WO2022210921A1 - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
WO2022210921A1
WO2022210921A1 PCT/JP2022/016134 JP2022016134W WO2022210921A1 WO 2022210921 A1 WO2022210921 A1 WO 2022210921A1 JP 2022016134 W JP2022016134 W JP 2022016134W WO 2022210921 A1 WO2022210921 A1 WO 2022210921A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
mold
movable platen
speed
unit
Prior art date
Application number
PCT/JP2022/016134
Other languages
French (fr)
Japanese (ja)
Inventor
浩基 常深
眞司 寺田
裕成 淺井
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023511501A priority Critical patent/JPWO2022210921A1/ja
Priority to CN202280007973.0A priority patent/CN116583366A/en
Publication of WO2022210921A1 publication Critical patent/WO2022210921A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/20Opening, closing or clamping
    • B29C33/22Opening, closing or clamping by rectilinear movement
    • B29C33/24Opening, closing or clamping by rectilinear movement using hydraulic or pneumatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices

Definitions

  • the present invention relates to an injection molding machine.
  • a mold closing process is performed in which a fixed mold and a movable mold, which constitute a mold device for molding a molded product, are brought into contact with each other.
  • a technology has been proposed that uses a hydraulic cylinder as a mold clamping device that moves a movable mold during a mold closing process.
  • Patent Document 1 describes a technique related to the mold opening process when a hydraulic cylinder is used for the mold clamping device. Specifically, in the mold opening process, the torque is limited, and the time element is monitored to detect whether or not there is an abnormality.
  • the monitoring time is The load continues to be applied to the mold device until the time elapses.
  • One aspect of the present invention provides a technology that enables rapid detection of abnormalities when controlling the speed of the movable platen in the mold closing process.
  • An injection molding machine includes a stationary platen to which a stationary mold is attached, a movable platen to which a movable mold is attached, and a fluid pressure to move the movable platen to bring the movable platen into contact with the stationary platen. It has a mold clamping device that performs a mold closing process and a control section that controls the mold clamping device.
  • the control unit includes a speed control unit that controls the speed of the movable platen in the mold closing process, an acquisition unit that acquires a pressure value that indicates the fluid pressure generated by the movement of the movable platen, and a pressure value that is acquired by the acquisition unit. and a determination unit that determines whether or not a predetermined threshold is exceeded.
  • the speed of the movable platen when the speed of the movable platen is controlled, it is possible to quickly detect an abnormality by detecting a change in the fluid pressure caused by the movement of the movable platen.
  • FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • FIG. 3 is a diagram showing an example of the mold clamping device according to the first embodiment.
  • FIG. 4 is a diagram showing functional blocks of components of the control device according to the first embodiment.
  • FIG. 5 is a diagram exemplifying pressure control in the pressure control unit of the control device according to the first embodiment.
  • FIG. 6 is a diagram showing an example of speed control in the speed control unit according to the first embodiment.
  • FIG. 7 is a flow chart showing processing when speed control is performed in the mold closing process of the control device according to the first embodiment.
  • FIG. 8 is a diagram showing an example of speed control in a speed control unit according to Modification 1.
  • FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is
  • FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • the X-axis direction, Y-axis direction and Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and Y-axis direction represent the horizontal direction, and the Z-axis direction represents the vertical direction.
  • the X-axis direction is the mold opening/closing direction
  • the Y-axis direction is the width direction of the injection molding machine 10 .
  • the Y-axis direction negative side is called the operating side
  • the Y-axis direction positive side is called the non-operating side.
  • the injection molding machine 10 includes a mold clamping device 100 that opens and closes a mold device 800, an injection device 300 that injects a molding material into the mold device 800, and a It has a moving device 400 that advances and retreats the injection device 300 , a control device 700 that controls each component of the injection molding machine 10 , and a frame 900 that supports each component of the injection molding machine 10 .
  • the injection molding machine 10 also includes an ejector device (not shown) that ejects the molded product molded by the mold device 800 from the mold device 800 (movable mold 820).
  • the frame 900 includes a mold clamping device frame 910 that supports the mold clamping device 100 and an injection device frame 920 that supports the injection device 300 .
  • the mold clamping device frame 910 and the injection device frame 920 are each installed on the floor 2 via leveling adjusters 930 .
  • a control device 700 is arranged in the inner space of the injection device frame 920 .
  • Each component of the injection molding machine 10 will be described below.
  • the moving direction of the movable platen 120 when the mold is closed (for example, the X-axis positive direction) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened is defined as the rear (for example, the X-axis negative direction). do.
  • the mold clamping device 100 performs a mold closing process, a pressurization process, a mold clamping process, a depressurization process, and a mold opening process of the mold device 800 .
  • the mold apparatus 800 includes a fixed mold 810 , a movable mold 820 , and a movable member 830 arranged inside (hollow portion) of the movable mold 820 so as to be able to move back and forth.
  • the mold clamping device 100 is, for example, a horizontal type, and the mold opening/closing direction is horizontal.
  • the mold clamping device 100 has a stationary platen 110, a movable platen 120, tie bars 140, hydraulic cylinders 150, and the like.
  • the fixed platen 110 is fixed to the mold clamping device frame 910 .
  • a stationary mold 810 is attached to the surface of the stationary platen 110 facing the movable platen 120 .
  • the movable platen 120 is arranged movably in the mold opening/closing direction with respect to the mold clamping device frame 910 .
  • a guide 101 for guiding the movable platen 120 is laid on the mold clamping device frame 910 .
  • a movable die 820 is attached to the surface of the movable platen 120 facing the stationary platen 110 .
  • the tie bars 140 connect the fixed platen 110 and the cylinder body 151 (see FIG. 3) of the hydraulic cylinder 150 with a gap L in the mold opening/closing direction.
  • a plurality of (for example, four) tie bars 140 may be used.
  • the multiple tie bars 140 are arranged parallel to the mold opening/closing direction and extend according to the mold clamping force.
  • the hydraulic cylinder 150 is attached to the movable platen.
  • the hydraulic cylinder 150 drives the movable platen 120 by a so-called direct pressure type to move the movable platen 120 in the mold opening/closing direction.
  • the configuration of the hydraulic cylinder 150 and details of the drive mechanism will be described later (see FIG. 3).
  • the mold clamping device 100 Under the control of the control device 700, the mold clamping device 100 performs a mold closing process, a pressure increasing process, a mold clamping process, a depressurizing process, a mold opening process, and the like.
  • the hydraulic cylinder 150 is driven to advance the hydraulic cylinder 150 (a piston portion 152 described later) at a set movement speed to the mold closing completion position, thereby advancing the movable platen 120 and fixing the movable mold 820.
  • the mold 810 is touched.
  • the position and movement speed of the hydraulic cylinder 150 are detected using, for example, a cylinder pressure sensor or the like.
  • the cylinder pressure sensor detects the telescopic position of hydraulic cylinder 150 and sends a signal indicating the detection result to control device 700 .
  • control device 700 performs feedback control regarding the position of the hydraulic cylinder 150 (movable platen 120) (the position of the hydraulic cylinder 150) based on the signal indicating the detection result of the cylinder pressure sensor in the mold clamping process and the mold opening process (to be described later). control).
  • the hydraulic cylinder position detector that detects the position of the hydraulic cylinder 150 and the hydraulic cylinder movement speed detector that detects the movement speed of the hydraulic cylinder 150 are not limited to cylinder pressure sensors, and general ones can be used.
  • the hydraulic cylinder 150 is further driven to control the pressure of the hydraulic cylinder 150 to a predetermined pressure (hereinafter referred to as “target mold clamping pressure”). generate power.
  • the pressure of the hydraulic cylinder 150 is detected using, for example, a pressure sensor (cylinder pressure sensor) provided on the hydraulic cylinder 150 .
  • the cylinder pressure sensor detects the pressure of a predetermined oil chamber inside hydraulic cylinder 150 (for example, oil chamber 155 described later) and sends a signal indicating the detection result to control device 700 .
  • control device 700 performs feedback control on the pressure of the hydraulic cylinder 150 (pressure control of the hydraulic cylinder 150) based on the signal indicating the detection result of the cylinder pressure sensor in the pressurizing process, mold clamping process, and depressurizing process, which will be described later. )It can be performed.
  • the hydraulic cylinder 150 is driven to maintain the pressure of the hydraulic cylinder 150 at the target mold clamping pressure.
  • the mold clamping force generated in the pressurizing process is maintained.
  • a cavity space 801 (see FIG. 2) is formed between the movable mold 820 and the fixed mold 810, and the injection device 300 fills the cavity space 801 with a liquid molding material.
  • a molded product is obtained by solidifying the filled molding material.
  • the number of cavity spaces 801 may be one or plural. In the latter case, multiple moldings are obtained simultaneously.
  • the insert material may be arranged in part of the cavity space 801 and the other part of the cavity space 801 may be filled with the molding material.
  • a molded product in which the insert material and the molding material are integrated is obtained.
  • the mold clamping force is reduced by driving the hydraulic cylinder 150 to reduce the hydraulic cylinder 150 from the target mold clamping pressure.
  • the hydraulic cylinder 150 is driven to retract the hydraulic cylinder 150 (piston portion 152) from the mold opening start position to the mold opening completion position at a set moving speed, thereby retracting the movable platen 120 and moving the movable mold. 820 is separated from fixed mold 810 . After that, the ejector device ejects the molded product from the movable mold 820 .
  • the mold opening start position and the mold closing completion position may be the same position.
  • the setting conditions in the mold closing process, pressure rising process, and mold clamping process are collectively set as a series of setting conditions.
  • the movement speed, position (including the mold closing start position, movement speed switching position, mold closing completion position, and mold clamping position) and pressure (including the target mold clamping pressure) of the hydraulic cylinder 150 in the mold closing process and the pressurizing process , mold clamping force, etc. are collectively set as a series of setting conditions.
  • the mold closing start position, the movement speed switching position, the mold closing completion position, and the mold clamping position are arranged in this order from the rear side to the front side, and represent the start point and end point of the section in which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set. Only one or two of the mold clamping position, target mold clamping pressure, and mold clamping force may be set.
  • the setting conditions in the depressurization process and the mold opening process are set in the same way.
  • the movement speed and position (mold opening start position, movement speed switching position, and mold opening completion position) of the hydraulic cylinder 150 in the depressurization process and the mold opening process are collectively set as a series of setting conditions.
  • the mold opening start position, the movement speed switching position, and the mold opening completion position are arranged in this order from the front side to the rear side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set.
  • the mold opening start position and the mold closing completion position may be the same position. Also, the mold opening completion position and the mold closing start position may be the same position.
  • the moving speed and position of the hydraulic cylinder 150 instead of the moving speed and position of the hydraulic cylinder 150, the moving speed and position of the movable platen 120 may be set. Also, instead of the position of the hydraulic cylinder 150 (for example, the mold clamping position) and the position of the movable platen 120, a target mold clamping pressure and a mold clamping force may be set.
  • the mold clamping device 100 of this embodiment is a horizontal type in which the mold opening/closing direction is horizontal, it may be a vertical type in which the mold opening/closing direction is a vertical direction.
  • the ejector device In the description of the ejector device, as in the description of the mold clamping device 100, the direction of movement of the movable platen 120 when the mold is closed (for example, the positive direction of the X axis) is defined as the front, and the direction of movement of the movable platen 120 when the mold is opened (for example, the X direction) is defined as the front.
  • the negative axis direction will be described as the rear side.
  • the ejector device is attached to the movable platen 120 and advances and retreats together with the movable platen 120.
  • the ejector device has an ejector rod that ejects the molded product from the mold device 800 and a drive mechanism that moves the ejector rod in the moving direction (X-axis direction) of the movable platen 120 .
  • the ejector rod is in contact with a movable member 830 arranged to move back and forth inside the movable mold 820, and can move the movable member forward.
  • the drive mechanism has, for example, an ejector motor and a motion conversion mechanism that converts the rotary motion of the ejector motor into the linear motion of the ejector rod.
  • the motion conversion mechanism includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
  • the ejector device performs the ejecting process under the control of the control device 700. In the ejecting process, the ejector device advances the movable member 830 to eject the molded article.
  • the position and movement speed of the ejector rod are detected using, for example, an ejector motor encoder.
  • the ejector motor encoder detects rotation of the ejector motor and sends a signal indicating the detection result to the control device 700 .
  • the ejector rod position detector for detecting the position of the ejector rod and the ejector rod moving speed detector for detecting the moving speed of the ejector rod are not limited to the ejector motor encoder, and general ones can be used.
  • the moving direction of the screw 330 during filling (for example, the negative direction of the X axis) is defined as the forward direction, and the moving direction of the screw 330 during metering is defined as the forward direction. (For example, the positive direction of the X-axis) will be described as the rear.
  • the injection device 300 is installed on a slide base 301 , and the slide base 301 is arranged to move forward and backward relative to the injection device frame 920 .
  • the injection device 300 is arranged to move back and forth with respect to the mold device 800 .
  • the injection device 300 touches the mold device 800 and fills the cavity space 801 in the mold device 800 with the molding material.
  • the injection device 300 has, for example, a cylinder 310, a nozzle 320, a screw 330, a metering motor 340, an injection motor 350, a load detector 360, and the like.
  • the cylinder 310 heats the molding material supplied inside from the supply port 311 .
  • the molding material includes, for example, resin.
  • the molding material is formed into, for example, a pellet shape and supplied to the supply port 311 in a solid state.
  • a supply port 311 is formed in the rear portion of the cylinder 310 .
  • a cooler 312 such as a water-cooled cylinder is provided on the outer circumference of the rear portion of the cylinder 310 .
  • a heater 313 such as a band heater and a temperature detector 314 are provided on the outer periphery of the cylinder 310 ahead of the cooler 312 .
  • the cylinder 310 is divided into a plurality of zones in the axial direction of the cylinder 310 (for example, the X-axis direction).
  • a heater 313 and a temperature detector 314 are provided in each of the plurality of zones.
  • a set temperature is set for each of the plurality of zones, and the controller 700 controls the heater 313 so that the temperature detected by the temperature detector 314 becomes the set temperature.
  • the nozzle 320 is provided at the front end of the cylinder 310 and pressed against the mold device 800 .
  • a heater 313 and a temperature detector 314 are provided around the nozzle 320 .
  • the controller 700 controls the heater 313 so that the detected temperature of the nozzle 320 becomes the set temperature.
  • the screw 330 is arranged in the cylinder 310 so as to be rotatable and advanceable.
  • the molding material is sent forward along the helical groove of the screw 330 .
  • the molding material is gradually melted by the heat from the cylinder 310 while being fed forward.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . After that, when the screw 330 is advanced, the liquid molding material accumulated in front of the screw 330 is injected from the nozzle 320 and filled in the mold device 800 .
  • a backflow prevention ring 331 is movably attached to the front of the screw 330 as a backflow prevention valve that prevents backflow of the molding material from the front to the rear of the screw 330 when the screw 330 is pushed forward.
  • the anti-backflow ring 331 is pushed backward by the pressure of the molding material in front of the screw 330 when the screw 330 is advanced, and is relatively to the screw 330 until it reaches a closed position (see FIG. 2) that blocks the flow path of the molding material. fall back. This prevents the molding material accumulated in front of the screw 330 from flowing backward.
  • the anti-backflow ring 331 is pushed forward by the pressure of the molding material sent forward along the helical groove of the screw 330 when the screw 330 is rotated, and is in an open position where the flow path of the molding material is opened. (see FIG. 1) relative to the screw 330. Thereby, the molding material is sent forward of the screw 330 .
  • the anti-backflow ring 331 may be either a co-rotating type that rotates together with the screw 330 or a non-co-rotating type that does not rotate together with the screw 330 .
  • the injection device 300 may have a drive source that advances and retracts the backflow prevention ring 331 with respect to the screw 330 between the open position and the closed position.
  • the metering motor 340 rotates the screw 330 .
  • the drive source for rotating the screw 330 is not limited to the metering motor 340, and may be, for example, a hydraulic pump.
  • the injection motor 350 moves the screw 330 forward and backward. Between the injection motor 350 and the screw 330, a motion conversion mechanism or the like that converts the rotary motion of the injection motor 350 into the linear motion of the screw 330 is provided.
  • the motion conversion mechanism has, for example, a screw shaft and a screw nut that screws onto the screw shaft. Balls, rollers, or the like may be provided between the screw shaft and the screw nut.
  • the drive source for advancing and retreating the screw 330 is not limited to the injection motor 350, and may be, for example, a hydraulic cylinder.
  • a load detector 360 detects the force transmitted between the injection motor 350 and the screw 330 .
  • the detected force is converted into pressure by the control device 700 .
  • the load detector 360 is provided in the force transmission path between the injection motor 350 and the screw 330 and detects the force acting on the load detector 360 .
  • the load detector 360 sends a signal indicating the detection result to the control device 700 .
  • the detection result of the load detector 360 is used for controlling and monitoring the pressure that the screw 330 receives from the molding material, the back pressure against the screw 330, the pressure that the screw 330 acts on the molding material, and the like.
  • the pressure detector that detects the pressure of the molding material is not limited to the load detector 360, and a general one can be used.
  • a nozzle pressure sensor or a mold internal pressure sensor may be used.
  • a nozzle pressure sensor is installed at the nozzle 320 .
  • the mold internal pressure sensor is installed inside the mold apparatus 800 .
  • the injection device 300 Under the control of the control device 700, the injection device 300 performs a weighing process, a filling process, a holding pressure process, and the like.
  • the filling process and the holding pressure process may collectively be called an injection process.
  • the weighing motor 340 is driven to rotate the screw 330 at a set rotation speed, and the molding material is fed forward along the helical groove of the screw 330. Along with this, the molding material is gradually melted.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 .
  • the rotation speed of the screw 330 is detected using a metering motor encoder 341, for example.
  • Weighing motor encoder 341 detects the rotation of weighing motor 340 and sends a signal indicating the detection result to control device 700 .
  • the screw rotation speed detector for detecting the rotation speed of the screw 330 is not limited to the metering motor encoder 341, and a general one can be used.
  • the injection motor 350 may be driven to apply a set back pressure to the screw 330 in order to limit rapid retraction of the screw 330 .
  • the back pressure on the screw 330 is detected using a load detector 360, for example.
  • Load detector 360 sends a signal indicating the detection result to control device 700 .
  • the metering process is completed when the screw 330 is retracted to the metering completion position and a predetermined amount of molding material is accumulated in front of the screw 330 .
  • the position and rotational speed of the screw 330 in the weighing process are collectively set as a series of setting conditions. For example, a weighing start position, rotation speed switching position, and weighing completion position are set. These positions are arranged in this order from the front side to the rear side, and represent the start point and end point of the section in which the rotational speed is set. A rotation speed is set for each section.
  • the rotational speed switching position may be one or plural. The rotation speed switching position does not have to be set. Also, the back pressure is set for each section.
  • the injection motor 350 is driven to advance the screw 330 at a set movement speed, and the liquid molding material accumulated in front of the screw 330 is filled into the cavity space 801 in the mold device 800 .
  • the position and moving speed of the screw 330 are detected using an injection motor encoder 351, for example.
  • the injection motor encoder 351 detects rotation of the injection motor 350 and sends a signal indicating the detection result to the control device 700 .
  • V/P switching switching from the filling process to the holding pressure process
  • the position at which V/P switching takes place is also called the V/P switching position.
  • the set moving speed of the screw 330 may be changed according to the position of the screw 330, time, and the like.
  • the position and movement speed of the screw 330 in the filling process are collectively set as a series of setting conditions.
  • a filling start position also called an “injection start position”
  • a moving speed switching position and a V/P switching position are set. These positions are arranged in this order from the rear side to the front side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural. The moving speed switching position does not have to be set.
  • the upper limit value of the pressure of the screw 330 is set for each section in which the moving speed of the screw 330 is set.
  • the pressure of screw 330 is detected by load detector 360 .
  • the screw 330 is advanced at the set moving speed.
  • the screw 330 moves at a slower moving speed than the set moving speed so that the detected value of the load detector 360 becomes equal to or less than the set pressure for the purpose of mold protection. to move forward.
  • the screw 330 may be temporarily stopped at the V/P switching position, and then the V/P switching may be performed. Immediately before the V/P switching, instead of stopping the screw 330, the screw 330 may be slowly advanced or slowly retracted.
  • the screw position detector for detecting the position of the screw 330 and the screw moving speed detector for detecting the moving speed of the screw 330 are not limited to the injection motor encoder 351, and general ones can be used.
  • the injection motor 350 is driven to push the screw 330 forward, and the pressure of the molding material at the front end of the screw 330 (hereinafter also referred to as “holding pressure”) is maintained at the set pressure.
  • the remaining molding material is pushed toward the mold device 800 .
  • a shortage of molding material due to cooling shrinkage in the mold apparatus 800 can be replenished.
  • the holding pressure is detected using the load detector 360, for example.
  • Load detector 360 sends a signal indicating the detection result to control device 700 .
  • the set value of the holding pressure may be changed according to the elapsed time from the start of the holding pressure process.
  • a plurality of holding pressures and holding times for holding the holding pressure in the holding pressure step may be set respectively, and may be collectively set as a series of setting conditions.
  • the molding material in the cavity space 801 inside the mold device 800 is gradually cooled, and when the holding pressure process is completed, the entrance of the cavity space 801 is closed with the solidified molding material. This state is called a gate seal, and prevents the molding material from flowing back from the cavity space 801 .
  • the cooling process is started. In the cooling process, the molding material inside the cavity space 801 is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
  • the injection device 300 of the present embodiment is of the in-line screw method, it may be of the pre-plastic method or the like.
  • a pre-plastic injection apparatus supplies molding material melted in a plasticizing cylinder to an injection cylinder, and injects the molding material from the injection cylinder into a mold apparatus.
  • a screw is arranged to be rotatable and non-retractable, or a screw is arranged to be rotatable and reciprocal.
  • a plunger is arranged in the injection cylinder so that it can move back and forth.
  • the injection device 300 of the present embodiment is a horizontal type in which the axial direction of the cylinder 310 is horizontal, but may be a vertical type in which the axial direction of the cylinder 310 is vertical.
  • the mold clamping device combined with the vertical injection device 300 may be either vertical or horizontal.
  • the mold clamping device combined with the horizontal injection device 300 may be horizontal or vertical.
  • the injection device 300 is electrically driven by electric actuators such as the metering motor 340 and the injection motor 350 .
  • the injection device 300 can be relatively more responsive to the control command from the control device 700 than when it is hydraulically driven. Therefore, the injection molding machine 10 can achieve relatively excellent controllability of the injection device 300 .
  • the moving direction of the screw 330 during filling (for example, the negative direction of the X-axis) is defined as forward, and the moving direction of the screw 330 during weighing (eg, the positive direction of the X-axis). is described as backward.
  • the moving device 400 advances and retreats the injection device 300 with respect to the mold device 800 . Further, the moving device 400 presses the nozzle 320 against the mold device 800 to generate nozzle touch pressure.
  • the moving device 400 includes a hydraulic pump 410, a motor 420 as a drive source, a hydraulic cylinder 430 as a hydraulic actuator, and the like.
  • the hydraulic pump 410 has a first port 411 and a second port 412 .
  • Hydraulic pump 410 is a pump that can rotate in both directions, and by switching the rotation direction of motor 420, hydraulic fluid (for example, oil) is sucked from one of first port 411 and second port 412 and discharged from the other. to generate hydraulic pressure.
  • hydraulic pump 410 can also suck the hydraulic fluid from the tank and discharge the hydraulic fluid from either the first port 411 or the second port 412 .
  • the motor 420 operates the hydraulic pump 410 .
  • Motor 420 drives hydraulic pump 410 with a rotational direction and a rotational torque according to a control signal from control device 700 .
  • Motor 420 may be an electric motor or may be an electric servomotor.
  • the hydraulic cylinder 430 has a cylinder body 431 , a piston 432 and a piston rod 433 .
  • the cylinder body 431 is fixed with respect to the injection device 300 .
  • the piston 432 partitions the inside of the cylinder body 431 into a front chamber 435 as a first chamber and a rear chamber 436 as a second chamber.
  • Piston rod 433 is fixed relative to stationary platen 110 .
  • the front chamber 435 of the hydraulic cylinder 430 is connected to the first port 411 of the hydraulic pump 410 via the first flow path 401 .
  • the hydraulic fluid discharged from the first port 411 is supplied to the front chamber 435 through the first flow path 401, thereby pushing the injection device 300 forward.
  • the injection device 300 is advanced and the nozzle 320 is pressed against the stationary mold 810 .
  • the front chamber 435 functions as a pressure chamber that generates nozzle touch pressure of the nozzle 320 by the pressure of the hydraulic fluid supplied from the hydraulic pump 410 .
  • the rear chamber 436 of the hydraulic cylinder 430 is connected to the second port 412 of the hydraulic pump 410 via the second flow path 402 .
  • the hydraulic fluid discharged from the second port 412 is supplied to the rear chamber 436 of the hydraulic cylinder 430 through the second flow path 402, thereby pushing the injection device 300 rearward.
  • the injection device 300 is retracted and the nozzle 320 is separated from the stationary mold 810 .
  • the moving device 400 includes the hydraulic cylinder 430 in this embodiment, the present invention is not limited to this.
  • an electric motor and a motion conversion mechanism that converts the rotary motion of the electric motor to the linear motion of the injection device 300 may be used instead of the hydraulic cylinder 430.
  • the control device 700 is composed of, for example, a computer, and has a CPU (Central Processing Unit) 701, a storage medium 702 such as a memory, an input interface 703, and an output interface 704, as shown in FIGS.
  • the control device 700 performs various controls by causing the CPU 701 to execute programs stored in the storage medium 702 .
  • the control device 700 also receives signals from the outside through an input interface 703 and transmits signals to the outside through an output interface 704 .
  • the control device 700 repeatedly performs a weighing process, a mold closing process, a pressurizing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process, thereby producing a molded product.
  • a series of operations for obtaining a molded product for example, the operation from the start of the weighing process to the start of the next weighing process, is also called “shot” or "molding cycle”.
  • the time required for one shot is also called “molding cycle time" or "cycle time”.
  • a single molding cycle has, for example, a weighing process, a mold closing process, a pressure increasing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process in this order.
  • the order here is the order of the start of each step.
  • the filling process, holding pressure process, and cooling process are performed during the clamping process.
  • the start of the clamping process may coincide with the start of the filling process.
  • the end of the depressurization process coincides with the start of the mold opening process.
  • the metering step may occur during the cooling step of the previous molding cycle and may occur during the clamping step.
  • the mold closing process may be performed at the beginning of the molding cycle.
  • the filling process may also be initiated during the mold closing process.
  • the ejecting process may be initiated during the mold opening process. If an on-off valve for opening and closing the flow path of the nozzle 320 is provided, the mold opening process may be initiated during the metering process. This is because the molding material does not leak from the nozzle 320 as long as the on-off valve closes the flow path of the nozzle 320 even if the mold opening process is started during the metering process.
  • One molding cycle includes processes other than the weighing process, mold closing process, pressurizing process, mold clamping process, filling process, holding pressure process, cooling process, depressurizing process, mold opening process, and ejecting process.
  • a pre-measuring suck-back process may be performed in which the screw 330 is retracted to a preset measuring start position before starting the measuring process. It is possible to reduce the pressure of the molding material accumulated in front of the screw 330 before the start of the metering process, and to prevent the screw 330 from abrupt retraction at the start of the metering process.
  • a post-weighing suck-back process may be performed in which the screw 330 is retracted to a preset filling start position (also referred to as an "injection start position").
  • a preset filling start position also referred to as an "injection start position”
  • the pressure of the molding material accumulated in front of the screw 330 before the start of the filling process can be reduced, and leakage of the molding material from the nozzle 320 before the start of the filling process can be prevented.
  • the control device 700 is connected to an operation device 750 that receives user input operations and a display device 760 that displays screens.
  • the operation device 750 and the display device 760 may be configured by, for example, a touch panel 770 and integrated.
  • a touch panel 770 as a display device 760 displays a screen under the control of the control device 700 .
  • Information such as the settings of the injection molding machine 10 and the current state of the injection molding machine 10 may be displayed on the screen of the touch panel 770 .
  • an operation unit such as a button for receiving an input operation by the user or an input field may be displayed.
  • a touch panel 770 as the operation device 750 detects an input operation on the screen by the user and outputs a signal corresponding to the input operation to the control device 700 .
  • the user can operate the operation unit provided on the screen while confirming the information displayed on the screen to set the injection molding machine 10 (including input of set values). can.
  • the user can operate the operation unit provided on the screen to cause the injection molding machine 10 to operate corresponding to the operation unit.
  • the operation of the injection molding machine 10 may be, for example, the operation (including stopping) of the mold clamping device 100, the ejector device 200, the injection device 300, the moving device 400, and the like.
  • the operation of the injection molding machine 10 may be switching of screens displayed on the touch panel 770 as the display device 760 .
  • the operating device 750 and the display device 760 of the present embodiment have been described as being integrated as the touch panel 770, they may be provided independently. Also, a plurality of operating devices 750 may be provided. The operating device 750 and the display device 760 are arranged on the operating side (Y-axis negative direction) of the mold clamping device 100 (more specifically, the fixed platen 110).
  • FIG. 3 is a diagram showing an example of the mold clamping device 100 according to this embodiment. Specifically, FIG. 3 is a diagram showing the operating state of the mold clamping device 100 in the mold closing process. In addition, drawing of the mold device 800 is omitted in FIG.
  • the mold clamping device 100 includes a stationary platen 110, a movable platen 120, tie bars 140, a hydraulic cylinder 150, a hydraulic circuit 160, and a servomotor 170.
  • the hydraulic cylinder 150 includes a cylinder body portion 151, a piston portion 152, a rod portion 153, and a cylinder closing portion 154.
  • the cylinder body portion 151 is a fixed portion of the hydraulic cylinder 150 .
  • Cylinder main body 151 is connected to the other end of tie bar 140 , one end of which is connected to stationary platen 110 .
  • the cylinder main body 151 is fixed at a constant distance (interval L) from the fixed platen 110 .
  • the cylinder main body 151 is provided with a hollow portion whose front end (the end in the negative direction of the X axis) is open.
  • One of the cylinder main body 151 and the stationary platen 110 that are connected via tie bars 140 is fixed to the mold clamping device frame 910 and the other is movably mounted on the mold clamping device frame 910 . Thereby, the elongation of the tie bar 140 due to the generation of the mold clamping force can be allowed.
  • One end of the piston portion 152 is inserted into the interior (hollow portion) of the cylinder body portion 151 and the other end is fixed to the movable platen 120 .
  • the piston portion 152 can move in the front-rear direction (X direction) by the action of the working oil supplied to and discharged from the cylinder body portion 151, and as a result, the movable platen 120 fixed to one end of the piston portion 152 moves back and forth. It can be moved in the direction (X direction).
  • the piston portion 152 is provided with a hollow portion that opens to the inside of the cylinder body portion 151 .
  • One end of the rod portion 153 is fixed to the closed end portion of the hollow portion of the cylinder main body portion 151 (that is, the end portion in the negative direction of the X axis), and the other end is inserted into the hollow portion of the piston portion 152 . Accordingly, the rod portion 153 can move the piston portion 152 forward (positive direction of the X-axis) by the action of hydraulic oil supplied to a hollow portion (an oil chamber 157 described later) of the piston portion 152 . Further, the rod portion 153 is provided with a hole extending in the axial direction from the other end side that is inserted into the hollow portion of the piston portion 152 .
  • the cylinder closing portion 154 closes the open end of the cylinder body portion 151 .
  • the cylinder closing portion 154 is provided with a through hole through which the piston portion 152 can advance and retreat.
  • oil chambers 155 to 157 are provided inside the hydraulic cylinder 150 .
  • the oil chamber 155 is defined by the inner wall of the cylinder body 151 and the tip (one end) of the piston 152 at the closed end (the end in the negative direction of the X axis) of the hollow portion of the cylinder body 151 . be provided. As a result, the piston portion 152 can exert a mold clamping force on the movable platen 120 by the action of hydraulic oil supplied to the oil chamber 155 .
  • the oil chamber 155 is provided with a port 155P for supplying and discharging hydraulic oil.
  • This embodiment relates to the mold closing process, and the hydraulic circuit for supplying and discharging working oil to and from the oil chamber 155 for applying the mold clamping force may be the same as the conventional hydraulic circuit, and the description is omitted. do.
  • the oil chamber 156 is partitioned by the inner wall of the cylinder body 151, the inner wall of the cylinder closing portion 154, and the intermediate portion of the piston portion 152 at the open end of the cylinder body 151 (the end in the positive direction of the X axis). provided in As a result, the piston portion 152 can move backward (that is, move in the negative direction of the X-axis) by the action of hydraulic oil supplied to the oil chamber 156 .
  • the oil chamber 156 is provided with a port 156P for supplying and discharging hydraulic oil.
  • the oil chamber 157 is provided so as to be partitioned by the inner wall of the hollow portion of the piston portion 152 and the tip portion of the rod portion 153 .
  • the piston portion 152 can move forward (that is, move in the positive direction of the X-axis) by the action of hydraulic oil supplied to the oil chamber 157 .
  • the oil chamber 157 communicates with the hole of the rod portion 153 , and a port 157 ⁇ /b>P for supplying and discharging working oil to and from the oil chamber 157 is provided at the tip of the hole of the rod portion 153 .
  • the hydraulic circuit 160 drives the hydraulic cylinder 150.
  • the hydraulic circuit 160 includes a mold closing relief valve 161, a mold opening relief valve 162, a regulating valve 163, a double rotary pump 164, a check valve 165, a check valve 166, a pressure sensor 167, and a tank 168. , oil passages OL1 to OL3.
  • the oil passage OL1 connects the tank 168, the mold closing side relief valve 161, the mold opening side relief valve 162, the check valve 165, and the check valve 166.
  • the oil passage OL2 connects between the supply/discharge port 157P of the oil chamber 157 and the double rotary pump 164. Also, the oil passage OL2 is connected to each of the mold closing side relief valve 161, the regulating valve 163, and the check valve 165. As shown in FIG. A pressure sensor 167 is provided in the vicinity of the supply/discharge port 157P of the oil chamber 157 of the oil passage OL2.
  • the oil passage OL3 connects between the supply/discharge port 156P of the oil chamber 156 and the double rotary pump 164. Also, the oil passage OL2 is connected to each of the mold opening side relief valve 162, the adjustment valve 163, and the check valve 166. As shown in FIG.
  • Both rotary pumps 164 are provided on flow paths (oil path OL2 and oil path OL3) that connect between a plurality of oil chambers (oil chamber 157 and oil chamber 156) of hydraulic cylinder 150 that generates fluid pressure.
  • the dual rotary pump 164 according to this embodiment is driven by a servomotor 170 to adjust the flow direction and flow rate of the working oil flowing between the oil passages OL2 and OL3. In this manner, both rotary pumps 164 can discharge working oil to both oil passage OL2 and oil passage OL3 based on the drive by servomotor 170 .
  • both rotary pumps 164 are driven by the servomotor 170 to discharge the working oil supplied from the oil passage OL2 to the oil passage OL3.
  • This realizes a flow path through which working oil flows from the supply/discharge port 157P of the oil chamber 157 to the supply/discharge port 156P of the oil chamber 156 through the oil passages OL2 and OL3 in this order.
  • the piston part 152 retreats (that is, moves in the X-axis negative direction), so that the mold opening step of moving the movable mold 820 in the mold opening direction can be realized.
  • both rotary pumps 164 discharge the working oil supplied from oil passage OL3 to oil passage OL2 based on the drive by servomotor 170.
  • This realizes a flow path through which working oil flows from the supply/discharge port 156P of the oil chamber 156 to the supply/discharge port 157P of the oil chamber 157 through the oil passages OL3 and OL2 in this order.
  • the piston part 152 advances (that is, moves in the positive direction of the X-axis), so that the mold closing process of moving the movable mold 820 in the mold closing direction can be realized.
  • the mold opening side relief valve 162 is a relief valve provided in the oil passage OL3, and is a mechanical valve that switches between a communication state and a cutoff state based on the pressure of the working oil flowing through the oil passage OL3. For example, in the mold opening process, when the pressure in the oil passage OL3 becomes equal to or higher than a predetermined pressure, the mold opening side relief valve 162 is put into a communication state, and the working oil flowing in the oil passage OL3 is discharged to the tank 168 via the oil passage OL1. discharge up to
  • the mold closing side relief valve 161 is a relief valve provided in the oil passage OL2, and is a mechanical valve that switches between a communication state and a cutoff state based on the pressure of the working oil flowing through the oil passage OL2. For example, in the mold closing process, when the pressure in the oil passage OL2 exceeds a predetermined pressure, the mold closing side relief valve 161 is put into a communication state, and the working oil flowing in the oil passage OL2 is discharged to the tank 168 via the oil passage OL1. discharge up to
  • the check valve 165 is a valve that allows the hydraulic oil to flow in one direction from the oil passage OL1 to the oil passage OL2 and prevents reverse flow.
  • the hydraulic circuit 160 of this embodiment is provided with a check valve 165 so that working oil is supplied from the tank 168 to the oil passage OL2.
  • the check valve 166 is a valve that allows the hydraulic oil to flow in one direction from the oil passage OL1 to the oil passage OL3 and prevents reverse flow.
  • the hydraulic circuit 160 of the present embodiment is provided with a check valve 166 so that working oil is supplied from the tank 168 to the oil passage OL3.
  • the tank 168 stores hydraulic oil. Also, the tank 168 is connected to the mold opening side relief valve 162, the mold closing side relief valve 161, the check valve 165, and the check valve 166 through the oil passage OL1. Thereby, the tank 168 stores the working oil discharged from the mold opening side relief valve 162 or the mold closing side relief valve 161 through the oil passage OL1. Also, the tank 168 supplies the stored working oil through the oil passage OL1 from the check valve 165 to the oil passage OL2 or from the check valve 166 to the oil passage OL3.
  • the adjustment valve 163 is a valve for adjusting the amount of oil in the mold opening process and the mold closing process for each of the oil passages OL2 and OL3. By providing the regulating valve 163, the flow rate can be adjusted to be constant in the mold opening process and the mold closing process.
  • the pressure sensor 167 is provided on the oil passage OL2 and in the vicinity of the supply/discharge port 157P of the oil chamber 157 of the hydraulic cylinder 150, the pressure applied to the oil chamber 157 of the hydraulic cylinder 150 is detected. .
  • a variable pump capable of discharging working oil in only one direction was often used in place of the bidirectional rotary pump 164 capable of discharging working oil in both directions.
  • an electromagnetic switching valve an example of a direction switching valve for switching the oil chamber for supplying working oil is provided. By switching the oil chamber to which the working oil is supplied with this electromagnetic switching valve, the mold opening process and the mold closing process are realized.
  • the oil chamber to which the working oil is supplied can be switched by switching the discharge direction of the working oil of the two rotary pumps 164 according to the rotating direction of the servomotor 170 .
  • Such a configuration eliminates the need to provide an electromagnetic contactor or the like between the hydraulic cylinder 150 and the pressure sensor 167 .
  • the hydraulic circuit 160 according to the present embodiment can reduce the number of constituent parts compared to the conventional hydraulic circuit, the pipe length of the hydraulic circuit 160 can be shortened compared to the conventional hydraulic circuit. Since the piping length can be shortened, the hydraulic circuit 160 can be formed of steel pipes. Thereby, the pressure change due to disturbance can be reduced.
  • the hydraulic circuit 160 that hydraulically drives the mold clamping device 100 is configured as a closed circuit as described above. Moreover, in the hydraulic circuit 160 according to this embodiment, the pressure sensor 167 and the hydraulic cylinder 150 are directly connected by the oil passage OL2A (part of the oil passage OL2). Since pressure changes due to disturbances can also be reduced in the hydraulic circuit 160, the pressure sensor 167 can detect the pressure applied to the oil chamber 157 of the hydraulic cylinder 150 with high accuracy.
  • the hydraulic circuit 160 of this embodiment does not have an electromagnetic contactor or the like and has a short pipe length, so the amount of heat generated is small and the oil temperature is less likely to rise. Therefore, the amount of hot water used in the hydraulic circuit 160 can be reduced. As a result, the capacity of the tank 168 can be reduced, so that the mold clamping device 100 can be made compact.
  • the servomotor 170 operates under the control of the control device 700 and controls the rotation of both rotary pumps 164 . Thereby, the control device 700 can control the operation of both rotary pumps 164 by controlling the servo motor 170 .
  • the control device 700 controls the flow of hydraulic oil in the hydraulic circuit 160 by controlling both rotary pumps 164 (servo motors 170), and realizes the mold closing process and the mold opening process by the mold clamping device 100. Further, the control device 700 also realizes a pressurizing process, a mold clamping process, and a depressurizing process by controlling the hydraulic circuit 160, but the description thereof will be omitted.
  • FIG. 4 is a diagram showing functional blocks of the components of the control device 700 according to the first embodiment.
  • Each functional block illustrated in FIG. 4 is conceptual and does not necessarily need to be physically configured as illustrated. All or part of each functional block can be functionally or physically distributed and integrated in arbitrary units.
  • Each processing function performed by each functional block is implemented by a program executed by the CPU 701, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic.
  • the control device 700 includes an input processing unit 711, a pressure control unit 712, a speed control unit 713, a switching unit 714, an acquisition unit 715, a determination unit 716, and a stop control unit 717. , and a notification unit 718 .
  • the control device 700 also includes a threshold storage unit 710 on the storage medium 702 .
  • the threshold storage unit 710 stores the pressure threshold used when speed control is performed in the mold closing process.
  • the input processing unit 711 inputs and processes user operations from the operation device 750 via the input interface 703 .
  • the input processing unit 711 performs input processing for selecting either pressure control or speed control from the user when performing the mold closing process.
  • the switching unit 714 of the present embodiment controls the movable platen 120 and the piston unit 152 by pressure control by the pressure control unit 712 based on the selection operation input processed by the input processing unit 711. Control to move and control to move the movable platen 120 and the piston part 152 by speed control by the speed control unit 713 are switched.
  • the pressure control section 712 and the speed control section 713 will be described later.
  • FIG. 5 is a diagram showing an example of pressure control in the pressure control section 712. As shown in FIG. FIG. 5 shows velocity 1502 and pressure 1501 of piston portion 152 .
  • the mold closing process is started at the mold closing start time.
  • the pressure control section 712 controls the movable platen 120 together with the piston section 152 of the hydraulic cylinder 150 so that it reaches the speed V1. After the piston portion 152 reaches the mold protection position, the pressure control portion 712 switches the control performed on the piston portion 152 from speed control to pressure control.
  • Pressure control in pressure control, is to control so that the pressure does not exceed a predetermined limit value, and is also called low pressure control.
  • the predetermined limit value is a pressure value lower than the pressure applied from the start of mold closing until reaching the mold protection position.
  • the determination unit 716 determines whether or not the time required for the movable platen 120 to reach the pressure increase start position (an example of the predetermined position) has exceeded the monitoring time (an example of the predetermined time). In the example shown in FIG. 5, at time t1, it is assumed that an abnormality such as a foreign object being caught in mold device 800 occurs. As a result, the speed 1502 of the movable platen 120 is reduced together with the piston portion 152 .
  • the determination unit 716 determines that an abnormality has occurred when the monitoring time t2 has passed. Although the determination is not performed until the monitoring time t2 has elapsed after the foreign matter is caught in this way, the effect that the foreign matter has little influence on the mold apparatus 800 can be obtained because of the low pressure control.
  • the stop control unit 717 stops the servomotor 170 when the determining unit 716 determines that the time taken to reach the boost start position (an example of the predetermined position) exceeds the monitoring time (an example of the predetermined time). control to allow
  • the notification unit 718 notifies that an abnormality has occurred when the determination unit 716 determines that the time taken to reach the boost start position (an example of the predetermined position) exceeds the monitoring time (an example of the predetermined time). , a worker using the injection molding machine 10, a monitoring center, or the like.
  • the monitoring time t2 is set with a margin.
  • control device 700 enables speed control by the speed control unit 713 instead of pressure control by the pressure control unit 712 .
  • the speed control unit 713 of this embodiment controls the speed of the movable platen 120 fixed to the hydraulic cylinder 150 together with the hydraulic cylinder 150 that moves in the mold closing process.
  • the speed control unit 713 of this embodiment controls the speed so that the piston unit 152 and the movable platen 120 are at the speed V1 from the start of the mold closing process to the arrival at the mold protection position. After the piston portion 152 and the movable platen 120 arrive at the mold protection position, the speed control portion 713 controls the piston portion 152 and the movable platen 120 at the speed V2 (speed V2 ⁇ speed V1) until the pressure rise start position is reached. Control the speed so that When the speed control unit 713 performs speed control, the pressure value detected by the pressure sensor 167 is used to determine whether there is an abnormality. In other words, since the present embodiment includes the above-described hydraulic circuit 160, the pressure value can be detected with high accuracy, so it is possible to determine whether or not the pressure value is abnormal.
  • feedback control may be incorporated into the speed control unit 713 to control the speeds of the piston unit 152 and the movable platen 120 so as not to vary.
  • the acquisition unit 715 acquires from the pressure sensor 167 a pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 due to the movement of the piston portion 152 and the movable platen 120 .
  • the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction from a linear sensor (not shown) provided in the hydraulic cylinder 150 . This makes it possible to recognize whether the piston portion 152 has reached the mold protection position or the temperature increase start position.
  • the mold protection position is a position where speed or pressure is reduced to protect the mold device 800 .
  • the temperature rise start position is a position (an example of a predetermined position) at which the mold closing process is completed.
  • the determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold stored in the threshold storage unit 710 .
  • FIG. 6 is a diagram showing an example of speed control in the speed control section 713 according to this embodiment.
  • FIG. 6 shows the velocity 1601 of the piston part 152 and the pressure value 1602 of the fluid pressure acquired by the acquisition part 715 .
  • the mold closing process is started at the mold closing start time.
  • the speed control unit 713 controls the movable platen 120 together with the piston portion 152 of the hydraulic cylinder 150 so that it reaches the speed V1.
  • the speed control portion 713 controls the moving platen 120 together with the piston portion 152 to a speed V2 (speed V2 ⁇ speed V1).
  • the acquisition unit 715 acquires the pressure value P2 that has decreased from the pressure value P1 according to the speed change by the speed control unit 713 .
  • the threshold storage unit 710 stores a pressure threshold value T1 for speed control by the speed control unit 713 and a pressure threshold value T2 for reaching the mold protection position and the pressure increase start position from the mold protection position. is doing. Thus, the threshold storage unit 710 stores predetermined pressure thresholds according to the positions to which the movable platen 120 and the piston unit 152 have moved.
  • the determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold stored in the threshold storage unit 710 .
  • the determination unit 716 of this embodiment performs determination based on a predetermined pressure threshold for each position to which the movable platen 120 and the piston unit 152 have moved. Specifically, the determining unit 716 determines whether or not the acquired pressure value exceeds the pressure threshold value T1 until reaching the mold protection position, , determines whether the acquired threshold exceeds the pressure threshold T2. Also, in the case of speed control, as in pressure control, determination unit 716 determines whether or not an abnormality has occurred according to whether or not the time until reaching the pressure increase start position exceeds the monitoring time. good too.
  • the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T2 stored in the threshold storage unit 710 at time t3. As described above, in the speed control of the present embodiment, it is possible to immediately perform an abnormality determination when a foreign object is caught.
  • the stop control unit 717 performs control to stop the servomotor 170 when it is determined that the pressure value acquired by the determination unit 716 exceeds the pressure threshold.
  • the control is not limited to the control to stop, and for example, control to reversely rotate the servomotor 170 is also conceivable.
  • the notification unit 718 When the determination unit 716 determines that the pressure value obtained by the determination unit 716 exceeds the pressure threshold, the notification unit 718 notifies the operator using the injection molding machine 10, the monitoring center, etc. that an abnormality has occurred. .
  • FIG. 7 is a flow chart showing processing when speed control is performed in the mold closing process of the control device 700 according to this embodiment.
  • the pressure control the same method as the conventional method may be used, and the explanation is omitted.
  • control device 700 determines whether or not the mold closing process is started by speed control (S701). If it is determined that the mold closing process by speed control is not started (S701: No), the process ends.
  • the speed control section 713 controls the servo motor 170 to control the speed of the piston section 152 to the speed V1. (S702).
  • the acquisition unit 715 acquires from the pressure sensor 167 the pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 (S703).
  • the determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T1 until the die protection position is reached (S704). When the determination unit 716 determines that the acquired pressure value exceeds the pressure threshold value T1 (S704: Yes), the stop control unit 717 controls the servomotor 170 to stop, and the notification unit 718 has occurred (S705), and the process ends.
  • the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction (S706). .
  • the determination unit 716 determines whether the position of the piston part 152 acquired by the acquisition unit 715 has reached the mold protection position (S707). If it is determined that the die protection position has not been reached (S707: No), the process is repeated from S702.
  • the speed control unit 713 controls the servo motor 170 , the speed control is performed so that the piston portion 152 reaches the speed V2 (S708).
  • the acquisition unit 715 acquires from the pressure sensor 167 the pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 (S709).
  • the determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T2 until the die protection position is reached (S710).
  • the stop control unit 717 controls the servomotor 170 to stop, and the notification unit 718 detects an abnormality. is notified (S711), and the process ends.
  • the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction (S712). .
  • the determination unit 716 determines whether the position of the piston part 152 acquired by the acquisition unit 715 has reached the temperature increase start position (S713). If it is determined that the die protection position has not been reached (S713: No), the process is repeated from S708.
  • the speed of the piston portion 152 and the movable platen 120 is controlled from the mold protection position to the pressure increase start position, and the pressure value detected by the pressure sensor 167 is Based on the above, it is determined whether or not there is an abnormality. As a result, it is possible to immediately detect when an abnormality such as a foreign object is caught, so that the mold apparatus 800 can be protected. Further, in the present embodiment, by performing the speed control described above, it is possible to suppress variations in the end time of the mold closing process.
  • FIG. 8 is a diagram showing an example of speed control in the speed control unit 713 according to Modification 1.
  • FIG. 8 shows the velocity 1801 of the piston part 152 and the pressure value 1802 of the fluid pressure acquired by the acquisition part 715 .
  • the mold closing process is started at the mold closing start time.
  • the speed control unit 713 controls the piston portion 152 of the hydraulic cylinder 150 to reach the speed V1. Then, when the piston portion 152 reaches the first mold protection position, the speed control portion 713 controls the piston portion 152 to have a speed V3 (speed V3 ⁇ speed V1).
  • the speed control unit 713 controls the piston part 152 to have a speed V4 (speed V4 ⁇ speed V3), and when reaching the third mold protection position, the speed control portion 713 controls the piston portion 152 to have a speed V5 (speed V5 ⁇ speed V4).
  • the acquisition unit 715 decreases the pressure value 1202 detected by the pressure sensor 167 according to the speed change by the speed control unit 713 .
  • the pressure threshold 1803 stored in the threshold storage unit 710 is set to decrease according to the speed.
  • the threshold storage unit 710 stores a pressure threshold T1 from the start of mold closing to arrival at the first mold protection position, and stores a pressure threshold T3 from arrival at the first mold protection position to arrival at the second mold protection position. Then, a pressure threshold T4 from arrival at the second mold protection position to arrival at the third mold protection position is stored, and a pressure threshold T5 from arrival at the third mold protection position to arrival at the temperature rise start position is stored.
  • the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 is a pressure threshold (pressure thresholds T1, T3, Either one of T4 and T5) is exceeded.
  • the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 is the pressure threshold value T5 stored in the threshold storage unit 710. determined to have exceeded
  • the process when it is determined that the pressure value exceeds the pressure threshold value T5 stored in the threshold storage unit 710 is the same as in the above-described embodiment, and the description thereof is omitted.
  • Modification 2 In the above-described embodiment, an example of determining whether or not an abnormality has occurred based on whether or not the acquired pressure value is higher than the pressure threshold value stored in the threshold storage unit 710 has been described.
  • the threshold used to determine whether an abnormality has occurred is not limited to the pre-stored pressure threshold. Therefore, in Modification 1, an example of updating based on an actually acquired pressure value will be described.
  • the acquisition unit 715 of this modified example updates the threshold storage unit 710 by associating a value obtained by adding a predetermined value to the pressure value acquired this time as the next pressure threshold value with the position where the pressure value was acquired.
  • the position at which the pressure value is acquired can be acquired from a linear sensor (not shown) provided in the hydraulic cylinder 150 .
  • the predetermined value is a value that is determined in order to provide a margin in determining abnormality, and may be an arbitrary value according to the mode of implementation.
  • the interval between the positions where the pressure values are acquired is set according to the embodiment. As a result, the pressure threshold value can be updated in consideration of friction and the like for each position, and the abnormality detection accuracy can be improved.
  • the acquisition unit 715 updates the threshold storage unit 710 with a value obtained by adding a predetermined value to the pressure value acquired this time (one shot) as the next pressure threshold.
  • the method is not limited to the method of updating the next pressure threshold value based on the pressure value of one shot.
  • the threshold storage unit 710 may be updated using the moving average of the values as the pressure threshold.
  • the determination unit 716 of this modified example holds a mathematical model representing the hydraulic circuit 160 and the hydraulic cylinder 150 . Then, the determination unit 716 acquires the rotational speed of the servo motor 170 controlled by the speed control unit 713, and applies the rotational speed to the mathematical model to determine the pressure indicating the fluid pressure generated in the hydraulic cylinder 150. Calculate an estimate.
  • the determination unit 716 determines whether or not the difference between the pressure value acquired by the acquisition unit 715 and the estimated pressure value is equal to or greater than a predetermined value.
  • the determination unit 716 determines that an abnormality has occurred when the difference between the pressure value acquired by the acquisition unit 715 and the estimated pressure value is equal to or greater than a predetermined value.
  • the rotational speed of the servomotor is taken into consideration, and the abnormality determination can be made with higher accuracy. It can be performed.
  • the use of both the rotary pump 164 and the servomotor 170 makes the hydraulic circuit 160 a closed circuit, thereby reducing the pipe length. Since this can suppress disturbance, it is possible to improve the accuracy of abnormality detection based on the pressure value detected by the pressure sensor 167 when low-speed control is performed between the mold protection position and the temperature rise start position.
  • the speed control unit 713 controls the speed of the piston unit 152 after the mold protection position, thereby suppressing variations in arrival time at the temperature rise start position. can.
  • the determination unit 716 determines whether the pressure value obtained from the pressure sensor 167 exceeds the pressure threshold. An abnormality such as a foreign object being caught is determined. As a result, it is possible to realize quick abnormality detection as compared with the conventional determination of whether or not the monitoring time has passed. In addition, since stop control can be performed more quickly than in the conventional art, the protection of the mold apparatus 800 can be realized.

Abstract

This injection molding machine comprises: a fixed platen to which a fixed mold is attached; a movable platen to which a movable mold is attached; a mold clamping device that performs a mold closing process for bringing the movable platen into contact with the fixed platen by moving the movable platen by fluid pressure; and a control unit that controls the mold clamping device. The control unit comprises: a speed control unit that controls the speed of the movable platen in the mold closing process; an acquisition unit that acquires a pressure value indicating the fluid pressure caused by the movement of the movable platen; and a determination unit that determines whether the pressure value acquired by the acquisition unit exceeds a predetermined threshold value or not.

Description

射出成形機Injection molding machine
 本発明は、射出成形機に関する。 The present invention relates to an injection molding machine.
 射出成形機においては、成形品を成形するための金型装置を構成する、固定金型と可動金型とを接触させる型閉工程が行われる。型閉工程を行う際に、可動金型を移動させる型締装置として油圧シリンダを利用する技術が提案されている。 In an injection molding machine, a mold closing process is performed in which a fixed mold and a movable mold, which constitute a mold device for molding a molded product, are brought into contact with each other. A technology has been proposed that uses a hydraulic cylinder as a mold clamping device that moves a movable mold during a mold closing process.
特開2006-015553公報Japanese Patent Application Laid-Open No. 2006-015553
 特許文献1には型締装置に油圧シリンダを用いた場合における型開工程に関する技術が記載されている。具体的には、型開工程において、トルクを制限した上で、時間的要素を監視して異常か否かを検出している。 Patent Document 1 describes a technique related to the mold opening process when a hydraulic cylinder is used for the mold clamping device. Specifically, in the mold opening process, the torque is limited, and the time element is monitored to detect whether or not there is an abnormality.
 型締装置に油圧シリンダを用いた際、型閉工程において、可動プラテンを移動させる制御を行う場合、トルク又は圧力を低く制限した上で、時間的要素を監視して、異常か否かを検出する。当該制御では、トルク又は圧力を低く制限しているため、摩擦などの負荷の影響を受けて、型閉工程が終了するまでの型閉時間が大きくばらつく。このため、異常か否かを判定するための監視時間(時間的要素)は、かなり余裕をもって長く設定する必要がある。 When a hydraulic cylinder is used for the mold clamping device, when controlling the movement of the movable platen in the mold closing process, limit the torque or pressure to a low level and monitor the time element to detect whether there is an abnormality. do. In this control, since the torque or pressure is limited to a low level, the mold closing time until the mold closing process ends varies greatly due to the influence of loads such as friction. For this reason, it is necessary to set the monitoring time (time element) for determining whether there is an abnormality or not to be long with a considerable margin.
 このため、当該型閉工程において、監視時間内に型閉工程が終了したか否かを判定している時に、固定金型と可動金型との間に異物が挟み込まれた場合、監視時間が経過するまで金型装置に負荷が与え続けることになる。 For this reason, in the mold closing process, if a foreign object is caught between the fixed mold and the movable mold while it is being determined whether the mold closing process has ended within the monitoring time, the monitoring time is The load continues to be applied to the mold device until the time elapses.
 本発明の一態様は、型閉工程において、可動プラテンの速度制御を行う際に、迅速に異常の検知可能とする技術を提供する。 One aspect of the present invention provides a technology that enables rapid detection of abnormalities when controlling the speed of the movable platen in the mold closing process.
 本発明の一態様に係る射出成形機は、固定金型が取り付けられる固定プラテンと、可動金型が取り付けられる可動プラテンと、流体圧によって可動プラテンを移動させて、可動プラテンを固定プラテンに接触させる型閉工程を行う型締装置と、型締装置を制御する制御部と、を有する。制御部は、型閉工程で可動プラテンの速度制御を行う速度制御部と、可動プラテンの移動で生じる流体圧を示した圧力値を取得する取得部と、取得部により取得された圧力値が、所定の閾値を超えたか否かを判定する判定部と、を有する。 An injection molding machine according to one aspect of the present invention includes a stationary platen to which a stationary mold is attached, a movable platen to which a movable mold is attached, and a fluid pressure to move the movable platen to bring the movable platen into contact with the stationary platen. It has a mold clamping device that performs a mold closing process and a control section that controls the mold clamping device. The control unit includes a speed control unit that controls the speed of the movable platen in the mold closing process, an acquisition unit that acquires a pressure value that indicates the fluid pressure generated by the movement of the movable platen, and a pressure value that is acquired by the acquisition unit. and a determination unit that determines whether or not a predetermined threshold is exceeded.
 本発明の一態様によれば、可動プラテンの速度制御を行う際に、可動プラテンの移動で生じる流体圧の変化を検知することで、迅速に異常の検知を可能とする。 According to one aspect of the present invention, when the speed of the movable platen is controlled, it is possible to quickly detect an abnormality by detecting a change in the fluid pressure caused by the movement of the movable platen.
図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed. 図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping. 図3は、第1の実施形態に係る型締装置の一例を示す図である。FIG. 3 is a diagram showing an example of the mold clamping device according to the first embodiment. 図4は、第1の実施形態に係る制御装置の構成要素を機能ブロックで示す図ある。FIG. 4 is a diagram showing functional blocks of components of the control device according to the first embodiment. 図5は、第1の実施形態に係る制御装置の圧力制御部における圧力制御の例示した図である。FIG. 5 is a diagram exemplifying pressure control in the pressure control unit of the control device according to the first embodiment. 図6は、第1の実施形態に係る速度制御部における速度制御の例を示した図である。FIG. 6 is a diagram showing an example of speed control in the speed control unit according to the first embodiment. 図7は、第1の実施形態に係る制御装置の型閉工程において速度制御を行う場合の処理を示したフローチャートである。FIG. 7 is a flow chart showing processing when speed control is performed in the mold closing process of the control device according to the first embodiment. 図8は、変形例1に係る速度制御部における速度制御の例を示した図である。FIG. 8 is a diagram showing an example of speed control in a speed control unit according to Modification 1. FIG.
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の又は対応する符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same or corresponding configurations are denoted by the same or corresponding reference numerals, and description thereof may be omitted.
 図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。本明細書において、X軸方向、Y軸方向及びZ軸方向は互いに垂直な方向である。X軸方向及びY軸方向は水平方向を表し、Z軸方向は鉛直方向を表す。型締装置100が横型である場合、X軸方向は型開閉方向であり、Y軸方向は射出成形機10の幅方向である。Y軸方向負側を操作側と呼び、Y軸方向正側を反操作側と呼ぶ。 FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment when mold opening is completed. FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping. In this specification, the X-axis direction, Y-axis direction and Z-axis direction are directions perpendicular to each other. The X-axis direction and Y-axis direction represent the horizontal direction, and the Z-axis direction represents the vertical direction. When the mold clamping device 100 is of a horizontal type, the X-axis direction is the mold opening/closing direction, and the Y-axis direction is the width direction of the injection molding machine 10 . The Y-axis direction negative side is called the operating side, and the Y-axis direction positive side is called the non-operating side.
 図1~図2に示すように、射出成形機10は、金型装置800を開閉する型締装置100と、金型装置800に成形材料を射出する射出装置300と、金型装置800に対し射出装置300を進退させる移動装置400と、射出成形機10の各構成要素を制御する制御装置700と、射出成形機10の各構成要素を支持するフレーム900とを有する。また、射出成形機10は、金型装置800で成形された成形品を金型装置800(可動金型820)から突き出すエジェクタ装置(不図示)を含む。フレーム900は、型締装置100を支持する型締装置フレーム910と、射出装置300を支持する射出装置フレーム920とを含む。型締装置フレーム910及び射出装置フレーム920は、それぞれ、レベリングアジャスタ930を介して床2に設置される。射出装置フレーム920の内部空間に、制御装置700が配置される。以下、射出成形機10の各構成要素について説明する。 As shown in FIGS. 1 and 2, the injection molding machine 10 includes a mold clamping device 100 that opens and closes a mold device 800, an injection device 300 that injects a molding material into the mold device 800, and a It has a moving device 400 that advances and retreats the injection device 300 , a control device 700 that controls each component of the injection molding machine 10 , and a frame 900 that supports each component of the injection molding machine 10 . The injection molding machine 10 also includes an ejector device (not shown) that ejects the molded product molded by the mold device 800 from the mold device 800 (movable mold 820). The frame 900 includes a mold clamping device frame 910 that supports the mold clamping device 100 and an injection device frame 920 that supports the injection device 300 . The mold clamping device frame 910 and the injection device frame 920 are each installed on the floor 2 via leveling adjusters 930 . A control device 700 is arranged in the inner space of the injection device frame 920 . Each component of the injection molding machine 10 will be described below.
 (型締装置)
 型締装置100の説明では、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
(mold clamping device)
In the description of the mold clamping device 100, the moving direction of the movable platen 120 when the mold is closed (for example, the X-axis positive direction) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened is defined as the rear (for example, the X-axis negative direction). do.
 型締装置100は、金型装置800の型閉工程、昇圧工程、型締工程、脱圧工程及び型開工程を行う。金型装置800は、固定金型810と、可動金型820と、可動金型820の内部(中空部)に進退自在に配置される可動部材830とを含む。 The mold clamping device 100 performs a mold closing process, a pressurization process, a mold clamping process, a depressurization process, and a mold opening process of the mold device 800 . The mold apparatus 800 includes a fixed mold 810 , a movable mold 820 , and a movable member 830 arranged inside (hollow portion) of the movable mold 820 so as to be able to move back and forth.
 型締装置100は、例えば、横型であって、型開閉方向が水平方向である。型締装置100は、固定プラテン110、可動プラテン120、タイバー140、及び油圧シリンダ150等を有する。 The mold clamping device 100 is, for example, a horizontal type, and the mold opening/closing direction is horizontal. The mold clamping device 100 has a stationary platen 110, a movable platen 120, tie bars 140, hydraulic cylinders 150, and the like.
 固定プラテン110は、型締装置フレーム910に対し固定される。固定プラテン110における可動プラテン120との対向面に固定金型810が取付けられる。 The fixed platen 110 is fixed to the mold clamping device frame 910 . A stationary mold 810 is attached to the surface of the stationary platen 110 facing the movable platen 120 .
 可動プラテン120は、型締装置フレーム910に対し型開閉方向に移動自在に配置される。型締装置フレーム910上には、可動プラテン120を案内するガイド101が敷設される。可動プラテン120における固定プラテン110との対向面に可動金型820が取付けられる。固定プラテン110に対し可動プラテン120を進退させることにより、金型装置800の型閉工程、昇圧工程、型締工程、脱圧工程、及び型開工程が行われる。 The movable platen 120 is arranged movably in the mold opening/closing direction with respect to the mold clamping device frame 910 . A guide 101 for guiding the movable platen 120 is laid on the mold clamping device frame 910 . A movable die 820 is attached to the surface of the movable platen 120 facing the stationary platen 110 . By advancing and retracting the movable platen 120 with respect to the fixed platen 110, the mold closing process, pressure increasing process, mold clamping process, pressure releasing process, and mold opening process of the mold apparatus 800 are performed.
 タイバー140は、固定プラテン110と油圧シリンダ150のシリンダ本体部151(図3参照)とを型開閉方向に間隔Lをおいて連結する。タイバー140は、複数本(例えば4本)用いられてよい。複数本のタイバー140は、型開閉方向に平行に配置され、型締力に応じて伸びる。 The tie bars 140 connect the fixed platen 110 and the cylinder body 151 (see FIG. 3) of the hydraulic cylinder 150 with a gap L in the mold opening/closing direction. A plurality of (for example, four) tie bars 140 may be used. The multiple tie bars 140 are arranged parallel to the mold opening/closing direction and extend according to the mold clamping force.
 油圧シリンダ150は、可動プラテンに取り付けられる。油圧シリンダ150は、いわゆる直圧式で可動プラテン120を駆動し、可動プラテン120を型開閉方向に移動させる。油圧シリンダ150の構成、及び駆動機構の詳細については、後述する(図3参照)。 The hydraulic cylinder 150 is attached to the movable platen. The hydraulic cylinder 150 drives the movable platen 120 by a so-called direct pressure type to move the movable platen 120 in the mold opening/closing direction. The configuration of the hydraulic cylinder 150 and details of the drive mechanism will be described later (see FIG. 3).
 型締装置100は、制御装置700による制御下で、型閉工程、昇圧工程、型締工程、脱圧工程、及び型開工程などを行う。 Under the control of the control device 700, the mold clamping device 100 performs a mold closing process, a pressure increasing process, a mold clamping process, a depressurizing process, a mold opening process, and the like.
 型閉工程では、油圧シリンダ150を駆動して油圧シリンダ150(後述のピストン部152)を設定移動速度で型閉完了位置まで前進させることにより、可動プラテン120を前進させ、可動金型820を固定金型810にタッチさせる。油圧シリンダ150の位置や移動速度は、例えば、シリンダ圧センサ等を用いて検出する。シリンダ圧センサは、油圧シリンダ150の伸縮位置を検出し、その検出結果を示す信号を制御装置700に送る。これにより、制御装置700は、型締工程及び後述の型開工程において、シリンダ圧センサの検出結果を示す信号に基づき、油圧シリンダ150(可動プラテン120)の位置に関するフィードバック制御(油圧シリンダ150の位置制御)を行うことができる。 In the mold closing step, the hydraulic cylinder 150 is driven to advance the hydraulic cylinder 150 (a piston portion 152 described later) at a set movement speed to the mold closing completion position, thereby advancing the movable platen 120 and fixing the movable mold 820. The mold 810 is touched. The position and movement speed of the hydraulic cylinder 150 are detected using, for example, a cylinder pressure sensor or the like. The cylinder pressure sensor detects the telescopic position of hydraulic cylinder 150 and sends a signal indicating the detection result to control device 700 . As a result, the control device 700 performs feedback control regarding the position of the hydraulic cylinder 150 (movable platen 120) (the position of the hydraulic cylinder 150) based on the signal indicating the detection result of the cylinder pressure sensor in the mold clamping process and the mold opening process (to be described later). control).
 なお、油圧シリンダ150の位置を検出する油圧シリンダ位置検出器、及び油圧シリンダ150の移動速度を検出する油圧シリンダ移動速度検出器は、シリンダ圧センサに限定されず、一般的なものを使用できる。 The hydraulic cylinder position detector that detects the position of the hydraulic cylinder 150 and the hydraulic cylinder movement speed detector that detects the movement speed of the hydraulic cylinder 150 are not limited to cylinder pressure sensors, and general ones can be used.
 昇圧工程では、油圧シリンダ150をさらに駆動して油圧シリンダ150の圧力を所定の圧力(以下、「目標型締圧」)になるように制御され、油圧シリンダ150の圧力を上昇させることで型締力を生じさせる。油圧シリンダ150の圧力は、例えば、油圧シリンダ150に設けられる圧力センサ(シリンダ圧センサ)等を用いて検出する。シリンダ圧センサは、油圧シリンダ150の内部の所定の油室の圧力(例えば、後述の油室155)の圧力を検出し、その検出結果を示す信号を制御装置700に送る。これにより、制御装置700は、昇圧工程、並びに後述の型締工程及び脱圧工程において、シリンダ圧センサの検出結果を示す信号に基づき、油圧シリンダ150の圧力に関するフィードバック制御(油圧シリンダ150の圧力制御)を行うことができる。 In the pressurizing step, the hydraulic cylinder 150 is further driven to control the pressure of the hydraulic cylinder 150 to a predetermined pressure (hereinafter referred to as “target mold clamping pressure”). generate power. The pressure of the hydraulic cylinder 150 is detected using, for example, a pressure sensor (cylinder pressure sensor) provided on the hydraulic cylinder 150 . The cylinder pressure sensor detects the pressure of a predetermined oil chamber inside hydraulic cylinder 150 (for example, oil chamber 155 described later) and sends a signal indicating the detection result to control device 700 . As a result, the control device 700 performs feedback control on the pressure of the hydraulic cylinder 150 (pressure control of the hydraulic cylinder 150) based on the signal indicating the detection result of the cylinder pressure sensor in the pressurizing process, mold clamping process, and depressurizing process, which will be described later. )It can be performed.
 型締工程では、油圧シリンダ150を駆動して、油圧シリンダ150の圧力を目標型締圧に維持する。型締工程では、昇圧工程で発生させた型締力が維持される。型締工程では、可動金型820と固定金型810との間にキャビティ空間801(図2参照)が形成され、射出装置300がキャビティ空間801に液状の成形材料を充填する。充填された成形材料が固化されることで、成形品が得られる。 In the mold clamping process, the hydraulic cylinder 150 is driven to maintain the pressure of the hydraulic cylinder 150 at the target mold clamping pressure. In the mold clamping process, the mold clamping force generated in the pressurizing process is maintained. In the mold clamping process, a cavity space 801 (see FIG. 2) is formed between the movable mold 820 and the fixed mold 810, and the injection device 300 fills the cavity space 801 with a liquid molding material. A molded product is obtained by solidifying the filled molding material.
 キャビティ空間801の数は、1つでもよいし、複数でもよい。後者の場合、複数の成形品が同時に得られる。キャビティ空間801の一部にインサート材が配置され、キャビティ空間801の他の一部に成形材料が充填されてもよい。インサート材と成形材料とが一体化した成形品が得られる。 The number of cavity spaces 801 may be one or plural. In the latter case, multiple moldings are obtained simultaneously. The insert material may be arranged in part of the cavity space 801 and the other part of the cavity space 801 may be filled with the molding material. A molded product in which the insert material and the molding material are integrated is obtained.
 脱圧工程では、油圧シリンダ150を駆動して油圧シリンダ150を目標型締圧から減少させることにより、型締力を減少させる。 In the depressurization process, the mold clamping force is reduced by driving the hydraulic cylinder 150 to reduce the hydraulic cylinder 150 from the target mold clamping pressure.
 型開工程では、油圧シリンダ150を駆動して油圧シリンダ150(ピストン部152)を設定移動速度で型開開始位置から型開完了位置まで後退させることにより、可動プラテン120を後退させ、可動金型820を固定金型810から離間させる。その後、エジェクタ装置が可動金型820から成形品を突き出す。型開開始位置と、型閉完了位置とは、同じ位置であってよい。 In the mold opening process, the hydraulic cylinder 150 is driven to retract the hydraulic cylinder 150 (piston portion 152) from the mold opening start position to the mold opening completion position at a set moving speed, thereby retracting the movable platen 120 and moving the movable mold. 820 is separated from fixed mold 810 . After that, the ejector device ejects the molded product from the movable mold 820 . The mold opening start position and the mold closing completion position may be the same position.
 型閉工程、昇圧工程及び型締工程における設定条件は、一連の設定条件として、まとめて設定される。例えば、型閉工程及び昇圧工程における油圧シリンダ150の移動速度、位置(型閉開始位置、移動速度切換位置、型閉完了位置、及び型締位置を含む)、圧力(目標型締圧を含む)、型締力等は、一連の設定条件として、まとめて設定される。型閉開始位置、移動速度切換位置、型閉完了位置、及び型締位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型締位置、目標型締圧、及び型締力は、いずれか一つ或いは二つのみが設定されてもよい。 The setting conditions in the mold closing process, pressure rising process, and mold clamping process are collectively set as a series of setting conditions. For example, the movement speed, position (including the mold closing start position, movement speed switching position, mold closing completion position, and mold clamping position) and pressure (including the target mold clamping pressure) of the hydraulic cylinder 150 in the mold closing process and the pressurizing process , mold clamping force, etc. are collectively set as a series of setting conditions. The mold closing start position, the movement speed switching position, the mold closing completion position, and the mold clamping position are arranged in this order from the rear side to the front side, and represent the start point and end point of the section in which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set. Only one or two of the mold clamping position, target mold clamping pressure, and mold clamping force may be set.
 脱圧工程及び型開工程における設定条件も同様に設定される。例えば、脱圧工程及び型開工程における油圧シリンダ150の移動速度や位置(型開開始位置、移動速度切換位置、及び型開完了位置)は、一連の設定条件として、まとめて設定される。型開開始位置、移動速度切換位置、及び型開完了位置は、前側から後方に向けて、この順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型開開始位置と型閉完了位置とは同じ位置であってよい。また、型開完了位置と型閉開始位置とは同じ位置であってよい。 The setting conditions in the depressurization process and the mold opening process are set in the same way. For example, the movement speed and position (mold opening start position, movement speed switching position, and mold opening completion position) of the hydraulic cylinder 150 in the depressurization process and the mold opening process are collectively set as a series of setting conditions. The mold opening start position, the movement speed switching position, and the mold opening completion position are arranged in this order from the front side to the rear side, and represent the start point and end point of the section for which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set. The mold opening start position and the mold closing completion position may be the same position. Also, the mold opening completion position and the mold closing start position may be the same position.
 なお、油圧シリンダ150の移動速度や位置などの代わりに、可動プラテン120の移動速度や位置などが設定されてもよい。また、油圧シリンダ150の位置(例えば型締位置)や可動プラテン120の位置の代わりに、目標型締圧や型締力が設定されてもよい。 It should be noted that instead of the moving speed and position of the hydraulic cylinder 150, the moving speed and position of the movable platen 120 may be set. Also, instead of the position of the hydraulic cylinder 150 (for example, the mold clamping position) and the position of the movable platen 120, a target mold clamping pressure and a mold clamping force may be set.
 なお、本実施形態の型締装置100は、型開閉方向が水平方向である横型であるが、型開閉方向が上下方向である竪型でもよい。 Although the mold clamping device 100 of this embodiment is a horizontal type in which the mold opening/closing direction is horizontal, it may be a vertical type in which the mold opening/closing direction is a vertical direction.
 (エジェクタ装置)
 エジェクタ装置の説明では、型締装置100の説明と同様に、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
(ejector device)
In the description of the ejector device, as in the description of the mold clamping device 100, the direction of movement of the movable platen 120 when the mold is closed (for example, the positive direction of the X axis) is defined as the front, and the direction of movement of the movable platen 120 when the mold is opened (for example, the X direction) is defined as the front. The negative axis direction) will be described as the rear side.
 エジェクタ装置は、可動プラテン120に取り付けられ、可動プラテン120と共に進退する。エジェクタ装置は、金型装置800から成形品を突き出すエジェクタロッドと、エジェクタロッドを可動プラテン120の移動方向(X軸方向)に移動させる駆動機構とを有する。 The ejector device is attached to the movable platen 120 and advances and retreats together with the movable platen 120. The ejector device has an ejector rod that ejects the molded product from the mold device 800 and a drive mechanism that moves the ejector rod in the moving direction (X-axis direction) of the movable platen 120 .
 エジェクタロッドは、可動金型820の内部に進退自在に配置される可動部材830と接触し、可動部材を前進させることができる。 The ejector rod is in contact with a movable member 830 arranged to move back and forth inside the movable mold 820, and can move the movable member forward.
 駆動機構は、例えば、エジェクタモータと、エジェクタモータの回転運動をエジェクタロッドの直線運動に変換する運動変換機構とを有する。運動変換機構は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。 The drive mechanism has, for example, an ejector motor and a motion conversion mechanism that converts the rotary motion of the ejector motor into the linear motion of the ejector rod. The motion conversion mechanism includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
 エジェクタ装置は、制御装置700による制御下で、突き出し工程を行う。突き出し工程では、エジェクタ装置は、可動部材830を前進させ、成形品を突き出す。 The ejector device performs the ejecting process under the control of the control device 700. In the ejecting process, the ejector device advances the movable member 830 to eject the molded article.
 エジェクタロッドの位置や移動速度は、例えばエジェクタモータエンコーダを用いて検出する。エジェクタモータエンコーダは、エジェクタモータの回転を検出し、その検出結果を示す信号を制御装置700に送る。また、エジェクタロッドの位置を検出するエジェクタロッド位置検出器、及びエジェクタロッドの移動速度を検出するエジェクタロッド移動速度検出器は、エジェクタモータエンコーダに限定されず、一般的なものを使用できる。 The position and movement speed of the ejector rod are detected using, for example, an ejector motor encoder. The ejector motor encoder detects rotation of the ejector motor and sends a signal indicating the detection result to the control device 700 . Also, the ejector rod position detector for detecting the position of the ejector rod and the ejector rod moving speed detector for detecting the moving speed of the ejector rod are not limited to the ejector motor encoder, and general ones can be used.
 (射出装置)
 射出装置300の説明では、型締装置100の説明やエジェクタ装置200の説明とは異なり、充填時のスクリュ330の移動方向(例えばX軸負方向)を前方とし、計量時のスクリュ330の移動方向(例えばX軸正方向)を後方として説明する。
(Injection device)
In the description of the injection device 300, unlike the description of the mold clamping device 100 and the description of the ejector device 200, the moving direction of the screw 330 during filling (for example, the negative direction of the X axis) is defined as the forward direction, and the moving direction of the screw 330 during metering is defined as the forward direction. (For example, the positive direction of the X-axis) will be described as the rear.
 射出装置300はスライドベース301に設置され、スライドベース301は射出装置フレーム920に対し進退自在に配置される。射出装置300は、金型装置800に対し進退自在に配置される。射出装置300は、金型装置800にタッチし、金型装置800内のキャビティ空間801に成形材料を充填する。射出装置300は、例えば、シリンダ310、ノズル320、スクリュ330、計量モータ340、射出モータ350、荷重検出器360などを有する。 The injection device 300 is installed on a slide base 301 , and the slide base 301 is arranged to move forward and backward relative to the injection device frame 920 . The injection device 300 is arranged to move back and forth with respect to the mold device 800 . The injection device 300 touches the mold device 800 and fills the cavity space 801 in the mold device 800 with the molding material. The injection device 300 has, for example, a cylinder 310, a nozzle 320, a screw 330, a metering motor 340, an injection motor 350, a load detector 360, and the like.
 シリンダ310は、供給口311から内部に供給された成形材料を加熱する。成形材料は、例えば樹脂などを含む。成形材料は、例えばペレット状に形成され、固体の状態で供給口311に供給される。供給口311はシリンダ310の後部に形成される。シリンダ310の後部の外周には、水冷シリンダなどの冷却器312が設けられる。冷却器312よりも前方において、シリンダ310の外周には、バンドヒータなどの加熱器313と温度検出器314とが設けられる。 The cylinder 310 heats the molding material supplied inside from the supply port 311 . The molding material includes, for example, resin. The molding material is formed into, for example, a pellet shape and supplied to the supply port 311 in a solid state. A supply port 311 is formed in the rear portion of the cylinder 310 . A cooler 312 such as a water-cooled cylinder is provided on the outer circumference of the rear portion of the cylinder 310 . A heater 313 such as a band heater and a temperature detector 314 are provided on the outer periphery of the cylinder 310 ahead of the cooler 312 .
 シリンダ310は、シリンダ310の軸方向(例えばX軸方向)に複数のゾーンに区分される。複数のゾーンのそれぞれに加熱器313と温度検出器314とが設けられる。複数のゾーンのそれぞれに設定温度が設定され、温度検出器314の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。 The cylinder 310 is divided into a plurality of zones in the axial direction of the cylinder 310 (for example, the X-axis direction). A heater 313 and a temperature detector 314 are provided in each of the plurality of zones. A set temperature is set for each of the plurality of zones, and the controller 700 controls the heater 313 so that the temperature detected by the temperature detector 314 becomes the set temperature.
 ノズル320は、シリンダ310の前端部に設けられ、金型装置800に対し押し付けられる。ノズル320の外周には、加熱器313と温度検出器314とが設けられる。ノズル320の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。 The nozzle 320 is provided at the front end of the cylinder 310 and pressed against the mold device 800 . A heater 313 and a temperature detector 314 are provided around the nozzle 320 . The controller 700 controls the heater 313 so that the detected temperature of the nozzle 320 becomes the set temperature.
 スクリュ330は、シリンダ310内に回転自在に且つ進退自在に配置される。スクリュ330を回転させると、スクリュ330の螺旋状の溝に沿って成形材料が前方に送られる。成形材料は、前方に送られながら、シリンダ310からの熱によって徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。その後、スクリュ330を前進させると、スクリュ330前方に蓄積された液状の成形材料がノズル320から射出され、金型装置800内に充填される。 The screw 330 is arranged in the cylinder 310 so as to be rotatable and advanceable. When the screw 330 is rotated, the molding material is sent forward along the helical groove of the screw 330 . The molding material is gradually melted by the heat from the cylinder 310 while being fed forward. The screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . After that, when the screw 330 is advanced, the liquid molding material accumulated in front of the screw 330 is injected from the nozzle 320 and filled in the mold device 800 .
 スクリュ330の前部には、スクリュ330を前方に押すときにスクリュ330の前方から後方に向かう成形材料の逆流を防止する逆流防止弁として、逆流防止リング331が進退自在に取付けられる。 A backflow prevention ring 331 is movably attached to the front of the screw 330 as a backflow prevention valve that prevents backflow of the molding material from the front to the rear of the screw 330 when the screw 330 is pushed forward.
 逆流防止リング331は、スクリュ330を前進させるときに、スクリュ330前方の成形材料の圧力によって後方に押され、成形材料の流路を塞ぐ閉塞位置(図2参照)までスクリュ330に対し相対的に後退する。これにより、スクリュ330前方に蓄積された成形材料が後方に逆流するのを防止する。 The anti-backflow ring 331 is pushed backward by the pressure of the molding material in front of the screw 330 when the screw 330 is advanced, and is relatively to the screw 330 until it reaches a closed position (see FIG. 2) that blocks the flow path of the molding material. fall back. This prevents the molding material accumulated in front of the screw 330 from flowing backward.
 一方、逆流防止リング331は、スクリュ330を回転させるときに、スクリュ330の螺旋状の溝に沿って前方に送られる成形材料の圧力によって前方に押され、成形材料の流路を開放する開放位置(図1参照)までスクリュ330に対し相対的に前進する。これにより、スクリュ330の前方に成形材料が送られる。 On the other hand, the anti-backflow ring 331 is pushed forward by the pressure of the molding material sent forward along the helical groove of the screw 330 when the screw 330 is rotated, and is in an open position where the flow path of the molding material is opened. (see FIG. 1) relative to the screw 330. Thereby, the molding material is sent forward of the screw 330 .
 逆流防止リング331は、スクリュ330と共に回転する共回りタイプと、スクリュ330と共に回転しない非共回りタイプのいずれでもよい。 The anti-backflow ring 331 may be either a co-rotating type that rotates together with the screw 330 or a non-co-rotating type that does not rotate together with the screw 330 .
 なお、射出装置300は、スクリュ330に対し逆流防止リング331を開放位置と閉塞位置との間で進退させる駆動源を有していてもよい。 It should be noted that the injection device 300 may have a drive source that advances and retracts the backflow prevention ring 331 with respect to the screw 330 between the open position and the closed position.
 計量モータ340は、スクリュ330を回転させる。スクリュ330を回転させる駆動源は、計量モータ340には限定されず、例えば油圧ポンプなどでもよい。 The metering motor 340 rotates the screw 330 . The drive source for rotating the screw 330 is not limited to the metering motor 340, and may be, for example, a hydraulic pump.
 射出モータ350は、スクリュ330を進退させる。射出モータ350とスクリュ330との間には、射出モータ350の回転運動をスクリュ330の直線運動に変換する運動変換機構などが設けられる。運動変換機構は、例えば、ねじ軸と、ねじ軸に螺合するねじナットとを有する。ねじ軸とねじナットの間には、ボールやローラなどが設けられてよい。スクリュ330を進退させる駆動源は、射出モータ350には限定されず、例えば油圧シリンダなどでもよい。 The injection motor 350 moves the screw 330 forward and backward. Between the injection motor 350 and the screw 330, a motion conversion mechanism or the like that converts the rotary motion of the injection motor 350 into the linear motion of the screw 330 is provided. The motion conversion mechanism has, for example, a screw shaft and a screw nut that screws onto the screw shaft. Balls, rollers, or the like may be provided between the screw shaft and the screw nut. The drive source for advancing and retreating the screw 330 is not limited to the injection motor 350, and may be, for example, a hydraulic cylinder.
 荷重検出器360は、射出モータ350とスクリュ330との間で伝達される力を検出する。検出した力は、制御装置700で圧力に換算される。荷重検出器360は、射出モータ350とスクリュ330との間の力の伝達経路に設けられ、荷重検出器360に作用する力を検出する。 A load detector 360 detects the force transmitted between the injection motor 350 and the screw 330 . The detected force is converted into pressure by the control device 700 . The load detector 360 is provided in the force transmission path between the injection motor 350 and the screw 330 and detects the force acting on the load detector 360 .
 荷重検出器360は、その検出結果を示す信号を制御装置700に送る。荷重検出器360の検出結果は、スクリュ330が成形材料から受ける圧力、スクリュ330に対する背圧、スクリュ330から成形材料に作用する圧力などの制御や監視に用いられる。 The load detector 360 sends a signal indicating the detection result to the control device 700 . The detection result of the load detector 360 is used for controlling and monitoring the pressure that the screw 330 receives from the molding material, the back pressure against the screw 330, the pressure that the screw 330 acts on the molding material, and the like.
 なお、成形材料の圧力を検出する圧力検出器は、荷重検出器360に限定されず、一般的なものを使用できる。例えば、ノズル圧センサ、又は型内圧センサが用いられてもよい。ノズル圧センサは、ノズル320に設置される。型内圧センサは、金型装置800の内部に設置される。 Note that the pressure detector that detects the pressure of the molding material is not limited to the load detector 360, and a general one can be used. For example, a nozzle pressure sensor or a mold internal pressure sensor may be used. A nozzle pressure sensor is installed at the nozzle 320 . The mold internal pressure sensor is installed inside the mold apparatus 800 .
 射出装置300は、制御装置700による制御下で、計量工程、充填工程及び保圧工程などを行う。充填工程と保圧工程とをまとめて射出工程と呼んでもよい。 Under the control of the control device 700, the injection device 300 performs a weighing process, a filling process, a holding pressure process, and the like. The filling process and the holding pressure process may collectively be called an injection process.
 計量工程では、計量モータ340を駆動してスクリュ330を設定回転速度で回転させ、スクリュ330の螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。スクリュ330の回転速度は、例えば計量モータエンコーダ341を用いて検出する。計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送る。また、スクリュ330の回転速度を検出するスクリュ回転速度検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。 In the weighing process, the weighing motor 340 is driven to rotate the screw 330 at a set rotation speed, and the molding material is fed forward along the helical groove of the screw 330. Along with this, the molding material is gradually melted. The screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . The rotation speed of the screw 330 is detected using a metering motor encoder 341, for example. Weighing motor encoder 341 detects the rotation of weighing motor 340 and sends a signal indicating the detection result to control device 700 . Moreover, the screw rotation speed detector for detecting the rotation speed of the screw 330 is not limited to the metering motor encoder 341, and a general one can be used.
 計量工程では、スクリュ330の急激な後退を制限すべく、射出モータ350を駆動してスクリュ330に対して設定背圧を加えてよい。スクリュ330に対する背圧は、例えば荷重検出器360を用いて検出する。荷重検出器360は、その検出結果を示す信号を制御装置700に送る。スクリュ330が計量完了位置まで後退し、スクリュ330の前方に所定量の成形材料が蓄積されると、計量工程が完了する。 In the metering process, the injection motor 350 may be driven to apply a set back pressure to the screw 330 in order to limit rapid retraction of the screw 330 . The back pressure on the screw 330 is detected using a load detector 360, for example. Load detector 360 sends a signal indicating the detection result to control device 700 . The metering process is completed when the screw 330 is retracted to the metering completion position and a predetermined amount of molding material is accumulated in front of the screw 330 .
 計量工程におけるスクリュ330の位置及び回転速度は、一連の設定条件として、まとめて設定される。例えば、計量開始位置、回転速度切換位置及び計量完了位置が設定される。これらの位置は、前側から後方に向けてこの順で並び、回転速度が設定される区間の始点や終点を表す。区間毎に、回転速度が設定される。回転速度切換位置は、1つでもよいし、複数でもよい。回転速度切換位置は、設定されなくてもよい。また、区間毎に背圧が設定される。 The position and rotational speed of the screw 330 in the weighing process are collectively set as a series of setting conditions. For example, a weighing start position, rotation speed switching position, and weighing completion position are set. These positions are arranged in this order from the front side to the rear side, and represent the start point and end point of the section in which the rotational speed is set. A rotation speed is set for each section. The rotational speed switching position may be one or plural. The rotation speed switching position does not have to be set. Also, the back pressure is set for each section.
 充填工程では、射出モータ350を駆動してスクリュ330を設定移動速度で前進させ、スクリュ330の前方に蓄積された液状の成形材料を金型装置800内のキャビティ空間801に充填させる。スクリュ330の位置や移動速度は、例えば射出モータエンコーダ351を用いて検出する。射出モータエンコーダ351は、射出モータ350の回転を検出し、その検出結果を示す信号を制御装置700に送る。スクリュ330の位置が設定位置に達すると、充填工程から保圧工程への切換(所謂、V/P切換)が行われる。V/P切換が行われる位置をV/P切換位置とも呼ぶ。スクリュ330の設定移動速度は、スクリュ330の位置や時間などに応じて変更されてもよい。 In the filling process, the injection motor 350 is driven to advance the screw 330 at a set movement speed, and the liquid molding material accumulated in front of the screw 330 is filled into the cavity space 801 in the mold device 800 . The position and moving speed of the screw 330 are detected using an injection motor encoder 351, for example. The injection motor encoder 351 detects rotation of the injection motor 350 and sends a signal indicating the detection result to the control device 700 . When the position of the screw 330 reaches the set position, switching from the filling process to the holding pressure process (so-called V/P switching) is performed. The position at which V/P switching takes place is also called the V/P switching position. The set moving speed of the screw 330 may be changed according to the position of the screw 330, time, and the like.
 充填工程におけるスクリュ330の位置及び移動速度は、一連の設定条件として、まとめて設定される。例えば、充填開始位置(「射出開始位置」とも呼ぶ。)、移動速度切換位置及びV/P切換位置が設定される。これらの位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。 The position and movement speed of the screw 330 in the filling process are collectively set as a series of setting conditions. For example, a filling start position (also called an “injection start position”), a moving speed switching position, and a V/P switching position are set. These positions are arranged in this order from the rear side to the front side, and represent the start point and end point of the section for which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set.
 スクリュ330の移動速度が設定される区間毎に、スクリュ330の圧力の上限値が設定される。スクリュ330の圧力は、荷重検出器360によって検出される。荷重検出器360の検出値が設定圧力以下である場合、スクリュ330は設定移動速度で前進される。一方、荷重検出器360の検出値が設定圧力を超える場合、金型保護を目的として、荷重検出器360の検出値が設定圧力以下となるように、スクリュ330は設定移動速度よりも遅い移動速度で前進される。 The upper limit value of the pressure of the screw 330 is set for each section in which the moving speed of the screw 330 is set. The pressure of screw 330 is detected by load detector 360 . When the detected value of the load detector 360 is equal to or less than the set pressure, the screw 330 is advanced at the set moving speed. On the other hand, when the detected value of the load detector 360 exceeds the set pressure, the screw 330 moves at a slower moving speed than the set moving speed so that the detected value of the load detector 360 becomes equal to or less than the set pressure for the purpose of mold protection. to move forward.
 なお、充填工程においてスクリュ330の位置がV/P切換位置に達した後、V/P切換位置にスクリュ330を一時停止させ、その後にV/P切換が行われてもよい。V/P切換の直前において、スクリュ330の停止の代わりに、スクリュ330の微速前進または微速後退が行われてもよい。また、スクリュ330の位置を検出するスクリュ位置検出器、及びスクリュ330の移動速度を検出するスクリュ移動速度検出器は、射出モータエンコーダ351に限定されず、一般的なものを使用できる。 It should be noted that after the position of the screw 330 reaches the V/P switching position in the filling process, the screw 330 may be temporarily stopped at the V/P switching position, and then the V/P switching may be performed. Immediately before the V/P switching, instead of stopping the screw 330, the screw 330 may be slowly advanced or slowly retracted. Moreover, the screw position detector for detecting the position of the screw 330 and the screw moving speed detector for detecting the moving speed of the screw 330 are not limited to the injection motor encoder 351, and general ones can be used.
 保圧工程では、射出モータ350を駆動してスクリュ330を前方に押し、スクリュ330の前端部における成形材料の圧力(以下、「保持圧力」とも呼ぶ。)を設定圧に保ち、シリンダ310内に残る成形材料を金型装置800に向けて押す。金型装置800内での冷却収縮による不足分の成形材料を補充できる。保持圧力は、例えば荷重検出器360を用いて検出する。荷重検出器360は、その検出結果を示す信号を制御装置700に送る。保持圧力の設定値は、保圧工程の開始からの経過時間などに応じて変更されてもよい。保圧工程における保持圧力及び保持圧力を保持する保持時間は、それぞれ複数設定されてよく、一連の設定条件として、まとめて設定されてよい。 In the holding pressure process, the injection motor 350 is driven to push the screw 330 forward, and the pressure of the molding material at the front end of the screw 330 (hereinafter also referred to as “holding pressure”) is maintained at the set pressure. The remaining molding material is pushed toward the mold device 800 . A shortage of molding material due to cooling shrinkage in the mold apparatus 800 can be replenished. The holding pressure is detected using the load detector 360, for example. Load detector 360 sends a signal indicating the detection result to control device 700 . The set value of the holding pressure may be changed according to the elapsed time from the start of the holding pressure process. A plurality of holding pressures and holding times for holding the holding pressure in the holding pressure step may be set respectively, and may be collectively set as a series of setting conditions.
 保圧工程では金型装置800内のキャビティ空間801の成形材料が徐々に冷却され、保圧工程完了時にはキャビティ空間801の入口が固化した成形材料で塞がれる。この状態はゲートシールと呼ばれ、キャビティ空間801からの成形材料の逆流が防止される。保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間801内の成形材料の固化が行われる。成形サイクル時間の短縮を目的として、冷却工程中に計量工程が行われてよい。 In the holding pressure process, the molding material in the cavity space 801 inside the mold device 800 is gradually cooled, and when the holding pressure process is completed, the entrance of the cavity space 801 is closed with the solidified molding material. This state is called a gate seal, and prevents the molding material from flowing back from the cavity space 801 . After the holding pressure process, the cooling process is started. In the cooling process, the molding material inside the cavity space 801 is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
 なお、本実施形態の射出装置300は、インライン・スクリュ方式であるが、プリプラ方式などでもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。可塑化シリンダ内には、スクリュが回転自在に且つ進退不能に配置され、またはスクリュが回転自在に且つ進退自在に配置される。一方、射出シリンダ内には、プランジャが進退自在に配置される。 Although the injection device 300 of the present embodiment is of the in-line screw method, it may be of the pre-plastic method or the like. A pre-plastic injection apparatus supplies molding material melted in a plasticizing cylinder to an injection cylinder, and injects the molding material from the injection cylinder into a mold apparatus. Inside the plasticizing cylinder, a screw is arranged to be rotatable and non-retractable, or a screw is arranged to be rotatable and reciprocal. On the other hand, a plunger is arranged in the injection cylinder so that it can move back and forth.
 また、本実施形態の射出装置300は、シリンダ310の軸方向が水平方向である横型であるが、シリンダ310の軸方向が上下方向である竪型であってもよい。竪型の射出装置300と組み合わされる型締装置は、竪型でも横型でもよい。同様に、横型の射出装置300と組み合わされる型締装置は、横型でも竪型でもよい。 Further, the injection device 300 of the present embodiment is a horizontal type in which the axial direction of the cylinder 310 is horizontal, but may be a vertical type in which the axial direction of the cylinder 310 is vertical. The mold clamping device combined with the vertical injection device 300 may be either vertical or horizontal. Similarly, the mold clamping device combined with the horizontal injection device 300 may be horizontal or vertical.
 このように、本実施形態では、射出装置300は、計量モータ340及び射出モータ350等の電動アクチュエータにより電気駆動される。これにより、射出装置300は、制御装置700からの制御指令に対する油圧駆動される場合よりも応答性を相対的に高めることができる。そのため、射出成形機10は、射出装置300の相対的に優れた制御性を実現することができる。 Thus, in this embodiment, the injection device 300 is electrically driven by electric actuators such as the metering motor 340 and the injection motor 350 . As a result, the injection device 300 can be relatively more responsive to the control command from the control device 700 than when it is hydraulically driven. Therefore, the injection molding machine 10 can achieve relatively excellent controllability of the injection device 300 .
 (移動装置)
 移動装置400の説明では、射出装置300の説明と同様に、充填時のスクリュ330の移動方向(例えばX軸負方向)を前方とし、計量時のスクリュ330の移動方向(例えばX軸正方向)を後方として説明する。
(moving device)
In the description of the moving device 400, as in the description of the injection device 300, the moving direction of the screw 330 during filling (for example, the negative direction of the X-axis) is defined as forward, and the moving direction of the screw 330 during weighing (eg, the positive direction of the X-axis). is described as backward.
 移動装置400は、金型装置800に対し射出装置300を進退させる。また、移動装置400は、金型装置800に対しノズル320を押し付け、ノズルタッチ圧力を生じさせる。移動装置400は、液圧ポンプ410、駆動源としてのモータ420、液圧アクチュエータとしての液圧シリンダ430などを含む。 The moving device 400 advances and retreats the injection device 300 with respect to the mold device 800 . Further, the moving device 400 presses the nozzle 320 against the mold device 800 to generate nozzle touch pressure. The moving device 400 includes a hydraulic pump 410, a motor 420 as a drive source, a hydraulic cylinder 430 as a hydraulic actuator, and the like.
 液圧ポンプ410は、第1ポート411と、第2ポート412とを有する。液圧ポンプ410は、両方向回転可能なポンプであり、モータ420の回転方向を切換えることにより、第1ポート411及び第2ポート412のいずれか一方から作動液(例えば油)を吸入し他方から吐出して液圧を発生させる。また、液圧ポンプ410はタンクから作動液を吸引して第1ポート411及び第2ポート412のいずれか一方から作動液を吐出することもできる。 The hydraulic pump 410 has a first port 411 and a second port 412 . Hydraulic pump 410 is a pump that can rotate in both directions, and by switching the rotation direction of motor 420, hydraulic fluid (for example, oil) is sucked from one of first port 411 and second port 412 and discharged from the other. to generate hydraulic pressure. In addition, the hydraulic pump 410 can also suck the hydraulic fluid from the tank and discharge the hydraulic fluid from either the first port 411 or the second port 412 .
 モータ420は、液圧ポンプ410を作動させる。モータ420は、制御装置700からの制御信号に応じた回転方向及び回転トルクで液圧ポンプ410を駆動する。モータ420は、電動モータであってよく、電動サーボモータであってよい。 The motor 420 operates the hydraulic pump 410 . Motor 420 drives hydraulic pump 410 with a rotational direction and a rotational torque according to a control signal from control device 700 . Motor 420 may be an electric motor or may be an electric servomotor.
 液圧シリンダ430は、シリンダ本体431、ピストン432、及びピストンロッド433を有する。シリンダ本体431は、射出装置300に対して固定される。ピストン432は、シリンダ本体431の内部を、第1室としての前室435と、第2室としての後室436とに区画する。ピストンロッド433は、固定プラテン110に対して固定される。 The hydraulic cylinder 430 has a cylinder body 431 , a piston 432 and a piston rod 433 . The cylinder body 431 is fixed with respect to the injection device 300 . The piston 432 partitions the inside of the cylinder body 431 into a front chamber 435 as a first chamber and a rear chamber 436 as a second chamber. Piston rod 433 is fixed relative to stationary platen 110 .
 液圧シリンダ430の前室435は、第1流路401を介して、液圧ポンプ410の第1ポート411と接続される。第1ポート411から吐出された作動液が第1流路401を介して前室435に供給されることで、射出装置300が前方に押される。射出装置300が前進され、ノズル320が固定金型810に押し付けられる。前室435は、液圧ポンプ410から供給される作動液の圧力によってノズル320のノズルタッチ圧力を生じさせる圧力室として機能する。 The front chamber 435 of the hydraulic cylinder 430 is connected to the first port 411 of the hydraulic pump 410 via the first flow path 401 . The hydraulic fluid discharged from the first port 411 is supplied to the front chamber 435 through the first flow path 401, thereby pushing the injection device 300 forward. The injection device 300 is advanced and the nozzle 320 is pressed against the stationary mold 810 . The front chamber 435 functions as a pressure chamber that generates nozzle touch pressure of the nozzle 320 by the pressure of the hydraulic fluid supplied from the hydraulic pump 410 .
 一方、液圧シリンダ430の後室436は、第2流路402を介して液圧ポンプ410の第2ポート412と接続される。第2ポート412から吐出された作動液が第2流路402を介して液圧シリンダ430の後室436に供給されることで、射出装置300が後方に押される。射出装置300が後退され、ノズル320が固定金型810から離間される。 On the other hand, the rear chamber 436 of the hydraulic cylinder 430 is connected to the second port 412 of the hydraulic pump 410 via the second flow path 402 . The hydraulic fluid discharged from the second port 412 is supplied to the rear chamber 436 of the hydraulic cylinder 430 through the second flow path 402, thereby pushing the injection device 300 rearward. The injection device 300 is retracted and the nozzle 320 is separated from the stationary mold 810 .
 なお、本実施形態では移動装置400は液圧シリンダ430を含むが、本発明はこれに限定されない。例えば、液圧シリンダ430の代わりに、電動モータと、その電動モータの回転運動を射出装置300の直線運動に変換する運動変換機構とが用いられてもよい。 Although the moving device 400 includes the hydraulic cylinder 430 in this embodiment, the present invention is not limited to this. For example, instead of the hydraulic cylinder 430, an electric motor and a motion conversion mechanism that converts the rotary motion of the electric motor to the linear motion of the injection device 300 may be used.
 (制御装置)
 制御装置700は、例えばコンピュータで構成され、図1~図2に示すようにCPU(Central Processing Unit)701と、メモリなどの記憶媒体702と、入力インターフェース703と、出力インターフェース704とを有する。制御装置700は、記憶媒体702に記憶されたプログラムをCPU701に実行させることにより、各種の制御を行う。また、制御装置700は、入力インターフェース703で外部からの信号を受信し、出力インターフェース704で外部に信号を送信する。
(Control device)
The control device 700 is composed of, for example, a computer, and has a CPU (Central Processing Unit) 701, a storage medium 702 such as a memory, an input interface 703, and an output interface 704, as shown in FIGS. The control device 700 performs various controls by causing the CPU 701 to execute programs stored in the storage medium 702 . The control device 700 also receives signals from the outside through an input interface 703 and transmits signals to the outside through an output interface 704 .
 制御装置700は、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、及び突き出し工程などを繰り返し行うことにより、成形品を繰り返し製造する。成形品を得るための一連の動作、例えば計量工程の開始から次の計量工程の開始までの動作を「ショット」または「成形サイクル」とも呼ぶ。また、1回のショットに要する時間を「成形サイクル時間」または「サイクル時間」とも呼ぶ。 The control device 700 repeatedly performs a weighing process, a mold closing process, a pressurizing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process, thereby producing a molded product. Repeat production. A series of operations for obtaining a molded product, for example, the operation from the start of the weighing process to the start of the next weighing process, is also called "shot" or "molding cycle". The time required for one shot is also called "molding cycle time" or "cycle time".
 一回の成形サイクルは、例えば、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、及び突き出し工程をこの順で有する。ここでの順番は、各工程の開始の順番である。充填工程、保圧工程、及び冷却工程は、型締工程の間に行われる。型締工程の開始は充填工程の開始と一致してもよい。脱圧工程の終了は型開工程の開始と一致する。 A single molding cycle has, for example, a weighing process, a mold closing process, a pressure increasing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process in this order. The order here is the order of the start of each step. The filling process, holding pressure process, and cooling process are performed during the clamping process. The start of the clamping process may coincide with the start of the filling process. The end of the depressurization process coincides with the start of the mold opening process.
 なお、成形サイクル時間の短縮を目的として、同時に複数の工程を行ってもよい。例えば、計量工程は、前回の成形サイクルの冷却工程中に行われてもよく、型締工程の間に行われてよい。この場合、型閉工程が成形サイクルの最初に行われることとしてもよい。また、充填工程は、型閉工程中に開始されてもよい。また、突き出し工程は、型開工程中に開始されてもよい。ノズル320の流路を開閉する開閉弁が設けられる場合、型開工程は、計量工程中に開始されてもよい。計量工程中に型開工程が開始されても、開閉弁がノズル320の流路を閉じていれば、ノズル320から成形材料が漏れないためである。 In addition, multiple processes may be performed at the same time for the purpose of shortening the molding cycle time. For example, the metering step may occur during the cooling step of the previous molding cycle and may occur during the clamping step. In this case, the mold closing process may be performed at the beginning of the molding cycle. The filling process may also be initiated during the mold closing process. Also, the ejecting process may be initiated during the mold opening process. If an on-off valve for opening and closing the flow path of the nozzle 320 is provided, the mold opening process may be initiated during the metering process. This is because the molding material does not leak from the nozzle 320 as long as the on-off valve closes the flow path of the nozzle 320 even if the mold opening process is started during the metering process.
 なお、一回の成形サイクルは、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、及び突き出し工程以外の工程を有してもよい。 One molding cycle includes processes other than the weighing process, mold closing process, pressurizing process, mold clamping process, filling process, holding pressure process, cooling process, depressurizing process, mold opening process, and ejecting process. may
 例えば、保圧工程の完了後、計量工程の開始前に、スクリュ330を予め設定された計量開始位置まで後退させる計量前サックバック工程が行われてもよい。計量工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を低減でき、計量工程の開始時のスクリュ330の急激な後退を防止できる。 For example, after the pressure holding process is completed, a pre-measuring suck-back process may be performed in which the screw 330 is retracted to a preset measuring start position before starting the measuring process. It is possible to reduce the pressure of the molding material accumulated in front of the screw 330 before the start of the metering process, and to prevent the screw 330 from abrupt retraction at the start of the metering process.
 また、計量工程の完了後、充填工程の開始前に、スクリュ330を予め設定された充填開始位置(「射出開始位置」とも呼ぶ。)まで後退させる計量後サックバック工程が行われてもよい。充填工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を低減でき、充填工程の開始前のノズル320からの成形材料の漏出を防止できる。 Also, after the weighing process is completed and before the filling process starts, a post-weighing suck-back process may be performed in which the screw 330 is retracted to a preset filling start position (also referred to as an "injection start position"). The pressure of the molding material accumulated in front of the screw 330 before the start of the filling process can be reduced, and leakage of the molding material from the nozzle 320 before the start of the filling process can be prevented.
 制御装置700は、ユーザによる入力操作を受け付ける操作装置750や画面を表示する表示装置760と接続されている。操作装置750および表示装置760は、例えばタッチパネル770で構成され、一体化されてよい。表示装置760としてのタッチパネル770は、制御装置700による制御下で、画面を表示する。タッチパネル770の画面には、例えば、射出成形機10の設定、現在の射出成形機10の状態等の情報が表示されてもよい。また、タッチパネル770の画面には、例えば、ユーザによる入力操作を受け付けるボタン、入力欄等の操作部が表示されてもよい。操作装置750としてのタッチパネル770は、ユーザによる画面上の入力操作を検出し、入力操作に応じた信号を制御装置700に出力する。これにより、例えば、ユーザは、画面に表示される情報を確認しながら、画面に設けられた操作部を操作して、射出成形機10の設定(設定値の入力を含む)等を行うことができる。また、ユーザが画面に設けられた操作部を操作することにより、操作部に対応する射出成形機10の動作を行わせることができる。なお、射出成形機10の動作は、例えば、型締装置100、エジェクタ装置200、射出装置300、移動装置400等の動作(停止も含む)であってもよい。また、射出成形機10の動作は、表示装置760としてのタッチパネル770に表示される画面の切り替え等であってもよい。 The control device 700 is connected to an operation device 750 that receives user input operations and a display device 760 that displays screens. The operation device 750 and the display device 760 may be configured by, for example, a touch panel 770 and integrated. A touch panel 770 as a display device 760 displays a screen under the control of the control device 700 . Information such as the settings of the injection molding machine 10 and the current state of the injection molding machine 10 may be displayed on the screen of the touch panel 770 . Further, on the screen of the touch panel 770, for example, an operation unit such as a button for receiving an input operation by the user or an input field may be displayed. A touch panel 770 as the operation device 750 detects an input operation on the screen by the user and outputs a signal corresponding to the input operation to the control device 700 . As a result, for example, the user can operate the operation unit provided on the screen while confirming the information displayed on the screen to set the injection molding machine 10 (including input of set values). can. Further, the user can operate the operation unit provided on the screen to cause the injection molding machine 10 to operate corresponding to the operation unit. The operation of the injection molding machine 10 may be, for example, the operation (including stopping) of the mold clamping device 100, the ejector device 200, the injection device 300, the moving device 400, and the like. Also, the operation of the injection molding machine 10 may be switching of screens displayed on the touch panel 770 as the display device 760 .
 なお、本実施形態の操作装置750及び表示装置760は、タッチパネル770として一体化されているものとして説明したが、独立に設けられてもよい。また、操作装置750は、複数設けられてもよい。操作装置750及び表示装置760は、型締装置100(より詳細には固定プラテン110)の操作側(Y軸負方向)に配置される。 Although the operating device 750 and the display device 760 of the present embodiment have been described as being integrated as the touch panel 770, they may be provided independently. Also, a plurality of operating devices 750 may be provided. The operating device 750 and the display device 760 are arranged on the operating side (Y-axis negative direction) of the mold clamping device 100 (more specifically, the fixed platen 110).
(第1実施形態)
 次に、図3を参照して、型締装置100の詳細について説明する。
(First embodiment)
Next, details of the mold clamping device 100 will be described with reference to FIG.
 図3は、本実施形態に係る型締装置100の一例を示す図である。具体的には、図3は、型閉工程における型締装置100の動作状態を表す図である。なお、図3では、金型装置800の描画が省略されている。 FIG. 3 is a diagram showing an example of the mold clamping device 100 according to this embodiment. Specifically, FIG. 3 is a diagram showing the operating state of the mold clamping device 100 in the mold closing process. In addition, drawing of the mold device 800 is omitted in FIG.
 図3に示すように、型締装置100は、固定プラテン110と、可動プラテン120と、タイバー140と、油圧シリンダ150と、油圧回路160と、サーボモータ170とを含んでいる。 As shown in FIG. 3, the mold clamping device 100 includes a stationary platen 110, a movable platen 120, tie bars 140, a hydraulic cylinder 150, a hydraulic circuit 160, and a servomotor 170.
 油圧シリンダ150は、シリンダ本体部151と、ピストン部152と、ロッド部153と、シリンダ閉塞部154とを含んでいる。 The hydraulic cylinder 150 includes a cylinder body portion 151, a piston portion 152, a rod portion 153, and a cylinder closing portion 154.
 シリンダ本体部151は、油圧シリンダ150の固定部である。シリンダ本体部151は、固定プラテン110に一端が連結されるタイバー140の他端と連結される。これにより、シリンダ本体部151は、固定プラテン110との間の距離が一定(間隔L)に固定される。シリンダ本体部151には、前端部(X軸負方向の端部)が開放される中空部が設けられる。 The cylinder body portion 151 is a fixed portion of the hydraulic cylinder 150 . Cylinder main body 151 is connected to the other end of tie bar 140 , one end of which is connected to stationary platen 110 . As a result, the cylinder main body 151 is fixed at a constant distance (interval L) from the fixed platen 110 . The cylinder main body 151 is provided with a hollow portion whose front end (the end in the negative direction of the X axis) is open.
 タイバー140を介して連結されるシリンダ本体部151及び固定プラテン110は、何れか一方が型締装置フレーム910に固定され、他方が型締装置フレーム910の上で移動可能に載置される。これにより、型締力の発生によるタイバー140の伸びを許容することができる。 One of the cylinder main body 151 and the stationary platen 110 that are connected via tie bars 140 is fixed to the mold clamping device frame 910 and the other is movably mounted on the mold clamping device frame 910 . Thereby, the elongation of the tie bar 140 due to the generation of the mold clamping force can be allowed.
 ピストン部152は、一端がシリンダ本体部151の内部(中空部)に挿入され、他端が可動プラテン120に固定される。これにより、ピストン部152は、シリンダ本体部151に給排される作業油の作用で、前後方向(X方向)に移動することができ、その結果、その一端に固定される可動プラテン120を前後方向(X方向)に移動させることができる。また、ピストン部152には、シリンダ本体部151の内部側に開放される中空部が設けられる。 One end of the piston portion 152 is inserted into the interior (hollow portion) of the cylinder body portion 151 and the other end is fixed to the movable platen 120 . As a result, the piston portion 152 can move in the front-rear direction (X direction) by the action of the working oil supplied to and discharged from the cylinder body portion 151, and as a result, the movable platen 120 fixed to one end of the piston portion 152 moves back and forth. It can be moved in the direction (X direction). Further, the piston portion 152 is provided with a hollow portion that opens to the inside of the cylinder body portion 151 .
 ロッド部153は、一端がシリンダ本体部151の中空部の閉塞端部(即ち、X軸負方向の端部)に固定され、他端がピストン部152の中空部に挿入される。これにより、ロッド部153は、ピストン部152の中空部(後述の油室157)に供給される作動油の作用で、ピストン部152を前方(X軸正方向)に移動させることができる。また、ロッド部153には、ピストン部152の中空部に挿入される他端側から軸方向に延び出す孔部が設けられる。 One end of the rod portion 153 is fixed to the closed end portion of the hollow portion of the cylinder main body portion 151 (that is, the end portion in the negative direction of the X axis), and the other end is inserted into the hollow portion of the piston portion 152 . Accordingly, the rod portion 153 can move the piston portion 152 forward (positive direction of the X-axis) by the action of hydraulic oil supplied to a hollow portion (an oil chamber 157 described later) of the piston portion 152 . Further, the rod portion 153 is provided with a hole extending in the axial direction from the other end side that is inserted into the hollow portion of the piston portion 152 .
 シリンダ閉塞部154は、シリンダ本体部151の開放端部を閉塞する。シリンダ閉塞部154には、ピストン部152が貫通し進退可能な貫通孔が設けられる。 The cylinder closing portion 154 closes the open end of the cylinder body portion 151 . The cylinder closing portion 154 is provided with a through hole through which the piston portion 152 can advance and retreat.
 また、油圧シリンダ150の内部には、油室155~157が設けられる。 Also, oil chambers 155 to 157 are provided inside the hydraulic cylinder 150 .
 油室155は、シリンダ本体部151の中空部の閉塞端部(X軸負方向の端部)において、シリンダ本体部151の内壁及びピストン部152の先端部(一端部)により区画される形で設けられる。これにより、ピストン部152は、油室155に供給される作動油の作用で、可動プラテン120に型締力を作用させることができる。油室155には、作動油の給排用のポート155Pが設けられる。 The oil chamber 155 is defined by the inner wall of the cylinder body 151 and the tip (one end) of the piston 152 at the closed end (the end in the negative direction of the X axis) of the hollow portion of the cylinder body 151 . be provided. As a result, the piston portion 152 can exert a mold clamping force on the movable platen 120 by the action of hydraulic oil supplied to the oil chamber 155 . The oil chamber 155 is provided with a port 155P for supplying and discharging hydraulic oil.
 本実施形態は、型閉工程に関する説明であって、型締力を作用させるための油室155に作業油の供給、排出を行う油圧回路は、従来と同様の油圧回路でよく、説明を省略する。 This embodiment relates to the mold closing process, and the hydraulic circuit for supplying and discharging working oil to and from the oil chamber 155 for applying the mold clamping force may be the same as the conventional hydraulic circuit, and the description is omitted. do.
 油室156は、シリンダ本体部151の開放端部(X軸正方向の端部)において、シリンダ本体部151の内壁、シリンダ閉塞部154の内壁、及びピストン部152の中間部により区画される形で設けられる。これにより、ピストン部152は、油室156に供給される作動油の作用で、後退する(即ち、X軸負方向に移動する)ことができる。油室156には、作動油の給排用のポート156Pが設けられる。 The oil chamber 156 is partitioned by the inner wall of the cylinder body 151, the inner wall of the cylinder closing portion 154, and the intermediate portion of the piston portion 152 at the open end of the cylinder body 151 (the end in the positive direction of the X axis). provided in As a result, the piston portion 152 can move backward (that is, move in the negative direction of the X-axis) by the action of hydraulic oil supplied to the oil chamber 156 . The oil chamber 156 is provided with a port 156P for supplying and discharging hydraulic oil.
 油室157は、ピストン部152の中空部の内壁、及びロッド部153の先端部により区画される形で設けられる。これにより、ピストン部152は、油室157に供給される作動油の作用で、前進する(即ち、X軸正方向に移動する)ことができる。油室157は、ロッド部153の孔部と連通しており、ロッド部153の孔部の先端には、油室157との間の作動油の給排用のポート157Pが設けられる。 The oil chamber 157 is provided so as to be partitioned by the inner wall of the hollow portion of the piston portion 152 and the tip portion of the rod portion 153 . As a result, the piston portion 152 can move forward (that is, move in the positive direction of the X-axis) by the action of hydraulic oil supplied to the oil chamber 157 . The oil chamber 157 communicates with the hole of the rod portion 153 , and a port 157</b>P for supplying and discharging working oil to and from the oil chamber 157 is provided at the tip of the hole of the rod portion 153 .
 油圧回路160は、油圧シリンダ150を駆動する。油圧回路160は、型閉側リリーフ弁161と、型開側リリーフ弁162と、調整弁163と、両回転ポンプ164と、チェック弁165と、チェック弁166と、圧力センサ167と、タンク168と、油路OL1~OL3と、を備えている。 The hydraulic circuit 160 drives the hydraulic cylinder 150. The hydraulic circuit 160 includes a mold closing relief valve 161, a mold opening relief valve 162, a regulating valve 163, a double rotary pump 164, a check valve 165, a check valve 166, a pressure sensor 167, and a tank 168. , oil passages OL1 to OL3.
 油路OL1は、タンク168と、型閉側リリーフ弁161と、型開側リリーフ弁162と、チェック弁165と、チェック弁166と、の間を接続する。 The oil passage OL1 connects the tank 168, the mold closing side relief valve 161, the mold opening side relief valve 162, the check valve 165, and the check valve 166.
 油路OL2は、油室157の給排用のポート157Pと、両回転ポンプ164と、の間を接続している。また、油路OL2は、型閉側リリーフ弁161、調整弁163、及びチェック弁165の各々と接続している。また、油路OL2の油室157の給排用のポート157P近傍に、圧力センサ167が設けられている。 The oil passage OL2 connects between the supply/discharge port 157P of the oil chamber 157 and the double rotary pump 164. Also, the oil passage OL2 is connected to each of the mold closing side relief valve 161, the regulating valve 163, and the check valve 165. As shown in FIG. A pressure sensor 167 is provided in the vicinity of the supply/discharge port 157P of the oil chamber 157 of the oil passage OL2.
 油路OL3は、油室156の給排用のポート156Pと、両回転ポンプ164と、の間を接続している。また、油路OL2は、型開側リリーフ弁162、調整弁163、及びチェック弁166の各々と接続している。 The oil passage OL3 connects between the supply/discharge port 156P of the oil chamber 156 and the double rotary pump 164. Also, the oil passage OL2 is connected to each of the mold opening side relief valve 162, the adjustment valve 163, and the check valve 166. As shown in FIG.
 両回転ポンプ164は、流体圧を生じさせる油圧シリンダ150が有する複数の油室(油室157及び油室156)の間を接続する流路(油路OL2及び油路OL3)上に設けられている。本実施形態にかかる両回転ポンプ164は、サーボモータ170による駆動によって、油路OL2及び油路OL3の間を流れる作業油の流れ方向、及び流れ量を調整する。このように、両回転ポンプ164は、サーボモータ170による駆動に基づいて、油路OL2及び油路OL3のどちらに対しても、作業油を排出できる。 Both rotary pumps 164 are provided on flow paths (oil path OL2 and oil path OL3) that connect between a plurality of oil chambers (oil chamber 157 and oil chamber 156) of hydraulic cylinder 150 that generates fluid pressure. there is The dual rotary pump 164 according to this embodiment is driven by a servomotor 170 to adjust the flow direction and flow rate of the working oil flowing between the oil passages OL2 and OL3. In this manner, both rotary pumps 164 can discharge working oil to both oil passage OL2 and oil passage OL3 based on the drive by servomotor 170 .
 例えば、両回転ポンプ164は、サーボモータ170による駆動に基づいて、油路OL2から供給された作業油を、油路OL3に排出する。これにより、油室157の給排用のポート157Pから、油路OL2、油路OL3の順に介して、油室156の給排用のポート156Pまで作業油が流れる流路が実現される。これにより、ピストン部152が後退する(即ち、X軸負方向に移動する)ので、可動金型820を型開方向に移動させる型開工程を実現できる。 For example, both rotary pumps 164 are driven by the servomotor 170 to discharge the working oil supplied from the oil passage OL2 to the oil passage OL3. This realizes a flow path through which working oil flows from the supply/discharge port 157P of the oil chamber 157 to the supply/discharge port 156P of the oil chamber 156 through the oil passages OL2 and OL3 in this order. As a result, the piston part 152 retreats (that is, moves in the X-axis negative direction), so that the mold opening step of moving the movable mold 820 in the mold opening direction can be realized.
 他の例としては、両回転ポンプ164は、サーボモータ170による駆動に基づいて、油路OL3から供給された作業油を、油路OL2に排出する。これにより、油室156の給排用のポート156Pから、油路OL3、油路OL2の順に介して、油室157の給排用のポート157Pまで作業油が流れる流路が実現される。これにより、ピストン部152が前進する(即ち、X軸正方向に移動する)ので、可動金型820型閉方向に移動させる型閉工程を実現できる。 As another example, both rotary pumps 164 discharge the working oil supplied from oil passage OL3 to oil passage OL2 based on the drive by servomotor 170. This realizes a flow path through which working oil flows from the supply/discharge port 156P of the oil chamber 156 to the supply/discharge port 157P of the oil chamber 157 through the oil passages OL3 and OL2 in this order. As a result, the piston part 152 advances (that is, moves in the positive direction of the X-axis), so that the mold closing process of moving the movable mold 820 in the mold closing direction can be realized.
 型開側リリーフ弁162は、油路OL3に設けられたリリーフ弁であって、油路OL3を流れる作業油の圧力に基づいて、連通状態と遮断状態とを切り替える機械式の弁とする。例えば、型開工程において、油路OL3が所定の圧力以上となった場合に、型開側リリーフ弁162は連通状態となり、油路OL3内を流れる作業油を、油路OL1を介してタンク168まで排出させる。 The mold opening side relief valve 162 is a relief valve provided in the oil passage OL3, and is a mechanical valve that switches between a communication state and a cutoff state based on the pressure of the working oil flowing through the oil passage OL3. For example, in the mold opening process, when the pressure in the oil passage OL3 becomes equal to or higher than a predetermined pressure, the mold opening side relief valve 162 is put into a communication state, and the working oil flowing in the oil passage OL3 is discharged to the tank 168 via the oil passage OL1. discharge up to
 型閉側リリーフ弁161は、油路OL2に設けられたリリーフ弁であって、油路OL2を流れる作業油の圧力に基づいて、連通状態と遮断状態とを切り替える機械式の弁とする。例えば、型閉工程において、油路OL2が所定の圧力以上となった場合に、型閉側リリーフ弁161は連通状態となり、油路OL2内を流れる作業油を、油路OL1を介してタンク168まで排出させる。 The mold closing side relief valve 161 is a relief valve provided in the oil passage OL2, and is a mechanical valve that switches between a communication state and a cutoff state based on the pressure of the working oil flowing through the oil passage OL2. For example, in the mold closing process, when the pressure in the oil passage OL2 exceeds a predetermined pressure, the mold closing side relief valve 161 is put into a communication state, and the working oil flowing in the oil passage OL2 is discharged to the tank 168 via the oil passage OL1. discharge up to
 チェック弁165は、油路OL1から油路OL2への作動油の流れを一方向にして、逆流を阻止するバルブである。本実施形態の油圧回路160は、チェック弁165を設けることで、タンク168から油路OL2に作業油が供給される。 The check valve 165 is a valve that allows the hydraulic oil to flow in one direction from the oil passage OL1 to the oil passage OL2 and prevents reverse flow. The hydraulic circuit 160 of this embodiment is provided with a check valve 165 so that working oil is supplied from the tank 168 to the oil passage OL2.
 チェック弁166は、油路OL1から油路OL3への作動油の流れを一方向にして、逆流を阻止するバルブである。本実施形態の油圧回路160は、チェック弁166を設けることで、タンク168から油路OL3に作業油が供給される。 The check valve 166 is a valve that allows the hydraulic oil to flow in one direction from the oil passage OL1 to the oil passage OL3 and prevents reverse flow. The hydraulic circuit 160 of the present embodiment is provided with a check valve 166 so that working oil is supplied from the tank 168 to the oil passage OL3.
 タンク168は、作動油を貯蔵する。また、タンク168は、油路OL1を通じて、型開側リリーフ弁162、型閉側リリーフ弁161、チェック弁165、及びチェック弁166に接続する。これにより、タンク168は、型開側リリーフ弁162又は型閉側リリーフ弁161から排出された作業油を、油路OL1を通じて貯蔵する。また、タンク168は、貯蔵されている作業油を、油路OL1を通じて、チェック弁165から油路OL2に供給し、又はチェック弁166から油路OL3に供給する。 The tank 168 stores hydraulic oil. Also, the tank 168 is connected to the mold opening side relief valve 162, the mold closing side relief valve 161, the check valve 165, and the check valve 166 through the oil passage OL1. Thereby, the tank 168 stores the working oil discharged from the mold opening side relief valve 162 or the mold closing side relief valve 161 through the oil passage OL1. Also, the tank 168 supplies the stored working oil through the oil passage OL1 from the check valve 165 to the oil passage OL2 or from the check valve 166 to the oil passage OL3.
 調整弁163は、油路OL2及び油路OL3の各々について、型開工程及び型閉工程において、油量を調整するためのバルブとする。調整弁163を設けることで、型開工程及び型閉工程において通過流量が一定になるように調整できる。 The adjustment valve 163 is a valve for adjusting the amount of oil in the mold opening process and the mold closing process for each of the oil passages OL2 and OL3. By providing the regulating valve 163, the flow rate can be adjusted to be constant in the mold opening process and the mold closing process.
 圧力センサ167は、油路OL2上であって、油圧シリンダ150の油室157の給排用のポート157P近傍に設けられているため、油圧シリンダ150の油室157にかかっている圧力を検出する。 Since the pressure sensor 167 is provided on the oil passage OL2 and in the vicinity of the supply/discharge port 157P of the oil chamber 157 of the hydraulic cylinder 150, the pressure applied to the oil chamber 157 of the hydraulic cylinder 150 is detected. .
 つまり、従来用いられていた油圧シリンダを制御する油圧回路においては、両方向に作業油を排出可能な両回転ポンプ164の代わりに、一方向しか作業油を排出できない可変ポンプを用いられることが多かった。このような可変ポンプを用いた場合に、作業油を供給する油室を切り替える電磁切替弁(方向切替弁の一例)が設けられていた。この電磁切替弁で作業油の供給先の油室を切り替えることで、型開工程及び型閉工程を実現していた。 That is, in conventional hydraulic circuits for controlling hydraulic cylinders, a variable pump capable of discharging working oil in only one direction was often used in place of the bidirectional rotary pump 164 capable of discharging working oil in both directions. . When such a variable pump is used, an electromagnetic switching valve (an example of a direction switching valve) for switching the oil chamber for supplying working oil is provided. By switching the oil chamber to which the working oil is supplied with this electromagnetic switching valve, the mold opening process and the mold closing process are realized.
 従来の電磁切替弁は、油圧シリンダ近傍に設けられることが多かった。このような従来の油圧回路に、圧力センサを設けた場合に、油圧センサと油圧シリンダの間には電磁切替弁を構成する様々な部品が介在することになる。したがって、従来の油圧回路では、圧力センサで、油圧シリンダの油室にかかっている圧力を検出するのは難しかった。  Conventional electromagnetic switching valves were often installed near the hydraulic cylinder. When a pressure sensor is provided in such a conventional hydraulic circuit, various parts constituting an electromagnetic switching valve are interposed between the hydraulic sensor and the hydraulic cylinder. Therefore, in the conventional hydraulic circuit, it was difficult to detect the pressure applied to the oil chamber of the hydraulic cylinder with the pressure sensor.
 これに対して、本実施形態の油圧回路160では、サーボモータ170の回転方向に応じて、両回転ポンプ164の作業油の排出方向を切り替えることで、作業油を供給する油室を切り替えられる。このような構成によって、油圧シリンダ150と圧力センサ167との間に電磁接触器等を備えることが不要となる。さらに本実施形態にかかる油圧回路160は、従来の油圧回路と比べて、構成する部品点数を減らせるので、油圧回路160の配管長を従来と比べて短くできる。配管長を短くできるので、油圧回路160を鋼管で形成することができる。これにより、外乱による圧力変化を低減させることができる。 On the other hand, in the hydraulic circuit 160 of the present embodiment, the oil chamber to which the working oil is supplied can be switched by switching the discharge direction of the working oil of the two rotary pumps 164 according to the rotating direction of the servomotor 170 . Such a configuration eliminates the need to provide an electromagnetic contactor or the like between the hydraulic cylinder 150 and the pressure sensor 167 . Furthermore, since the hydraulic circuit 160 according to the present embodiment can reduce the number of constituent parts compared to the conventional hydraulic circuit, the pipe length of the hydraulic circuit 160 can be shortened compared to the conventional hydraulic circuit. Since the piping length can be shortened, the hydraulic circuit 160 can be formed of steel pipes. Thereby, the pressure change due to disturbance can be reduced.
 型締装置100(油圧シリンダ150)を油圧駆動する油圧回路160は、上述したような閉回路として構成されている。その上、本実施形態にかかる油圧回路160においては、圧力センサ167と油圧シリンダ150との間が直接油路OL2A(油路OL2の一部)で接続されている。当該油圧回路160においては外乱による圧力変化も低減できるので、圧力センサ167は、油圧シリンダ150の油室157にかかっている圧力を、高い精度で検出できる。 The hydraulic circuit 160 that hydraulically drives the mold clamping device 100 (hydraulic cylinder 150) is configured as a closed circuit as described above. Moreover, in the hydraulic circuit 160 according to this embodiment, the pressure sensor 167 and the hydraulic cylinder 150 are directly connected by the oil passage OL2A (part of the oil passage OL2). Since pressure changes due to disturbances can also be reduced in the hydraulic circuit 160, the pressure sensor 167 can detect the pressure applied to the oil chamber 157 of the hydraulic cylinder 150 with high accuracy.
 本実施形態の油圧回路160は、従来の油圧回路と比べて、電磁接触器等もなく、配管長も短いため、発熱量が小さく、油温が上昇しにくくなる。したがって、油圧回路160で用いる湯量を少なくできる。これにより、タンク168の容量を小さくできるので、型締装置100をコンパクトにできる。 Compared to conventional hydraulic circuits, the hydraulic circuit 160 of this embodiment does not have an electromagnetic contactor or the like and has a short pipe length, so the amount of heat generated is small and the oil temperature is less likely to rise. Therefore, the amount of hot water used in the hydraulic circuit 160 can be reduced. As a result, the capacity of the tank 168 can be reduced, so that the mold clamping device 100 can be made compact.
 サーボモータ170は、制御装置700からの制御に基づいて作動し、両回転ポンプ164の回転を制御する。これにより、制御装置700は、サーボモータ170を制御することで、両回転ポンプ164の動作を制御できる。 The servomotor 170 operates under the control of the control device 700 and controls the rotation of both rotary pumps 164 . Thereby, the control device 700 can control the operation of both rotary pumps 164 by controlling the servo motor 170 .
 制御装置700は、両回転ポンプ164(サーボモータ170)を制御することで、油圧回路160における作動油の流れを制御し、型締装置100による型閉工程、及び型開工程を実現する。また、制御装置700は、油圧回路160を制御することで、昇圧工程、型締工程、脱圧工程も実現するが、説明を省略する。 The control device 700 controls the flow of hydraulic oil in the hydraulic circuit 160 by controlling both rotary pumps 164 (servo motors 170), and realizes the mold closing process and the mold opening process by the mold clamping device 100. Further, the control device 700 also realizes a pressurizing process, a mold clamping process, and a depressurizing process by controlling the hydraulic circuit 160, but the description thereof will be omitted.
 図4は、第1の実施形態に係る制御装置700の構成要素を機能ブロックで示す図である。図4に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部または一部を、任意の単位で機能的または物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部または任意の一部が、CPU701にて実行されるプログラムにて実現される。または各機能ブロックをワイヤードロジックによるハードウェアとして実現してもよい。図4に示すように、制御装置700は、入力処理部711と、圧力制御部712と、速度制御部713と、切替部714と、取得部715と、判定部716と、停止制御部717と、通知部718と、を備える。また、制御装置700は、記憶媒体702上に閾値記憶部710を備える。 FIG. 4 is a diagram showing functional blocks of the components of the control device 700 according to the first embodiment. Each functional block illustrated in FIG. 4 is conceptual and does not necessarily need to be physically configured as illustrated. All or part of each functional block can be functionally or physically distributed and integrated in arbitrary units. Each processing function performed by each functional block is implemented by a program executed by the CPU 701, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic. As shown in FIG. 4, the control device 700 includes an input processing unit 711, a pressure control unit 712, a speed control unit 713, a switching unit 714, an acquisition unit 715, a determination unit 716, and a stop control unit 717. , and a notification unit 718 . The control device 700 also includes a threshold storage unit 710 on the storage medium 702 .
 閾値記憶部710は、型閉工程において速度制御を行うときに用いる圧力閾値を記憶する。 The threshold storage unit 710 stores the pressure threshold used when speed control is performed in the mold closing process.
 入力処理部711は、入力インターフェース703を介して、操作装置750からのユーザの操作を入力処理する。例えば、入力処理部711は、ユーザから、型閉工程を行う際に、圧力制御又は速度制御のいずれか一方の選択操作を入力処理する。 The input processing unit 711 inputs and processes user operations from the operation device 750 via the input interface 703 . For example, the input processing unit 711 performs input processing for selecting either pressure control or speed control from the user when performing the mold closing process.
 本実施形態の切替部714は、型閉工程において可動プラテンを移動させる時に、入力処理部711が入力処理した選択操作に基づいて、圧力制御部712による圧力制御で可動プラテン120及びピストン部152の移動させる制御と、速度制御部713による速度制御で可動プラテン120及びピストン部152の移動させる制御と、を切り替える。圧力制御部712及び速度制御部713については後述する。 When moving the movable platen in the mold closing process, the switching unit 714 of the present embodiment controls the movable platen 120 and the piston unit 152 by pressure control by the pressure control unit 712 based on the selection operation input processed by the input processing unit 711. Control to move and control to move the movable platen 120 and the piston part 152 by speed control by the speed control unit 713 are switched. The pressure control section 712 and the speed control section 713 will be described later.
 圧力制御部712は、型閉工程において、油圧シリンダ150を用いた圧力制御を行う。図5は、圧力制御部712における圧力制御の例を示した図である。図5ではピストン部152の速度1502と、圧力1501とを示している。 The pressure control unit 712 performs pressure control using the hydraulic cylinder 150 in the mold closing process. FIG. 5 is a diagram showing an example of pressure control in the pressure control section 712. As shown in FIG. FIG. 5 shows velocity 1502 and pressure 1501 of piston portion 152 .
 図5に示される例では、型閉開始の時刻に型閉工程が開始される。圧力制御部712は、油圧シリンダ150のピストン部152と共に可動プラテン120を速度V1になるように制御する。そして、ピストン部152が金型保護位置に到着した後、圧力制御部712は、ピストン部152に対して行う制御を、速度制御から圧力制御に切り替える。圧力制御とは、圧力制御においては、所定の制限値以上の圧力がかからないように制御することであって、低圧制御とも称する。所定の制限値は、型閉開始から金型保護位置に到着するまでにかかっていた圧力より低い圧力値とする。 In the example shown in FIG. 5, the mold closing process is started at the mold closing start time. The pressure control section 712 controls the movable platen 120 together with the piston section 152 of the hydraulic cylinder 150 so that it reaches the speed V1. After the piston portion 152 reaches the mold protection position, the pressure control portion 712 switches the control performed on the piston portion 152 from speed control to pressure control. Pressure control, in pressure control, is to control so that the pressure does not exceed a predetermined limit value, and is also called low pressure control. The predetermined limit value is a pressure value lower than the pressure applied from the start of mold closing until reaching the mold protection position.
 判定部716は、可動プラテン120が昇圧開始位置(所定の位置の一例)に到達するまでの時間が、監視時間(所定の時間の一例)を超えたか否かを判定する。図5に示される例では、時刻t1において、金型装置800が異物を挟み込んだなどの異常が生じたものとする。このため、ピストン部152と共に可動プラテン120の速度1502が低下している。 The determination unit 716 determines whether or not the time required for the movable platen 120 to reach the pressure increase start position (an example of the predetermined position) has exceeded the monitoring time (an example of the predetermined time). In the example shown in FIG. 5, at time t1, it is assumed that an abnormality such as a foreign object being caught in mold device 800 occurs. As a result, the speed 1502 of the movable platen 120 is reduced together with the piston portion 152 .
 判定部716は、監視時刻t2を超えた場合に、異常が生じたと判定する。このように異物を挟み込んでから監視時刻t2が経過するまで判定を行わないが、低圧制御のために異物が金型装置800に与える影響は少ないという効果を得られる。 The determination unit 716 determines that an abnormality has occurred when the monitoring time t2 has passed. Although the determination is not performed until the monitoring time t2 has elapsed after the foreign matter is caught in this way, the effect that the foreign matter has little influence on the mold apparatus 800 can be obtained because of the low pressure control.
 停止制御部717は、判定部716により昇圧開始位置(所定位置の一例)に到達するまでの時間が、監視時間(所定の時間の一例)を超えたと判定された場合に、サーボモータ170を停止させる制御を行う。 The stop control unit 717 stops the servomotor 170 when the determining unit 716 determines that the time taken to reach the boost start position (an example of the predetermined position) exceeds the monitoring time (an example of the predetermined time). control to allow
 通知部718は、判定部716により昇圧開始位置(所定位置の一例)に到達するまでの時間が、監視時間(所定の時間の一例)を超えたと判定された場合に、異常が生じた旨を、射出成形機10を使用している作業者や、監視センター等に通知する。 The notification unit 718 notifies that an abnormality has occurred when the determination unit 716 determines that the time taken to reach the boost start position (an example of the predetermined position) exceeds the monitoring time (an example of the predetermined time). , a worker using the injection molding machine 10, a monitoring center, or the like.
 ところで、圧力制御部712による低圧制御のように、ピストン部152にかける圧力を低くした場合、摩擦等の影響を受けやすくなるため、型閉工程の完了時刻がばらつくことになる。そこで、圧力制御部712による低圧制御では、監視時刻t2について余裕を有して設定している。このような監視時刻t2に基づいて異常が生じたか否かを判定する場合に、異常を検知するまでの時間が長くなる可能性がある。 By the way, when the pressure applied to the piston part 152 is lowered like the low pressure control by the pressure control part 712, it becomes susceptible to the influence of friction and the like, so the completion time of the mold closing process varies. Therefore, in the low pressure control by the pressure control unit 712, the monitoring time t2 is set with a margin. When determining whether or not an abnormality has occurred based on such monitoring time t2, it may take a long time to detect an abnormality.
 そこで、本実施形態に係る制御装置700は、圧力制御部712による圧力制御の代わりに、速度制御部713による速度制御を可能としている。 Therefore, the control device 700 according to the present embodiment enables speed control by the speed control unit 713 instead of pressure control by the pressure control unit 712 .
 図4に戻り、本実施形態の速度制御部713は、型閉工程で移動する油圧シリンダ150と共に、油圧シリンダ150に固定された可動プラテン120の速度制御を行う。 Returning to FIG. 4, the speed control unit 713 of this embodiment controls the speed of the movable platen 120 fixed to the hydraulic cylinder 150 together with the hydraulic cylinder 150 that moves in the mold closing process.
 具体的には、本実施形態の速度制御部713は、型閉工程が開始してから金型保護位置に到着するまで、ピストン部152及び可動プラテン120が速度V1になるように速度制御する。そして、ピストン部152及び可動プラテン120が金型保護位置に到着した後、速度制御部713は、昇圧開始位置に到着するまでピストン部152及び可動プラテン120が速度V2(速度V2<速度V1)になるように速度制御する。速度制御部713が速度制御を行う場合、圧力センサ167が検出した圧力値によって異常か否かを判定する。つまり本実施形態は、上述した油圧回路160を備えたことで、圧力値の検出精度が高いので、当該圧力値で異常か否かの判定が可能となる。 Specifically, the speed control unit 713 of this embodiment controls the speed so that the piston unit 152 and the movable platen 120 are at the speed V1 from the start of the mold closing process to the arrival at the mold protection position. After the piston portion 152 and the movable platen 120 arrive at the mold protection position, the speed control portion 713 controls the piston portion 152 and the movable platen 120 at the speed V2 (speed V2<speed V1) until the pressure rise start position is reached. Control the speed so that When the speed control unit 713 performs speed control, the pressure value detected by the pressure sensor 167 is used to determine whether there is an abnormality. In other words, since the present embodiment includes the above-described hydraulic circuit 160, the pressure value can be detected with high accuracy, so it is possible to determine whether or not the pressure value is abnormal.
 また、速度制御部713にはフィードバック制御を組み込んで、ピストン部152及び可動プラテン120の速度がばらつかないように制御を行ってもよい。 In addition, feedback control may be incorporated into the speed control unit 713 to control the speeds of the piston unit 152 and the movable platen 120 so as not to vary.
 取得部715は、ピストン部152及び可動プラテン120の移動によって、ピストン部152の油室157にかかる流体圧を示した圧力値を圧力センサ167から取得する。 The acquisition unit 715 acquires from the pressure sensor 167 a pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 due to the movement of the piston portion 152 and the movable platen 120 .
 さらに、取得部715は、油圧シリンダ150に設けられた(図示しない)リニアセンサから、型閉方向におけるピストン部152の位置を取得する。これにより、ピストン部152が、金型保護位置や昇温開始位置に到達したかを認識できる。金型保護位置は、金型装置800の保護のために速度又は圧力を低減させる位置とする。昇温開始位置は、型閉工程を完了させる位置(所定位置の一例)である。 Furthermore, the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction from a linear sensor (not shown) provided in the hydraulic cylinder 150 . This makes it possible to recognize whether the piston portion 152 has reached the mold protection position or the temperature increase start position. The mold protection position is a position where speed or pressure is reduced to protect the mold device 800 . The temperature rise start position is a position (an example of a predetermined position) at which the mold closing process is completed.
 判定部716は、取得部715によって取得された圧力値が、閾値記憶部710に記憶された圧力閾値を超えたか否かを判定する。 The determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold stored in the threshold storage unit 710 .
 図6は、本実施形態に係る速度制御部713における速度制御の例を示した図である。図6ではピストン部152の速度1601と、取得部715が取得した流体圧の圧力値1602と、を示している。 FIG. 6 is a diagram showing an example of speed control in the speed control section 713 according to this embodiment. FIG. 6 shows the velocity 1601 of the piston part 152 and the pressure value 1602 of the fluid pressure acquired by the acquisition part 715 .
 図6に示される例では、型閉開始時刻に型閉工程が開始される。速度制御部713は、油圧シリンダ150のピストン部152と共に可動プラテン120を速度V1になるように制御する。そして、ピストン部152が金型保護位置に到着した後、速度制御部713は、ピストン部152と共に可動プラテン120を速度V2(速度V2<速度V1)になるように制御する。このように低速で可動プラテン120を移動させることで、可動プラテン120に固定された可動金型820の保護を実現できる。 In the example shown in FIG. 6, the mold closing process is started at the mold closing start time. The speed control unit 713 controls the movable platen 120 together with the piston portion 152 of the hydraulic cylinder 150 so that it reaches the speed V1. After the piston portion 152 reaches the mold protecting position, the speed control portion 713 controls the moving platen 120 together with the piston portion 152 to a speed V2 (speed V2<speed V1). By moving the movable platen 120 at such a low speed, the movable mold 820 fixed to the movable platen 120 can be protected.
 取得部715は、速度制御部713による速度変化に従って、圧力値P1から低下した圧力値P2を取得する。 The acquisition unit 715 acquires the pressure value P2 that has decreased from the pressure value P1 according to the speed change by the speed control unit 713 .
 閾値記憶部710は、速度制御部713による速度制御用に、金型保護位置に到着するまでの圧力閾値T1と、金型保護位置から昇圧開始位置に到着するまでの圧力閾値T2と、を記憶している。このように、閾値記憶部710は、可動プラテン120及びピストン部152の移動した位置に応じて、予め定められた圧力閾値を記憶している。 The threshold storage unit 710 stores a pressure threshold value T1 for speed control by the speed control unit 713 and a pressure threshold value T2 for reaching the mold protection position and the pressure increase start position from the mold protection position. is doing. Thus, the threshold storage unit 710 stores predetermined pressure thresholds according to the positions to which the movable platen 120 and the piston unit 152 have moved.
 判定部716は、取得部715が取得した圧力値が、閾値記憶部710に記憶された圧力閾値を超えたか否かを判定する。本実施形態の判定部716は、可動プラテン120及びピストン部152の移動した位置毎に、予め定められた圧力閾値に基づいて判定を行う。具体的には、判定部716は、金型保護位置に到着するまでは、取得した圧力値が圧力閾値T1を超えたか否かを判定し、金型保護位置から昇圧開始位置に到着するまでは、取得した閾値が圧力閾値T2を超えたか否かを判定する。また、判定部716は、速度制御の場合でも圧力制御と同様に、昇圧開始位置に到着するまでの時刻が、監視時間を超えたか否かに応じて、異常が生じたか否かを判定してもよい。 The determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold stored in the threshold storage unit 710 . The determination unit 716 of this embodiment performs determination based on a predetermined pressure threshold for each position to which the movable platen 120 and the piston unit 152 have moved. Specifically, the determining unit 716 determines whether or not the acquired pressure value exceeds the pressure threshold value T1 until reaching the mold protection position, , determines whether the acquired threshold exceeds the pressure threshold T2. Also, in the case of speed control, as in pressure control, determination unit 716 determines whether or not an abnormality has occurred according to whether or not the time until reaching the pressure increase start position exceeds the monitoring time. good too.
 図6に示される例では、時刻t3において、判定部716は、取得部715が取得した圧力値が、閾値記憶部710に記憶された圧力閾値T2を超えたと判定する。このように、本実施形態の速度制御では、異物を挟み込んだ場合に、すぐに異常判定を行うことができる。 In the example shown in FIG. 6, the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T2 stored in the threshold storage unit 710 at time t3. As described above, in the speed control of the present embodiment, it is possible to immediately perform an abnormality determination when a foreign object is caught.
 停止制御部717は、判定部716により取得した圧力値が圧力閾値を超えたと判定した場合に、サーボモータ170を停止させる制御を行う。なお、本実施形態は、サーボモータ170を停止させる制御を行う場合について説明するが、停止させる制御に制限するものではなく、例えばサーボモータ170を逆回転させる制御を行うことも考えられる。 The stop control unit 717 performs control to stop the servomotor 170 when it is determined that the pressure value acquired by the determination unit 716 exceeds the pressure threshold. In this embodiment, the case of performing control to stop the servomotor 170 will be described, but the control is not limited to the control to stop, and for example, control to reversely rotate the servomotor 170 is also conceivable.
 通知部718は、判定部716により取得した圧力値が圧力閾値を超えたと判定した場合に、異常が生じた旨を、射出成形機10を使用している作業者や、監視センター等に通知する。 When the determination unit 716 determines that the pressure value obtained by the determination unit 716 exceeds the pressure threshold, the notification unit 718 notifies the operator using the injection molding machine 10, the monitoring center, etc. that an abnormality has occurred. .
 図7は、本実施形態に係る制御装置700の型閉工程において速度制御を行う場合の処理を示したフローチャートである。なお、圧力制御については従来と同様の手法を用いてもよく、説明を省略する。 FIG. 7 is a flow chart showing processing when speed control is performed in the mold closing process of the control device 700 according to this embodiment. As for the pressure control, the same method as the conventional method may be used, and the explanation is omitted.
 まず、制御装置700は、速度制御による型閉工程の開始か否かを判定する(S701)。速度制御による型閉工程の開始ではないと判定した場合(S701:No)、処理を終了する。 First, the control device 700 determines whether or not the mold closing process is started by speed control (S701). If it is determined that the mold closing process by speed control is not started (S701: No), the process ends.
 制御装置700が速度制御による型閉工程の開始であると判定した場合(S701:Yes)、速度制御部713は、サーボモータ170を制御して、ピストン部152が速度V1になるように速度制御を行う(S702)。 When the control device 700 determines that the mold closing process is started by speed control (S701: Yes), the speed control section 713 controls the servo motor 170 to control the speed of the piston section 152 to the speed V1. (S702).
 取得部715は、ピストン部152の油室157にかかる流体圧を示した圧力値を圧力センサ167から取得する(S703)。 The acquisition unit 715 acquires from the pressure sensor 167 the pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 (S703).
 判定部716は、金型保護位置に到達するまでは、取得部715が取得した圧力値が、圧力閾値T1を超えたか否かを判定する(S704)。判定部716が、取得した圧力値が、圧力閾値T1を超えたと判定した場合(S704:Yes)、停止制御部717が、サーボモータ170に対して停止制御を行うと共に、通知部718が、異常が生じた旨の通知を行い(S705)、処理を終了する。 The determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T1 until the die protection position is reached (S704). When the determination unit 716 determines that the acquired pressure value exceeds the pressure threshold value T1 (S704: Yes), the stop control unit 717 controls the servomotor 170 to stop, and the notification unit 718 has occurred (S705), and the process ends.
 一方、判定部716は、取得した圧力値が、圧力閾値T1を超えていないと判定した場合(S704:No)、取得部715は、型閉方向におけるピストン部152の位置を取得する(S706)。判定部716は、取得部715が取得したピストン部152の位置が、金型保護位置に到達したか否かを判定する(S707)。金型保護位置に到達していないと判定した場合(S707:No)、再びS702から処理を行う。 On the other hand, when the determination unit 716 determines that the acquired pressure value does not exceed the pressure threshold value T1 (S704: No), the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction (S706). . The determination unit 716 determines whether the position of the piston part 152 acquired by the acquisition unit 715 has reached the mold protection position (S707). If it is determined that the die protection position has not been reached (S707: No), the process is repeated from S702.
 一方、判定部716は、取得部715が取得したピストン部152の位置が、金型保護位置に到達したと判定した場合(S707:Yes)、速度制御部713は、サーボモータ170を制御して、ピストン部152が速度V2になるように速度制御を行う(S708)。 On the other hand, when the determination unit 716 determines that the position of the piston part 152 acquired by the acquisition unit 715 has reached the mold protection position (S707: Yes), the speed control unit 713 controls the servo motor 170 , the speed control is performed so that the piston portion 152 reaches the speed V2 (S708).
 取得部715は、ピストン部152の油室157にかかる流体圧を示した圧力値を圧力センサ167から取得する(S709)。 The acquisition unit 715 acquires from the pressure sensor 167 the pressure value indicating the fluid pressure applied to the oil chamber 157 of the piston portion 152 (S709).
 判定部716は、金型保護位置に到達するまでは、取得部715が取得した圧力値が、圧力閾値T2を超えたか否かを判定する(S710)。判定部716が、取得した圧力値が、圧力閾値T2を超えたと判定した場合(S710:Yes)、停止制御部717が、サーボモータ170に対して停止制御を行うと共に、通知部718が、異常が生じた旨の通知を行い(S711)、処理を終了する。 The determination unit 716 determines whether the pressure value acquired by the acquisition unit 715 exceeds the pressure threshold value T2 until the die protection position is reached (S710). When the determination unit 716 determines that the acquired pressure value exceeds the pressure threshold value T2 (S710: Yes), the stop control unit 717 controls the servomotor 170 to stop, and the notification unit 718 detects an abnormality. is notified (S711), and the process ends.
 一方、判定部716は、取得した圧力値が、圧力閾値T2を超えていないと判定した場合(S710:No)、取得部715は、型閉方向におけるピストン部152の位置を取得する(S712)。判定部716は、取得部715が取得したピストン部152の位置が、昇温開始位置に到達したか否かを判定する(S713)。金型保護位置に到達していないと判定した場合(S713:No)、再びS708から処理を行う。 On the other hand, when the determination unit 716 determines that the acquired pressure value does not exceed the pressure threshold value T2 (S710: No), the acquisition unit 715 acquires the position of the piston part 152 in the mold closing direction (S712). . The determination unit 716 determines whether the position of the piston part 152 acquired by the acquisition unit 715 has reached the temperature increase start position (S713). If it is determined that the die protection position has not been reached (S713: No), the process is repeated from S708.
 一方、判定部716は、取得部715が取得したピストン部152の位置が、昇温開始位置に到達したと判定した場合(S713:Yes)、処理を終了する。 On the other hand, when the determination unit 716 determines that the position of the piston part 152 acquired by the acquisition unit 715 has reached the temperature increase start position (S713: Yes), the process ends.
 上述した処理手順のように、本実施形態においては、ピストン部152及び可動プラテン120に対して金型保護位置から昇圧開始位置に到着するまで速度制御を行うと共に、圧力センサ167が検出する圧力値に基づいて異常か否かを判定する。これにより、異物を挟み込んだ場合など異常が生じた場合にすぐに検知できるため、金型装置800の保護を実現できる。また、本実施形態においては、上述した速度制御を行うことで、型閉工程の終了時間のばらつきを抑止できる。 As in the processing procedure described above, in this embodiment, the speed of the piston portion 152 and the movable platen 120 is controlled from the mold protection position to the pressure increase start position, and the pressure value detected by the pressure sensor 167 is Based on the above, it is determined whether or not there is an abnormality. As a result, it is possible to immediately detect when an abnormality such as a foreign object is caught, so that the mold apparatus 800 can be protected. Further, in the present embodiment, by performing the speed control described above, it is possible to suppress variations in the end time of the mold closing process.
(変形例1)
 上述した実施形態においては、金型保護位置から昇圧開始位置までの速度V2で速度制御を行う場合について説明した。しかしながら、金型保護位置以降の速度制御を1段階に制限するものではなく、多段階で制御を行ってもよい。そこで、本変形例においては、金型保護位置以降において多段階で速度制御を行う場合について説明する。
(Modification 1)
In the embodiment described above, the case where speed control is performed at the speed V2 from the mold protection position to the pressure rising start position has been described. However, the speed control after the die protection position is not limited to one step, and may be controlled in multiple steps. Therefore, in this modified example, a case in which speed control is performed in multiple steps after the mold protection position will be described.
 図8は、変形例1に係る速度制御部713における速度制御の例を示した図である。図8ではピストン部152の速度1801と、取得部715が取得した流体圧の圧力値1802と、を示している。 FIG. 8 is a diagram showing an example of speed control in the speed control unit 713 according to Modification 1. FIG. FIG. 8 shows the velocity 1801 of the piston part 152 and the pressure value 1802 of the fluid pressure acquired by the acquisition part 715 .
 図8に示される例では、型閉開始時刻に型閉工程が開始される。速度制御部713は、油圧シリンダ150のピストン部152を速度V1になるように制御する。そして、ピストン部152が第1金型保護位置に到着した時、速度制御部713は、ピストン部152を速度V3(速度V3<速度V1)になるように制御する。 In the example shown in FIG. 8, the mold closing process is started at the mold closing start time. The speed control unit 713 controls the piston portion 152 of the hydraulic cylinder 150 to reach the speed V1. Then, when the piston portion 152 reaches the first mold protection position, the speed control portion 713 controls the piston portion 152 to have a speed V3 (speed V3<speed V1).
 その後、第2金型保護位置に到着した時、速度制御部713は、ピストン部152を速度V4(速度V4<速度V3)になるように制御し、第3金型保護位置に到着した時、速度制御部713は、ピストン部152を速度V5(速度V5<速度V4)になるように制御する。 After that, when reaching the second mold protection position, the speed control unit 713 controls the piston part 152 to have a speed V4 (speed V4<speed V3), and when reaching the third mold protection position, The speed control portion 713 controls the piston portion 152 to have a speed V5 (speed V5<speed V4).
 図8に示されるように、取得部715は、速度制御部713による速度変化に従って、圧力センサ167によって検出される圧力値1202が低下していく。 As shown in FIG. 8, the acquisition unit 715 decreases the pressure value 1202 detected by the pressure sensor 167 according to the speed change by the speed control unit 713 .
 本変形例においては、閾値記憶部710に記憶される圧力閾値1803は、速度に応じて低下するように設定されている。例えば、閾値記憶部710は、型閉開始から第1金型保護位置到着までの圧力閾値T1を記憶し、第1金型保護位置到着から第2金型保護位置到着までの圧力閾値T3を記憶し、第2金型保護位置到着から第3金型保護位置到着までの圧力閾値T4を記憶し、第3金型保護位置到着から昇温開始位置到着までの圧力閾値T5を記憶する。 In this modified example, the pressure threshold 1803 stored in the threshold storage unit 710 is set to decrease according to the speed. For example, the threshold storage unit 710 stores a pressure threshold T1 from the start of mold closing to arrival at the first mold protection position, and stores a pressure threshold T3 from arrival at the first mold protection position to arrival at the second mold protection position. Then, a pressure threshold T4 from arrival at the second mold protection position to arrival at the third mold protection position is stored, and a pressure threshold T5 from arrival at the third mold protection position to arrival at the temperature rise start position is stored.
 そして、判定部716は、取得部715が取得した圧力値が、閾値記憶部710に記憶された圧力閾値のうち、圧力値を検出した位置に対応付けられた圧力閾値(圧力閾値T1、T3、T4、T5のうちいずれか一つ)を超えたか否かを判定する。 Then, the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 is a pressure threshold (pressure thresholds T1, T3, Either one of T4 and T5) is exceeded.
 図8に示される例では、第3第金型保護位置に到着した後の時刻t4において、判定部716は、取得部715が取得した圧力値が、閾値記憶部710に記憶された圧力閾値T5を超えたと判定する。圧力値が、閾値記憶部710に記憶された圧力閾値T5を超えたと判定された場合の処理は、上述した実施形態と同様として説明を省略する。 In the example shown in FIG. 8, at time t4 after arriving at the third mold protection position, the determination unit 716 determines that the pressure value acquired by the acquisition unit 715 is the pressure threshold value T5 stored in the threshold storage unit 710. determined to have exceeded The process when it is determined that the pressure value exceeds the pressure threshold value T5 stored in the threshold storage unit 710 is the same as in the above-described embodiment, and the description thereof is omitted.
(変形例2)
 上述した実施形態においては、取得した圧力値が、閾値記憶部710に記憶された圧力閾値より高いか否かに基づいて、異常が生じたか否かを判定する例について説明した。しかしながら、異常か生じたか否かの判定として用いる閾値は、予め記憶された圧力閾値に制限するものではない。そこで、変形例1においては、実際に取得した圧力値に基づいて更新する例について説明する。
(Modification 2)
In the above-described embodiment, an example of determining whether or not an abnormality has occurred based on whether or not the acquired pressure value is higher than the pressure threshold value stored in the threshold storage unit 710 has been described. However, the threshold used to determine whether an abnormality has occurred is not limited to the pre-stored pressure threshold. Therefore, in Modification 1, an example of updating based on an actually acquired pressure value will be described.
 本変形例の取得部715は、今回取得した圧力値に所定の値を加算した値を、次回の圧力閾値として、当該圧力値を取得した位置と対応付けて、閾値記憶部710を更新する。なお、圧力値を取得した位置は、油圧シリンダ150に設けられた(図示しない)リニアセンサから取得できる。なお、所定の値は、異常判定の際に余裕を持たせるために定められた値であって、実施の態様に応じた任意の値でよい。圧力値を取得する位置の間隔は、実施態様に応じて定められた間隔とする。これにより、位置毎に摩擦等を考慮した圧力閾値に更新でき、異常の検出精度を向上させることができる。 The acquisition unit 715 of this modified example updates the threshold storage unit 710 by associating a value obtained by adding a predetermined value to the pressure value acquired this time as the next pressure threshold value with the position where the pressure value was acquired. Note that the position at which the pressure value is acquired can be acquired from a linear sensor (not shown) provided in the hydraulic cylinder 150 . It should be noted that the predetermined value is a value that is determined in order to provide a margin in determining abnormality, and may be an arbitrary value according to the mode of implementation. The interval between the positions where the pressure values are acquired is set according to the embodiment. As a result, the pressure threshold value can be updated in consideration of friction and the like for each position, and the abnormality detection accuracy can be improved.
 本変形例では、取得部715は、今回(1ショット)取得した圧力値に所定の値を加算した値を、次の圧力閾値として閾値記憶部710を更新した例について説明した。しかしながら、1ショットの圧力値に基づいて、次回の圧力閾値を更新する手法に制限するものではなく、型閉工程を複数回(例えば、10回)行い、取得部715が複数回で取得した圧力値の移動平均を圧力閾値として閾値記憶部710を更新してもよい。 In this modified example, an example has been described in which the acquisition unit 715 updates the threshold storage unit 710 with a value obtained by adding a predetermined value to the pressure value acquired this time (one shot) as the next pressure threshold. However, the method is not limited to the method of updating the next pressure threshold value based on the pressure value of one shot. The threshold storage unit 710 may be updated using the moving average of the values as the pressure threshold.
(変形例3)
 上述した実施形態及び変形例は、圧力閾値が閾値記憶部710に記憶されている例について説明した。しかしながら圧力閾値は、静的なパラメータに制限するものではなく、動的に生成されるパラメータであってもよい。
(Modification 3)
In the embodiments and modifications described above, the example in which the pressure threshold is stored in the threshold storage unit 710 has been described. However, the pressure threshold is not limited to static parameters, but may be dynamically generated parameters.
 本変形例の判定部716は、油圧回路160及び油圧シリンダ150を表す数式モデルを保持している。そして、判定部716は、速度制御部713が制御しているサーボモータ170の回転速度を取得し、当該回転速度を数式モデルに当てはめることで、油圧シリンダ150に生じている流体圧を示す圧力の推定値を算出する。 The determination unit 716 of this modified example holds a mathematical model representing the hydraulic circuit 160 and the hydraulic cylinder 150 . Then, the determination unit 716 acquires the rotational speed of the servo motor 170 controlled by the speed control unit 713, and applies the rotational speed to the mathematical model to determine the pressure indicating the fluid pressure generated in the hydraulic cylinder 150. Calculate an estimate.
 そして、判定部716は、取得部715が取得した圧力値と、圧力の推定値と、の差が所定値以上か否かを判定する。判定部716は、取得部715が取得した圧力値と、圧力の推定値と、の差が所定値以上の場合に、異常が生じたと判定する。本変形例は、圧力の推定値と所定値との組み合わせを用いる例について説明するが、上述した実施形態及び変形例で示した圧力閾値を用いた場合と同様の異常検知を実現できる。さらに、圧力の推定値と所定値との組み合わせを用いて判定を行った場合には、上述した実施形態と同様の効果の他に、サーボモータの回転速度を考慮した、より高い精度で異常判定を行うことができる。 Then, the determination unit 716 determines whether or not the difference between the pressure value acquired by the acquisition unit 715 and the estimated pressure value is equal to or greater than a predetermined value. The determination unit 716 determines that an abnormality has occurred when the difference between the pressure value acquired by the acquisition unit 715 and the estimated pressure value is equal to or greater than a predetermined value. In this modified example, an example using a combination of an estimated pressure value and a predetermined value will be described, but the same abnormality detection as in the case of using the pressure threshold shown in the above-described embodiment and modified example can be realized. Furthermore, when the determination is made using the combination of the estimated value of the pressure and the predetermined value, in addition to the same effect as the above-described embodiment, the rotational speed of the servomotor is taken into consideration, and the abnormality determination can be made with higher accuracy. It can be performed.
 上述した実施形態及び変形例においては、両回転ポンプ164及びサーボモータ170を用いることで、油圧回路160を閉回路としたことで、配管長を抑えることができる。これにより外乱を抑止できるため、金型保護位置と昇温開始位置の間で低速制御を行った場合に、圧力センサ167が検出した圧力値による異常検知の精度を向上させることができる。 In the embodiment and modification described above, the use of both the rotary pump 164 and the servomotor 170 makes the hydraulic circuit 160 a closed circuit, thereby reducing the pipe length. Since this can suppress disturbance, it is possible to improve the accuracy of abnormality detection based on the pressure value detected by the pressure sensor 167 when low-speed control is performed between the mold protection position and the temperature rise start position.
 本実施形態及び変形例においては、油圧回路160等の閉回路において、金型保護位置と昇温開始位置の間で低速制御を行った場合に、圧力センサ167が検出した圧力値で異常検知を行う例について説明した。しかしながら、金型保護位置と昇温開始位置の間で低速制御を行っている間に、圧力センサ167が検出した圧力値で異常検知を行う手法は、上述した閉回路を用いた例に制限するものではなく、従来の開回路の油圧回路に適用してもよい。 In the present embodiment and the modified example, when low-speed control is performed between the mold protection position and the temperature rise start position in a closed circuit such as the hydraulic circuit 160, an abnormality is detected based on the pressure value detected by the pressure sensor 167. An example of doing so has been described. However, the method of detecting an abnormality based on the pressure value detected by the pressure sensor 167 while performing low-speed control between the mold protection position and the temperature rise start position is limited to the example using the closed circuit described above. It may be applied to a conventional open circuit hydraulic circuit instead of a conventional one.
 上述した実施形態及び変形例においては、金型保護位置以降において、速度制御部713がピストン部152に対して速度制御を行うことで、昇温開始位置に到着する到着時間のばらつきを抑えることができる。 In the above-described embodiment and modification, the speed control unit 713 controls the speed of the piston unit 152 after the mold protection position, thereby suppressing variations in arrival time at the temperature rise start position. can.
 上述した実施形態及び変形例においては、型閉工程において速度制御を行った場合に、判定部716は、圧力センサ167から取得した圧力値が、圧力閾値を超えたか否かを判定することで、異物を挟み込んだなどの異常判定を行う。これにより、従来の監視時刻を経過したか否かの判定と比べて、迅速な異常検知を実現できる。また、従来と比べて迅速に停止制御を行えるので、金型装置800の保護を実現できる。 In the above-described embodiment and modification, when speed control is performed in the mold closing process, the determination unit 716 determines whether the pressure value obtained from the pressure sensor 167 exceeds the pressure threshold. An abnormality such as a foreign object being caught is determined. As a result, it is possible to realize quick abnormality detection as compared with the conventional determination of whether or not the monitoring time has passed. In addition, since stop control can be performed more quickly than in the conventional art, the protection of the mold apparatus 800 can be realized.
 以上、本発明に係る射出成形機の実施形態について説明したが、本発明は上記実施形態などに限定されない。請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本発明の技術的範囲に属する。 Although the embodiments of the injection molding machine according to the present invention have been described above, the present invention is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present invention.
 本願は、2021年3月31日に出願した日本国特許出願2021-062344号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-062344 filed on March 31, 2021, and the entire contents of this Japanese Patent Application are incorporated herein by reference.
10・・・射出成形機 100・・・型締装置 110・・・固定プラテン 120・・・可動プラテン 150・・・油圧シリンダ 160・・・油圧回路 170・・・サーボモータ 700・・・制御装置 710・・・閾値記憶部 711・・・入力処理部 712・・・圧力制御部 713・・・速度制御部 714・・・切替部 715・・・取得部 716・・・判定部 717・・・停止制御部 718・・・通知部 10... Injection molding machine 100... Mold clamping device 110... Fixed platen 120... Movable platen 150... Hydraulic cylinder 160... Hydraulic circuit 170... Servo motor 700... Control device 710 Threshold storage unit 711 Input processing unit 712 Pressure control unit 713 Speed control unit 714 Switching unit 715 Acquisition unit 716 Determination unit 717 Stop control unit 718 ... notification unit

Claims (7)

  1.  固定金型が取り付けられる固定プラテンと、
     可動金型が取り付けられる可動プラテンと、
     流体圧によって前記可動プラテンを移動させて、前記可動プラテンを前記固定プラテンに接触させる型閉工程を行う型締装置と、
     前記型締装置を制御する制御部と、を有し、
     前記制御部は、
     前記型閉工程で前記可動プラテンの速度制御を行う速度制御部と、
     前記可動プラテンの移動で生じる流体圧を示した圧力値を取得する取得部と、
     前記取得部により取得された前記圧力値が、所定の閾値を超えたか否かを判定する判定部と、
     を有する、射出成形機。
    a stationary platen to which the stationary mold is attached;
    a movable platen to which the movable mold is attached;
    a mold clamping device that performs a mold closing step of moving the movable platen by fluid pressure and bringing the movable platen into contact with the stationary platen;
    a control unit that controls the mold clamping device,
    The control unit
    a speed control unit that controls the speed of the movable platen in the mold closing process;
    an acquisition unit that acquires a pressure value indicating a fluid pressure generated by movement of the movable platen;
    a determination unit that determines whether the pressure value acquired by the acquisition unit exceeds a predetermined threshold;
    an injection molding machine.
  2.  前記流体圧を生じさせる油圧シリンダと、
     前記油圧シリンダの複数の油室を接続する流路と、
     前記流路の途中に設けられた両回転ポンプと、
     前記両回転ポンプの回転を制御するサーボモータと、
     を備える請求項1に記載の射出成形機。
    a hydraulic cylinder that produces the fluid pressure;
    a flow path connecting a plurality of oil chambers of the hydraulic cylinder;
    a dual rotating pump provided in the middle of the flow path;
    a servomotor for controlling the rotation of the double-rotating pump;
    The injection molding machine of claim 1, comprising:
  3.  前記判定部は、前記可動プラテンの移動した位置毎に、予め定められた前記所定の閾値に基づいて判定を行う、
     請求項1に記載の射出成形機。
    The determination unit performs determination based on the predetermined threshold that is set in advance for each position to which the movable platen is moved.
    The injection molding machine according to claim 1.
  4.  前記判定部は、前記可動プラテンが所定位置に到達するまでの時間が、所定の時間を超えたか否かの判定を行う、
     請求項1に記載の射出成形機。
    The determination unit determines whether or not the time required for the movable platen to reach a predetermined position exceeds a predetermined time.
    The injection molding machine according to claim 1.
  5.  前記型閉工程で前記可動プラテンに対して圧力制御を行う圧力制御部と、
     前記型閉工程において前記可動プラテンを移動させる時に、前記圧力制御部による前記圧力制御と、前記速度制御部による速度制御と、を切り替える切替部と、をさらに有し、
     前記判定部は、前記圧力制御部による前記圧力制御を行う場合に、前記所定位置に到達するまでの時間が、前記所定の時間を超えたか否かの判定を行い、前記速度制御部による前記速度制御を行う場合に、前記取得部が取得した前記圧力値が、前記所定の閾値を超えたか否かの判定を行う、
     請求項4に記載の射出成形機。
    a pressure control unit that performs pressure control on the movable platen in the mold closing process;
    a switching unit for switching between the pressure control by the pressure control unit and the speed control by the speed control unit when moving the movable platen in the mold closing step;
    When the pressure control unit performs the pressure control, the determination unit determines whether or not the time required to reach the predetermined position exceeds the predetermined time. When performing control, determining whether the pressure value obtained by the obtaining unit exceeds the predetermined threshold value,
    The injection molding machine according to claim 4.
  6.  前記所定の閾値を記憶する記憶部をさらに備え、
     前記記憶部に記憶される前記所定の閾値は、前記取得部が取得した前記圧力値に応じて更新される、
     請求項1に記載の射出成形機。
    Further comprising a storage unit that stores the predetermined threshold,
    wherein the predetermined threshold value stored in the storage unit is updated according to the pressure value acquired by the acquisition unit;
    The injection molding machine according to claim 1.
  7.  前記判定部は、前記流体圧を生じさせる前記サーボモータの回転速度から、前記可動プラテンの移動で発生する圧力の推定値を算出し、当該圧力の推定値と、前記取得部が取得した前記圧力値との差が所定値以上の場合、前記所定の閾値を超えたと判定する、
     請求項2に記載の射出成形機。
    The determination unit calculates an estimated value of pressure generated by movement of the movable platen from the rotation speed of the servomotor that generates the fluid pressure, and calculates the estimated value of the pressure and the pressure acquired by the acquisition unit. If the difference from the value is a predetermined value or more, determine that the predetermined threshold has been exceeded,
    The injection molding machine according to claim 2.
PCT/JP2022/016134 2021-03-31 2022-03-30 Injection molding machine WO2022210921A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511501A JPWO2022210921A1 (en) 2021-03-31 2022-03-30
CN202280007973.0A CN116583366A (en) 2021-03-31 2022-03-30 Injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062344 2021-03-31
JP2021-062344 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210921A1 true WO2022210921A1 (en) 2022-10-06

Family

ID=83459553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016134 WO2022210921A1 (en) 2021-03-31 2022-03-30 Injection molding machine

Country Status (3)

Country Link
JP (1) JPWO2022210921A1 (en)
CN (1) CN116583366A (en)
WO (1) WO2022210921A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090535A (en) * 2013-11-05 2015-05-11 服部 修 Resin molding step monitor wireless network system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090535A (en) * 2013-11-05 2015-05-11 服部 修 Resin molding step monitor wireless network system

Also Published As

Publication number Publication date
CN116583366A (en) 2023-08-11
JPWO2022210921A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7032188B2 (en) Injection molding machine
JP6797723B2 (en) Injection molding machine
JP7114284B2 (en) Injection molding machine
WO2022210921A1 (en) Injection molding machine
EP3778182A1 (en) Mold system
JP7317476B2 (en) Injection molding machine
JP7455640B2 (en) Injection molding machine
JP7293097B2 (en) Injection molding machine
WO2022210979A1 (en) Control device for injection molding machine, injection molding machine, and control method
KR20200039580A (en) Injection molding machine
EP3047955B1 (en) Injection molding machine
JP7396952B2 (en) Injection molding machine
WO2022210969A1 (en) Injection molding machine
JP2018122507A (en) Injection molding machine
JP2022157852A (en) Injection molding machine, control device for injection molding machine, and control method
JP6779802B2 (en) Injection molding machine
US20230182359A1 (en) Display device for injection molding machine
JP2023084264A (en) Control unit of injection molding machine and control method of injection molding machine
JP2023151351A (en) Injection molding machine controller, injection molding machine, and injection molding machine control method
WO2022210988A1 (en) Injection molding machine monitoring device
JP2018167468A (en) Injection molding machine
JP2022131247A (en) Injection molding machine
JP2023084850A (en) Control unit of injection molding machine and control method of injection molding machine
JP2024043391A (en) Injection molding machine control device, injection molding machine, and injection molding machine control method
JP2023148763A (en) Display input device of injection molding machine, controller of injection molding machine, and control method of injection molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511501

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280007973.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781131

Country of ref document: EP

Kind code of ref document: A1