WO2022210869A1 - Method for producing semi-cured product composite, method for producing cured product composite, and semi-cured product composite - Google Patents

Method for producing semi-cured product composite, method for producing cured product composite, and semi-cured product composite Download PDF

Info

Publication number
WO2022210869A1
WO2022210869A1 PCT/JP2022/015943 JP2022015943W WO2022210869A1 WO 2022210869 A1 WO2022210869 A1 WO 2022210869A1 JP 2022015943 W JP2022015943 W JP 2022015943W WO 2022210869 A1 WO2022210869 A1 WO 2022210869A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization initiator
polymerizable component
semi
polymerization
curable composition
Prior art date
Application number
PCT/JP2022/015943
Other languages
French (fr)
Japanese (ja)
Inventor
絵梨 金子
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023511477A priority Critical patent/JPWO2022210869A1/ja
Publication of WO2022210869A1 publication Critical patent/WO2022210869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation

Definitions

  • the present invention relates to a method for producing a semi-cured composite, a method for producing a cured composite, and a semi-cured composite.
  • the composite as described above is used by adhering it to an adherend such as an electronic component, it is desirable that the state of high adhesion can be maintained for a long time because of its excellent handleability.
  • the composite when the resin is in a semi-cured state and within a predetermined viscosity range, excellent adhesiveness is achieved. In conventional composites, it was difficult to keep the viscosity within the desired range because the viscosity of the semi-cured resin tended to increase rapidly.
  • One aspect of the present invention is a semi-cured composite in which a porous body is impregnated with a semi-cured product of a curable composition, and a semi-cured composite that can maintain the semi-cured product in a desired viscosity range.
  • the object is to provide a method for manufacturing a body.
  • the present inventors contain a first polymerizable component and a second polymerizable component as polymerizable components, and contain a polymerization initiator that initiates the polymerization of each polymerizable component under conditions different from each other.
  • a curable composition it was found that a semi-cured composite in which the semi-cured product of the curable composition is adjusted to a desired viscosity range (for example, a viscosity range for excellent adhesion) can be produced.
  • One aspect of the present invention provides a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and a first polymerization initiator. a step of impregnating the porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the second polymerizable component under different conditions; and a step of polymerizing with a polymerization initiator, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator.
  • a method for manufacturing a body is provided.
  • Another aspect of the present invention includes a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and a first polymerization initiator
  • the described method for producing a cured composite wherein one of the initiator and the second polymerization initiator is a photopolymerization initiator and the other is a thermal polymerization initiator.
  • Another aspect of the present invention is a semi-cured composite comprising a porous body and a semi-cured curable composition impregnated in the porous body, wherein the curable composition is a first a polymerizable component, a first polymerization initiator for initiating polymerization of the first polymerizable component, a second polymerizable component, and a second polymerizable component under conditions different from those of the first polymerization initiator; and a second polymerization initiator that initiates polymerization, and the semi-cured product contains the polymer of the first polymerizable component, the second polymerizable component, and the second polymerization initiator.
  • one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator to provide a semi-cured composite.
  • the first polymerization initiator may be a photopolymerization initiator
  • the second polymerization initiator may be a thermal polymerization initiator
  • a semi-cured composite in which a porous body is impregnated with a semi-cured product of a curable composition, a semi-cured composite that can maintain the semi-cured product in a desired viscosity range It is possible to provide a method for manufacturing an object composite.
  • 1 is a graph showing an example of viscosity behavior of a curable composition when a first polymerization initiator is a photopolymerization initiator and a second polymerization initiator is a thermal polymerization initiator.
  • 1 is a graph showing an example of viscosity behavior of a curable composition when a first polymerization initiator is a thermal polymerization initiator and a second polymerization initiator is a photopolymerization initiator.
  • 4 is a graph showing another example of viscosity behavior of a curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator.
  • (meth)acryl means acrylic or its corresponding methacryl, and similar expressions such as “(meth)acrylate” also apply.
  • a method for producing a semi-cured composite comprises a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, A step of impregnating a porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from the first polymerization initiator (hereinafter referred to as impregnation and a step of polymerizing the first polymerizable component with a first polymerization initiator (hereinafter also referred to as a semi-curing step) S2.
  • a porous body has a structure in which a plurality of fine pores (hereinafter also referred to as “pores”) are formed. At least some of the pores in the porous body may be connected to each other to form continuous pores.
  • the porous body may be made of an inorganic compound, preferably a sintered body of an inorganic compound.
  • the sintered body of an inorganic compound may be a sintered body of an insulator.
  • the insulator in the insulator sintered body preferably contains non-oxides such as carbide, nitride, diamond and graphite, and more preferably contains nitride.
  • the carbide may be silicon carbide or the like.
  • the nitride may contain at least one nitride selected from the group consisting of boron nitride, aluminum nitride and silicon nitride, preferably boron nitride.
  • the porous body may preferably be formed of a sintered body of an insulator containing boron nitride, more preferably a sintered body of boron nitride.
  • the boron nitride sintered body may be formed by sintering together primary particles of boron nitride.
  • boron nitride both amorphous boron nitride and hexagonal boron nitride can be used.
  • the thermal conductivity of the porous material may be, for example, 30 W/(m ⁇ K) or more, 50 W/(m ⁇ K) or more, or 60 W/(m ⁇ K) or more.
  • the porous material is made of an inorganic compound having excellent thermal conductivity, the heat resistance of the resulting semi-cured composite can be reduced.
  • the thermal conductivity of the porous body is measured by a laser flash method on a sample of the porous body having a length of 10 mm, a width of 10 mm and a thickness of 1 mm.
  • the average pore diameter of the pores in the porous body may be, for example, 0.5 ⁇ m or more, and from the viewpoint that the curable composition described later can be suitably filled in the pores, it is preferably 0.6 ⁇ m or more, more preferably It is 0.8 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average pore diameter of the pores is preferably 3.5 ⁇ m or less, 3.0 ⁇ m or less, 2.5 ⁇ m or less, 2.0 ⁇ m or less, or 1.5 ⁇ m or less from the viewpoint of improving the insulation of the semi-cured composite. be.
  • the average pore diameter of the pores in the porous body is the pore diameter distribution (horizontal axis: pore diameter, vertical axis: cumulative pore volume) measured using a mercury porosimeter, and the cumulative pore volume is the total pore volume. Defined as the pore size reaching 50%.
  • the mercury porosimeter for example, a mercury porosimeter manufactured by Shimadzu Corporation can be used, and the pressure is increased from 0.03 atmosphere to 4000 atmospheres for measurement.
  • the ratio of pores in the porous body is preferably 10% by volume or more, 20% by volume or more, or 30% by volume or more, preferably 70% by volume or less, more preferably 60% by volume or less, from the viewpoint of improving the insulation and thermal conductivity of the semi-cured composite , more preferably 50% by volume or less.
  • the porous body may be produced by sintering raw materials, etc., or a commercially available product may be used.
  • the porous body is a sintered body of an inorganic compound
  • the porous body can be obtained by sintering powder containing the inorganic compound. That is, in one embodiment, the impregnation step S1 includes a step of sintering a powder containing an inorganic compound (hereinafter also referred to as an inorganic compound powder) to obtain a sintered body of the inorganic compound, which is a porous body.
  • the sintered body of the inorganic compound may be prepared by subjecting the slurry containing the powder of the inorganic compound to a spheroidization treatment with a spray dryer or the like, further shaping the sintered body, and then sintering it to prepare a sintered body that is a porous body.
  • a mold may be used, or a cold isostatic pressing (CIP) method may be used.
  • a sintering aid may be used during sintering.
  • the sintering aid may be, for example, yttria oxide, oxides of rare earth elements such as alumina oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid.
  • the amount of the sintering aid added is, for example, 0.01 parts by mass or more, or 0.1 parts by mass with respect to a total of 100 parts by mass of the inorganic compound and the sintering aid. or more.
  • the amount of the sintering aid added may be 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to a total of 100 parts by mass of the inorganic compound and the sintering aid.
  • the sintering temperature of the inorganic compound may be, for example, 1600°C or higher, or 1700°C or higher.
  • the sintering temperature of the inorganic compound may be, for example, 2200° C. or lower, or 2000° C. or lower.
  • the sintering time of the inorganic compound may be, for example, 1 hour or more and 30 hours or less.
  • the atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
  • a batch type furnace and a continuous type furnace can be used.
  • Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like.
  • continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and koto-shaped continuous furnaces.
  • the porous body may be formed by cutting or the like into a desired shape and thickness before the impregnation step S1, if necessary.
  • the porous body to be subjected to the impregnation step S1 may be, for example, sheet-like.
  • the sheet-like porous body may be formed into a sheet with a desired thickness during the above sintering, or a sintered body having a thickness greater than the desired thickness is produced, and the desired thickness is obtained from the sintered body. It may be produced by cutting a thick sheet.
  • the thickness of the porous body is such that when the first polymerizable component or the second polymerizable component is polymerized by light (ultraviolet) irradiation (details will be described later), the thickness of the porous body is It is preferably 2 mm or less, 1 mm or less, or 0.5 mm or less from the viewpoint that the interior is also sufficiently irradiated with light (ultraviolet rays) and the polymerization proceeds more favorably.
  • the thickness of the porous body (sheet-like porous body) may be, for example, 0.1 mm or more or 0.2 mm or more.
  • a solution containing a curable composition is prepared in an impregnation device, and the porous body is immersed in the solution to impregnate the pores of the porous body with the curable composition.
  • the curable composition contains a first polymerizable component and a second polymerizable component as polymerizable components.
  • the first polymerizable component and the second polymerizable component may be the same or different from each other.
  • the polymerizable components used as the first polymerizable component and the second polymerizable component are not particularly limited as long as they are components that can be generally used in curable compositions.
  • These polymerizable components include, for example, epoxy compounds, (meth) acrylic compounds, oxetane compounds, vinyl compounds, phenol compounds, maleimide compounds, cyanate compounds, and at least one selected from the group consisting of silicone compounds. good.
  • epoxy compounds include bifunctional epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol A/F type epoxy resins; novolak type epoxy resins such as phenol novolak type epoxy resins and cresol novolak type epoxy resins; Polyfunctional epoxy resins such as phenolmethane type epoxy resins; Glycidylamine type epoxy resins such as N,N-diglycidylaniline and N,N-diglycidyl-o-toluidine; Heterocyclic ring-containing epoxy resins such as triglycidyl isocyanurate; Alicyclic epoxy resins such as bisphenol A-type epoxy resins and hydrogenated bisphenol F-type epoxy resins; aromatic ring-containing epoxy resins such as 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene; dicyclo So-called epoxy resins such as pentadiene type epoxy resins can be mentioned.
  • An epoxy compound may be used individually by 1 type or in combination of
  • the (meth)acrylic compound may be (meth)acrylic acid or (meth)acrylate.
  • the (meth)acrylate may be a monofunctional (meth)acrylate having one (meth)acryloyl group, or may be a polyfunctional (meth)acrylate having two or more (meth)acryloyl groups.
  • Monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • n-octyl (meth)acrylate isooctyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, 2-hydroxyethyl ( meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenylglycidyl (meth)acrylate Acrylates, dimethylaminomethyl (meth)acrylate, phenyl cellosolve (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, biphenyl (meth)acryl
  • Polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate.
  • the compounds shown above may be used singly or in combination of two or more.
  • the oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ oxetane, 1,4-bis ⁇ [(3-ethyl -3-oxetanyl)methoxy]methyl ⁇ benzene, 4,4′-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, 1,4-benzenedicarboxylate bis[(3-ethyl-3-oxetanyl) ] methyl ester, 3-ethyl-3-(phenoxymethyl)oxetane, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, di[1-ethyl(3-oxetanyl)]methyl ether, 3-ethyl- 3- ⁇ [3-(triethoxysilyl)prop
  • vinyl compounds include ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and isopropenyl.
  • ether-propylene carbonate dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, Vinyl ether group-containing compounds such as hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, and trimethylolpropane trivinyl ether; styrene compounds such as styrene, methylstyrene, and ethylstyrene; A vinyl compound may be used individually by 1 type or in combination of 2 or more types.
  • Phenol compounds include phenol novolak resin, alkylphenol borak resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene-modified phenol resin, polyvinylphenols, bisphenol F, bisphenol S type phenol resin, poly So-called phenolic resins such as p-hydroxystyrene, condensates of naphthol and aldehydes, and condensates of dihydroxynaphthalene and aldehydes. Phenol compounds may be used alone or in combination of two or more.
  • Maleimide compounds include 4,4′-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2′-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3′-dimethyl -5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4′-diphenyletherbismaleimide, 4,4′-diphenylsulfonebismaleimide, 1, 3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene and the like. These maleimide compounds may be used singly or in combination of two or more.
  • cyanate compounds include novolac type cyanate resins; bisphenol type cyanate resins such as bisphenol A type cyanate resins, bisphenol E type cyanate resins, and tetramethylbisphenol F type cyanate resins; Naphthol aralkyl type cyanate resins; dicyclopentadiene type cyanate resins; and biphenylene skeleton-containing phenol aralkyl type cyanate resins.
  • a cyanate compound may be used individually by 1 type or in combination of 2 or more types.
  • silicone compounds include methyl-based straight silicone resin (polydimethylsiloxane), methylphenyl-based straight silicone resin (polydimethylsiloxane in which some of the methyl groups are substituted with phenyl groups), acrylic resin-modified silicone resin, and polyester resin-modified silicone resin. , epoxy resin-modified silicone resins, alkyd resin-modified silicone resins and rubber-based silicone resins. These silicone compounds may be used alone or in combination of two or more.
  • the content of the first polymerizable component is based on the total amount of the curable composition, from the viewpoint of maintaining the desired viscosity in the semi-cured state and imparting handling, adhesiveness, and adhesion to the semi-cured composite, It is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more.
  • the content of the first polymerizable component is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total amount of the curable composition, from the viewpoint of imparting adhesiveness and adhesion to the semi-cured resin. More preferably, it is 40% by mass or less.
  • the content of the second polymerizable component is preferably 40% by mass or more, more preferably 50% by mass, based on the total amount of the curable composition, from the viewpoint of the melt viscosity of the resin in the semi-cured composite when heated. % or more, more preferably 60 mass % or more.
  • the content of the second polymerizable component is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass, based on the total amount of the curable composition, from the viewpoint of handling of the semi-cured composite. % by mass or less.
  • the ratio of the content of the first polymerizable component to the content of the second polymerizable component in the curable composition is 0 by mass ratio. .1 or more, 0.25 or more, or 0.4 or more, and may be 1.5 or less, 1.0 or less, or 0.7 or less.
  • the curable composition comprises a first polymerization initiator that initiates polymerization of the first polymerizable component and a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from those of the first polymerization initiator. and a polymerization initiator, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator.
  • the second polymerization initiator can be produced under conditions different from those of the first polymerization initiator. Polymerization of the polymerizable component can be initiated.
  • the semi-curing step S2 it is possible to suppress the initiation of polymerization of the second polymerizable component while polymerizing the first polymerizable component.
  • the first polymerization initiator may be a photopolymerization initiator and the second polymerization initiator may be a thermal polymerization initiator.
  • the polymerization initiator of may be a thermal polymerization initiator, and the second polymerization initiator may be a photopolymerization initiator.
  • the first polymerization initiator is preferably a photopolymerization initiator, and the second 2 is a thermal polymerization initiator.
  • the photopolymerization initiator may be at least one selected from the group consisting of radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators.
  • photoradical polymerization initiators include, but are not limited to, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis-(2, Acylphosphine oxide compounds such as 6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide; Thioxanthone compounds such as thioxanthone, diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, and 2-isopropylthioxanthone; 2,2-dimethoxy-1 , 2-diphenylethan-1-one, benzoin ketals such as benzyl dimethyl ketal; 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2- ⁇ -hydroxyketones such as hydroxyeth,
  • the substituents on the aryl groups of the two triarylimidazole moieties may be identical to give symmetrical compounds or different to give asymmetrical compounds. good too. Also.
  • a thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
  • photoradical polymerization initiators include, in addition to the above, 2,2-dimethoxy-2-phenylacetophenone, N-phenylglycine, coumarin, xanthone, fluorenone, fluorene, 3-methylacetophenone, 1-(4-isopropylphenyl )-2-hydroxy-2-methylpropan-1-one and the like.
  • radical photopolymerization initiator the above compounds may be used singly or in combination of two or more.
  • a photoradical polymerization initiator can also be used in combination with a suitable sensitizer.
  • the photocationic polymerization initiator is not particularly limited as long as it generates an acid upon exposure to light.
  • photocationic polymerization initiators include B(C 6 F 5 ) 4 -salts, PF 6 -salts , AsF 6 -salts , SbF 6 - salts of onium compounds such as sulfonium, phosphonium, diazonium, iodonium, ammonium and pyridinium.
  • the photocationic polymerization initiator may be used alone or in combination of two or more of these compounds.
  • Photoanionic polymerization initiators include acetophenone o-benzoyloxime, nifedipine, 2-(9-oxoxanthen-2-yl)propionic acid 1,5,7-triazabicyclo[4,4,0]deca-5- Ene, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate, 1,2-dicyclohexyl -4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate and the like.
  • the thermal polymerization initiator may be at least one selected from the group consisting of thermal radical polymerization initiators, thermal cationic polymerization initiators, and thermal anionic polymerization initiators.
  • the thermal radical polymerization initiator is not particularly limited as long as it is a compound that generates radicals upon heating and initiates a chain polymerization reaction.
  • thermal radical polymerization initiators include organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds, acetophenone compounds, benzopinacol and the like, and benzopinacol is preferably used.
  • a thermal radical polymerization initiator may use these compounds individually by 1 type or in combination of 2 or more types.
  • organic peroxides include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methyl cyclohexanone peroxide; 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-Butylperoxy)-2-methylcyclohexane, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1- Peroxyketals such as bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ '-bis(t-butylperoxy)diisopropylbenzene , dialkyl peroxide such as dicumyl peroxide, t-butyl cumyl peroxide
  • Organic peroxides include Kayamec RTMA, M, R, L, LH, SP-30C, Perkadox CH-50L, BC-FF, Kadox B-40ES, Perkadox 14, Trigonox RTM22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kayaester RTMP-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTMB, Parkadox 16, Kayacarbon RTMBIC-75, AIC-75 (manufactured by Kayaku Nourion Co., Ltd.); Permek RTMN, H, S, F, D, G, Perhexa RTMH, HC, TMH, C, V, 22, MC, Percure RTMAH, AL, HB, Perbutyl Commercially available products such as RTMH, C, ND, L, Permil RTMH, D, Perroyl RTMIB, IPP
  • Azo compounds include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(4-methoxy-2′-dimethylvaleronitrile ) and the like.
  • azo compound commercially available products such as VA-044, V-70, VPE-0201, and VSP-1001 (manufactured by Wako Pure Chemical Industries, Ltd.) may be used.
  • the thermal radical polymerization initiator is preferably at least one selected from the group consisting of diacyl peroxides, peroxyesters, and azo compounds, from the viewpoints of curability of the semi-cured product and heat resistance of the semi-cured product. is.
  • the thermal radical polymerization initiator may be uniformly dispersed by reducing the particle size.
  • the average particle diameter of the thermal radical polymerization initiator is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, from the viewpoint of appropriately using the semi-cured composite for various uses.
  • the lower limit of the average particle size of the thermal radical polymerization initiator is not limited, it is, for example, 0.1 ⁇ m or more.
  • the average particle size of the thermal radical polymerization initiator can be measured with a laser diffraction/scattering particle size distribution analyzer (dry type) (for example, LMS-30 manufactured by Seishin Enterprise Co., Ltd.).
  • the thermal cationic polymerization initiator is not particularly limited as long as it generates cationic species such as Bronsted acids and Lewis acids.
  • Thermal cationic polymerization initiators include, for example, onium salts such as sulfonium salts, phosphonium salts, quaternary ammonium salts, aryldiazonium salts, and aryliodonium salts, organosilanes, heteropolyacids, allene-ion complexes, and boron trifluoride amine complexes. etc.
  • the use of such a thermal cationic polymerization initiator tends to improve the dimensional accuracy and degree of cure.
  • these compounds may be used singly or in combination of two or more.
  • sulfonium salts for example, San-Aid SI-L85, SI-L110, SI-L145, SI-L160, SI-H15, SI-H20, SI-H25, SI-H40, SI-H50, SI-60L , SI-80L, SI-100L, SI-80, SI-100 (manufactured by Sanshin Chemical Industry Co., Ltd.), CP-77 (manufactured by ADEKA Corporation) and the like can be used.
  • SI-Aid SI-L85, SI-L110, SI-L145, SI-L160, SI-H15, SI-H20, SI-H25, SI-H40, SI-H50, SI-60L , SI-80L, SI-100L, SI-80, SI-100 manufactured by Sanshin Chemical Industry Co., Ltd.
  • CP-77 manufactured by ADEKA Corporation
  • Phosphonium salts include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoro antimonate, benzyl-4-methoxyphenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, benzyl-3-methyl-4-hydroxy-5-tert-butylphenylmethylsulfonium hexafluoroantimonate, 4-methoxybenzyl-4-hydroxypheny
  • quaternary ammonium salt commercially available products such as CXC-1616 (manufactured by KING INDUSTRY) can be used.
  • Organosilanes include monofunctional silane compounds such as methoxytrimethylsilane, ethoxytriethylsilane, propoxytripropylsilane, butoxytributylsilane, methoxytrioctylsilane, methoxytriphenylsilane, methoxytribenzylsilane, and triphenylhydroxysilane; Silane, dimethoxydiethylsilane, diethoxydibutylsilane, dipropoxydipropylsilane, dimethoxydilaurylsilane, dimethoxydiphenylsilane, dimethoxydibenzylsilane, methoxybenzyloxydipropylsilane, methoxy-2-ethylhexyloxydipropylsilane, diphenylsilanediol Bifunctional silane compounds such as trimethoxymethylsilane, triethoxyethylsilane
  • SH6018 manufactured by Toray Silicone Co., Ltd.: hydroxyl equivalent weight 400, molecular weight 1600 methiphenyl polysiloxane
  • Possible silicone resins may also be used.
  • the organosilane is preferably triphenylsilanol, or a silicone resin available as SH6018, due to its reactivity and availability.
  • the thermal anionic polymerization initiator a known one that can be used as an anionic polymerization initiator for the polymerizable component can be employed, and is a compound that generates a base capable of anionically polymerizing the anionically polymerizable compound by heat.
  • the thermal anionic polymerization initiator includes known aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, and boron trifluoride.
  • -Amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used, and encapsulated imidazole compounds that exhibit good latency against temperature can also be preferably used.
  • the content of the first polymerization initiator, based on the total amount of the curable composition may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, 15% by mass or less, 10 % by mass or less, 5% by mass or less, or 3% by mass or less.
  • the content of the second polymerization initiator, based on the total amount of the curable composition may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, 15% by mass or less, 10 % by mass or less, 5% by mass or less, 3% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the curable composition may further contain other components in addition to the above-described first polymerizable component, second polymerizable component, first polymerization initiator, and second polymerization initiator.
  • Other components may further include, for example, silane coupling agents, adhesion imparting agents, antioxidants, photosensitizers, and additives that inhibit polymerization inhibition (phosphorus compounds, thiol compounds, etc.).
  • the total content of other components may be 10% by mass or less, 5% by mass or less, or 3% by mass or less based on the total amount of the curable composition.
  • the impregnation step S1 may be performed under either reduced pressure or pressurized conditions, or may be performed in combination with impregnation under reduced pressure conditions and impregnation under pressurized conditions.
  • the pressure in the impregnation device when the impregnation step S1 is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
  • the pressure in the impregnation device when the impregnation step S1 is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
  • the thinner the porous body the easier it is to impregnate the porous body with the curable composition without under reduced pressure and pressure impregnation conditions. For this reason, whether or not to carry out under reduced pressure conditions or under increased pressure conditions may be appropriately determined according to the thickness, the viscosity of the resin to be used, and the like.
  • the curable composition may be heated when the porous body is impregnated with the curable composition.
  • the temperature for heating the curable composition for impregnation can be set as appropriate, but when the first polymerization initiator is a thermal polymerization initiator, the reaction initiation temperature of the first polymerization initiator is exceeded. It may be the temperature. In this case, the upper limit of the temperature for heating the curable composition may be equal to or lower than the reaction initiation temperature of the first polymerization initiator +20°C.
  • the reaction initiation temperature of the thermal polymerization initiator is determined by reacting the polymerizable component corresponding to the first polymerizable component or the second polymerizable component with the thermal polymerization initiator, using a differential scanning calorimeter (DSC). It can be confirmed by measuring the temperature history.
  • DSC differential scanning calorimeter
  • the porous body is immersed in the solution containing the curable composition and held for a predetermined time.
  • the predetermined time is not particularly limited, and may be, for example, 5 minutes or longer, 30 minutes or longer, 1 hour or longer, 5 hours or longer, 10 hours or longer, 100 hours or longer, or 150 hours or longer.
  • the first polymerizable component in the curable composition is polymerized with the first polymerization initiator.
  • the first polymerizable component is a photopolymerization initiator
  • the first polymerizable component can be polymerized by irradiating light (ultraviolet rays) from an ultraviolet irradiation device (high-pressure mercury lamp, ultraviolet irradiation LED).
  • an ultraviolet irradiation device high-pressure mercury lamp, ultraviolet irradiation LED.
  • the amount and time of light (ultraviolet) irradiation can be set as appropriate.
  • the porous body impregnated with the curable composition is heated at a temperature at which the first polymerization initiator reacts (hereinafter also referred to as temperature T1). can polymerize the first polymerizable component.
  • the temperature T1 is preferably 30°C or higher, more preferably 40°C or higher, and even more preferably 50°C or higher.
  • the temperature T1 is preferably 180° C. or lower, more preferably 150° C. or lower, and even more preferably 120° C. or lower, from the viewpoint of reducing the change in viscosity over time.
  • the temperature T1 refers to the atmospheric temperature when heating the porous body impregnated with the curable composition.
  • the heating time in this case may be 1 hour or more, 3 hours or more, or 5 hours or more, and may be 12 hours or less, 10 hours or less, or 8 hours or less.
  • a semi-cured composite can be produced by the steps described above. That is, a semi-cured composite according to one embodiment includes the porous body described above and the semi-cured material of the curable composition impregnated in the porous body.
  • the proportion of the porous material in the semi-cured composite is preferably 30% by volume or more based on the total volume of the semi-cured composite, from the viewpoint of improving the insulation and thermal conductivity of the semi-cured composite. , more preferably 40% by volume or more, and still more preferably 50% by volume or more.
  • the proportion of the porous material in the semi-cured composite is, for example, 90% by volume or less, 80% by volume or less, 70% by volume or less, or 60% by volume or less based on the total volume of the semi-cured composite. you can
  • the semi-cured product contains a polymer of the first polymerizable component, a second polymerizable component, and a second polymerization initiator. That is, it can be said that the semi-cured product contains a polymer of the first polymerizable component and an unpolymerized product of the second polymerizable component.
  • the curable composition preferably contains a photopolymerization initiator as the first polymerization initiator. Therefore, the semi-cured product preferably contains a polymer obtained by photopolymerizing the first polymerizable component as the polymer of the first polymerizable component. In this case, the semi-cured product can be said to contain a polymer obtained by photopolymerizing the first polymerizable component, the second polymerizable component, and a thermal polymerization initiator.
  • the semi-cured product may not contain the first polymerizable component (all of the first polymerizable component may be polymerized), and the semi-cured product may contain one of the first polymerizable components.
  • the moieties may be included without polymerization. That is, in the semi-cured composite according to one embodiment, part of the first polymerizable component remains in the semi-cured composite as a minor component. By intentionally allowing a part of the first polymerizable component to remain in the semi-cured composite as a minor component, it is possible to suppress the initiation of polymerization of the second polymerizable component in the semi-curing step S2. .
  • the fact that the semi-cured product contains a part of the first polymerizable component can be confirmed by analyzing the semi-cured product composite using FT-IR or NMR and determining the functional group contained in the first polymerizable component. It can be confirmed by analysis. At this time, a solvent such as acetone may be used to extract and concentrate the first polymerizable component before analysis. Alternatively, the decomposition product of the semi-cured composite is analyzed using pyrolysis gas chromatography to confirm that the semi-cured composite contains part of the first polymerizable component. can be done.
  • the semi-cured product contains the first polymerizable component
  • its content is less than the second polymerizable component.
  • the content of the first polymerizable component contained in the semi-cured product is 5 parts by mass or less with respect to a total of 100 parts by mass of the content of the first polymerizable component and the content of the second polymerizable component. , 3 parts by mass or less, or 1 part by mass or less, or 0.5 mass % or more.
  • the content is determined by analyzing the semi-cured composite by FT-IR to examine the types of functional groups possessed by the first polymerizable component and the second polymerizable component, and then by NMR to determine the structure of the functional group, and by checking the ratio of the peaks obtained.
  • the curable composition since the second polymerizable component is contained in a non-polymerized state, the curable composition has better adhesion to adherends than a completely cured cured product.
  • the semi-cured composite can easily maintain a desired viscosity for excellent adhesion to adherends unless the second polymerizable component is polymerized. This makes it possible to obtain a semi-cured composite excellent in handleability (details of the viscosity behavior of the curable composition will be described later).
  • the semi-cured composite can be used by forming it into a sheet or the like and adhering it to an adherend.
  • a semi-cured composite is obtained by the method described above, and the resin (curable composition or semi-cured material) adhering to the outer periphery of the composite is removed to obtain a sheet-like semi-cured composite.
  • the sheet-like semi-cured composite is placed on an adherend and pressed, for example, under reaction conditions of the second polymerization initiator, thereby bonding the semi-cured composite to the adherend while forming a semi-cured composite.
  • the cured product can be cured to form a cured product composite (details will be described later).
  • a cured composite can be produced by polymerizing the second polymerizable component of the semi-cured composite described above. That is, the method for producing a cured product composite according to one embodiment includes a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, and a second polymerizable component.
  • the second polymerizable component in the semi-cured product is polymerized with the second polymerization initiator.
  • the second polymerization initiator is a thermal polymerization initiator (the first polymerization initiator is a photopolymerization initiator)
  • the porous body impregnated with the curable composition is treated with the second By heating at a temperature at which the polymerization initiator reacts (hereinafter also referred to as temperature T2), the second polymerizable component can be polymerized.
  • the temperature T2 may be, for example, 100°C or higher or 120°C or higher, and may be 150°C or higher, 180°C or higher, or 200°C or higher from the viewpoint of polymerizing the second polymerizable component in a short time.
  • the temperature T2 may be 260° C. or lower, 240° C. or lower, or 220° C. or lower from the viewpoint of volatilization of low molecular weight components contained in the curable composition and thermal stability of the composition.
  • the temperature T2 refers to the ambient temperature when heating the semi-cured composite. Heating in the curing step may be performed by changing the temperature T2 stepwise (for example, stepwise increasing).
  • the heating time at temperature T2 may be 1 hour or more, 5 hours or more, or 10 hours or more, and may be 30 hours or less, 25 hours or less, or 20 hours or less.
  • FIG. 1 shows an example of the viscosity behavior of the curable composition when the first polymerization initiator is a photopolymerization initiator and the second polymerization initiator is a thermal polymerization initiator.
  • the first polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range.
  • the viscosity range of 10 2 to 10 6 Pa s it is preferable that there is no time region where the viscosity increase per hour is 50000 Pa s or more, and the viscosity increase per hour is 150000 Pa s or more. It is more preferable that there is no time region where Further, when the viscosity of the curable composition immediately after stopping the light irradiation for polymerizing the first polymerizable component is taken as 1, the viscosity of the curable composition after holding for 1 hour is preferably less than 10. Yes, more preferably less than 100.
  • the viscosity of the curable composition is reduced due to the viscosity reduction (softening) of the second polymerizable component due to heating, and then the second polymerizable component is polymerized by heating.
  • the viscosity of the curable composition increases as the polymerization progresses over time.
  • the second polymerization initiator is a photopolymerization initiator (the first polymerization initiator is a thermal polymerization initiator)
  • the first polymerization initiator is a thermal polymerization initiator
  • light UV rays
  • the amount and time of light (ultraviolet) irradiation can be set as appropriate.
  • FIG. 2 shows an example of the viscosity behavior of the curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator.
  • the first polymerizable component is polymerized by heating, and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range.
  • the viscosity range of 10 2 to 10 6 Pa s it is preferable that there is no time region where the viscosity increase per hour is 50000 Pa s or more, and the viscosity increase per hour is 150000 Pa s or more. It is more preferable that there is no time region where Subsequently, in the curing step S3, the second polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time.
  • the step of heating the curable composition immediately before the curing step S3 or simultaneously with the curing step S3 may be performed.
  • the heating step S4 reduces the viscosity of the curable composition due to the viscosity reduction (softening) of the second polymerizable component, which makes it easier to adhere the semi-cured composite to the adherend.
  • FIG. 3 Another example of the viscosity behavior of the curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator (heating step S4 immediately before curing step S3 is shown in FIG.
  • the first polymerizable component is polymerized by heating, and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range.
  • the viscosity of the curable composition decreases due to the viscosity decrease (softening) of the second polymerizable component.
  • the second polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time.
  • a cured composite can be produced by the above-described steps. That is, a cured product composite according to one embodiment includes the above-described porous body and a cured product of the above-described curable composition impregnated in the porous body.
  • the cured product in the cured product composite contains a polymer of the first polymerizable component and a polymer of the second polymerizable component.
  • the cured product may not contain the first polymerizable component and the second polymerizable component (all of the first polymerizable component and the second polymerizable component may be polymerized), and cured A part of the first polymerizable component and/or the second polymerizable component may remain in the product as a minor component.
  • thermosetting compositions according to Examples and Comparative Examples were prepared.
  • thermosetting compositions according to Examples and Comparative Examples are irradiated with ultraviolet rays for 15 minutes under conditions of a light intensity of 8 mW/cm 2 using an ultraviolet irradiation device (manufactured by Hamamatsu Photonics Co., Ltd.) equipped with a high-pressure mercury lamp.
  • the first polymerization component was polymerized at , followed by a 1 hour hold. Subsequently, the temperature was raised at a rate of temperature increase of 1° C./min, and cured by heating for 5 hours under the conditions of 150° C. and atmospheric pressure.
  • the viscosity of the thermosetting composition was measured at a shear rate of 10 (1/sec) using a rotary viscometer during the period from the irradiation of the ultraviolet rays to the heating.
  • the obtained viscosity behavior was evaluated according to the following two criteria.
  • Viscosity increase per hour in the viscosity range of 10 2 to 10 6 Pa s does not apply
  • the mixed powder was filled in a mold and press-molded at a pressure of 5 MPa to obtain a compact.
  • a cold isostatic press (CIP) device manufactured by Kobe Steel, Ltd., trade name: ADW800
  • the compact was compressed by applying a pressure of 20 to 100 MPa.
  • the compressed molded body is held at 2000 ° C. for 10 hours using a batch-type high-frequency furnace (manufactured by Fuji Dempa Kogyo Co., Ltd., product name: FTH-300-1H) to obtain a porous body (50 mm ⁇ 50 mm ⁇ 50 mm approximately cubic shape) was produced.
  • the firing was carried out by adjusting the inside of the furnace to a nitrogen atmosphere while flowing nitrogen into the furnace at a flow rate of 10 L/min in a standard state.
  • the sliced porous body is impregnated with the curable compositions according to Examples 1 to 5 by the following method. let me
  • the porous body and the thermosetting composition contained in a container were placed in a vacuum heating impregnation device (manufactured by Kyoshin Engineering Co., Ltd., trade name: G-555AT-R).
  • a vacuum heating impregnation device manufactured by Kyoshin Engineering Co., Ltd., trade name: G-555AT-R.
  • the temperature was 50°C and the pressure was 15 Pa
  • the curable composition of Example 5 was used, the temperature was 90°C and the pressure was 15 Pa.
  • the inside of each device was degassed for 10 minutes under the conditions of . After degassing, the porous body was immersed in the curable composition for 40 minutes under the same conditions to impregnate the porous body with the curable composition.
  • the container containing the porous body and the curable composition was taken out, placed in a pressure heating impregnation device (manufactured by Kyoshin Engineering Co., Ltd., product name: HP-4030AA-H45), and the contents of Examples 1 to 4 were obtained.
  • a pressure heating impregnation device manufactured by Kyoshin Engineering Co., Ltd., product name: HP-4030AA-H45
  • the curable composition under the conditions of a temperature of 50 ° C. and a pressure of 3.5 MPa
  • the curable composition of Example 5 Under the conditions of a temperature of 90 ° C. and a pressure of 3.5 MPa, By holding each for 120 minutes, the curable composition was further impregnated into the porous body (at this point, polymerization of the polymerizable component (semi-curing of the curable composition) had not progressed).
  • the porous body impregnated with the curable composition was removed from the apparatus and irradiated with ultraviolet rays for 10 minutes using an ultraviolet irradiation apparatus (manufactured by Hamamatsu Photonics Co., Ltd.) under conditions where the light amount was 8 mW/cm 2 .
  • an ultraviolet irradiation apparatus manufactured by Hamamatsu Photonics Co., Ltd.

Abstract

A method for producing a semi-cured product composite provided with a step for impregnating a porous body with a curable composition containing a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and a second polymerization initiator that initiates polymerization of the second polymerizable component under different conditions from the first polymerization initiator, and a step for polymerizing the first polymerizable component by the first polymerization initiator, either one of the first polymerization initiator and second polymerization initiator being a photopolymerization initiator and the other being a thermal polymerization initiator.

Description

半硬化物複合体の製造方法、硬化物複合体の製造方法、及び半硬化物複合体Method for producing semi-cured composite, method for producing cured composite, and semi-cured composite
 本発明は、半硬化物複合体の製造方法、硬化物複合体の製造方法、及び半硬化物複合体に関する。 The present invention relates to a method for producing a semi-cured composite, a method for producing a cured composite, and a semi-cured composite.
 LED照明装置、車載用パワーモジュール等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、電子部品を実装するプリント配線板の絶縁層を高熱伝導化する方法、電子部品又はプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付ける方法等の対策が取られている。このような絶縁層及び熱インターフェース材には、樹脂と、窒化ホウ素等のセラミックスとで構成される複合体(放熱部材)が用いられる。 For electronic components such as LED lighting devices and in-vehicle power modules, it is an issue to efficiently dissipate the heat generated during use. To address this issue, there is a method for increasing the thermal conductivity of the insulating layer of a printed wiring board on which electronic components are mounted, and a method for attaching an electronic component or printed wiring board to a heat sink via an electrically insulating thermal interface material. etc. are being taken. A composite (radiation member) composed of a resin and a ceramic such as boron nitride is used for such an insulating layer and thermal interface material.
国際公開第2014/196496号WO2014/196496
 上述のような複合体は、電子部品等の被着体に接着させて用いられるため、接着性の高い状態を長時間持続可能であると、ハンドリング性に優れるため望ましい。複合体においては、樹脂が半硬化の状態であって、所定の粘度範囲であるときに接着性に優れた状態となる。従来の複合体では、半硬化状態の樹脂において急激な粘度上昇が起こりやすかったため、所望の粘度範囲で保持することが困難であった。 Since the composite as described above is used by adhering it to an adherend such as an electronic component, it is desirable that the state of high adhesion can be maintained for a long time because of its excellent handleability. In the composite, when the resin is in a semi-cured state and within a predetermined viscosity range, excellent adhesiveness is achieved. In conventional composites, it was difficult to keep the viscosity within the desired range because the viscosity of the semi-cured resin tended to increase rapidly.
 本発明の一側面は、多孔質体に硬化性組成物の半硬化物が含浸された半硬化物複合体において、半硬化物を所望の粘度範囲で保持することが可能な、半硬化物複合体の製造方法を提供することを目的とする。 One aspect of the present invention is a semi-cured composite in which a porous body is impregnated with a semi-cured product of a curable composition, and a semi-cured composite that can maintain the semi-cured product in a desired viscosity range. The object is to provide a method for manufacturing a body.
 本発明者らは、重合性成分として、第1の重合性成分及び第2の重合性成分を含有し、かつ、それぞれの重合性成分の重合を互いに異なる条件で開始させる重合開始剤を含有する硬化性組成物を用いることにより、当該硬化性組成物の半硬化物が所望の粘度範囲(例えば、接着性に優れる粘度範囲)に調整された半硬化物複合体を製造できることを見出した。 The present inventors contain a first polymerizable component and a second polymerizable component as polymerizable components, and contain a polymerization initiator that initiates the polymerization of each polymerizable component under conditions different from each other. By using a curable composition, it was found that a semi-cured composite in which the semi-cured product of the curable composition is adjusted to a desired viscosity range (for example, a viscosity range for excellent adhesion) can be produced.
 本発明の一側面は、第1の重合性成分と、第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程と、第1の重合性成分を、第1の重合開始剤により重合させる工程と、を備え、第1の重合開始剤及び第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、半硬化物複合体の製造方法を提供する。 One aspect of the present invention provides a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and a first polymerization initiator. a step of impregnating the porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the second polymerizable component under different conditions; and a step of polymerizing with a polymerization initiator, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator. A method for manufacturing a body is provided.
 本発明の他の一側面は、第1の重合性成分と、第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程と、第1の重合性成分を、第1の重合開始剤により重合させる工程と、第1の重合性成分を重合させた後に、第2の重合性成分を、第2の重合開始剤により重合させる工程と、を備え、第1の重合開始剤及び第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、硬化物複合体の記載の製造方法を提供する。 Another aspect of the present invention includes a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and a first polymerization initiator A step of impregnating the porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from the first polymerizable component, a step of polymerizing with a first polymerization initiator; and a step of polymerizing a second polymerizable component with a second polymerization initiator after polymerizing the first polymerizable component; Provided is the described method for producing a cured composite, wherein one of the initiator and the second polymerization initiator is a photopolymerization initiator and the other is a thermal polymerization initiator.
 本発明の他の一側面は、多孔質体と、多孔質体に含浸された硬化性組成物の半硬化物とを備える半硬化物複合体であって、硬化性組成物が、第1の重合性成分と、第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有し、半硬化物が、第1の重合性成分の重合物と、第2の重合性成分と、第2の重合開始剤とを含有し、第1の重合開始剤及び第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、半硬化物複合体を提供する。 Another aspect of the present invention is a semi-cured composite comprising a porous body and a semi-cured curable composition impregnated in the porous body, wherein the curable composition is a first a polymerizable component, a first polymerization initiator for initiating polymerization of the first polymerizable component, a second polymerizable component, and a second polymerizable component under conditions different from those of the first polymerization initiator; and a second polymerization initiator that initiates polymerization, and the semi-cured product contains the polymer of the first polymerizable component, the second polymerizable component, and the second polymerization initiator. , one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator to provide a semi-cured composite.
 上記の各側面において、第1の重合開始剤が光重合開始剤であり、第2の重合開始剤が熱重合開始剤であってよい。 In each aspect described above, the first polymerization initiator may be a photopolymerization initiator, and the second polymerization initiator may be a thermal polymerization initiator.
 本発明の一側面によれば、多孔質体に硬化性組成物の半硬化物が含浸された半硬化物複合体において、半硬化物を所望の粘度範囲で保持することが可能な、半硬化物複合体の製造方法を提供することができる。 According to one aspect of the present invention, in a semi-cured composite in which a porous body is impregnated with a semi-cured product of a curable composition, a semi-cured composite that can maintain the semi-cured product in a desired viscosity range It is possible to provide a method for manufacturing an object composite.
第1の重合開始剤が光重合開始剤であり、第2の重合開始剤が熱重合開始剤である場合の硬化性組成物の粘度挙動の一例を示すグラフである。1 is a graph showing an example of viscosity behavior of a curable composition when a first polymerization initiator is a photopolymerization initiator and a second polymerization initiator is a thermal polymerization initiator. 第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤である場合の硬化性組成物の粘度挙動の一例を示すグラフである。1 is a graph showing an example of viscosity behavior of a curable composition when a first polymerization initiator is a thermal polymerization initiator and a second polymerization initiator is a photopolymerization initiator. 第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤である場合の硬化性組成物の粘度挙動の他の一例を示すグラフである。4 is a graph showing another example of viscosity behavior of a curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator.
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described below. However, the present invention is not limited to the following embodiments.
 本明細書において、「(メタ)アクリル」とは、アクリル又はそれに対応するメタクリルを意味し、「(メタ)アクリレート」等の類似表現においても同様である。 In this specification, "(meth)acryl" means acrylic or its corresponding methacryl, and similar expressions such as "(meth)acrylate" also apply.
<半硬化物複合体の製造方法>
 一実施形態に係る半硬化物複合体の製造方法は、第1の重合性成分と、第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、第1の重合開始剤とは異なる条件で前記第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程(以下、含浸工程ともいう)S1と、第1の重合性成分を、第1の重合開始剤により重合させる工程(以下、半硬化工程ともいう)S2と、を備える。
<Method for producing semi-cured composite>
A method for producing a semi-cured composite according to one embodiment comprises a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, A step of impregnating a porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from the first polymerization initiator (hereinafter referred to as impregnation and a step of polymerizing the first polymerizable component with a first polymerization initiator (hereinafter also referred to as a semi-curing step) S2.
 含浸工程S1では、まず、多孔質体を用意する。多孔質体は、複数の微細な孔(以下、「細孔」ともいう)が形成された構造を有する。多孔質体における細孔は、少なくとも一部が互いに連結して連続孔を形成していてもよい。 In the impregnation step S1, first, a porous body is prepared. A porous body has a structure in which a plurality of fine pores (hereinafter also referred to as “pores”) are formed. At least some of the pores in the porous body may be connected to each other to form continuous pores.
 多孔質体は、無機化合物で形成されていてよく、好ましくは無機化合物の焼結体で形成されている。無機化合物の焼結体は、絶縁物の焼結体であってもよい。絶縁物の焼結体における絶縁物は、好ましくは、炭化物、窒化物、ダイヤモンド、黒鉛等の非酸化物を含有し、より好ましくは窒化物を含有する。炭化物は、炭化ケイ素等であってよい。窒化物は、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも1種の窒化物を含有してよく、好ましくは窒化ホウ素を含有する。すなわち、多孔質体は、好ましくは窒化ホウ素を含有する絶縁物の焼結体で形成されていてよく、より好ましくは、窒化ホウ素焼結体で形成されている。多孔質体が窒化ホウ素焼結体で形成されている場合、窒化ホウ素焼結体は、窒化ホウ素の一次粒子同士が焼結されてなるものであってよい。窒化ホウ素としては、アモルファス状の窒化ホウ素及び六方晶状の窒化ホウ素のいずれも用いることができる。 The porous body may be made of an inorganic compound, preferably a sintered body of an inorganic compound. The sintered body of an inorganic compound may be a sintered body of an insulator. The insulator in the insulator sintered body preferably contains non-oxides such as carbide, nitride, diamond and graphite, and more preferably contains nitride. The carbide may be silicon carbide or the like. The nitride may contain at least one nitride selected from the group consisting of boron nitride, aluminum nitride and silicon nitride, preferably boron nitride. That is, the porous body may preferably be formed of a sintered body of an insulator containing boron nitride, more preferably a sintered body of boron nitride. When the porous body is formed of a boron nitride sintered body, the boron nitride sintered body may be formed by sintering together primary particles of boron nitride. As boron nitride, both amorphous boron nitride and hexagonal boron nitride can be used.
 多孔質体の熱伝導率の熱伝導率は、例えば、30W/(m・K)以上、50W/(m・K)以上、又は60W/(m・K)以上であってよい。多孔質体が熱伝導性に優れる無機化合物で形成されていると、得られる半硬化物複合体の熱抵抗を低下させることができる。多孔質体の熱伝導率は、多孔質体を長さ10mm×幅10mm×厚さ1mmに形成した試料について、レーザーフラッシュ法により測定される。 The thermal conductivity of the porous material may be, for example, 30 W/(m·K) or more, 50 W/(m·K) or more, or 60 W/(m·K) or more. When the porous material is made of an inorganic compound having excellent thermal conductivity, the heat resistance of the resulting semi-cured composite can be reduced. The thermal conductivity of the porous body is measured by a laser flash method on a sample of the porous body having a length of 10 mm, a width of 10 mm and a thickness of 1 mm.
 多孔質体中の細孔の平均孔径は、例えば0.5μm以上であってよく、細孔内に後述する硬化性組成物を好適に充填できる観点から、好ましくは0.6μm以上、より好ましくは0.8μm以上、更に好ましくは1μm以上である。細孔の平均孔径は、半硬化物複合体の絶縁性が向上する観点から、好ましくは、3.5μm以下、3.0μm以下、2.5μm以下、2.0μm以下、又は1.5μm以下である。 The average pore diameter of the pores in the porous body may be, for example, 0.5 μm or more, and from the viewpoint that the curable composition described later can be suitably filled in the pores, it is preferably 0.6 μm or more, more preferably It is 0.8 μm or more, more preferably 1 μm or more. The average pore diameter of the pores is preferably 3.5 μm or less, 3.0 μm or less, 2.5 μm or less, 2.0 μm or less, or 1.5 μm or less from the viewpoint of improving the insulation of the semi-cured composite. be.
 多孔質体中の細孔の平均孔径は、水銀ポロシメーターを用いて測定される細孔径分布(横軸:細孔径、縦軸:累積細孔容積)において、累積細孔容積が全細孔容積の50%に達する細孔径として定義される。水銀ポロシメーターとしては、例えば島津製作所社製の水銀ポロシメーターを用いることができ、0.03気圧から4000気圧まで圧力を増やしながら加圧して測定する。 The average pore diameter of the pores in the porous body is the pore diameter distribution (horizontal axis: pore diameter, vertical axis: cumulative pore volume) measured using a mercury porosimeter, and the cumulative pore volume is the total pore volume. Defined as the pore size reaching 50%. As the mercury porosimeter, for example, a mercury porosimeter manufactured by Shimadzu Corporation can be used, and the pressure is increased from 0.03 atmosphere to 4000 atmospheres for measurement.
 多孔質体に占める細孔の割合(気孔率)は、硬化性組成物の充填による半硬化物複合体の強度向上が好適に図られる観点から、多孔質体の全体積を基準として、好ましくは10体積%以上、20体積%以上、又は30体積%以上であり、半硬化物複合体の絶縁性及び熱伝導率を向上させる観点から、好ましくは70体積%以下、より好ましくは60体積%以下、更に好ましくは50体積%以下である。当該割合(気孔率)は、多孔質体の体積及び質量から求められるかさ密度D1(g/cm)と多孔質体を構成する材料の理論密度D2(例えば窒化ホウ素の場合は2.28g/cm)とから、下記式:
 気孔率(体積%)=[1-(D1/D2)]×100
に従って算出される。
The ratio of pores in the porous body (porosity) is preferably 10% by volume or more, 20% by volume or more, or 30% by volume or more, preferably 70% by volume or less, more preferably 60% by volume or less, from the viewpoint of improving the insulation and thermal conductivity of the semi-cured composite , more preferably 50% by volume or less. The ratio (porosity) is determined by the bulk density D1 (g/cm 3 ) obtained from the volume and mass of the porous body and the theoretical density D2 of the material constituting the porous body (for example, 2.28 g/ cm 3 ), the following formula:
Porosity (volume%) = [1-(D1/D2)] × 100
Calculated according to
 多孔質体は原料の焼結等によって作製してもよいし、市販品を用いてもよい。多孔質体が無機化合物の焼結体である場合には、無機化合物を含む粉末を焼結させることにより、多孔質体を得ることができる。すなわち、一実施形態において、含浸工程S1は、無機化合物を含有する粉末(以下、無機化合物粉末ともいう)を焼結させて、多孔質体である無機化合物の焼結体を得る工程を有する。 The porous body may be produced by sintering raw materials, etc., or a commercially available product may be used. When the porous body is a sintered body of an inorganic compound, the porous body can be obtained by sintering powder containing the inorganic compound. That is, in one embodiment, the impregnation step S1 includes a step of sintering a powder containing an inorganic compound (hereinafter also referred to as an inorganic compound powder) to obtain a sintered body of the inorganic compound, which is a porous body.
 無機化合物の焼結体は、無機化合物の粉末を含むスラリーを噴霧乾燥機等で球状化処理し、更に成形した後に焼結し、多孔質体である焼結体を調製してもよい。成形には、金型を用いてもよく、冷間等方加圧(cold isostatic pressing:CIP)法を用いてもよい。 The sintered body of the inorganic compound may be prepared by subjecting the slurry containing the powder of the inorganic compound to a spheroidization treatment with a spray dryer or the like, further shaping the sintered body, and then sintering it to prepare a sintered body that is a porous body. For molding, a mold may be used, or a cold isostatic pressing (CIP) method may be used.
 焼結の際には、焼結助剤を用いてもよい。焼結助剤は、例えば、酸化イットリア、酸化アルミナ及び酸化マグネシウム等の希土類元素の酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等であってよい。焼結助剤を配合する場合は、焼結助剤の添加量は、例えば、無機化合物及び焼結助剤の合計100質量部に対して、0.01質量部以上、又は0.1質量部以上であってよい。焼結助剤の添加量は、無機化合物及び焼結助剤の合計100質量部に対して、20質量部以下、15質量部以下、又は10質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、焼結体の平均孔径を上述の範囲に調整することが容易となる。 A sintering aid may be used during sintering. The sintering aid may be, for example, yttria oxide, oxides of rare earth elements such as alumina oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid. When a sintering aid is added, the amount of the sintering aid added is, for example, 0.01 parts by mass or more, or 0.1 parts by mass with respect to a total of 100 parts by mass of the inorganic compound and the sintering aid. or more. The amount of the sintering aid added may be 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to a total of 100 parts by mass of the inorganic compound and the sintering aid. By setting the addition amount of the sintering aid within the above range, it becomes easy to adjust the average pore diameter of the sintered body within the above range.
 無機化合物の焼結温度は、例えば、1600℃以上、又は1700℃以上であってよい。無機化合物の焼結温度は、例えば、2200℃以下、又は2000℃以下であってよい。無機化合物の焼結時間は、例えば、1時間以上であってよく、30時間以下であってよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。 The sintering temperature of the inorganic compound may be, for example, 1600°C or higher, or 1700°C or higher. The sintering temperature of the inorganic compound may be, for example, 2200° C. or lower, or 2000° C. or lower. The sintering time of the inorganic compound may be, for example, 1 hour or more and 30 hours or less. The atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
 焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び琴形連続炉等を挙げることができる。 For sintering, for example, a batch type furnace and a continuous type furnace can be used. Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like. Examples of continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and koto-shaped continuous furnaces.
 多孔質体は、含浸工程S1の前に必要に応じて、所望の形状及び厚み等に切断等によって成形されてもよい。含浸工程S1に供される多孔質体は、例えばシート状であってよい。シート状の多孔質体は、上記の焼結時に所望の厚みのシート状となるように成形されてもよいし、所望の厚みよりも厚い焼結体を作製し、当該焼結体から所望の厚みのシート状を切断することにより作製されてもよい。 The porous body may be formed by cutting or the like into a desired shape and thickness before the impregnation step S1, if necessary. The porous body to be subjected to the impregnation step S1 may be, for example, sheet-like. The sheet-like porous body may be formed into a sheet with a desired thickness during the above sintering, or a sintered body having a thickness greater than the desired thickness is produced, and the desired thickness is obtained from the sintered body. It may be produced by cutting a thick sheet.
 多孔質体(シート状の多孔質体)の厚みは、光(紫外線)照射により第1の重合性成分又は第2の重合性成分を重合させる際に(詳細は後述する)、多孔質体の内部にも光(紫外線)が充分に照射され、重合がより好適に進行する観点から、好ましくは、2mm以下、1mm以下、又は0.5mm以下である。多孔質体(シート状の多孔質体)の厚みは、例えば、0.1mm以上又は0.2mm以上であってよい。 The thickness of the porous body (sheet-shaped porous body) is such that when the first polymerizable component or the second polymerizable component is polymerized by light (ultraviolet) irradiation (details will be described later), the thickness of the porous body is It is preferably 2 mm or less, 1 mm or less, or 0.5 mm or less from the viewpoint that the interior is also sufficiently irradiated with light (ultraviolet rays) and the polymerization proceeds more favorably. The thickness of the porous body (sheet-like porous body) may be, for example, 0.1 mm or more or 0.2 mm or more.
 含浸工程S1では、続いて、含浸装置内に硬化性組成物を含む溶液を用意し、当該溶液に多孔質体を浸漬させることで、多孔質体の細孔に硬化性組成物を含浸させる。 In the impregnation step S1, subsequently, a solution containing a curable composition is prepared in an impregnation device, and the porous body is immersed in the solution to impregnate the pores of the porous body with the curable composition.
 硬化性組成物は、重合性成分として、第1の重合性成分及び第2の重合性成分を含有する。第1の重合性成分及び第2の重合性成分は、互いに同種であってもよく、互いに異種であってもよい。 The curable composition contains a first polymerizable component and a second polymerizable component as polymerizable components. The first polymerizable component and the second polymerizable component may be the same or different from each other.
 第1の重合性成分及び第2の重合性成分として用いられる重合性成分は、硬化性組成物に一般的に使用できる成分であれば特に限定されない。これらの重合性成分は、例えば、エポキシ化合物、(メタ)アクリル化合物、オキセタン化合物、ビニル化合物、フェノール化合物、マレイミド化合物、シアネート化合物、及びシリコーン化合物からなる群より選ばれる少なくとも1種を含有してもよい。 The polymerizable components used as the first polymerizable component and the second polymerizable component are not particularly limited as long as they are components that can be generally used in curable compositions. These polymerizable components include, for example, epoxy compounds, (meth) acrylic compounds, oxetane compounds, vinyl compounds, phenol compounds, maleimide compounds, cyanate compounds, and at least one selected from the group consisting of silicone compounds. good.
 エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA/F型エポキシ樹脂等の二官能エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリスフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン等のグリシジルアミン型エポキシ樹脂;イソシアヌル酸トリグリシジル等の複素環含有エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等の脂環式エポキシ樹脂;1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等の芳香環含有エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などの、いわゆるエポキシ樹脂が挙げられる。エポキシ化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Examples of epoxy compounds include bifunctional epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol A/F type epoxy resins; novolak type epoxy resins such as phenol novolak type epoxy resins and cresol novolak type epoxy resins; Polyfunctional epoxy resins such as phenolmethane type epoxy resins; Glycidylamine type epoxy resins such as N,N-diglycidylaniline and N,N-diglycidyl-o-toluidine; Heterocyclic ring-containing epoxy resins such as triglycidyl isocyanurate; Alicyclic epoxy resins such as bisphenol A-type epoxy resins and hydrogenated bisphenol F-type epoxy resins; aromatic ring-containing epoxy resins such as 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene; dicyclo So-called epoxy resins such as pentadiene type epoxy resins can be mentioned. An epoxy compound may be used individually by 1 type or in combination of 2 or more types.
 (メタ)アクリル化合物は、(メタ)アクリル酸又は(メタ)アクリレートであってよい。(メタ)アクリレートは、1つの(メタ)アクリロイル基を有する単官能(メタ)アクリレートであってよく、2つ以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートであってもよい。 The (meth)acrylic compound may be (meth)acrylic acid or (meth)acrylate. The (meth)acrylate may be a monofunctional (meth)acrylate having one (meth)acryloyl group, or may be a polyfunctional (meth)acrylate having two or more (meth)acryloyl groups.
 単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニルグリシジル(メタ)アクリレート、ジメチルアミノメチル(メタ)アクリレート、フェニルセロソルブ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ビフェニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 Monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , n-octyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, 2-hydroxyethyl ( meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, phenylglycidyl (meth)acrylate Acrylates, dimethylaminomethyl (meth)acrylate, phenyl cellosolve (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, biphenyl (meth)acrylate, 2-hydroxyethyl (meth)acryloylphos phate, phenyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxypropyl (meth)acrylate, benzyl (meth)acrylate and the like.
 多官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサメチレンジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(メタ)アクリロキシエチルイソシアヌレート等が挙げられる。 Polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate. , 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, dimethyloltricyclodecane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, neopentyl glycol di( meth)acrylate, 1,6-hexamethylene di(meth)acrylate, hydroxypivalic acid ester neopentyl glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetraacrylate , dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tris(meth)acryloxyethyl isocyanurate and the like.
 (メタ)アクリル化合物は、上記に示す化合物を1種単独で又は2種以上を組み合わせて用いられてよい。 As the (meth)acrylic compound, the compounds shown above may be used singly or in combination of two or more.
 オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸ビス[(3-エチル-3-オキセタニル)]メチルエステル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン等が挙げられる。オキセタン化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 The oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane, 1,4-bis{[(3-ethyl -3-oxetanyl)methoxy]methyl}benzene, 4,4′-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, 1,4-benzenedicarboxylate bis[(3-ethyl-3-oxetanyl) ] methyl ester, 3-ethyl-3-(phenoxymethyl)oxetane, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, di[1-ethyl(3-oxetanyl)]methyl ether, 3-ethyl- 3-{[3-(triethoxysilyl)propoxy]methyl}oxetane, oxetanylsilsesquioxane, phenol novolac oxetane and the like. The oxetane compounds may be used singly or in combination of two or more.
 ビニル化合物としては、エチルビニルエーテル、プロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル-プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等のビニルエーテル基含有化合物;スチレン、メチルスチレン、エチルスチレン等のスチレン化合物などが挙げられる。ビニル化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Examples of vinyl compounds include ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and isopropenyl. ether-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, Vinyl ether group-containing compounds such as hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, and trimethylolpropane trivinyl ether; styrene compounds such as styrene, methylstyrene, and ethylstyrene; A vinyl compound may be used individually by 1 type or in combination of 2 or more types.
 フェノール化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ビスフェノールF、ビスフェノールS型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物等の、いわゆるフェノール樹脂が挙げられる。フェノール化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Phenol compounds include phenol novolak resin, alkylphenol borak resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene-modified phenol resin, polyvinylphenols, bisphenol F, bisphenol S type phenol resin, poly So-called phenolic resins such as p-hydroxystyrene, condensates of naphthol and aldehydes, and condensates of dihydroxynaphthalene and aldehydes. Phenol compounds may be used alone or in combination of two or more.
 マレイミド化合物としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン等が挙げられる。マレイミド化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Maleimide compounds include 4,4′-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2′-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3′-dimethyl -5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4′-diphenyletherbismaleimide, 4,4′-diphenylsulfonebismaleimide, 1, 3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene and the like. These maleimide compounds may be used singly or in combination of two or more.
 シアネート化合物としては、ノボラック型シアネート樹脂;ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂;ナフトールアラルキル型フェノール樹脂とハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネート樹脂;ジシクロペンタジエン型シアネート樹脂;ビフェニレン骨格含有フェノールアラルキル型シアネート樹脂などの、いわゆるシアネート樹脂が挙げられる。シアネート化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Examples of cyanate compounds include novolac type cyanate resins; bisphenol type cyanate resins such as bisphenol A type cyanate resins, bisphenol E type cyanate resins, and tetramethylbisphenol F type cyanate resins; Naphthol aralkyl type cyanate resins; dicyclopentadiene type cyanate resins; and biphenylene skeleton-containing phenol aralkyl type cyanate resins. A cyanate compound may be used individually by 1 type or in combination of 2 or more types.
 シリコーン化合物としては、メチル系ストレートシリコーンレジン(ポリジメチルシロキサン)、メチルフェニル系ストレートシリコーンレジン(メチル基の一部をフェニル基に置換したポリジメチルシロキサン)、アクリル樹脂変性シリコーンレジン、ポリエステル樹脂変性シリコーンレジン、エポキシ樹脂変性シリコーンレジン、アルキッド樹脂変性シリコーンレジン及びゴム系のシリコーンレジン等の、いわゆるシリコーン樹脂が挙げられる。シリコーン化合物は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。 Examples of silicone compounds include methyl-based straight silicone resin (polydimethylsiloxane), methylphenyl-based straight silicone resin (polydimethylsiloxane in which some of the methyl groups are substituted with phenyl groups), acrylic resin-modified silicone resin, and polyester resin-modified silicone resin. , epoxy resin-modified silicone resins, alkyd resin-modified silicone resins and rubber-based silicone resins. These silicone compounds may be used alone or in combination of two or more.
 第1の重合性成分の含有量は、所望の粘度の半硬化状態を維持し、半硬化物複合体のハンドリングと接着性と密着性を付与する観点から、硬化性組成物全量を基準として、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上である。第1の重合性成分の含有量は、半硬化樹脂の接着性と密着性を付与する観点から、硬化性組成物全量を基準として、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。 The content of the first polymerizable component is based on the total amount of the curable composition, from the viewpoint of maintaining the desired viscosity in the semi-cured state and imparting handling, adhesiveness, and adhesion to the semi-cured composite, It is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more. The content of the first polymerizable component is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total amount of the curable composition, from the viewpoint of imparting adhesiveness and adhesion to the semi-cured resin. More preferably, it is 40% by mass or less.
 第2の重合性成分の含有量は、半硬化物複合体中の樹脂の加熱時の溶融粘度の観点から、硬化性組成物全量を基準として、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上である。第2の重合性成分の含有量は、半硬化物複合体のハンドリングの観点から、硬化性組成物全量を基準として、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。 The content of the second polymerizable component is preferably 40% by mass or more, more preferably 50% by mass, based on the total amount of the curable composition, from the viewpoint of the melt viscosity of the resin in the semi-cured composite when heated. % or more, more preferably 60 mass % or more. The content of the second polymerizable component is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass, based on the total amount of the curable composition, from the viewpoint of handling of the semi-cured composite. % by mass or less.
 硬化性組成物中における、第2の重合性成分の含有量に対する第1の重合性成分の含有量の比(第1の重合性成分/第2の重合性成分)は、質量比で、0.1以上、0.25以上、又は0.4以上であってよく、1.5以下、1.0以下、又は0.7以下であってよい。 The ratio of the content of the first polymerizable component to the content of the second polymerizable component in the curable composition (first polymerizable component/second polymerizable component) is 0 by mass ratio. .1 or more, 0.25 or more, or 0.4 or more, and may be 1.5 or less, 1.0 or less, or 0.7 or less.
 硬化性組成物は、第1の重合性成分の重合を開始させる第1の重合開始剤と、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させる第2の重合開始剤と、を更に含有し、第1の重合開始剤及び第2の重合開始剤のいずれか一方は光重合開始剤であり、他方は熱重合開始剤である。第1の重合開始剤及び第2の重合開始剤として互いに異なる種類の重合開始剤を使用することにより、本実施形態に係る製造方法では、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させることができる。結果として、半硬化工程S2において、第1の重合性成分を重合させつつ、第2の重合性成分の重合が開始してしまうことを抑制することができる。 The curable composition comprises a first polymerization initiator that initiates polymerization of the first polymerizable component and a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from those of the first polymerization initiator. and a polymerization initiator, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator. By using different types of polymerization initiators as the first polymerization initiator and the second polymerization initiator, in the production method according to the present embodiment, the second polymerization initiator can be produced under conditions different from those of the first polymerization initiator. Polymerization of the polymerizable component can be initiated. As a result, in the semi-curing step S2, it is possible to suppress the initiation of polymerization of the second polymerizable component while polymerizing the first polymerizable component.
 第1の重合開始剤及び第2の重合開始剤の組み合わせとしては、第1の重合開始剤が光重合開始剤であり、第2の重合開始剤が熱重合開始剤であってよく、第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤であってもよい。半硬化物複合体を電子部品等へ接着する際、光透過性のない部材との接着の用途に使用しやすい観点から、好ましくは、第1の重合開始剤が光重合開始剤であり、第2の重合開始剤が熱重合開始剤である。 As a combination of the first polymerization initiator and the second polymerization initiator, the first polymerization initiator may be a photopolymerization initiator and the second polymerization initiator may be a thermal polymerization initiator. The polymerization initiator of may be a thermal polymerization initiator, and the second polymerization initiator may be a photopolymerization initiator. When the semi-cured composite is adhered to an electronic component or the like, the first polymerization initiator is preferably a photopolymerization initiator, and the second 2 is a thermal polymerization initiator.
 光重合開始剤は、光ラジカル重合開始剤、光カチオン重合開始剤、及び光アニオン重合開始剤からなる群より選択される少なくとも1種であってよい。 The photopolymerization initiator may be at least one selected from the group consisting of radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators.
 光ラジカル重合開始剤としては、特に限定されないが、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;チオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントン、2-イソプロピルチオキサントン等のチオキサントン化合物;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンジルジメチルケタール等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノケトン;1-[4-(フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィンオキサイド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン化合物;アントラキノン、2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン、メチル-2-ベンゾイルベンゾエート等のベンゾイン化合物;ベンジルジメチルケタール、ベンゾイル安息香酸等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9、9’-アクリジニルヘプタン)等のアクリジン化合物などが挙げられる。 Examples of photoradical polymerization initiators include, but are not limited to, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis-(2, Acylphosphine oxide compounds such as 6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide; Thioxanthone compounds such as thioxanthone, diethylthioxanthone, isopropylthioxanthone, chlorothioxanthone, and 2-isopropylthioxanthone; 2,2-dimethoxy-1 , 2-diphenylethan-1-one, benzoin ketals such as benzyl dimethyl ketal; 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2- α-hydroxyketones such as hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butane-1 -one, α-aminoketone such as 1,2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one; 1-[4-(phenylthio)phenyl]-1,2- Oxime esters such as octadione-2-(benzoyl)oxime; bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 2 ,4,6-trimethylbenzoyldiphenylphosphine oxide; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(o-chlorophenyl)-4,5-di(methoxyphenyl) Imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, 2-(p-methoxyphenyl )-2,4,5-triarylimidazole dimers such as 4,5-diphenylimidazole dimer; benzophenone, N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone, N , N,N′,N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone Benzophenone compounds such as benzophenone and 4,4′-diaminobenzophenone; -phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3- quinone compounds such as dimethylanthraquinone; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin phenyl ether; benzoin compounds such as benzoin, methylbenzoin, ethylbenzoin, and methyl-2-benzoylbenzoate; benzyl dimethyl ketal, benzyl compounds such as benzoylbenzoic acid; and acridine compounds such as 9-phenylacridine and 1,7-bis(9,9'-acridinylheptane).
 上記の2,4,5-トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。また。ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン化合物と3級アミンとを組み合わせてもよい。 In the above 2,4,5-triarylimidazole dimer, the substituents on the aryl groups of the two triarylimidazole moieties may be identical to give symmetrical compounds or different to give asymmetrical compounds. good too. Also. A thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
 光ラジカル重合開始剤としては、上記の他にも、2,2-ジメトキシ-2-フェニルアセトフェノン、N-フェニルグリシン、クマリン、キサントン、フルオレノン、フルオレン、3-メチルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン等が挙げられる。 Examples of photoradical polymerization initiators include, in addition to the above, 2,2-dimethoxy-2-phenylacetophenone, N-phenylglycine, coumarin, xanthone, fluorenone, fluorene, 3-methylacetophenone, 1-(4-isopropylphenyl )-2-hydroxy-2-methylpropan-1-one and the like.
 上記の光ラジカル重合開始剤としては、例えば、IrgacureOXE01、IRGACURE 184、IRGACURE 369、IRGACURE 651、IRGACURE 500、IRGACURE  907、CGI1700、CGI1750、CGI1850、CG24-61、DAROCUR1116、DAROCUR1173、LUCIRIN TPO、及びIRGACURE2959(以上、BASFジャパン株式会社製)等の市販品を用いてもよい。 上記の光ラジカル重合開始剤としては、例えば、IrgacureOXE01、IRGACURE 184、IRGACURE 369、IRGACURE 651、IRGACURE 500、IRGACURE  907、CGI1700、CGI1750、CGI1850、CG24-61、DAROCUR1116、DAROCUR1173、LUCIRIN TPO、及びIRGACURE2959(以上, manufactured by BASF Japan Ltd.) may be used.
 光ラジカル重合開始剤は、上記の化合物を1種単独で又は2種以上を組み合わせて用いられてよい。光ラジカル重合開始剤は、適切な増感剤と組み合わせて用いることもできる。 As the radical photopolymerization initiator, the above compounds may be used singly or in combination of two or more. A photoradical polymerization initiator can also be used in combination with a suitable sensitizer.
 光カチオン重合開始剤は、光により酸を発生するものであれば特に限定されない。光カチオン重合開始剤としては、例えば、スルホニウム、ホスホニウム、ジアゾニウム、ヨードニウム、アンモニウム、ピリジニウム等のオニウム化合物のB(C 塩、PF 塩、AsF 塩、SbF 塩、CFSO 塩;スルホン酸を発生するスルホン化物;ハロゲン化水素を発生するハロゲン化物;鉄アレン錯体;ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモナートなどが挙げられる。光カチオン重合開始剤は、これらの化合物を1種単独で又は2種以上を組み合わせて用いられてよい。 The photocationic polymerization initiator is not particularly limited as long as it generates an acid upon exposure to light. Examples of photocationic polymerization initiators include B(C 6 F 5 ) 4 -salts, PF 6 -salts , AsF 6 -salts , SbF 6 - salts of onium compounds such as sulfonium, phosphonium, diazonium, iodonium, ammonium and pyridinium. salts, CF 3 SO 3 -salts ; sulfonates that generate sulfonic acid; halides that generate hydrogen halide; iron allene complexes; diphenyl[4-(phenylthio)phenyl]sulfonium hexafluoroantimonate and the like. The photocationic polymerization initiator may be used alone or in combination of two or more of these compounds.
 光カチオン重合開始剤としては、Irgacure184、Irgacure 250(BASFジャパン株式会社製)等の市販品を用いてもよい。 Commercially available products such as Irgacure 184 and Irgacure 250 (manufactured by BASF Japan Ltd.) may be used as the photocationic polymerization initiator.
 光アニオン重合開始剤としては、アセトフェノンo-ベンゾイルオキシム、ニフェジピン、2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4,4,0]デカ-5-エン、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシラート、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムn-ブチルトリフェニルボラート等が挙げられる。 Photoanionic polymerization initiators include acetophenone o-benzoyloxime, nifedipine, 2-(9-oxoxanthen-2-yl)propionic acid 1,5,7-triazabicyclo[4,4,0]deca-5- Ene, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate, 1,2-dicyclohexyl -4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate and the like.
 熱重合開始剤は、熱ラジカル重合開始剤、熱カチオン重合開始剤、及び熱アニオン重合開始剤からなる群より選択される少なくとも1種であってよい。 The thermal polymerization initiator may be at least one selected from the group consisting of thermal radical polymerization initiators, thermal cationic polymerization initiators, and thermal anionic polymerization initiators.
 熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されない。熱ラジカル重合開始剤としては、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。熱ラジカル重合開始剤は、これらの化合物を1種単独で又は2種以上を組み合わせて用いられてよい。 The thermal radical polymerization initiator is not particularly limited as long as it is a compound that generates radicals upon heating and initiates a chain polymerization reaction. Examples of thermal radical polymerization initiators include organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds, acetophenone compounds, benzopinacol and the like, and benzopinacol is preferably used. A thermal radical polymerization initiator may use these compounds individually by 1 type or in combination of 2 or more types.
 このうち、有機過酸化物としては、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール;p-メンタンヒドロパーオキシド等のヒドロパーオキシド;α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステルなどが挙げられる。 Among them, organic peroxides include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methyl cyclohexanone peroxide; 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t- Butylperoxy)-2-methylcyclohexane, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1- Peroxyketals such as bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; α,α'-bis(t-butylperoxy)diisopropylbenzene , dialkyl peroxide such as dicumyl peroxide, t-butyl cumyl peroxide, di-t-butyl peroxide; diacyl peroxide such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, benzoyl peroxide; bis( 4-t-butyl cyclohexyl) peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxycarbonate and other peroxycarbonates; t- Butyl peroxypivalate, t-hexyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis(2-ethyl hexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl monocarbonate , t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxylaurylate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyesters such as peroxybenzoate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis(benzoylperoxy)hexane, and t-butylperoxyacetate;
 有機過酸化物としては、カヤメックRTMA,M,R,L,LH,SP-30C、パーカドックスCH-50L,BC-FF、カドックスB-40ES、パーカドックス14、トリゴノックスRTM22-70E,23-C70,121,121-50E,121-LS50E,21-LS50E,42,42LS、カヤエステルRTMP-70,TMPO-70,CND-C70,OO-50E,AN、カヤブチルRTMB、パーカドックス16、カヤカルボンRTMBIC-75,AIC-75(以上、化薬ヌーリオン株式会社製);パーメックRTMN,H,S,F,D,G、パーヘキサRTMH,HC,TMH,C,V,22,MC、パーキュアーRTMAH,AL,HB、パーブチルRTMH,C,ND,L、パークミルRTMH,D、パーロイルRTMIB,IPP、パーオクタRTMND(以上、日油株式会社製)等の市販品を用いてもよい。 Organic peroxides include Kayamec RTMA, M, R, L, LH, SP-30C, Perkadox CH-50L, BC-FF, Kadox B-40ES, Perkadox 14, Trigonox RTM22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kayaester RTMP-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTMB, Parkadox 16, Kayacarbon RTMBIC-75, AIC-75 (manufactured by Kayaku Nourion Co., Ltd.); Permek RTMN, H, S, F, D, G, Perhexa RTMH, HC, TMH, C, V, 22, MC, Percure RTMAH, AL, HB, Perbutyl Commercially available products such as RTMH, C, ND, L, Permil RTMH, D, Perroyl RTMIB, IPP, and Perocta RTMND (manufactured by NOF Corporation) may also be used.
 アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)等が挙げられる。 Azo compounds include 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(4-methoxy-2′-dimethylvaleronitrile ) and the like.
 アゾ化合物としては、VA-044、V-70、VPE-0201、VSP-1001(以上、和光純薬工業株式会社製)等の市販品を用いてもよい。 As the azo compound, commercially available products such as VA-044, V-70, VPE-0201, and VSP-1001 (manufactured by Wako Pure Chemical Industries, Ltd.) may be used.
 熱ラジカル重合開始剤は、半硬化物の硬化性、並びに、半硬化物の耐熱性の観点から、好ましくは、ジアシルパーオキシド、パーオキシエステル、及びアゾ化合物からなる群より選択される少なくとも1種である。 The thermal radical polymerization initiator is preferably at least one selected from the group consisting of diacyl peroxides, peroxyesters, and azo compounds, from the viewpoints of curability of the semi-cured product and heat resistance of the semi-cured product. is.
 熱ラジカル重合開始剤は、粒径を小さくすることにより均一に分散させられるものであってもよい。熱ラジカル重合開始剤の平均粒径は、半硬化物複合体を種々の用途に適切に使用する観点から、好ましくは5μm以下、より好ましくは3μm以下である。熱ラジカル重合開始剤の平均粒径の下限は限定されないが、例えば0.1μm以上である。熱ラジカル重合開始剤の平均粒径は、レーザー回折・散乱式粒度分布測定器(乾式)(例えば株式会社セイシン企業製のLMS-30)により測定できる。 The thermal radical polymerization initiator may be uniformly dispersed by reducing the particle size. The average particle diameter of the thermal radical polymerization initiator is preferably 5 μm or less, more preferably 3 μm or less, from the viewpoint of appropriately using the semi-cured composite for various uses. Although the lower limit of the average particle size of the thermal radical polymerization initiator is not limited, it is, for example, 0.1 μm or more. The average particle size of the thermal radical polymerization initiator can be measured with a laser diffraction/scattering particle size distribution analyzer (dry type) (for example, LMS-30 manufactured by Seishin Enterprise Co., Ltd.).
 熱カチオン重合開始剤は、ブレンステッド酸、ルイス酸等のカチオン種を発生するものであれば特に限定されない。熱カチオン重合開始剤は、例えば、スルホニウム塩、ホスホニウム塩、第4級アンモニウム塩、アリールジアゾニウム塩、アリールヨードニウム塩等のオニウム塩、オルガノシラン、ヘテロポリ酸、アレン-イオン錯体、三フッ化ホウ素アミン錯体などが挙げられる。このような熱カチオン重合開始剤を用いることにより、寸法精度及び硬化度がより向上する傾向にある。熱カチオン重合開始剤は、これらの化合物を1種単独で又は2種以上を組み合わせて用いられてよい。 The thermal cationic polymerization initiator is not particularly limited as long as it generates cationic species such as Bronsted acids and Lewis acids. Thermal cationic polymerization initiators include, for example, onium salts such as sulfonium salts, phosphonium salts, quaternary ammonium salts, aryldiazonium salts, and aryliodonium salts, organosilanes, heteropolyacids, allene-ion complexes, and boron trifluoride amine complexes. etc. The use of such a thermal cationic polymerization initiator tends to improve the dimensional accuracy and degree of cure. As the thermal cationic polymerization initiator, these compounds may be used singly or in combination of two or more.
 このうち、スルホニウム塩としては、例えば、サンエイドSI-L85,SI-L110,SI-L145,SI-L160,SI-H15,SI-H20,SI-H25,SI-H40,SI-H50,SI-60L,SI-80L,SI-100L,SI-80,SI-100(以上、三新化学工業株式会社製)、CP-77(株式会社ADEKA製)等の市販品を用いることができる。 Among these, as sulfonium salts, for example, San-Aid SI-L85, SI-L110, SI-L145, SI-L160, SI-H15, SI-H20, SI-H25, SI-H40, SI-H50, SI-60L , SI-80L, SI-100L, SI-80, SI-100 (manufactured by Sanshin Chemical Industry Co., Ltd.), CP-77 (manufactured by ADEKA Corporation) and the like can be used.
 ホスホニウム塩としては、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-2-メチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、ベンジル-3-メチル-4-ヒドロキシ-5-tert-ブチルフェニルメチルスルホニウムヘキサフルオロアンチモネート、4-メトキシベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5-ジニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、β-ナフチルメチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等が挙げられる。 Phosphonium salts include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoro antimonate, benzyl-4-methoxyphenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, benzyl-3-methyl-4-hydroxy-5-tert-butylphenylmethylsulfonium hexafluoroantimonate, 4-methoxybenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, Dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyldibenzylsulfonium hexafluoroantimonate, dibenzyl-4-methoxyphenylsulfonium hexafluoroantimonate, nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3 ,5-dinitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, β-naphthylmethyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate and the like.
 第4級アンモニウム塩としては、CXC-1616(KING INDUSTRY社製)等の市販品を用いることができる。 As the quaternary ammonium salt, commercially available products such as CXC-1616 (manufactured by KING INDUSTRY) can be used.
 オルガノシランとしては、メトキシトリメチルシラン、エトキシトリエチルシラン、プロポキシトリプロピルシラン、ブトキシトリブチルシラン、メトキシトリオクチルシラン、メトキシトリフェニルシラン、メトキシトリベンジルシラン、トリフェニルヒドロキシシラン等の単官能シラン化合物;ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジブチルシラン、ジプロポキシジプロピルシラン、ジメトキシジラウリルシラン、ジメトキシジフェニルシラン、ジメトキシジベンジルシラン、メトキシベンジルオキシジプロピルシラン、メトキシ2-エチルヘキシルオキシジプロピルシラン、ジフェニルシランジオール等の二官能シラン化合物;トリメトキシメチルシラン、トリエトキシエチルシラン、トリプロポキシプロピルシラン、トリメトキシステアリルシラン、トリメトキシフェニルシラン、トリメトキシベンジルシラン、メトキシジベンジルオキシプロピルシラン、メトキシトリヒドロキシシラン、フェニルトリヒドロキシシラン等の三官能シラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、トリメトキシベンジルオキシシラン、ジメトキシジ2-エチルヘキシルシラン、テトラヒドロキシシラン等の四官能シラン化合物;上記の三官能シラン化合物及び/又は四官能シラン化合物の低縮合物(約2~50量体);ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、β-(メタ)アクリロイルオキシエチルプロピルトリメトキシシラン等の反応性珪素基含有エチレン性不飽和モノマー及び必要に応じて上記その他のラジカル重合性不飽和モノマーとの(共)重合体などが挙げられる。 Organosilanes include monofunctional silane compounds such as methoxytrimethylsilane, ethoxytriethylsilane, propoxytripropylsilane, butoxytributylsilane, methoxytrioctylsilane, methoxytriphenylsilane, methoxytribenzylsilane, and triphenylhydroxysilane; Silane, dimethoxydiethylsilane, diethoxydibutylsilane, dipropoxydipropylsilane, dimethoxydilaurylsilane, dimethoxydiphenylsilane, dimethoxydibenzylsilane, methoxybenzyloxydipropylsilane, methoxy-2-ethylhexyloxydipropylsilane, diphenylsilanediol Bifunctional silane compounds such as trimethoxymethylsilane, triethoxyethylsilane, tripropoxypropylsilane, trimethoxystearylsilane, trimethoxyphenylsilane, trimethoxybenzylsilane, methoxydibenzyloxypropylsilane, methoxytrihydroxysilane, phenyl trifunctional silane compounds such as trihydroxysilane; tetrafunctional silane compounds such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, trimethoxybenzyloxysilane, dimethoxydi-2-ethylhexylsilane, tetrahydroxysilane; Trifunctional silane compounds and/or low condensates of tetrafunctional silane compounds (about 2 to 50 mers); vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, γ-(meth)acryloyloxy Reactive silicon group-containing ethylenic compounds such as propyltrimethoxysilane, γ-(meth)acryloyloxypropyltriethoxysilane, γ-(meth)acryloyloxypropylmethyldimethoxysilane, β-(meth)acryloyloxyethylpropyltrimethoxysilane, etc. Examples include (co)polymers of unsaturated monomers and optionally other radically polymerizable unsaturated monomers.
 上記の三官能シラン化合物及び/又は四官能シラン化合物の低縮合物(約2~50量体)としては、SH6018(東レシリコーン株式会社製:水酸基当量400、分子量1600のメチフェニルポリシロキサン)として入手可能なシリコーン樹脂を用いてもよい。オルガノシランは、反応性及び入手の容易さから、好ましくは、トリフェニルシラノール、又はSH6018として入手可能なシリコーン樹脂である。 As the above-mentioned trifunctional silane compound and/or tetrafunctional silane compound low condensate (approximately 2 to 50 mers), SH6018 (manufactured by Toray Silicone Co., Ltd.: hydroxyl equivalent weight 400, molecular weight 1600 methiphenyl polysiloxane) is available. Possible silicone resins may also be used. The organosilane is preferably triphenylsilanol, or a silicone resin available as SH6018, due to its reactivity and availability.
 熱アニオン重合開始剤としては、上述した重合性成分のアニオン重合開始剤として使用可能な公知のものを採用することができ、熱によりアニオン重合性化合物をアニオン重合させ得る塩基を発生する化合物であってよい。熱アニオン重合開始剤としては、より具体的には、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物も好ましく用いることができる。 As the thermal anionic polymerization initiator, a known one that can be used as an anionic polymerization initiator for the polymerizable component can be employed, and is a compound that generates a base capable of anionically polymerizing the anionically polymerizable compound by heat. you can More specifically, the thermal anionic polymerization initiator includes known aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, and boron trifluoride. -Amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used, and encapsulated imidazole compounds that exhibit good latency against temperature can also be preferably used.
 第1の重合開始剤の含有量は、硬化性組成物全量を基準として、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、15質量%以下、10質量%以下、、5質量%以下、又は3質量%以下であってよい。 The content of the first polymerization initiator, based on the total amount of the curable composition, may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, 15% by mass or less, 10 % by mass or less, 5% by mass or less, or 3% by mass or less.
 第2の重合開始剤の含有量は、硬化性組成物全量を基準として、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、15質量%以下、10質量%以下、5質量%以下、3質量%以下、1質量%以下、又は0.5質量%以下であってよい。 The content of the second polymerization initiator, based on the total amount of the curable composition, may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, 15% by mass or less, 10 % by mass or less, 5% by mass or less, 3% by mass or less, 1% by mass or less, or 0.5% by mass or less.
 硬化性組成物は、上述した第1の重合性成分、第2の重合性成分、第1の重合開始剤、及び第2の重合開始剤に加えて、その他の成分を更に含有してもよい。その他の成分としては、例えば、シランカップリング剤、密着性付与材、酸化防止剤、光増感剤や、重合阻害を抑止する添加剤(リン化合物、チオール化合物など)を更に含有してもよい。その他の成分の含有量の合計は、硬化性組成物全量を基準として、10質量%以下、5質量%以下、又は3質量%以下であってよい。 The curable composition may further contain other components in addition to the above-described first polymerizable component, second polymerizable component, first polymerization initiator, and second polymerization initiator. . Other components may further include, for example, silane coupling agents, adhesion imparting agents, antioxidants, photosensitizers, and additives that inhibit polymerization inhibition (phosphorus compounds, thiol compounds, etc.). . The total content of other components may be 10% by mass or less, 5% by mass or less, or 3% by mass or less based on the total amount of the curable composition.
 含浸工程S1は、減圧条件下及び加圧条件下のいずれで行われてもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行われてもよい。減圧条件下で含浸工程S1を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程S1を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。なお、多孔質体の厚みが薄いほど、減圧条件下及び加圧含浸条件下で行わなくても、多孔質体へ硬化性組成物を含浸させやすい傾向にある。このため、減圧条件下及び加圧条件下で行うか否かは、厚みや使用する樹脂の粘度等から適宜決定すればよい。 The impregnation step S1 may be performed under either reduced pressure or pressurized conditions, or may be performed in combination with impregnation under reduced pressure conditions and impregnation under pressurized conditions. The pressure in the impregnation device when the impregnation step S1 is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less. The pressure in the impregnation device when the impregnation step S1 is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher. It should be noted that the thinner the porous body, the easier it is to impregnate the porous body with the curable composition without under reduced pressure and pressure impregnation conditions. For this reason, whether or not to carry out under reduced pressure conditions or under increased pressure conditions may be appropriately determined according to the thickness, the viscosity of the resin to be used, and the like.
 多孔質体へ硬化性組成物を含浸させる際には、硬化性組成物を加熱してもよい。硬化性組成物を加熱することによって、溶液の粘度が調整され、多孔質体への含浸が促進される。含浸のために硬化性組成物を加熱する温度は適宜設定することができるが、第1の重合開始剤が熱重合開始剤である場合には、第1の重合開始剤の反応開始温度を超える温度であってもよい。この場合、硬化性組成物を加熱する温度の上限は、第1の重合開始剤の反応開始温度+20℃の温度以下であってもよい。 The curable composition may be heated when the porous body is impregnated with the curable composition. By heating the curable composition, the viscosity of the solution is adjusted and impregnation into the porous body is promoted. The temperature for heating the curable composition for impregnation can be set as appropriate, but when the first polymerization initiator is a thermal polymerization initiator, the reaction initiation temperature of the first polymerization initiator is exceeded. It may be the temperature. In this case, the upper limit of the temperature for heating the curable composition may be equal to or lower than the reaction initiation temperature of the first polymerization initiator +20°C.
 熱重合開始剤の反応開始温度は、第1の重合性成分又は第2の重合性成分に相当する重合性成分と、熱重合開始剤とを反応させて、示差走査熱量測定装置(DSC)によって温度履歴を測定することにより確認することができる。 The reaction initiation temperature of the thermal polymerization initiator is determined by reacting the polymerizable component corresponding to the first polymerizable component or the second polymerizable component with the thermal polymerization initiator, using a differential scanning calorimeter (DSC). It can be confirmed by measuring the temperature history.
 含浸工程S1では、硬化性組成物を含む溶液に多孔質体を浸漬した状態で所定の時間だけ保持する。当該所定の時間(浸漬時間)は特に制限されず、例えば、5分間以上、30分間以上、1時間以上、5時間以上、10時間以上、100時間以上、又は150時間以上であってよい。 In the impregnation step S1, the porous body is immersed in the solution containing the curable composition and held for a predetermined time. The predetermined time (immersion time) is not particularly limited, and may be, for example, 5 minutes or longer, 30 minutes or longer, 1 hour or longer, 5 hours or longer, 10 hours or longer, 100 hours or longer, or 150 hours or longer.
 半硬化工程S2では、硬化性組成物中の第1の重合性成分を、第1の重合開始剤により重合させる。 In the semi-curing step S2, the first polymerizable component in the curable composition is polymerized with the first polymerization initiator.
 第1の重合性成分が光重合開始剤である場合、例えば紫外線照射装置(高圧水銀ランプ、紫外線照射LED)により光(紫外線)を照射することで、第1の重合性成分を重合させることができる。光(紫外線)照射の光量及び時間は、適宜設定できる。 When the first polymerizable component is a photopolymerization initiator, for example, the first polymerizable component can be polymerized by irradiating light (ultraviolet rays) from an ultraviolet irradiation device (high-pressure mercury lamp, ultraviolet irradiation LED). can. The amount and time of light (ultraviolet) irradiation can be set as appropriate.
 第1の重合開始剤が熱重合開始剤である場合、硬化性組成物が含浸された多孔質体を、第1の重合開始剤が反応する温度(以下、温度T1ともいう)で加熱することにより、第1の重合性成分を重合させることができる。 When the first polymerization initiator is a thermal polymerization initiator, the porous body impregnated with the curable composition is heated at a temperature at which the first polymerization initiator reacts (hereinafter also referred to as temperature T1). can polymerize the first polymerizable component.
 温度T1は、多孔質体に半硬化物を十分に含浸させる観点から、好ましくは30℃以上、より好ましくは40℃以上、更に好ましくは50℃以上である。温度T1は、時間に対する粘度変化を小さくする観点から、好ましくは180℃以下、より好ましくは150℃以下、更に好ましくは120℃以下である。なお、温度T1は、硬化性組成物を含浸させた多孔質体を加熱する際の雰囲気温度を指す。 From the viewpoint of sufficiently impregnating the semi-cured material into the porous body, the temperature T1 is preferably 30°C or higher, more preferably 40°C or higher, and even more preferably 50°C or higher. The temperature T1 is preferably 180° C. or lower, more preferably 150° C. or lower, and even more preferably 120° C. or lower, from the viewpoint of reducing the change in viscosity over time. The temperature T1 refers to the atmospheric temperature when heating the porous body impregnated with the curable composition.
 この場合の加熱時間は、1時間以上、3時間以上、又は5時間以上であってよく、12時間以下、10時間以下、又は8時間以下であってよい。 The heating time in this case may be 1 hour or more, 3 hours or more, or 5 hours or more, and may be 12 hours or less, 10 hours or less, or 8 hours or less.
 上述した工程により、半硬化物複合体を製造することができる。すなわち、一実施形態に係る半硬化物複合体は、上述の多孔質体と、多孔質体に含浸された上述の硬化性組成物の半硬化物とを備える。 A semi-cured composite can be produced by the steps described above. That is, a semi-cured composite according to one embodiment includes the porous body described above and the semi-cured material of the curable composition impregnated in the porous body.
 半硬化物複合体中の多孔質体の割合は、半硬化物複合体の絶縁性及び熱伝導率を向上させる観点から、半硬化物複合体の全体積を基準として、好ましくは30体積%以上、より好ましくは40体積%以上、更に好ましくは50体積%以上である。半硬化物複合体中の多孔質体の割合は、半硬化物複合体の全体積を基準として、例えば、90体積%以下、80体積%以下、70体積%以下、又は60体積%以下であってよい。 The proportion of the porous material in the semi-cured composite is preferably 30% by volume or more based on the total volume of the semi-cured composite, from the viewpoint of improving the insulation and thermal conductivity of the semi-cured composite. , more preferably 40% by volume or more, and still more preferably 50% by volume or more. The proportion of the porous material in the semi-cured composite is, for example, 90% by volume or less, 80% by volume or less, 70% by volume or less, or 60% by volume or less based on the total volume of the semi-cured composite. you can
 半硬化物は、第1の重合性成分の重合物と、第2の重合性成分と、第2の重合開始剤とを含有する。すなわち、半硬化物は、第1の重合性成分の重合物と、第2の重合性成分の未重合物とを含有するということもできる。 The semi-cured product contains a polymer of the first polymerizable component, a second polymerizable component, and a second polymerization initiator. That is, it can be said that the semi-cured product contains a polymer of the first polymerizable component and an unpolymerized product of the second polymerizable component.
 硬化性組成物は、第1の重合開始剤として、好ましくは光重合開始剤を含有する。したがって、半硬化物は、第1の重合性成分の重合物として、好ましくは、第1の重合性成分が光重合した重合物を含有する。この場合、半硬化物は、第1の重合性成分が光重合した重合物と、第2の重合性成分と、熱重合開始剤とを含有するということができる。 The curable composition preferably contains a photopolymerization initiator as the first polymerization initiator. Therefore, the semi-cured product preferably contains a polymer obtained by photopolymerizing the first polymerizable component as the polymer of the first polymerizable component. In this case, the semi-cured product can be said to contain a polymer obtained by photopolymerizing the first polymerizable component, the second polymerizable component, and a thermal polymerization initiator.
 半硬化物は、第1の重合性成分を含有していなくてもよく(第1の重合性成分の全てが重合されていてよく)、半硬化物には、第1の重合性成分の一部が重合せずに含まれていてもよい。すなわち、一実施形態に係る半硬化物複合体は、第1の重合性成分の一部が、微量成分として半硬化物中に残存している。第1の重合性成分の一部を敢えて微量成分として半硬化物複合体に残存させることにより、半硬化工程S2において第2の重合性成分の重合が開始してしまうことを抑制することができる。 The semi-cured product may not contain the first polymerizable component (all of the first polymerizable component may be polymerized), and the semi-cured product may contain one of the first polymerizable components. The moieties may be included without polymerization. That is, in the semi-cured composite according to one embodiment, part of the first polymerizable component remains in the semi-cured composite as a minor component. By intentionally allowing a part of the first polymerizable component to remain in the semi-cured composite as a minor component, it is possible to suppress the initiation of polymerization of the second polymerizable component in the semi-curing step S2. .
 半硬化物が第1の重合性成分の一部を含有していることは、FT-IR又はNMRを用いて半硬化物複合体を分析し、第1の重合性成分に含まれる官能基を解析することによって確認することができる。このとき、アセトン等の溶媒を用いて第1の重合性成分の抽出及び濃縮を行ってから分析をしてもよい。または、熱分解ガスクロマトグラフィーを用いて、半硬化物複合体の分解物の解析を行うことによっても、半硬化物が第1の重合性成分の一部を含有していることを確認することができる。 The fact that the semi-cured product contains a part of the first polymerizable component can be confirmed by analyzing the semi-cured product composite using FT-IR or NMR and determining the functional group contained in the first polymerizable component. It can be confirmed by analysis. At this time, a solvent such as acetone may be used to extract and concentrate the first polymerizable component before analysis. Alternatively, the decomposition product of the semi-cured composite is analyzed using pyrolysis gas chromatography to confirm that the semi-cured composite contains part of the first polymerizable component. can be done.
 半硬化物が第1の重合性成分を含有する場合、その含有量は、第2の重合性成分よりも少ない。半硬化物中に含まれる第1の重合性成分の含有量は、第1の重合性成分の含有量及び第2の重合性成分の含有量の合計100質量部に対して、5質量部以下、3質量部以下、又は1質量部以下であってよく、0.5質量%以上であってもよい。当該含有量は、FT-IRにより半硬化物複合体を分析して、第1の重合性成分及び第2の重合性成分が有する官能基の種類を調べてから、NMRにより官能基の構造、及び得られるピークの比を確認することによって算出することができる。 When the semi-cured product contains the first polymerizable component, its content is less than the second polymerizable component. The content of the first polymerizable component contained in the semi-cured product is 5 parts by mass or less with respect to a total of 100 parts by mass of the content of the first polymerizable component and the content of the second polymerizable component. , 3 parts by mass or less, or 1 part by mass or less, or 0.5 mass % or more. The content is determined by analyzing the semi-cured composite by FT-IR to examine the types of functional groups possessed by the first polymerizable component and the second polymerizable component, and then by NMR to determine the structure of the functional group, and by checking the ratio of the peaks obtained.
 この半硬化物複合体では、第2の重合性成分が重合しない状態で含まれているため、硬化性組成物が完全硬化した硬化物よりも被着体への接着性に優れる。また、この半硬化物複合体では、第2の重合性成分を重合させない限り、被着体への接着性に優れる所望の粘度を容易に保持することができる。これにより、ハンドリング性に優れた半硬化物複合体を得ることができる(硬化性組成物の粘度挙動の詳細は後述する)。 In this semi-cured composite, since the second polymerizable component is contained in a non-polymerized state, the curable composition has better adhesion to adherends than a completely cured cured product. In addition, the semi-cured composite can easily maintain a desired viscosity for excellent adhesion to adherends unless the second polymerizable component is polymerized. This makes it possible to obtain a semi-cured composite excellent in handleability (details of the viscosity behavior of the curable composition will be described later).
 半硬化物複合体は、シート状等に成形し、被着体に接着することにより使用できる。例えば、上述した方法により半硬化物複合体を得て、当該複合体の外周に付着した樹脂(硬化性組成物又は半硬化物)を除去して、シート状の半硬化物複合体が得られる。シート状の半硬化物複合体は、被着体に配置して、例えば第2の重合開始剤の反応条件下でプレスすることにより、半硬化物複合体を被着体に接着させながら、半硬化物を硬化させ、硬化物複合体(詳細は後述する)とすることができる。 The semi-cured composite can be used by forming it into a sheet or the like and adhering it to an adherend. For example, a semi-cured composite is obtained by the method described above, and the resin (curable composition or semi-cured material) adhering to the outer periphery of the composite is removed to obtain a sheet-like semi-cured composite. . The sheet-like semi-cured composite is placed on an adherend and pressed, for example, under reaction conditions of the second polymerization initiator, thereby bonding the semi-cured composite to the adherend while forming a semi-cured composite. The cured product can be cured to form a cured product composite (details will be described later).
<硬化物複合体の製造方法及び硬化物複合体>
 以上説明した半硬化物複合体について、第2の重合性成分を重合させることにより、硬化物複合体を製造することができる。すなわち、一実施形態に係る硬化物複合体の製造方法は、第1の重合性成分と、第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、第1の重合開始剤とは異なる条件で第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程(含浸工程)S1と、第1の重合性成分を、第1の重合開始剤により重合させる工程(半硬化工程)S2と、第1の重合性成分を重合させた後に、第2の重合性成分を、第2の重合開始剤により重合させる工程(硬化工程)S3と、を備える。含浸工程S1及び半硬化工程S2の具体的態様は上述のとおりである。
<Method for producing cured composite and cured composite>
A cured composite can be produced by polymerizing the second polymerizable component of the semi-cured composite described above. That is, the method for producing a cured product composite according to one embodiment includes a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, and a second polymerizable component. and a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from those of the first polymerization initiator, impregnating the porous body with a curable composition (impregnation step) S1, a step of polymerizing the first polymerizable component with the first polymerization initiator (semi-curing step) S2, and after polymerizing the first polymerizable component, the second polymerizable component is and a step (curing step) S3 of polymerizing with the second polymerization initiator. Specific aspects of the impregnation step S1 and the semi-curing step S2 are as described above.
 硬化工程では、半硬化物中の第2の重合性成分を、第2の重合開始剤により重合させる。第2の重合開始剤が熱重合開始剤である(第1の重合開始剤が光重合開始剤である)場合、硬化工程では、硬化性組成物が含浸された多孔質体を、第2の重合開始剤が反応する温度(以下、温度T2ともいう)で加熱することにより、第2の重合性成分を重合させることができる。 In the curing step, the second polymerizable component in the semi-cured product is polymerized with the second polymerization initiator. When the second polymerization initiator is a thermal polymerization initiator (the first polymerization initiator is a photopolymerization initiator), in the curing step, the porous body impregnated with the curable composition is treated with the second By heating at a temperature at which the polymerization initiator reacts (hereinafter also referred to as temperature T2), the second polymerizable component can be polymerized.
 温度T2は、例えば100℃以上又は120℃以上であってよく、第2の重合性成分を短時間で重合させる観点から、150℃以上、180℃以上、又は200℃以上であってもよい。温度T2は、硬化性組成物に含まれる低分子量成分の揮発と当該組成物の熱安定性の観点から、260℃以下、240℃以下、又は220℃以下であってよい。なお、温度T2は、半硬化物複合体を加熱する際の雰囲気温度を指す。硬化工程における加熱は、温度T2を段階的に変えて(例えば段階的に高くして)行ってもよい。 The temperature T2 may be, for example, 100°C or higher or 120°C or higher, and may be 150°C or higher, 180°C or higher, or 200°C or higher from the viewpoint of polymerizing the second polymerizable component in a short time. The temperature T2 may be 260° C. or lower, 240° C. or lower, or 220° C. or lower from the viewpoint of volatilization of low molecular weight components contained in the curable composition and thermal stability of the composition. The temperature T2 refers to the ambient temperature when heating the semi-cured composite. Heating in the curing step may be performed by changing the temperature T2 stepwise (for example, stepwise increasing).
 温度T2での加熱時間は、1時間以上、5時間以上、又は10時間以上であってよく、30時間以下、25時間以下、又は20時間以下であってよい。 The heating time at temperature T2 may be 1 hour or more, 5 hours or more, or 10 hours or more, and may be 30 hours or less, 25 hours or less, or 20 hours or less.
 第1の重合開始剤が光重合開始剤であり、第2の重合開始剤が熱重合開始剤である場合の硬化性組成物の粘度挙動の一例を図1に示す。図1に示すように、半硬化工程S2では、光(紫外線)の照射により第1の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。そして、第1の重合性成分の大部分の重合が完了すると、硬化性組成物の粘度が特定の範囲で略一定となる。具体的には、10~10Pa・sの粘度範囲において、1時間あたりの粘度上昇が50000Pa・s以上となる時間領域がないことが好ましく、1時間あたりの粘度上昇が150000Pa・s以上となる時間領域がないことがより好ましい。また、第1の重合性成分を重合させるための光照射を止めた直後の硬化性組成物の粘度を1としたときの1時間保持後の硬化性組成物の粘度が、好ましくは10未満であり、より好ましくは100未満である。続いて、硬化工程S3では、まず、加熱による第2の重合性成分の粘度低下(軟化)に起因して硬化性組成物の粘度が低下し、その後、加熱により第2の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。 FIG. 1 shows an example of the viscosity behavior of the curable composition when the first polymerization initiator is a photopolymerization initiator and the second polymerization initiator is a thermal polymerization initiator. As shown in FIG. 1, in the semi-curing step S2, the first polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range. Specifically, in the viscosity range of 10 2 to 10 6 Pa s, it is preferable that there is no time region where the viscosity increase per hour is 50000 Pa s or more, and the viscosity increase per hour is 150000 Pa s or more. It is more preferable that there is no time region where Further, when the viscosity of the curable composition immediately after stopping the light irradiation for polymerizing the first polymerizable component is taken as 1, the viscosity of the curable composition after holding for 1 hour is preferably less than 10. Yes, more preferably less than 100. Subsequently, in the curing step S3, first, the viscosity of the curable composition is reduced due to the viscosity reduction (softening) of the second polymerizable component due to heating, and then the second polymerizable component is polymerized by heating. However, the viscosity of the curable composition increases as the polymerization progresses over time.
 第2の重合開始剤が光重合開始剤である(第1の重合開始剤が熱重合開始剤である)場合、硬化工程では、例えば紫外線照射装置(高圧水銀ランプ、紫外線照射LED)により光(紫外線)を照射することで、第2の重合性成分を重合させることができる。光(紫外線)照射の光量及び時間は、適宜設定できる。 When the second polymerization initiator is a photopolymerization initiator (the first polymerization initiator is a thermal polymerization initiator), in the curing step, for example, light ( UV rays) can polymerize the second polymerizable component. The amount and time of light (ultraviolet) irradiation can be set as appropriate.
 第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤である場合の硬化性組成物の粘度挙動の一例を図2に示す。図2に示すように、半硬化工程S2では、加熱により第1の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。そして、第1の重合性成分の大部分の重合が完了すると、硬化性組成物の粘度が特定の範囲で略一定となる。具体的には、10~10Pa・sの粘度範囲において、1時間あたりの粘度上昇が50000Pa・s以上となる時間領域がないことが好ましく、1時間あたりの粘度上昇が150000Pa・s以上となる時間領域がないことがより好ましい。続いて、硬化工程S3では、光(紫外線)の照射により第2の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。 FIG. 2 shows an example of the viscosity behavior of the curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator. As shown in FIG. 2, in the semi-curing step S2, the first polymerizable component is polymerized by heating, and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range. Specifically, in the viscosity range of 10 2 to 10 6 Pa s, it is preferable that there is no time region where the viscosity increase per hour is 50000 Pa s or more, and the viscosity increase per hour is 150000 Pa s or more. It is more preferable that there is no time region where Subsequently, in the curing step S3, the second polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time.
 第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤である場合、硬化工程S3の直前に又は硬化工程S3と同時に硬化性組成物を加熱する工程(加熱工程)S4を実施してもよい。この場合、加熱工程S4により、第2の重合性成分の粘度低下(軟化)に起因して硬化性組成物の粘度が低下するため、半硬化物複合体を被着体へ更に接着させやすくなる。 When the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator, the step of heating the curable composition immediately before the curing step S3 or simultaneously with the curing step S3 ( Heating step) S4 may be performed. In this case, the heating step S4 reduces the viscosity of the curable composition due to the viscosity reduction (softening) of the second polymerizable component, which makes it easier to adhere the semi-cured composite to the adherend. .
 第1の重合開始剤が熱重合開始剤であり、第2の重合開始剤が光重合開始剤である場合の硬化性組成物の粘度挙動の他の一例(硬化工程S3の直前に加熱工程S4を実施した場合の例)を図3に示す。図3に示すように、半硬化工程S2では、加熱により第1の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。そして、第1の重合性成分の大部分の重合が完了すると、硬化性組成物の粘度が特定の範囲で略一定となる。具体的には、10~10Pa・sの粘度範囲において、1時間あたりの粘度上昇が50000Pa・s以上となる時間領域がないことが好ましく、1時間あたりの粘度上昇が150000Pa・s以上となる時間領域がないことがより好ましい。続いて、加熱工程S4では、第2の重合性成分の粘度低下(軟化)に起因して硬化性組成物の粘度が低下する。その後、硬化工程S3では、光(紫外線)の照射により第2の重合性成分が重合し、時間の経過と共に重合が進むにつれて硬化性組成物の粘度が上昇する。 Another example of the viscosity behavior of the curable composition when the first polymerization initiator is a thermal polymerization initiator and the second polymerization initiator is a photopolymerization initiator (heating step S4 immediately before curing step S3 is shown in FIG. As shown in FIG. 3, in the semi-curing step S2, the first polymerizable component is polymerized by heating, and the viscosity of the curable composition increases as the polymerization progresses over time. Then, when most of the polymerization of the first polymerizable component is completed, the viscosity of the curable composition becomes substantially constant within a specific range. Specifically, in the viscosity range of 10 2 to 10 6 Pa s, it is preferable that there is no time region where the viscosity increase per hour is 50000 Pa s or more, and the viscosity increase per hour is 150000 Pa s or more. It is more preferable that there is no time region where Subsequently, in the heating step S4, the viscosity of the curable composition decreases due to the viscosity decrease (softening) of the second polymerizable component. Thereafter, in the curing step S3, the second polymerizable component is polymerized by irradiation with light (ultraviolet rays), and the viscosity of the curable composition increases as the polymerization progresses over time.
 上述した工程により、硬化物複合体を製造することができる。すなわち、一実施形態に係る硬化物複合体は、上述の多孔質体と、多孔質体に含浸された上述の硬化性組成物の硬化物とを備える。 A cured composite can be produced by the above-described steps. That is, a cured product composite according to one embodiment includes the above-described porous body and a cured product of the above-described curable composition impregnated in the porous body.
 硬化物複合体中の硬化物は、第1の重合性成分の重合物と、第2の重合性成分の重合物とを含有する。硬化物は、第1の重合性成分及び第2の重合性成分を含有していなくてもよく(第1の重合性成分及び第2の重合性成分の全てが重合されていてよく)、硬化物には、第1の重合性成分及び/又は第2の重合性成分の一部が微量成分として残存していてもよい。 The cured product in the cured product composite contains a polymer of the first polymerizable component and a polymer of the second polymerizable component. The cured product may not contain the first polymerizable component and the second polymerizable component (all of the first polymerizable component and the second polymerizable component may be polymerized), and cured A part of the first polymerizable component and/or the second polymerizable component may remain in the product as a minor component.
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below based on examples, but the present invention is not limited to the following examples.
 硬化性組成物の調製には、下記の材料を用いた。
<第1の重合性成分>
(A1)(メタ)アクリル化合物(PE-4A、共栄社化学株式会社製)
(A2)オキセタン化合物(OXBP、宇部興産株式会社製)
<第2の重合性成分>
(B1)エポキシ化合物(EXA850CRP、DIC株式会社製)
(B2)エポキシ化合物(HP4032D、DIC株式会社製)
(B3)シアネート化合物(TA、三菱ガス化学株式会社製)
(B4)マレイミド化合物(BMI-80、ケイ・アイ化成株式会社製)
<第1の重合開始剤>
(C1)オキシムエステル(光重合開始剤、IrgacureOXE01、BASFジャパン株式会社製)
(C2)スルホニウム塩(光重合開始剤、SP-150、株式会社ADEKA製)
<第2の重合開始剤>
(D1)イミダゾール化合物(熱重合開始剤、2E4MZ-CN、四国化成株式会社製)
(D2)ホスホニウム塩(熱重合開始剤、TPP-MK、北興化学工業株式会社製)
The following materials were used to prepare the curable composition.
<First polymerizable component>
(A1) (Meth) acrylic compound (PE-4A, manufactured by Kyoeisha Chemical Co., Ltd.)
(A2) Oxetane compound (OXBP, manufactured by Ube Industries, Ltd.)
<Second polymerizable component>
(B1) Epoxy compound (EXA850CRP, manufactured by DIC Corporation)
(B2) Epoxy compound (HP4032D, manufactured by DIC Corporation)
(B3) cyanate compound (TA, manufactured by Mitsubishi Gas Chemical Company, Inc.)
(B4) maleimide compound (BMI-80, manufactured by K-I Kasei Co., Ltd.)
<First polymerization initiator>
(C1) oxime ester (photopolymerization initiator, IrgacureOXE01, manufactured by BASF Japan Ltd.)
(C2) sulfonium salt (photopolymerization initiator, SP-150, manufactured by ADEKA Corporation)
<Second polymerization initiator>
(D1) imidazole compound (thermal polymerization initiator, 2E4MZ-CN, manufactured by Shikoku Kasei Co., Ltd.)
(D2) Phosphonium salt (thermal polymerization initiator, TPP-MK, manufactured by Hokko Chemical Industry Co., Ltd.)
[硬化性組成物の調製]
 上記の第1の重合性成分及び第2の重合性成分を、表1に示す組成(質量部)になるように容器に測り取った。さらに、第1の重合開始剤及び第2の重合開始剤を表1に示す量(第1の重合性成分及び第2の重合性成分の合計を基準とするphr)にて添加し、これらを全て混合した。これらの重合開始剤の添加及び混合は、紫外線遮断を施した場所で行った。また、TAおよびHP4032Dを用いる場合は、80℃で溶融混合加熱し行った。これにより、実施例及び比較例に係る熱硬化性組成物を調製した。
[Preparation of curable composition]
The first polymerizable component and the second polymerizable component were weighed into a container so as to obtain the composition (parts by mass) shown in Table 1. Furthermore, the first polymerization initiator and the second polymerization initiator are added in the amounts shown in Table 1 (phr based on the total of the first polymerizable component and the second polymerizable component), and these All mixed. Addition and mixing of these polymerization initiators were carried out in a place shielded from ultraviolet rays. When TA and HP4032D were used, they were melt-mixed and heated at 80°C. Thus, thermosetting compositions according to Examples and Comparative Examples were prepared.
[粘度挙動の評価]
 実施例及び比較例に係る熱硬化性組成物を、高圧水銀灯を備えた紫外線照射装置(浜松ホトニクス株式会社製)を用いて、光量8mW/cmとなる条件にて紫外線を15分間照射することで、第1の重合成分を重合させ、その後に1時間保持した。続いて、昇温速度1℃/minで昇温し、150℃、大気圧の条件下で5時間加熱して硬化させた。
 上記の紫外線の照射から加熱までの間、回転粘度計を用いて、剪断速度が10(1/秒)の条件下で熱硬化性組成物の粘度を測定した。得られた粘度挙動(紫外線の照射及び加熱の時間に対する熱硬化性組成物の粘度変化)について、以下の2つの基準に従って評価した。
[Evaluation of viscosity behavior]
The thermosetting compositions according to Examples and Comparative Examples are irradiated with ultraviolet rays for 15 minutes under conditions of a light intensity of 8 mW/cm 2 using an ultraviolet irradiation device (manufactured by Hamamatsu Photonics Co., Ltd.) equipped with a high-pressure mercury lamp. The first polymerization component was polymerized at , followed by a 1 hour hold. Subsequently, the temperature was raised at a rate of temperature increase of 1° C./min, and cured by heating for 5 hours under the conditions of 150° C. and atmospheric pressure.
The viscosity of the thermosetting composition was measured at a shear rate of 10 (1/sec) using a rotary viscometer during the period from the irradiation of the ultraviolet rays to the heating. The obtained viscosity behavior (viscosity change of the thermosetting composition with respect to ultraviolet irradiation and heating time) was evaluated according to the following two criteria.
(基準1)10~10Pa・sの粘度範囲における1時間あたりの粘度上昇
 A:当該粘度上昇が50000Pa・s以上となる時間領域が確認されなかった(すなわち下記B,Cのいずれにも該当しない)
 B:当該粘度上昇が50000Pa・s以上150000Pa・s未満となる時間領域が確認された
 C:当該粘度上昇が150000Pa・s以上となる時間領域が確認された
(Criteria 1) Viscosity increase per hour in the viscosity range of 10 2 to 10 6 Pa s does not apply)
B: A time region where the viscosity increase was 50000 Pa s or more and less than 150000 Pa s was confirmed C: A time region where the viscosity increase was 150000 Pa s or more was confirmed
(基準2)第1の重合性成分を重合させるための光照射を止めた直後の硬化性組成物の粘度を1としたときの1時間保持後の粘度
 A:1時間保持後の粘度が10未満
 B:1時間保持後の粘度が10以上100未満
 C:1時間保持後の粘度が100以上
なお、比較例1では光照射によって第1の重合性成分が重合しなかったため、比較例1は基準2による評価の対象外とした。
(Standard 2) Viscosity after holding for 1 hour when the viscosity of the curable composition immediately after stopping light irradiation for polymerizing the first polymerizable component is 1 A: Viscosity after holding for 1 hour is 10 Less than B: The viscosity after holding for 1 hour is 10 or more and less than 100 C: The viscosity after holding for 1 hour is 100 or more In Comparative Example 1, the first polymerizable component was not polymerized by light irradiation. Excluded from evaluation based on Criterion 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[半硬化物複合体の作製]
 容器に、アモルファス窒化ホウ素粉末(デンカ株式会社製、酸素含有量:1.5%、窒化ホウ素純度97.6%、平均粒径:6.0μm)が40.0質量%、六方晶窒化ホウ素粉末(デンカ株式会社製、酸素含有量:0.3%、窒化ホウ素純度:99.0%、平均粒径:30.0μm)が60.0質量%となるようにそれぞれ測り取り、焼結助剤(ホウ酸、炭酸カルシウム)を加えた後に有機バインダー、水を加え混合後、乾燥造粒し窒化物の混合粉末を調製した。
[Production of semi-cured composite]
In a container, 40.0% by mass of amorphous boron nitride powder (manufactured by Denka Co., Ltd., oxygen content: 1.5%, boron nitride purity: 97.6%, average particle size: 6.0 μm), hexagonal boron nitride powder (manufactured by Denka Co., Ltd., oxygen content: 0.3%, boron nitride purity: 99.0%, average particle size: 30.0 μm) was measured so that it was 60.0% by mass, and the sintering aid After adding (boric acid and calcium carbonate), an organic binder and water were added, mixed, and then dried and granulated to prepare mixed powder of nitride.
 上記混合粉末を金型に充填し、5MPaの圧力でプレス成形し、成形体を得た。次に、冷間等方加圧(CIP)装置(株式会社神戸製鋼所製、商品名:ADW800)を用いて、上記成形体を20~100MPaの圧力をかけて圧縮した。圧縮された成形体を、バッチ式高周波炉(富士電波工業株式会社製、商品名:FTH-300-1H)を用いて2000℃で10時間保持して焼結させることによって、多孔質体(50mm×50mm×50mmの略立方体状)を作製した。なお、焼成は、炉内に窒素を標準状態で流量を10L/分となるように流しながら、炉内を窒素雰囲気下に調整して行った。 The mixed powder was filled in a mold and press-molded at a pressure of 5 MPa to obtain a compact. Next, using a cold isostatic press (CIP) device (manufactured by Kobe Steel, Ltd., trade name: ADW800), the compact was compressed by applying a pressure of 20 to 100 MPa. The compressed molded body is held at 2000 ° C. for 10 hours using a batch-type high-frequency furnace (manufactured by Fuji Dempa Kogyo Co., Ltd., product name: FTH-300-1H) to obtain a porous body (50 mm × 50 mm × 50 mm approximately cubic shape) was produced. The firing was carried out by adjusting the inside of the furnace to a nitrogen atmosphere while flowing nitrogen into the furnace at a flow rate of 10 L/min in a standard state.
 上述のとおり作製した多孔質体を50mm×50mm×0.4mmとなるようにスライスした後、スライスされた多孔質体に、実施例1~5に係る硬化性組成物をそれぞれ以下の方法で含浸させた。 After slicing the porous body produced as described above to a size of 50 mm × 50 mm × 0.4 mm, the sliced porous body is impregnated with the curable compositions according to Examples 1 to 5 by the following method. let me
 まず、真空加温含浸装置(株式会社協真エンジニアリング製、商品名:G-555AT-R)に、上記多孔質体と、容器に入れた上記熱硬化性組成物とを入れた。次に、実施例1~4の硬化性組成物を用いた場合は、温度50℃及び圧力15Paの条件下で、実施例5の硬化性組成物を用いた場合は、温度90℃及び圧力15Paの条件下で、それぞれ装置内を10分間脱気した。脱気後、同条件に維持したまま、上記多孔質体を上記硬化性組成物に40分間浸漬し、硬化性組成物を上記多孔質体に含浸させた。 First, the porous body and the thermosetting composition contained in a container were placed in a vacuum heating impregnation device (manufactured by Kyoshin Engineering Co., Ltd., trade name: G-555AT-R). Next, when the curable compositions of Examples 1 to 4 were used, the temperature was 50°C and the pressure was 15 Pa, and when the curable composition of Example 5 was used, the temperature was 90°C and the pressure was 15 Pa. The inside of each device was degassed for 10 minutes under the conditions of . After degassing, the porous body was immersed in the curable composition for 40 minutes under the same conditions to impregnate the porous body with the curable composition.
 その後、上記多孔質体及び硬化性組成物を入れた容器を取出し、加圧加温含浸装置(株式会社協真エンジニアリング製、商品名:HP-4030AA-H45)に入れ、実施例1~4の硬化性組成物を用いた場合は、温度50℃及び圧力3.5MPaの条件下で、実施例5の硬化性組成物を用いた場合は、温度90℃及び圧力3.5MPaの条件下で、それぞれ120分間保持することで、硬化性組成物を多孔質体に更に含浸させた(なお、この時点では重合性成分の重合(硬化性組成物の半硬化)は進行していなかった)。 After that, the container containing the porous body and the curable composition was taken out, placed in a pressure heating impregnation device (manufactured by Kyoshin Engineering Co., Ltd., product name: HP-4030AA-H45), and the contents of Examples 1 to 4 were obtained. When using the curable composition, under the conditions of a temperature of 50 ° C. and a pressure of 3.5 MPa, when using the curable composition of Example 5, under the conditions of a temperature of 90 ° C. and a pressure of 3.5 MPa, By holding each for 120 minutes, the curable composition was further impregnated into the porous body (at this point, polymerization of the polymerizable component (semi-curing of the curable composition) had not progressed).
 続いて、硬化性組成物を含浸させた多孔質体を装置から取出し、紫外線照射装置(浜松ホトニクス株式会社製)を用いて、光量8mW/cmとなる条件にて、紫外線を10分間照射したところ、接着性に優れる半硬化物複合体を容易に作製することができた。 Subsequently, the porous body impregnated with the curable composition was removed from the apparatus and irradiated with ultraviolet rays for 10 minutes using an ultraviolet irradiation apparatus (manufactured by Hamamatsu Photonics Co., Ltd.) under conditions where the light amount was 8 mW/cm 2 . By the way, it was possible to easily produce a semi-cured composite having excellent adhesiveness.
[硬化物複合体の作製]
 得られた半硬化物複合体を加圧加温含浸装置に入れ、温度150℃、大気圧の条件下で2時間加熱した後、温度180℃、大気圧の条件下で5時間更に加熱したところ、硬化性組成物の半硬化物が更に硬化して、接着性が認められない硬化物複合体を作製することができた。
[Preparation of cured product composite]
The resulting semi-cured composite was placed in a pressurized and heated impregnation apparatus, heated at 150°C under atmospheric pressure for 2 hours, and then further heated at 180°C under atmospheric pressure for 5 hours. , the semi-cured product of the curable composition was further cured to produce a cured product composite in which no adhesion was observed.

Claims (6)

  1.  第1の重合性成分と、前記第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、前記第1の重合開始剤とは異なる条件で前記第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程と、
     前記第1の重合性成分を、前記第1の重合開始剤により重合させる工程と、を備え、
     前記第1の重合開始剤及び前記第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、半硬化物複合体の製造方法。
    The first polymerizable component, the first polymerization initiator that initiates the polymerization of the first polymerizable component, the second polymerizable component, and the first polymerization initiator under different conditions. A step of impregnating the porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the polymerizable component of 2;
    and polymerizing the first polymerizable component with the first polymerization initiator,
    A method for producing a semi-cured composite, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator.
  2.  前記第1の重合開始剤が光重合開始剤であり、前記第2の重合開始剤が熱重合開始剤である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the first polymerization initiator is a photopolymerization initiator, and the second polymerization initiator is a thermal polymerization initiator.
  3.  第1の重合性成分と、前記第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、前記第1の重合開始剤とは異なる条件で前記第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有する硬化性組成物を多孔質体に含浸させる工程と、
     前記第1の重合性成分を、前記第1の重合開始剤により重合させる工程と、
     前記第1の重合性成分を重合させた後に、前記第2の重合性成分を、前記第2の重合開始剤により重合させる工程と、を備え、
     前記第1の重合開始剤及び前記第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、硬化物複合体の製造方法。
    The first polymerizable component, the first polymerization initiator that initiates the polymerization of the first polymerizable component, the second polymerizable component, and the first polymerization initiator under different conditions. A step of impregnating the porous body with a curable composition containing a second polymerization initiator that initiates polymerization of the polymerizable component of 2;
    polymerizing the first polymerizable component with the first polymerization initiator;
    After polymerizing the first polymerizable component, polymerizing the second polymerizable component with the second polymerization initiator,
    A method for producing a cured product composite, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator.
  4.  前記第1の重合開始剤が光重合開始剤であり、前記第2の重合開始剤が熱重合開始剤である、請求項3に記載の製造方法。 The production method according to claim 3, wherein the first polymerization initiator is a photopolymerization initiator, and the second polymerization initiator is a thermal polymerization initiator.
  5.  多孔質体と、前記多孔質体に含浸された硬化性組成物の半硬化物とを備える半硬化物複合体であって、
     前記硬化性組成物が、第1の重合性成分と、前記第1の重合性成分の重合を開始させる第1の重合開始剤と、第2の重合性成分と、前記第1の重合開始剤とは異なる条件で前記第2の重合性成分の重合を開始させる第2の重合開始剤と、を含有し、
     前記半硬化物が、前記第1の重合性成分の重合物と、前記第2の重合性成分と、前記第2の重合開始剤とを含有し、
     前記第1の重合開始剤及び前記第2の重合開始剤のいずれか一方が光重合開始剤であり、他方が熱重合開始剤である、半硬化物複合体。
    A semi-cured composite comprising a porous body and a semi-cured curable composition impregnated in the porous body,
    The curable composition comprises a first polymerizable component, a first polymerization initiator that initiates polymerization of the first polymerizable component, a second polymerizable component, and the first polymerization initiator. and a second polymerization initiator that initiates polymerization of the second polymerizable component under conditions different from
    The semi-cured product contains a polymer of the first polymerizable component, the second polymerizable component, and the second polymerization initiator,
    A semi-cured composite, wherein one of the first polymerization initiator and the second polymerization initiator is a photopolymerization initiator, and the other is a thermal polymerization initiator.
  6.  前記第1の重合開始剤が光重合開始剤であり、前記第2の重合開始剤が熱重合開始剤である、請求項5に記載の半硬化物複合体。 The semi-cured composite according to claim 5, wherein the first polymerization initiator is a photopolymerization initiator and the second polymerization initiator is a thermal polymerization initiator.
PCT/JP2022/015943 2021-03-31 2022-03-30 Method for producing semi-cured product composite, method for producing cured product composite, and semi-cured product composite WO2022210869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511477A JPWO2022210869A1 (en) 2021-03-31 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060630 2021-03-31
JP2021-060630 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210869A1 true WO2022210869A1 (en) 2022-10-06

Family

ID=83459459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015943 WO2022210869A1 (en) 2021-03-31 2022-03-30 Method for producing semi-cured product composite, method for producing cured product composite, and semi-cured product composite

Country Status (2)

Country Link
JP (1) JPWO2022210869A1 (en)
WO (1) WO2022210869A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204519A (en) * 1983-05-09 1984-11-19 Nippon Sheet Glass Co Ltd Preparation of synthetic resin plane lens
JP2011074196A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Proton conductive material, proton conductive electrolyte membrane, proton conductive electrolyte membrane with proton conductive electrolyte layer, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2016039059A1 (en) * 2014-09-11 2016-03-17 富士フイルム株式会社 Composition for forming polymeric functional membrane, polymeric functional membrane and production process therefor, separation membrane module, and ion exchanger
JP2018517648A (en) * 2015-03-03 2018-07-05 スリーエム イノベイティブ プロパティズ カンパニー Method for producing gel composition, shaped gel article and sintered article
JP2019523309A (en) * 2016-05-19 2019-08-22 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa Methods and formulations for impregnating porous materials
WO2021200871A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Semicured product complex and method for producing same, cured product complex and method for producing same, and thermosetting composition used to impregnate porous body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204519A (en) * 1983-05-09 1984-11-19 Nippon Sheet Glass Co Ltd Preparation of synthetic resin plane lens
JP2011074196A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Proton conductive material, proton conductive electrolyte membrane, proton conductive electrolyte membrane with proton conductive electrolyte layer, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2016039059A1 (en) * 2014-09-11 2016-03-17 富士フイルム株式会社 Composition for forming polymeric functional membrane, polymeric functional membrane and production process therefor, separation membrane module, and ion exchanger
JP2018517648A (en) * 2015-03-03 2018-07-05 スリーエム イノベイティブ プロパティズ カンパニー Method for producing gel composition, shaped gel article and sintered article
JP2019523309A (en) * 2016-05-19 2019-08-22 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa Methods and formulations for impregnating porous materials
WO2021200871A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Semicured product complex and method for producing same, cured product complex and method for producing same, and thermosetting composition used to impregnate porous body

Also Published As

Publication number Publication date
JPWO2022210869A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP3861037B1 (en) Resin composition
KR102564083B1 (en) Initiator blends and photocurable compositions useful for three-dimensional printing containing such initiator blends
TWI486390B (en) Curable composition and cured material of the same
KR101905347B1 (en) Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
KR20150096699A (en) Method of polymerizing ethylenically-unsaturated materials using ionizing radiation
CN112824434A (en) Polymer composition for stereolithography
WO2022210869A1 (en) Method for producing semi-cured product composite, method for producing cured product composite, and semi-cured product composite
KR20130028691A (en) Thermal conductive sheet and producing method thereof
KR20140047081A (en) Liquid crystal sealant and liquid crystal display cell using same
JP4876778B2 (en) Curable resin composition, curable film and film excellent in storage stability
JP2023042918A (en) Production method of semi-cured composite, method for producing cured composite, and semi-cured composite
EP3733721A1 (en) Photocurable acrylic resin, adhesive composition comprising same, and adhesive film formed by using same
JP2010067712A (en) Composition for ingot slicing plate, and ingot slicing plate using the same
JP7344690B2 (en) Curable compositions, dry films, cured products, laminates, and electronic components
WO2021173084A1 (en) 3d printable resin compositions
JP2021109944A (en) Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
JP2019019149A (en) Propenyl group-containing resin, resin composition, resin varnish, method for producing laminate, thermosetting molding material and sealing material
EP2682422A1 (en) Thermosetting resin compositions comprising homogeneously distributed long reinforcing fibers
KR20180005654A (en) Compositions for the production of green products for the production of refractory carbon-bonded products, processes for producing such green products and greenhouses
JP5305707B2 (en) Resin composition and optical member
KR20200044188A (en) Ink composition for 3d inkjet printing to provide high strength of mechanical properties
JP2006274148A (en) Photocurable resin composition and prepreg
WO2023089982A1 (en) Curable resin composition, varnish, prepreg, and cured product
WO2017073142A1 (en) Curable resin composition, cured object, and adhesive
US20210130523A1 (en) Polymer composition for stereolithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781079

Country of ref document: EP

Kind code of ref document: A1