WO2022210821A1 - Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device - Google Patents

Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device Download PDF

Info

Publication number
WO2022210821A1
WO2022210821A1 PCT/JP2022/015770 JP2022015770W WO2022210821A1 WO 2022210821 A1 WO2022210821 A1 WO 2022210821A1 JP 2022015770 W JP2022015770 W JP 2022015770W WO 2022210821 A1 WO2022210821 A1 WO 2022210821A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
layer
Prior art date
Application number
PCT/JP2022/015770
Other languages
French (fr)
Japanese (ja)
Inventor
匡 羽毛田
将太 田中
佑典 高橋
拓人 深見
司 澤藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202280024095.3A priority Critical patent/CN117083261A/en
Priority to KR1020237032191A priority patent/KR20230162933A/en
Publication of WO2022210821A1 publication Critical patent/WO2022210821A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence device, an organic electroluminescence device, and an electronic device including the organic electroluminescence device.
  • an organic electroluminescence element (hereinafter sometimes referred to as an "organic EL element") is composed of an anode, a cathode, and an organic layer sandwiched between the anode and the cathode.
  • an organic EL element When a voltage is applied between the two electrodes, electrons are injected from the cathode side and holes from the anode side into the light-emitting region. It emits light when the state returns to the ground state. Therefore, development of a material that efficiently transports electrons or holes to the light-emitting region and facilitates recombination of electrons and holes is important for obtaining high-performance organic EL devices.
  • Patent Documents 1 to 4 disclose compounds used as materials for organic electroluminescence elements.
  • the present invention has been made to solve the above problems, and provides a compound that further improves the performance of an organic EL device, an organic EL device with improved device performance, and an electronic device containing such an organic EL device. intended to provide
  • organic EL devices containing the compound represented by the following formula (1) have better performance. found to be improved.
  • the present invention provides a compound represented by formula (1) below.
  • N * is the central nitrogen atom
  • one of R 1 and R 2 is an unsubstituted methyl group and the other is an unsubstituted phenyl group
  • R 1 and R 2 are not bonded to each other and thus do not form a ring structure.
  • R 3 and R 4 are each independently a hydrogen atom, an unsubstituted methyl group, or an unsubstituted phenyl group;
  • R3 and R4 are not bonded to each other and thus do not form a ring structure.
  • R 11 to R 16 and R 21 to R 27 are hydrogen atoms.
  • R 31 to R 35 are hydrogen atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms.
  • the present invention provides an organic EL device material containing the compound represented by the formula (1).
  • the present invention is an organic electroluminescent device having a cathode, an anode, and an organic layer between the cathode and the anode, wherein the organic layer comprises a light-emitting layer, and at least the organic layer
  • an organic electroluminescence device in which one layer contains the compound represented by the formula (1).
  • the present invention provides an electronic device including the organic electroluminescence element.
  • An organic EL device containing the compound represented by formula (1) exhibits improved device performance.
  • FIG. 1 is a schematic diagram showing an example of a layer structure of an organic EL element according to one aspect of the present invention
  • FIG. 4 is a schematic diagram showing another example of the layer structure of the organic EL element according to one aspect of the present invention.
  • a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
  • a hydrogen atom that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
  • the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are bonded in a ring (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridine ring has 5 ring carbon atoms
  • a furan ring has 4 ring carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6.
  • the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
  • the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6.
  • the expression "substituted or unsubstituted XX to YY carbon number ZZ group” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group”. is a "substituted ZZ group”.
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom in the ZZ group is not replaced with a substituent.
  • a hydrogen atom in the "unsubstituted ZZ group” is a protium atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substituted in the case of "a BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring-forming carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
  • the number of ring-forming carbon atoms in the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • unsubstituted aryl group refers to the case where "substituted or unsubstituted aryl group” is “unsubstituted aryl group", and substituted aryl group is “substituted or unsubstituted aryl group” It refers to a "substituted aryl group”.
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group”.
  • a "substituted aryl group” means a group in which one or more hydrogen atoms of an "unsubstituted aryl group” are replaced with a substituent.
  • substituted aryl group examples include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below.
  • Examples include:
  • the examples of the "unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are only examples, and the “substituted aryl group” described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group” of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group” of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
  • aryl group (specific example group G1A): phenyl group, a p-biphenyl group, m-biphenyl group, an o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a pyrenyl group, a chryseny
  • Substituted aryl group (specific example group G1B): an o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, an ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, an ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl) fluorenyl group, a cyanophenyl group, a
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
  • a “heterocyclic group” as described herein is a monocyclic group or a condensed ring group.
  • a “heterocyclic group” as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • specific examples of the "substituted or unsubstituted heterocyclic group" described herein include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned.
  • unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group” refers to a "substituted heterocyclic group”.
  • heterocyclic group refers to a "substituted heterocyclic group”.
  • a “substituted heterocyclic group” means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group” of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” listed here are only examples, and the "substituted heterocyclic group” described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which the hydrogen atom of is further replaced with a substituent is also included.
  • Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • nitrogen atom-containing unsubstituted heterocyclic groups specifically example group G2A1
  • oxygen atom-containing unsubstituted heterocyclic groups specifically example group G2A2
  • sulfur atom-containing unsubstituted specifically example group G2A3
  • a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
  • an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, pyrazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a quinolidinyl group, quinolyl group, an isoquinolyl group, cinnolyl group, a phthalazinyl group, a quinazolinyl
  • an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): furyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, xanthenyl group, benzofuranyl group, an isobenzofuranyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a benzoxazolyl group, a benzisoxazolyl group, a phenoxazinyl group, a morpholino group, a dinaphthofuranyl group, an azadibenzofuranyl group, a diazadibenzofuranyl group, azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
  • thienyl group an unsubstituted heterocyclic group containing a sulfur atom
  • thienyl group a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, benzothiophenyl group (benzothienyl group), isobenzothiophenyl group (isobenzothienyl group), dibenzothiophenyl group (dibenzothienyl group), naphthobenzothiophenyl group (naphthobenzothienyl group), a benzothiazolyl group, a benzoisothiazolyl group, a phenothiazinyl group, a dinaphthothiophenyl group (dinaphthothienyl group), azadibenzothiophenyl group (azadibenzothienyl group), diazadibenzothiophenyl group (diazadibenzothiopheny
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
  • a substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a methylbenzimidazolyl group, ethylbenzimidazolyl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenylquinazolinyl group and a biphenylylquinazolinyl group;
  • a substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
  • a substituted heterocyclic group containing a sulfur atom (specific example group G2B3): phenyldibenzothiophenyl group, a methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means that at least one of the hydrogen atoms bonded to the ring-forming carbon atoms of the monovalent heterocyclic group, XA and YA is NH.
  • unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is “unsubstituted alkyl group”
  • substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is It refers to a "substituted alkyl group”.
  • alkyl group includes both an "unsubstituted alkyl group” and a "substituted alkyl group”.
  • a “substituted alkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group.
  • the "unsubstituted alkyl group” includes a linear “unsubstituted alkyl group” and a branched “unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group” of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group” of Specific Example Group G3B is further replaced by a substituent included.
  • Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
  • Substituted alkyl group (specific example group G3B): a heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group;
  • Substituted or unsubstituted alkenyl group Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like.
  • unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group", "substituted alkenyl group” means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.
  • alkenyl group simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
  • a “substituted alkenyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include groups in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done.
  • Unsubstituted alkenyl group (specific example group G4A): a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • Substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, a 2-methylallyl group and a 1,2-dimethylallyl group;
  • Substituted or unsubstituted alkynyl group Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A).
  • unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group” is "unsubstituted alkynyl group”.
  • alkynyl group means "unsubstituted includes both "alkynyl group” and "substituted alkynyl group”.
  • a “substituted alkynyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with substituents.
  • Substituted or unsubstituted cycloalkyl group Specific examples of the "substituted or unsubstituted cycloalkyl group” described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned.
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted It refers to the case where "cycloalkyl group” is “substituted cycloalkyl group”.
  • cycloalkyl group means "unsubstituted cycloalkyl group” and “substituted cycloalkyl group”. including both.
  • a “substituted cycloalkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like.
  • the examples of the "unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” listed here are only examples, and the "substituted cycloalkyl group” described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
  • cycloalkyl group (specific example group G6A): a cyclopropyl group, cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • cycloalkyl group (specific example group G6B): 4-methylcyclohexyl group;
  • G7 A group represented by -Si (R 901 ) (R 902 ) (R 903 )
  • Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification include: -Si(G1)(G1)(G1), - Si (G1) (G2) (G2), - Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3) and -Si(G6)(G6)(G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
  • a plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
  • a plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
  • a plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 A group represented by -S- (R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in the specification include: -S(G1), -S(G2), -S (G3) and -S (G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -N(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -N(G2)(G2) are the same or different from each other.
  • a plurality of G3s in -N(G3)(G3) are the same or different from each other.
  • - the plurality of G6 in N (G6) (G6) are the same or different from each other
  • halogen atom described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the "substituted or unsubstituted fluoroalkyl group” described in this specification means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with fluorine atoms.
  • the carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted fluoroalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with fluorine atoms.
  • Substituted or unsubstituted haloalkyl group "Substituted or unsubstituted haloalkyl group” described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted haloalkyl group” means a group in which one or more hydrogen atoms of a “haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group” are further replaced with a substituent group, and a “substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted haloalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with halogen atoms.
  • a haloalkyl group may be referred to as a halogenated alkyl group.
  • Substituted or unsubstituted alkoxy group A specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkoxy group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted alkylthio group A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), wherein G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the “unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted aryloxy group Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group”.
  • the number of ring-forming carbon atoms in the "unsubstituted aryloxy group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • ⁇ "Substituted or unsubstituted trialkylsilyl group” Specific examples of the "trialkylsilyl group” described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group”. A plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • an "aralkyl group” is a group in which a hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one aspect of a “substituted alkyl group”.
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
  • substituted or unsubstituted aralkyl group include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • a substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group,
  • substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein.
  • nantholinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-
  • a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
  • a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
  • the "substituted or unsubstituted arylene group” described herein is derived from the above "substituted or unsubstituted aryl group” by removing one hydrogen atom on the aryl ring. is the base of the valence.
  • Specific examples of the “substituted or unsubstituted arylene group” include the “substituted or unsubstituted aryl group” described in specific example group G1 by removing one hydrogen atom on the aryl ring. Induced divalent groups and the like can be mentioned.
  • Substituted or unsubstituted divalent heterocyclic group Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group” described herein is the above “substituted or unsubstituted heterocyclic group” except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • Substituted or unsubstituted alkylene group Unless otherwise specified, the "substituted or unsubstituted alkylene group” described herein is derived from the above “substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the “substituted or unsubstituted alkylene group” (specific example group G14) include the “substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
  • the substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • * represents a binding position.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
  • * represents a binding position.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a binding position.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • R 921 and R 922 when “one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
  • one or more pairs means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 925 and R 926 are bonded together to form ring Q B
  • the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
  • a group consisting of two or more adjacent pairs forms a ring is not limited to the case where a group consisting of two adjacent "two” is combined as in the above example, but It also includes the case where a pair is combined.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 922 and R 923 are bonded together to form ring Q C
  • the adjacent three R 921 , R 922 and R 923
  • the anthracene compound represented by the general formula (TEMP-103) has It is represented by the general formula (TEMP-105).
  • ring Q A and ring Q C share R 922 .
  • the "monocyclic ring” or “condensed ring” to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one pair of adjacent pairs" forms a “single ring” or a “fused ring", the “single ring” or “fused ring” is a saturated ring, or Unsaturated rings can be formed.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a "fused ring”.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”.
  • the ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If ring Q A in the general formula (TMEP-104) is a benzene ring, ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
  • Unsaturated ring means an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • a “saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
  • Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
  • Specific examples of the aromatic heterocyclic ring include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
  • Forming a ring means forming a ring only with a plurality of atoms of the mother skeleton, or with a plurality of atoms of the mother skeleton and one or more arbitrary elements.
  • the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene skeleton to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary elements.
  • R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary element” is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification.
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an “optional substituent” described later.
  • the ring formed is a heterocycle.
  • One or more arbitrary elements constituting a monocyclic or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the present specification. , more preferably 3 or more and 5 or less.
  • “monocyclic ring” and “condensed ring” “monocyclic ring” is preferred, unless otherwise stated in the present specification.
  • the “saturated ring” and the “unsaturated ring” the “unsaturated ring” is preferred, unless otherwise specified in the present specification.
  • “monocyclic” is preferably a benzene ring.
  • the “unsaturated ring” is preferably a benzene ring.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above “monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section “Substituents described herein” above.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above "monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section "Substituents described herein" above. The above is the case where “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and “one or more pairs of two or more adjacent pairs are combined with each other to form a substituted or unsubstituted condensed ring"("combine to form a ring").
  • the substituent in the case of “substituted or unsubstituted” is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a group selected from the group consisting of an unsubstituted aryl group
  • the two or more R 901 are the same or different from each other, when two or more R 902 are present, the two or more R 902 are the same or different from each other; when two or more R 903 are present, the two or more R 903 are the same or different from each other, when two or more R 904 are present, the two or more R 904 are the same or different from each other; when two or more R 905 are present, the two or more R 905 are the same or different from each other, when two or more R 906 are present, the two or more R 906 are the same or different from each other; When two or more R 907 are present, the two or more R 907 are the same or different from each other.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
  • the numerical range represented using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit, and the numerical value BB described after “AA to BB” as the upper limit.
  • invention compounds The compounds of the present invention are described below.
  • the compound of the present invention is represented by the following formula (1).
  • the compounds of the present invention represented by formula (1) and formulas included in formula (1) described later may be simply referred to as "invention compounds”.
  • N * is the central nitrogen atom
  • one of R 1 and R 2 is an unsubstituted methyl group and the other is an unsubstituted phenyl group
  • R 1 and R 2 are not bonded to each other and thus do not form a ring structure
  • R 3 and R 4 are each independently a hydrogen atom, an unsubstituted methyl group, or an unsubstituted phenyl group
  • R3 and R4 are not bonded to each other and thus do not form a ring structure
  • R 11 to R 16 and R 21 to R 27 are hydrogen atoms.
  • R 31 to R 35 are hydrogen atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring-forming atoms.
  • the unsubstituted aryl group is, for example, a phenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, an anthryl group.
  • a benzoanthryl group a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a fluorenyl group, a fluoranthenyl group, a perylenyl group, a triphenylenyl group, and the like. mentioned.
  • phenyl group biphenylyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, triphenylenyl group and fluoranthenyl group are preferred.
  • the unsubstituted heterocyclic group is, for example, pyrrolyl group, furyl group, thienyl group, pyridyl group, imidazopyridyl group, pyridazinyl group , pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, indolyl group, isoindolyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quin
  • the invention compound represented by formula (1) is preferably represented by the following formula (1-1) or (1-2).
  • N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
  • R 41 to R 46 and R 51 to R 60 are Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • one selected from R 41 to R 46 is a single bond that bonds to *a; one selected from R 51 to R 60 is a single bond that bonds to *b; Adjacent two selected from R 41 to R 46 which are not single bonds and adjacent two selected from R 51 to R 60 which are not single bonds are not bonded to each other and thus do not form a ring structure.
  • the invention compound represented by formula (1) is preferably represented by the following formula (1-3) or (1-4).
  • N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
  • R 61 to R 68 and R 71 to R 78 are Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • X is an oxygen atom, a sulfur atom, or CR a R b ;
  • R a and R b are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, and R a and R b are It may be linked through a single bond.
  • one selected from R 61 to R 68 is a single bond that bonds to *c; one selected from R 71 to R 78 is a single bond that bonds to *d; Adjacent two selected from R 61 to R 68 which are not single bonds and adjacent two selected from R 71 to R 78 which are not single bonds are not bonded to each other and thus do not form a ring structure.
  • X is preferably an oxygen atom. In another aspect, X is preferably a sulfur atom.
  • R a and R b may combine with each other to form a substituted or unsubstituted ring. In another aspect of the present invention, R a and R b do not have to combine with each other to form a substituted or unsubstituted ring.
  • the invention compound represented by formula (1) is preferably represented by the following formula (1-5) or (1-6).
  • N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
  • R 81 to R 90 and R 91 to R 102 are Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • one selected from R 81 to R 90 is a single bond that bonds to *e; one selected from R 91 to R 102 is a single bond that bonds to *f; Adjacent two selected from R 81 to R 90 which are not single bonds and adjacent two selected from R 91 to R 102 which are not single bonds are not bonded to each other and thus do not form a ring structure.
  • R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are each independently a hydrogen atom, substituted or unsubstituted is preferably an alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 The details of the alkyl group having 1 to 50 carbon atoms are as described above in the section "Substituents described herein".
  • the unsubstituted alkyl groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 is preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group or t-butyl group, more preferably methyl group, ethyl group or isopropyl group , or a t-butyl group, more preferably a methyl group or a t-butyl group.
  • the substituted or unsubstituted ring-forming carbon atoms of 3 to R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 represented by Details of the 50 cycloalkyl groups are as described above in the section entitled "Substituents Described herein.”
  • the unsubstituted cycloalkyl groups represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are preferably cyclo propyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group or 2-norbornyl group, more preferably cyclopropyl group, cyclobutyl group, cycl
  • halogen atoms represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are described in the specification. , preferably a fluorine atom.
  • R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 The details of the aryl group having 6 to 50 ring carbon atoms are as described in "Substituents described herein".
  • the unsubstituted aryl groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 is preferably a phenyl group, a biphenylyl group, a naphthyl group or a phenanthryl group, more preferably a phenyl group, a biphenylyl group or a naphthyl group, still more preferably a phenyl group.
  • the substituted or unsubstituted ring-forming atoms represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 have 5 to Details of the heterocyclic group of 50 are as described in "Substituents described herein".
  • the unsubstituted heterocyclic group is preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, dibenzofuranyl or dibenzothiophenyl.
  • L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms.
  • the unsubstituted arylene group is, for example, a phenylene group, a biphenyldiyl group, a terphenyldiyl group, a naphthylene group, an anthrylene group, a benzoant rylene group, phenanthrylene group, benzophenanthrylene group, phenalenylene group, picenylene group, pentaphenylene group, pyrenylene group, chrysenylene group, benzochrysenylene group, triphenylenylene group, fluoranthenylene group, fluorenylene group, or 9, A 9'-spirobifluorenylene group can be mentioned.
  • phenylene group, biphenyldiyl group and terphenyldiyl group are preferred.
  • the unsubstituted divalent heterocyclic group is, for example, pyrrole, imidazole, pyrazole, triazole, furan, thiophene, oxazole , isoxazole, oxadiazole, thiazole, isothiazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, indole, isoindole, indolizine, quinolidine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, benzimidazole, indazole, phenanthroline, phenanthridine, acridine, phenazine, carbazole, benzocarbazole, xanthene, benzofuran,
  • L is preferably a single bond. In another aspect, L is preferably selected from a phenylene group, a biphenyldiyl group and a naphthylene group.
  • R 41 to R 46 that are not single bonds bonded to *a may all be hydrogen atoms
  • R 51 to R 60 that are not single bonds bonded to *b may all be hydrogen atoms
  • R A-3) R 61 to R 68 that are not single bonds bonded to *c may all be hydrogen atoms
  • R 71 to R 78 that are not single bonds bonded to *d may all be hydrogen atoms
  • R 81 to R 90 that are not single bonds bonded to *e may all be hydrogen atoms
  • A-6) R 91 to R 102 which are not single bonds bonded to *f may all be hydrogen atoms.
  • hydrogen atom as used herein includes protium, deuterium, and tritium atoms. Accordingly, invention compounds may contain naturally occurring deuterium atoms. Alternatively, deuterium atoms may be intentionally introduced into the invention compound A by using a deuterated compound as part or all of the raw material compound. Accordingly, in one aspect of the invention, the compounds of the invention contain at least one deuterium atom. That is, the compound of the invention may be a compound represented by formula (1) in which at least one of the hydrogen atoms contained in the compound is a deuterium atom.
  • the deuteration rate of the invention compound depends on the deuteration rate of the starting compound used. Even if a raw material with a given deuteration rate is used, it may still contain a certain proportion of natural proton isotopes. Therefore, the aspect of the deuteration rate of the compound of the invention shown below is the ratio obtained by simply counting the number of deuterium atoms represented by the chemical formula, and the ratio in consideration of trace isotopes derived from nature. included.
  • the deuteration rate of the compound of the invention is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and even more preferably 50% or more.
  • Invention compounds may be mixtures containing deuterated and non-deuterated compounds, mixtures of two or more compounds having different deuteration rates.
  • the deuteration rate of such a mixture is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, even more preferably 10% or more, even more preferably 50% or more, and 100% or more. %.
  • the ratio of the number of deuterium atoms to the total number of hydrogen atoms in the compound of the invention is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and 100 % or less.
  • Invention compounds can be easily produced by those skilled in the art by referring to the following synthesis examples and known synthesis methods.
  • D represents a deuterium atom.
  • the organic EL device material that is one aspect of the present invention contains the invention compound.
  • the content of the invention compound in the organic EL device material is 1% by mass or more (including 100%), preferably 10% by mass or more (including 100%), and 50% by mass or more (including 100% more preferably 80% by mass or more (including 100%), and particularly preferably 90% by mass or more (including 100%).
  • the organic EL device material, which is one aspect of the present invention, is useful for manufacturing organic EL devices.
  • Organic EL Element that is one aspect of the present invention includes an anode, a cathode, and an organic layer disposed between the anode and the cathode.
  • the organic layers comprise a light-emitting layer, and at least one layer of the organic layers comprises an invention compound.
  • the organic layer containing the compound of the invention include a hole-transporting zone provided between the anode and the light-emitting layer (hole-injection layer, hole-transporting layer, electron-blocking layer, exciton-blocking layer, etc.), light-emitting layer .
  • the inventive compound is preferably a material for the hole-transporting zone or light-emitting layer of a fluorescent or phosphorescent EL device, more preferably a material for the hole-transporting zone, even more preferably a hole-injecting layer, a hole-transporting layer, an electron-blocking layer, or an excitation layer. It is used as a material for electron-blocking layers, particularly preferably as a material for hole-injecting layers or hole-transporting layers.
  • the organic EL device may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent/phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. However, it may be of a tandem type having a plurality of light-emitting units, and among these, it is preferably a fluorescent light-emitting device.
  • the term “light-emitting unit” refers to a minimum unit that includes organic layers, at least one layer of which is a light-emitting layer, and emits light by recombination of injected holes and electrons.
  • the light-emitting unit may be of a multilayer type having a plurality of phosphorescent-emitting layers or fluorescent-emitting layers.
  • a space layer may be provided for the purpose of preventing the excitons from diffusing into the fluorescence-emitting layer.
  • a typical layer structure of a simple light-emitting unit is shown below. Layers in brackets are optional.
  • Each of the phosphorescent or fluorescent light-emitting layers may exhibit different emission colors.
  • (hole injection layer/) hole transport layer/first phosphorescent-emitting layer (red emission)/second phosphorescent-emitting layer (green emission)/space layer/fluorescence emission examples thereof include a layer structure such as layer (blue light emitting)/electron transport layer.
  • An electron blocking layer may be appropriately provided between each light-emitting layer and the hole transport layer or space layer.
  • a hole-blocking layer may be appropriately provided between each light-emitting layer and the electron-transporting layer.
  • an electron-blocking layer or a hole-blocking layer By providing an electron-blocking layer or a hole-blocking layer, electrons or holes can be confined in the light-emitting layer, the probability of charge recombination in the light-emitting layer can be increased, and the light-emitting efficiency can be improved.
  • the first light-emitting unit and the second light-emitting unit can be independently selected from the light-emitting units described above, for example.
  • the intermediate layer is also generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron withdrawal layer, a connection layer, or an intermediate insulating layer, and provides electrons to the first light-emitting unit and holes to the second light-emitting unit.
  • Known material configurations can be used to supply.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an organic EL element according to one aspect of the present invention.
  • the organic EL element 1 has a substrate 2 , an anode 3 , a cathode 4 , and a light emitting unit 10 arranged between the anode 3 and the cathode 4 .
  • the light-emitting unit 10 has a light-emitting layer 5 .
  • a hole transport zone 6 (a hole injection layer, a hole transport layer, etc.) is provided between the light emitting layer 5 and the anode 3
  • an electron transport zone 7 an electron injection layer, an electron transport layer, etc. is provided between the light emitting layer 5 and the cathode 4. etc.).
  • an electron blocking layer (not shown) and a hole blocking layer (not shown) may be provided on the anode 3 side of the light emitting layer 5 and the cathode 4 side of the light emitting layer 5, respectively.
  • electrons and holes can be confined in the light-emitting layer 5, and the exciton generation efficiency in the light-emitting layer 5 can be further increased.
  • FIG. 2 is a schematic diagram showing another configuration of the organic EL element according to one aspect of the present invention.
  • the organic EL element 11 has a substrate 2 , an anode 3 , a cathode 4 , and a light emitting unit 20 arranged between the anode 3 and the cathode 4 .
  • the light-emitting unit 20 has a light-emitting layer 5 .
  • a hole-transporting zone located between the anode 3 and the light-emitting layer 5 is formed from a hole-injecting layer 6a, a first hole-transporting layer 6b and a second hole-transporting layer 6c.
  • the electron-transporting zone located between the light-emitting layer 5 and the cathode 4 is formed of a first electron-transporting layer 7a and a second electron-transporting layer 7b.
  • a host combined with a fluorescent dopant is called a fluorescent host
  • a host combined with a phosphorescent dopant is called a phosphorescent host.
  • Fluorescent hosts and phosphorescent hosts are not distinguished only by molecular structure. That is, the phosphorescent host means a material that contains a phosphorescent dopant and forms a phosphorescent light-emitting layer, and does not mean that it cannot be used as a material for forming a fluorescent light-emitting layer. The same is true for fluorescent hosts.
  • the substrate is used as a support for the organic EL element.
  • a plate of glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • flexible substrates include plastic substrates made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. Inorganic deposition films can also be used.
  • Anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide
  • indium oxide containing tungsten oxide and zinc oxide Graphene etc.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of the above metals for example, titanium nitride
  • indium oxide-zinc oxide is a target in which 1 to 10 wt% of zinc oxide is added to indium oxide
  • indium oxide containing tungsten oxide and zinc oxide is a target in which 0.5 to 5 wt% of tungsten oxide is added to indium oxide. %, and 0.1 to 1 wt % of zinc oxide
  • it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a material that facilitates hole injection regardless of the work function of the anode. , alloys, electrically conductive compounds, and mixtures thereof, elements belonging to Groups 1 and 2 of the Periodic Table of the Elements) can be used.
  • Elements belonging to group 1 or 2 of the periodic table which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alloys containing these e.g., MgAg, AlLi
  • rare earth metals such as europium (Eu) and ytterbium (Yb)
  • Yb ytterbium
  • alloys containing these can also be used.
  • the hole-injection layer is a layer containing a material with high hole-injection properties (hole-injection material), and is located between the anode and the light-emitting layer or, if present, with the hole-transport layer. formed between the anodes.
  • Hole-injecting materials other than invention compounds include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. material, tungsten oxide, manganese oxide, or the like can be used.
  • Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly(N-vinylcarbazole) (abbreviation: PVK)
  • poly(4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly(4-vinyltriphenylamine)
  • PTPDMA poly[N-(4- ⁇ N'-[4-(4-diphenylamino) phenyl]phenyl-N'-phenylamino ⁇ phenyl)methacrylamide]
  • PTPDMA poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine]
  • polymer compounds such as Poly-TPD).
  • polymer compounds added with acids such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyaniline/poly(styrenesulfonic acid) (PAni/PSS) are used.
  • PDOT/PSS poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)
  • PAni/PSS polyaniline/poly(styrenesulfonic acid)
  • acceptor material such as a hexaazatriphenylene (HAT) compound represented by the following formula (K).
  • HAT hexaazatriphenylene
  • R 201 to R 206 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 207 (R 207 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms).
  • R 207 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group and the like.
  • Hole-transporting layer is a layer containing a material with high hole-transporting properties (hole-transporting material), and is located between the anode and the light-emitting layer or, if present, with the hole-injecting layer. It is formed between the light emitting layers.
  • Invention compounds may be used in the hole-transporting layer alone or in combination with the following compounds.
  • the hole transport layer may have a single layer structure or a multilayer structure including two or more layers.
  • the hole transport layer may have a two-layer structure including a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the hole-transporting layer having the single-layer structure is preferably adjacent to the light-emitting layer, and the hole-transporting layer closest to the cathode in the multilayer structure, for example, the two-layer structure is preferably adjacent to the light-emitting layer.
  • an electron A blocking layer or the like may be interposed between the hole-transporting layer and the light-emitting layer in the single-layer structure, or between the hole-transporting layer closest to the light-emitting layer in the multilayer structure and the light-emitting layer.
  • the invention compound may be contained in either the first hole transport layer or the second hole transport layer, or may be contained in both of them.
  • the invention compound is preferably contained only in the first hole-transport layer, and in another aspect, the invention compound is preferably contained only in the second hole-transport layer.
  • the compound of the invention is preferably contained in the first hole-transporting layer and the second hole-transporting layer.
  • the invention compound contained in one or both of the first hole-transport layer and the second hole-transport layer is preferably a hydrogen compound from the viewpoint of production cost.
  • the light hydrogen compound is an invention compound in which all hydrogen atoms in the invention compound are hydrogen atoms. Therefore, the organic EL device according to one aspect of the present invention is an organic EL device in which one or both of the first hole-transporting layer and the second hole-transporting layer are substantially composed of a light hydrogen compound. is preferably The term "invention compound consisting essentially of a light hydrogen body" means that the content of the light hydrogen body in the total amount of the invention compounds is 90 mol% or more, preferably 95 mol% or more, more preferably 99 mol% or more (each including 100%).
  • aromatic amine compounds examples include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (abbreviation: NPB) and N,N'-bis(3-methylphenyl)-N , N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (abbreviation: TPD), 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine (abbreviation: BAFLP), 4,4′-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: DFLDPBi), 4,4′,4′′-tris(N,N -diphenylamino)triphenylamine
  • carbazole derivatives examples include 4,4′-di(9-carbazolyl)biphenyl (abbreviation: CBP), 9-[4-(9-carbazolyl)phenyl]-10-phenylanthracene (abbreviation: CzPA), and 9-phenyl-3-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (abbreviation: PCzPA).
  • anthracene derivatives examples include 2-t-butyl-9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 9,10-di(2-naphthyl)anthracene (abbreviation: DNA), and , 9,10-diphenylanthracene (abbreviation: DAnth).
  • Polymer compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • a compound other than the above may be used as long as the compound has higher hole-transporting property than electron-transporting property.
  • the light-emitting layer is a layer containing a highly luminescent material (dopant material), and various materials can be used.
  • a fluorescent light-emitting material or a phosphorescent light-emitting material can be used as the dopant material.
  • a fluorescent light-emitting material is a compound that emits light from a singlet excited state
  • a phosphorescent light-emitting material is a compound that emits light from a triplet excited state.
  • a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, or the like can be used as a blue fluorescent light-emitting material that can be used in the light-emitting layer.
  • N,N′-bis[4-(9H-carbazol-9-yl)phenyl]-N,N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S), 4-(9H -carbazol-9-yl)-4'-(10-phenyl-9-anthryl)triphenylamine (abbreviation: YGAPA), 4-(10-phenyl-9-anthryl)-4'-(9-phenyl-9H -carbazol-3-yl)triphenylamine (abbreviation: PCBAPA) and the like.
  • An aromatic amine derivative or the like can be used as a greenish fluorescent light-emitting material that can be used in the light-emitting layer.
  • N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA)
  • N-[9,10-bis(1,1 '-biphenyl-2-yl)-2-anthryl]-N,9-diphenyl-9H-carbazol-3-amine abbreviation: 2PCABPhA
  • a tetracene derivative, a diamine derivative, or the like can be used as a red fluorescent light-emitting material that can be used in the light-emitting layer.
  • N,N,N',N'-tetrakis(4-methylphenyl)tetracene-5,11-diamine abbreviation: p-mPhTD
  • 7,14-diphenyl-N,N,N', and N'-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3,10-diamine abbreviation: p-mPhAFD.
  • Metal complexes such as iridium complexes, osmium complexes, and platinum complexes are used as blue phosphorescent materials that can be used in the light-emitting layer.
  • An iridium complex or the like is used as a greenish phosphorescent material that can be used in the light-emitting layer.
  • Tris (2-phenylpyridinato-N, C2') iridium (III) (abbreviation: Ir (ppy) 3), bis (2-phenylpyridinato-N, C2') iridium (III) acetylacetonate ( Abbreviations: Ir (ppy) 2 (acac)), bis (1,2-diphenyl-1H-benzimidazolato) iridium (III) acetylacetonate (abbreviation: Ir (pbi) 2 (acac)), bis (benzo[ h]quinolinato)iridium(III) acetylacetonate (abbreviation: Ir(bzq)2(acac)) and the like.
  • Metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used as red phosphorescent materials that can be used in the light-emitting layer.
  • bis[2-(2′-benzo[4,5- ⁇ ]thienyl)pyridinato-N,C3′]iridium(III) acetylacetonate abbreviation: Ir(btp)2(acac)
  • Bis(1-phenylisoquinolinato-N,C2′)iridium(III) acetylacetonate abbreviation: Ir(piq)2(acac)
  • (acetylacetonato)bis[2,3-bis(4-fluoro Phenyl)quinoxalinato]iridium (III) abbreviation: Ir(Fdpq)2(acac)
  • tris (acetylacetonate) (monophenanthroline) terbium (III) (abbreviation: Tb (acac) 3 (Phen)
  • tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation: Eu (DBM) 3 (Phen)
  • tris[1-(2-thenoyl)-3,3,3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: Eu ( Rare-earth metal complexes such as TTA)3(Phen)) can be used as phosphorescent light-emitting materials because they emit light from rare-earth metal ions (electronic transitions between different multiplicities).
  • the light-emitting layer may have a structure in which the above-described dopant material is dispersed in another material (host material). It is preferable to use a material whose lowest unoccupied molecular orbital level (LUMO level) is higher than that of the dopant material and whose highest occupied molecular orbital level (HOMO level) is lower.
  • LUMO level lowest unoccupied molecular orbital level
  • HOMO level highest occupied molecular orbital level
  • host materials include (1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes; (2) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives; (3) condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives; (4) Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives are used.
  • tris(8-quinolinolato)aluminum (III) (abbreviation: Alq)
  • tris(4-methyl-8-quinolinolato)aluminum (III) (abbreviation: Almq3)
  • bis(10-hydroxybenzo[h]quinolinato)beryllium (II) (abbreviation: BeBq2)
  • bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (III) abbreviation: BAlq
  • bis(8-quinolinolato)zinc (II) (abbreviation: Znq)
  • bis[2-(2-benzoxazolyl)phenolato]zinc(II) (abbreviation: ZnPBO), bis[2-(2-benzothiazolyl)phenolato]zinc(II) (abbreviation: ZnBTZ)
  • other metal complexes 2-(4-biphenylyl)-5-(
  • anthracene compound as the host material.
  • the electron-transporting layer is a layer containing a material with high electron-transporting properties (electron-transporting material), and is formed between the light-emitting layer and the cathode, or, if present, between the electron-injecting layer and the light-emitting layer.
  • the electron transport layer may have a single layer structure or a multilayer structure including two or more layers.
  • the electron transport layer may have a two-layer structure including a first electron transport layer (anode side) and a second electron transport layer (cathode side).
  • the single-layer electron-transporting layer is preferably adjacent to the light-emitting layer, and the electron-transporting layer closest to the anode in the multilayer structure, for example, the second electron-transporting layer of the two-layer structure. 1
  • the electron-transporting layer is preferably adjacent to the light-emitting layer.
  • a hole-blocking layer as described below is provided between the electron-transporting layer and the light-emitting layer in the single-layer structure, or between the electron-transporting layer closest to the light-emitting layer in the multilayer structure and the light-emitting layer. A layer or the like may be interposed.
  • metal complexes such as aluminum complexes, beryllium complexes and zinc complexes
  • heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, phenanthroline derivatives
  • Polymer compounds can be used.
  • metal complexes examples include tris(8-quinolinolato)aluminum (III) (abbreviation: Alq), tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq3), bis(10-hydroxybenzo[h]quinolinato ) beryllium (abbreviation: BeBq 2 ), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (III) (abbreviation: BAlq), bis(8-quinolinolato)zinc (II) (abbreviation: Znq ), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (abbreviation: ZnPBO), and bis[2-(2-benzothiazolyl)phenolato]zinc(II) (abbreviation: ZnBTZ).
  • Alq tris(8-quinolinolato)aluminum
  • heteroaromatic compounds include 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis[5 -(ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (abbreviation: OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4 -biphenylyl)-1,2,4-triazole (abbreviation: TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-(4-biphenylyl)-1,2,4 -triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxa
  • polymer compounds include poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py), poly[(9, 9-dioctylfluorene-2,7-diyl)-co-(2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy).
  • the above material is a material having an electron mobility of 10 ⁇ 6 cm 2 /Vs or more. Materials other than those described above may be used for the electron transport layer as long as the material has higher electron transport properties than hole transport properties.
  • the electron injection layer is a layer containing a material with high electron injection properties.
  • the electron injection layer contains alkali metals such as lithium (Li) and cesium (Cs), alkaline earth metals such as magnesium (Mg), calcium (Ca) and strontium (Sr), europium (Eu) and ytterbium (Yb).
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alkaline earth metals such as magnesium (Mg), calcium (Ca) and strontium (Sr)
  • Eu europium
  • Yb ytterbium
  • Rare earth metals such as and compounds containing these metals can be used. Examples of such compounds include alkali metal oxides, alkali metal halides, alkali metal-containing organic complexes, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal-containing organic complexes, and rare earth metal oxides.
  • a material having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a material containing magnesium (Mg) in Alq may be used.
  • electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • Such a composite material has excellent electron injection and electron transport properties because the organic compound receives electrons from the electron donor.
  • the organic compound is preferably a material that is excellent in transporting the received electrons.
  • the material (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to.
  • the electron donor any material can be used as long as it exhibits an electron donating property with respect to the organic compound.
  • alkali metals, alkaline earth metals and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium and ytterbium.
  • alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide.
  • Lewis bases such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • Cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca ), alkaline earth metals such as strontium (Sr), and alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • a vacuum deposition method and a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do. These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
  • an insulating layer made of an insulating thin film layer may be inserted between the pair of electrodes.
  • materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. , germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like. A mixture or laminate of these materials may also be used.
  • the space layer is, for example, when a fluorescent-emitting layer and a phosphorescent-emitting layer are laminated, for the purpose of preventing excitons generated in the phosphorescent-emitting layer from diffusing into the fluorescent-emitting layer or adjusting the carrier balance. It is a layer provided between the fluorescent-emitting layer and the phosphorescent-emitting layer. A space layer can also be provided between a plurality of phosphorescent-emitting layers. Since the space layer is provided between the light-emitting layers, it is preferably made of a material having both electron-transporting properties and hole-transporting properties. Moreover, the triplet energy is preferably 2.6 eV or more in order to prevent diffusion of the triplet energy in the adjacent phosphorescent-emitting layer. Materials used for the space layer include those similar to those used for the above-described hole transport layer.
  • Blocking layers such as electron blocking layers, hole blocking layers, exciton blocking layers, etc. may be provided adjacent to the light-emitting layer.
  • the electron-blocking layer is a layer that prevents electrons from leaking from the light-emitting layer to the hole-transporting layer
  • the hole-blocking layer is a layer that prevents holes from leaking from the light-emitting layer to the electron-transporting layer.
  • the exciton-blocking layer has the function of preventing the excitons generated in the light-emitting layer from diffusing to surrounding layers and confining the excitons within the light-emitting layer.
  • Each layer of the organic EL element can be formed by a conventionally known vapor deposition method, coating method, or the like.
  • a vapor deposition method such as a vacuum vapor deposition method or a molecular beam vapor deposition method (MBE method), or a dipping method, a spin coating method, a casting method, a bar coating method, a roll coating method, or the like using a solution of a compound forming a layer.
  • MBE method molecular beam vapor deposition method
  • the film thickness of each layer is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur. 10 nm to 0.2 ⁇ m is more preferable.
  • the organic EL elements can be suitably used for display parts such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and electronic devices such as light emitting devices for lighting and vehicle lamps.
  • Preparation Example 1 of Organic EL Device A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm. The washed glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and the compound HA and the compound 1 are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of compound 1 to compound HA (compound 1:HA) was 97:3.
  • compound 1 was vapor-deposited on the hole injection layer to form a first hole transport layer with a film thickness of 75 nm.
  • HT2 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 15 nm.
  • a BH (host material):BD (dopant material) film having a thickness of 20 nm was formed on the second hole transport layer.
  • This BH:BD film functions as a light-emitting layer.
  • BH compounds BH1 and BH2 (both are host materials) contained in the light-emitting layer has a mass ratio of 1:1, and the concentration of BD is 2% by mass with respect to the entire light-emitting layer.
  • the compound ET1 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 3 nm.
  • compound ET2 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer with a thickness of 30 nm.
  • the mass ratio of compound ET2 and Liq (ET2:Liq) was 67:33.
  • LiF and Yb were co-deposited on the second electron transport layer to form an electron injecting electrode with a thickness of 1 nm.
  • the mass ratio of LiF and Yb (LiF:Yb) was 50:50.
  • EQE External Quantum Efficiency
  • Comparative example 1 An organic EL device was produced in the same manner as in Example 1, except that Comparative Compound 1 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
  • Example 2 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm. The washed glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and the compound HA and the compound 2 are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of compound 2 to compound HA (compound 2:HA) was 97:3.
  • compound 2 was deposited on the hole injection layer to form a first hole transport layer with a thickness of 80 nm.
  • HT3 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 10 nm.
  • a BH3 (host material):BD2 (dopant material) film having a thickness of 25 nm was formed on the second hole transport layer.
  • This BH3:BD2 film functions as a light-emitting layer.
  • the mass ratio (BH3:BD2) of BH3 and BD2 contained in the light-emitting layer was 96:4, and the concentration of BD was 4% by mass with respect to the entire light-emitting layer.
  • the compound ET3 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 5 nm.
  • compound ET4 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 20 nm.
  • the mass ratio of compounds ET4 and Liq (ET4:Liq) was 50:50.
  • LiF was vapor-deposited on the second electron-transporting layer to form an electron-injecting electrode with a film thickness of 1 nm.
  • metal Al was vapor-deposited on this electron-injecting electrode to form a metal cathode with a film thickness of 50 nm.
  • the layer structure of the organic EL device of Example 2 thus obtained is shown below.
  • Example 3 An organic EL device was produced in the same manner as in Example 2 except that Compound 3 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
  • Comparative example 2 An organic EL device was produced in the same manner as in Example 2, except that Comparative Compound 2 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
  • Example 4 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm. After washing, the glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and HT4 and compound HA are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of HT4 to compound HA (HT4:HA) was 97:3.
  • HT4 was deposited on the hole injection layer to form a first hole transport layer with a thickness of 35 nm.
  • Compound 1 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 40 nm.
  • HT2 was deposited on the second hole transport layer to form a third hole transport layer with a film thickness of 7.5 nm.
  • a BH1 (host material):BH2 (host material):BD3 (dopant material) film having a thickness of 20 nm was formed on the third hole transport layer. This BH1:BH2:BD3 film functions as a light-emitting layer.
  • BH1:BH2:BD3 contained in the light-emitting layer has a mass ratio of 60:40:2.
  • the compound ET5 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 3 nm.
  • compound ET2 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer with a thickness of 30 nm.
  • the mass ratio of compound ET2 and Liq (ET2:Liq) was 67:33.
  • LiF and Yb were co-deposited on the second electron transport layer to form an electron injecting electrode with a thickness of 1 nm.
  • the mass ratio of LiF and Yb (LiF:Yb) was 50:50.
  • Example 5 An organic EL device was produced in the same manner as in Example 4 except that Compound 4 was used as the material for the second hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
  • Comparative example 3 An organic EL device was produced in the same manner as in Example 4, except that Comparative Compound 3 was used as the material for the second hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
  • the organic EL device containing the invention compound (compound 1) is more effective than the organic EL device containing the comparative compound 1, and the organic EL device containing the invention compounds (compound 2 and compound 3). is superior to the organic EL device containing the comparative compound 2, and the organic EL device containing the invention compounds (compound 1, compound 4) is superior to the organic EL device containing the comparative compound 3 in terms of external quantum efficiency. I know there is.
  • N-(9,9-diphenyl-9H- Compound 2 was synthesized in a similar manner using fluoren-2-yl)-9,9-diphenyl-9H-fluoren-2-amine.
  • N-(9,9-diphenyl-9H- Compound 3 was synthesized in a similar manner using fluoren-2-yl)-2-dibenzothiophenamine.
  • N-(9,9-dimethyl-9H- Compound 4 was synthesized in a similar manner using fluoren-2-yl)-9,9-dimethyl-9H-fluoren-2-amine.
  • Reference Signs List 1 11 organic EL element 2 substrate 3 anode 4 cathode 5 light emitting layer 6 hole transport zone (hole transport layer) 6a hole injection layer 6b first hole transport layer 6c second hole transport layer 7 electron transport zone (electron transport layer) 7a first electron transport layer 7b second electron transport layer 10, 20 light emitting unit

Abstract

Provided are: a compound that improves the performance of an organic EL element; an organic electroluminescent element having improved element performance; and an electronic device including such an organic electroluminescent element, the compound being represented by formula (1) (In formula (1), the definitions of N*, Ar, L, R1 to R2, R3 to R4, R11 to R16, R21 to R27 and R31 to R36 are as defined in the description). Also provided are: an organic electroluminescent element that includes the compound, and an electronic device that includes the organic electroluminescent element.

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器Compounds, materials for organic electroluminescence devices, organic electroluminescence devices and electronic devices
 本発明は、化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び該有機エレクトロルミネッセンス素子を含む電子機器に関する。 The present invention relates to a compound, a material for an organic electroluminescence device, an organic electroluminescence device, and an electronic device including the organic electroluminescence device.
 一般に有機エレクトロルミネッセンス素子(以下、“有機EL素子”と記載することもある)は陽極、陰極、及び陽極と陰極に挟まれた有機層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。従って、電子又は正孔を発光領域に効率よく輸送し、電子と正孔との再結合を容易にする材料の開発は高性能有機EL素子を得る上で重要である。 Generally, an organic electroluminescence element (hereinafter sometimes referred to as an "organic EL element") is composed of an anode, a cathode, and an organic layer sandwiched between the anode and the cathode. When a voltage is applied between the two electrodes, electrons are injected from the cathode side and holes from the anode side into the light-emitting region. It emits light when the state returns to the ground state. Therefore, development of a material that efficiently transports electrons or holes to the light-emitting region and facilitates recombination of electrons and holes is important for obtaining high-performance organic EL devices.
 特許文献1~4には、有機エレクトロルミネッセンス素子用材料として使用する化合物が開示されている。 Patent Documents 1 to 4 disclose compounds used as materials for organic electroluminescence elements.
KR2018-0053121公報KR2018-0053121 publication WO2019/115577A1公報WO2019/115577A1 publication WO2014/034795A1公報WO2014/034795A1 publication WO2019/139419A1公報WO2019/139419A1 publication
 従来、多くの有機EL素子用の化合物が報告されているが、有機EL素子の性能を更に向上させる化合物が依然として求められている。 Although many compounds for organic EL devices have been reported in the past, there is still a demand for compounds that further improve the performance of organic EL devices.
 本発明は、前記の課題を解決するためになされたもので、有機EL素子の性能をより改善する化合物、素子性能がより改善された有機EL素子、そのような有機EL素子を含む電子機器を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a compound that further improves the performance of an organic EL device, an organic EL device with improved device performance, and an electronic device containing such an organic EL device. intended to provide
 本発明者らは、特許文献1~4に記載の化合物を含む有機EL素子の性能について鋭意研究を重ねた結果、下記式(1)で表される化合物を含む有機EL素子は、性能がより改善されることを見出した。 The present inventors have extensively studied the performance of organic EL devices containing the compounds described in Patent Documents 1 to 4. As a result, organic EL devices containing the compound represented by the following formula (1) have better performance. found to be improved.
 一態様において、本発明は下記式(1)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000004

(式(1)中、
 Nは中心窒素原子であり、
 R及びRの一方は、無置換のメチル基であり、他方は無置換のフェニル基であり、
 RとRは、互いに結合せず、したがって環構造を形成しない。
 R及びRは、それぞれ独立して、水素原子、無置換のメチル基、又は無置換のフェニル基であり、
 RとRは、互いに結合せず、したがって環構造を形成しない。
 R11~R16、及びR21~R27は、水素原子である。
 R31~R35は、水素原子である。
 Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。)
In one aspect, the present invention provides a compound represented by formula (1) below.
Figure JPOXMLDOC01-appb-C000004

(In formula (1),
N * is the central nitrogen atom,
one of R 1 and R 2 is an unsubstituted methyl group and the other is an unsubstituted phenyl group;
R 1 and R 2 are not bonded to each other and thus do not form a ring structure.
R 3 and R 4 are each independently a hydrogen atom, an unsubstituted methyl group, or an unsubstituted phenyl group;
R3 and R4 are not bonded to each other and thus do not form a ring structure.
R 11 to R 16 and R 21 to R 27 are hydrogen atoms.
R 31 to R 35 are hydrogen atoms.
Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms. )
 他の態様において、本発明は前記式(1)で表される化合物を含む有機EL素子用材料を提供する。 In another aspect, the present invention provides an organic EL device material containing the compound represented by the formula (1).
 さらに他の態様において、本発明は、陰極、陽極、及び該陰極と該陽極の間に有機層を有する、有機エレクトロルミネッセンス素子であって、該有機層が発光層を含み、該有機層の少なくとも1層が前記式(1)で表される化合物を含む有機エレクトロルミネッセンス素子を提供する。 In still another aspect, the present invention is an organic electroluminescent device having a cathode, an anode, and an organic layer between the cathode and the anode, wherein the organic layer comprises a light-emitting layer, and at least the organic layer Provided is an organic electroluminescence device in which one layer contains the compound represented by the formula (1).
 さらに他の態様において、本発明は、前記有機エレクトロルミネッセンス素子を含む電子機器を提供する。 In still another aspect, the present invention provides an electronic device including the organic electroluminescence element.
 前記式(1)で表される化合物を含む有機EL素子は改善された素子性能を示す。 An organic EL device containing the compound represented by formula (1) exhibits improved device performance.
本発明の一態様に係る有機EL素子の層構成の一例を示す概略図である。1 is a schematic diagram showing an example of a layer structure of an organic EL element according to one aspect of the present invention; FIG. 本発明の一態様に係る有機EL素子の層構成の他の例を示す概略図である。FIG. 4 is a schematic diagram showing another example of the layer structure of the organic EL element according to one aspect of the present invention;
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
[definition]
As used herein, a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。 In the present specification, in the chemical structural formula, a hydrogen atom, that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
As used herein, the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are bonded in a ring (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified. For example, a benzene ring has 6 ring carbon atoms, a naphthalene ring has 10 ring carbon atoms, a pyridine ring has 5 ring carbon atoms, and a furan ring has 4 ring carbon atoms. Further, for example, the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms, and the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
When the benzene ring is substituted with, for example, an alkyl group as a substituent, the number of carbon atoms in the alkyl group is not included in the number of ring-forming carbon atoms in the benzene ring. Therefore, the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6. When the naphthalene ring is substituted with, for example, an alkyl group as a substituent, the number of carbon atoms in the alkyl group is not included in the number of carbon atoms in the naphthalene ring. Therefore, the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。 In the present specification, the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified. For example, the pyridine ring has 6 ring-forming atoms, the quinazoline ring has 10 ring-forming atoms, and the furan ring has 5 ring-forming atoms. For example, hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6. Further, for example, hydrogen atoms bonded to carbon atoms of the quinazoline ring or atoms constituting substituents are not included in the number of ring-forming atoms of the quinazoline ring. Therefore, the number of ring-forming atoms of the quinazoline ring to which hydrogen atoms or substituents are bonded is 10.
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。 In the present specification, the expression "substituted or unsubstituted XX to YY carbon number ZZ group" represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents. Here, "YY" is larger than "XX", "XX" means an integer of 1 or more, and "YY" means an integer of 2 or more.
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。 In the present specification, the term “substituted or unsubstituted ZZ group having an atomic number of XX to YY”, “the atomic number of XX to YY” represents the number of atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of atoms of the substituents in the case. Here, "YY" is larger than "XX", "XX" means an integer of 1 or more, and "YY" means an integer of 2 or more.
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
In the present specification, an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group". is a "substituted ZZ group".
As used herein, "unsubstituted" in the case of "substituted or unsubstituted ZZ group" means that a hydrogen atom in the ZZ group is not replaced with a substituent. A hydrogen atom in the "unsubstituted ZZ group" is a protium atom, a deuterium atom, or a tritium atom.
Further, in the present specification, "substituted" in the case of "substituted or unsubstituted ZZ group" means that one or more hydrogen atoms in the ZZ group are replaced with a substituent. "Substituted" in the case of "a BB group substituted with an AA group" similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
"substituents described herein"
The substituents described in this specification are described below.
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
The number of ring-forming carbon atoms in the "unsubstituted aryl group" described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
The number of ring-forming atoms of the "unsubstituted heterocyclic group" described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
The number of carbon atoms in the "unsubstituted alkyl group" described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
The number of carbon atoms in the "unsubstituted alkenyl group" described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
The number of carbon atoms in the "unsubstituted alkynyl group" described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
The number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group" described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
The number of ring-forming carbon atoms in the "unsubstituted arylene group" described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
The number of ring-forming atoms of the "unsubstituted divalent heterocyclic group" described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ~18.
The number of carbon atoms in the "unsubstituted alkylene group" described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・"Substituted or unsubstituted aryl group"
Specific examples of the "substituted or unsubstituted aryl group" described in the specification (specific example group G1) include the following unsubstituted aryl groups (specific example group G1A) and substituted aryl groups (specific example group G1B ) and the like. (Here, unsubstituted aryl group refers to the case where "substituted or unsubstituted aryl group" is "unsubstituted aryl group", and substituted aryl group is "substituted or unsubstituted aryl group" It refers to a "substituted aryl group".) In the present specification, the term "aryl group" includes both "unsubstituted aryl group" and "substituted aryl group".
A "substituted aryl group" means a group in which one or more hydrogen atoms of an "unsubstituted aryl group" are replaced with a substituent. Examples of the "substituted aryl group" include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group" of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below. Examples include: The examples of the "unsubstituted aryl group" and the examples of the "substituted aryl group" listed here are only examples, and the "substituted aryl group" described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group" of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group" of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
- Unsubstituted aryl group (specific example group G1A):
phenyl group,
a p-biphenyl group,
m-biphenyl group,
an o-biphenyl group,
p-terphenyl-4-yl group,
p-terphenyl-3-yl group,
p-terphenyl-2-yl group,
m-terphenyl-4-yl group,
m-terphenyl-3-yl group,
m-terphenyl-2-yl group,
o-terphenyl-4-yl group,
o-terphenyl-3-yl group,
o-terphenyl-2-yl group,
1-naphthyl group,
2-naphthyl group,
anthryl group,
benzoanthryl group,
a phenanthryl group,
a benzophenanthryl group,
a phenalenyl group,
a pyrenyl group,
a chrysenyl group,
a benzochrysenyl group,
a triphenylenyl group,
a benzotriphenylenyl group,
a tetracenyl group,
pentacenyl group,
fluorenyl group,
9,9′-spirobifluorenyl group,
benzofluorenyl group,
a dibenzofluorenyl group,
a fluoranthenyl group,
a benzofluoranthenyl group,
A perylenyl group and a monovalent aryl group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-1) to (TEMP-15).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
- Substituted aryl group (specific example group G1B):
an o-tolyl group,
m-tolyl group,
p-tolyl group,
para-xylyl group,
meta-xylyl group,
an ortho-xylyl group,
para-isopropylphenyl group,
meta-isopropylphenyl group,
an ortho-isopropylphenyl group,
para-t-butylphenyl group,
meta-t-butylphenyl group,
ortho-t-butylphenyl group,
3,4,5-trimethylphenyl group,
9,9-dimethylfluorenyl group,
9,9-diphenylfluorenyl group 9,9-bis(4-methylphenyl)fluorenyl group,
9,9-bis(4-isopropylphenyl)fluorenyl group,
9,9-bis(4-t-butylphenyl) fluorenyl group,
a cyanophenyl group,
a triphenylsilylphenyl group,
a trimethylsilylphenyl group,
a phenylnaphthyl group,
A naphthylphenyl group and a group in which one or more hydrogen atoms of a monovalent group derived from a ring structure represented by the general formulas (TEMP-1) to (TEMP-15) is replaced with a substituent.
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・"Substituted or unsubstituted heterocyclic group"
As used herein, a "heterocyclic group" is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
A "heterocyclic group" as described herein is a monocyclic group or a condensed ring group.
A "heterocyclic group" as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
Specific examples of the "substituted or unsubstituted heterocyclic group" described herein (specific example group G2) include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned. (Here, unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group" refers to a "substituted heterocyclic group".) In the present specification, simply referring to a "heterocyclic group" means "unsubstituted heterocyclic group" and "substituted heterocyclic group". including both.
A "substituted heterocyclic group" means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group" are replaced with a substituent. Specific examples of the "substituted heterocyclic group" include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group" of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned. The examples of the "unsubstituted heterocyclic group" and the examples of the "substituted heterocyclic group" listed here are only examples, and the "substituted heterocyclic group" described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which the hydrogen atom of is further replaced with a substituent is also included.
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。 Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。 Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
- an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1):
pyrrolyl group,
an imidazolyl group,
a pyrazolyl group,
a triazolyl group,
a tetrazolyl group,
an oxazolyl group,
an isoxazolyl group,
an oxadiazolyl group,
a thiazolyl group,
an isothiazolyl group,
a thiadiazolyl group,
a pyridyl group,
a pyridazinyl group,
a pyrimidinyl group,
pyrazinyl group,
a triazinyl group,
an indolyl group,
an isoindolyl group,
an indolizinyl group,
a quinolidinyl group,
quinolyl group,
an isoquinolyl group,
cinnolyl group,
a phthalazinyl group,
a quinazolinyl group,
a quinoxalinyl group,
a benzimidazolyl group,
an indazolyl group,
a phenanthrolinyl group,
a phenanthridinyl group,
acridinyl group,
phenazinyl group,
a carbazolyl group,
a benzocarbazolyl group,
a morpholino group,
a phenoxazinyl group,
a phenothiazinyl group,
an azacarbazolyl group and a diazacarbazolyl group;
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
- an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2):
furyl group,
an oxazolyl group,
an isoxazolyl group,
an oxadiazolyl group,
xanthenyl group,
benzofuranyl group,
an isobenzofuranyl group,
a dibenzofuranyl group,
a naphthobenzofuranyl group,
a benzoxazolyl group,
a benzisoxazolyl group,
a phenoxazinyl group,
a morpholino group,
a dinaphthofuranyl group,
an azadibenzofuranyl group,
a diazadibenzofuranyl group,
azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
- an unsubstituted heterocyclic group containing a sulfur atom (specific example group G2A3):
thienyl group,
a thiazolyl group,
an isothiazolyl group,
a thiadiazolyl group,
benzothiophenyl group (benzothienyl group),
isobenzothiophenyl group (isobenzothienyl group),
dibenzothiophenyl group (dibenzothienyl group),
naphthobenzothiophenyl group (naphthobenzothienyl group),
a benzothiazolyl group,
a benzoisothiazolyl group,
a phenothiazinyl group,
a dinaphthothiophenyl group (dinaphthothienyl group),
azadibenzothiophenyl group (azadibenzothienyl group),
diazadibenzothiophenyl group (diazadibenzothienyl group),
Azanaphthobenzothiophenyl group (azanaphthobenzothienyl group) and diazanaphthobenzothiophenyl group (diazanaphthobenzothienyl group).
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4): - A monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
In general formulas (TEMP-16) to (TEMP-33), X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
In the general formulas (TEMP-16) to (TEMP-33), when at least one of X A and Y A is NH or CH 2 , in the general formulas (TEMP-16) to (TEMP-33) The monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及び
ビフェニリルキナゾリニル基。
- A substituted heterocyclic group containing a nitrogen atom (specific example group G2B1):
(9-phenyl)carbazolyl group,
(9-biphenylyl)carbazolyl group,
(9-phenyl) phenylcarbazolyl group,
(9-naphthyl)carbazolyl group,
diphenylcarbazol-9-yl group,
a phenylcarbazol-9-yl group,
a methylbenzimidazolyl group,
ethylbenzimidazolyl group,
a phenyltriazinyl group,
a biphenylyltriazinyl group,
a diphenyltriazinyl group,
a phenylquinazolinyl group and a biphenylylquinazolinyl group;
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
- A substituted heterocyclic group containing an oxygen atom (specific example group G2B2):
phenyldibenzofuranyl group,
methyldibenzofuranyl group,
A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
- A substituted heterocyclic group containing a sulfur atom (specific example group G2B3):
phenyldibenzothiophenyl group,
a methyldibenzothiophenyl group,
A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4): - A group in which one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the general formulas (TEMP-16) to (TEMP-33) is replaced with a substituent (specific example group G2B4 ):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、XA及びYAの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びXA及びYAの一方がCH2である場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。 The "one or more hydrogen atoms of the monovalent heterocyclic group" means that at least one of the hydrogen atoms bonded to the ring-forming carbon atoms of the monovalent heterocyclic group, XA and YA is NH. one or more hydrogen atoms selected from a hydrogen atom bonded to a nitrogen atom when one of XA and YA is CH2, and a hydrogen atom of a methylene group when one of XA and YA is CH2.
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・"Substituted or unsubstituted alkyl group"
Specific examples of the "substituted or unsubstituted alkyl group" described in the specification (specific example group G3) include the following unsubstituted alkyl groups (specific example group G3A) and substituted alkyl groups (specific example group G3B ). (Here, unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group" is "unsubstituted alkyl group", and substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group" is It refers to a "substituted alkyl group".) Hereinafter, simply referred to as an "alkyl group" includes both an "unsubstituted alkyl group" and a "substituted alkyl group".
A "substituted alkyl group" means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group" are replaced with a substituent. Specific examples of the "substituted alkyl group" include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group" (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned. As used herein, the alkyl group in the "unsubstituted alkyl group" means a chain alkyl group. Therefore, the "unsubstituted alkyl group" includes a linear "unsubstituted alkyl group" and a branched "unsubstituted alkyl group". The examples of the "unsubstituted alkyl group" and the examples of the "substituted alkyl group" listed here are only examples, and the "substituted alkyl group" described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group" of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group" of Specific Example Group G3B is further replaced by a substituent included.
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
- Unsubstituted alkyl group (specific example group G3A):
methyl group,
ethyl group,
n-propyl group,
isopropyl group,
n-butyl group,
isobutyl group,
s-butyl group and t-butyl group.
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
- Substituted alkyl group (specific example group G3B):
a heptafluoropropyl group (including isomers),
pentafluoroethyl group,
2,2,2-trifluoroethyl group and trifluoromethyl group;
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・ "Substituted or unsubstituted alkenyl group"
Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like. (Here, unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group" is "unsubstituted alkenyl group", "substituted alkenyl group" means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.) In the present specification, simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
A "substituted alkenyl group" means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group" are replaced with a substituent. Specific examples of the "substituted alkenyl group" include groups in which the following "unsubstituted alkenyl group" (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done. The examples of the "unsubstituted alkenyl group" and the examples of the "substituted alkenyl group" listed here are only examples, and the "substituted alkenyl group" described herein includes specific example group G4B A group in which the hydrogen atom of the alkenyl group itself in the "substituted alkenyl group" of Specific Example Group G4B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkenyl group" of Specific Example Group G4B is further replaced by a substituent included.
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
- Unsubstituted alkenyl group (specific example group G4A):
a vinyl group,
allyl group,
1-butenyl group,
2-butenyl group, and 3-butenyl group.
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
- Substituted alkenyl group (specific example group G4B):
1,3-butandienyl group,
1-methylvinyl group,
1-methylallyl group,
1,1-dimethylallyl group,
a 2-methylallyl group and a 1,2-dimethylallyl group;
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・ "Substituted or unsubstituted alkynyl group"
Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A). (Here, unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group" is "unsubstituted alkynyl group".) Hereinafter, simply referred to as "alkynyl group" means "unsubstituted includes both "alkynyl group" and "substituted alkynyl group".
A "substituted alkynyl group" means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group" are replaced with a substituent. Specific examples of the "substituted alkynyl group" include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group" (specific example group G5A) are replaced with substituents.
・無置換のアルキニル基(具体例群G5A):
エチニル基
- Unsubstituted alkynyl group (specific example group G5A):
ethynyl group
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・ "Substituted or unsubstituted cycloalkyl group"
Specific examples of the "substituted or unsubstituted cycloalkyl group" described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned. (Here, unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group" is "unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted It refers to the case where "cycloalkyl group" is "substituted cycloalkyl group".) In the present specification, simply referring to "cycloalkyl group" means "unsubstituted cycloalkyl group" and "substituted cycloalkyl group". including both.
A "substituted cycloalkyl group" means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group" are replaced with a substituent. Specific examples of the "substituted cycloalkyl group" include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group" (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like. The examples of the "unsubstituted cycloalkyl group" and the examples of the "substituted cycloalkyl group" listed here are only examples, and the "substituted cycloalkyl group" described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
- Unsubstituted cycloalkyl group (specific example group G6A):
a cyclopropyl group,
cyclobutyl group,
a cyclopentyl group,
a cyclohexyl group,
1-adamantyl group,
2-adamantyl group,
1-norbornyl group and 2-norbornyl group.
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
- Substituted cycloalkyl group (specific example group G6B):
4-methylcyclohexyl group;
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
- "A group represented by -Si (R 901 ) (R 902 ) (R 903 )"
Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification (specific example group G7) include:
-Si(G1)(G1)(G1),
- Si (G1) (G2) (G2),
- Si (G1) (G1) (G2),
-Si(G2)(G2)(G2),
-Si(G3)(G3)(G3) and -Si(G6)(G6)(G6)
is mentioned. here,
G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
G2 is a "substituted or unsubstituted heterocyclic group" described in Specific Example Group G2.
G3 is a "substituted or unsubstituted alkyl group" described in specific example group G3.
G6 is a "substituted or unsubstituted cycloalkyl group" described in specific example group G6.
A plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
A plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
A plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
A plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
A plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
A plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
- "A group represented by -O- (R 904 )"
Specific examples of the group represented by —O—(R 904 ) described in the specification (specific example group G8) include:
-O(G1),
-O(G2),
-O (G3), and -O (G6)
is mentioned.
here,
G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
G2 is a "substituted or unsubstituted heterocyclic group" described in Specific Example Group G2.
G3 is a "substituted or unsubstituted alkyl group" described in specific example group G3.
G6 is a "substituted or unsubstituted cycloalkyl group" described in specific example group G6.
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
- "A group represented by -S- (R 905 )"
Specific examples of the group represented by -S-(R 905 ) described in the specification (specific example group G9) include:
-S(G1),
-S(G2),
-S (G3) and -S (G6)
is mentioned.
here,
G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
G2 is a "substituted or unsubstituted heterocyclic group" described in Specific Example Group G2.
G3 is a "substituted or unsubstituted alkyl group" described in specific example group G3.
G6 is a "substituted or unsubstituted cycloalkyl group" described in specific example group G6.
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる
- "A group represented by -N (R 906 ) (R 907 )"
Specific examples of the group represented by —N(R 906 )(R 907 ) described in the specification (specific example group G10) include:
- N (G1) (G1),
-N(G2)(G2),
- N (G1) (G2),
-N (G3) (G3) and -N (G6) (G6)
is mentioned.
here,
G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
G2 is a "substituted or unsubstituted heterocyclic group" described in Specific Example Group G2.
G3 is a "substituted or unsubstituted alkyl group" described in specific example group G3.
G6 is a "substituted or unsubstituted cycloalkyl group" described in specific example group G6.
A plurality of G1's in -N(G1)(G1) are the same or different from each other.
A plurality of G2 in -N(G2)(G2) are the same or different from each other.
A plurality of G3s in -N(G3)(G3) are the same or different from each other.
- the plurality of G6 in N (G6) (G6) are the same or different from each other
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・"Halogen atom"
Specific examples of the "halogen atom" described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・"Substituted or unsubstituted fluoroalkyl group"
The "substituted or unsubstituted fluoroalkyl group" described in this specification means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group" are replaced with fluorine atoms. The carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification. A "substituted fluoroalkyl group" means a group in which one or more hydrogen atoms of a "fluoroalkyl group" are replaced with a substituent. In addition, the "substituted fluoroalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group" are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group" is further replaced with a substituent is also included. Specific examples of the "unsubstituted fluoroalkyl group" include groups in which one or more hydrogen atoms in the above "alkyl group" (specific example group G3) are replaced with fluorine atoms.
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
- "substituted or unsubstituted haloalkyl group"
"Substituted or unsubstituted haloalkyl group" described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group" are replaced with halogen atoms. The carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification. A "substituted haloalkyl group" means a group in which one or more hydrogen atoms of a "haloalkyl group" are replaced with a substituent. In addition, the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group" are further replaced with a substituent group, and a "substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included. Specific examples of the "unsubstituted haloalkyl group" include groups in which one or more hydrogen atoms in the above "alkyl group" (specific example group G3) are replaced with halogen atoms. A haloalkyl group may be referred to as a halogenated alkyl group.
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・ "Substituted or unsubstituted alkoxy group"
A specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is the "substituted or unsubstituted alkyl group". The carbon number of the "unsubstituted alkoxy group" is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・ "Substituted or unsubstituted alkylthio group"
A specific example of the "substituted or unsubstituted alkylthio group" described in this specification is a group represented by -S(G3), wherein G3 is the "substituted or unsubstituted alkyl group". The carbon number of the “unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・ "Substituted or unsubstituted aryloxy group"
Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group". The number of ring-forming carbon atoms in the "unsubstituted aryloxy group" is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・"Substituted or unsubstituted arylthio group"
Specific examples of the "substituted or unsubstituted arylthio group" described in this specification are groups represented by -S(G1), wherein G1 is the "substituted or unsubstituted unsubstituted aryl group". The number of ring-forming carbon atoms in the "unsubstituted arylthio group" is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・"Substituted or unsubstituted trialkylsilyl group"
Specific examples of the "trialkylsilyl group" described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group". A plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group" is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
・"Substituted or unsubstituted aralkyl group"
A specific example of the "substituted or unsubstituted aralkyl group" described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group" described in specific example group G1. Therefore, an "aralkyl group" is a group in which a hydrogen atom of an "alkyl group" is replaced with an "aryl group" as a substituent, and is one aspect of a "substituted alkyl group". An "unsubstituted aralkyl group" is an "unsubstituted alkyl group" substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group" is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
Specific examples of the "substituted or unsubstituted aralkyl group" include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, α -naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group, 1-β-naphthylethyl group , 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, and 2-β-naphthylisopropyl group.
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。 A substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group, 9,9-dimethylfluorenyl group, and 9,9-diphenylfluorenyl group.
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。 The substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein. nantholinyl group, carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-biphenylyl)carbazolyl group, (9-phenyl)phenylcarbazolyl group, diphenylcarbazol-9-yl group, phenylcarbazol-9-yl group, phenyltriazinyl group, biphenylyl group riazinyl group, diphenyltriazinyl group, phenyldibenzofuranyl group, phenyldibenzothiophenyl group and the like.
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。 In the present specification, a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。 In the present specification, the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。 In the general formulas (TEMP-Cz1) to (TEMP-Cz9), * represents a binding position.
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。 As used herein, a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。 In the general formulas (TEMP-34) to (TEMP-41), * represents a binding position.
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。 The substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・"Substituted or unsubstituted arylene group"
Unless otherwise specified, the "substituted or unsubstituted arylene group" described herein is derived from the above "substituted or unsubstituted aryl group" by removing one hydrogen atom on the aryl ring. is the base of the valence. Specific examples of the “substituted or unsubstituted arylene group” (specific example group G12) include the “substituted or unsubstituted aryl group” described in specific example group G1 by removing one hydrogen atom on the aryl ring. Induced divalent groups and the like can be mentioned.
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・ "Substituted or unsubstituted divalent heterocyclic group"
Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group" described herein is the above "substituted or unsubstituted heterocyclic group" except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group" described in specific example group G2. Examples include divalent groups derived by removing atoms.
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・ "Substituted or unsubstituted alkylene group"
Unless otherwise specified, the "substituted or unsubstituted alkylene group" described herein is derived from the above "substituted or unsubstituted alkyl group" by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the “substituted or unsubstituted alkylene group” (specific example group G14) include the “substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。 The substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
In general formulas (TEMP-42) to (TEMP-52), Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
In the general formulas (TEMP-42) to (TEMP-52), * represents a binding position.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
In general formulas (TEMP-53) to (TEMP-62), Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
In the general formulas (TEMP-53) to (TEMP-62), * represents a binding position.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
In general formulas (TEMP-63) to (TEMP-68), Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
In the general formulas (TEMP-63) to (TEMP-68), * represents a binding position.
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。 The substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein is.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。 In general formulas (TEMP-69) to (TEMP-82), Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。 In general formulas (TEMP-83) to (TEMP-102), Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
 以上が、「本明細書に記載の置換基」についての説明である。 The above is the description of the "substituents described in this specification".
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
・"When combining to form a ring"
As used herein, "one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring. The phrases "form or are not bonded to each other" refer to "at least one pair of two or more adjacent pairs bonded together to form a substituted or unsubstituted monocyclic ring" and "adjacent are bonded to each other to form a substituted or unsubstituted condensed ring" and "one or more adjacent pairs of two or more are not bonded to each other. ' means if.
In the present specification, when "one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and "one of two or more adjacent pairs In the case where two or more groups combine with each other to form a substituted or unsubstituted condensed ring (hereinafter, these cases may be collectively referred to as "the case where they combine to form a ring"), the following ,explain. An anthracene compound represented by the following general formula (TEMP-103) having an anthracene ring as a base skeleton will be described as an example.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。 For example, when "one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。 The above-mentioned "one or more pairs" means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time. For example, when R 921 and R 922 are bonded together to form ring Q A , and R 925 and R 926 are bonded together to form ring Q B , the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。 The case where "a group consisting of two or more adjacent pairs" forms a ring is not limited to the case where a group consisting of two adjacent "two" is combined as in the above example, but It also includes the case where a pair is combined. For example, R 921 and R 922 are bonded together to form ring Q A , and R 922 and R 923 are bonded together to form ring Q C , and the adjacent three (R 921 , R 922 and R 923 ) are combined to form a ring and condensed to the anthracene base skeleton. In this case, the anthracene compound represented by the general formula (TEMP-103) has It is represented by the general formula (TEMP-105). In the general formula (TEMP-105) below, ring Q A and ring Q C share R 922 .
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。 The "monocyclic ring" or "condensed ring" to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when "one pair of adjacent pairs" forms a "single ring" or a "fused ring", the "single ring" or "fused ring" is a saturated ring, or Unsaturated rings can be formed. For example, ring Q A and ring Q B formed in the general formula (TEMP-104) are each a "monocyclic ring" or a "fused ring". Moreover, the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”. The ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If ring Q A in the general formula (TMEP-104) is a benzene ring, ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
"Unsaturated ring" means an aromatic hydrocarbon ring or an aromatic heterocyclic ring. A "saturated ring" means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
Specific examples of the aromatic heterocyclic ring include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
"Forming a ring" means forming a ring only with a plurality of atoms of the mother skeleton, or with a plurality of atoms of the mother skeleton and one or more arbitrary elements. For example, the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene skeleton to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary elements. As a specific example, when R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
Here, the "arbitrary element" is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification. In any element (for example, in the case of a carbon element or a nitrogen element), a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an "optional substituent" described later. When it contains any element other than the carbon atom, the ring formed is a heterocycle.
"One or more arbitrary elements" constituting a monocyclic or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the present specification. , more preferably 3 or more and 5 or less.
Among "monocyclic ring" and "condensed ring", "monocyclic ring" is preferred, unless otherwise stated in the present specification.
Of the "saturated ring" and the "unsaturated ring", the "unsaturated ring" is preferred, unless otherwise specified in the present specification.
Unless otherwise stated herein, "monocyclic" is preferably a benzene ring.
Unless otherwise stated herein, the "unsaturated ring" is preferably a benzene ring.
When "one or more pairs of two or more adjacent pairs" are "bonded to each other to form a substituted or unsubstituted monocyclic ring", or "bonded to each other to form a substituted or unsubstituted condensed ring When forming, unless otherwise stated herein, preferably one or more sets of two or more adjacent groups are bonded together to form a plurality of atoms of the backbone and 1 or more 15 It forms a substituted or unsubstituted "unsaturated ring" with at least one element selected from the group consisting of the following carbon, nitrogen, oxygen and sulfur elements.
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
When the above "monocyclic ring" or "condensed ring" has a substituent, the substituent is, for example, the "optional substituent" described later. Specific examples of substituents in the case where the above "monocyclic ring" or "condensed ring" has a substituent are the substituents described in the section "Substituents described herein" above.
When the above "saturated ring" or "unsaturated ring" has a substituent, the substituent is, for example, the "optional substituent" described later. Specific examples of substituents in the case where the above "monocyclic ring" or "condensed ring" has a substituent are the substituents described in the section "Substituents described herein" above.
The above is the case where "one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and "one or more pairs of two or more adjacent pairs are combined with each other to form a substituted or unsubstituted condensed ring"("combine to form a ring").
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基
からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
- Substituent in the case of "substituted or unsubstituted" In one embodiment of the present specification, the substituent in the case of "substituted or unsubstituted" (herein referred to as "optional substituent") ) is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms,
an unsubstituted alkenyl group having 2 to 50 carbon atoms,
an unsubstituted alkynyl group having 2 to 50 carbon atoms,
an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
—Si(R 901 ) (R 902 ) (R 903 ),
—O—(R 904 ),
-S-(R 905 ),
-N(R 906 )(R 907 ),
halogen atom, cyano group, nitro group,
a group selected from the group consisting of an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms and an unsubstituted heterocyclic group having 5 to 50 ring-forming atoms;
Here, R 901 to R 907 are each independently
hydrogen atom,
a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms,
a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms,
It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
when two or more R 901 are present, the two or more R 901 are the same or different from each other,
when two or more R 902 are present, the two or more R 902 are the same or different from each other;
when two or more R 903 are present, the two or more R 903 are the same or different from each other,
when two or more R 904 are present, the two or more R 904 are the same or different from each other;
when two or more R 905 are present, the two or more R 905 are the same or different from each other,
when two or more R 906 are present, the two or more R 906 are the same or different from each other;
When two or more R 907 are present, the two or more R 907 are the same or different from each other.
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である。
In one embodiment, the substituents referred to above as "substituted or unsubstituted" are
an alkyl group having 1 to 50 carbon atoms,
It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
In one embodiment, the substituents referred to above as "substituted or unsubstituted" are
an alkyl group having 1 to 18 carbon atoms,
It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。 Specific examples of each group of the above optional substituents are specific examples of the substituents described in the section "Substituents described in the specification" above.
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
Unless otherwise stated in this specification, any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
Unless stated otherwise herein, any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。 In this specification, the numerical range represented using "AA to BB" has the numerical value AA described before "AA to BB" as the lower limit, and the numerical value BB described after "AA to BB" as the upper limit.
 以下、本発明の化合物を説明する。
 本発明の化合物は下記式(1)で表される。ただし、以下、式(1)及び後述する式(1)に含まれる式で表される本発明の化合物を単に“発明化合物”と称することがある。
Figure JPOXMLDOC01-appb-C000026
The compounds of the present invention are described below.
The compound of the present invention is represented by the following formula (1). However, hereinafter, the compounds of the present invention represented by formula (1) and formulas included in formula (1) described later may be simply referred to as "invention compounds".
Figure JPOXMLDOC01-appb-C000026
 以下、式(1)及び後述する式(1)に含まれる式中の記号を説明する。なお、同じ記号は同じ意味を有する。 The symbols in formula (1) and formula (1) to be described later will be described below. The same symbols have the same meanings.
 式(1)中、
 Nは中心窒素原子であり、
 R及びRの一方は、無置換のメチル基であり、他方は無置換のフェニル基であり、
 RとRは、互いに結合せず、したがって環構造を形成しない。
 R及びRは、それぞれ独立して、水素原子、無置換のメチル基、又は無置換のフェニル基であり、
 RとRは、互いに結合せず、したがって環構造を形成しない。
 R11~R16、及びR21~R27は、水素原子である。
In formula (1),
N * is the central nitrogen atom,
one of R 1 and R 2 is an unsubstituted methyl group and the other is an unsubstituted phenyl group;
R 1 and R 2 are not bonded to each other and thus do not form a ring structure.
R 3 and R 4 are each independently a hydrogen atom, an unsubstituted methyl group, or an unsubstituted phenyl group;
R3 and R4 are not bonded to each other and thus do not form a ring structure.
R 11 to R 16 and R 21 to R 27 are hydrogen atoms.
 R31~R35は、水素原子である。 R 31 to R 35 are hydrogen atoms.
 Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。 Ar is a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring-forming atoms.
 Arが表す置換もしくは無置換の環形成炭素数6~30のアリール基において、該無置換のアリール基は、例えば、フェニル基、ビフェニルイル基、ターフェニルイル基、ビフェニレニル基、ナフチル基、アントリル基、ベンゾアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、フルオレニル基、フルオランテニル基、ペリレニル基、又はトリフェニレニル基等が挙げられる。この中で、好ましくは、フェニル基、ビフェニルイル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、トリフェニレニル基、及びフルオランテニル基である。 In the substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms represented by Ar, the unsubstituted aryl group is, for example, a phenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, an anthryl group. , a benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a fluorenyl group, a fluoranthenyl group, a perylenyl group, a triphenylenyl group, and the like. mentioned. Among these, phenyl group, biphenylyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, triphenylenyl group and fluoranthenyl group are preferred.
 Arが表す置換もしくは無置換の環形成原子数5~30の複素環基において、該無置換の複素環基は、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、インダゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、キサンテニル基、ベンゾフラニル基、イソベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基(ベンゾチエニル基、以下同様)、イソベンゾチオフェニル基(イソベンゾチエニル基、以下同様)、ナフトベンゾチオフェニル基(ナフトベンゾチエニル基、以下同様)、ジベンゾチオフェニル基(ジベンゾチエニル基、以下同様)、又はカルバゾリル基等が挙げられる。この中で、好ましくは、ピリジル基、ピリミジニル基、トリアジニル基、キノリル基、ジベンゾチオフェニル基、ジベンゾフラニル基である。 In the substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms represented by Ar, the unsubstituted heterocyclic group is, for example, pyrrolyl group, furyl group, thienyl group, pyridyl group, imidazopyridyl group, pyridazinyl group , pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, indolyl group, isoindolyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quinazolinyl group, quinoxalinyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, indazolyl group, benzisoxazolyl group, benzisothiazolyl group, phenanth lysinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, xanthenyl group, benzofuranyl group, isobenzofuranyl group, naphthobenzofuranyl group, dibenzofuranyl group, benzothiophenyl group (benzothienyl group, the same applies hereinafter), isobenzothiophenyl group (isobenzothienyl group, the same applies hereinafter), naphthobenzothiophenyl group (naphthobenzothienyl group, the same applies hereinafter), dibenzothiophenyl group (dibenzothienyl group, the same applies hereinafter) ), or a carbazolyl group. Among these, pyridyl group, pyrimidinyl group, triazinyl group, quinolyl group, dibenzothiophenyl group and dibenzofuranyl group are preferred.
 従って、式(1)で表される発明化合物は、好ましくは下記式(1-1)又は(1-2)で表される。
Figure JPOXMLDOC01-appb-C000027
Accordingly, the invention compound represented by formula (1) is preferably represented by the following formula (1-1) or (1-2).
Figure JPOXMLDOC01-appb-C000027
 式(1-1)又は(1-2)中、
 N、L、R~R、R11~R16、R21~R27、及びR31~R35は、式(1)において定義したとおりである。
 R41~R46、及びR51~R60は、
それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 ただし、
 R41~R46から選ばれる1つは*aに結合する単結合であり、
 R51~R60から選ばれる1つは*bに結合する単結合であり、
 前記単結合ではないR41~R46から選ばれる隣接する2つ、前記単結合ではないR51~R60から選ばれる隣接する2つは、互いに結合せず、したがって環構造を形成しない。
In formula (1-1) or (1-2),
N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
R 41 to R 46 and R 51 to R 60 are
Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
however,
one selected from R 41 to R 46 is a single bond that bonds to *a;
one selected from R 51 to R 60 is a single bond that bonds to *b;
Adjacent two selected from R 41 to R 46 which are not single bonds and adjacent two selected from R 51 to R 60 which are not single bonds are not bonded to each other and thus do not form a ring structure.
 また、式(1)で表される発明化合物は、好ましくは下記式(1-3)又は(1-4)で表される。
Figure JPOXMLDOC01-appb-C000028
Further, the invention compound represented by formula (1) is preferably represented by the following formula (1-3) or (1-4).
Figure JPOXMLDOC01-appb-C000028
 式(1-3)又は(1-4)中、
 N、L、R~R、R11~R16、R21~R27、及びR31~R35は、式(1)において定義したとおりである。
 R61~R68、及びR71~R78は、
それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 Xは、酸素原子、硫黄原子、又はCRであり、
 R及びRは、それぞれ独立して、置換もしくは無置換の炭素数1~50のアルキル基又は置換もしくは無置換の環形成炭素数6~50のアリール基であり、RとRは単結合を介して結合してもよい。
 ただし、
 R61~R68から選ばれる1つは*cに結合する単結合であり、
 R71~R78から選ばれる1つは*dに結合する単結合であり、
 前記単結合ではないR61~R68から選ばれる隣接する2つ、前記単結合ではないR71~R78から選ばれる隣接する2つは、互いに結合せず、したがって環構造を形成しない。
In formula (1-3) or (1-4),
N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
R 61 to R 68 and R 71 to R 78 are
Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
X is an oxygen atom, a sulfur atom, or CR a R b ;
R a and R b are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, and R a and R b are It may be linked through a single bond.
however,
one selected from R 61 to R 68 is a single bond that bonds to *c;
one selected from R 71 to R 78 is a single bond that bonds to *d;
Adjacent two selected from R 61 to R 68 which are not single bonds and adjacent two selected from R 71 to R 78 which are not single bonds are not bonded to each other and thus do not form a ring structure.
 本発明の一態様において、Xは、好ましくは酸素原子である。他の態様において、Xは、好ましくは硫黄原子である。 In one aspect of the present invention, X is preferably an oxygen atom. In another aspect, X is preferably a sulfur atom.
 本発明の一態様において、RとRは、互いに結合して置換もしくは無置換の環を形成してもよい。また、本発明の他の態様において、RとRは、互いに結合して置換もしくは無置換の環を形成しなくてもよい。 In one aspect of the present invention, R a and R b may combine with each other to form a substituted or unsubstituted ring. In another aspect of the present invention, R a and R b do not have to combine with each other to form a substituted or unsubstituted ring.
 さらに、式(1)で表される発明化合物は、好ましくは下記式(1-5)又は(1-6)で表される。
Figure JPOXMLDOC01-appb-C000029
Furthermore, the invention compound represented by formula (1) is preferably represented by the following formula (1-5) or (1-6).
Figure JPOXMLDOC01-appb-C000029
 式(1-5)又は(1-6)中、
 N、L、R~R、R11~R16、R21~R27、及びR31~R35は、式(1)において定義したとおりである。
 R81~R90、及びR91~R102は、
それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 ただし、
 R81~R90から選ばれる1つは*eに結合する単結合であり、
 R91~R102から選ばれる1つは*fに結合する単結合であり、
 前記単結合ではないR81~R90から選ばれる隣接する2つ、前記単結合ではないR91~R102から選ばれる隣接する2つは、互いに結合せず、したがって環構造を形成しない。
In formula (1-5) or (1-6),
N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
R 81 to R 90 and R 91 to R 102 are
Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
however,
one selected from R 81 to R 90 is a single bond that bonds to *e;
one selected from R 91 to R 102 is a single bond that bonds to *f;
Adjacent two selected from R 81 to R 90 which are not single bonds and adjacent two selected from R 91 to R 102 which are not single bonds are not bonded to each other and thus do not form a ring structure.
 R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。 R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are each independently a hydrogen atom, substituted or unsubstituted is preferably an alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
 R、R、R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記置換もしくは無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 R、R、R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記無置換のアルキル基は、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、又はt-ブチル基であり、より好ましくはメチル基、エチル基、イソプロピル基、又はt-ブチル基であり、さらに好ましくはメチル基又はt-ブチル基である。
The substituted or unsubstituted groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 The details of the alkyl group having 1 to 50 carbon atoms are as described above in the section "Substituents described herein".
The unsubstituted alkyl groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 is preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group or t-butyl group, more preferably methyl group, ethyl group or isopropyl group , or a t-butyl group, more preferably a methyl group or a t-butyl group.
 R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記置換もしくは無置換の環形成炭素数3~50のシクロアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記無置換のシクロアルキル基は、好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、又は2-ノルボルニル基であり、より好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基、又はシクロヘキシル基であり、さらに好ましくはシクロペンチル基又はシクロヘキシル基である。
The substituted or unsubstituted ring-forming carbon atoms of 3 to R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 represented by Details of the 50 cycloalkyl groups are as described above in the section entitled "Substituents Described herein."
The unsubstituted cycloalkyl groups represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are preferably cyclo propyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group or 2-norbornyl group, more preferably cyclopropyl group, cyclobutyl group, cyclopentyl group or cyclohexyl group, more preferably a cyclopentyl group or a cyclohexyl group.
 R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記ハロゲン原子の詳細は「本明細書に記載の置換基」の項において上記したとおりであり、好ましくはフッ素原子である。 Details of the halogen atoms represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 are described in the specification. , preferably a fluorine atom.
 R、R、R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記置換もしくは無置換の環形成炭素数6~50のアリール基の詳細は、「本明細書に記載の置換基」において記載したとおりである。
 R、R、R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記無置換のアリール基は、好ましくはフェニル基、ビフェニリル基、ナフチル基、又はフェナントリル基であり、より好ましくはフェニル基、ビフェニリル基、又はナフチル基であり、さらに好ましくはフェニル基である。
The substituted or unsubstituted groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 The details of the aryl group having 6 to 50 ring carbon atoms are as described in "Substituents described herein".
The unsubstituted aryl groups represented by R a , R b , R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 is preferably a phenyl group, a biphenylyl group, a naphthyl group or a phenanthryl group, more preferably a phenyl group, a biphenylyl group or a naphthyl group, still more preferably a phenyl group.
 R41~R46、R51~R60、R61~R68、R71~R78、R81~R90、及びR91~R102が表す前記置換もしくは無置換の環形成原子数5~50の複素環基の詳細は、「本明細書に記載の置換基」において記載したとおりである。
 該無置換の複素環基は、好ましくは、ピリジル基、ピリミジニル基、トリアジニル基、キノリル基、ジベンゾフラニル基、又はジベンゾチオフェニル基である。
The substituted or unsubstituted ring-forming atoms represented by R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , R 71 to R 78 , R 81 to R 90 and R 91 to R 102 have 5 to Details of the heterocyclic group of 50 are as described in "Substituents described herein".
The unsubstituted heterocyclic group is preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, dibenzofuranyl or dibenzothiophenyl.
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。 L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms.
 Lが表す置換もしくは無置換の環形成炭素数6~30のアリーレン基において、該無置換のアリーレン基は、例えば、フェニレン基、ビフェニルジイル基、ターフェニルジイル基、ナフチレン基、アントリレン基、ベンゾアントリレン基、フェナントリレン基、ベンゾフェナントリレン基、フェナレニレン基、ピセニレン基、ペンタフェニレン基、ピレニレン基、クリセニレン基、ベンゾクリセニレン基、トリフェニレニレン基、フルオランテニレン基、フルオレニレン基、又は9,9’-スピロビフルオレニレン基が挙げられる。この中で、好ましくはフェニレン基、ビフェニルジイル基、ターフェニルジイル基である。 In the substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms represented by L, the unsubstituted arylene group is, for example, a phenylene group, a biphenyldiyl group, a terphenyldiyl group, a naphthylene group, an anthrylene group, a benzoant rylene group, phenanthrylene group, benzophenanthrylene group, phenalenylene group, picenylene group, pentaphenylene group, pyrenylene group, chrysenylene group, benzochrysenylene group, triphenylenylene group, fluoranthenylene group, fluorenylene group, or 9, A 9'-spirobifluorenylene group can be mentioned. Among these, phenylene group, biphenyldiyl group and terphenyldiyl group are preferred.
 Lが表す置換もしくは無置換の環形成原子数5~30の2価の複素環基において、該無置換の2価の複素環基は例えば、ピロール、イミダゾール、ピラゾール、トリアゾール、フラン、チオフェン、オキサゾール、イソオキサゾール、オキサジアゾール、チアゾール、イソチアゾール、チアジアゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、インドール、イソインドール、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジン、キナゾリン、キノキサリン、ベンゾイミダゾール、インダゾール、フェナントロリン、フェナントリジン、アクリジン、フェナジン、カルバゾール、ベンゾカルバゾール、キサンテン、ベンゾフラン、イソベンゾフラン、ジベンゾフラン、ナフトベンゾフラン、ベンゾチオフェン、ジベンゾチオフェン、ナフトベンゾチオフェン、ベンゾオキサゾール、ベンゾイソキサゾール、フェノキサジン、ベンゾチアゾール、ベンゾイソチアゾール、及びフェノチアジンから選ばれる芳香族複素環の2価の残基が挙げられる。この中で、芳香族複素環として、好ましくはピリジン、キノリン、又はイソキノリンである。 In the substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms represented by L, the unsubstituted divalent heterocyclic group is, for example, pyrrole, imidazole, pyrazole, triazole, furan, thiophene, oxazole , isoxazole, oxadiazole, thiazole, isothiazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, indole, isoindole, indolizine, quinolidine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, benzimidazole, indazole, phenanthroline, phenanthridine, acridine, phenazine, carbazole, benzocarbazole, xanthene, benzofuran, isobenzofuran, dibenzofuran, naphthobenzofuran, benzothiophene, dibenzothiophene, naphthobenzothiophene, benzoxazole, benzisoxazole, phenoxazine, Divalent residues of aromatic heterocycles selected from benzothiazole, benzoisothiazole, and phenothiazine. Among these, the aromatic heterocycle is preferably pyridine, quinoline or isoquinoline.
 Lは、一態様として、好ましくは単結合である。
 Lは、他の態様として、好ましくはフェニレン基、ビフェニルジイル基、及びナフチレン基から選ばれる。
In one aspect, L is preferably a single bond.
In another aspect, L is preferably selected from a phenylene group, a biphenyldiyl group and a naphthylene group.
 本発明の一態様において、
(A-1)*aに結合する単結合ではないR41~R46が、すべて水素原子であってもよく、
(A-2)*bに結合する単結合ではないR51~R60が、すべて水素原子であってもよく、
(A-3)*cに結合する単結合ではないR61~R68が、すべて水素原子であってもよく、
(A-4)*dに結合する単結合ではないR71~R78が、すべて水素原子であってもよく、
(A-5)*eに結合する単結合ではないR81~R90が、すべて水素原子であってもよく、
(A-6)*fに結合する単結合ではないR91~R102が、すべて水素原子であってもよい。
In one aspect of the present invention,
(A-1) R 41 to R 46 that are not single bonds bonded to *a may all be hydrogen atoms,
(A-2) R 51 to R 60 that are not single bonds bonded to *b may all be hydrogen atoms,
(A-3) R 61 to R 68 that are not single bonds bonded to *c may all be hydrogen atoms,
(A-4) R 71 to R 78 that are not single bonds bonded to *d may all be hydrogen atoms,
(A-5) R 81 to R 90 that are not single bonds bonded to *e may all be hydrogen atoms,
(A-6) R 91 to R 102 which are not single bonds bonded to *f may all be hydrogen atoms.
 上記したように、本明細書において使用する「水素原子」は軽水素原子、重水素原子、及び三重水素原子を包含する。従って、発明化合物は天然由来の重水素原子を含んでいてもよい。
 又、原料化合物の一部又は全てに重水素化した化合物を使用することにより、発明化合物Aに重水素原子を意図的に導入してもよい。従って、本発明の一態様において、発明化合物は少なくとも1個の重水素原子を含む。すなわち、発明化合物は、式(1)で表される化合物であって、該化合物に含まれる水素原子の少なくとも一つが重水素原子である化合物であってもよい。
As noted above, "hydrogen atom" as used herein includes protium, deuterium, and tritium atoms. Accordingly, invention compounds may contain naturally occurring deuterium atoms.
Alternatively, deuterium atoms may be intentionally introduced into the invention compound A by using a deuterated compound as part or all of the raw material compound. Accordingly, in one aspect of the invention, the compounds of the invention contain at least one deuterium atom. That is, the compound of the invention may be a compound represented by formula (1) in which at least one of the hydrogen atoms contained in the compound is a deuterium atom.
 Arが表す置換もしくは無置換のアリール基、又は複素環基が有する水素原子;
 Lが表す置換もしくは無置換のアリーレン基、又は2価の複素環基が有する水素原子;
 R及びRのいずれかが表す置換もしくは無置換のアルキル基、又はアリール基が有する水素原子;
 R及びRの一方が表す無置換のメチル基、R及びRの他方が表す無置換のフェニル基が有する水素原子;
 R及びRのいずれかが表す水素原子;R及びRのいずれかが表す無置換のメチル基、又は無置換のフェニル基が有する水素原子;
 R11~R16のいずれかが表す水素原子;
 R21~R27のいずれかが表す水素原子;
 R31~R35のいずれかが表す水素原子;
 R41~R45のいずれかが表す水素原子;R41~R45のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子;
 R51~R60のいずれかが表す水素原子;R51~R60のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子;
 R61~R68のいずれかが表す水素原子;R61~R68のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子;
 R71~R78のいずれかが表す水素原子;R71~R78のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子;
 R81~R90のいずれかが表す水素原子;R81~R90のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子;
 R91~R102のいずれかが表す水素原子;R91~R102のいずれかが表す置換もしくは無置換のアルキル基、シクロアルキル基、アリール基、又は複素環基が有する水素原子から選ばれる少なくとも一つの水素原子が重水素原子であってもよい。
A hydrogen atom possessed by a substituted or unsubstituted aryl group or heterocyclic group represented by Ar;
A hydrogen atom possessed by a substituted or unsubstituted arylene group or a divalent heterocyclic group represented by L;
a hydrogen atom of a substituted or unsubstituted alkyl group or aryl group represented by either R a or R b ;
a hydrogen atom of an unsubstituted methyl group represented by one of R 1 and R 2 and an unsubstituted phenyl group represented by the other of R 1 and R 2 ;
a hydrogen atom represented by any one of R 3 and R 4 ; a hydrogen atom possessed by an unsubstituted methyl group or an unsubstituted phenyl group represented by any of R 3 and R 4 ;
a hydrogen atom represented by any one of R 11 to R 16 ;
a hydrogen atom represented by any one of R 21 to R 27 ;
a hydrogen atom represented by any one of R 31 to R 35 ;
a hydrogen atom represented by any one of R 41 to R 45 ; a hydrogen atom possessed by a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, or heterocyclic group represented by any one of R 41 to R 45 ;
a hydrogen atom represented by any one of R 51 to R 60 ; a hydrogen atom possessed by a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, or heterocyclic group represented by any one of R 51 to R 60 ;
a hydrogen atom represented by any one of R 61 to R 68 ; a hydrogen atom possessed by a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, or heterocyclic group represented by any one of R 61 to R 68 ;
a hydrogen atom represented by any one of R 71 to R 78 ; a hydrogen atom possessed by a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, or heterocyclic group represented by any one of R 71 to R 78 ;
a hydrogen atom represented by any one of R 81 to R 90 ; a hydrogen atom possessed by a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, or heterocyclic group represented by any one of R 81 to R 90 ;
hydrogen atom represented by any one of R 91 to R 102 ; One hydrogen atom may be a deuterium atom.
 発明化合物の重水素化率は、使用する原料化合物の重水素化率に依存する。所定の重水素化率の原料を用いたとしても、天然由来の一定の割合で軽水素同位体が含まれ得る。従って、下記で示される発明化合物の重水素化率の態様は、単に化学式で表される重水素原子の数をカウントして求められる割合に対し、天然由来の微量の同位体を考慮した比率が含まれる。
 発明化合物の重水素化率は、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上、よりさらに好ましくは10%以上、よりさらに好ましくは50%以上である。
The deuteration rate of the invention compound depends on the deuteration rate of the starting compound used. Even if a raw material with a given deuteration rate is used, it may still contain a certain proportion of natural proton isotopes. Therefore, the aspect of the deuteration rate of the compound of the invention shown below is the ratio obtained by simply counting the number of deuterium atoms represented by the chemical formula, and the ratio in consideration of trace isotopes derived from nature. included.
The deuteration rate of the compound of the invention is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and even more preferably 50% or more.
 発明化合物は、重水素化された化合物と重水素化されていない化合物を含む混合物、異なる重水素化率を有する2以上の化合物の混合物であってもよい。このような混合物の重水素化率は、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上、よりさらに好ましくは10%以上、よりさらに好ましくは50%以上、かつ、100%未満である。
また、発明化合物中の全水素原子数に対する重水素原子数の割合は、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上、よりさらに好ましくは10%以上、かつ、100%以下である。
Invention compounds may be mixtures containing deuterated and non-deuterated compounds, mixtures of two or more compounds having different deuteration rates. The deuteration rate of such a mixture is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, even more preferably 10% or more, even more preferably 50% or more, and 100% or more. %.
Further, the ratio of the number of deuterium atoms to the total number of hydrogen atoms in the compound of the invention is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and 100 % or less.
 上記各式の定義に含まれる「置換もしくは無置換の」という場合の置換基(任意の置換基)の詳細は、「「置換もしくは無置換の」という場合の置換基」において記載したとおりである。 Details of the substituents (optional substituents) in the case of “substituted or unsubstituted” included in the definition of each formula above are as described in “Substituents in the case of “substituted or unsubstituted””. .
 発明化合物は、当業者であれば、下記合成例及び公知の合成方法を参考にして容易に製造することができる。 Invention compounds can be easily produced by those skilled in the art by referring to the following synthesis examples and known synthesis methods.
 以下に発明化合物の具体例を示すが、以下の例示化合物に限定されるものではない。
 下記具体例中、Dは重水素原子を示す。
Specific examples of the compounds of the invention are shown below, but are not limited to the following exemplary compounds.
In the following specific examples, D represents a deuterium atom.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
有機EL素子用材料
 本発明の一態様である有機EL素子用材料は発明化合物を含む。有機EL素子用材料における発明化合物の含有量は、1質量%以上(100%を含む)であり、10質量%以上(100%を含む)であることが好ましく、50質量%以上(100%を含む)であることがより好ましく、80質量%以上(100%を含む)であることがさらに好ましく、90質量%以上(100%を含む)であることが特に好ましい。本発明の一態様である有機EL素子用材料は、有機EL素子の製造に有用である。
Organic EL Device Material The organic EL device material that is one aspect of the present invention contains the invention compound. The content of the invention compound in the organic EL device material is 1% by mass or more (including 100%), preferably 10% by mass or more (including 100%), and 50% by mass or more (including 100% more preferably 80% by mass or more (including 100%), and particularly preferably 90% by mass or more (including 100%). The organic EL device material, which is one aspect of the present invention, is useful for manufacturing organic EL devices.
有機EL素子
 本発明の一態様である有機EL素子は陽極、陰極、及び該陽極と陰極の間に配置された有機層を含む。該有機層は発光層を含み、該有機層の少なくとも一層が発明化合物を含む。
 発明化合物が含まれる有機層の例としては、陽極と発光層との間に設けられる正孔輸送帯域(正孔注入層、正孔輸送層、電子阻止層、励起子阻止層等)、発光層、スペース層、陰極と発光層との間に設けられる電子輸送帯域(電子注入層、電子輸送層、正孔阻止層等)等が挙げられるが、これらに限定されるものではない。発明化合物は好ましくは蛍光又は燐光EL素子の正孔輸送帯域又は発光層の材料、より好ましくは正孔輸送帯域の材料、更に好ましくは正孔注入層、正孔輸送層、電子阻止層、又は励起子阻止層の材料、特に好ましくは正孔注入層又は正孔輸送層の材料として用いられる。
Organic EL Element An organic EL element that is one aspect of the present invention includes an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layers comprise a light-emitting layer, and at least one layer of the organic layers comprises an invention compound.
Examples of the organic layer containing the compound of the invention include a hole-transporting zone provided between the anode and the light-emitting layer (hole-injection layer, hole-transporting layer, electron-blocking layer, exciton-blocking layer, etc.), light-emitting layer . The inventive compound is preferably a material for the hole-transporting zone or light-emitting layer of a fluorescent or phosphorescent EL device, more preferably a material for the hole-transporting zone, even more preferably a hole-injecting layer, a hole-transporting layer, an electron-blocking layer, or an excitation layer. It is used as a material for electron-blocking layers, particularly preferably as a material for hole-injecting layers or hole-transporting layers.
 本発明の一態様である有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、蛍光発光型の素子であることが好ましい。ここで、「発光ユニット」とは、有機層を含み、そのうちの少なくとも一層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位をいう。 The organic EL device according to one embodiment of the present invention may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent/phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. However, it may be of a tandem type having a plurality of light-emitting units, and among these, it is preferably a fluorescent light-emitting device. Here, the term “light-emitting unit” refers to a minimum unit that includes organic layers, at least one layer of which is a light-emitting layer, and emits light by recombination of injected holes and electrons.
 例えば、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する多層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。シンプル型発光ユニットの代表的な層構成を以下に示す。括弧内の層は任意である。
(a)(正孔注入層/)正孔輸送層/蛍光発光層/電子輸送層(/電子注入層)
(b)(正孔注入層/)正孔輸送層/燐光発光層電子輸送層(/電子注入層)
(c)(正孔注入層/)正孔輸送層/第1蛍光発光層/第2蛍光発光層/電子輸送層(/電子注入層)
(d)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/電子輸送層(/電子注入層)
(e)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層/電子輸送層(/電子注入層)
(f)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/スペース層/蛍光発光層/電子輸送層(/電子注入層)
(g)(正孔注入層/)正孔輸送層/第1燐光発光層/スペース層/第2燐光発光層/スペース層/蛍光発光層/電子輸送層(/電子注入層)
(h)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第1蛍光発光層/第2蛍光発光層/電子輸送層(/電子注入層)
(i)(正孔注入層/)正孔輸送層/電子阻止層/蛍光発光層/電子輸送層(/電子注入層)
(j)(正孔注入層/)正孔輸送層/電子阻止層/燐光発光層/電子輸送層(/電子注入層)
(k)(正孔注入層/)正孔輸送層/励起子阻止層/蛍光発光層/電子輸送層(/電子注入層)
(l)(正孔注入層/)正孔輸送層/励起子阻止層/燐光発光層/電子輸送層(/電子注入層)
(m)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層/電子輸送層(/電子注入層)
(n)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層/電子輸送層(/電子注入層)
(o)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(p)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(q)(正孔注入層/)正孔輸送層/蛍光発光層/正孔阻止層/電子輸送層(/電子注入層)
(r)(正孔注入層/)正孔輸送層/燐光発光層/正孔阻止層/電子輸送層(/電子注入層)
(s)(正孔注入層/)正孔輸送層/蛍光発光層/励起子阻止層/電子輸送層(/電子注入層)
(t)(正孔注入層/)正孔輸送層/燐光発光層/励起子阻止層/電子輸送層(/電子注入層)
For example, as a representative device configuration of the simple type organic EL device, the following device configuration can be mentioned.
(1) Anode/light-emitting unit/cathode The light-emitting unit may be of a multilayer type having a plurality of phosphorescent-emitting layers or fluorescent-emitting layers. A space layer may be provided for the purpose of preventing the excitons from diffusing into the fluorescence-emitting layer. A typical layer structure of a simple light-emitting unit is shown below. Layers in brackets are optional.
(a) (Hole Injection Layer/) Hole Transport Layer/Fluorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(b) (Hole Injection Layer/) Hole Transport Layer/Phosphorescent Emitting Layer Electron Transport Layer (/Electron Injection Layer)
(c) (Hole Injection Layer/) Hole Transport Layer/First Fluorescent Layer/Second Fluorescent Layer/Electron Transport Layer (/Electron Injection Layer)
(d) (hole injection layer/) hole transport layer/first phosphorescent-emitting layer/second phosphorescent-emitting layer/electron transport layer (/electron injection layer)
(e) (Hole injection layer/) Hole transport layer/Phosphorescent layer/Space layer/Fluorescent layer/Electron transport layer (/Electron injection layer)
(f) (hole injection layer/) hole transport layer/first phosphorescent-emitting layer/second phosphorescent-emitting layer/space layer/fluorescent-emitting layer/electron transport layer (/electron injection layer)
(g) (Hole Injection Layer/) Hole Transport Layer/First Phosphorescent Emitting Layer/Space Layer/Second Phosphorescent Emitting Layer/Space Layer/Fluorescent Emitting Layer/Electron Transporting Layer (/Electron Injecting Layer)
(h) (Hole Injection Layer/) Hole Transport Layer/Phosphorescent Layer/Space Layer/First Fluorescent Layer/Second Fluorescent Layer/Electron Transport Layer (/Electron Injection Layer)
(i) (Hole Injection Layer/) Hole Transport Layer/Electron Blocking Layer/Fluorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(j) (Hole Injection Layer/) Hole Transport Layer/Electron Blocking Layer/Phosphorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(k) (Hole Injection Layer/) Hole Transport Layer/Exciton Blocking Layer/Fluorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(l) (Hole Injection Layer/) Hole Transport Layer/Exciton Blocking Layer/Phosphorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(m) (Hole Injection Layer/) First Hole Transport Layer/Second Hole Transport Layer/Fluorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(n) (Hole Injection Layer/) First Hole Transport Layer/Second Hole Transport Layer/Phosphorescent Emitting Layer/Electron Transport Layer (/Electron Injection Layer)
(o) (hole injection layer/) first hole transport layer/second hole transport layer/fluorescence-emitting layer/first electron transport layer/second electron transport layer (/electron injection layer)
(p) (hole-injection layer/) first hole-transport layer/second hole-transport layer/phosphorescence-emitting layer/first electron-transport layer/second electron-transport layer (/electron-injection layer)
(q) (Hole Injection Layer/) Hole Transport Layer/Fluorescent Emitting Layer/Hole Blocking Layer/Electron Transport Layer (/Electron Injection Layer)
(r) (Hole Injection Layer/) Hole Transport Layer/Phosphorescent Emitting Layer/Hole Blocking Layer/Electron Transport Layer (/Electron Injection Layer)
(s) (Hole Injection Layer/) Hole Transport Layer/Fluorescence Emitting Layer/Exciton Blocking Layer/Electron Transport Layer (/Electron Injection Layer)
(t) (Hole Injection Layer/) Hole Transport Layer/Phosphorescent Emitting Layer/Exciton Blocking Layer/Electron Transport Layer (/Electron Injection Layer)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記発光ユニット(f)において、(正孔注入層/)正孔輸送層/第1燐光発光層(赤色発光)/第2燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子阻止層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔阻止層を設けてもよい。電子阻止層や正孔阻止層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
Each of the phosphorescent or fluorescent light-emitting layers may exhibit different emission colors. Specifically, in the light-emitting unit (f), (hole injection layer/) hole transport layer/first phosphorescent-emitting layer (red emission)/second phosphorescent-emitting layer (green emission)/space layer/fluorescence emission Examples thereof include a layer structure such as layer (blue light emitting)/electron transport layer.
An electron blocking layer may be appropriately provided between each light-emitting layer and the hole transport layer or space layer. A hole-blocking layer may be appropriately provided between each light-emitting layer and the electron-transporting layer. By providing an electron-blocking layer or a hole-blocking layer, electrons or holes can be confined in the light-emitting layer, the probability of charge recombination in the light-emitting layer can be increased, and the light-emitting efficiency can be improved.
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第1発光ユニット/中間層/第2発光ユニット/陰極
 ここで、上記第1発光ユニット及び第2発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットから選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第1発光ユニットに電子を、第2発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
As a representative device configuration of the tandem-type organic EL device, the following device configuration can be mentioned.
(2) Anode/first light-emitting unit/intermediate layer/second light-emitting unit/cathode Here, the first light-emitting unit and the second light-emitting unit can be independently selected from the light-emitting units described above, for example. .
The intermediate layer is also generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron withdrawal layer, a connection layer, or an intermediate insulating layer, and provides electrons to the first light-emitting unit and holes to the second light-emitting unit. Known material configurations can be used to supply.
 図1は本発明の一態様に係る有機EL素子の構成の一例を示す概略図である。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、発光層5を有する。発光層5と陽極3との間に正孔輸送帯域6(正孔注入層、正孔輸送層等)、発光層5と陰極4との間に電子輸送帯域7(電子注入層、電子輸送層等)を有する。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。 FIG. 1 is a schematic diagram showing an example of the configuration of an organic EL element according to one aspect of the present invention. The organic EL element 1 has a substrate 2 , an anode 3 , a cathode 4 , and a light emitting unit 10 arranged between the anode 3 and the cathode 4 . The light-emitting unit 10 has a light-emitting layer 5 . A hole transport zone 6 (a hole injection layer, a hole transport layer, etc.) is provided between the light emitting layer 5 and the anode 3, and an electron transport zone 7 (an electron injection layer, an electron transport layer, etc.) is provided between the light emitting layer 5 and the cathode 4. etc.). Further, an electron blocking layer (not shown) and a hole blocking layer (not shown) may be provided on the anode 3 side of the light emitting layer 5 and the cathode 4 side of the light emitting layer 5, respectively. As a result, electrons and holes can be confined in the light-emitting layer 5, and the exciton generation efficiency in the light-emitting layer 5 can be further increased.
 図2は、本発明の一態様に係る有機EL素子の他の構成を示す概略図である。有機EL素子11は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット20とを有する。発光ユニット20は、発光層5を有する。陽極3と発光層5の間に配置された正孔輸送帯域は、正孔注入層6a、第1正孔輸送層6b及び第2正孔輸送層6cから形成されている。また、発光層5と陰極4の間に配置された電子輸送帯域は、第1電子輸送層7a及び第2電子輸送層7bから形成されている。 FIG. 2 is a schematic diagram showing another configuration of the organic EL element according to one aspect of the present invention. The organic EL element 11 has a substrate 2 , an anode 3 , a cathode 4 , and a light emitting unit 20 arranged between the anode 3 and the cathode 4 . The light-emitting unit 20 has a light-emitting layer 5 . A hole-transporting zone located between the anode 3 and the light-emitting layer 5 is formed from a hole-injecting layer 6a, a first hole-transporting layer 6b and a second hole-transporting layer 6c. Also, the electron-transporting zone located between the light-emitting layer 5 and the cathode 4 is formed of a first electron-transporting layer 7a and a second electron-transporting layer 7b.
 なお、本発明において、蛍光ドーパント(蛍光発光材料)と組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料を意味し、蛍光発光層を形成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。 In the present invention, a host combined with a fluorescent dopant (fluorescent material) is called a fluorescent host, and a host combined with a phosphorescent dopant is called a phosphorescent host. Fluorescent hosts and phosphorescent hosts are not distinguished only by molecular structure. That is, the phosphorescent host means a material that contains a phosphorescent dopant and forms a phosphorescent light-emitting layer, and does not mean that it cannot be used as a material for forming a fluorescent light-emitting layer. The same is true for fluorescent hosts.
基板
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどの板を用いることができる。また、可撓性基板を用いてもよい。可撓性基板としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
Substrate The substrate is used as a support for the organic EL element. As the substrate, for example, a plate of glass, quartz, plastic, or the like can be used. Alternatively, a flexible substrate may be used. Examples of flexible substrates include plastic substrates made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. Inorganic deposition films can also be used.
陽極
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステンおよび酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または前記金属の窒化物(例えば、窒化チタン)等が挙げられる。
Anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more). Specifically, for example, indium oxide-tin oxide (ITO: Indium Tin Oxide), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, indium oxide containing tungsten oxide and zinc oxide, Graphene etc. are mentioned. In addition, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), cobalt (Co), copper (Cu), palladium ( Pd), titanium (Ti), or nitrides of the above metals (for example, titanium nitride).
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステンおよび酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。 These materials are usually deposited by a sputtering method. For example, indium oxide-zinc oxide is a target in which 1 to 10 wt% of zinc oxide is added to indium oxide, and indium oxide containing tungsten oxide and zinc oxide is a target in which 0.5 to 5 wt% of tungsten oxide is added to indium oxide. %, and 0.1 to 1 wt % of zinc oxide, it can be formed by a sputtering method. In addition, it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
 陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成されるため、電極材料として一般的に使用される材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、元素周期表の第1族または第2族に属する元素)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
The hole injection layer formed in contact with the anode is formed using a material that facilitates hole injection regardless of the work function of the anode. , alloys, electrically conductive compounds, and mixtures thereof, elements belonging to Groups 1 and 2 of the Periodic Table of the Elements) can be used.
Elements belonging to group 1 or 2 of the periodic table, which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used. In addition, when forming an anode using an alkali metal, an alkaline-earth metal, and the alloy containing these, a vacuum deposition method and a sputtering method can be used. Furthermore, when silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
正孔注入層
 正孔注入層は、正孔注入性の高い材料(正孔注入性材料)を含む層であり、陽極と発光層の間、又は、存在する場合には、正孔輸送層と陽極の間に形成される。
Hole-Injection Layer The hole-injection layer is a layer containing a material with high hole-injection properties (hole-injection material), and is located between the anode and the light-emitting layer or, if present, with the hole-transport layer. formed between the anodes.
 発明化合物以外の正孔注入性材料としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。 Hole-injecting materials other than invention compounds include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide. material, tungsten oxide, manganese oxide, or the like can be used.
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も正孔注入層材料として挙げられる。 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (abbreviation: TDATA), 4,4′,4″-tris[N-(3- methylphenyl)-N-phenylamino]triphenylamine (abbreviation: MTDATA), 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenylamino]biphenyl (abbreviation: DPAB), 4,4 '-bis(N-{4-[N'-(3-methylphenyl)-N'-phenylamino]phenyl}-N-phenylamino)biphenyl (abbreviation: DNTPD), 1,3,5-tris[N -(4-diphenylaminophenyl)-N-phenylamino]benzene (abbreviation: DPA3B), 3-[N-(9-phenylcarbazol-3-yl)-N-phenylamino]-9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis[N-(9-phenylcarbazol-3-yl)-N-phenylamino]-9-phenylcarbazole (abbreviation: PCzPCA2), 3-[N-(1-naphthyl)-N Aromatic amine compounds such as -(9-phenylcarbazol-3-yl)amino]-9-phenylcarbazole (abbreviation: PCzPCN1) can also be used as hole injection layer materials.
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。 Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used. For example, poly(N-vinylcarbazole) (abbreviation: PVK), poly(4-vinyltriphenylamine) (abbreviation: PVTPA), poly[N-(4-{N'-[4-(4-diphenylamino) phenyl]phenyl-N'-phenylamino}phenyl)methacrylamide] (abbreviation: PTPDMA), poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] (abbreviation: polymer compounds such as Poly-TPD). In addition, polymer compounds added with acids such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyaniline/poly(styrenesulfonic acid) (PAni/PSS) are used. can also
 さらに、下記式(K)で表されるヘキサアザトリフェニレン(HAT)化合物などのアクセプター材料を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000049
Furthermore, it is also preferable to use an acceptor material such as a hexaazatriphenylene (HAT) compound represented by the following formula (K).
Figure JPOXMLDOC01-appb-C000049
(上記式中、R201~R206は、それぞれ独立にシアノ基、-CONH、カルボキシル基、又は-COOR207(R207は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。また、R201及びR202、R203及びR204、及びR205及びR206から選ばれる隣接する2つが互いに結合して-CO-O-CO-で示される基を形成してもよい。)
 R207としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
(In the above formula, R 201 to R 206 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 207 (R 207 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms). In addition, adjacent two selected from R 201 and R 202 , R 203 and R 204 , and R 205 and R 206 are bonded to each other to form a group represented by —CO—O—CO— may form.)
Examples of R 207 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group and the like.
正孔輸送層
 正孔輸送層は、正孔輸送性の高い材料(正孔輸送性材料)を含む層であり、陽極と発光層の間、又は、存在する場合には、正孔注入層と発光層の間に形成される。発明化合物を単独で又は下記の化合物と組み合わせて正孔輸送層に用いてもよい。
Hole-transporting layer The hole-transporting layer is a layer containing a material with high hole-transporting properties (hole-transporting material), and is located between the anode and the light-emitting layer or, if present, with the hole-injecting layer. It is formed between the light emitting layers. Invention compounds may be used in the hole-transporting layer alone or in combination with the following compounds.
 正孔輸送層は、単層構造でもよく、2以上の層を含む多層構造でもよい。例えば、正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)を含む2層構造であってもよい。本発明の一態様において、前記単層構造の正孔輸送層は発光層に隣接していることが好ましく、又、前記多層構造中の最も陰極に近い正孔輸送層、例えば、上記2層構造の第2正孔輸送層、は発光層に隣接していることが好ましい。本発明の他の態様において、前記単層構造の正孔輸送層と発光層の間に、又は、前記多層構造中の最も発光層に近い正孔輸送層と発光層の間に、後述する電子阻止層などを介在させてもよい。
 前記2層構造の正孔輸送層において、発明化合物は第1正孔輸送層と第2正孔輸送層の一方に含まれていてもよいし、双方に含まれていてもよい。
 本発明の一態様においては、発明化合物が第1正孔輸送層のみに含まれるのが好ましく、他の態様においては、発明化合物が第2正孔輸送層のみに含まれるのが好ましく、さらに他の態様においては、発明化合物が第1正孔輸送層と第2正孔輸送層に含まれるのが好ましい。
The hole transport layer may have a single layer structure or a multilayer structure including two or more layers. For example, the hole transport layer may have a two-layer structure including a first hole transport layer (anode side) and a second hole transport layer (cathode side). In one aspect of the present invention, the hole-transporting layer having the single-layer structure is preferably adjacent to the light-emitting layer, and the hole-transporting layer closest to the cathode in the multilayer structure, for example, the two-layer structure is preferably adjacent to the light-emitting layer. In another aspect of the present invention, between the hole-transporting layer and the light-emitting layer in the single-layer structure, or between the hole-transporting layer closest to the light-emitting layer in the multilayer structure and the light-emitting layer, an electron A blocking layer or the like may be interposed.
In the hole transport layer having the two-layer structure, the invention compound may be contained in either the first hole transport layer or the second hole transport layer, or may be contained in both of them.
In one aspect of the present invention, the invention compound is preferably contained only in the first hole-transport layer, and in another aspect, the invention compound is preferably contained only in the second hole-transport layer. In the aspect of (1), the compound of the invention is preferably contained in the first hole-transporting layer and the second hole-transporting layer.
 本発明の一態様において、前記第1正孔輸送層と前記第2正孔輸送層の一方又は双方に含まれる発明化合物は、製造コストの観点から、軽水素体であることが好ましい。
 前記軽水素体とは、発明化合物中の全ての水素原子が軽水素原子である発明化合物のことである。
 従って、本発明の一態様である有機EL素子は、前記第1正孔輸送層と前記第2正孔輸送層の一方又は双方が実質的に軽水素体のみからなる発明化合物を含む有機EL素子であることが好ましい。「実質的に軽水素体のみからなる発明化合物」とは、発明化合物の総量に対する軽水素体の含有割合が、90モル%以上、好ましくは95モル%以上、より好ましくは99モル%以上(それぞれ100%を含む)であることを意味する。
In one aspect of the present invention, the invention compound contained in one or both of the first hole-transport layer and the second hole-transport layer is preferably a hydrogen compound from the viewpoint of production cost.
The light hydrogen compound is an invention compound in which all hydrogen atoms in the invention compound are hydrogen atoms.
Therefore, the organic EL device according to one aspect of the present invention is an organic EL device in which one or both of the first hole-transporting layer and the second hole-transporting layer are substantially composed of a light hydrogen compound. is preferably The term "invention compound consisting essentially of a light hydrogen body" means that the content of the light hydrogen body in the total amount of the invention compounds is 90 mol% or more, preferably 95 mol% or more, more preferably 99 mol% or more (each including 100%).
 発明化合物以外の正孔輸送層材料としては、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用することができる。
 芳香族アミン化合物としては、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)が挙げられる。上記化合物は、10-6cm/Vs以上の正孔移動度を有する。
As hole transport layer materials other than invention compounds, for example, aromatic amine compounds, carbazole derivatives, anthracene derivatives and the like can be used.
Examples of aromatic amine compounds include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (abbreviation: NPB) and N,N'-bis(3-methylphenyl)-N , N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (abbreviation: TPD), 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine (abbreviation: BAFLP), 4,4′-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: DFLDPBi), 4,4′,4″-tris(N,N -diphenylamino)triphenylamine (abbreviation: TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (abbreviation: MTDATA), and 4, 4′-bis[N-(spiro-9,9′-bifluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: BSPB). The compound has a hole mobility of 10 −6 cm 2 /Vs or higher.
 カルバゾール誘導体としては、例えば、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、及び、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)が挙げられる。
 アントラセン誘導体としては、例えば、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、及び、9,10-ジフェニルアントラセン(略称:DPAnth)が挙げられる。
 ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子輸送性よりも正孔輸送性の方が高い化合物であれば、上記以外の化合物を用いてもよい。
Examples of carbazole derivatives include 4,4′-di(9-carbazolyl)biphenyl (abbreviation: CBP), 9-[4-(9-carbazolyl)phenyl]-10-phenylanthracene (abbreviation: CzPA), and 9-phenyl-3-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (abbreviation: PCzPA).
Examples of anthracene derivatives include 2-t-butyl-9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 9,10-di(2-naphthyl)anthracene (abbreviation: DNA), and , 9,10-diphenylanthracene (abbreviation: DAnth).
Polymer compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
However, a compound other than the above may be used as long as the compound has higher hole-transporting property than electron-transporting property.
発光層のドーパント材料
 発光層は、発光性の高い材料(ドーパント材料)を含む層であり、種々の材料を用いることができる。例えば、蛍光発光材料や燐光発光材料をドーパント材料として用いることができる。蛍光発光材料は一重項励起状態から発光する化合物であり、燐光発光材料は三重項励起状態から発光する化合物である。
Dopant Material of Light-Emitting Layer The light-emitting layer is a layer containing a highly luminescent material (dopant material), and various materials can be used. For example, a fluorescent light-emitting material or a phosphorescent light-emitting material can be used as the dopant material. A fluorescent light-emitting material is a compound that emits light from a singlet excited state, and a phosphorescent light-emitting material is a compound that emits light from a triplet excited state.
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。 A pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, or the like can be used as a blue fluorescent light-emitting material that can be used in the light-emitting layer. Specifically, N,N′-bis[4-(9H-carbazol-9-yl)phenyl]-N,N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S), 4-(9H -carbazol-9-yl)-4'-(10-phenyl-9-anthryl)triphenylamine (abbreviation: YGAPA), 4-(10-phenyl-9-anthryl)-4'-(9-phenyl-9H -carbazol-3-yl)triphenylamine (abbreviation: PCBAPA) and the like.
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。 An aromatic amine derivative or the like can be used as a greenish fluorescent light-emitting material that can be used in the light-emitting layer. Specifically, N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), N-[9,10-bis(1,1 '-biphenyl-2-yl)-2-anthryl]-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCABPhA), N-(9,10-diphenyl-2-anthryl)-N,N ',N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPA), N-[9,10-bis(1,1'-biphenyl-2-yl)-2-anthryl]-N,N' , N′-triphenyl-1,4-phenylenediamine (abbreviation: 2DPABPhA), N-[9,10-bis(1,1′-biphenyl-2-yl)]-N-[4-(9H-carbazole -9-yl)phenyl]-N-phenylanthracen-2-amine (abbreviation: 2YGABPhA), N,N,9-triphenylanthracen-9-amine (abbreviation: DPhAPhA), and the like.
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。 A tetracene derivative, a diamine derivative, or the like can be used as a red fluorescent light-emitting material that can be used in the light-emitting layer. Specifically, N,N,N',N'-tetrakis(4-methylphenyl)tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N,N,N', and N'-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3,10-diamine (abbreviation: p-mPhAFD).
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。 Metal complexes such as iridium complexes, osmium complexes, and platinum complexes are used as blue phosphorescent materials that can be used in the light-emitting layer. Specifically, bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) tetrakis(1-pyrazolyl)borate (abbreviation: FIr6), bis[2-(4′ ,6′-difluorophenyl)pyridinato-N,C2′]iridium (III) picolinate (abbreviation: FIrpic), bis[2-(3′,5′bistrifluoromethylphenyl)pyridinato-N,C2′]iridium (III ) picolinate (abbreviation: Ir(CF3ppy)2(pic)), bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) acetylacetonate (abbreviation: FIracac), etc. mentioned.
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))などが挙げられる。 An iridium complex or the like is used as a greenish phosphorescent material that can be used in the light-emitting layer. Tris (2-phenylpyridinato-N, C2') iridium (III) (abbreviation: Ir (ppy) 3), bis (2-phenylpyridinato-N, C2') iridium (III) acetylacetonate ( Abbreviations: Ir (ppy) 2 (acac)), bis (1,2-diphenyl-1H-benzimidazolato) iridium (III) acetylacetonate (abbreviation: Ir (pbi) 2 (acac)), bis (benzo[ h]quinolinato)iridium(III) acetylacetonate (abbreviation: Ir(bzq)2(acac)) and the like.
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。 Metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used as red phosphorescent materials that can be used in the light-emitting layer. Specifically, bis[2-(2′-benzo[4,5-α]thienyl)pyridinato-N,C3′]iridium(III) acetylacetonate (abbreviation: Ir(btp)2(acac)), Bis(1-phenylisoquinolinato-N,C2′)iridium(III) acetylacetonate (abbreviation: Ir(piq)2(acac)), (acetylacetonato)bis[2,3-bis(4-fluoro Phenyl)quinoxalinato]iridium (III) (abbreviation: Ir(Fdpq)2(acac)), 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrinplatinum (II) (abbreviation: : PtOEP) and other organometallic complexes.
 また、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光発光材料として用いることができる。 In addition, tris (acetylacetonate) (monophenanthroline) terbium (III) (abbreviation: Tb (acac) 3 (Phen)), tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation: Eu (DBM) 3 (Phen)), tris[1-(2-thenoyl)-3,3,3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: Eu ( Rare-earth metal complexes such as TTA)3(Phen)) can be used as phosphorescent light-emitting materials because they emit light from rare-earth metal ions (electronic transitions between different multiplicities).
発光層のホスト材料
 発光層は、上述したドーパント材料を他の材料(ホスト材料)に分散させた構成としてもよい。ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高占有軌道準位(HOMO準位)が低い材料を用いることが好ましい。
Host Material of Light-Emitting Layer The light-emitting layer may have a structure in which the above-described dopant material is dispersed in another material (host material). It is preferable to use a material whose lowest unoccupied molecular orbital level (LUMO level) is higher than that of the dopant material and whose highest occupied molecular orbital level (HOMO level) is lower.
 ホスト材料としては、例えば
(1)アルミニウム錯体、ベリリウム錯体、又は亜鉛錯体等の金属錯体、
(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、又はフェナントロリン誘導体等の複素環化合物、
(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、又はクリセン誘導体等の縮合芳香族化合物、
(4)トリアリールアミン誘導体又は縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
Examples of host materials include (1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes;
(2) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives;
(3) condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives;
(4) Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives are used.
 例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体;
 2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物;
 9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物;及び
 N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ホスト材料は複数種用いてもよい。
For example, tris(8-quinolinolato)aluminum (III) (abbreviation: Alq), tris(4-methyl-8-quinolinolato)aluminum (III) (abbreviation: Almq3), bis(10-hydroxybenzo[h]quinolinato)beryllium (II) (abbreviation: BeBq2), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (III) (abbreviation: BAlq), bis(8-quinolinolato)zinc (II) (abbreviation: Znq) ), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (abbreviation: ZnPBO), bis[2-(2-benzothiazolyl)phenolato]zinc(II) (abbreviation: ZnBTZ), and other metal complexes ;
2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis[5-(p-tert-butylphenyl) -1,3,4-oxadiazol-2-yl]benzene (abbreviation: OXD-7), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2 ,4-triazole (abbreviation: TAZ), 2,2′,2″-(1,3,5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (abbreviation: TPBI), bathophenanthroline ( Heterocyclic compounds such as abbreviation: BPhen) and bathocuproine (abbreviation: BCP);
9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (abbreviation: CzPA), 3,6-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H -carbazole (abbreviation: DPCzPA), 9,10-bis(3,5-diphenylphenyl)anthracene (abbreviation: DPPA), 9,10-di(2-naphthyl)anthracene (abbreviation: DNA), 2-tert-butyl -9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 9,9′-bianthryl (abbreviation: BANT), 9,9′-(stilbene-3,3′-diyl)diphenanthrene ( DPNS), 9,9′-(stilbene-4,4′-diyl)diphenanthrene (abbreviation: DPNS2), 3,3′,3″-(benzene-1,3,5-triyl)tripylene ( abbreviation: TPB3), 9,10-diphenylanthracene (abbreviation: DPAnth), condensed aromatic compounds such as 6,12-dimethoxy-5,11-diphenylchrysene; and N,N-diphenyl-9-[4-(10 -Phenyl-9-anthryl)phenyl]-9H-carbazol-3-amine (abbreviation: CzA1PA), 4-(10-phenyl-9-anthryl)triphenylamine (abbreviation: DPhPA), N,9-diphenyl-N -[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazol-3-amine (abbreviation: PCAPA), N,9-diphenyl-N-{4-[4-(10-phenyl-9- anthryl)phenyl]phenyl}-9H-carbazol-3-amine (abbreviation: PCAPBA), N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (abbreviation: NPB or α-NPD), N,N′-bis(3-methylphenyl)-N,N '-Diphenyl-[1,1'-biphenyl]-4,4'-diamine (abbreviation: TPD), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenyl Aromatic amine compounds such as amino]biphenyl (abbreviation: DFLDPBi), 4,4'-bis[N-(spiro-9,9'-bifluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: BSPB) can be used. A plurality of host materials may be used.
 特に、青色蛍光素子の場合には、下記のアントラセン化合物をホスト材料として用いることが好ましい。 Especially in the case of a blue fluorescent device, it is preferable to use the following anthracene compound as the host material.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
電子輸送層
 電子輸送層は電子輸送性の高い材料(電子輸送性材料)を含む層であり、発光層と陰極の間、又は、存在する場合は、電子注入層と発光層の間に形成される。
 電子輸送層は、単層構造でもよく、2以上の層を含む多層構造でもよい。例えば、電子輸送層は第1電子輸送層(陽極側)と第2電子輸送層(陰極側)を含む2層構造であってもよい。本発明の一態様において、前記単層構造の電子輸送層は発光層に隣接していることが好ましく、又、前記多層構造中の最も陽極に近い電子輸送層、例えば、上記2層構造の第1電子輸送層、は発光層に隣接していることが好ましい。本発明の他の態様において、前記単層構造の電子輸送層と発光層の間に、又は、前記多層構造中の最も発光層に近い電子輸送層と発光層の間に、後述する正孔阻止層などを介在させてもよい。
Electron-transporting layer The electron-transporting layer is a layer containing a material with high electron-transporting properties (electron-transporting material), and is formed between the light-emitting layer and the cathode, or, if present, between the electron-injecting layer and the light-emitting layer. be.
The electron transport layer may have a single layer structure or a multilayer structure including two or more layers. For example, the electron transport layer may have a two-layer structure including a first electron transport layer (anode side) and a second electron transport layer (cathode side). In one aspect of the present invention, the single-layer electron-transporting layer is preferably adjacent to the light-emitting layer, and the electron-transporting layer closest to the anode in the multilayer structure, for example, the second electron-transporting layer of the two-layer structure. 1 The electron-transporting layer is preferably adjacent to the light-emitting layer. In another aspect of the present invention, between the electron-transporting layer and the light-emitting layer in the single-layer structure, or between the electron-transporting layer closest to the light-emitting layer in the multilayer structure and the light-emitting layer, a hole-blocking layer as described below is provided. A layer or the like may be interposed.
 電子輸送層には、例えば、
(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、
(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、
(3)高分子化合物を使用することができる。
For the electron transport layer, for example,
(1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes;
(2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, phenanthroline derivatives;
(3) Polymer compounds can be used.
 金属錯体としては、例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)が挙げられる。 Examples of metal complexes include tris(8-quinolinolato)aluminum (III) (abbreviation: Alq), tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq3), bis(10-hydroxybenzo[h]quinolinato ) beryllium (abbreviation: BeBq 2 ), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (III) (abbreviation: BAlq), bis(8-quinolinolato)zinc (II) (abbreviation: Znq ), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (abbreviation: ZnPBO), and bis[2-(2-benzothiazolyl)phenolato]zinc(II) (abbreviation: ZnBTZ).
 複素芳香族化合物としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)が挙げられる。 Examples of heteroaromatic compounds include 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis[5 -(ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (abbreviation: OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4 -biphenylyl)-1,2,4-triazole (abbreviation: TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-(4-biphenylyl)-1,2,4 -triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxazol-2-yl)stilbene (abbreviation: BzOs) be done.
 高分子化合物としては、例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)が挙げられる。 Examples of polymer compounds include poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py), poly[(9, 9-dioctylfluorene-2,7-diyl)-co-(2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy).
 上記材料は、10-6cm/Vs以上の電子移動度を有する材料である。なお、正孔輸送性よりも電子輸送性の高い材料であれば、上記以外の材料を電子輸送層に用いてもよい。 The above material is a material having an electron mobility of 10 −6 cm 2 /Vs or more. Materials other than those described above may be used for the electron transport layer as long as the material has higher electron transport properties than hole transport properties.
電子注入層
 電子注入層は、電子注入性の高い材料を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属、及びこれらの金属を含む化合物を用いることができる。そのような化合物としては、例えば、アルカリ金属酸化物、アルカリ金属ハロゲン化物、アルカリ金属含有有機錯体、アルカリ土類金属酸化物、アルカリ土類金属ハロゲン化物、アルカリ土類金属含有有機錯体、希土類金属酸化物、希土類金属ハロゲン化物、及び希土類金属含有有機錯体が挙げられる。また、これらの化合物を複数混合して用いることもできる。
 その他、電子輸送性を有する材料にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、有機化合物が電子供与体から電子を受け取るため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、受け取った電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す材料であればよい。具体的には、アルカリ金属、アルカリ土類金属及び希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
Electron Injection Layer The electron injection layer is a layer containing a material with high electron injection properties. The electron injection layer contains alkali metals such as lithium (Li) and cesium (Cs), alkaline earth metals such as magnesium (Mg), calcium (Ca) and strontium (Sr), europium (Eu) and ytterbium (Yb). Rare earth metals such as and compounds containing these metals can be used. Examples of such compounds include alkali metal oxides, alkali metal halides, alkali metal-containing organic complexes, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal-containing organic complexes, and rare earth metal oxides. compounds, rare earth metal halides, and rare earth metal-containing organic complexes. Also, a plurality of these compounds can be mixed and used.
In addition, a material having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a material containing magnesium (Mg) in Alq may be used. In this case, electron injection from the cathode can be performed more efficiently.
Alternatively, a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer. Such a composite material has excellent electron injection and electron transport properties because the organic compound receives electrons from the electron donor. In this case, the organic compound is preferably a material that is excellent in transporting the received electrons. Specifically, for example, the material (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to. As the electron donor, any material can be used as long as it exhibits an electron donating property with respect to the organic compound. Specifically, alkali metals, alkaline earth metals and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium and ytterbium. Further, alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide. Lewis bases such as magnesium oxide can also be used. An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
陰極
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
Cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less). Specific examples of such cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca ), alkaline earth metals such as strontium (Sr), and alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
In addition, when forming a cathode using an alkali metal, an alkaline-earth metal, and the alloy containing these, a vacuum deposition method and a sputtering method can be used. Moreover, when silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
By providing an electron injection layer, a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do. These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
絶縁層
 有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層からなる絶縁層を挿入してもよい。
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。なお、これらの混合物や積層物を用いてもよい。
Insulating layer Since an electric field is applied to an ultra-thin organic EL element, pixel defects due to leaks and short circuits are likely to occur. In order to prevent this, an insulating layer made of an insulating thin film layer may be inserted between the pair of electrodes.
Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. , germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like. A mixture or laminate of these materials may also be used.
スペース層
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
Space layer The space layer is, for example, when a fluorescent-emitting layer and a phosphorescent-emitting layer are laminated, for the purpose of preventing excitons generated in the phosphorescent-emitting layer from diffusing into the fluorescent-emitting layer or adjusting the carrier balance. It is a layer provided between the fluorescent-emitting layer and the phosphorescent-emitting layer. A space layer can also be provided between a plurality of phosphorescent-emitting layers.
Since the space layer is provided between the light-emitting layers, it is preferably made of a material having both electron-transporting properties and hole-transporting properties. Moreover, the triplet energy is preferably 2.6 eV or more in order to prevent diffusion of the triplet energy in the adjacent phosphorescent-emitting layer. Materials used for the space layer include those similar to those used for the above-described hole transport layer.
阻止層
 電子阻止層、正孔阻止層、励起子阻止層などの阻止層を発光層に隣接して設けてもいい。電子阻止層とは発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔阻止層とは発光層から電子輸送層へ正孔が漏れることを防ぐ層である。励起子阻止層は発光層で生成した励起子が周辺の層へ拡散することを防止し、励起子を発光層内に閉じ込める機能を有する。
Blocking Layers Blocking layers such as electron blocking layers, hole blocking layers, exciton blocking layers, etc. may be provided adjacent to the light-emitting layer. The electron-blocking layer is a layer that prevents electrons from leaking from the light-emitting layer to the hole-transporting layer, and the hole-blocking layer is a layer that prevents holes from leaking from the light-emitting layer to the electron-transporting layer. The exciton-blocking layer has the function of preventing the excitons generated in the light-emitting layer from diffusing to surrounding layers and confining the excitons within the light-emitting layer.
 前記有機EL素子の各層は従来公知の蒸着法、塗布法等により形成することができる。例えば、真空蒸着法、分子線蒸着法(MBE法)などの蒸着法、あるいは、層を形成する化合物の溶液を用いた、ディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。 Each layer of the organic EL element can be formed by a conventionally known vapor deposition method, coating method, or the like. For example, a vapor deposition method such as a vacuum vapor deposition method or a molecular beam vapor deposition method (MBE method), or a dipping method, a spin coating method, a casting method, a bar coating method, a roll coating method, or the like using a solution of a compound forming a layer. can be formed by a known method by the coating method of .
 各層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い駆動電圧が必要となり効率が悪くなるため、通常5nm~10μmであり、10nm~0.2μmがより好ましい。 The film thickness of each layer is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur. 10 nm to 0.2 μm is more preferable.
 前記有機EL素子は、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、パーソナルコンピュータ等の表示装置、及び、照明、車両用灯具の発光装置等の電子機器に好適に使用できる。 The organic EL elements can be suitably used for display parts such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and electronic devices such as light emitting devices for lighting and vehicle lamps.
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to the following examples.
実施例1~5の有機EL素子の製造に用いた発明化合物
Figure JPOXMLDOC01-appb-C000053
Inventive compounds used in the production of organic EL devices of Examples 1 to 5
Figure JPOXMLDOC01-appb-C000053
比較例1~3の有機EL素子の製造に用いた比較化合物
Figure JPOXMLDOC01-appb-C000054
Comparative compounds used in the production of organic EL devices of Comparative Examples 1-3
Figure JPOXMLDOC01-appb-C000054
実施例1及び比較例1の有機EL素子の製造に用いた他の化合物
Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-C000056
Other compounds used in the production of organic EL devices of Example 1 and Comparative Example 1
Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-C000056
実施例2~3及び比較例2の有機EL素子の製造に用いた他の化合物
Figure JPOXMLDOC01-appb-C000057
Other compounds used in the production of the organic EL devices of Examples 2-3 and Comparative Example 2
Figure JPOXMLDOC01-appb-C000057
実施例4~5及び比較例3の有機EL素子の製造に用いた他の化合物
Figure JPOXMLDOC01-appb-C000058
Other compounds used in the production of organic EL devices of Examples 4-5 and Comparative Example 3
Figure JPOXMLDOC01-appb-C000058
有機EL素子の作製
実施例1
 25mm×75mm×1.1mmのITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄した後、30分間UVオゾン洗浄した。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HAと化合物1を共蒸着し、膜厚10nmの正孔注入層を形成した。化合物1と化合物HAの質量比(化合物1:HA)は97:3であった。
 次に、正孔注入層上に化合物1を蒸着し、膜厚75nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上にHT2を蒸着し、膜厚15nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、膜厚20nmのBH(ホスト材料):BD(ドーパント材料)膜を成膜した。このBH:BD膜は発光層として機能する。発光層に含まれるBH[化合物BH1及びBH2(いずれもホスト材料)]は、質量比で1:1であり、BDの濃度は、発光層全体に対して2質量%である。
 次に、この発光層の上に、化合物ET1を蒸着して膜厚3nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層上に、化合物ET2とLiqを共蒸着し、膜厚30nmの第2電子輸送層を形成した。化合物ET2とLiqの質量比(ET2:Liq)は67:33であった。
 次に、この第2電子輸送層上に、LiFとYbを共蒸着して膜厚1nmの電子注入性電極を形成した。LiFとYbの質量比(LiF:Yb)は50:50であった。
 そして、この電子注入性電極上に金属Alを蒸着して膜厚50nmの金属陰極を形成した。
 このようにして得られた実施例1の有機EL素子の層構成を以下に示す。
 ITO (130)/化合物1:HA=97:3 (10)/化合物1 (75)/HT2 (15)/BH:BD=98:2 (20) /ET-1 (3)/ET2:Liq=67:33 (30)/LiF:Yb=50:50 (1)/Al (50)
 上記層構成において、括弧内の数字は膜厚(nm)であり、比は質量比である。
Preparation Example 1 of Organic EL Device
A 25 mm×75 mm×1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm.
The washed glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and the compound HA and the compound 1 are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of compound 1 to compound HA (compound 1:HA) was 97:3.
Next, compound 1 was vapor-deposited on the hole injection layer to form a first hole transport layer with a film thickness of 75 nm.
Next, HT2 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 15 nm.
Next, a BH (host material):BD (dopant material) film having a thickness of 20 nm was formed on the second hole transport layer. This BH:BD film functions as a light-emitting layer. BH [compounds BH1 and BH2 (both are host materials)] contained in the light-emitting layer has a mass ratio of 1:1, and the concentration of BD is 2% by mass with respect to the entire light-emitting layer.
Next, the compound ET1 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 3 nm.
Next, compound ET2 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer with a thickness of 30 nm. The mass ratio of compound ET2 and Liq (ET2:Liq) was 67:33.
Next, LiF and Yb were co-deposited on the second electron transport layer to form an electron injecting electrode with a thickness of 1 nm. The mass ratio of LiF and Yb (LiF:Yb) was 50:50.
Then, metal Al was vapor-deposited on this electron-injecting electrode to form a metal cathode with a film thickness of 50 nm.
The layer structure of the organic EL device of Example 1 thus obtained is shown below.
ITO (130)/compound 1:HA=97:3 (10)/compound 1 (75)/HT2 (15)/BH:BD=98:2 (20)/ET-1 (3)/ET2:Liq= 67:33 (30)/LiF:Yb=50:50 (1)/Al (50)
In the above layer structure, numbers in parentheses are film thicknesses (nm), and ratios are mass ratios.
外部量子効率(EQE)の測定
 得られた有機EL素子を室温下、電流密度10mA/cmで直流定電流駆動した。輝度計(ミノルタ社製分光輝度放射計CS-1000)を用いて輝度を測定し、その結果から外部量子効率(%)を求めた。結果を表1に示す。
Measurement of External Quantum Efficiency (EQE) The obtained organic EL device was driven at room temperature with a constant DC current at a current density of 10 mA/cm 2 . Luminance was measured using a luminance meter (spectroradiometer CS-1000 manufactured by Minolta), and the external quantum efficiency (%) was determined from the results. Table 1 shows the results.
比較例1
 第1正孔輸送層材料を、比較化合物1に代えた以外は実施例1と同様にして有機EL素子を作製し、外部量子効率を測定した。結果を表1に示す。
Comparative example 1
An organic EL device was produced in the same manner as in Example 1, except that Comparative Compound 1 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
実施例2
 25mm×75mm×1.1mmのITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄した後、30分間UVオゾン洗浄した。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HAと化合物2を共蒸着し、膜厚10nmの正孔注入層を形成した。化合物2と化合物HAの質量比(化合物2:HA)は97:3であった。
 次に、正孔注入層上に化合物2を蒸着し、膜厚80nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上にHT3を蒸着し、膜厚10nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、膜厚25nmのBH3(ホスト材料):BD2(ドーパント材料)膜を成膜した。このBH3:BD2膜は発光層として機能する。発光層に含まれるBH3とBD2の質量比(BH3:BD2)は96:4であり、BDの濃度は、発光層全体に対して4質量%である。
 次に、この発光層の上に、化合物ET3を蒸着して膜厚5nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層上に、化合物ET4とLiqを共蒸着し、膜厚20nmの第2電子輸送層を形成した。化合物ET4とLiqの質量比(ET4:Liq)は50:50であった。
 次に、この第2電子輸送層上に、LiFを蒸着して膜厚1nmの電子注入性電極を形成した。そして、この電子注入性電極上に金属Alを蒸着して膜厚50nmの金属陰極を形成した。
 このようにして得られた実施例2の有機EL素子の層構成を以下に示す。
 ITO (130)/化合物2:HA=97:3 (10)/化合物2 (80)/HT3 (10)/BH3:BD2=96:4 (25) /ET3 (5)/ET4:Liq=50:50 (20)/LiF (1)/Al (50)
 上記層構成において、括弧内の数字は膜厚(nm)であり、比は質量比である。
 実施例1と同様にし、外部量子効率を測定した。結果を表1に示す。
Example 2
A 25 mm×75 mm×1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm.
The washed glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and the compound HA and the compound 2 are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of compound 2 to compound HA (compound 2:HA) was 97:3.
Next, compound 2 was deposited on the hole injection layer to form a first hole transport layer with a thickness of 80 nm.
Next, HT3 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 10 nm.
Next, a BH3 (host material):BD2 (dopant material) film having a thickness of 25 nm was formed on the second hole transport layer. This BH3:BD2 film functions as a light-emitting layer. The mass ratio (BH3:BD2) of BH3 and BD2 contained in the light-emitting layer was 96:4, and the concentration of BD was 4% by mass with respect to the entire light-emitting layer.
Next, the compound ET3 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 5 nm.
Next, compound ET4 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 20 nm. The mass ratio of compounds ET4 and Liq (ET4:Liq) was 50:50.
Next, LiF was vapor-deposited on the second electron-transporting layer to form an electron-injecting electrode with a film thickness of 1 nm. Then, metal Al was vapor-deposited on this electron-injecting electrode to form a metal cathode with a film thickness of 50 nm.
The layer structure of the organic EL device of Example 2 thus obtained is shown below.
ITO (130)/Compound 2:HA=97:3 (10)/Compound 2 (80)/HT3 (10)/BH3:BD2=96:4 (25)/ET3 (5)/ET4:Liq=50: 50(20)/LiF(1)/Al(50)
In the above layer structure, numbers in parentheses are film thicknesses (nm), and ratios are mass ratios.
External quantum efficiency was measured in the same manner as in Example 1. Table 1 shows the results.
実施例3
 第1正孔輸送層材料を、化合物3に代えた以外は実施例2と同様にして有機EL素子を作製し、外部量子効率を測定した。結果を表1に示す。
Example 3
An organic EL device was produced in the same manner as in Example 2 except that Compound 3 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
比較例2
 第1正孔輸送層材料を、比較化合物2に代えた以外は実施例2と同様にして有機EL素子を作製し、外部量子効率を測定した。結果を表1に示す。
Comparative example 2
An organic EL device was produced in the same manner as in Example 2, except that Comparative Compound 2 was used as the material for the first hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
実施例4
 25mm×75mm×1.1mmのITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄した後、30分間UVオゾン洗浄した。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにしてHT4と化合物HAとを共蒸着し、膜厚10nmの正孔注入層を形成した。HT4と化合物HAの質量比(HT4:HA)は97:3であった。
 次に、正孔注入層上にHT4を蒸着し、膜厚35nmの第1正孔輸送層を形成した。
 次に、第1正孔輸送層上に化合物1を蒸着し、膜厚40nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上にHT2を蒸着し、膜厚7.5nmの第3正孔輸送層を形成した。
 次に、この第3正孔輸送層上に、膜厚20nmのBH1(ホスト材料):BH2(ホスト材料):BD3(ドーパント材料)膜を成膜した。このBH1:BH2:BD3膜は発光層として機能する。発光層に含まれるBH1:BH2:BD3は、質量比で60:40:2である。
 次に、この発光層の上に、化合物ET5を蒸着して膜厚3nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層上に、化合物ET2とLiqを共蒸着し、膜厚30nmの第2電子輸送層を形成した。化合物ET2とLiqの質量比(ET2:Liq)は67:33であった。
 次に、この第2電子輸送層上に、LiFとYbを共蒸着して膜厚1nmの電子注入性電極を形成した。LiFとYbの質量比(LiF:Yb)は50:50であった。
 そして、この電子注入性電極上に金属Alを蒸着して膜厚50nmの金属陰極を形成した。
 このようにして得られた実施例4の有機EL素子の層構成を以下に示す。
 ITO (130)/HT4:HA=97:3 (10)/HT4 (35)/化合物1 (40)/HT2 (7.5)/BH1:BH2:BD3=60:40:2 (20) /ET5 (3)/ET2:Liq=67:33 (30)/LiF:Yb=50:50 (1)/Al (50)
 上記層構成において、括弧内の数字は膜厚(nm)であり、比は質量比である。
 実施例1と同様にし、外部量子効率を測定した。結果を表1に示す。
Example 4
A 25 mm×75 mm×1.1 mm glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatec Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. The film thickness of ITO was set to 130 nm.
After washing, the glass substrate with the transparent electrode is mounted on a substrate holder of a vacuum deposition apparatus, and HT4 and compound HA are co-deposited on the surface on which the transparent electrode is formed so as to cover the transparent electrode, A hole injection layer having a thickness of 10 nm was formed. The mass ratio of HT4 to compound HA (HT4:HA) was 97:3.
Next, HT4 was deposited on the hole injection layer to form a first hole transport layer with a thickness of 35 nm.
Next, Compound 1 was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 40 nm.
Next, HT2 was deposited on the second hole transport layer to form a third hole transport layer with a film thickness of 7.5 nm.
Next, a BH1 (host material):BH2 (host material):BD3 (dopant material) film having a thickness of 20 nm was formed on the third hole transport layer. This BH1:BH2:BD3 film functions as a light-emitting layer. BH1:BH2:BD3 contained in the light-emitting layer has a mass ratio of 60:40:2.
Next, the compound ET5 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer having a thickness of 3 nm.
Next, compound ET2 and Liq were co-deposited on the first electron transport layer to form a second electron transport layer with a thickness of 30 nm. The mass ratio of compound ET2 and Liq (ET2:Liq) was 67:33.
Next, LiF and Yb were co-deposited on the second electron transport layer to form an electron injecting electrode with a thickness of 1 nm. The mass ratio of LiF and Yb (LiF:Yb) was 50:50.
Then, metal Al was vapor-deposited on this electron-injecting electrode to form a metal cathode with a film thickness of 50 nm.
The layer structure of the organic EL device of Example 4 thus obtained is shown below.
ITO (130)/HT4:HA=97:3 (10)/HT4 (35)/compound 1 (40)/HT2 (7.5)/BH1:BH2:BD3=60:40:2 (20)/ET5 (3) )/ET2:Liq=67:33(30)/LiF:Yb=50:50(1)/Al(50)
In the above layer structure, numbers in parentheses are film thicknesses (nm), and ratios are mass ratios.
External quantum efficiency was measured in the same manner as in Example 1. Table 1 shows the results.
実施例5
 第2正孔輸送層材料を、化合物4に代えた以外は実施例4と同様にして有機EL素子を作製し、外部量子効率を測定した。結果を表1に示す。
Example 5
An organic EL device was produced in the same manner as in Example 4 except that Compound 4 was used as the material for the second hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
比較例3
 第2正孔輸送層材料を、比較化合物3に代えた以外は実施例4と同様にして有機EL素子を作製し、外部量子効率を測定した。結果を表1に示す。
Comparative example 3
An organic EL device was produced in the same manner as in Example 4, except that Comparative Compound 3 was used as the material for the second hole transport layer, and the external quantum efficiency was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 表1の結果から明らかなように、発明化合物(化合物1)を含む有機EL素子は、比較化合物1を含む有機EL素子よりも、また、発明化合物(化合物2、化合物3)を含む有機EL素子は、比較化合物2を含む有機EL素子よりも、さらに、発明化合物(化合物1、化合物4)を含む有機EL素子は、比較化合物3を含む有機EL素子よりも、いずれも外部量子効率に優れていることが分かる。 As is clear from the results in Table 1, the organic EL device containing the invention compound (compound 1) is more effective than the organic EL device containing the comparative compound 1, and the organic EL device containing the invention compounds (compound 2 and compound 3). is superior to the organic EL device containing the comparative compound 2, and the organic EL device containing the invention compounds (compound 1, compound 4) is superior to the organic EL device containing the comparative compound 3 in terms of external quantum efficiency. I know there is.
合成実施例で合成した化合物1~化合物4
Figure JPOXMLDOC01-appb-C000060
Compounds 1 to 4 synthesized in Synthesis Examples
Figure JPOXMLDOC01-appb-C000060
中間体合成例1:中間体Cの合成
Figure JPOXMLDOC01-appb-C000061
Intermediate Synthesis Example 1: Synthesis of Intermediate C
Figure JPOXMLDOC01-appb-C000061
 アルゴン雰囲気下、1-(2-ブロモ-5-クロロフェニル)エタノン4.67g(20.0mmol)、2-ビフェニルボロン酸4.75g(24.0mmol)、1,1‘-[ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物 0.327g(0.4mmol)、炭酸ナトリウム4.239g(40mmol)、DME50mLおよび水20mLの混合物を80℃にて3時間攪拌した。反応液を室温に冷却し、水を加えたのち、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、4.80gの中間体A(白色固体)を得た。収率78%であった。
 得られた中間体A4.80g(15.65mmol)とテトラヒドロフラン31mLの混合物をアルゴン雰囲気下、0℃に冷却した後、臭化フェニルマグネシウムテトラヒドロフラン溶液 46.9mL(46.9mmol)を滴下した。得られた混合物を加熱還流下、7時間攪拌した。反応液を室温に冷却し、塩化アンモニウム水溶液を加え攪拌した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶にて精製し、5.60gの中間体B(白色固体)を得た。収率65%であった。
 さらに、アルゴン雰囲気下、得られた中間体B5.49g(14.26mmol)とジクロロメタン71mLの混合物に対して、三フッ化ほう素ジエチルエーテル錯体2.63g(18.54mmol)を滴下した後、混合物を室温にて1時間攪拌した。炭酸水素ナトリウム水溶液を加えたのち、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、3.68gの中間体C(白色固体)を得た。収率70%であった。
Under an argon atmosphere, 1-(2-bromo-5-chlorophenyl)ethanone 4.67 g (20.0 mmol), 2-biphenylboronic acid 4.75 g (24.0 mmol), 1,1′-[bis(diphenylphosphino ) A mixture of 0.327 g (0.4 mmol) of ferrocene]palladium(II) dichloride dichloromethane adduct, 4.239 g (40 mmol) of sodium carbonate, 50 mL of DME and 20 mL of water was stirred at 80° C. for 3 hours. The reaction mixture was cooled to room temperature, water was added, and the mixture was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 4.80 g of Intermediate A (white solid). Yield was 78%.
A mixture of 4.80 g (15.65 mmol) of the obtained intermediate A and 31 mL of tetrahydrofuran was cooled to 0° C. under an argon atmosphere, and then 46.9 mL (46.9 mmol) of phenylmagnesium bromide tetrahydrofuran solution was added dropwise. The resulting mixture was heated under reflux and stirred for 7 hours. The reaction solution was cooled to room temperature, an aqueous ammonium chloride solution was added, and the mixture was stirred and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography and recrystallization to obtain 5.60 g of Intermediate B (white solid). Yield was 65%.
Furthermore, in an argon atmosphere, to a mixture of 5.49 g (14.26 mmol) of the obtained intermediate B and 71 mL of dichloromethane, 2.63 g (18.54 mmol) of boron trifluoride diethyl ether complex was added dropwise, and then the mixture was stirred at room temperature for 1 hour. After adding an aqueous sodium hydrogencarbonate solution, the mixture was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 3.68 g of Intermediate C (white solid). Yield was 70%.
合成実施例1:化合物1の合成
Figure JPOXMLDOC01-appb-C000062
Synthesis Example 1: Synthesis of Compound 1
Figure JPOXMLDOC01-appb-C000062
 アルゴン雰囲気下、国際公開広報WO2015/053403に記載の方法と同様にして合成したN-([1,1‘-ビフェニル]-2-イル)-9,9-ジメチル-9H-フルオレン-2-アミン 2.169g(6mmol)、中間体C 2.421g(6.6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.110g(0.12mmol)、ジシクロヘキシル(2’,6‘-ジメトキシ-[1,1’-ビフェニル]-2-イル)ホスフィン(Sphos) 0.197g(0.48mmol)、ナトリウム-t-ブトキシド 0.807g(8.4mmol)、キシレン60mLの混合物を130℃にて3時間撹拌した。反応液を室温に冷却したのち、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶にて精製し、3.89gの白色固体を得た。収率は94%であった。
 得られたものは、マススペクトル分析の結果(分子量691.32に対しm/e=691)、化合物1であった。
N-([1,1′-biphenyl]-2-yl)-9,9-dimethyl-9H-fluorene-2-amine synthesized in the same manner as described in International Publication WO2015/053403 under an argon atmosphere 2.169 g (6 mmol), intermediate C 2.421 g (6.6 mmol), tris(dibenzylideneacetone)dipalladium(0) 0.110 g (0.12 mmol), dicyclohexyl (2′,6′-dimethoxy-[ A mixture of 0.197 g (0.48 mmol) of 1,1′-biphenyl]-2-yl)phosphine (Sphos), 0.807 g (8.4 mmol) of sodium-t-butoxide and 60 mL of xylene was heated at 130° C. for 3 hours. Stirred. After the reaction solution was cooled to room temperature, it was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography and recrystallization to obtain 3.89 g of white solid. Yield was 94%.
The obtained product was Compound 1 as a result of mass spectroscopic analysis (m/e=691 for a molecular weight of 691.32).
合成実施例2:化合物2の合成
Figure JPOXMLDOC01-appb-C000063
Synthesis Example 2: Synthesis of Compound 2
Figure JPOXMLDOC01-appb-C000063
 化合物1の合成において、N-([1,1‘-ビフェニル]-2-イル)-9,9-ジメチル-9H-フルオレン-2-アミンの代わりにN-(9,9-ジフェニル-9H-フルオレン-2-イル)-9,9-ジフェニル-9H-フルオレン-2-アミンを用いて同様な方法により化合物2を合成した。
 得られたものは、マススペクトル分析の結果(分子量980.27に対しm/e=980)、化合物2であった。
In the synthesis of compound 1, N-(9,9-diphenyl-9H- Compound 2 was synthesized in a similar manner using fluoren-2-yl)-9,9-diphenyl-9H-fluoren-2-amine.
The obtained product was Compound 2 as a result of mass spectroscopic analysis (m/e=980 for a molecular weight of 980.27).
合成実施例3:化合物3の合成
Figure JPOXMLDOC01-appb-C000064
Synthesis Example 3: Synthesis of Compound 3
Figure JPOXMLDOC01-appb-C000064
 化合物1の合成において、N-([1,1‘-ビフェニル]-2-イル)-9,9-ジメチル-9H-フルオレン-2-アミンの代わりにN-(9,9-ジフェニル-9H-フルオレン-2-イル)-2-ジベンゾチオフェンアミンを用いて同様な方法により化合物3を合成した。
 得られたものは、マススペクトル分析の結果(分子量846.10に対しm/e=846)、化合物3であった。
In the synthesis of compound 1, N-(9,9-diphenyl-9H- Compound 3 was synthesized in a similar manner using fluoren-2-yl)-2-dibenzothiophenamine.
The product obtained was Compound 3 as a result of mass spectroscopic analysis (m/e=846 for a molecular weight of 846.10).
合成実施例4:化合物4の合成
Figure JPOXMLDOC01-appb-C000065
Synthesis Example 4: Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000065
 化合物1の合成において、N-([1,1‘-ビフェニル]-2-イル)-9,9-ジメチル-9H-フルオレン-2-アミンの代わりにN-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9-ジメチル-9H-フルオレン-2-アミンを用いて同様な方法により化合物4を合成した。
 得られたものは、マススペクトル分析の結果(分子量731.98に対しm/e=732)、化合物4であった。
In the synthesis of compound 1, N-(9,9-dimethyl-9H- Compound 4 was synthesized in a similar manner using fluoren-2-yl)-9,9-dimethyl-9H-fluoren-2-amine.
The obtained product was compound 4 as a result of mass spectroscopic analysis (m/e=732 for a molecular weight of 731.98).
 1、11 有機EL素子
 2 基板
 3 陽極
 4 陰極
 5 発光層
 6 正孔輸送帯域(正孔輸送層)
 6a 正孔注入層
 6b 第1正孔輸送層
 6c 第2正孔輸送層
 7 電子輸送帯域(電子輸送層)
 7a 第1電子輸送層
 7b 第2電子輸送層
 10、20 発光ユニット
Reference Signs List 1, 11 organic EL element 2 substrate 3 anode 4 cathode 5 light emitting layer 6 hole transport zone (hole transport layer)
6a hole injection layer 6b first hole transport layer 6c second hole transport layer 7 electron transport zone (electron transport layer)
7a first electron transport layer 7b second electron transport layer 10, 20 light emitting unit

Claims (20)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、
     Nは中心窒素原子であり、
     R及びRの一方は、無置換のメチル基であり、他方は無置換のフェニル基であり、
     RとRは、互いに結合せず、したがって環構造を形成しない。
     R及びRは、それぞれ独立して、水素原子、無置換のメチル基、又は無置換のフェニル基であり、
     RとRは、互いに結合せず、したがって環構造を形成しない。
     R11~R16、及びR21~R27は、水素原子である。
     R31~R35は、水素原子である。
     Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1),
    N * is the central nitrogen atom,
    one of R 1 and R 2 is an unsubstituted methyl group and the other is an unsubstituted phenyl group;
    R 1 and R 2 are not bonded to each other and thus do not form a ring structure.
    R 3 and R 4 are each independently a hydrogen atom, an unsubstituted methyl group, or an unsubstituted phenyl group;
    R3 and R4 are not bonded to each other and thus do not form a ring structure.
    R 11 to R 16 and R 21 to R 27 are hydrogen atoms.
    R 31 to R 35 are hydrogen atoms.
    Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
    L is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms. )
  2.  式(1)が、下記式(1-1)又は(1-2)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002

    (式(1-1)又は(1-2)中、
     N、L、R~R、R11~R16、R21~R27、及びR31~R35は、式(1)において定義したとおりである。
     R41~R46、及びR51~R60は、
    それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
     ただし、
     R41~R46から選ばれる1つは*aに結合する単結合であり、
     R51~R60から選ばれる1つは*bに結合する単結合であり、
     前記単結合ではないR41~R46から選ばれる隣接する2つ、前記単結合ではないR51~R60から選ばれる隣接する2つは、互いに結合せず、したがって環構造を形成しない。)
    The compound according to claim 1, wherein formula (1) is represented by the following formula (1-1) or (1-2).
    Figure JPOXMLDOC01-appb-C000002

    (In formula (1-1) or (1-2),
    N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
    R 41 to R 46 and R 51 to R 60 are
    Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
    however,
    one selected from R 41 to R 46 is a single bond that bonds to *a;
    one selected from R 51 to R 60 is a single bond that bonds to *b;
    Adjacent two selected from R 41 to R 46 which are not single bonds and adjacent two selected from R 51 to R 60 which are not single bonds are not bonded to each other and thus do not form a ring structure. )
  3.  式(1)が、下記式(1-3)又は(1-4)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003

    (式(1-3)又は(1-4)中、
     N、L、R~R、R11~R16、R21~R27、及びR31~R35は、式(1)において定義したとおりである。
     R61~R68、及びR71~R78は、
    それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
     Xは、酸素原子、硫黄原子、又はCRであり、
     R及びRは、それぞれ独立して、置換もしくは無置換の炭素数1~50のアルキル基又は置換もしくは無置換の環形成炭素数6~50のアリール基であり、RとRは単結合を介して結合してもよい。
     ただし、
     R61~R68から選ばれる1つは*cに結合する単結合であり、
     R71~R78から選ばれる1つは*dに結合する単結合であり、
     前記単結合ではないR61~R68から選ばれる隣接する2つ、前記単結合ではないR71~R78から選ばれる隣接する2つは、互いに結合せず、したがって環構造を形成しない。)
    The compound according to claim 1, wherein formula (1) is represented by the following formula (1-3) or (1-4).
    Figure JPOXMLDOC01-appb-C000003

    (In formula (1-3) or (1-4),
    N * , L, R 1 -R 4 , R 11 -R 16 , R 21 -R 27 , and R 31 -R 35 are as defined in formula (1).
    R 61 to R 68 and R 71 to R 78 are
    Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, a halogen atom, a cyano group, a nitro group, a substituted or It is an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
    X is an oxygen atom, a sulfur atom, or CR a R b ;
    R a and R b are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, and R a and R b are It may be linked through a single bond.
    however,
    one selected from R 61 to R 68 is a single bond that bonds to *c;
    one selected from R 71 to R 78 is a single bond that bonds to *d;
    Adjacent two selected from R 61 to R 68 which are not single bonds and adjacent two selected from R 71 to R 78 which are not single bonds are not bonded to each other and thus do not form a ring structure. )
  4.  Lは、単結合である、請求項1~3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein L is a single bond.
  5.  Lは、フェニレン基、ビフェニレン基、及びナフチレン基から選ばれる、請求項1~3のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein L is selected from a phenylene group, a biphenylene group and a naphthylene group.
  6.  R41~R46、R51~R60、R61~R68、及びR71~R78は、
    それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である、請求項2又は3に記載の化合物。
    R 41 to R 46 , R 51 to R 60 , R 61 to R 68 , and R 71 to R 78 are
    Each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted 5 to 5 ring-forming atoms 4. A compound according to claim 2 or 3, which is a 50 heterocyclic group.
  7.  *aに結合する単結合ではないR41~R46が、すべて水素原子である、請求項2に記載の化合物。 The compound according to claim 2, wherein all R 41 to R 46 that are not single bonds attached to *a are hydrogen atoms.
  8.  *bに結合する単結合ではないR51~R60が、すべて水素原子である、請求項2に記載の化合物。 3. The compound according to claim 2, wherein all R 51 to R 60 that are not single bonds attached to *b are hydrogen atoms.
  9.  *cに結合する単結合ではないR61~R68が、すべて水素原子である、請求項3に記載の化合物。 4. The compound according to claim 3, wherein all R 61 to R 68 that are not single bonds attached to *c are hydrogen atoms.
  10.  *dに結合する単結合ではないR71~R78が、すべて水素原子である、請求項3に記載の化合物。 4. The compound according to claim 3, wherein all R 71 to R 78 that are not single bonds attached to *d are hydrogen atoms.
  11.  前記式(1)で表される化合物が少なくとも1個の重水素原子を含む、請求項1~10のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 10, wherein the compound represented by formula (1) contains at least one deuterium atom.
  12.  請求項1~11のいずれか1項に記載の化合物を有する,有機エレクトロルミネッセンス素子用材料。 A material for an organic electroluminescence device, comprising the compound according to any one of claims 1 to 11.
  13.  陰極、陽極、及び該陰極と該陽極の間に有機層を有する有機エレクトロルミネッセンス素子であって、該有機層が発光層を含み、該有機層の少なくとも1層が請求項1~11のいずれか1項に記載の化合物を含む,有機エレクトロルミネッセンス素子。 An organic electroluminescence device having a cathode, an anode, and an organic layer between the cathode and the anode, wherein the organic layer comprises a light-emitting layer, and at least one of the organic layers is any one of claims 1 to 11. An organic electroluminescence device comprising the compound according to item 1.
  14.  前記有機層が前記陽極と前記発光層の間に正孔輸送帯域を含み、該正孔輸送帯域が前記化合物を含む、請求項13に記載の有機エレクトロルミネッセンス素子。 14. The organic electroluminescence device according to claim 13, wherein said organic layer comprises a hole-transporting zone between said anode and said light-emitting layer, said hole-transporting zone comprising said compound.
  15.  前記正孔輸送帯域が陽極側の第1正孔輸送層と陰極側の第2正孔輸送層を含み、該第1正孔輸送層、該第2正孔輸送層、又は双方が前記化合物を含む、請求項14に記載の有機エレクトロルミネッセンス素子。 wherein the hole-transporting zone comprises a first hole-transporting layer on the anode side and a second hole-transporting layer on the cathode side, wherein the first hole-transporting layer, the second hole-transporting layer, or both contain the compound; 15. The organic electroluminescent device of claim 14, comprising
  16.  前記第1正孔輸送層が前記化合物を含む、請求項15に記載の有機エレクトロルミネッセンス素子。 16. The organic electroluminescence device according to claim 15, wherein said first hole transport layer contains said compound.
  17.  前記第2正孔輸送層が前記発光層に隣接する、請求項15に記載の有機エレクトロルミネッセンス素子。 16. The organic electroluminescence device according to claim 15, wherein said second hole transport layer is adjacent to said light emitting layer.
  18.  前記発光層が蛍光ドーパント材料を含む、請求項13~17のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 13 to 17, wherein the light-emitting layer contains a fluorescent dopant material.
  19.  前記発光層が燐光ドーパント材料を含む、請求項13~17のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 13 to 17, wherein the light-emitting layer contains a phosphorescent dopant material.
  20.  請求項13~19のいずれか1項に記載の有機エレクトロルミネッセンス素子を含む、電子機器。  An electronic device comprising the organic electroluminescence element according to any one of claims 13 to 19. 
PCT/JP2022/015770 2021-03-31 2022-03-30 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device WO2022210821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280024095.3A CN117083261A (en) 2021-03-31 2022-03-30 Compound, material for organic electroluminescent element, and electronic device
KR1020237032191A KR20230162933A (en) 2021-03-31 2022-03-30 Compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062129 2021-03-31
JP2021062129 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210821A1 true WO2022210821A1 (en) 2022-10-06

Family

ID=83456511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015770 WO2022210821A1 (en) 2021-03-31 2022-03-30 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Country Status (3)

Country Link
KR (1) KR20230162933A (en)
CN (1) CN117083261A (en)
WO (1) WO2022210821A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505133A (en) * 2015-10-26 2018-02-22 エルジー・ケム・リミテッド Amine compound and organic light-emitting device containing the same
KR20180040079A (en) * 2016-10-11 2018-04-19 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
KR20180043726A (en) * 2016-10-20 2018-04-30 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
WO2020225071A1 (en) * 2019-05-03 2020-11-12 Merck Patent Gmbh Electronic device
JP2021506822A (en) * 2017-12-15 2021-02-22 メルク パテント ゲーエムベーハー Substituted aromatic amines for use in organic electroluminescent devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445930A (en) 2012-08-31 2017-12-08 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
KR102111149B1 (en) 2016-11-11 2020-05-14 주식회사 엘지화학 Organic light emitting device
KR102192367B1 (en) 2018-01-11 2020-12-17 주식회사 엘지화학 Organic light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505133A (en) * 2015-10-26 2018-02-22 エルジー・ケム・リミテッド Amine compound and organic light-emitting device containing the same
KR20180040079A (en) * 2016-10-11 2018-04-19 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
KR20180043726A (en) * 2016-10-20 2018-04-30 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
JP2021506822A (en) * 2017-12-15 2021-02-22 メルク パテント ゲーエムベーハー Substituted aromatic amines for use in organic electroluminescent devices
WO2020225071A1 (en) * 2019-05-03 2020-11-12 Merck Patent Gmbh Electronic device

Also Published As

Publication number Publication date
KR20230162933A (en) 2023-11-29
CN117083261A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
JP7196363B2 (en) Compounds, materials for organic electroluminescence devices, organic electroluminescence devices and electronic devices
WO2021157635A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP7177966B2 (en) Compounds, materials for organic electroluminescence devices, organic electroluminescence devices and electronic devices
WO2021033730A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2022250103A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2022181072A1 (en) Organic electroluminescent element and electronic device
WO2021157580A1 (en) Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
WO2021131657A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element and electronic device
WO2022210821A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
JP7249470B2 (en) Compounds, materials for organic electroluminescence devices, organic electroluminescence devices and electronic devices
WO2022163735A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2022168761A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
JP7351039B2 (en) Compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices
WO2022163734A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
WO2022181508A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP7411122B2 (en) Compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices
WO2022270638A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2022230967A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2022230963A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
WO2022270296A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2023026864A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2023199960A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2024071062A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2023027173A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
WO2023223855A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024095.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781032

Country of ref document: EP

Kind code of ref document: A1