., identify the indication of pregnancy 510).
  • identifying the indication of the pregnancy 510 may be based on one physiological measurement or a combination of physiological measurements.
  • the user’s HRV pattern in combination with the user’s temperature pattern may be an indicator that may characterize pregnancy.
  • the user’s HRV pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern.
  • the system may validate or detect the indication of pregnancy 510 with greater accuracy and precision than if one of the heart rate variability data or temperature data deviates from the non-pregnancy baseline.
  • one or more physiological measurements may be combined to disprove or reduce the likelihood of a detected indication of pregnancy 510.
  • the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system determines that the received temperature data is greater than a non-pregnancy baseline temperature for the user but the received heart rate variability data still aligns with the non-pregnancy baseline heart rate variability for the user, the system may determine that the detected indication of pregnancy 510 is invalid or at least less likely than if both the temperate and heart rate variability deviated from their non-pregnancy baselines. In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like.
  • the timing diagram 500-c illustrates a relationship between a user’s respiratory rate data and a time (e.g., over a plurality of months).
  • the solid curved line illustrated in the timing diagram 500-c may be understood to refer to the “respiratory rate values 525.”
  • the user’s respiratory rate values 525 may be relative to a baseline respiratory rate.
  • the dashed vertical line illustrated in the timing diagram 500-c may be understood to refer to the “indication of pregnancy 510.”
  • the short dashed vertical lines illustrated in the timing diagram 500-c may be understood to refer to the “periods 515.”
  • the system may receive physiological data associated with a user from a wearable device.
  • the physiological data may include at least respiratory rate data.
  • the system may determine a time series of a plurality of respiratory rate values 525 taken over a plurality of days based on the received respiratory rate data.
  • the plurality of days may be an example of seven months.
  • the timing diagram 500-c may include at least two periods 515, the indication of pregnancy 510, and respiratory' rate values 525 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks).
  • the timing diagram 500-c may illustrate a user with two periods 515, the indication of pregnancy 510, followed by respiratory rate values 525 through at least the first trimester.
  • the system may process original time series respiratory rate data (e.g., respiratory' rate values 525) to detect the indication of pregnancy 510.
  • the time series may include a plurality of events tagged by the user in the system.
  • the time series may include periods 515 which may be tagged by the user.
  • periods 515 may be determined by the system based on physiological data continuously collected by the system.
  • the timing diagram 500-c may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application.
  • the user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant.
  • the user's respirator ⁇ ⁇ rate trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
  • the respiratory rate values 525 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., respiratory rate data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day.
  • physiological data e.g., respiratory rate data, sleep data, MET data, and the like
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • the system may detect the indication of pregnancy 510 by observing a user’s relative respiratory rate for many days and marking the increase in respirator rate relative to anon-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received respiratory rate data (e.g., respiratory rate values 525) is greater than (e.g., exceeds) a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the non-pregnancy baseline respiratory rate for the user.
  • the received respiratory rate data e.g., respiratory rate values 525
  • the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the non-pregnancy baseline respiratory rate for the user.
  • the system may identify that the user’s respiratory rate includes a 30% increase relative to the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the respiratory rate increase in the user’s previous luteal phase.
  • the system may identify the respiratory rate values 525 after determining the time series, and identify the non-pregnancy baseline of respirator ⁇ ' rate values.
  • the system may determine a menstrual cycle baseline for respirator ⁇ ' rate.
  • the menstrual cycle baseline may be an example of a respiratory rate trend that indicates how a user’s respiratory rate typically varies over the course of the user’s menstrual cycle based on the received physiological data. For example, the system may identify a day or phase of the user’s menstrual cycle and a corresponding baseline respiratory rate for that day or phase. The system may compare the received respirator ⁇ ' rate data to a respiratory rate expected for the day of the user’s menstrual cycle (e.g., the menstrual cycle baseline).
  • the system may determine that the received respiratoi rate data (e.g., respiratory rate values 525) is greater than the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the menstrual cycle baseline respirator ⁇ ' rate for the user.
  • the received respiratoi rate data e.g., respiratory rate values 525
  • the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the menstrual cycle baseline respirator ⁇ ' rate for the user.
  • the system may determine that the received respiratory rate data (e.g., respiratory rate values 525) increases earlier than is typical for user based on the menstrual cycle baseline respirator ⁇ ' rate. For example, the system may determine that the respiratory rate values 525 have increased to higher values or at a quicker rate than would be expected based on the menstrual cycle baseline. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate values 525 are increasing earlier than the menstrual cycle baseline respiratory rate for the user.
  • the received respiratory rate data e.g., respiratory rate values 525
  • the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate values 525 are increasing earlier than the menstrual cycle baseline respiratory rate for the user.
  • the system may detect the pregnancy in the time series of the respirator ⁇ ' rate values 525 based on one or more positive slopes of the time series of the respiratory rate values 525. For example, the system may identify one or positive slopes of the time series of the plurality of respiratory rate values 525 after determining the time series.
  • the system may detect the pregnancy in the time series of respiratory rate values 525 in response to identifying the one or more positive slopes of the time series.
  • the indication of pregnancy 510 is associated with a maximum positive slope in the time series of respirator ⁇ ' rate values 525 as compared to a positive slope in the time series of respirator ⁇ ' rate values 525 during the menstrual cycles (e.g., periods 515). For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
  • the system may determine, or estimate, the respiratory rate maximum and/or minimum for a user after determining the time series of the respiratory rate values 525 for the user collected via the ring.
  • the system may identify the one or more positive slopes of the time series of the respiratory rate values 525 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positive slopes of the time series of the respirator ⁇ rate values 525 may be in response to computing a derivative of the original time series respiratory rate data (e.g., respiratory rate values 525).
  • the system may identify a cessation of cyclicity of the time series of the respiratory rate values 525 in response to determining the time series.
  • the system may detect the pregnancy in response to identifying the cessation of cyclicity.
  • the system may determine that the respiratory rate values 525 may deviate from the cyclicity of the time series of respiratory rate values 525 during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the respiratory rate values 525 continue to increase rather than decreasing after the user experiences a period 515.
  • the user’s respirator ⁇ ' rate pattern throughout the night may be an indicator that may characterize pregnancy.
  • respiratory rate during the night may identify' the indication of the pregnancy.
  • the timing diagram 500-c illustrates a relationship between a user’s respiratory rate data and a time (e.g., over a plurality of months).
  • the user’s respirator ⁇ ' rate pattern in combination with the user’s temperature pattern may be an indicator that may characterize early detection of pregnancy.
  • the user’s respiratory rate pattern in combination with the user’s temperature pattern and/or HRV pattern may be an indicator that may characterize pregnancy.
  • the user’s respiratory rate pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern, the user’s HRV pattern, or both.
  • the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system determines that the received temperature data is greater than the menstrual cycle baseline temperature for the user but the received respiratory rate data fails to deviate from the menstrual cycle baseline respiratory rate for the user, the system may determine that the detected indication of pregnancy 510 is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like based on determining that one physiological measurement or a combination of physiological measurements align with the menstrual cycle baseline.
  • the timing diagram 500-d illustrates a relationship between a user's heart rate data and a time (e.g., over a plurality of months).
  • the solid curved line illustrated in the timing diagram 500-d may be understood to refer to the “heart rate values 530.”
  • the user’s heart rate values 530 may be relative to a baseline heart rate.
  • the dashed vertical line illustrated in the timing diagram 500-d may be understood to refer to the “indication of pregnancy 510.”
  • the short dashed vertical lines illustrated in the timing diagram 500-d may be understood to refer to the “periods 515.”
  • the system may process original time series heart rate data (e.g., heart rate values 530) to detect the indication of pregnancy 510.
  • the time series may include a plurality of events tagged by the user in the system.
  • the time series may include periods 515 which may be tagged by the user.
  • periods 515 may be determined by the system based on physiological data continuously collected by the system.
  • the timing diagram 500-d may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application.
  • the user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant.
  • the user's heart rate trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
  • the heart rate values 530 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., heart rate data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day.
  • physiological data e.g., heart rate data, sleep data, MET data, and the like
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • the system may detect the indication of pregnancy 510 by observing a user’s relative heart rate for many days and marking the increase in heart rate relative to anon-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received heart rate data (e.g., heart rate values 530) is greater than (e.g., exceeds) a non pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days. In such cases, detecting the indication of the pregnancy 510 may be in response to determining that the received heart rate data is greater than the non-pregnancy baseline respiratory rate for the user.
  • the received heart rate data e.g., heart rate values 530
  • the system may identify that the user’s heart rate is increased relative to the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the heart rate increase in the user’s previous luteal phase.
  • the system may identify the heart rate values 530 after determining the time series, and identify the non-pregnancy baseline of heart rate values.
  • the system may determine the menstrual cycle baseline for heart rate.
  • the menstrual cycle baseline hear rate may be an example of a heart rate trend that indicates how a user’s daily or average heart rate various throughout the user’s menstrual cycle based on the received physiological data.
  • the system may identify a day or phase of the user’s menstrual cycle and a corresponding heart rate value that is typical for that day or phase.
  • the system may compare the received heart rate data to a heart rate expected for the day of the user’s menstrual cycle (e.g., the menstrual cycle baseline).
  • the system may determine that the received heart rate data (e.g., heart rate values 530) is greater than (e.g., exceeds) the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate data is greater than the menstrual cycle baseline heart rate for the user.
  • the received heart rate data e.g., heart rate values 530
  • the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate data is greater than the menstrual cycle baseline heart rate for the user.
  • the system may determine that the received heart rate data (e.g., heart rate values 530) increases earlier than would be expected or that is typical based on the menstrual cycle baseline heart rate. For example, the system may determine that the heart rate values 530 are greater than or are increasing earlier in the cycle than is typical. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate values 530 are increasing earlier than the menstrual cycle baseline heart rate for the user.
  • the received heart rate data e.g., heart rate values 530
  • the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate values 530 are increasing earlier than the menstrual cycle baseline heart rate for the user.
  • the system may detect the pregnancy in the time series of the heart rate values 530 based on one or more positive slopes of the time series of the heart rate values 530. For example, the system may identify one or positive slopes of the time series of the plurality of heart rate values 530 after determining the time series. The system may detect the pregnancy in the time series of heart rate values 530 in response to identifying the one or more positive slopes of the time series.
  • the indication of pregnancy 510 is associated with a positive slope in the time series of heart rate values 530. For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
  • the system may determine, or estimate, the heart rate maximum and/or minimum for a user after determining the time series of the heart rate values 530 for the user collected via the ring.
  • the system may identify the one or more positive slopes of the time series of the heart rate values 530 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positive slopes of the time series of the heart rate values 530 may be in response to computing a derivative of the original time series heart rate data (e.g., heart rate values 530).
  • the system may identify a cessation of cyclicity of the time series of the heart rate values 530 in response to determining the time series.
  • the system may detect the pregnancy in response to identifying the cessation of cyclicity.
  • the system may determine that the heart rate values 530 may deviate from the cyclicity of the time series of heart rate values 530 during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the heart rate values 530 continue increase rather than decreasing after the user experiences a period 515.
  • the user’s heart rate pattern throughout the day and/or night may be an indicator that characterizes pregnancy.
  • heart rate during the day and/or night may identify the indication of the pregnancy.
  • the timing diagram 500-d illustrates a relationship between a user’s heart rate data and a time (e.g., over a plurality of months).
  • the user’s heart rate pattern in combination with the user’s temperature pattern may be an indicator that may characterize early detection of pregnancy.
  • the user’s heart rate pattern in combination with the user’s temperature pattern, HRV pattern, and/or respiratory rate pattern may be an indicator that may characterize pregnancy.
  • the user’s heart rate pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern, the user’s HRV pattern, the user’s respiratory rate pattern, or a combination thereof.
  • the system may validate or detect the indication of pregnancy 510 with greater accuracy and precision than if one of the heart rate data or temperature data deviates from the cyclicity of the time series.
  • the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system identifies the cessation of cyclicity of the time series of temperature values 505 but the received heart rate data fails to deviate from the cyclicity of the time series of the heart rate values 530, the system may determine that the detected indication of pregnancy 510 is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like based on determining that one physiological measurement or a combination of physiological measurements fail to deviate from the cyclicity of the time series.
  • the system may identify an absence of a menstrual cycle (e.g., period 515) based on determining the time series. In such cases, detecting the indication of the pregnancy occurs prior to identifying the absence of the period 515. For example, the system may detect the pregnancy (e.g. indication of pregnancy 510) within atime period after the period 515 based on determining the time series. In such cases, the indication of the pregnancy may be detected prior to identifying the lack of menstrual cycle (e.g., period 515) within the time period. For example, the system may detect the indication of the pregnancy 510 and then identify the lack of period (e.g., absence of) the period 515.
  • the system may detect the indication of the pregnancy 510 and then identify the lack of period (e.g., absence of) the period 515.
  • FIG. 6 illustrates an example of a timing diagram 600 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the timing diagram 600 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof.
  • the timing diagram 600 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2.
  • the system may be configured to detect the indication of pregnancy.
  • the user’s body temperature pattern throughout the day and night may be an indicator that may characterize pregnancy.
  • skin temperature during the day and night may identify the indication of pregnancy.
  • the timing diagram 600 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of weeks and/or months).
  • the solid line illustrated in the timing diagram 600 may be understood to refer to the “temperature values 605.”
  • the dashed vertical line illustrated in the timing diagram 600 may be understood to refer to the “pregnancy onset 610.”
  • the user’s temperature values 605 may be relative to a baseline temperature.
  • the system may receive physiological data associated with a user from a wearable device.
  • the physiological data may include at least temperature data.
  • the system may determine a time series of a plurality of temperature values 605 taken over a plurality of days based on the received temperature data.
  • the system may process original time series temperature data (e.g., temperature values 605) to detect the indication of pregnancy.
  • the temperature values 605 may be continuously collected by the wearable device.
  • the physiological measurements may be taken continuously throughout the day and/or night.
  • the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, heart rate, HRV data, respiratory rate data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day /sleep day.
  • the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
  • continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature.
  • continuous temperature measurement at the finger may capture minute-to- minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day.
  • the timing diagram 600 may illustrate a temperature trajectory for a user whose pregnancy lased full term (e.g., 40 weeks). For example, the timing diagram 600 may illustrate that the temperature values 605 at the pregnancy onset 610 may be higher than the temperature values 605 prior to pregnancy onset 610. In some cases, the temperature values 605 at the pregnancy onset 610 may be higher than the temperature values 605 after pregnancy onset 610. In such cases, the temperature values 605 at the pregnancy onset may be representative of a local maximum 620.
  • the system may identify one or more local maximum 615 of a first portion of the time series of the temperature values 605 based on determining the time series.
  • the first portion of the time series may occur prior to the pregnancy onset 610 and be indicative of a user’s menstrual cycle.
  • the first portion may correspond to one or more menstrual cycles for the user.
  • the system may identify one or more local maximum 620 of a second portion following the first portion of the time series of the temperature values 605 based on determining the time series.
  • the second portion may include a duration of time where the pregnancy onset 610 occurred.
  • the second portion may correspond to a time period corresponding to the pregnancy onset 610.
  • identifying the temperature elevations in the time series may be in response to identifying the one or more local maximum 615 of the first portion and the one or more local maximum 620 of the second portion.
  • the system may compare the identified one or more local maximum 615 of the first portion and the identified one or more local maximum 620 of the second portion. In some cases, the system may determine that the identified one or more local maximum 620 of the second portion are greater than the identified one or more local maximum 614 of the first portion based on the comparison. In such cases, the system may detect the indication of pregnancy in response to the determination. For example, the timing diagram 600 may illustrate that temperature level (e.g., temperature values 605) around pregnancy (e.g., at the one or more local maximum 620 of the second portion) is higher than the temperature peak (e.g., temperature values 605) in the prior menstrual cycle (e.g., at the one or more local maximum 615 of the first portion).
  • temperature level e.g., temperature values 605 around pregnancy (e.g., at the one or more local maximum 620 of the second portion) is higher than the temperature peak (e.g., temperature values 605) in the prior menstrual cycle (e.g., at the one or more local maximum 6
  • FIG. 7 illustrates an example of a GUI 700 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the GUI 700 may implement, or be implemented by, aspects of the system 100, system 200, system 300, timing diagram 400, timing diagram 500, timing diagram 600, or any combination thereof.
  • the GUI 700 may be an example of a GUI 275 of a user device 106 (e.g., user device 106-a, 106-b, 106-c) corresponding to a user 102.
  • the GUI 700 illustrates a series of application pages 705 which may be displayed to a user via the GUI 700 (e.g., GUI 275 illustrated in FIG. 2).
  • the server of the system may cause the GUI 700 of the user device (e.g., mobile device) to display inquiries of whether the user activates the period mode and wants to track their menstrual cycle (e.g., via application page 705).
  • the system may generate a personalized cycle tracking experience on the GUI 700 of the user device to detect the indication of the pregnancy based on the contextual tags and user questions.
  • the user may be presented with an application page upon opening the wearable application.
  • the application page 705 may display a request to activate the period mode and enable the system to track the menstrual cycle (e.g., thereby enabling the detection of a pregnancy). In such cases, the application page 705 may display an invitation card where the users are invited to enroll in the menstrual cycle tracking applications. The application page 705 may display a prompt to the user to verify whether the menstrual cycle may be tracked or dismiss the message if the menstrual cycle is not tracked. The system may receive an indication of whether the user selects to opt-in to tracking the menstrual cycle or opt-out to tracking the menstrual cycle. For example, the application page 705 may display a prompt to the user to verify whether an early pregnancy may be detected or dismiss the message if an early pregnancy may not be detected. The system may receive an indication of whether the user selects to opt-in to detecting an early pregnancy or opt-out to detecting an early pregnancy.
  • the user may be presented with an application page 705 upon selecting “yes” to tracking the menstrual cycle and/or detecting an early pregnancy.
  • the application page 705 may display a prompt to the user to verify the main reason to track the cycle (e.g., period, ovulation, pregnancy, etc.) and/or detect a pregnancy.
  • the application page 705 may prompt the user to confirm the intent of tracking the menstrual cycle and/or detecting a pregnancy.
  • the system may receive, via the user device, a confirmation of the intended use of the tracking system.
  • the user may be presented with an application page 705 upon confirming the intent.
  • the application page 705 may display a prompt to the user to verify the average cycle length (e.g., duration between a first day of a first menstrual cycle and a first day of a second menstrual cycle).
  • the application page 705 may display a prompt to the user to indicate whether the user experiences irregular cycles in which an average cycle length may not be determined.
  • the system may receive, via the user device, a confirmation of the average cycle length.
  • the user may be presented with an application page 705 upon inputting the average cycle length or irregular cycle.
  • the application page 705 may display a prompt to the user to verify the last cycle start date (e.g., a first day of the most recent menstrual cycle).
  • the application page 705 may display a prompt to the user to indicate whether the user may be unable to identify the last cycle start date.
  • the sy stem may receive, via the user device, a confirmation of the last cycle start date.
  • the user may be presented with an application page 705 upon confirming the last cycle start date.
  • the application page may display a prompt to the user to verify whether the user uses hormonal contraceptives.
  • the system may receive, via the user device, a confirmation of whether hormonal contraceptives are in use.
  • the user may be presented with a GUI 700 that may be further shown and described with reference to application page 705.
  • the server of system may cause the GUI 700 of the user device (e.g., mobile device) to display the indication of pregnancy (e.g., via application page 705).
  • the system may output the detected indication of pregnancy on the GUI 700 of the user device to indicate that the user is pregnant and/or experiencing a first day pregnancy.
  • the user upon detecting the indication of pregnancy, the user may be presented with the application page 705 upon opening the wearable application.
  • the application page 705 may display an indication that the pregnancy was detected via message 720.
  • the application page 705 may include the message 720 on the home page.
  • the server may transmit a message 720 to the user, where the message 720 is associated with the detected indication of pregnancy for the user.
  • the server may transmit a message 720 to a clinician, a fertility specialist, a care-taker, a partner of the user, or a combination thereof.
  • the system may present application page 705 on the user device associated with the clinician, the fertility specialists, the care-taker, the partner, or a combination thereof.
  • the user may receive message 720, which may include a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, and the like.
  • the message 720 may indicate a date of the detected indication of pregnancy, a date of likely conception (e.g., estimated conception date is April 28th), a range of dates of likely conception (e.g., estimated conception date April 27-29th), a range of dates of the predicted due date (e.g., estimated due date January 21 -29th), or a combination thereof.
  • the range may include the day of the estimated date and the day before and after the estimated date.
  • the messages 720 may be configurable/customizable, such that the user may receive different messages 720 based on the detected indication of pregnancy, as described previously herein.
  • the application page 705 may display the indication of pregnancy via alert 710.
  • the user may receive alert 710, which may prompt the user to verily whether the detected indication of pregnancy has occurred or dismiss the alert 710 if the detected indication of pregnancy has not occurred.
  • the application page 705 may prompt the user to confirm or dismiss the pregnancy (e.g., confirm/deny whether the system correctly detected the indication of pregnancy).
  • the system may receive, via the user device, a confirmation of the detected indication of pregnancy.
  • the system may receive, via the user device and in response to detecting the indication of pregnancy, a confirmation of the pregnancy. In such cases, detecting the indication of the pregnancy occurs before confirming the pregnancy.
  • the application page 705 may display one or more scores (e.g., Sleep Score, Readiness Score, etc.) for the user for the respective day.
  • scores e.g., Sleep Score, Readiness Score, etc.
  • the application pages 705 may display a pregnancy card such as a “detected indication of pregnancy confirmation card” which indicates that the detected indication of pregnancy has been recorded.
  • a pregnancy card such as a “detected indication of pregnancy confirmation card” which indicates that the detected indication of pregnancy has been recorded.
  • the pregnancy may be recorded/logged in for the user for the respective calendar day.
  • the pregnancy may be used to update (e.g., modify) one or more scores associated with the user (e.g., Sleep Score, Readiness Score, Activity Score, etc ). That is, data associated with the detected indication of pregnancy may be used to update the scores for the user for the following calendar day after which the detected indication of pregnancy was confirmed.
  • the Readiness Score may be updated based on the detected indication of pregnancy. For example, an elevated body temperature relative to a temperature baseline for the user may cause the system to alert the user, via alert 710, about their body signals (e.g., elevated body temperature). In such cases, the Readiness Score may indicate to the user to ‘‘pay attention” based on elevated body temperatures.
  • the system may implement a recovery mode for users whose symptoms may be severe and may benefit from adjusted activity and readiness guidance for a couple of days.
  • the Readiness Score may be updated based on the Sleep Score and elevated body temperatures.
  • the system may determine that the user is pregnant and may adjust (e.g., increase) the Readiness Score and/or Sleep Score to offset the effects of the pregnancy.
  • the messages 720 displayed to the user via the GUI 700 of the user device may indicate how the detected indication of pregnancy affected the overall scores (e.g., overall Readiness Score, Sleep Score, Activity Score, etc.) and/or the individual contributing factors. For example, a message may indicate “It looks like your body is under strain right now, but if you’re feeling ok, doing a light or medium intensity exercise can help your body battle the symptoms” or “From your recovery metrics it looks like your body is still doing ok, so some light activity can help relieve the symptoms.”
  • overall scores e.g., overall Readiness Score, Sleep Score, Activity Score, etc.
  • a message may indicate “It looks like your body is under strain right now, but if you’re feeling ok, doing a light or medium intensity exercise can help your body battle the symptoms” or “From your recovery metrics it looks like your body is still doing ok, so some light activity can help relieve the symptoms.”
  • the messages 720 may provide suggestions for the user in order to improve their general health. For example, the message may indicate “If you feel really low on energy, why not switch to rest mode for today,” or “Since you are feeling fatigued and nauseous, devote today for rest.” In such cases, the messages 720 displayed to the user may provide targeted insights to help the user adjust their lifestyle during a portion of their pregnancy. For users whose body signals (e.g., body temperature, heart rate, HRV, and the like) may react to the phase of pregnancy, the system may display low activity goals around the start of pregnancy. In such cases, accurately detecting the indication of pregnancy may increase the accuracy and efficiency of the Readiness Score and Activity Scores.
  • body signals e.g., body temperature, heart rate, HRV, and the like
  • the prompt may disappear, and the user may input an indication of pregnancy via user input 725 at a later time.
  • the system may display via message 720 a prompt asking the user if the user is pregnant or suggests switching to an alternative mode (e.g., pregnancy mode, rest mode) or deactivating period mode. In such cases, the system may recommend the user switch from period mode to a pregnancy mode or rest mode based on detecting the indication of pregnancy.
  • the application page 705 may indicate one or more parameters of the detected pregnancy, including a temperature, heart rate, HRV, and the like experienced by the user via the graphical representation 715.
  • the graphical representation 715 may be an example of the timing diagram 400, as described with reference to FIG. 4.
  • the user may log symptoms via user input 725.
  • the system may receive user input (e.g., tags) to log symptoms associated with the pregnancy (e.g., nausea, fatigue, tiredness, headaches, migraine, pain, etc.).
  • the system may recommend tags to the user based on user history and the detected indication of pregnancy.
  • the system may cause the GUI 700 of the user device to display pregnancy symptom tags based detecting the indication of pregnancy.
  • the user’s logged symptoms in combination with the user’s physiological data (e.g., temperature pattern, HRV pattern, respiratory rate pattern, heart rate pattern, or a combination thereof) may be an indicator that may characterize an early detection of pregnancy.
  • the user’s logged symptoms may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy in light of the user’s physiological data.
  • the system may validate or detect the indication of pregnancy with greater accuracy and precision than if one of the temperature data deviates from the menstrual cycle baseline or the user logs pregnancy symptoms.
  • the system may identify a false positive for identifying the indication of the pregnancy based on the user input, one physiological measurement, a combination of physiological measurements, or a combination thereof. For example, if the system determines that the received temperature data is greater than the menstrual cycle baseline temperature for the user but the user input indicates a symptom associated with stress, illness, and the like, the system may determine that the detected indication of pregnancy is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, stress, hormonal shift in the menstrual cycle, and the like based on receiving the user input.
  • Application page 705 may also include message 720 that includes insights, recommendations, and the like associated with the detected indication of pregnancy.
  • the server of system may cause the GUI 700 of the user device to display a message 720 associated with the detected indication of pregnancy.
  • the user device may display recommendations and/or information associated with the pregnancy via message 720.
  • an accurately detected indication of pregnancy may be beneficial to a user’s overall health.
  • the user device and/or servers may generate alerts 710 associated with the pregnancy which may be displayed to the user via the GUI 700 (e.g., application page 705).
  • messages 720 generated and displayed to the user via the GUI 700 may be associated with one or more characteristics (e.g., timing) of the detected indication of pregnancy.
  • the message 720 may display a recommendation of how the user may adjust their lifestyle in the days following the detected indication of pregnancy and/or on the day of the detected indication of pregnancy.
  • the system may display via message 720 a prompt that suggests logging “fatigue” via user input 725 on the days after the user tags “fatigue.”
  • the system may recommend a time (e.g., calendar day) for the user to be active or estimate a restorative time following the detected indication of pregnancy.
  • the system may provide additional insight regarding the user’s detected indication of pregnancy.
  • the application pages 705 may indicate one or more physiological parameters (e.g., contributing factors) which resulted in the user’s detected indication of pregnancy, such as increased temperature, and the like.
  • the system may be configured to provide some information or other insights regarding the detected indication of pregnancy.
  • Personalized insights may indicate aspects of collected physiological data (e.g., contributing factors within the physiological data) which were used to generate the messages associated with the detected indication of pregnancy.
  • the system may be configured to receive user inputs 725 regarding detected indications of pregnancy in order to train classifiers (e.g., supervised learning for a machine learning classifier) and improve pregnancy detection techniques.
  • classifiers e.g., supervised learning for a machine learning classifier
  • the user may receive user input 725, such as an onset of symptoms, a confirmation of the detected indication of pregnancy, and the like. These user inputs 725 may then be input into the classifier to train the classifier. In other words, the user inputs 725 may be used to validate, or confirm, the detected indication of pregnancy.
  • user input 725 such as an onset of symptoms, a confirmation of the detected indication of pregnancy, and the like.
  • the GUI 700 may display a calendar view that may indicate a current date that the user is viewing application page 705, a date range including the day when the pregnancy is detected, a date range including the day when conception is estimated, a date range including the day when the due date is estimated, or a combination thereof.
  • the date range may encircle the calendar days using a dashed line configuration
  • the current date may encircle the calendar day
  • the detected day of pregnancy and/or estimated conception/due date may be encircled.
  • the calendar view may also include a message including the current calendar day and indication of the day of the user’s pregnancy (e.g., that the user is 8 weeks pregnant).
  • FIG. 8 shows a block diagram 800 of a device 805 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the device 805 may include an input module 810, an output module 815, and a wearable application 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).
  • the input module 810 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to illness detection techniques). Information may be passed on to other components of the device 805.
  • the input module 810 may utilize a single antenna or a set of multiple antennas.
  • the output module 815 may provide a means for transmitting signals generated by other components of the device 805.
  • the output module 815 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to illness detection techniques).
  • the output module 815 may be co-located with the input module 810 in a transceiver module.
  • the output module 815 may utilize a single antenna or a set of multiple antennas.
  • the wearable application 820 may include a data acquisition component 825, a temperature data component 830, a calculation component 835, a pregnancy component 840, a user interface component 845, or any combination thereof.
  • the wearable application 820, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the input module 810, the output module 815, or both.
  • the wearable application 820 may receive information from the input module 810, send information to the output module 815, or be integrated in combination with the input module 810, the output module 815, or both to receive information, transmit information, or perform various other operations as described herein.
  • the data acquisition component 825 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the temperature data component 830 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the calculation component 835 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the pregnancy component 840 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the user interface component 845 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • FIG. 9 shows a block diagram 900 of a wearable application 920 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the wearable application 920 may be an example of aspects of a wearable application or a wearable application 820, or both, as described herein.
  • the wearable application 920, or various components thereof, may be an example of means for performing various aspects of pregnancy detection from wearable-based physiological data as described herein.
  • the wearable application 920 may include a data acquisition component 925, a temperature data component 930, a calculation component 935, a pregnancy component 940, a user interface component 945, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses).
  • the data acquisition component 925 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the temperature data component 930 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the calculation component 935 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the pregnancy component 940 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the temperature data component 930 may be configured as or otherwise support a means for identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series. In some examples, the temperature data component 930 may be configured as or otherwise support a means for identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
  • the temperature data component 930 may be configured as or otherwise support a means for comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy. In some examples, the temperature data component 930 may be configured as or otherwise support a means for determining that the identified one or more local maximum of the second portion are greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy is based at least in part on the determination.
  • the physiological data further comprises heart rate data
  • the data acquisition component 925 may be configured as or otherwise support a means for determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
  • the physiological data further comprises heart rate variability data
  • the data acquisition component 925 may be configured as or otherwise support a means for determining that the received heart rate variability data is less than a non-pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate variability data is less than the non-pregnancy baseline heart rate variability for the user.
  • the physiological data further comprises respiratory rate data
  • the data acquisition component 925 may be configured as or otherwise support a means for determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
  • the temperature data component 930 may be configured as or otherwise support a means for identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
  • the pregnancy component 940 may be configured as or otherwise support a means for identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
  • the user interface component 945 may be configured as or otherwise support a means for receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
  • the temperature data component 930 may be configured as or otherwise support a means for determining each temperature value of the plurality of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
  • the calculation component 935 may be configured as or otherwise support a means for updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
  • the user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
  • the user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
  • the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
  • the calculation component 935 may be configured as or otherwise support a means for inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy is based at least in part on inputting the physiological data into the machine learning classifier.
  • the wearable device comprises a wearable ring device.
  • the wearable device collects the phy siological data from the user based on arterial blood flow.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of a device 805 as described herein.
  • the device 1005 may include an example of a user device 106, as described previously herein.
  • the device 1005 may include components for bi-directional communications including components for transmitting and receiving communications with a wearable device 104 and a server 110, such as a wearable application 1020, a communication module 1010, an antenna 1015, a user interface component 1025, a database (application data) 1030, a memory 1035, and a processor 1040.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1045).
  • the communication module 1010 may manage input and output signals for the device 1005 via the antenna 1015.
  • the communication module 1010 may include an example of the communication module 220-b of the user device 106 shown and described in FIG. 2.
  • the communication module 1010 may manage communications with the ring 104 and the server 110, as illustrated in FIG. 2.
  • the communication module 1010 may also manage peripherals not integrated into the device 1005.
  • the communication module 1010 may represent a physical connection or port to an external peripheral.
  • the communication module 1010 may utilize an operating system such as iOS®, ANDROID®, MS-DOS®, MS- WINDOWS®, OS/2®, UNIX®, LINUX®, or another known operating system.
  • the communication module 1010 may represent or interact with a wearable device (e.g., ring 104), modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the communication module 1010 may be implemented as part of the processor 1040. In some examples, a user may interact with the device 1005 via the communication module 1010, user interface component 1025, or via hardware components controlled by the communication module 1010.
  • a wearable device e.g., ring 104
  • modem e.g., a keyboard, a mouse, a touchscreen, or a similar device.
  • the communication module 1010 may be implemented as part of the processor 1040.
  • a user may interact with the device 1005 via the communication module 1010, user interface component 1025, or via hardware components controlled by the communication module 1010.
  • the device 1005 may include a single antenna 1015. Flowever, in some other cases, the device 1005 may have more than one antenna 1015, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the communication module 1010 may communicate bi-directionally, via the one or more antennas 1015, wired, or wireless links as described herein.
  • the communication module 1010 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the communication module 1010 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1015 for transmission, and to demodulate packets received from the one or more antennas 1015.
  • the user interface component 1025 may manage data storage and processing in a database 1030. In some cases, a user may interact with the user interface component 1025. In other cases, the user interface component 1025 may operate automatically without user interaction.
  • the database 1030 may be an example of a single database, a distributed database, multiple distributed databases, a data store, a data lake, or an emergency backup database.
  • the memory 1035 may include RAM and ROM.
  • the memory 1035 may store computer-readable, computer-executable software including instructions that, when executed, cause the processor 1040 to perform various functions described herein.
  • the memory 1035 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof).
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory 1035 to perform various functions (e.g., functions or tasks supporting a method and system for sleep staging algorithms).
  • the wearable application 1020 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the wearable application 1020 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the wearable application 1020 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the wearable application 1020 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the wearable application 1020 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the device 1005 may support techniques for improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability.
  • the wearable application 1020 may include an application (e.g., "app"), program, software, or other component which is configured to facilitate communications with a ring 104, server 110, other user devices 106, and the like.
  • the wearable application 1020 may include an application executable on a user device 106 which is configured to receive data (e.g., physiological data) from a ring 104, perform processing operations on the received data, transmit and receive data with the servers 110, and cause presentation of data to a user 102.
  • data e.g., physiological data
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a user device or its components as described herein.
  • the operations of the method 1100 may be performed by a user device as described with reference to FIGs. 1 through 10.
  • a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a data acquisition component 925 as described with reference to FIG. 9.
  • the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a temperature data component 930 as described with reference to FIG. 9.
  • the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a calculation component 935 as described with reference to FIG. 9.
  • the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
  • the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the operations of 1125 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1125 may be performed by a user interface component 945 as described with reference to FIG. 9.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a user device or its components as described herein.
  • the operations of the method 1200 may be performed by a user device as described with reference to FIGs. 1 through 10.
  • a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a data acquisition component 925 as described with reference to FIG. 9.
  • the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
  • the method may include identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a temperature data component 930 as described with reference to FIG. 9.
  • the method may include identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time senes, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
  • the operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a temperature data component 930 as described with reference to FIG. 9.
  • the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a calculation component 935 as described with reference to FIG. 9.
  • the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the operations of 1230 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1230 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
  • the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the operations of 1235 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1235 may be performed by a user interface component 945 as described with reference to FIG. 9.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a user device or its components as described herein.
  • the operations of the method 1300 may be performed by a user device as described with reference to FIGs. 1 through 10.
  • a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data.
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a data acquisition component 925 as described with reference to FIG. 9.
  • the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
  • the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a calculation component 935 as described with reference to FIG. 9.
  • the method may include identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
  • the operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1320 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
  • the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user.
  • the operations of 1325 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1325 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
  • the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the operations of 1330 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1330 may be performed by a user interface component 945 as described with reference to FIG. 9.
  • the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
  • the apparatus may include means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • a non-transitory computer-readable medium storing code is described.
  • the code may include instructions executable by a processor to receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series and identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series may be based at least in part on identifying the one or more local maximum of the first portion and the second portion.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy and determining that the identified one or more local maximum of the second portion may be greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy may be based at least in part on the determination.
  • the physiological data further comprises heart rate data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
  • the physiological data further comprises heart rate variability data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received heart rate variability data may be less than a non-pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received heart rate variability data may be less than the non-pregnancy baseline heart rate variability for the user.
  • the physiological data further comprises respiratory rate data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy may be based at least in part on identifying the cessation of cyclicity.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for determining each temperature value of the plurality of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
  • the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy may be based at least in part on inputting the physiological data into the machine learning classifier.
  • the wearable device comprises a wearable ring device.
  • the wearable device collects the physiological data from the user based on arterial blood flow.
  • a method comprising: receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data; determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data; identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series; detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user; and causing a graphical user interface of the user device to display the detected indication of the pregnancy.
  • Aspect 2 The method of aspect 1, further comprising: identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series; and identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
  • Aspect 3 The method of aspect 2, further comprising: comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy; and determining that the identified one or more local maximum of the second portion are greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy is based at least in part on the determination.
  • Aspect 4 The method of any of aspects 1 through 3, wherein the physiological data further comprises heart rate data, the method further comprising: determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
  • Aspect 5 The method of any of aspects 1 through 4, wherein the physiological data further comprises heart rate variability data, the method further comprising: determining that the received heart rate variability data is less than a non pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate variability data is less than the non-pregnancy baseline heart rate variability for the user.
  • Aspect 6 The method of any of aspects 1 through 5, wherein the physiological data further comprises respiratory rate data, the method further comprising: determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
  • Aspect 7 The method of any of aspects 1 through 6, further comprising: identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
  • Aspect 8 The method of any of aspects 1 through 7, further comprising: identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
  • Aspect 9 The method of any of aspects 1 through 8, further comprising: receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
  • Aspect 10 The method of any of aspects 1 through 9, further comprising: determining each temperature value of the plurality' of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
  • Aspect 11 The method of any of aspects 1 through 10, further comprising: updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
  • Aspect 12 The method of any of aspects 1 through 11, further comprising: causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
  • Aspect 13 The method of any of aspects 1 through 12, further comprising: causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
  • Aspect 14 The method of aspect 13, wherein the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
  • Aspect 15 The method of any of aspects 1 through 14, further comprising: inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy is based at least in part on inputting the physiological data into the machine learning classifier.
  • Aspect 16 The method of any of aspects 1 through 15, wherein the wearable device comprises a wearable ring device.
  • Aspect 17 The method of any of aspects 1 through 16, wherein the wearable device collects the physiological data from the user based on arterial blood flow.
  • Aspect 18 An apparatus composing a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 17.
  • Aspect 19 An apparatus compnsing at least one means for performing a method of any of aspects 1 through 17.
  • Aspect 20 A non-transitory computer-readable medium storing code the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 17.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic w e aves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C).
  • the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure.
  • the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on.”
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media can comprise RAM, ROM, electrically erasable programmable ROM (EEPROM), compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Description

PREGNANCY DETECTION FROM WEARABLE-BASED PHYSIOLOGICAL
DATA
CROSS REFERENCE
[0001] The present Application for Patent claims the benefit of U.S. Non- Provisional Patent Application No. 17/709,938 by Thigpen et al., entitled
“PREGNANCY DETECTION FROM WEARABLE-BASED PHYSIOLOGICAL DATA,” filed March 31, 2022, which claims the benefit of U.S. Provisional Patent Application No. 63/169,314 by Aschbacher et al, entitled “WOMEN’S HEALTH TRACKING,” filed April 1, 2021, each of which is assigned to the assignee hereof, and expressly incorporated by reference herein.
FIELD OF TECHNOLOGY
[0002] The following relates to wearable devices and data processing, including pregnancy detection from wearable-based physiological data.
BACKGROUND [0003] Some wearable devices may be configured to collect data from users associated with body temperature and heart rate. For example, some wearable devices may be configured to detect cycles associated with reproductive health. However, conventional cycle detection techniques implemented by wearable devices are deficient.
BRIEF DESCRIPTION OF THE DRAWINGS [0004] FIG. 1 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0005] FIG. 2 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0006] FIG. 3 illustrates an example of a system that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. [0007] FIG. 4 illustrates an example of a timing diagram that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0008] FIG. 5 illustrates examples of timing diagrams that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0009] FIG. 6 illustrates an example of a timing diagram that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. [0010] FIG. 7 illustrates an example of a graphical user interface (GUI) that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0011] FIG. 8 shows a block diagram of an apparatus that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0012] FIG. 9 shows a block diagram of a wearable application that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0013] FIG. 10 shows a diagram of a system including a device that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure.
[0014] FIGs. 11 through 13 show flowcharts illustrating methods that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. DETAILED DESCRIPTION
[0015] Some wearable devices may be configured to collect physiological data from users, including temperature data, heart rate data, and the like. Acquired phy siological data may be used to analyze the user’s movement and other activities, such as sleeping patterns. Many users have a desire for more insight regarding their physical health, including their sleeping patterns, activity, and overall physical well-being. In particular, many users may have a desire for more insight regarding women’s health, including their menstrual cycle, ovulation, fertility patterns, and pregnancy. However, typical cycle tracking or women’s health devices and applications lack the ability to provide robust prediction, detection, and insight for several reasons.
[0016] First, typical cycle prediction applications require users to manually take their temperature with a device at a discrete time each day. This single temperature data point may not provide sufficient context to accurately capture or predict the true temperature vanations indicative of woman’s health cycle patterns, and may be difficult to accurately capture given the sensitivity of the measuring device to user movement or exertion. Second, even for devices that are wearable or that take a user’s temperature more frequently throughout the day, typical devices and applications lack the ability to collect other physiological, behavioral, or contextual inputs from the user that can be combined with the measured temperature to more comprehensively understand the complete set of physiological contributors to a women’s cycle.
[0017] Aspects of the present disclosure are directed to techniques for pregnancy detection. In particular, computing devices of the present disclosure may receive physiological data including temperature data from the wearable device associated with the user and determine a time series of temperature values taken over a plurality of days. For example, aspects of the present disclosure may identify one or more morphological features from a graphical representation of the time series of temperature values, such as temperature elevations of the time series of temperature values. As such, aspects of the present disclosure detect an indication of pregnancy in the time series based on identifying the morphological features (e.g., temperature elevations). In such cases, the detected indication of pregnancy may be associated with a temperature elevation in the time series and/or one or more additional morphological features in the time senes of temperature values relative to a temperature baseline of the user. The temperature baseline of the user may be based on a non-pregnancy temperature baseline of the user, a menstrual cycle-specific temperature baseline of the user, or both. In some cases, detecting an early pregnancy may be indicative of an indication of pregnancy that is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. For example, early pregnancy detection may be detectable before a user’s missed period, before confirmation using an at-home pregnancy test, or both.
[0018] In some implementations, the system may analyze historical temperature data from a user, detect the indication of pregnancy, and generate an indication to a user that indicates the user’s detected pregnancy. The user may confirm whether the pregnancy is confirmed as indicated by the system from the historical data, and the system may incorporate this user input into a predictive function (e.g., a machine learning model for detecting the indication of pregnancy). The system may also analyze temperature series data in real time and may detect the pregnancy in real time based on identifying one or more morphological features in the time senes of the temperature data and/or based on the user’s input from the pregnancy confirmations.
[0019] For the purposes of the present disclosure, the term “early pregnancy,”
“early pregnancy detection,” “pregnancy,” and the like may be used to refer to a time during which one or more offspring develops inside the womb. During pregnancy, the user may experience a series of changes in hormone production and the structures of the uterus of the female reproductive system throughout the pregnancy. Pregnancy begins with conception in which the sperm fertilize the egg and typically ends with childbirth around 40 weeks. An early pregnancy may refer to the detection of the pregnancy before hormone elevations relative to a hormone baseline of the user are detectable using conventional at-home pregnancy tests. For example, early pregnancy detection may occur prior to confirming the pregnancy with conventional methods that detect the hormone elevations such as an at-home pregnancy test, a blood test, an ultrasound, or a combination thereof. In some cases, the early pregnancy detection may occur prior to the user experiencing a missed period (e.g., menstrual cycle) which indicates hormone elevations relative to a hormone baseline of the user.
[0020] Some aspects of the present disclosure are directed to the detection of the indication of pregnancy before the user experiences symptoms and effects of the pregnancy. However, techniques described herein may also be used to detect the indication of pregnancy in cases where the user does not become symptomatic, or does not become aware of their symptoms. In some implementations, the computing devices may detect the indication of pregnancy using a temperature sensor. In such cases, the computing devices may detect the indication of pregnancy without the user tagging or labeling these events.
[0021] In conventional systems, pregnancy may be detected by an at-home pregnancy test, a blood test, an ultrasound, or a combination thereof after one or more hormones that indicate pregnancy (e.g., Human Chorionic Gonadotropin (HCG)) elevates relative to a hormone baseline of the user. In other cases, pregnancy may be detected based on symptoms experienced by the user (e.g., missed period, nausea, fatigue, tender breasts, etc.). In such cases, the pregnancy may be detected after the user’s hormone levels change (e.g., increase) and/or confirmed at an appointment with a clinician. Techniques described herein may continuously collect the physiological data from the user based on measurements taken from a wearable that continuously measures a user’s surface temperature and signals extracted from blood flow' such as arterial blood flow (e.g., via PPG). In some implementations, the computing devices may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per minute) throughout the night (or at certain phases of the night and/or during certain phases of a sleep cycle, as described in more detail below) may provide sufficient temperature data for analysis described herein.
[0022] In some cases, continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature. For example, continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day. As such, data collected by the computing devices may be used to detect when the user is pregnant.
[0023] Techniques described herein may notify a user of the detected indication of pregnancy in a variet of ways. For example, a system may cause a graphical user interface (GUI) of a user device to display a message or other notification to notify the user of the detected indication of pregnancy and make recommendations to the user. In one example, the GUI may display a time interval during which the pregnancy was detected and recommendations that the user prepare for different stages of the pregnancy. In some implementations, the system may make tag recommendations to a user. For example, the system may recommend mood and symptom tags (e.g., nausea, fatigue, etc.) to users at determined times in their pregnancy (e.g., in a personalized manner). The system may recommend the tags based on their prior history of temperature data, personalized cycling patterns, and/or their prior symptom history.
[0024] The system may also include graphics or text that indicate the data used to make the detection of the indication of pregnancy. For example, the GUI may display a notification that a pregnancy has been detected based on temperature deviations from a normal baseline of the user. In some cases, the GUI may display a notification that the pregnancy has been detected based on heart rate deviations from a normal baseline of the user, breath rate deviations from a normal baseline of the user, or both. Based on the early detection (e.g., before the user experiences symptoms), a user may take early steps that may help reduce the severity of upcoming symptoms associated with the pregnancy. Additionally, a user may modify/schedule their daily activities (e.g., work and leisure time) based on the early warnings of the pregnancy.
[0025] Aspects of the disclosure are initially described in the context of systems supporting physiological data collection from users via wearable devices. Additional aspects of the disclosure are described in the context of example timing diagrams and example GUIs. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to pregnancy detection from wearable-based physiological data.
[0026] FIG. 1 illustrates an example of a system 100 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The system 100 includes a plurality of electronic devices (e.g., wearable devices 104, user devices 106) that may be worn and/or operated by one or more users 102. The system 100 further includes anetwork 108 and one or more servers 110
[0027] The electronic devices may include any electronic devices known in the art, including wearable devices 104 (e.g., ring wearable devices, watch wearable devices, etc.), user devices 106 (e.g., smartphones, laptops, tablets). The electronic devices associated with the respective users 102 may include one or more of the following functionalities: 1) measuring physiological data, 2) storing the measured data, 3) processing the data, 4) providing outputs (e.g., via GUIs) to a user 102 based on the processed data, and 5) communicating data with one another and/or other computing devices. Different electronic devices may perform one or more of the functionalities.
[0028] Example wearable devices 104 may include wearable computing devices, such as a ring computing device (hereinafter ring") configured to be worn on a user’s 102 finger, a wrist computing device (e.g., a smart watch, fitness band, or bracelet) configured to be worn on a user’s 102 wrist, and/or a head mounted computing device (e.g., glasses/goggles). Wearable devices 104 may also include bands, straps (e.g., flexible or inflexible bands or straps), stick-on sensors, and the like, that may be positioned in other locations, such as bands around the head (e.g., a forehead headband), arm (e.g., a forearm band and/or bicep band), and/or leg (e.g., a thigh or calf band), behind the ear, under the armpit, and the like. Wearable devices 104 may also be attached to, or included in, articles of clothing. For example, wearable devices 104 may be included in pockets and/or pouches on clothing. As another example, wearable device 104 may be clipped and/or pinned to clothing, or may otherwise be maintained within the vicinity of the user 102. Example articles of clothing may include, but are not limited to, hats, shirts, gloves, pants, socks, outerwear (e.g., jackets), and undergarments. In some implementations, wearable devices 104 may be included with other types of devices such as training/sporting devices that are used during physical activity. For example, wearable devices 104 may be attached to, or included in, a bicycle, skis, a tennis racket, a golf club, and/or training weights.
[0029] Much of the present disclosure may be described in the context of a ring wearable device 104. Accordingly, the terms “ring 104,” “wearable device 104,” and like terms, may be used interchangeably, unless noted otherwise herein. However, the use of the term “ring 104” is not to be regarded as limiting, as it is contemplated herein that aspects of the present disclosure may be performed using other wearable devices (e.g., watch wearable devices, necklace wearable device, bracelet wearable devices, earring wearable devices, anklet wearable devices, and the like).
[0030] In some aspects, user devices 106 may include handheld mobile computing devices, such as smartphones and tablet computing devices. User devices 106 may also include personal computers, such as laptop and desktop computing devices. Other example user devices 106 may include server computing devices that may communicate with other electronic devices (e g., via the Internet). In some implementations, computing devices may include medical devices, such as external wearable computing devices (e.g., Holter monitors). Medical devices may also include implantable medical devices, such as pacemakers and cardioverter defibrillators. Other example user devices 106 may include home computing devices, such as internet of things (IoT) devices (e.g., IoT devices), smart televisions, smart speakers, smart displays (e.g., video call displays), hubs (e.g., wireless communication hubs), security systems, smart appliances (e.g., thermostats and refrigerators), and fitness equipment.
[0031] Some electronic devices (e.g., wearable devices 104, user devices 106) may measure physiological parameters of respective users 102, such as photoplethysmography waveforms, continuous skin temperature, a pulse waveform, respiration rate, heart rate, heart rate variability (HRV), actigraphy, galvanic skin response, pulse oximetry, and/or other physiological parameters. Some electronic devices that measure physiological parameters may also perform some/all of the calculations described herein. Some electronic devices may not measure physiological parameters, but may perform some/all of the calculations described herein. For example, a ring (e.g., wearable device 104), mobile device application, or a server computing device may process received physiological data that was measured by other devices.
[0032] In some implementations, a user 102 may operate, or may be associated with, multiple electronic devices, some of which may measure physiological parameters and some of which may process the measured physiological parameters. In some implementations, a user 102 may have a ring (e.g., wearable device 104) that measures physiological parameters. The user 102 may also have, or be associated with, a user device 106 (e.g., mobile device, smartphone), where the wearable device 104 and the user device 106 are communicatively coupled to one another. In some cases, the user device 106 may receive data from the wearable device 104 and perform some/all of the calculations described herein. In some implementations, the user device 106 may also measure physiological parameters described herein, such as motion/activity parameters.
[0033] For example, as illustrated in FIG. 1, a first user 102 -a (User 1) may operate, or may be associated with, a wearable device 104-a (e.g., ring 104-a) and a user device 106-a that may operate as described herein. In this example, the user device 106-a associated with user 102-a may process/store physiological parameters measured by the ring 104-a. Comparatively, a second user 102-b (User 2) may be associated with a ring 104-b, a watch wearable device 104-c (e.g., watch 104-c), and a user device 106-b, where the user device 106-b associated with user 102-b may process/store physiological parameters measured by the ring 104-b and/or the watch 104-c. Moreover, an nth user 102-n (UserN) may be associated with an arrangement of electronic devices described herein (e.g., ring 104-n, user device 106-n). In some aspects, wearable devices 104 (e.g., rings 104, watches 104) and other electronic devices may be communicatively coupled to the user devices 106 of the respective users 102 via Bluetooth, Wi-Fi, and other wireless protocols.
[0034] In some implementations, the rings 104 (e.g., wearable devices 104) of the system 100 may be configured to collect physiological data from the respective users 102 based on arterial blood flow within the user’s finger. In particular, a ring 104 may utilize one or more LEDs (e.g., red LEDs, green LEDs) that emit light on the palm-side of a user’s finger to collect physiological data based on arterial blood flow within the user’s finger. In some implementations, the ring 104 may acquire the physiological data using a combination of both green and red LEDs. The physiological data may include any physiological data known in the art including, but not limited to, temperature data, accelerometer data (e.g., movement/motion data), heart rate data, HRV data, blood oxygen level data, or any combination thereof.
[0035] The use of both green and red LEDs may provide several advantages over other solutions, as red and green LEDs have been found to have their own distinct advantages when acquiring physiological data under different conditions (e.g., light/dark, active/inactive) and via different parts of the body, and the like. For example, green LEDs have been found to exhibit better performance during exercise. Moreover, using multiple LEDs (e.g., green and red LEDs) distributed around the ring 104 has been found to exhibit superior performance as compared to wearable devices that utilize LEDs that are positioned close to one another, such as within a watch wearable device. Furthermore, the blood vessels in the finger (e.g., arteries, capillaries) are more accessible via LEDs as compared to blood vessels in the wrist. In particular, arteries in the wrist are positioned on the bottom of the wrist (e.g., palm-side of the wrist), meaning only capillaries are accessible on the top of the wrist (e.g., back of hand side of the wrist), where wearable watch devices and similar devices are typically worn. As such, utilizing LEDs and other sensors within a ring 104 has been found to exhibit superior performance as compared to wearable devices worn on the wrist, as the ring 104 may have greater access to arteries (as compared to capillaries), thereby resulting in stronger signals and more valuable physiological data.
[0036] The electronic devices of the system 100 (e.g., user devices 106, wearable devices 104) may be communicatively coupled to one or more servers 110 via wired or wireless communication protocols. For example, as shown in FIG. 1, the electronic devices (e g., user devices 106) may be communicatively coupled to one or more servers 110 via a network 108. The network 108 may implement transfer control protocol and internet protocol (TCP/IP), such as the Internet, or may implement other network 108 protocols. Network connections between the network 108 and the respective electronic devices may facilitate transport of data via email, web, text messages, mail, or any other appropriate form of interaction within a computer network 108. For example, in some implementations, the ring 104-a associated with the first user 102-a may be communicatively coupled to the user device 106-a, where the user device 106-a is communicatively coupled to the servers 110 via the network 108. In additional or alternative cases, wearable devices 104 (e.g., rings 104, watches 104) may be directly communicatively coupled to the network 108.
[0037] The system 100 may offer an on-demand database service between the user devices 106 and the one or more servers 110. In some cases, the servers 110 may receive data from the user devices 106 via the network 108, and may store and analyze the data. Similarly, the servers 110 may provide data to the user devices 106 via the network 108. In some cases, the servers 110 may be located at one or more data centers. The servers 110 may be used for data storage, management, and processing. In some implementations, the servers 110 may provide a web-based interface to the user device 106 via web browsers.
[0038] In some aspects, the system 100 may detect periods of time during which a user 102 is asleep, and classify periods of time during which the user 102 is asleep into one or more sleep stages (e.g., sleep stage classification). For example, as shown in FIG. 1, User 102-a may be associated with a wearable device 104-a (e.g., ring 104-a) and a user device 106-a. In this example, the ring 104-a may collect physiological data associated with the user 102-a, including temperature, heart rate, HRV, respiratory rate, and the like. In some aspects, data collected by the ring 104-a may be input to a machine learning classifier, where the machine learning classifier is configured to determine periods of time during which the user 102-a is (or was) asleep. Moreover, the machine learning classifier may be configured to classify periods of time into different sleep stages, including an awake sleep stage, a rapid eye movement (REM) sleep stage, a light sleep stage (non-REM (NREM)), and a deep sleep stage (NREM). In some aspects, the classified sleep stages may be displayed to the user 102-a via a GUI of the user device 106-a. Sleep stage classification may be used to provide feedback to a user 102-a regarding the user’s sleeping patterns, such as recommended bedtimes, recommended wake-up times, and the like. Moreover, in some implementations, sleep stage classification techniques described herein may be used to calculate scores for the respective user, such as Sleep Scores, Readiness Scores, and the like.
[0039] In some aspects, the system 100 may utilize circadian rhythm-derived features to further improve physiological data collection, data processing procedures, and other techniques described herein. The term circadian rhythm may refer to a natural, internal process that regulates an individual’s sleep-wake cycle, that repeats approximately every 24 hours. In this regard, techniques described herein may utilize circadian rhythm adjustment models to improve physiological data collection, analysis, and data processing. For example, a circadian rhythm adjustment model may be input into a machine learning classifier along with physiological data collected from the user 102-a via the wearable device 104-a. In this example, the circadian rhythm adjustment model may be configured to “weight,” or adjust, physiological data collected throughout a user’s natural, approximately 24-hour circadian rhythm. In some implementations, the system may initially start with a “baseline” circadian rhythm adjustment model, and may modify the baseline model using physiological data collected from each user 102 to generate tailored, individualized circadian rhythm adjustment models that are specific to each respective user 102.
[0040] In some aspects, the system 100 may utilize other biological rhythms to further improve physiological data collection, analysis, and processing by phase of these other rhythms. For example, if a weekly rhythm is detected within an individual’s baseline data, then the model may be configured to adjust “weights” of data by day of the week. Biological rhythms that may require adjustment to the model by this method include: 1) ultradian (faster than a day rhythms, including sleep cycles in a sleep state, and oscillations from less than an hour to several hours periodicity in the measured physiological variables during wake state; 2) circadian rhythms; 3) non-endogenous daily rhythms shown to be imposed on top of circadian rhythms, as in work schedules;
4) weekly rhythms, or other artificial time periodicities exogenously imposed (e.g. in a hypothetical culture with 12 day “weeks”, 12 day rhythms could be used); 5) multi-day ovarian rhythms in women and spermatogenesis rhythms in men; 6) lunar rhythms (relevant for individuals living with low or no artificial lights); and 7) seasonal rhythms.
[0041] The biological rhythms are not always stationary rhythms. For example, many women experience variability in ovarian cycle length across cycles, and ultradian rhythms are not expected to occur at exactly the same time or periodicity across days even within a user. As such, signal processing techniques sufficient to quantify the frequency composition while preserving temporal resolution of these rhythms in physiological data may be used to improve detection of these rhythms, to assign phase of each rhythm to each moment in time measured, and to thereby modify adjustment models and comparisons of time intervals. The biological rhythm-adjustment models and parameters can be added in linear or non-linear combinations as appropriate to more accurately capture the dynamic physiological baselines of an individual or group of individuals.
[0042] In some aspects, the respective devices of the system 100 may support techniques for pregnancy detection based on data collected by a wearable device 104. In particular, the system 100 illustrated in FIG. 1 may support techniques for detecting the indication of pregnancy of a user 102, and causing a user device 106 corresponding to the user 102 to display the indication of the detected pregnancy. For example, as shown in FIG. 1, User 1 (user 102 -a) may be associated with a wearable device 104-a (e.g., ring 104-a) and a user device 106-a. In this example, the ring 104-a may collect data associated with the user 102-a, including temperature, heart rate, respiratory rate, HRV, and the like. In some aspects, data collected by the ring 104-a may be used to detect an indication of pregnancy during which User 1 experiences pregnancy. Detecting the indication of pregnancy may be performed by any of the components of the system 100, including the ring 104-a, the user device 106-a associated with User 1, the one or more servers 110, or any combination thereof. Upon detecting the pregnancy, the system 100 may selectively cause the GUI of the user device 106-a to display the indication of pregnancy.
[0043] In some implementations, upon receiving physiological data (e.g., including temperature data), the system 100 may determine a time series of temperature values taken over a plurality of days. The system 100 may identify temperature elevations in the time series of the temperature values relative to a temperature baseline for the user. In such cases, the system 100 may detect the indication of pregnancy based on the identified temperature elevations. In some cases, the indication of the pregnancy is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The indication of pregnancy may be an example of detecting that the user is currently pregnant and/or has already become pregnant.
[0044] In some cases, the system 100 may prompt User 1 (e.g., via a GUI of the user device 106) to confirm whether the user 102-a experienced a confirmed pregnancy (e.g., blood test, at-home pregnancy test, ultrasound, etc.) or not, and may selectively adjust Readiness Scores for the user 102-a based on confirmation that the user is pregnant. In some implementations, the system 100 may generate alerts, messages, or recommendations for User 1 (e.g., via the ring 104-a, user device 106-a, or both) based on the detected indication of pregnancy, where the alerts may provide insights regarding the detected pregnancy, such as a timing and/or duration of the pregnancy. In some cases, the messages may provide insight regarding symptoms associated with the detected pregnancy, one or more medical conditions associated with the detected pregnancy, educational videos and/or text (e.g., content) associated with the detected pregnancy, or a combination thereof related to any phase of the pregnancy.
[0045] It should be appreciated by a person skilled in the art that one or more aspects of the disclosure may be implemented in a system 100 to additionally or alternatively solve other problems than those described above. Furthermore, aspects of the disclosure may provide technical improvements to “conventional” systems or processes as described herein. However, the description and appended drawings only include example technical improvements resulting from implementing aspects of the disclosure, and accordingly do not represent all of the technical improvements provided within the scope of the claims. [0046] FIG. 2 illustrates an example of a system 200 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The system 200 may implement, or be implemented by, system 100. In particular, system 200 illustrates an example of a ring 104 (e.g., wearable device 104), a user device 106, and a server 110, as described with reference to FIG. 1.
[0047] In some aspects, the ring 104 may be configured to be worn around a user's finger, and may determine one or more user physiological parameters when worn around the user’s finger. Example measurements and determinations may include, but are not limited to, user skin temperature, pulse waveforms, respiratory rate, heart rate, HRV, blood oxygen levels, and the like.
[0048] System 200 further includes a user device 106 (e.g., a smartphone) in communication with the ring 104. For example, the ring 104 may be in wireless and/or wired communication with the user device 106. In some implementations, the ring 104 may send measured and processed data (e.g., temperature data, photoplethysmogram (PPG) data, motion/accelerometer data, ring input data, and the like) to the user device 106. The user device 106 may also send data to the ring 104, such as ring 104 firmware/configuration updates. The user device 106 may process data. In some implementations, the user device 106 may transmit data to the server 110 for processing and/or storage.
[0049] The ring 104 may include a housing 205 that may include an inner housing 205-a and an outer housing 205-b. In some aspects, the housing 205 of the ring 104 may store or otherwise include various components of the ring including, but not limited to, device electronics, a power source (e.g., battery 210, and/or capacitor), one or more substrates (e.g., printable circuit boards) that interconnect the device electronics and/or power source, and the like. The device electronics may include device modules (e.g., hardware/software), such as: a processing module 230-a, a memory 215, a communication module 220-a, a power module 225, and the like. The device electronics may also include one or more sensors. Example sensors may include one or more temperature sensors 240, a PPG sensor assembly (e.g., PPG system 235), and one or more motion sensors 245. [0050] The sensors may include associated modules (not illustrated) configured to communicate with the respective components/modules of the ring 104, and generate signals associated with the respective sensors. In some aspects, each of the components/modules of the ring 104 may be communicatively coupled to one another via wired or wireless connections. Moreover, the ring 104 may include additional and/or alternative sensors or other components that are configured to collect physiological data from the user, including light sensors (e.g., LEDs), oximeters, and the like.
[0051] The ring 104 shown and described with reference to FIG. 2 is provided solely for illustrative purposes. As such, the ring 104 may include additional or alternative components as those illustrated in FIG. 2. Other rings 104 that provide functionality described herein may be fabricated. For example, rings 104 with few er components (e.g., sensors) may be fabricated. In a specific example, a ring 104 with a single temperature sensor 240 (or other sensor), a power source, and device electronics configured to read the single temperature sensor 240 (or other sensor) may be fabricated. In another specific example, a temperature sensor 240 (or other sensor) may be attached to a user’s finger (e.g., using a clamps, spring loaded clamps, etc.). In this case, the sensor may be wired to another computing device, such as a wrist worn computing device that reads the temperature sensor 240 (or other sensor). In other examples, a ring 104 that includes additional sensors and processing functionality may be fabricated.
[0052] The housing 205 may include one or more housing 205 components. The housing 205 may include an outer housing 205-b component (e.g., a shell) and an inner housing 205-a component (e.g., a molding). The housing 205 may include additional components (e.g., additional layers) not explicitly illustrated in FIG. 2. For example, in some implementations, the ring 104 may include one or more insulating layers that electrically insulate the device electronics and other conductive materials (e.g., electrical traces) from the outer housing 205-b (e.g., a metal outer housing 205-b). The housing 205 may provide structural support for the device electronics, battery 210, substrate(s), and other components. For example, the housing 205 may protect the device electronics, battery 210, and substrate(s) from mechanical forces, such as pressure and impacts. The housing 205 may also protect the device electronics, battery 210, and substrate(s) from water and/or other chemicals. [0053] The outer housing 205-b may be fabricated from one or more materials. In some implementations, the outer housing 205-b may include a metal, such as titanium, that may provide strength and abrasion resistance at a relatively light weight. The outer housing 205-b may also be fabricated from other materials, such polymers. In some implementations, the outer housing 205-b may be protective as well as decorative.
[0054] The inner housing 205-a may be configured to interface with the user’s finger. The inner housing 205-a may be formed from a polymer (e.g., a medical grade polymer) or other material. In some implementations, the inner housing 205-a may be transparent. For example, the inner housing 205-a may be transparent to light emitted by the PPG light emitting diodes (LEDs). In some implementations, the inner housing 205-a component may be molded onto the outer housing 205-b. For example, the inner housing 205-a may include a polymer that is molded (e.g., injection molded) to fit into an outer housing 205-b metallic shell.
[0055] The ring 104 may include one or more substrates (not illustrated). The device electronics and battery 210 may be included on the one or more substrates. For example, the device electronics and battery 210 may be mounted on one or more substrates. Example substrates may include one or more printed circuit boards (PCBs), such as flexible PCB (e.g., polyimide). In some implementations, the electronics/battery 210 may include surface mounted devices (e.g., surface-mount technology (SMT) devices) on a flexible PCB. In some implementations, the one or more substrates (e.g., one or more flexible PCBs) may include electrical traces that provide electrical communication between device electronics. The electrical traces may also connect the battery 210 to the device electronics.
[0056] The device electronics, battery 210, and substrates may be arranged in the ring 104 in a variet of ways. In some implementations, one substrate that includes device electronics may be mounted along the bottom of the ring 104 (e.g., the bottom half), such that the sensors (e.g., PPG system 235, temperature sensors 240, motion sensors 245, and other sensors) interface with the underside of the user’s finger. In these implementations, the battery 210 may be included along the top portion of the ring 104 (e.g., on another substrate). [0057] The various components/modules of the ring 104 represent functionality (e.g., circuits and other components) that may be included in the ring 104. Modules may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to the modules herein. For example, the modules may include analog circuits (e.g., amplification circuits, filtering circuits, analog/digital conversion circuits, and/or other signal conditioning circuits). The modules may also include digital circuits (e.g., combinational or sequential logic circuits, memory circuits etc.).
[0058] The memory 215 (memory module) of the ring 104 may include any volatile, non-volatile, magnetic, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other memory device. The memory 215 may store any of the data described herein. For example, the memory 215 may be configured to store data (e.g., motion data, temperature data, PPG data) collected by the respective sensors and PPG system 235. Furthermore, memory 215 may include instructions that, when executed by one or more processing circuits, cause the modules to perform various functions attributed to the modules herein. The device electronics of the ring 104 described herein are only example device electronics. As such, the types of electronic components used to implement the device electronics may vary based on design considerations.
[0059] The functions attributed to the modules of the ring 104 described herein may be embodied as one or more processors, hardware, firmware, software, or any combination thereof. Depiction of different features as modules is intended to highlight different functional aspects and does not necessarily imply that such modules must be realized by separate hardware/software components. Rather, functionality associated with one or more modules may be performed by separate hardware/software components or integrated within common hardware/software components.
[0060] The processing module 230-a of the ring 104 may include one or more processors (e.g., processing units), microcontrollers, digital signal processors, systems on a chip (SOCs), and/or other processing devices. The processing module 230-a communicates with the modules included in the ring 104. For example, the processing module 230-a may transmit/receive data to/from the modules and other components of the ring 104, such as the sensors. As described herein, the modules may be implemented by various circuit components. Accordingly, the modules may also be referred to as circuits (e.g., a communication circuit and power circuit).
[0061] The processing module 230-a may communicate with the memory 215. The memory 215 may include computer-readable instructions that, when executed by the processing module 230-a, cause the processing module 230-a to perform the various functions attributed to the processing module 230-a herein. In some implementations, the processing module 230-a (e.g., a microcontroller) may include additional features associated with other modules, such as communication functionality provided by the communication module 220-a (e.g., an integrated Bluetooth Low Energy transceiver) and/or additional onboard memory 215.
[0062] The communication module 220-a may include circuits that provide wireless and/or wired communication with the user device 106 (e.g., communication module 220-b of the user device 106). In some implementations, the communication modules 220-a, 220-b may include wireless communication circuits, such as Bluetooth circuits and/or Wi-Fi circuits. In some implementations, the communication modules 220-a, 220-b can include wired communication circuits, such as Universal Serial Bus (USB) communication circuits. Using the communication module 220-a, the ring 104 and the user device 106 may be configured to communicate with each other. The processing module 230-a of the nng may be configured to transmit/receive data to/from the user device 106 via the communication module 220-a. Example data may include, but is not limited to, motion data, temperature data, pulse waveforms, heart rate data, HRY data, PPG data, and status updates (e.g., charging status, battery charge level, and/or ring 104 configuration settings). The processing module 230-a of the ring may also be configured to receive updates (e.g., software/firmware updates) and data from the user device 106.
[0063] The ring 104 may include a battery 210 (e.g., a rechargeable battery 210).
An example battery 210 may include a Lithium-Ion or Lithium-Polymer type battery 210, although a variety of battery 210 options are possible. The battery 210 may be wirelessly charged. In some implementations, the ring 104 may include a power source other than the battery 210, such as a capacitor. The power source (e.g., battery 210 or capacitor) may have a curved geometry that matches the curve of the ring 104. In some aspects, a charger or other power source may include additional sensors that may be used to collect data in addition to, or which supplements, data collected by the ring 104 itself. Moreover, a charger or other power source for the ring 104 may function as a user device 106, in which case the charger or other power source for the ring 104 may be configured to receive data from the ring 104, store and/or process data received from the ring 104, and communicate data between the ring 104 and the servers 110.
[0064] In some aspects, the ring 104 includes a power module 225 that may control charging of the battery 210. For example, the power module 225 may interface with an external wireless charger that charges the battery 210 when interfaced with the ring 104. The charger may include a datum structure that mates with a ring 104 datum structure to create a specified orientation with the ring 104 during 104 charging. The power module 225 may also regulate voltage(s) of the device electronics, regulate power output to the device electronics, and monitor the state of charge of the battery 210. In some implementations, the battery 210 may include a protection circuit module (PCM) that protects the battery 210 from high current discharge, over voltage during 104 charging, and under voltage during 104 discharge. The power module 225 may also include electro-static discharge (ESD) protection.
[0065] The one or more temperature sensors 240 may be electrically coupled to the processing module 230-a. The temperature sensor 240 may be configured to generate a temperature signal (e.g., temperature data) that indicates a temperature read or sensed by the temperature sensor 240. The processing module 230-a may determine a temperature of the user in the location of the temperature sensor 240. For example, in the ring 104, temperature data generated by the temperature sensor 240 may indicate a temperature of a user at the user’s finger (e.g., skin temperature). In some implementations, the temperature sensor 240 may contact the user’s skin. In other implementations, a portion of the housing 205 (e.g., the inner housing 205-a) may form a barrier (e.g., a thin, thermally conductive barrier) between the temperature sensor 240 and the user’s skin. In some implementations, portions of the ring 104 configured to contact the user’s finger may have thermally conductive portions and thermally insulative portions. The thermally conductive portions may conduct heat from the user’s finger to the temperature sensors 240. The thermally insulative portions may insulate portions of the ring 104 (e.g., the temperature sensor 240) from ambient temperature. [0066] In some implementations, the temperature sensor 240 may generate a digital signal (e.g., temperature data) that the processing module 230-a may use to determine the temperature. As another example, in cases where the temperature sensor 240 includes a passive sensor, the processing module 230-a (or a temperature sensor 240 module) may measure a current/voltage generated by the temperature sensor 240 and determine the temperature based on the measured current/voltage. Example temperature sensors 240 may include a thermistor, such as a negative temperature coefficient (NTC) thermistor, or other types of sensors including resistors, transistors, diodes, and/or other electrical/electronic components.
[0067] The processing module 230-a may sample the user’s temperature over time. For example, the processing module 230-a may sample the user’s temperature according to a sampling rate. An example sampling rate may include one sample per second, although the processing module 230-a may be configured to sample the temperature signal at other sampling rates that are higher or lower than one sample per second. In some implementations, the processing module 230-a may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per second, one sample per minute, etc.) throughout the day may provide sufficient temperature data for analysis described herein.
[0068] The processing module 230-a may store the sampled temperature data in memory 215. In some implementations, the processing module 230-a may process the sampled temperature data. For example, the processing module 230-a may determine average temperature values over a period of time. In one example, the processing module 230-a may determine an average temperature value each minute by summing all temperature values collected over the minute and dividing by the number of samples over the minute. In a specific example where the temperature is sampled at one sample per second, the average temperature may be a sum of all sampled temperatures for one minute divided by sixty seconds. The memory 215 may store the average temperature values over time. In some implementations, the memory 215 may store average temperatures (e.g., one per minute) instead of sampled temperatures in order to conserve memory 215.
[0069] The sampling rate, which may be stored in memory 215, may be configurable. In some implementations, the sampling rate may be the same throughout the day and night. In other implementations, the sampling rate may be changed throughout the day/night. In some implementations, the ring 104 may filter/reject temperature readings, such as large spikes in temperature that are not indicative of physiological changes (e.g., a temperature spike from a hot shower). In some implementations, the ring 104 may filter/reject temperature readings that may not be reliable due to other factors, such as excessive motion during 104 exercise (e.g., as indicated by a motion sensor 245).
[0070] The ring 104 (e.g., communication module) may transmit the sampled and/or average temperature data to the user device 106 for storage and/or further processing. The user device 106 may transfer the sampled and/or average temperature data to the server 110 for storage and/or further processing.
[0071] Although the ring 104 is illustrated as including a single temperature sensor 240, the ring 104 may include multiple temperature sensors 240 in one or more locations, such as arranged along the inner housing 205-a near the user’s finger. In some implementations, the temperature sensors 240 may be stand-alone temperature sensors 240. Additionally, or alternatively, one or more temperature sensors 240 may be included with other components (e.g., packaged with other components), such as with the accelerometer and/or processor.
[0072] The processing module 230-a may acquire and process data from multiple temperature sensors 240 in a similar manner described with respect to a single temperature sensor 240. For example, the processing module 230 may individually sample, average, and store temperature data from each of the multiple temperature sensors 240. In other examples, the processing module 230-a may sample the sensors at different rates and average/store different values for the different sensors. In some implementations, the processing module 230-a may be configured to determine a single temperature based on the average of two or more temperatures determined by two or more temperature sensors 240 in different locations on the finger.
[0073] The temperature sensors 240 on the ring 104 may acquire distal temperatures at the user’s finger (e.g., any finger). For example, one or more temperature sensors 240 on the ring 104 may acquire a user’s temperature from the underside of a finger or at a different location on the finger. In some implementations, the ring 104 may continuously acquire distal temperature (e.g., at a sampling rate). Although distal temperature measured by a ring 104 at the finger is described herein, other devices may measure temperature at the same/different locations. In some cases, the distal temperature measured at a user’s finger may differ from the temperature measured at a user’s wrist or other external body location. Additionally, the distal temperature measured at a user’s finger (e.g., a “shell” temperature) may differ from the user’s core temperature. As such, the ring 104 may provide a useful temperature signal that may not be acquired at other intemal/extemal locations of the body. In some cases, continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature. For example, continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body.
[0074] The ring 104 may include a PPG system 235. The PPG system 235 may include one or more optical transmitters that transmit light. The PPG system 235 may also include one or more optical receivers that receive light transmitted by the one or more optical transmitters. An optical receiver may generate a signal (hereinafter “PPG” signal) that indicates an amount of light received by the optical receiver. The optical transmitters may illuminate a region of the user’s finger. The PPG signal generated by the PPG system 235 may indicate the perfusion of blood in the illuminated region. For example, the PPG signal may indicate blood volume changes in the illuminated region caused by a user’s pulse pressure. The processing module 230-a may sample the PPG signal and determine a user’s pulse waveform based on the PPG signal. The processing module 230-a may determine a variety of physiological parameters based on the user’s pulse waveform, such as a user’s respiratory rate, heart rate, HRV, oxygen saturation, and other circulatory parameters.
[0075] In some implementations, the PPG system 235 may be configured as a reflective PPG system 235 in which the optical receiver(s) receive transmitted light that is reflected through the region of the user’s finger. In some implementations, the PPG system 235 may be configured as a transmissive PPG system 235 in which the optical transmiher(s) and optical receiver(s) are arranged opposite to one another, such that light is transmitted directly through a portion of the user's finger to the optical receiver(s).
[0076] The number and ratio of transmitters and receivers included in the PPG system 235 may vary. Example optical transmitters may include light-emitting diodes (LEDs). The optical transmitters may transmit light in the infrared spectrum and/or other spectrums. Example optical receivers may include, but are not limited to, photosensors, phototransistors, and photodiodes. The optical receivers may be configured to generate PPG signals in response to the wavelengths received from the optical transmitters. The location of the transmitters and receivers may vary. Additionally, a single device may include reflective and/or transmissive PPG systems 235.
[0077] The PPG system 235 illustrated in FIG. 2 may include a reflective PPG system 235 in some implementations. In these implementations, the PPG system 235 may include a centrally located optical receiv er (e.g., at the bottom of the ring 104) and two optical transmitters located on each side of the optical receiver. In this implementation, the PPG system 235 (e.g., optical receiver) may generate the PPG signal based on light received from one or both of the optical transmitters. In other implementations, other placements, combinations, and/or configurations of one or more optical transmitters and/or optical receivers are contemplated.
[0078] The processing module 230-a may control one or both of the optical transmitters to transmit light while sampling the PPG signal generated by the optical receiver. In some implementations, the processing module 230-a may cause the optical transmitter with the stronger received signal to transmit light while sampling the PPG signal generated by the optical receiver. For example, the selected optical transmitter may continuously emit light while the PPG signal is sampled at a sampling rate (e.g., 250 Hz).
[0079] Sampling the PPG signal generated by the PPG system 235 may result in a pulse waveform that may be referred to as a “PPG.” The pulse waveform may indicate blood pressure vs time for multiple cardiac cycles. The pulse waveform may include peaks that indicate cardiac cycles. Additionally, the pulse waveform may include respiratory induced variations that may be used to determine respiration rate. The processing module 230-a may store the pulse waveform in memory 215 in some implementations. The processing module 230-a may process the pulse waveform as it is generated and/or from memory 215 to determine user physiological parameters described herein.
[0080] The processing module 230-a may determine the user’s heart rate based on the pulse waveform. For example, the processing module 230-a may determine heart rate (e.g., in beats per minute) based on the time between peaks in the pulse waveform. The time between peaks may be referred to as an interbeat interval (IBI). The processing module 230-a may store the determined heart rate values and IBI values in memory 215.
[0081] The processing module 230-a may determine HRV over time. For example, the processing module 230-a may determine HRV based on the variation in the IBls.
The processing module 230-a may store the HRV values over time in the memory 215. Moreover, the processing module 230-a may determine the user’s respiratory rate over time. For example, the processing module 230-a may determine respiratory rate based on frequency modulation, amplitude modulation, or baseline modulation of the user’s IBI values over a period of time. Respiratory rate may be calculated in breaths per minute or as another breathing rate (e.g., breaths per 30 seconds). The processing module 230-a may store user respiratory rate values over time in the memory 215.
[0082] The ring 104 may include one or more motion sensors 245, such as one or more accelerometers (e.g., 6-D accelerometers) and/or one or more gyroscopes (gyros). The motion sensors 245 may generate motion signals that indicate motion of the sensors. For example, the ring 104 may include one or more accelerometers that generate acceleration signals that indicate acceleration of the accelerometers. As another example, the ring 104 may include one or more gyro sensors that generate gyro signals that indicate angular motion (e.g., angular velocity) and/or changes in orientation. The motion sensors 245 may be included in one or more sensor packages. An example accelerometer/gyro sensor is a Bosch BM1160 inertial micro electro-mechanical system (MEMS) sensor that may measure angular rates and accelerations in three perpendicular axes [0083] The processing module 230-a may sample the motion signals at a sampling rate (e.g., 50Hz) and determine the motion of the ring 104 based on the sampled motion signals. For example, the processing module 230-a may sample acceleration signals to determine acceleration of the ring 104. As another example, the processing module 230-a may sample a gyro signal to determine angular motion. In some implementations, the processing module 230-a may store motion data in memory 215. Motion data may include sampled motion data as well as motion data that is calculated based on the sampled motion signals (e.g., acceleration and angular values).
[0084] The ring 104 may store a variety of data described herein. For example, the ring 104 may store temperature data, such as raw sampled temperature data and calculated temperature data (e.g., average temperatures). As another example, the ring 104 may store PPG signal data, such as pulse waveforms and data calculated based on the pulse waveforms (e.g., heart rate values, IBI values, HRV values, and respiratory rate values). The ring 104 may also store motion data, such as sampled motion data that indicates linear and angular motion.
[0085] The ring 104, or other computing device, may calculate and store additional values based on the sampled/calculated physiological data. For example, the processing module 230 may calculate and store various metrics, such as sleep metrics (e.g., a Sleep Score), activity metrics, and readiness metrics. In some implementations, additional values/metrics may be referred to as “derived values.” The ring 104, or other computing/wearable device, may calculate a variety of values/metrics with respect to motion. Example derived values for motion data may include, but are not limited to, motion count values, regularity values, intensity values, metabolic equivalence of task values (METs), and orientation values. Motion counts, regularity values, intensity values, and METs may indicate an amount of user motion (e.g., velocity/acceleration) over time. Orientation values may indicate how the ring 104 is oriented on the user’s finger and if the ring 104 is worn on the left hand or right hand.
[0086] In some implementations, motion counts and regularity values may be determined by counting a number of acceleration peaks within one or more periods of time (e.g., one or more 30 second to 1 minute periods). Intensity values may indicate a number of movements and the associated intensity (e.g., acceleration values) of the movements. The intensity values may be categorized as low, medium, and high, depending on associated threshold acceleration values. METs may be determined based on the intensity of movements during a period of time (e g., 30 seconds), the regularity/irregularity of the movements, and the number of movements associated with the different intensities.
[0087] In some implementations, the processing module 230-a may compress the data stored in memory 215. For example, the processing module 230-a may delete sampled data after making calculations based on the sampled data. As another example, the processing module 230-a may average data over longer periods of time in order to reduce the number of stored values. In a specific example, if average temperatures for a user over one minute are stored in memory 215, the processing module 230-a may calculate average temperatures over a five minute time period for storage, and then subsequently erase the one minute average temperature data. The processing module 230-a may compress data based on a variety of factors, such as the total amount of used/available memory 215 and/or an elapsed time since the ring 104 last transmitted the data to the user device 106.
[0088] Although a user’s physiological parameters may be measured by sensors included on a ring 104, other devices may measure a user’s physiological parameters. For example, although a user’s temperature may be measured by a temperature sensor 240 included in a ring 104, other devices may measure a user’s temperature. In some examples, other wearable devices (e.g., wrist devices) may include sensors that measure user physiological parameters. Additionally, medical devices, such as external medical devices (e g., wearable medical devices) and/or implantable medical devices, may measure a user’s physiological parameters. One or more sensors on any type of computing device may be used to implement the techniques described herein.
[0089] The physiological measurements may be taken continuously throughout the day and/or night. In some implementations, the physiological measurements may be taken during 104 portions of the day and/or portions of the night. In some implementations, the physiological measurements may be taken in response to determining that the user is in a specific state, such as an active state, resting state, and/or a sleeping state. For example, the ring 104 can make physiological measurements in a resting/sleep state in order to acquire cleaner physiological signals. In one example, the ring 104 or other device/system may detect when a user is resting and/or sleeping and acquire physiological parameters (e.g., temperature) for that detected state. The devices/sy stems may use the resting/sleep physiological data and/or other data when the user is in other states in order to implement the techniques of the present disclosure.
[0090] In some implementations, as described previously herein, the ring 104 may be configured to collect, store, and/or process data, and may transfer any of the data described herein to the user device 106 for storage and/or processing. In some aspects, the user device 106 includes a wearable application 250, an operating system (OS), a web browser application (e.g., web browser 280), one or more additional applications, and a GUI 275. The user device 106 may further include other modules and components, including sensors, audio devices, haptic feedback devices, and the like.
The wearable application 250 may include an example of an application (e.g., "app ) that may be installed on the user device 106. The wearable application 250 may be configured to acquire data from the ring 104, store the acquired data, and process the acquired data as described herein. For example, the wearable application 250 may include a user interface (UI) module 255, an acquisition module 260, a processing module 230-b, a communication module 220-b, and a storage module (e.g., database 265) configured to store application data.
[0091] The various data processing operations described herein may be performed by the ring 104, the user device 106, the servers 110, or any combination thereof. For example, in some cases, data collected by the ring 104 may be pre-processed and transmitted to the user device 106. In this example, the user device 106 may perform some data processing operations on the received data, may transmit the data to the servers 110 for data processing, or both. For instance, in some cases, the user device 106 may perform processing operations that require relatively low processing power and/or operations that require a relatively low latency, whereas the user device 106 may transmit the data to the servers 110 for processing operations that require relatively high processing power and/or operations that may allow relatively higher latency.
[0092] In some aspects, the ring 104, user device 106, and server 110 of the system 200 may be configured to evaluate sleep patterns for a user. In particular, the respective components of the system 200 may be used to collect data from a user via the ring 104, and generate one or more scores (e.g., Sleep Score, Readiness Score) for the user based on the collected data. For example, as noted previously herein, the ring 104 of the system 200 may be worn by a user to collect data from the user, including temperature, heart rate, HRV, and the like. Data collected by the ring 104 may be used to determine when the user is asleep in order to evaluate the user’s sleep for a given “sleep day.” In some aspects, scores may be calculated for the user for each respective sleep day, such that a first sleep day is associated with a first set of scores, and a second sleep day is associated with a second set of scores. Scores may be calculated for each respective sleep day based on data collected by the ring 104 during the respective sleep day. Scores may include, but are not limited to, Sleep Scores, Readiness Scores, and the like.
[0093] In some cases, “sleep days” may align with the traditional calendar days, such that a given sleep day runs from midnight to midnight of the respective calendar day. In other cases, sleep days may be offset relative to calendar days. For example, sleep days may run from 6:00 pm (18:00) of a calendar day until 6:00 pm (18:00) of the subsequent calendar day. In this example, 6:00 pm may serve as a “cut-off time,” where data collected from the user before 6:00 pm is counted for the current sleep day, and data collected from the user after 6:00 pm is counted for the subsequent sleep day. Due to the fact that most individuals sleep the most at night, offsetting sleep days relative to calendar days may enable the system 200 to evaluate sleep patterns for users in such a manner that is consistent with their sleep schedules. In some cases, users may be able to selectively adjust (e.g., via the GUI) a timing of sleep days relative to calendar days so that the sleep days are aligned with the duration of time in which the respective users typically sleep.
[0094] In some implementations, each overall score for a user for each respective day (e g., Sleep Score, Readiness Score) may be determined/calculated based on one or more “contributors,” “factors,” or “contributing factors.” For example, a user’s overall Sleep Score may be calculated based on a set of contributors, including: total sleep, efficiency, restfulness, REM sleep, deep sleep, latency, timing, or any combination thereof. The Sleep Score may include any quantity of contributors. The “total sleep” contributor may refer to the sum of all sleep periods of the sleep day. The “efficiency” contributor may reflect the percentage of time spent asleep compared to time spent awake while in bed, and may be calculated using the efficiency average of long sleep periods (e.g., pnmary sleep period) of the sleep day, weighted by a duration of each sleep period. The “restfulness” contributor may indicate how restful the user’s sleep is, and may be calculated using the average of all sleep periods of the sleep day, weighted by a duration of each period. The restfulness contributor may be based on a “wake up count” (e.g., sum of all the wake-ups (when user wakes up) detected during different sleep periods), excessive movement, and a “got up count” (e.g., sum of all the got-ups (when user gets out of bed) detected during the different sleep periods).
[0095] The “REM sleep” contributor may refer to a sum total of REM sleep durations across all sleep periods of the sleep day including REM sleep. Similarly, the “deep sleep” contributor may refer to a sum total of deep sleep durations across all sleep periods of the sleep day including deep sleep. The “latency” contributor may signify how long (e.g., average, median, longest) the user takes to go to sleep, and may be calculated using the average of long sleep periods throughout the sleep day, weighted by a duration of each period and the number of such periods (e.g., consolidation of a given sleep stage or sleep stages may be its own contributor or weight other contributors). Lastly, the “timing” contributor may refer to a relative timing of sleep periods within the sleep day and/or calendar day, and may be calculated using the average of all sleep periods of the sleep day, weighted by a duration of each period.
[0096] By way of another example, a user’s overall Readiness Score may be calculated based on a set of contnbutors, including: sleep, sleep balance, heart rate,
HRV balance, recovery index, temperature, activity, activity balance, or any combination thereof. The Readiness Score may include any quantity of contributors.
The “sleep” contributor may refer to the combined Sleep Score of all sleep periods within the sleep day. The “sleep balance” contributor may refer to a cumulative duration of all sleep periods within the sleep day. In particular, sleep balance may indicate to a user whether the sleep that the user has been getting over some duration of time (e.g., the past two weeks) is in balance with the user’s needs. Typically, adults need 7-9 hours of sleep a night to stay healthy, alert, and to perform at their best both mentally and physically. However, it is normal to have an occasional night of bad sleep, so the sleep balance contributor takes into account long-term sleep patterns to determine whether each user’s sleep needs are being met. The “resting heart rate” contributor may indicate a lowest heart rate from the longest sleep period of the sleep day (e.g., primary sleep period) and/or the lowest heart rate from naps occurring after the primary sleep period. [0097] Continuing with reference to the “contributors” (e.g., factors contributing factors) of the Readiness Score, the “HRV balance” contributor may indicate a highest HRV average from the pnmary sleep penod and the naps happening after the primary sleep period. The HRV balance contributor may help users keep track of their recovery status by comparing their HRV trend over a first time period (e.g., two weeks) to an average HRV over some second, longer time period (e.g., three months). The “recovery index” contributor may be calculated based on the longest sleep period. Recovery index measures how long it takes for a user’s resting heart rate to stabilize during the night. A sign of a very good recovery is that the user’s resting heart rate stabilizes during the first half of the night, at least six hours before the user wakes up, leaving the body time to recover for the next day. The “body temperature” contributor may be calculated based on the longest sleep period (e.g., pnmary sleep penod) or based on a nap happening after the longest sleep period if the user’s highest temperature during the nap is at least 0.5°C higher than the highest temperature during the longest period. In some aspects, the ring may measure a user’s body temperature while the user is asleep, and the system 200 may display the user’s average temperature relative to the user’s baseline temperature. If a user’s body temperature is outside of their normal range (e.g., clearly above or below 0.0), the body temperature contributor may be highlighted (e.g., go to a “Pay attention” state) or otherwise generate an alert for the user.
[0098] In some aspects, the system 200 may support techniques for pregnancy detection. In particular, the respective components of the system 200 may be used to detect the indication of pregnancy in a time series representing the user’s temperature over time. A pregnancy of the user may be predicted by leveraging temperature sensors on the ring 104 of the system 200. In some cases, the pregnancy may be detected by identifying one or more morphological features such as temperature elevations in the time series representing the user’s temperature over time and detecting the indication of the pregnancy that corresponds to the temperature elevations of the time series. The indication of early pregnancy may be an example of detecting that the user is currently pregnant and/or has already become pregnant before the user’s hormone changes (e.g., elevations) are detectable (e.g., via a conventional at-home pregnancy test).
[0099] For example, as noted previously herein, the ring 104 of the system 200 may be worn by a user to collect data from the user, including temperature, heart rate, respirator}· data, HRV data, and the like. The ring 104 of the system 200 may collect the physiological data from the user based on temperature sensors and measurements extracted from arterial blood flow (e.g., using PPG signals). The physiological data may be collected continuously. In some implementations, the processing module 230-a may sample the user’s temperature continuously throughout the day and night. Sampling at a sufficient rate (e.g., one sample per minute) throughout the day and/or night may provide sufficient temperature data for analysis described herein. In some implementations, the ring 104 may continuously acquire temperature data (e.g., at a sampling rate). In some examples, even though temperature is collected continuously, the system 200 may leverage other information about the user that it has collected or otherwise derived (e.g., sleep stage, activity levels, illness onset, etc.) to select a representative temperature for a particular day that is an accurate representation of the underlying physiological phenomenon.
[0100] In contrast, systems that require a user to manually take their temperature each day and/or systems that measure temperature continuously but lack any other contextual information about the user may select inaccurate or inconsistent temperature values for their pregnancy detection, leading to inaccurate detections and decreased user experience. In contrast, data collected by the ring 104 may be used to accurately determine when the user is pregnant. Detected early pregnancies and related techniques are further shown and described with reference to FIG. 3.
[0101] FIG. 3 illustrates an example of a system 300 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The system 300 may implement, or be implemented by, system 100, system 200, or both. In particular, system 300 illustrates an example of a ring 104 (e.g., wearable device 104), a user device 106, and a server 110, as described with reference to FIG. 1.
[0102] The ring 305 may acquire temperature data 320, heart rate data 325, respirator}' rate data 330, and HRV data 335, among other forms of physiological data as described herein. In such cases, the ring 305 may transmit temperature data 320, heart rate data 325, respiratory rate data 330, and HRV data 335 to the user device 310. The temperature data 320 may include continuous nighttime temperature data, continuous daytime temperature data, or both. The respiratory rate data 330 may be an example of continuous nighttime breath rate data. In some cases, multiple devices may acquire physiological data. For example, a first computing device (e g., user device 310) and a second computing device (e.g., the ring 305) may acquire temperature data 320, heart rate data 325, respiratory rate data 330, HRV data 335, or a combination thereof.
[0103] For example, the ring 305 may acquire user physiological data, such as user temperature data 320, respiratory rate data 330, heart rate data 325, HRV data 335, galvanic skin response, blood oxygen saturation, actigraphy, and/or other user physiological data. For example, the ring 305 may acquire raw data and convert the raw data to features with daily granularity. In some implementations, different granularity input data may be used. The ring 305 may send the data to another computing device, such as a mobile device (e.g., user device 310) for further processing.
[0104] In some examples, data features for processing may include temperature detected during sleep by computing the maximal value of temperature over each half hour of sleep after cleaning and artifact removal, computing the second maximal value from that series of 30 min maximums, computing the delta from the prior day’s value, and, optionally, overlaying a smoothing over a 3-day period with weightings. In some implementations, the system 300 may alternatively use the temperature deviation without the smoothing window or combine this information with raw values for the temperature second max and mins after outlier removal or statistical quantiles (e.g., 1% and 99%). In some implementations, the system 300 may add additional features, such as heart rate and breath rate. In some implementations, a multivariate time series method, such as a shapelet classifier, may identify the shape of the pregnancy- associated increase in temperature and concomitant or phase-independently correlated changes in other signals.
[0105] The system 300 may input the user data and/or feature set (e.g., a last few months of data) into a processing pipeline. The pipeline may smooth the data (e.g., using a 7-day smoothing window or other window). Missing values may be imputed (e.g., using the forecaster Impute method from the python package sktime). The system may derive features from a multivariate matrix that may detect either the cessation of and/or absence of the cyclicity in combination with a change or elevation in sleeping skin temperature values relative to a within-user distribution of prior temperature values over a relevant baseline period. In some cases, the system 300 may detect that the minimum temperature levels (nadir or trough levels of the menstrual cycle) may not reach the threshold that indicates that a menstrual cycle is being initiated. The threshold may be defined based on within-user data (e.g., if a user previously exhibited cycles and they stopped) or between-user data (e.g., a statistical threshold of a distribution of temperature derived from users of a similar age and having similar signal characteristics). In some implementations, the system 300 may detect the decline in temperature from a within-user peak value as the start of a new menstrual cycle. The system may flag observations as possibly pregnant if a user exhibits a cessation of menstruation or the absence of periods after having previously documented sufficiently regular periods over several cycles, as described with reference to FIG. 5.
[0106] For example, the user device 310 may determine pregnancy tracking data (e.g., early pregnancy detection) based on the received data. In some cases, the system 300 may determine pregnancy tracking data based on temperature data 320, respiratory rate data 330, heart rate data 325, HRV data 335, galvanic skin response, blood oxygen saturation, activity, sleep architecture, or a combination thereof. In some cases, the system 300 may determine which features are useful identifiers for early pregnancy detection. Although the system may be implemented by a ring 305 and a user device 310, any combination of computing devices described herein may implement the features attributed to the system 300.
[0107] The user device 310-a may include a ring application 350. The ring application 350 may include at least modules 340 and application data 345. In some cases, the application data 345 may include historical temperature patterns for the user and other data. The other data may include temperature data 320, heart rate data 325, respiratoi rate data 330, HRV data 335, or a combination thereof.
[0108] The ring application 350 may present the detected indication of pregnancy to the user. The ring application 350 may include an application data processing module that may perform data processing. For example, the application data processing module may include modules 340 that provide functions attributed to the system 300. Example modules 340 may include a daily temperature determination module, a time series processing module, a temperature elevation module, and a pregnancy detection module. [0109] The daily temperature determination module may determine daily temperature values (e.g., by selecting a representative temperature value for that day from a series of temperature values that were collected continuously throughout the day and/or night). The time series processing module may process time series data to detect the indication of pregnancy. The temperature elevation module may identify temperature elevations relative to a temperature baseline for the user based on the processed time series data. The pregnancy detection module may detect the indication of pregnancy based on the processed time series data. In such cases, the system 300 may receive user physiological data (e.g., from a ring 305) and output daily classification of whether the user is pregnant. The ring application 350 may store application data 345, such as acquired temperature data, other physiological data, and pregnancy tracking data (e.g., event data).
[0110] In some cases, the system 300 may generate pregnancy tracking data based on user physiological data (e.g., temperature data 320 and/or motion data). The pregnancy tracking data may include the indication of pregnancy for the user, which may be determined based on acquired user temperature data (e.g., daily temperature data 320) over an analysis time period (e.g., a period of weeks/months). For example, the system 300 may receive physiological data associated with a user from a wearable device (e.g., ring 305). The physiological data may include at least temperature data 320, heart rate data 325, respiratory rate data 330, HRV data 335, or a combination thereof. For example, the system 300 acquires user physiological data over an analysis time period (e.g., a plurality of days). In such cases, the system 300 may acquire and process user physiological data over an analysis time period to generate one or more time series of user physiological data.
[0111] In some cases, the system 300 may acquire daily user temperature data 320 over an analysis time period. For example, the system 300 may calculate a single temperature value for each day. The system 300 may acquire a plurality of temperature values during the day and/or night and process the acquired temperature values to determine the single daily temperature value. In some implementations, the system 300 may determine a time series of a plurality of temperature values taken over a plurality of days based on the received temperature data 320. The system 300 may detect the indication of pregnancy in the time series of the temperature values based on the identified temperature elevations of the time series of the temperature values, as described with reference to FIG. 4.
[0112] The system 300 may cause a GUI of the user devices 310-a, 310-b to display the detected indication of pregnancy. In some cases, the system 300 may cause the GUI to display the time series. The system 300 may generate pregnancy tracking data output. For example, the system 300 may generate a tracking GUI that includes physiological data (e.g., at least temperature data 320), tagged events, and/or other GUI elements described herein with reference to FIG. 7. In such cases, the system 300 may render the detected indication of pregnancy in a pregnancy tracking GUI.
[0113] The system 300 may generate a message 365 for display on a GUI on a user device 310-a or 310-b that indicates the indication of pregnancy. For example, the system 300 (e g., user device 310-a or server 315) may transmit the message 365 that indicates the detected indication of pregnancy to the user device 310-b. In such cases, the user device 310-b may be associated with a clinician, a fertility specialist, a caretaker, a partner, or a combination thereof. The detection of a probable pregnancy may trigger a personalized message 365 to a user highlighting the pattern detected in the temperature data 320 and providing an educational link about pregnancy.
[0114] In some implementations, the ring application 350 may notify the user of detected indication of pregnancy and/or prompt the user to perform a variety of tasks in the activity GUI. The notifications and prompts may include text, graphics, and/or other user interface elements. The notifications and prompts may be included in the ring application 350 such as when there is a pregnancy that has just been detected, the ring application 350 may display notifications and prompts. The user device 310 may display notifications and prompts in a separate window on the home screen and/or overlaid onto other screens (e.g., at the very top of the home screen). In some cases, the user device 310 may display the notifications and prompts on a mobile device, a user’s watch device, or both.
[0115] In some implementations, the user device 310 may store historical user data. In some cases, the historical user data may include historical data 355. The historical data 355 may include historical temperature patterns of the user, historical heart rate patterns of the user, historical respiratory rate patterns of the user, historical HRV patterns of the user, historical menstrual cycle onset events (e.g., cycle length, cycle start date, etc.) of the user, or a combination thereof. The historical data 355 may be selected from the last few months. The historical data 355 may be used (e.g., by the user device 310 or server 315) to determine a threshold (e.g., non-pregnancy baseline) for the user, determine temperature values of the user, detect an early pregnancy of the user, or a combination thereof. Using the historical data 355 may allow the user device 310 and/or server 315 to personalize the GUI by taking into consideration user’s historical data 355.
[0116] The non-pregnancy baselines (e.g., temperature, heart rate, respiratory rate, HRV, and the like) may be tailored-specific to the user based on historical data 355 acquired by the system 300. For example, the non-pregnancy baselines for the user may be based on physiological data continuously collected by the system 300 prior to the user becoming pregnant. In such cases, the system 300 may determine the nonpregnancy baselines (e.g., temperature, heart rate, HRV, respiratory rate) for the user. In some cases, the non-pregnancy baselines may be relative to the user’s menstrual cycle. For example, the baselines for the user may be based on physiological data continuously collected by the system 300 prior to the user becoming pregnant and/or during the user’s menstrual cycle. In such cases, the system 300 may determine the baselines (e.g., temperature, heart rate, HRV, respiratory rate) for the user based on the values of physiological data determined during different portions of the user’s menstrual cycle.
[0117] In such cases, the user device 310 may transmit historical data 355 to the server 315. In some cases, the transmitted historical data 355 may be the same historical data stored in the ring application 350. In other examples, the historical data 355 may be different than the histoncal data stored in the ring application 350. The server 315 may receive the historical data 355. The server 315 may store the historical data 355 in server data 360.
[0118] In some implementations, the user device 310 and/or server 315 may also store other data which may be an example of user information. The user information may include, but is not limited to, user age, weight, height, and gender. In some implementations, the user information may be used as features for identifying ovulatory cycles and anovulatory cycles. The server data 360 may include the other data such as user information. [0119] In some implementations, the system 300 may include one or more user devices 310 for different users. For example, the system 300 may include user device 310-a for a primary user and user device 310-b for a second user 302 associated with the primary user (e.g., partner). The user devices 310 may measure physiological parameters of the different users, provide GUIs for the different users, and receive user input from the different users. In some implementations, the different user devices 310 may acquire physiological information and provide output related to a woman's health, such as menstrual cycles, ovarian cycles, illness, fertility, and/or pregnancy. In some implementations, the user device 310-b may acquire physiological information related to the second user 302, such as male illness and fertility.
[0120] In some implementations, the system 300 may provide GUIs that inform the second user 302 of relevant information. For example, the first user and the second user 302 may share their information with one another via one or more user devices 310, such as via a server device, mobile device, or other device. In some implementations, the second user 302 may share one or more of their accounts (e.g., usernames, login information, etc.) and/or associated data with one another (e.g., the first user). By sharing information between users, the system 300 may assist second users 302 in making health decisions related to pregnancy. In some implementations, the users may be prompted (e.g., in a GUI) to share specific information. For example, the user may use a GUI to opt into sharing her pregnancy information with the second user 302. In such cases, the user and the second user 302 may receive notifications related to the stage of pregnancy on their respective user devices 310. In other examples, a second user 302 may make their information (e.g., illness, fertility data, etc.) available to the user via a notification or other sharing arrangement. In such cases, the second user 302 may be an example of a clinician, a fertility specialist, a care-taker, a partner, or a combination thereof.
[0121] FIG. 4 illustrates an example of a timing diagram 400 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The timing diagram 400 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof. For example, in some implementations, the timing diagram 400 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2. [0122] As described in further detail herein, the system may be configured to detect the indication of pregnancy. In some cases, the user’s body temperature pattern throughout the day and night may be an indicator that may characterize pregnancy. For example, skin temperature during the day and night may identify the indication of pregnancy. As such, the timing diagram 400 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of days and/or months). In this regard, the vertical bars illustrated in the timing diagram 400 may be understood to refer to the “temperature values 405.” The solid vertical line illustrated in the timing diagram 400 may be understood to refer to the “confirmed pregnancy 410.” The user’s temperature values 405 may be relative to a baseline temperature.
[0123] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least temperature data. The system may determine a time series of a plurality of temperature values 405 taken over a plurality of days based on the received temperature data. The system may process original time series temperature data (e.g., temperature values 405) to detect the indication of pregnancy 415.
[0124] The temperature values 405 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, heart rate, HRV data, respirator)' rate data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day /sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements. In some cases, continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature. For example, continuous temperature measurement at the finger may capture minute-to- minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day. [0125] In some implementations, the system may detect the indication of pregnancy 415 by observing a user’s relative body temperature for many days and marking the rise in temperature, which may indicate pregnancy. Demarcating the phases of the menstrual cycle and detecting the indication of pregnancy 415 using individualized continuous physiology may provide for accurate pregnancy detections. In such cases, the system may detect the indication of pregnancy 415 based on identifying the temperature elevations in the temperature values 405. For example, the indication of pregnancy 415 may occur prior to and/or at the time of temperature elevations in the temperature values 405. In such cases, the indication of pregnancy 415 may include a duration of time (e.g., one or more days) that the pregnancy was likely to occur.
[0126] The system may determine each temperature value of the temperature values 405 in response to receiving the temperature data. The temperature data may include continuous nighttime temperature data. The temperature values 405 may be an example of nocturnal sleeping temperature values (e.g., one per day) acquired by a ring. The temperature values 405 may depict pregnancy as detected by temperature elevations in the temperature values relative to a non-pregnancy temperature baseline of the user. The non-pregnancy temperature baseline for the user may be representative of the temperature values 405 before the indication of pregnancy 415. For example, the temperature values 405 may increase from the non-pregnancy temperature baseline for the user, thereby indicating that the user is pregnant.
[0127] The temperature values 405 may be plotted over several months for a user who received a positive pregnancy test (e.g., confirmed pregnancy 410) at the time demarcated by the vertical line. The timing diagram 400, which may be included in the application described with reference to FIG. 7, may illustrate how temperature data may be used to detect pregnancy onset as much as 2 weeks prior to traditional at-home testing methods. For example, physiological data acquired from devices (e.g., a ring device) may detect a pregnancy weeks before a missed period (e.g., up to two weeks before the first missed period). In such case, the indication of pregnancy 415 may be detected before the confirmed pregnancy 410.
[0128] As described in further detail herein, the system may be configured to detect pregnancy before a hormonal test would confirm the pregnancy (e.g., prior to hormonal changes detectable by the user). In some cases, the user’s body temperature pattern throughout the night may be an indicator that may characterize pregnancy. For example, skin temperature during the night may detect the indication of pregnancy 415. As such, the timing diagram 400 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of days).
[0129] FIG. 5 illustrates examples of timing diagrams 500 that support pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The timing diagrams 500 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof. For example, in some implementations, the timing diagrams 500 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2.
[0130] As described in further detail herein, the system may be configured to detect an indication of pregnancy 510 based on deviations in temperature values, HRV values, respiratoiy rate values, heart rate values, or a combination thereof. In some cases, the user’s body temperature pattern, HRV pattern, respiratory rate pattern, heart rate pattern, or a combination thereof throughout the day and night may be an indicator that may characterize pregnancy. For example, skin temperature, HRV, respirator} rate, heart rate, or a combination thereof during the day and night may detect the indication of pregnancy 510.
[0131] As such, the timing diagram 500-a illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of months). In this regard, the solid curved line illustrated in the timing diagram 500 may be understood to refer to the “temperature values 505.” The user’s temperature values 505 may be relative to a baseline temperature. The dashed vertical line illustrated in the timing diagram 500 may be understood to refer to the “indication of pregnancy 510.” The short dashed vertical lines illustrated in the timing diagram 500 may be understood to refer to the “periods 515.”
[0132] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least temperature data. The system may determine a time series of a plurality of temperature values 505 taken over a plurality of days based on the received temperature data. With reference to timing diagram 500-a, the plurality of days may be an example of seven months. For example, the timing diagram 500-a may include at least two periods 515, an indication of pregnancy 510, and temperature values 505 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks). In such cases, the timing diagram 500-a may illustrate a user with two periods 515, the indication of pregnancy 510, followed by temperature values 505 through at least the first trimester.
[0133] The system may process original time series temperature data (e.g., temperature values 505) to detect the indication of pregnancy 510. In some cases, the time series may include a plurality of events tagged by the user in the system. For example, the time series may include periods 515 which may be tagged by the user. In some cases, periods 515 may be determined by the system based on physiological data continuously collected by the system. For example, the timing diagram 500-a may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application. The user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant. The user's temperature trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
[0134] The temperature values 505 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements. In some cases, continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature. For example, continuous temperature measurement at the finger may capture minute-to-minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day. [0135] In some implementations, the system may detect the indication of pregnancy 510 by observing a user’s relative body temperature for many days and marking the increase in temperature relative to a non-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received temperature data (e.g., temperature values 505) exceeds a non-pregnancy baseline temperature for the user for at least a portion of the plurality of days. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data exceeds the non-pregnancy baseline temperature for the user. For example, the system may identify that the user’s temperature is raised about 0.4 0 C above the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the temperature rise in the user’s previous luteal phase (e.g., before the next period 515 starts). In some examples, the system may identify the temperature values 505 after determining the time series, and identify the non-pregnancy baseline of temperature values.
[0136] In some examples, the system may identify and/or determine the menstrual cycle baseline for a physiological parameter. The menstrual cycle baseline may be an example of a trend indicating how a physiological parameter typically varies for the user throughout the user’s menstrual cycle based on the received physiological data. For example, the menstrual cycle baseline for a user’s temperature may include typical temperature values for each day or phase of a user’s menstrual cycle. The system may compare the received temperature data to a temperature expected for the day of the user’s menstrual cycle based on the menstrual cycle baseline. The system may determine that the received temperature data (e.g., temperature values 505) is greater than the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data is greater than the menstrual cycle baseline temperature for the user.
[0137] In some cases, the system may determine that the received temperature data (e.g., temperature values 505) has increased earlier in the cycle or at a faster rate than is typical based on the menstrual cycle baseline for the user. For example, the system may determine that the received temperature data (e.g., temperature values 505) is greater than atypical value for the user on this day or during this phase of the menstrual cycle based on the menstrual cycle baseline, which may indicate that the temperature rise is indicative of something other than the normal fluctuations experienced during the menstrual cycle (e.g., the user may be pregnant). In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received temperature data is increasing earlier than the menstrual cycle baseline temperature for the user.
[0138] The system may detect the pregnancy in the time series of the temperature values 505 based on one or more positive slopes of the time series of the temperature values 505. For example, the system may identify one or positive slopes of the time series of the plurality of temperature values 505 after determining the time series. The system may detect the pregnancy in the time series of temperature values 505 in response to identifying the one or more positive slopes of the time series. The indication of pregnancy 510 is associated with a positive slope in the time series of temperature values 505. For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
[0139] In some cases, the system may determine, or estimate, the temperature maximum and/or minimum for a user after determining the time series of the temperature values 505 for the user collected via the ring. The system may identify the one or more positive slopes of the time series of the plurality of temperature values 505 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positiv e slopes of the time series of the plurality of temperature values 505 may be in response to computing a deriv ative of the original time series temperature data (e g., temperature values 505).
[0140] In some implementations, the system may identify a cessation of cyclicity of the time series of the temperature values 505 in response to determining the time series. In such cases, the system may detect the pregnancy in response to identifying the cessation of cyclicity. For example, the system may determine that the temperature values 505 may deviate from the cyclicity of the time series of the temperature values during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the temperature values 505 continue to increase rather than decreasing after the user experiences a period 515. [0141] As described in further detail herein, the system may be configured to track menstrual cycles, ovulation, pregnancy, and the like. In some cases, the user’s body temperature pattern throughout the night may be an indicator that may characterize pregnancy. For example, skin temperature during the night may identify the indication of the pregnancy. As such, the timing diagram 500-a illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of months).
[0142] The timing diagram 500-b illustrates a relationship between a user’s HRV data and a time (e g., over a plurality of months). In this regard, the solid curved line illustrated in the timing diagram 500-b may be understood to refer to the “HRV values 520.” The user’s HRV values 520 may be relative to a baseline HRV. The dashed vertical line illustrated in the timing diagram 500-b may be understood to refer to the “indication of pregnancy 510.” The short dashed vertical lines illustrated in the timing diagram 500-b may be understood to refer to the “periods 515.”
[0143] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least HRV data. The system may determine a time series of a plurality of HRV values 520 taken over a plurality of days based on the received HRV data. With reference to timing diagram 500-b, the plurality of days may be an example of seven months. For example, the timing diagram 500-b may include at least two periods 515, the indication of pregnancy 510, and HRV values 520 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks). In such cases, the timing diagram 500-b may illustrate a user with two periods 515, the indication of pregnancy 510, followed by HRV values 520 throughout at least the first trimester.
[0144] The system may process original time series HRV data (e.g., HRV values 520) to detect the indication of pregnancy 510. In some cases, the time series may include a plurality of events tagged by the user in the system. For example, the time series may include periods 515 which may be tagged by the user. In some cases, periods 515 may be determined by the system based on physiological data continuously collected by the system. For example, the timing diagram 500-b may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application. The user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within fewer than 9 months after becoming pregnant, thereby indicating that the user is pregnant. The user's HRV trajectory around the time of the indication of pregnancy 510 may be generally lower than the peak around the times of the periods 515.
[0145] The HRV values 520 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., HRV data, sleep data, MET data, and the like) continuously in accordance with one or more measurement penodicities throughout the entirety of each day/sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
[0146] In some implementations, the system may detect the indication of pregnancy 510 by observing a user’s relative HRV for many days and marking the decrease in HRV relative to a non-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received HRV data (e.g., HRV values 520) is less than a non-pregnancy baseline HRV for the user for at least a portion of the plurality of days. In such cases, detecting the indication of the pregnancy may be in response to determining that the received HRV data is less than the non-pregnancy baseline HRV for the user. For example, the system may identify that the user’s HRV is decreased below the baseline (e.g., the non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the HRV decrease in the user’s previous luteal phase. In some examples, the system may identify' the HRV values 520 after determining the time series, and identify the non-pregnancy baseline of HRV values.
[0147] In some examples, the system may determine a menstrual cycle baseline for HRV. The menstrual cycle baseline for HRV may be an example of a HRV trend that indicates how the user’s HRV typically varies throughout the user’s menstrual cycle based on the received physiological data. The system may compare the received HRV data to a HRV expected for the day of the user’s menstrual cycle based on the menstrual cycle baseline. The system may determine that the received HRV data (e.g., HRV values 520) is less than the menstrual cycle baseline (or that the HRV is trending down more quickly) for the user for the identified day or phase of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received HRV data is less than the menstrual cycle baseline HRV for the user.
[0148] In some cases, the system may determine that the received HRV data (e.g., HRV values 520) decreases earlier than the menstrual cycle baseline for the user. For example, the system may determine that the HRV values 520 are trending lower at a faster rate than is typical based on the menstrual cycle baseline HRV for the user. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received HRV values 520 are decreasing earlier than the menstrual cycle baseline HRV for the user.
[0149] The system may detect the pregnancy in the time series of the HRV values 520 based on one or more negative slopes of the time series of the HRV values 520. For example, the system may identify one or negative slopes of the time series of the plurality of HRV values 520 after determining the time series. The system may detect the pregnancy in the time series of HRV values 520 in response to identifying the one or more negative slopes of the time series. The indication of pregnancy 510 is associated with a less negative slope in the time series of HRV values 520 as compared to a negative slope in the time series during the menstrual cycle (e.g., period 515). For example, the indication of pregnancy 510 may occur at the end of the negative slope. In such cases, the negative slope may indicate that pregnancy occurred.
[0150] In some cases, the system may determine, or estimate, the HRV maximum and/or minimum for a user after determining the time series of the HRV values 520 for the user collected via the ring. The system may identify the one or more negative slopes of the time series of the HRV values 520 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the negative slope. In other examples, identifying the one or more negative slopes of the time series of the HRV values 520 may be in response to computing a derivative of the original time series HRV data (e.g., HRV values 520).
[0151] In some implementations, the system may identify a cessation of cyclicity of the time series of the HRV values 520 in response to determining the time series. In such cases, the system may detect the pregnancy in response to identifying the cessation of cyclicity. For example, the system may determine that the HRV values 520 may deviate from the cyclicity of the time series of the HRV values 520 during the menstrual cycles (e.g., penods 515). In such cases, the system may determine that the HRV values 520 continue to decrease rather than increasing after the user experiences a period 515.
[0152] In some cases, the user’s HRV pattern throughout the night may be an indicator that may characterize pregnancy. For example, HRV during the night may identify the indication of the pregnancy 510. As such, the timing diagram 500-b illustrates a relationship between a user’s HRV data and a time (e.g., over a plurality of months).
[0153] In some cases, one or more physiological measurements may be combined to detect pregnancy (e.g., identify the indication of pregnancy 510). In such cases, identifying the indication of the pregnancy 510 may be based on one physiological measurement or a combination of physiological measurements. For example, the user’s HRV pattern in combination with the user’s temperature pattern may be an indicator that may characterize pregnancy. In some cases, the user’s HRV pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern. For example, if the system determines that the received heart rate variability data is less than a non-pregnancy baseline heart rate variability for the user and that the received temperature data is greater than anon-pregnancy baseline temperature for the user, the system may validate or detect the indication of pregnancy 510 with greater accuracy and precision than if one of the heart rate variability data or temperature data deviates from the non-pregnancy baseline.
[0154] In some examples, one or more physiological measurements may be combined to disprove or reduce the likelihood of a detected indication of pregnancy 510. In such cases, the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system determines that the received temperature data is greater than a non-pregnancy baseline temperature for the user but the received heart rate variability data still aligns with the non-pregnancy baseline heart rate variability for the user, the system may determine that the detected indication of pregnancy 510 is invalid or at least less likely than if both the temperate and heart rate variability deviated from their non-pregnancy baselines. In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like.
[0155] The timing diagram 500-c illustrates a relationship between a user’s respiratory rate data and a time (e.g., over a plurality of months). In this regard, the solid curved line illustrated in the timing diagram 500-c may be understood to refer to the “respiratory rate values 525.” The user’s respiratory rate values 525 may be relative to a baseline respiratory rate. The dashed vertical line illustrated in the timing diagram 500-c may be understood to refer to the “indication of pregnancy 510.” The short dashed vertical lines illustrated in the timing diagram 500-c may be understood to refer to the “periods 515.”
[0156] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least respiratory rate data. The system may determine a time series of a plurality of respiratory rate values 525 taken over a plurality of days based on the received respiratory rate data. With reference to timing diagram 500-c, the plurality of days may be an example of seven months. For example, the timing diagram 500-c may include at least two periods 515, the indication of pregnancy 510, and respiratory' rate values 525 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0-14 weeks). In such cases, the timing diagram 500-c may illustrate a user with two periods 515, the indication of pregnancy 510, followed by respiratory rate values 525 through at least the first trimester.
[0157] The system may process original time series respiratory rate data (e.g., respiratory' rate values 525) to detect the indication of pregnancy 510. In some cases, the time series may include a plurality of events tagged by the user in the system. For example, the time series may include periods 515 which may be tagged by the user. In some cases, periods 515 may be determined by the system based on physiological data continuously collected by the system. For example, the timing diagram 500-c may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application. The user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant. The user's respirator}· rate trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
[0158] The respiratory rate values 525 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., respiratory rate data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
[0159] In some implementations, the system may detect the indication of pregnancy 510 by observing a user’s relative respiratory rate for many days and marking the increase in respirator rate relative to anon-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received respiratory rate data (e.g., respiratory rate values 525) is greater than (e.g., exceeds) a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the non-pregnancy baseline respiratory rate for the user. For example, the system may identify that the user’s respiratory rate includes a 30% increase relative to the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the respiratory rate increase in the user’s previous luteal phase. In some examples, the system may identify the respiratory rate values 525 after determining the time series, and identify the non-pregnancy baseline of respirator}' rate values.
[0160] In some examples, the system may determine a menstrual cycle baseline for respirator}' rate. The menstrual cycle baseline may be an example of a respiratory rate trend that indicates how a user’s respiratory rate typically varies over the course of the user’s menstrual cycle based on the received physiological data. For example, the system may identify a day or phase of the user’s menstrual cycle and a corresponding baseline respiratory rate for that day or phase. The system may compare the received respirator}' rate data to a respiratory rate expected for the day of the user’s menstrual cycle (e.g., the menstrual cycle baseline). The system may determine that the received respiratoi rate data (e.g., respiratory rate values 525) is greater than the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate data is greater than the menstrual cycle baseline respirator}' rate for the user.
[0161] In some cases, the system may determine that the received respiratory rate data (e.g., respiratory rate values 525) increases earlier than is typical for user based on the menstrual cycle baseline respirator}' rate. For example, the system may determine that the respiratory rate values 525 have increased to higher values or at a quicker rate than would be expected based on the menstrual cycle baseline. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received respiratory rate values 525 are increasing earlier than the menstrual cycle baseline respiratory rate for the user.
[0162] The system may detect the pregnancy in the time series of the respirator}' rate values 525 based on one or more positive slopes of the time series of the respiratory rate values 525. For example, the system may identify one or positive slopes of the time series of the plurality of respiratory rate values 525 after determining the time series.
The system may detect the pregnancy in the time series of respiratory rate values 525 in response to identifying the one or more positive slopes of the time series. The indication of pregnancy 510 is associated with a maximum positive slope in the time series of respirator}' rate values 525 as compared to a positive slope in the time series of respirator}' rate values 525 during the menstrual cycles (e.g., periods 515). For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
[0163] In some cases, the system may determine, or estimate, the respiratory rate maximum and/or minimum for a user after determining the time series of the respiratory rate values 525 for the user collected via the ring. The system may identify the one or more positive slopes of the time series of the respiratory rate values 525 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positive slopes of the time series of the respirator}· rate values 525 may be in response to computing a derivative of the original time series respiratory rate data (e.g., respiratory rate values 525).
[0164] In some implementations, the system may identify a cessation of cyclicity of the time series of the respiratory rate values 525 in response to determining the time series. In such cases, the system may detect the pregnancy in response to identifying the cessation of cyclicity. For example, the system may determine that the respiratory rate values 525 may deviate from the cyclicity of the time series of respiratory rate values 525 during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the respiratory rate values 525 continue to increase rather than decreasing after the user experiences a period 515.
[0165] In some cases, the user’s respirator}' rate pattern throughout the night may be an indicator that may characterize pregnancy. For example, respiratory rate during the night may identify' the indication of the pregnancy. As such, the timing diagram 500-c illustrates a relationship between a user’s respiratory rate data and a time (e.g., over a plurality of months).
[0166] In some cases, the user’s respirator}' rate pattern in combination with the user’s temperature pattern (or any other physiological parameter as described herein) may be an indicator that may characterize early detection of pregnancy. In some cases, the user’s respiratory rate pattern in combination with the user’s temperature pattern and/or HRV pattern may be an indicator that may characterize pregnancy. In such cases, the user’s respiratory rate pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern, the user’s HRV pattern, or both. For example, if the system determines that the received respiratory rate data is greater than a menstrual cycle baseline respiratory rate for the user and that the received temperature data is greater than a menstrual cycle baseline temperature for the user, the system may validate or detect the indication of pregnancy 510 with greater accuracy and precision than if one of the respiratory rate data or temperature data deviates from the menstrual cycle baseline.
[0167] In some examples, the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system determines that the received temperature data is greater than the menstrual cycle baseline temperature for the user but the received respiratory rate data fails to deviate from the menstrual cycle baseline respiratory rate for the user, the system may determine that the detected indication of pregnancy 510 is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like based on determining that one physiological measurement or a combination of physiological measurements align with the menstrual cycle baseline.
[0168] The timing diagram 500-d illustrates a relationship between a user's heart rate data and a time (e.g., over a plurality of months). In this regard, the solid curved line illustrated in the timing diagram 500-d may be understood to refer to the “heart rate values 530.” The user’s heart rate values 530 may be relative to a baseline heart rate. The dashed vertical line illustrated in the timing diagram 500-d may be understood to refer to the “indication of pregnancy 510.” The short dashed vertical lines illustrated in the timing diagram 500-d may be understood to refer to the “periods 515.”
[0169] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least heart rate data. The system may determine a time series of a plurality of heart rate values 530 taken over a plurality of days based on the received heart rate data. With reference to timing diagram 500-d, the plurality of days may be an example of seven months. For example, the timing diagram 500-s may include at least two periods 515, the indication of pregnancy 510, and heart rate values 530 throughout the two periods 515 and at least the first trimester of pregnancy (e.g., 0- 14 weeks). In such cases, the timing diagram 500-d may illustrate a user with two periods 515, the indication of pregnancy 510, followed by heart rate values 530 throughout at least the first trimester.
[0170] The system may process original time series heart rate data (e.g., heart rate values 530) to detect the indication of pregnancy 510. In some cases, the time series may include a plurality of events tagged by the user in the system. For example, the time series may include periods 515 which may be tagged by the user. In some cases, periods 515 may be determined by the system based on physiological data continuously collected by the system. For example, the timing diagram 500-d may indicate a user who had several periods 515 that may have been identified automatically and/or by user tags in the application. The user became pregnant (e.g., indicated via indication of pregnancy 510) and then did not return to having periods within less than 9 months after becoming pregnant, thereby indicating that the user is pregnant. The user's heart rate trajectory around the time of the indication of pregnancy 510 may be generally higher than the peak around the times of the periods 515.
[0171] The heart rate values 530 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., heart rate data, sleep data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day/sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements.
[0172] In some implementations, the system may detect the indication of pregnancy 510 by observing a user’s relative heart rate for many days and marking the increase in heart rate relative to anon-pregnancy baseline, a menstrual cycle baseline, or both, which may indicate pregnancy. For example, the system may determine that the received heart rate data (e.g., heart rate values 530) is greater than (e.g., exceeds) a non pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days. In such cases, detecting the indication of the pregnancy 510 may be in response to determining that the received heart rate data is greater than the non-pregnancy baseline respiratory rate for the user. For example, the system may identify that the user’s heart rate is increased relative to the baseline (e.g., non-pregnancy baseline, a menstrual cycle baseline, or both) and sustained for much longer than the heart rate increase in the user’s previous luteal phase. In some examples, the system may identify the heart rate values 530 after determining the time series, and identify the non-pregnancy baseline of heart rate values.
[0173] In some examples, the system may determine the menstrual cycle baseline for heart rate. The menstrual cycle baseline hear rate may be an example of a heart rate trend that indicates how a user’s daily or average heart rate various throughout the user’s menstrual cycle based on the received physiological data. For example, the system may identify a day or phase of the user’s menstrual cycle and a corresponding heart rate value that is typical for that day or phase. The system may compare the received heart rate data to a heart rate expected for the day of the user’s menstrual cycle (e.g., the menstrual cycle baseline). The system may determine that the received heart rate data (e.g., heart rate values 530) is greater than (e.g., exceeds) the menstrual cycle baseline for the user for the identified day of the user’s menstrual cycle. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate data is greater than the menstrual cycle baseline heart rate for the user.
[0174] In some cases, the system may determine that the received heart rate data (e.g., heart rate values 530) increases earlier than would be expected or that is typical based on the menstrual cycle baseline heart rate. For example, the system may determine that the heart rate values 530 are greater than or are increasing earlier in the cycle than is typical. In such cases, the system may detect the indication of the pregnancy 510 in response to determining that the received heart rate values 530 are increasing earlier than the menstrual cycle baseline heart rate for the user.
[0175] The system may detect the pregnancy in the time series of the heart rate values 530 based on one or more positive slopes of the time series of the heart rate values 530. For example, the system may identify one or positive slopes of the time series of the plurality of heart rate values 530 after determining the time series. The system may detect the pregnancy in the time series of heart rate values 530 in response to identifying the one or more positive slopes of the time series. The indication of pregnancy 510 is associated with a positive slope in the time series of heart rate values 530. For example, the indication of pregnancy 510 may occur at the end of the positive slope. In such cases, the positive slope may indicate that pregnancy occurred.
[0176] In some cases, the system may determine, or estimate, the heart rate maximum and/or minimum for a user after determining the time series of the heart rate values 530 for the user collected via the ring. The system may identify the one or more positive slopes of the time series of the heart rate values 530 based on determining the maximum and/or minimum. In some cases, calculating the difference between the maximum and minimum may determine the positive slope. In other examples, identifying the one or more positive slopes of the time series of the heart rate values 530 may be in response to computing a derivative of the original time series heart rate data (e.g., heart rate values 530).
[0177] In some implementation, the system may identify a cessation of cyclicity of the time series of the heart rate values 530 in response to determining the time series. In such cases, the system may detect the pregnancy in response to identifying the cessation of cyclicity. For example, the system may determine that the heart rate values 530 may deviate from the cyclicity of the time series of heart rate values 530 during the menstrual cycles (e.g., periods 515). In such cases, the system may determine that the heart rate values 530 continue increase rather than decreasing after the user experiences a period 515.
[0178] In some cases, the user’s heart rate pattern throughout the day and/or night may be an indicator that characterizes pregnancy. For example, heart rate during the day and/or night may identify the indication of the pregnancy. As such, the timing diagram 500-d illustrates a relationship between a user’s heart rate data and a time (e.g., over a plurality of months).
[0179] In some cases, the user’s heart rate pattern in combination with the user’s temperature pattern (or any other physiological parameter described herein) may be an indicator that may characterize early detection of pregnancy. In some cases, the user’s heart rate pattern in combination with the user’s temperature pattern, HRV pattern, and/or respiratory rate pattern may be an indicator that may characterize pregnancy. In such cases, the user’s heart rate pattern may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy 510 in light of the user’s temperature pattern, the user’s HRV pattern, the user’s respiratory rate pattern, or a combination thereof. For example, if the system identifies a cessation of cyclicity of the time series of the heart rate values 530 and a cessation of cyclicity of the time series of temperature values 505, the system may validate or detect the indication of pregnancy 510 with greater accuracy and precision than if one of the heart rate data or temperature data deviates from the cyclicity of the time series.
[0180] In some examples, the system may identify a false positive for identifying the indication of the pregnancy 510 based on one physiological measurement or a combination of physiological measurements. For example, if the system identifies the cessation of cyclicity of the time series of temperature values 505 but the received heart rate data fails to deviate from the cyclicity of the time series of the heart rate values 530, the system may determine that the detected indication of pregnancy 510 is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, hormonal shift in the menstrual cycle, and the like based on determining that one physiological measurement or a combination of physiological measurements fail to deviate from the cyclicity of the time series.
[0181] In some implementations, the system may identify an absence of a menstrual cycle (e.g., period 515) based on determining the time series. In such cases, detecting the indication of the pregnancy occurs prior to identifying the absence of the period 515. For example, the system may detect the pregnancy (e.g. indication of pregnancy 510) within atime period after the period 515 based on determining the time series. In such cases, the indication of the pregnancy may be detected prior to identifying the lack of menstrual cycle (e.g., period 515) within the time period. For example, the system may detect the indication of the pregnancy 510 and then identify the lack of period (e.g., absence of) the period 515.
[0182] FIG. 6 illustrates an example of a timing diagram 600 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The timing diagram 600 may implement, or be implemented by, aspects of the system 100, system 200, system 300, or a combination thereof. For example, in some implementations, the timing diagram 600 may be displayed to a user via the GUI 275 of the user device 106, as shown in FIG. 2.
[0183] As described in further detail herein, the system may be configured to detect the indication of pregnancy. In some cases, the user’s body temperature pattern throughout the day and night may be an indicator that may characterize pregnancy. For example, skin temperature during the day and night may identify the indication of pregnancy. As such, the timing diagram 600 illustrates a relationship between a user’s temperature data and a time (e.g., over a plurality of weeks and/or months). In this regard, the solid line illustrated in the timing diagram 600 may be understood to refer to the “temperature values 605.” The dashed vertical line illustrated in the timing diagram 600 may be understood to refer to the “pregnancy onset 610.” The user’s temperature values 605 may be relative to a baseline temperature. [0184] In some cases, the system (e.g., ring 104, user device 106, server 110) may receive physiological data associated with a user from a wearable device. The physiological data may include at least temperature data. The system may determine a time series of a plurality of temperature values 605 taken over a plurality of days based on the received temperature data. The system may process original time series temperature data (e.g., temperature values 605) to detect the indication of pregnancy.
[0185] The temperature values 605 may be continuously collected by the wearable device. The physiological measurements may be taken continuously throughout the day and/or night. For example, in some implementations, the ring may be configured to acquire physiological data (e.g., temperature data, sleep data, heart rate, HRV data, respiratory rate data, MET data, and the like) continuously in accordance with one or more measurement periodicities throughout the entirety of each day /sleep day. In other words, the ring may continuously acquire physiological data from the user without regard to “trigger conditions” for performing such measurements. In some cases, continuous temperature measurement at the finger may capture temperature fluctuations (e.g., small or large fluctuations) that may not be evident in core temperature. For example, continuous temperature measurement at the finger may capture minute-to- minute or hour-to-hour temperature fluctuations that provide additional insight that may not be provided by other temperature measurements elsewhere in the body or if the user were manually taking their temperature once per day.
[0186] The timing diagram 600 may illustrate a temperature trajectory for a user whose pregnancy lased full term (e.g., 40 weeks). For example, the timing diagram 600 may illustrate that the temperature values 605 at the pregnancy onset 610 may be higher than the temperature values 605 prior to pregnancy onset 610. In some cases, the temperature values 605 at the pregnancy onset 610 may be higher than the temperature values 605 after pregnancy onset 610. In such cases, the temperature values 605 at the pregnancy onset may be representative of a local maximum 620.
[0187] The system may identify one or more local maximum 615 of a first portion of the time series of the temperature values 605 based on determining the time series. The first portion of the time series may occur prior to the pregnancy onset 610 and be indicative of a user’s menstrual cycle. For example, the first portion may correspond to one or more menstrual cycles for the user. The system may identify one or more local maximum 620 of a second portion following the first portion of the time series of the temperature values 605 based on determining the time series. The second portion may include a duration of time where the pregnancy onset 610 occurred. For example, the second portion may correspond to a time period corresponding to the pregnancy onset 610. In such cases, identifying the temperature elevations in the time series may be in response to identifying the one or more local maximum 615 of the first portion and the one or more local maximum 620 of the second portion.
[0188] The system may compare the identified one or more local maximum 615 of the first portion and the identified one or more local maximum 620 of the second portion. In some cases, the system may determine that the identified one or more local maximum 620 of the second portion are greater than the identified one or more local maximum 614 of the first portion based on the comparison. In such cases, the system may detect the indication of pregnancy in response to the determination. For example, the timing diagram 600 may illustrate that temperature level (e.g., temperature values 605) around pregnancy (e.g., at the one or more local maximum 620 of the second portion) is higher than the temperature peak (e.g., temperature values 605) in the prior menstrual cycle (e.g., at the one or more local maximum 615 of the first portion).
[0189] FIG. 7 illustrates an example of a GUI 700 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The GUI 700 may implement, or be implemented by, aspects of the system 100, system 200, system 300, timing diagram 400, timing diagram 500, timing diagram 600, or any combination thereof. For example, the GUI 700 may be an example of a GUI 275 of a user device 106 (e.g., user device 106-a, 106-b, 106-c) corresponding to a user 102.
[0190] In some examples, the GUI 700 illustrates a series of application pages 705 which may be displayed to a user via the GUI 700 (e.g., GUI 275 illustrated in FIG. 2). The server of the system may cause the GUI 700 of the user device (e.g., mobile device) to display inquiries of whether the user activates the period mode and wants to track their menstrual cycle (e.g., via application page 705). In such cases, the system may generate a personalized cycle tracking experience on the GUI 700 of the user device to detect the indication of the pregnancy based on the contextual tags and user questions. [0191] Continuing with the examples above, prior to detecting the indication of the pregnancy, the user may be presented with an application page upon opening the wearable application. The application page 705 may display a request to activate the period mode and enable the system to track the menstrual cycle (e.g., thereby enabling the detection of a pregnancy). In such cases, the application page 705 may display an invitation card where the users are invited to enroll in the menstrual cycle tracking applications. The application page 705 may display a prompt to the user to verify whether the menstrual cycle may be tracked or dismiss the message if the menstrual cycle is not tracked. The system may receive an indication of whether the user selects to opt-in to tracking the menstrual cycle or opt-out to tracking the menstrual cycle. For example, the application page 705 may display a prompt to the user to verify whether an early pregnancy may be detected or dismiss the message if an early pregnancy may not be detected. The system may receive an indication of whether the user selects to opt-in to detecting an early pregnancy or opt-out to detecting an early pregnancy.
[0192] The user may be presented with an application page 705 upon selecting “yes” to tracking the menstrual cycle and/or detecting an early pregnancy. The application page 705 may display a prompt to the user to verify the main reason to track the cycle (e.g., period, ovulation, pregnancy, etc.) and/or detect a pregnancy. In such cases, the application page 705 may prompt the user to confirm the intent of tracking the menstrual cycle and/or detecting a pregnancy. For example, the system may receive, via the user device, a confirmation of the intended use of the tracking system.
[0193] In some cases, the user may be presented with an application page 705 upon confirming the intent. The application page 705 may display a prompt to the user to verify the average cycle length (e.g., duration between a first day of a first menstrual cycle and a first day of a second menstrual cycle). In some cases, the application page 705 may display a prompt to the user to indicate whether the user experiences irregular cycles in which an average cycle length may not be determined. For example, the system may receive, via the user device, a confirmation of the average cycle length.
[0194] The user may be presented with an application page 705 upon inputting the average cycle length or irregular cycle. The application page 705 may display a prompt to the user to verify the last cycle start date (e.g., a first day of the most recent menstrual cycle). The application page 705 may display a prompt to the user to indicate whether the user may be unable to identify the last cycle start date. For example, the sy stem may receive, via the user device, a confirmation of the last cycle start date.
[0195] In some cases, the user may be presented with an application page 705 upon confirming the last cycle start date. The application page may display a prompt to the user to verify whether the user uses hormonal contraceptives. For example, the system may receive, via the user device, a confirmation of whether hormonal contraceptives are in use. Upon confirming that hormonal contraceptives are not in use, the user may be presented with a GUI 700 that may be further shown and described with reference to application page 705.
[0196] The server of system may cause the GUI 700 of the user device (e.g., mobile device) to display the indication of pregnancy (e.g., via application page 705). In such cases, the system may output the detected indication of pregnancy on the GUI 700 of the user device to indicate that the user is pregnant and/or experiencing a first day pregnancy.
[0197] Continuing with the example above, upon detecting the indication of pregnancy, the user may be presented with the application page 705 upon opening the wearable application. As shown in FIG. 7, the application page 705 may display an indication that the pregnancy was detected via message 720. In such cases, the application page 705 may include the message 720 on the home page. In cases where a user’s pregnancy may be identified, as described herein, the server may transmit a message 720 to the user, where the message 720 is associated with the detected indication of pregnancy for the user. In some cases, the server may transmit a message 720 to a clinician, a fertility specialist, a care-taker, a partner of the user, or a combination thereof. In such cases, the system may present application page 705 on the user device associated with the clinician, the fertility specialists, the care-taker, the partner, or a combination thereof.
[0198] For example, the user may receive message 720, which may include a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, and the like. For example, the message 720 may indicate a date of the detected indication of pregnancy, a date of likely conception (e.g., estimated conception date is April 28th), a range of dates of likely conception (e.g., estimated conception date April 27-29th), a range of dates of the predicted due date (e.g., estimated due date January 21 -29th), or a combination thereof. In such cases, the range may include the day of the estimated date and the day before and after the estimated date. The messages 720 may be configurable/customizable, such that the user may receive different messages 720 based on the detected indication of pregnancy, as described previously herein.
[0199] As shown in FIG. 7, the application page 705 may display the indication of pregnancy via alert 710. The user may receive alert 710, which may prompt the user to verily whether the detected indication of pregnancy has occurred or dismiss the alert 710 if the detected indication of pregnancy has not occurred. In such cases, the application page 705 may prompt the user to confirm or dismiss the pregnancy (e.g., confirm/deny whether the system correctly detected the indication of pregnancy). For example, the system may receive, via the user device, a confirmation of the detected indication of pregnancy. In some cases, the system may receive, via the user device and in response to detecting the indication of pregnancy, a confirmation of the pregnancy. In such cases, detecting the indication of the pregnancy occurs before confirming the pregnancy. Additionally, in some implementations, the application page 705 may display one or more scores (e.g., Sleep Score, Readiness Score, etc.) for the user for the respective day.
[0200] The application pages 705 may display a pregnancy card such as a “detected indication of pregnancy confirmation card” which indicates that the detected indication of pregnancy has been recorded. In some implementations, upon confirming that the detected indication of pregnancy is valid, the pregnancy may be recorded/logged in for the user for the respective calendar day. Moreover, in some cases, the pregnancy may be used to update (e.g., modify) one or more scores associated with the user (e.g., Sleep Score, Readiness Score, Activity Score, etc ). That is, data associated with the detected indication of pregnancy may be used to update the scores for the user for the following calendar day after which the detected indication of pregnancy was confirmed.
[0201] In some cases, the Readiness Score may be updated based on the detected indication of pregnancy. For example, an elevated body temperature relative to a temperature baseline for the user may cause the system to alert the user, via alert 710, about their body signals (e.g., elevated body temperature). In such cases, the Readiness Score may indicate to the user to ‘‘pay attention” based on elevated body temperatures.
If the Readiness Score changes for the user, the system may implement a recovery mode for users whose symptoms may be severe and may benefit from adjusted activity and readiness guidance for a couple of days. In other examples, the Readiness Score may be updated based on the Sleep Score and elevated body temperatures. However, the system may determine that the user is pregnant and may adjust (e.g., increase) the Readiness Score and/or Sleep Score to offset the effects of the pregnancy.
[0202] In some cases, the messages 720 displayed to the user via the GUI 700 of the user device may indicate how the detected indication of pregnancy affected the overall scores (e.g., overall Readiness Score, Sleep Score, Activity Score, etc.) and/or the individual contributing factors. For example, a message may indicate “It looks like your body is under strain right now, but if you’re feeling ok, doing a light or medium intensity exercise can help your body battle the symptoms” or “From your recovery metrics it looks like your body is still doing ok, so some light activity can help relieve the symptoms.”
[0203] In cases where the indication of pregnancy was detected, the messages 720 may provide suggestions for the user in order to improve their general health. For example, the message may indicate “If you feel really low on energy, why not switch to rest mode for today,” or “Since you are feeling fatigued and nauseous, devote today for rest.” In such cases, the messages 720 displayed to the user may provide targeted insights to help the user adjust their lifestyle during a portion of their pregnancy. For users whose body signals (e.g., body temperature, heart rate, HRV, and the like) may react to the phase of pregnancy, the system may display low activity goals around the start of pregnancy. In such cases, accurately detecting the indication of pregnancy may increase the accuracy and efficiency of the Readiness Score and Activity Scores.
[0204] In cases where the user dismisses the prompt (e.g., alert 710) on application page 705-a, the prompt may disappear, and the user may input an indication of pregnancy via user input 725 at a later time. In some cases, the system may display via message 720 a prompt asking the user if the user is pregnant or suggests switching to an alternative mode (e.g., pregnancy mode, rest mode) or deactivating period mode. In such cases, the system may recommend the user switch from period mode to a pregnancy mode or rest mode based on detecting the indication of pregnancy.
[0205] The application page 705 may indicate one or more parameters of the detected pregnancy, including a temperature, heart rate, HRV, and the like experienced by the user via the graphical representation 715. The graphical representation 715 may be an example of the timing diagram 400, as described with reference to FIG. 4.
[0206] In some cases, the user may log symptoms via user input 725. For example, the system may receive user input (e.g., tags) to log symptoms associated with the pregnancy (e.g., nausea, fatigue, tiredness, headaches, migraine, pain, etc.). The system may recommend tags to the user based on user history and the detected indication of pregnancy. In some cases, the system may cause the GUI 700 of the user device to display pregnancy symptom tags based detecting the indication of pregnancy.
[0207] In some cases, the user’s logged symptoms (e.g., tags) in combination with the user’s physiological data (e.g., temperature pattern, HRV pattern, respiratory rate pattern, heart rate pattern, or a combination thereof) may be an indicator that may characterize an early detection of pregnancy. In such cases, the user’s logged symptoms may confirm (e.g., provide a definitive indication of or better prediction of) the indication of the pregnancy in light of the user’s physiological data. For example, if the system determines that the received temperature data is greater than a menstrual cycle baseline temperature for the user and the system receives user input associated with the pregnancy (e.g., nausea, fatigue, tiredness, headaches, migraine, pain, etc.), the system may validate or detect the indication of pregnancy with greater accuracy and precision than if one of the temperature data deviates from the menstrual cycle baseline or the user logs pregnancy symptoms.
[0208] In some examples, the system may identify a false positive for identifying the indication of the pregnancy based on the user input, one physiological measurement, a combination of physiological measurements, or a combination thereof. For example, if the system determines that the received temperature data is greater than the menstrual cycle baseline temperature for the user but the user input indicates a symptom associated with stress, illness, and the like, the system may determine that the detected indication of pregnancy is invalid (e.g., a false positive). In such cases, the system may determine that the user may be experiencing an illness, stress, hormonal shift in the menstrual cycle, and the like based on receiving the user input.
[0209] Application page 705 may also include message 720 that includes insights, recommendations, and the like associated with the detected indication of pregnancy.
The server of system may cause the GUI 700 of the user device to display a message 720 associated with the detected indication of pregnancy. The user device may display recommendations and/or information associated with the pregnancy via message 720.
As noted previously herein, an accurately detected indication of pregnancy may be beneficial to a user’s overall health. In some implementations, the user device and/or servers may generate alerts 710 associated with the pregnancy which may be displayed to the user via the GUI 700 (e.g., application page 705). In particular, messages 720 generated and displayed to the user via the GUI 700 may be associated with one or more characteristics (e.g., timing) of the detected indication of pregnancy.
[0210] In some cases, the message 720 may display a recommendation of how the user may adjust their lifestyle in the days following the detected indication of pregnancy and/or on the day of the detected indication of pregnancy. In some examples, if the user tags “fatigue” on the day of the detected indication of pregnancy, the system may display via message 720 a prompt that suggests logging “fatigue” via user input 725 on the days after the user tags “fatigue.” In other examples, the system may recommend a time (e.g., calendar day) for the user to be active or estimate a restorative time following the detected indication of pregnancy.
[0211] In some implementations, the system may provide additional insight regarding the user’s detected indication of pregnancy. For example, the application pages 705 may indicate one or more physiological parameters (e.g., contributing factors) which resulted in the user’s detected indication of pregnancy, such as increased temperature, and the like. In other words, the system may be configured to provide some information or other insights regarding the detected indication of pregnancy. Personalized insights may indicate aspects of collected physiological data (e.g., contributing factors within the physiological data) which were used to generate the messages associated with the detected indication of pregnancy. [0212] In some implementations, the system may be configured to receive user inputs 725 regarding detected indications of pregnancy in order to train classifiers (e.g., supervised learning for a machine learning classifier) and improve pregnancy detection techniques. For example, the user may receive user input 725, such as an onset of symptoms, a confirmation of the detected indication of pregnancy, and the like. These user inputs 725 may then be input into the classifier to train the classifier. In other words, the user inputs 725 may be used to validate, or confirm, the detected indication of pregnancy.
[0213] Upon detecting the indication of pregnancy on application page 705, the GUI 700 may display a calendar view that may indicate a current date that the user is viewing application page 705, a date range including the day when the pregnancy is detected, a date range including the day when conception is estimated, a date range including the day when the due date is estimated, or a combination thereof. For example, the date range may encircle the calendar days using a dashed line configuration, the current date may encircle the calendar day, and the detected day of pregnancy and/or estimated conception/due date may be encircled. The calendar view may also include a message including the current calendar day and indication of the day of the user’s pregnancy (e.g., that the user is 8 weeks pregnant).
[0214] FIG. 8 shows a block diagram 800 of a device 805 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The device 805 may include an input module 810, an output module 815, and a wearable application 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).
[0215] The input module 810 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to illness detection techniques). Information may be passed on to other components of the device 805. The input module 810 may utilize a single antenna or a set of multiple antennas. [0216] The output module 815 may provide a means for transmitting signals generated by other components of the device 805. For example, the output module 815 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to illness detection techniques). In some examples, the output module 815 may be co-located with the input module 810 in a transceiver module. The output module 815 may utilize a single antenna or a set of multiple antennas.
[0217] For example, the wearable application 820 may include a data acquisition component 825, a temperature data component 830, a calculation component 835, a pregnancy component 840, a user interface component 845, or any combination thereof. In some examples, the wearable application 820, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the input module 810, the output module 815, or both. For example, the wearable application 820 may receive information from the input module 810, send information to the output module 815, or be integrated in combination with the input module 810, the output module 815, or both to receive information, transmit information, or perform various other operations as described herein.
[0218] The data acquisition component 825 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The temperature data component 830 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The calculation component 835 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The pregnancy component 840 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The user interface component 845 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0219] FIG. 9 shows a block diagram 900 of a wearable application 920 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The wearable application 920 may be an example of aspects of a wearable application or a wearable application 820, or both, as described herein. The wearable application 920, or various components thereof, may be an example of means for performing various aspects of pregnancy detection from wearable-based physiological data as described herein. For example, the wearable application 920 may include a data acquisition component 925, a temperature data component 930, a calculation component 935, a pregnancy component 940, a user interface component 945, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses).
[0220] The data acquisition component 925 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The temperature data component 930 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The calculation component 935 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The pregnancy component 940 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0221] In some examples, the temperature data component 930 may be configured as or otherwise support a means for identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series. In some examples, the temperature data component 930 may be configured as or otherwise support a means for identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
[0222] In some examples, the temperature data component 930 may be configured as or otherwise support a means for comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy. In some examples, the temperature data component 930 may be configured as or otherwise support a means for determining that the identified one or more local maximum of the second portion are greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy is based at least in part on the determination.
[0223] In some examples, the physiological data further comprises heart rate data, and the data acquisition component 925 may be configured as or otherwise support a means for determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
[0224] In some examples, the physiological data further comprises heart rate variability data, and the data acquisition component 925 may be configured as or otherwise support a means for determining that the received heart rate variability data is less than a non-pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate variability data is less than the non-pregnancy baseline heart rate variability for the user. [0225] In some examples, the physiological data further comprises respiratory rate data, and the data acquisition component 925 may be configured as or otherwise support a means for determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
[0226] In some examples, the temperature data component 930 may be configured as or otherwise support a means for identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
[0227] In some examples, the pregnancy component 940 may be configured as or otherwise support a means for identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
[0228] In some examples, the user interface component 945 may be configured as or otherwise support a means for receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
[0229] In some examples, the temperature data component 930 may be configured as or otherwise support a means for determining each temperature value of the plurality of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
[0230] In some examples, the calculation component 935 may be configured as or otherwise support a means for updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy. [0231] In some examples, the user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
[0232] In some examples, the user interface component 945 may be configured as or otherwise support a means for causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
[0233] In some examples, the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
[0234] In some examples, the calculation component 935 may be configured as or otherwise support a means for inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy is based at least in part on inputting the physiological data into the machine learning classifier.
[0235] In some examples, the wearable device comprises a wearable ring device.
[0236] In some examples, the wearable device collects the phy siological data from the user based on arterial blood flow.
[0237] FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of a device 805 as described herein. The device 1005 may include an example of a user device 106, as described previously herein. The device 1005 may include components for bi-directional communications including components for transmitting and receiving communications with a wearable device 104 and a server 110, such as a wearable application 1020, a communication module 1010, an antenna 1015, a user interface component 1025, a database (application data) 1030, a memory 1035, and a processor 1040. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1045).
[0238] The communication module 1010 may manage input and output signals for the device 1005 via the antenna 1015. The communication module 1010 may include an example of the communication module 220-b of the user device 106 shown and described in FIG. 2. In this regard, the communication module 1010 may manage communications with the ring 104 and the server 110, as illustrated in FIG. 2. The communication module 1010 may also manage peripherals not integrated into the device 1005. In some cases, the communication module 1010 may represent a physical connection or port to an external peripheral. In some cases, the communication module 1010 may utilize an operating system such as iOS®, ANDROID®, MS-DOS®, MS- WINDOWS®, OS/2®, UNIX®, LINUX®, or another known operating system. In other cases, the communication module 1010 may represent or interact with a wearable device (e.g., ring 104), modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the communication module 1010 may be implemented as part of the processor 1040. In some examples, a user may interact with the device 1005 via the communication module 1010, user interface component 1025, or via hardware components controlled by the communication module 1010.
[0239] In some cases, the device 1005 may include a single antenna 1015. Flowever, in some other cases, the device 1005 may have more than one antenna 1015, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The communication module 1010 may communicate bi-directionally, via the one or more antennas 1015, wired, or wireless links as described herein. For example, the communication module 1010 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The communication module 1010 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1015 for transmission, and to demodulate packets received from the one or more antennas 1015.
[0240] The user interface component 1025 may manage data storage and processing in a database 1030. In some cases, a user may interact with the user interface component 1025. In other cases, the user interface component 1025 may operate automatically without user interaction. The database 1030 may be an example of a single database, a distributed database, multiple distributed databases, a data store, a data lake, or an emergency backup database.
[0241] The memory 1035 may include RAM and ROM. The memory 1035 may store computer-readable, computer-executable software including instructions that, when executed, cause the processor 1040 to perform various functions described herein. In some cases, the memory 1035 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
[0242] The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof). In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory 1035 to perform various functions (e.g., functions or tasks supporting a method and system for sleep staging algorithms).
[0243] For example, the wearable application 1020 may be configured as or otherwise support a means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The wearable application 1020 may be configured as or otherwise support a means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The wearable application 1020 may be configured as or otherwise support a means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The wearable application 1020 may be configured as or otherwise support a means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The wearable application 1020 may be configured as or otherwise support a means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0244] By including or configuring the wearable application 1020 in accordance with examples as described herein, the device 1005 may support techniques for improved communication reliability, reduced latency, improved user experience related to reduced processing, reduced power consumption, more efficient utilization of communication resources, improved coordination between devices, longer battery life, improved utilization of processing capability.
[0245] The wearable application 1020 may include an application (e.g., "app"), program, software, or other component which is configured to facilitate communications with a ring 104, server 110, other user devices 106, and the like. For example, the wearable application 1020 may include an application executable on a user device 106 which is configured to receive data (e.g., physiological data) from a ring 104, perform processing operations on the received data, transmit and receive data with the servers 110, and cause presentation of data to a user 102.
[0246] FIG. 11 shows a flowchart illustrating a method 1100 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The operations of the method 1100 may be implemented by a user device or its components as described herein. For example, the operations of the method 1100 may be performed by a user device as described with reference to FIGs. 1 through 10. In some examples, a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
[0247] At 1105, the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a data acquisition component 925 as described with reference to FIG. 9. [0248] At 1110, the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a temperature data component 930 as described with reference to FIG. 9.
[0249] At 1115, the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a calculation component 935 as described with reference to FIG. 9.
[0250] At 1120, the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
[0251] At 1125, the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy. The operations of 1125 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1125 may be performed by a user interface component 945 as described with reference to FIG. 9.
[0252] FIG. 12 shows a flowchart illustrating a method 1200 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The operations of the method 1200 may be implemented by a user device or its components as described herein. For example, the operations of the method 1200 may be performed by a user device as described with reference to FIGs. 1 through 10. In some examples, a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
[0253] At 1205, the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a data acquisition component 925 as described with reference to FIG. 9.
[0254] At 1210, the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
[0255] At 1215, the method may include identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a temperature data component 930 as described with reference to FIG. 9.
[0256] At 1220, the method may include identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time senes, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion. The operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a temperature data component 930 as described with reference to FIG. 9.
[0257] At 1225, the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a calculation component 935 as described with reference to FIG. 9.
[0258] At 1230, the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The operations of 1230 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1230 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
[0259] At 1235, the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy. The operations of 1235 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1235 may be performed by a user interface component 945 as described with reference to FIG. 9.
[0260] FIG. 13 shows a flowchart illustrating a method 1300 that supports pregnancy detection from wearable-based physiological data in accordance with aspects of the present disclosure. The operations of the method 1300 may be implemented by a user device or its components as described herein. For example, the operations of the method 1300 may be performed by a user device as described with reference to FIGs. 1 through 10. In some examples, a user device may execute a set of instructions to control the functional elements of the user device to perform the described functions. Additionally, or alternatively, the user device may perform aspects of the described functions using special-purpose hardware.
[0261] At 1305, the method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data. The operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a data acquisition component 925 as described with reference to FIG. 9.
[0262] At 1310, the method may include determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data. The operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
[0263] At 1315, the method may include identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series. The operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a calculation component 935 as described with reference to FIG. 9.
[0264] At 1320, the method may include identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity. The operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1320 may be performed by a temperature data component 930 as descnbed with reference to FIG. 9.
[0265] At 1325, the method may include detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user. The operations of 1325 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1325 may be performed by a pregnancy component 940 as described with reference to FIG. 9.
[0266] At 1330, the method may include causing a graphical user interface of the user device to display the detected indication of the pregnancy. The operations of 1330 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1330 may be performed by a user interface component 945 as described with reference to FIG. 9.
[0267] It should be noted that the methods described above describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Furthermore, aspects from two or more of the methods may be combined.
[0268] A method is described. The method may include receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0269] An apparatus is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
[0270] Another apparatus is described. The apparatus may include means for receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, means for determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, means for identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, means for detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and means for causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0271] A non-transitory computer-readable medium storing code is described. The code may include instructions executable by a processor to receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data, determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data, identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series, detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user, and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
[0272] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series and identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series may be based at least in part on identifying the one or more local maximum of the first portion and the second portion.
[0273] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy and determining that the identified one or more local maximum of the second portion may be greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy may be based at least in part on the determination.
[0274] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the physiological data further comprises heart rate data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
[0275] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the physiological data further comprises heart rate variability data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received heart rate variability data may be less than a non-pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received heart rate variability data may be less than the non-pregnancy baseline heart rate variability for the user. [0276] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the physiological data further comprises respiratory rate data and the method, apparatuses, and non-transitory computer-readable medium may include further operations, features, means, or instructions for determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy may be based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
[0277] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy may be based at least in part on identifying the cessation of cyclicity.
[0278] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
[0279] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
[0280] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for determining each temperature value of the plurality of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
[0281] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
[0282] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
[0283] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
[0284] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
[0285] Some examples of the method, apparatuses, and non-transitory computer- readable medium described herein may further include operations, features, means, or instructions for inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy may be based at least in part on inputting the physiological data into the machine learning classifier.
[0286] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the wearable device comprises a wearable ring device.
[0287] In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the wearable device collects the physiological data from the user based on arterial blood flow.
[0288] The following provides an overview of aspects of the present disclosure: [0289] Aspect 1: A method comprising: receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data; determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data; identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series; detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user; and causing a graphical user interface of the user device to display the detected indication of the pregnancy.
[0290] Aspect 2: The method of aspect 1, further comprising: identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series; and identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
[0291] Aspect 3: The method of aspect 2, further comprising: comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy; and determining that the identified one or more local maximum of the second portion are greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy is based at least in part on the determination.
[0292] Aspect 4: The method of any of aspects 1 through 3, wherein the physiological data further comprises heart rate data, the method further comprising: determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
[0293] Aspect 5: The method of any of aspects 1 through 4, wherein the physiological data further comprises heart rate variability data, the method further comprising: determining that the received heart rate variability data is less than a non pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate variability data is less than the non-pregnancy baseline heart rate variability for the user.
[0294] Aspect 6: The method of any of aspects 1 through 5, wherein the physiological data further comprises respiratory rate data, the method further comprising: determining that the received respiratory rate data exceeds a non-pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
[0295] Aspect 7: The method of any of aspects 1 through 6, further comprising: identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time series, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
[0296] Aspect 8: The method of any of aspects 1 through 7, further comprising: identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
[0297] Aspect 9: The method of any of aspects 1 through 8, further comprising: receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
[0298] Aspect 10: The method of any of aspects 1 through 9, further comprising: determining each temperature value of the plurality' of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
[0299] Aspect 11: The method of any of aspects 1 through 10, further comprising: updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
[0300] Aspect 12: The method of any of aspects 1 through 11, further comprising: causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
[0301] Aspect 13: The method of any of aspects 1 through 12, further comprising: causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
[0302] Aspect 14: The method of aspect 13, wherein the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
[0303] Aspect 15: The method of any of aspects 1 through 14, further comprising: inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy is based at least in part on inputting the physiological data into the machine learning classifier.
[0304] Aspect 16: The method of any of aspects 1 through 15, wherein the wearable device comprises a wearable ring device.
[0305] Aspect 17: The method of any of aspects 1 through 16, wherein the wearable device collects the physiological data from the user based on arterial blood flow.
[0306] Aspect 18: An apparatus composing a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 17. [0307] Aspect 19: An apparatus compnsing at least one means for performing a method of any of aspects 1 through 17.
[0308] Aspect 20: A non-transitory computer-readable medium storing code the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 17.
[0309] The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration,” and not “preferred” or “advantageous over other examples.” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, w ell-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
[0310] In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
[0311] Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic weaves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0312] The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).
[0313] The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of’ or “one or more of’) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C). Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on.”
[0314] Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media can comprise RAM, ROM, electrically erasable programmable ROM (EEPROM), compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
[0315] The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims

CLAIMS What is claimed is:
1. A method comprising: receiving physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data; determining a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data; identifying temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series; detecting an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user; and causing a graphical user interface of the user device to display the detected indication of the pregnancy.
2. The method of claim 1, further comprising: identifying one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series; and identifying one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
3. The method of claim 2, further comprising: comparing the identified one or more local maximum of the first portion and the identified one or more local maximum of the second portion, wherein the first portion corresponds to a plurality of menstrual cycles for the user and the second portion corresponds to a time period corresponding to the pregnancy; and determining that the identified one or more local maximum of the second portion are greater than the identified one or more local maximum of the first portion based at least in part on the comparison, wherein detecting the pregnancy is based at least in part on the determination.
4. The method of claim 1, wherein the physiological data further comprises heart rate data, the method further comprising: determining that the received heart rate data exceeds a non-pregnancy baseline heart rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate data exceeds the non-pregnancy baseline heart rate for the user.
5. The method of claim 1, wherein the physiological data further comprises heart rate variability data, the method further comprising: determining that the received heart rate variability data is less than a non pregnancy baseline heart rate variability for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received heart rate variability data is less than the non-pregnancy baseline heart rate variability for the user.
6. The method of claim 1, wherein the physiological data further comprises respiratory rate data, the method further comprising: determining that the received respiratory rate data exceeds a non pregnancy baseline respiratory rate for the user for at least a portion of the plurality of days, wherein detecting the indication of the pregnancy is based at least in part on determining that the received respiratory rate data exceeds the non-pregnancy baseline respiratory rate for the user.
7. The method of claim 1, further comprising: identifying a cessation of cyclicity of the time series of the plurality of temperature values based at least in part on determining the time senes, wherein detecting the pregnancy is based at least in part on identifying the cessation of cyclicity.
8 The method of claim 1, further comprising: identifying an absence of a menstrual cycle based at least in part on determining the time series, wherein detecting the indication of the pregnancy occurs prior to identifying the absence of the menstrual cycle.
9. The method of claim 1, further comprising: receiving, via the user device and in response to detecting the indication of the pregnancy, a confirmation of a pregnancy, wherein detecting the indication of the pregnancy occurs prior to a confirmation of the pregnancy.
10. The method of claim 1, further comprising: determining each temperature value of the plurality of temperature values based at least in part on receiving the temperature data, wherein the temperature data comprises continuous nighttime temperature data.
11. The method of claim 1, further comprising: updating a readiness score associated with the user, an activity score associated with the user, a sleep score associated with the user, or a combination thereof based at least in part on detecting the indication of the pregnancy.
12. The method of claim 1, further comprising: causing a graphical user interface of a user device associated with the user to display pregnancy symptom tags based at least in part on detecting the indication of the pregnancy.
13. The method of claim 1, further comprising: causing a graphical user interface of a user device associated with the user to display a message associated with the detected indication of the pregnancy.
14. The method of claim 13, wherein the message further comprises a time interval during which the pregnancy detection occurred, a request to input symptoms associated with the detected pregnancy, educational content associated with the detected pregnancy, an adjusted set of activity targets, or a combination thereof.
15. The method of claim 1, further comprising: inputting the physiological data into a machine learning classifier, wherein detecting the indication of the pregnancy is based at least in part on inputting the physiological data into the machine learning classifier.
16. The method of claim 1, wherein the wearable device comprises a wearable ring device.
17. The method of claim 1, wherein the wearable device collects the physiological data from the user based on arterial blood flow.
18. An apparatus, comprising: a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to: receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data; determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data; identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series; detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user; and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
19. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to: identify one or more local maximum of a first portion of the time series of the plurality of temperature values based at least in part on determining the time series; and identify one or more local maximum of a second portion following the first portion of the time series of the plurality of temperature values based at least in part on determining the time series, wherein identifying the temperature elevations in the time series is based at least in part on identifying the one or more local maximum of the first portion and the second portion.
20. A non-transitory computer-readable medium storing code, the code comprising instructions executable by a processor to: receive physiological data associated with a user from a wearable device, the physiological data comprising at least temperature data; determine a time series of a plurality of temperature values taken over a plurality of days based at least in part on the received temperature data; identify temperature elevations in the time series of the plurality of temperature values relative to a temperature baseline for the user based at least in part on determining the time series; detect an indication of a pregnancy of the user based at least in part on the identified temperature elevations, wherein the indication of the pregnancy of the user is detectable from the identified temperature elevations prior to being detectable from a threshold increase in hormone elevations relative to a hormone baseline of the user; and cause a graphical user interface of the user device to display the detected indication of the pregnancy.
PCT/US2022/022891 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data WO2022212744A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22720818.8A EP4312724A2 (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data
AU2022246658A AU2022246658A1 (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data
JP2023560359A JP2024514496A (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data
CA3215867A CA3215867A1 (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163169314P 2021-04-01 2021-04-01
US63/169,314 2021-04-01
US17/709,938 US20220313146A1 (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data
US17/709,938 2022-03-31

Publications (1)

Publication Number Publication Date
WO2022212744A2 true WO2022212744A2 (en) 2022-10-06

Family

ID=81579742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/022891 WO2022212744A2 (en) 2021-04-01 2022-03-31 Pregnancy detection from wearable-based physiological data

Country Status (1)

Country Link
WO (1) WO2022212744A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116172552A (en) * 2023-03-03 2023-05-30 上海睿触科技有限公司 Noninvasive glucometer and blood glucose detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116172552A (en) * 2023-03-03 2023-05-30 上海睿触科技有限公司 Noninvasive glucometer and blood glucose detection method
CN116172552B (en) * 2023-03-03 2024-03-22 上海睿触科技有限公司 Noninvasive glucometer and blood glucose detection method

Similar Documents

Publication Publication Date Title
US20220313146A1 (en) Pregnancy detection from wearable-based physiological data
WO2022212744A2 (en) Pregnancy detection from wearable-based physiological data
US20220287622A1 (en) Menstrual cycle tracking
WO2023034124A1 (en) Techniques for predicting menstrual cycle onset
AU2022234363A1 (en) Menstrual cycle tracking
US20230061823A1 (en) Techniques for predicting menstrual cycle onset
US20240071624A1 (en) Techniques for identifying polycystic ovary syndrome and endometriosis from wearable-based physiological data
US20240032836A1 (en) Prenatal, perinatal, or postnatal mental or emotional distress identification and prediction
US20230084205A1 (en) Techniques for menopause and hot flash detection and treatment
WO2022212750A1 (en) Labor onset and birth identification and prediction from wearable-based physiological data
WO2022212739A1 (en) Anovulatory cycle detection from wearable-based physiological data
WO2022212755A1 (en) Miscarriage identification and prediction from wearable-based physiological data
WO2022212741A1 (en) Fertility prediction from wearable-based physiological data
WO2022212758A1 (en) Pregnancy-related complication identification and prediction from wearable-based physiological data
WO2024036072A1 (en) Cardiovascular health metric determination from wearable-based physiological data
WO2023086423A1 (en) Techniques for providing insights according to tags and physiological data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22720818

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2022246658

Country of ref document: AU

Ref document number: AU2022246658

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 3215867

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023560359

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022246658

Country of ref document: AU

Date of ref document: 20220331

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022720818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022720818

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE