WO2022210804A1 - Load test method and analysis system - Google Patents

Load test method and analysis system Download PDF

Info

Publication number
WO2022210804A1
WO2022210804A1 PCT/JP2022/015727 JP2022015727W WO2022210804A1 WO 2022210804 A1 WO2022210804 A1 WO 2022210804A1 JP 2022015727 W JP2022015727 W JP 2022015727W WO 2022210804 A1 WO2022210804 A1 WO 2022210804A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
pipe pile
acceleration
load test
vibrator
Prior art date
Application number
PCT/JP2022/015727
Other languages
French (fr)
Japanese (ja)
Inventor
一訓 稲積
博文 田口
秀和 松原
通宏 中島
真二 西村
Original Assignee
株式会社大林組
東亜建設工業株式会社
Jfeスチール株式会社
株式会社ガンケン
株式会社シーズエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大林組, 東亜建設工業株式会社, Jfeスチール株式会社, 株式会社ガンケン, 株式会社シーズエンジニアリング filed Critical 株式会社大林組
Publication of WO2022210804A1 publication Critical patent/WO2022210804A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/24Placing by using fluid jets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness

Definitions

  • the present invention relates to a load test method for steel pipe piles driven into bedrock, and an analysis system used for the load test.
  • Known load test methods for evaluating the bearing capacity of foundation piles include static load test methods, dynamic load test methods, and rapid load test methods.
  • dynamic loading test method a rapid loading test with a relative loading time Tr of 5 or more and less than 500 and an impact loading test with a relative loading time Tr of less than 5 are performed.
  • a hammer driving machine and a monken are used as force applying devices.
  • the gunpile method (registered trademark) is known as a method of driving steel pipe piles into bedrock.
  • steel pipe piles with reinforced tips are driven directly into the bedrock.
  • a vibrator is used to vertically vibrate the steel pipe pile to crush the bedrock, and jet water is supplied to the tip of the steel pipe pile through the hollow part of the steel pipe pile to remove rock crushed powder. Install steel pipe piles.
  • Patent Document 1 requires a step of forming a measurement hole near the steel pipe pile, which increases the labor and cost of the load test.
  • a load test method for solving the above problems is a load test method for a steel pipe pile driven using a vibrator, in which the steel pipe pile is vertically vibrated by the vibrator to crush the rock and crush the steel pipe pile. Jet water is supplied to the tip of the steel pipe pile through the hollow part of the steel pipe pile to drive the steel pipe pile while removing rock crushed powder, and after reaching the support layer, the jet water supply is stopped, and the vibrator is used as a force applying device to obtain the acceleration of the steel pipe pile when vibration is applied to the steel pipe pile, and the ground resistance of the rock is calculated using the obtained acceleration.
  • FIG. 1 is a block diagram showing a schematic configuration of an analysis system; (a) Graph showing an example of the measurement result of the acceleration of the steel pipe pile, (b) Graph showing the speed of the steel pipe pile based on the acceleration, (c) Graph showing the displacement of the steel pipe pile based on the acceleration, (d) The vibrator is Graph showing the load applied to the steel pipe pile, (e) a graph showing an example of the reaction force of the ground against the steel pipe pile, (f) a graph showing the relationship between the displacement of the steel pipe pile and the ground resistance, (g) the steel pipe in the CASE method The graph which shows an example of the reaction force of the ground with respect to a pile, (h) The graph which shows the relationship between the displacement of a steel pipe pile and ground resistance in CASE method.
  • FIG. 1 In the gunpile construction method (registered trademark), a hollow steel pipe pile 12 with a reinforced tip is driven into a rock 11 by a vibrator 13 .
  • the rock 11 is pulverized by vibrating the steel pipe pile 12 vertically with the vibrator 13 .
  • low-pressure jet water is supplied to the tip of the steel pipe pile 12 through the supply path 14 arranged inside the steel pipe pile 12 to drive the steel pipe pile 12 while removing rock crushed powder.
  • the hollow portion of the steel pipe pile 12 after driving is filled with a grout material made of a cement-based material such as mortar.
  • the load test method of this embodiment is performed using the vibrator 13 as a force applying device on the steel pipe pile 12 driven by the gunpile method described above.
  • a load test equivalent to an impact load test can be performed.
  • the vibrator 13 has a box 15 , a gripper 16 and a vibration drive source 17 .
  • the box 15 is suspended by, for example, a crane (not shown).
  • the grip part 16 is supported by the lower end of the box 15 .
  • the gripping portion 16 grips the steel pipe pile 12 by applying a driving force from a gripping drive source (not shown).
  • the vibration driving source 17 is housed inside the box 15 .
  • the vibration driving source 17 of this embodiment is electrically driven. Note that the vibration drive source 17 may be of a hydraulic type.
  • the vibration drive source 17 applies force to the steel pipe pile 12 by vertically vibrating the gripping portion 16 when driven.
  • a strain gauge 18 and an acceleration gauge 19 are attached to the steel pipe pile 12 .
  • the strain gauge 18 measures strain of the steel pipe pile 12 when vibration is applied from the vibrator 13 .
  • the acceleration measuring device 19 measures the acceleration of the steel pipe pile 12 when vibration is given from the vibrator 13 . Measured values of the strain measuring device 18 and the acceleration measuring device 19 are input to the analysis system 20 .
  • the analysis system 20 is a system for analyzing a load test of the steel pipe pile 12 using the vibrator 13 as a force adding device. A load test is performed before the hollow portion of the steel pipe pile 12 is filled with the grout material, or when the filled grout material is in an unhardened state.
  • the analysis system 20 has an information processing device 21 as a main component.
  • the information processing device 21 acquires various kinds of information and executes various kinds of processing based on the acquired various kinds of information, programs and various data stored in the memory.
  • the information processing device 21 can be configured as a circuit including one or more dedicated hardware circuits such as ASIC, one or more processors that operate according to a computer program (software), or a combination thereof.
  • a processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes.
  • Memory or computer-readable media includes any media that can be accessed by a general purpose or special purpose computer.
  • An input device 22 and a display device 23 are electrically connected to the information processing device 21 in addition to the strain measuring device 18 and the acceleration measuring device 19 described above.
  • the input device 22 includes a keyboard, pointing device, and the like.
  • the input device 22 inputs to the information processing device 21 various information, execution instructions of various processes, and the like.
  • the display device 23 displays the measurement values of the accelerometer 19, the results of various processes executed by the information processing device 21, and the like.
  • the information processing device 21 has a processing section 25 and a data storage section 26 .
  • the processing unit 25 executes various processes.
  • the processing unit 25 executes analysis processing when an analysis start operation is performed on the input device 22 .
  • the processing unit 25 associates the strain ⁇ input from the strain measuring device 18 and the acceleration a input from the acceleration measuring device 19 for a predetermined period from the analysis start operation for each acquisition timing.
  • Stored in the data storage unit 26 .
  • the processing unit 25 calculates the ground resistance Rsoil of the rock 11 using the stored strain ⁇ and acceleration a.
  • the processing unit 25 of the present embodiment calculates the static resistance component Rw of the rock 11 by the unloading point method, and calculates the calculated static resistance component Rw as the ground resistance Rsoil.
  • the load test procedure will be explained.
  • target information regarding the steel pipe pile 12 is input to the information processing device 21 through the input device 22 .
  • the target information is information indicating the mechanical properties of the steel pipe pile 12 , such as the Young's modulus of the steel pipe pile 12 , the inner diameter, the outer diameter, the mass M, and the like.
  • the processing unit 25 of the information processing device 21 stores the input target information in the data storage unit 26 .
  • the load test is conducted after driving the steel pipe piles 12 to a predetermined depth that reaches the bearing layer, and then stopping the jet water supply.
  • the input device 22 is operated to start analysis.
  • the processing unit 25 of the information processing device 21 starts analysis processing.
  • the processing unit 25 stores the strain ⁇ and the acceleration a in the data storage unit 26 .
  • the processing unit 25 calculates the load F acting on the steel pipe pile 12 at each acquisition timing based on the strain ⁇ and the Young's modulus of the steel pipe pile 12 stored in the data storage unit 26, and the processing unit 25 calculates the static resistance component Rw by the unloading point method using the load F, the mass M of the steel pipe pile 12, and the acceleration a.
  • FIGS. 3(a) to 3(f) are graphs showing an example of the results of actual loading tests.
  • the acceleration a obtained in the load test shows a spike-like behavior that changes greatly in a short period of time.
  • Such a spike-like behavior of the acceleration a is obtained by using the vibrator 13 as a force applying device for the steel pipe pile 12 driven into the rock 11 .
  • the downward acceleration a is indicated by a negative value.
  • the load F shows a spike-like behavior more than the velocity and displacement, although not as much as the acceleration a.
  • the reaction force Fsoil from the bedrock 11 exhibits spike-like behavior similar to the acceleration a.
  • FIG. 3(f) is a graph showing the relationship between the ground resistance and the displacement of the steel pipe pile 12, with the reaction force Fsoil from the bedrock 11 being the ground resistance.
  • the amount of downward displacement is indicated by plus.
  • the ground resistance as shown in FIG. It shows a similar spike-like behavior.
  • the maximum value at the maximum displacement is calculated as the static resistance component Rw, that is, the ground resistance Rsoil.
  • the CASE method is known as another method for calculating such ground resistance Rsoil.
  • the CASE method measures an input wave and a reflected wave, and calculates the total ground resistance (static resistance component Rw+dynamic resistance component Rv) based on the measured input wave and reflected wave. Then, the static resistance component Rw obtained by separating the dynamic resistance component Rv from the total resistance is calculated as the ground resistance Rsoil.
  • FIG. 3(g) shows the reaction force Fsoil of the bedrock 11 calculated by applying the acceleration a shown in FIG. 3(a) to the CASE method.
  • 3(h) shows the relationship between the ground resistance and the amount of displacement of the steel pipe pile 12. As shown in FIG. FIG. 3(g) is shown on the same scale as FIG. 3(e), and FIG. 3(h) is shown on the same scale as FIG. 3(f).
  • the inventors compared the ground resistance Rsoil calculated by the above analysis process with the ground resistance Rsoil calculated by a method other than the CASE method. Specifically, a comparison was made with the ground resistance Rsoil calculated using a PDA (Pile Driving Analyzer). PDA is an impact loading test system (manufactured by Pile Dynamics, Inc.), and is a system capable of calculating ground resistance Rsoil with high accuracy. As a result of the comparison, it was confirmed that the ground resistance Rsoil calculated by the above analysis processing was substantially equal to the ground resistance calculated by the PDA.
  • PDA Pier Driving Analyzer
  • the load test method described above is a load test method for the steel pipe pile 12 driven using the vibrator 13, and vibrates the steel pipe pile 12 in the vertical direction to crush the bedrock 11 and Jet water is supplied to the tip of the steel pipe pile 12 through the hollow part of the steel pipe pile 12 to drive the steel pipe pile 12 while removing rock crushed powder, and after reaching the support layer, the jet water supply is stopped, and the vibrator 13 is Acceleration of the steel pipe pile 12 is obtained when vibration is applied to the steel pipe pile 12 by using it as a force applying device, and the ground resistance Rsoil of the rock 11 is calculated using the obtained acceleration.
  • the ground resistance Rsoil is calculated by the unloading point method using the acceleration a of the steel pipe pile 12 . Thereby, the ground resistance Rsoil of the bedrock 11 can be calculated with high accuracy.
  • the load test method described above may be performed when the grout material filled in the hollow portion of the steel pipe pile 12 is in an unhardened state. That is, the load test process and the grout material filling process may be performed at the same time. As a result, the cost related to the load test can be further suppressed.
  • the timing of performing the load test may be before filling of the grout material or after hardening of the grout material.
  • the method for calculating the ground resistance Rsoil is not limited to the unloading point method, as long as the ground resistance Rsoil is calculated using the acceleration a itself that exhibits a spike-like behavior measured by the accelerometer 19 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Soil Sciences (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

The present invention minimizes the labor and cost required for a load test. A load test method for a steel pipe pile (12), which was installed while removing crushed rock by using a vibrator (13) to cause the steel pipe pile (12) to vibrate in the vertical direction, thereby crushing a bedrock (11), and supplying a jet of water through a hollow section of the steel pipe pile (12) to a tip end section of the steel pipe pile (12), wherein after a support layer is reached, the supply of the jet of water is stopped, and an accelerometer (19) is used to measure the acceleration of the steel pipe pile (12) when the vibrator (13) has been used as a pressurizing device to apply vibrations to the steel pipe pile (12). The measured acceleration is inputted into an analysis system (20). The analysis system (20) calculates the ground resistance of the bedrock (11) according to an unloading point method in which said acceleration is used.

Description

載荷試験方法および解析システムLoading test method and analysis system
 本発明は、岩盤に打設された鋼管杭に対して実施する載荷試験方法、および、その載荷試験に用いられる解析システムに関する。 The present invention relates to a load test method for steel pipe piles driven into bedrock, and an analysis system used for the load test.
 基礎杭の支持力を評価する載荷試験法としては、静的載荷試験法、動的載荷試験法、急速載荷試験法等が知られている。例えば、動的載荷試験法では、相対載荷時間Trが5以上500未満の急速載荷試験、相対載荷時間Trが5未満の衝撃載荷試験を行なう。これらの載荷試験では、ハンマー打設機やモンケンを加力装置として使用する。 Known load test methods for evaluating the bearing capacity of foundation piles include static load test methods, dynamic load test methods, and rapid load test methods. For example, in the dynamic loading test method, a rapid loading test with a relative loading time Tr of 5 or more and less than 500 and an impact loading test with a relative loading time Tr of less than 5 are performed. In these loading tests, a hammer driving machine and a monken are used as force applying devices.
 また、岩盤への鋼管杭の打設工法として、ガンパイル工法(登録商標)が知られている。ガンパイル工法では、先端部が補強された鋼管杭が岩盤に直接打設される。具体的には、振動機を用いて鋼管杭を上下方向に振動させることで岩盤を粉砕するとともに鋼管杭の中空部を通じて鋼管杭の先端部にジェット水を供給し、岩砕粉を除去しながら鋼管杭を打設する。 In addition, the gunpile method (registered trademark) is known as a method of driving steel pipe piles into bedrock. In the gunpile method, steel pipe piles with reinforced tips are driven directly into the bedrock. Specifically, a vibrator is used to vertically vibrate the steel pipe pile to crush the bedrock, and jet water is supplied to the tip of the steel pipe pile through the hollow part of the steel pipe pile to remove rock crushed powder. Install steel pipe piles.
特開平10-153497号公報JP-A-10-153497
 しかしながら、特許文献1に記載の方法では、鋼管杭の近傍に計測孔を形成する工程が必要であるため、載荷試験に係る手間やコストが増加する。 However, the method described in Patent Document 1 requires a step of forming a measurement hole near the steel pipe pile, which increases the labor and cost of the load test.
 上記課題を解決する載荷試験方法は、振動機を用いて打設した鋼管杭の載荷試験方法であって、前記振動機により鋼管杭を上下方向に振動させることで岩盤を粉砕するとともに前記鋼管杭の中空部を通じて前記鋼管杭の先端部にジェット水を供給して岩砕粉を除去しながら前記鋼管杭を打設し、支持層に到達後に、前記ジェット水の供給を停止し、前記振動機を加力装置として用いて前記鋼管杭に振動を付与したときの前記鋼管杭の加速度を取得し、前記取得した加速度を用いて前記岩盤の地盤抵抗を算出する。 A load test method for solving the above problems is a load test method for a steel pipe pile driven using a vibrator, in which the steel pipe pile is vertically vibrated by the vibrator to crush the rock and crush the steel pipe pile. Jet water is supplied to the tip of the steel pipe pile through the hollow part of the steel pipe pile to drive the steel pipe pile while removing rock crushed powder, and after reaching the support layer, the jet water supply is stopped, and the vibrator is used as a force applying device to obtain the acceleration of the steel pipe pile when vibration is applied to the steel pipe pile, and the ground resistance of the rock is calculated using the obtained acceleration.
 本発明によれば、効率的に鋼管杭の載荷試験を行なうことができる。 According to the present invention, it is possible to efficiently carry out a load test of steel pipe piles.
載荷試験方法の一実施形態が適用される鋼管杭を打設している様子を模式的に示す図。The figure which shows typically a mode that the steel pipe pile to which one Embodiment of the load test method is applied is driving. 解析システムの概略構成を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration of an analysis system; (a)鋼管杭の加速度の計測結果の一例を示すグラフ、(b)加速度に基づく鋼管杭の速度を示すグラフ、(c)加速度に基づく鋼管杭の変位を示すグラフ、(d)振動機が鋼管杭に付与した荷重を示すグラフ、(e)鋼管杭に対する地盤の反力の一例を示すグラフ、(f)鋼管杭の変位と地盤抵抗との関係を示すグラフ、(g)CASE法における鋼管杭に対する地盤の反力の一例を示すグラフ、(h)CASE法における鋼管杭の変位と地盤抵抗との関係を示すグラフ。(a) Graph showing an example of the measurement result of the acceleration of the steel pipe pile, (b) Graph showing the speed of the steel pipe pile based on the acceleration, (c) Graph showing the displacement of the steel pipe pile based on the acceleration, (d) The vibrator is Graph showing the load applied to the steel pipe pile, (e) a graph showing an example of the reaction force of the ground against the steel pipe pile, (f) a graph showing the relationship between the displacement of the steel pipe pile and the ground resistance, (g) the steel pipe in the CASE method The graph which shows an example of the reaction force of the ground with respect to a pile, (h) The graph which shows the relationship between the displacement of a steel pipe pile and ground resistance in CASE method.
 図1~図3を参照して、載荷試験方法および解析システムの一実施形態について説明する。
 図1に示すように、ガンパイル工法(登録商標)は、岩盤11に対して、先端部が補強された中空状の鋼管杭12を振動機13で打設する。ガンパイル工法においては、振動機13で鋼管杭12に上下方向の振動を与えることで岩盤11を粉砕する。これとともに、鋼管杭12の内側に配設された供給路14を通じて鋼管杭12の先端部に低圧のジェット水を供給することで岩砕粉を除去しながら鋼管杭12を打設する。本実施形態において、打設後の鋼管杭12の中空部には、モルタルなどのセメント系材料からなるグラウト材が充填される。なお、必ずしも鋼管杭12の中空部にグラウト材を充填しなくてもよい。
An embodiment of the load test method and analysis system will be described with reference to FIGS. 1 to 3. FIG.
As shown in FIG. 1 , in the gunpile construction method (registered trademark), a hollow steel pipe pile 12 with a reinforced tip is driven into a rock 11 by a vibrator 13 . In the gunpile construction method, the rock 11 is pulverized by vibrating the steel pipe pile 12 vertically with the vibrator 13 . At the same time, low-pressure jet water is supplied to the tip of the steel pipe pile 12 through the supply path 14 arranged inside the steel pipe pile 12 to drive the steel pipe pile 12 while removing rock crushed powder. In this embodiment, the hollow portion of the steel pipe pile 12 after driving is filled with a grout material made of a cement-based material such as mortar. In addition, it is not always necessary to fill the hollow portion of the steel pipe pile 12 with the grout material.
 本実施形態の載荷試験方法は、上述したガンパイル工法により打設された鋼管杭12に対して、振動機13を加力装置として用いて行われる。振動機13を加力装置とすることで衝撃載荷試験に相当する載荷試験を行うことができる。 The load test method of this embodiment is performed using the vibrator 13 as a force applying device on the steel pipe pile 12 driven by the gunpile method described above. By using the vibrator 13 as a force applying device, a load test equivalent to an impact load test can be performed.
 振動機13は、ボックス15、把持部16、および、振動駆動源17を有している。
 ボックス15は、例えば、図示されないクレーンなどにより吊り下げられている。把持部16は、ボックス15の下端部に支持されている。把持部16は、図示されない把持駆動源から駆動力が付与されることにより鋼管杭12を把持する。振動駆動源17は、ボックス15内に収容されている。本実施形態の振動駆動源17は電動式である。なお、振動駆動源17は油圧式であってもよい。振動駆動源17は、駆動されることにより把持部16を上下方向に振動させることで鋼管杭12を加力する。
The vibrator 13 has a box 15 , a gripper 16 and a vibration drive source 17 .
The box 15 is suspended by, for example, a crane (not shown). The grip part 16 is supported by the lower end of the box 15 . The gripping portion 16 grips the steel pipe pile 12 by applying a driving force from a gripping drive source (not shown). The vibration driving source 17 is housed inside the box 15 . The vibration driving source 17 of this embodiment is electrically driven. Note that the vibration drive source 17 may be of a hydraulic type. The vibration drive source 17 applies force to the steel pipe pile 12 by vertically vibrating the gripping portion 16 when driven.
 鋼管杭12には、歪み計測器18および加速度計測器19が取り付けられている。歪み計測器18は、振動機13から振動を与えられたときの鋼管杭12の歪みを計測する。加速度計測器19は、振動機13から振動を与えられたときの鋼管杭12の加速度を計測する。これら歪み計測器18および加速度計測器19の計測値は、解析システム20に入力される。解析システム20は、振動機13を加力装置として用いて行った鋼管杭12の載荷試験を解析するシステムである。載荷試験は、鋼管杭12の中空部にグラウト材が充填される前、あるいは、充填されたグラウト材が未硬化状態にあるときに行われる。 A strain gauge 18 and an acceleration gauge 19 are attached to the steel pipe pile 12 . The strain gauge 18 measures strain of the steel pipe pile 12 when vibration is applied from the vibrator 13 . The acceleration measuring device 19 measures the acceleration of the steel pipe pile 12 when vibration is given from the vibrator 13 . Measured values of the strain measuring device 18 and the acceleration measuring device 19 are input to the analysis system 20 . The analysis system 20 is a system for analyzing a load test of the steel pipe pile 12 using the vibrator 13 as a force adding device. A load test is performed before the hollow portion of the steel pipe pile 12 is filled with the grout material, or when the filled grout material is in an unhardened state.
 図2に示すように、解析システム20は、情報処理装置21が主な構成要素とされている。
 情報処理装置21は、各種情報を取得し、その取得した各種の情報、および、メモリーに記憶したプログラムや各種のデータに基づいて各種の処理を実行する。情報処理装置21は、ASIC等の1つ以上の専用のハードウェア回路、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、或いは、それらの組み合わせ、を含む回路として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリーを含み、メモリーは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリーすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスして利用可能なあらゆる媒体を含む。
As shown in FIG. 2, the analysis system 20 has an information processing device 21 as a main component.
The information processing device 21 acquires various kinds of information and executes various kinds of processing based on the acquired various kinds of information, programs and various data stored in the memory. The information processing device 21 can be configured as a circuit including one or more dedicated hardware circuits such as ASIC, one or more processors that operate according to a computer program (software), or a combination thereof. A processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes. Memory or computer-readable media includes any media that can be accessed by a general purpose or special purpose computer.
 情報処理装置21には、上述した歪み計測器18および加速度計測器19のほか、入力装置22と表示装置23とが電気的に接続されている。
 入力装置22は、キーボードやポインティングデバイス等を備える。入力装置22は、各種情報や各種処理の実行指示等を情報処理装置21に入力する。
An input device 22 and a display device 23 are electrically connected to the information processing device 21 in addition to the strain measuring device 18 and the acceleration measuring device 19 described above.
The input device 22 includes a keyboard, pointing device, and the like. The input device 22 inputs to the information processing device 21 various information, execution instructions of various processes, and the like.
 表示装置23は、加速度計測器19の計測値や情報処理装置21が実行した各種処理の結果などを表示する。情報処理装置21は、処理部25およびデータ記憶部26を有する。 The display device 23 displays the measurement values of the accelerometer 19, the results of various processes executed by the information processing device 21, and the like. The information processing device 21 has a processing section 25 and a data storage section 26 .
 処理部25は、各種処理を実行する。処理部25は、入力装置22において解析開始操作がなされると解析処理を実行する。
 解析処理において、処理部25は、解析開始操作から所定の一定期間、歪み計測器18から入力される歪みε、および、加速度計測器19から入力される加速度aを、その取得タイミングごとに関連付けてデータ記憶部26に記憶する。処理部25は、その記憶した歪みεおよび加速度aを用いて、岩盤11の地盤抵抗Rsoilを算出する。本実施形態の処理部25は、岩盤11の静的抵抗成分Rwを除荷点法により算出し、その算出した静的抵抗成分Rwを地盤抵抗Rsoilとして算出する。
The processing unit 25 executes various processes. The processing unit 25 executes analysis processing when an analysis start operation is performed on the input device 22 .
In the analysis process, the processing unit 25 associates the strain ε input from the strain measuring device 18 and the acceleration a input from the acceleration measuring device 19 for a predetermined period from the analysis start operation for each acquisition timing. Stored in the data storage unit 26 . The processing unit 25 calculates the ground resistance Rsoil of the rock 11 using the stored strain ε and acceleration a. The processing unit 25 of the present embodiment calculates the static resistance component Rw of the rock 11 by the unloading point method, and calculates the calculated static resistance component Rw as the ground resistance Rsoil.
 除荷点法を用いた静的抵抗成分Rwの算出方法について説明する。
 鋼管杭12に対して荷重Fが作用したとき、その荷重Fの反対方向へ、鋼管杭12の慣性抵抗成分Ra(=鋼管杭12の質量M×加速度a)、鋼管杭12の先端部が岩盤11から受ける静的抵抗成分Rwおよび動的抵抗成分Rvが生じる。一方、荷重Fによって下方へと変位した鋼管杭12が岩盤11に跳ね返されるとき、その鋼管杭12は、静止状態にある。すなわち、動的抵抗成分Rvが発生しない。こうしたことから、荷重Fから慣性抵抗成分Raを減算した値を岩盤11からの反力Fsoilとすると、鋼管杭12の最大変位時における反力Fsoilが静的抵抗成分Rwとなる。
A method of calculating the static resistance component Rw using the unloading point method will be described.
When the load F acts on the steel pipe pile 12, in the opposite direction of the load F, the inertial resistance component Ra (=mass M of the steel pipe pile 12 × acceleration a) of the steel pipe pile 12, and the tip of the steel pipe pile 12 is bedrock. 11 produces a static resistance component Rw and a dynamic resistance component Rv. On the other hand, when the steel pipe pile 12 displaced downward by the load F bounces back against the bedrock 11, the steel pipe pile 12 is in a stationary state. That is, no dynamic resistance component Rv is generated. Therefore, if the reaction force Fsoil from the rock 11 is obtained by subtracting the inertial resistance component Ra from the load F, the reaction force Fsoil at the maximum displacement of the steel pipe pile 12 becomes the static resistance component Rw.
 (載荷試験の手順)
 載荷試験の手順について説明する。載荷試験に先立ち、情報処理装置21には、入力装置22を通じて鋼管杭12に関する対象情報が入力される。対象情報は、鋼管杭12のヤング率のほか、内径や外径、質量Mなど、鋼管杭12の機械的な特性を示す情報である。情報処理装置21の処理部25は、入力された対象情報をデータ記憶部26に記憶する。
(Procedure of load test)
The load test procedure will be explained. Prior to the load test, target information regarding the steel pipe pile 12 is input to the information processing device 21 through the input device 22 . The target information is information indicating the mechanical properties of the steel pipe pile 12 , such as the Young's modulus of the steel pipe pile 12 , the inner diameter, the outer diameter, the mass M, and the like. The processing unit 25 of the information processing device 21 stores the input target information in the data storage unit 26 .
 載荷試験は、支持層に到達する所定の深度まで鋼管杭12を打設したのち、ジェット水の供給を停止させた状態で行われる。載荷試験においては、まず、振動機13が駆動されたのち、入力装置22で解析開始操作がなされる。このように鋼管杭12の打設に使用していた振動機13を鋼管杭12に荷重Fを付与する加力装置として用いることで、例えばモンケンなど、試験のための加力装置が不要となる。 The load test is conducted after driving the steel pipe piles 12 to a predetermined depth that reaches the bearing layer, and then stopping the jet water supply. In the loading test, first, after the vibrator 13 is driven, the input device 22 is operated to start analysis. By using the vibrator 13 used for driving the steel pipe pile 12 as a force applying device for applying the load F to the steel pipe pile 12 in this way, a force applying device for testing such as Monken becomes unnecessary. .
 入力装置22において解析開始操作がなされると、情報処理装置21の処理部25は、解析処理を開始する。解析処理において、処理部25は、歪みεと加速度aとをデータ記憶部26に記憶する。そして、処理部25は、データ記憶部26に記憶された歪みεと鋼管杭12のヤング率とに基づいて、各取得タイミングにおける鋼管杭12に作用する荷重Fを算出する、そして、処理部25は、その荷重F、鋼管杭12の質量M、および、加速度aを用いた除荷点法により静的抵抗成分Rwを算出する。 When an analysis start operation is performed on the input device 22, the processing unit 25 of the information processing device 21 starts analysis processing. In the analysis process, the processing unit 25 stores the strain ε and the acceleration a in the data storage unit 26 . Then, the processing unit 25 calculates the load F acting on the steel pipe pile 12 at each acquisition timing based on the strain ε and the Young's modulus of the steel pipe pile 12 stored in the data storage unit 26, and the processing unit 25 calculates the static resistance component Rw by the unloading point method using the load F, the mass M of the steel pipe pile 12, and the acceleration a.
 図3(a)~図3(f)は実際に行った載荷試験の結果の一例を示すグラフである。
 図3(a)に示すように、載荷試験において得られた加速度aは、短時間で大きく変化するスパイク的な挙動を示す。こうした加速度aのスパイク的な挙動は、岩盤11に打設された鋼管杭12に振動機13を加力装置として用いることによって得られるものである。図3(a)では、下向きの加速度aがマイナス値で示されている。
FIGS. 3(a) to 3(f) are graphs showing an example of the results of actual loading tests.
As shown in FIG. 3(a), the acceleration a obtained in the load test shows a spike-like behavior that changes greatly in a short period of time. Such a spike-like behavior of the acceleration a is obtained by using the vibrator 13 as a force applying device for the steel pipe pile 12 driven into the rock 11 . In FIG. 3(a), the downward acceleration a is indicated by a negative value.
 図3(b)に示すように、速度は、加速度aを積分した値であることから、加速度aよりもなだらかな挙動を示す。
 図3(c)に示すように、変位は、速度を積分した値であることから、速度よりもなだらかな挙動を示す。
As shown in FIG. 3(b), since the velocity is a value obtained by integrating the acceleration a, it exhibits a smoother behavior than the acceleration a.
As shown in FIG. 3(c), since displacement is a value obtained by integrating velocity, it exhibits a smoother behavior than velocity.
 図3(d)に示すように、荷重Fは、加速度aほどではないが速度および変位よりもスパイク的な挙動を示す。
 図3(e)に示すように、岩盤11からの反力Fsoilは、加速度aと同じようなスパイク的な挙動を示す。
As shown in FIG. 3(d), the load F shows a spike-like behavior more than the velocity and displacement, although not as much as the acceleration a.
As shown in FIG. 3(e), the reaction force Fsoil from the bedrock 11 exhibits spike-like behavior similar to the acceleration a.
 図3(f)は、岩盤11からの反力Fsoilを地盤抵抗として、地盤抵抗と鋼管杭12の変位との関係を示すグラフである。図3(f)では、下方への変位量をプラスで示している。地盤抵抗は、図3(d)に示すように、反力Fsoilから鋼管杭12の慣性抵抗成分Ra(=鋼管杭12の質量M×加速度a)を減算した値であることから、加速度aと同じようなスパイク的な挙動を示す。そして、最大変位時における最大値が静的抵抗成分Rw、すなわち地盤抵抗Rsoilとして算出される。 FIG. 3(f) is a graph showing the relationship between the ground resistance and the displacement of the steel pipe pile 12, with the reaction force Fsoil from the bedrock 11 being the ground resistance. In FIG. 3(f), the amount of downward displacement is indicated by plus. The ground resistance, as shown in FIG. It shows a similar spike-like behavior. Then, the maximum value at the maximum displacement is calculated as the static resistance component Rw, that is, the ground resistance Rsoil.
 こうした地盤抵抗Rsoilを算出する別の手法としてCASE法が知られている。CASE法は、入力波および反射波を計測し、その計測した入力波および反射波に基づいて地盤の全抵抗(静的抵抗成分Rw+動的抵抗成分Rv)を算出する。そして、その全抵抗から動的抵抗成分Rvを分離した静的抵抗成分Rwを地盤抵抗Rsoilとして算出する手法である。 The CASE method is known as another method for calculating such ground resistance Rsoil. The CASE method measures an input wave and a reflected wave, and calculates the total ground resistance (static resistance component Rw+dynamic resistance component Rv) based on the measured input wave and reflected wave. Then, the static resistance component Rw obtained by separating the dynamic resistance component Rv from the total resistance is calculated as the ground resistance Rsoil.
 図3(g)には、図3(a)に示した加速度aをCASE法に適用して算出された岩盤11の反力Fsoilを示す。また、図3(h)には、地盤抵抗と鋼管杭12の変位量との関係を示す。図3(g)は図3(e)と同じスケール、図3(h)は図3(f)と同じスケールで示している。 FIG. 3(g) shows the reaction force Fsoil of the bedrock 11 calculated by applying the acceleration a shown in FIG. 3(a) to the CASE method. 3(h) shows the relationship between the ground resistance and the amount of displacement of the steel pipe pile 12. As shown in FIG. FIG. 3(g) is shown on the same scale as FIG. 3(e), and FIG. 3(h) is shown on the same scale as FIG. 3(f).
 図3(g)および図3(h)に示すように、CASE法においては、反力Fsoilおよび地盤抵抗の挙動は、上記解析処理によって得られる反力Fsoilおよび地盤抵抗よりもなだらかなであった。これは、動的抵抗成分Rvが鋼管杭12の速度を用いて算出されるため、加速度aのスパイク的な挙動を反映することができないからである。その結果、CASE法によって算出される地盤抵抗Rsoilは、上記解析処理によって算出される地盤抵抗Rsoilよりも小さな値となった。 As shown in FIGS. 3(g) and 3(h), in the CASE method, the behavior of the reaction force Fsoil and ground resistance was gentler than those obtained by the above analysis processing. . This is because the dynamic resistance component Rv is calculated using the speed of the steel pipe pile 12 and therefore cannot reflect the spike-like behavior of the acceleration a. As a result, the ground resistance Rsoil calculated by the CASE method was a smaller value than the ground resistance Rsoil calculated by the analysis process.
 本発明者らは、上記解析処理によって算出された地盤抵抗Rsoilについて、CASE法とは別の手法で算出された地盤抵抗Rsoilとの比較を行った。具体的には、PDA(Pile Driving Analyzer)を用いて算出された地盤抵抗Rsoilとの比較を行った。PDAは、衝撃載荷試験システム(Pile Dynamics,Inc.製)であり、地盤抵抗Rsoilを高い精度のもとで算出することができるシステムである。比較した結果、上記解析処理で算出される地盤抵抗RsoilがPDAで算出される地盤抵抗と略等しいことが確認された。 The inventors compared the ground resistance Rsoil calculated by the above analysis process with the ground resistance Rsoil calculated by a method other than the CASE method. Specifically, a comparison was made with the ground resistance Rsoil calculated using a PDA (Pile Driving Analyzer). PDA is an impact loading test system (manufactured by Pile Dynamics, Inc.), and is a system capable of calculating ground resistance Rsoil with high accuracy. As a result of the comparison, it was confirmed that the ground resistance Rsoil calculated by the above analysis processing was substantially equal to the ground resistance calculated by the PDA.
 本実施形態の効果について説明する。
 (1)上述した載荷試験方法は、振動機13を用いて打設した鋼管杭12の載荷試験方法であって、鋼管杭12を上下方向に振動させることで岩盤11を粉砕するとともに鋼管杭12の中空部を通じて鋼管杭12の先端部にジェット水を供給して岩砕粉を除去しながら鋼管杭12を打設し、支持層に到達後に、ジェット水の供給を停止し、振動機13を加力装置として用いて鋼管杭12に振動を付与したときの鋼管杭12の加速度を取得し、その取得した加速度を用いて岩盤11の地盤抵抗Rsoilを算出する。
Effects of the present embodiment will be described.
(1) The load test method described above is a load test method for the steel pipe pile 12 driven using the vibrator 13, and vibrates the steel pipe pile 12 in the vertical direction to crush the bedrock 11 and Jet water is supplied to the tip of the steel pipe pile 12 through the hollow part of the steel pipe pile 12 to drive the steel pipe pile 12 while removing rock crushed powder, and after reaching the support layer, the jet water supply is stopped, and the vibrator 13 is Acceleration of the steel pipe pile 12 is obtained when vibration is applied to the steel pipe pile 12 by using it as a force applying device, and the ground resistance Rsoil of the rock 11 is calculated using the obtained acceleration.
 これにより、例えばモンケンなどの加力装置を鋼管杭12に取り付ける工程や鋼管杭12の近傍に計測孔を形成する工程などが不要となる。その結果、載荷試験に係る手間やコストを抑えることができる。また、取り付けられる加力装置を待機させるスペースも必要ないため、現場のスペースを有効利用することができる。 As a result, for example, the process of attaching a force applying device such as a monken to the steel pipe pile 12 and the process of forming a measurement hole near the steel pipe pile 12 become unnecessary. As a result, it is possible to reduce the labor and costs involved in the load test. In addition, since no space is required for waiting the attached force adding device, the space on site can be effectively used.
 (2)上述した載荷試験方法では、鋼管杭12の加速度aを用いた除荷点法により、地盤抵抗Rsoilを算出する。これにより、岩盤11の地盤抵抗Rsoilを高い精度のもとで算出することができる。 (2) In the loading test method described above, the ground resistance Rsoil is calculated by the unloading point method using the acceleration a of the steel pipe pile 12 . Thereby, the ground resistance Rsoil of the bedrock 11 can be calculated with high accuracy.
 (3)鋼管杭12の中空部に未硬化状態のグラウト材があったとしても、鋼管杭12の振動がそのグラウト材に与える影響が小さい。このため、上述した載荷試験方法は、鋼管杭12の中空部に充填されたグラウト材が未硬化状態にあるときに行ってもよい。すなわち、載荷試験工程とグラウト材充填工程とを同時期に行ってもよい。これにより、載荷試験に係るコストをより抑えることができる。 (3) Even if there is unhardened grout material in the hollow portion of the steel pipe pile 12, the influence of the vibration of the steel pipe pile 12 on the grout material is small. Therefore, the load test method described above may be performed when the grout material filled in the hollow portion of the steel pipe pile 12 is in an unhardened state. That is, the load test process and the grout material filling process may be performed at the same time. As a result, the cost related to the load test can be further suppressed.
 以上、本発明に係る載荷試験方法および解析システムの一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 Although one embodiment of the load test method and analysis system according to the present invention has been described above, the present invention is not limited to the above one embodiment, and can be modified as appropriate without departing from the spirit of the present invention. For example, this embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・載荷試験を行うタイミングは、グラウト材の充填前であってもよいし、グラウト材の硬化後であってもよい。
 ・地盤抵抗Rsoilの算出方法は、加速度計測器19が計測したスパイク的な挙動を示す加速度aそのものを用いて地盤抵抗Rsoilを算出する方法であればよく、除荷点法に限られない。
- The timing of performing the load test may be before filling of the grout material or after hardening of the grout material.
The method for calculating the ground resistance Rsoil is not limited to the unloading point method, as long as the ground resistance Rsoil is calculated using the acceleration a itself that exhibits a spike-like behavior measured by the accelerometer 19 .
 11…岩盤、12…鋼管杭、13…振動機、14…供給路、15…ボックス、16…把持部、17…振動駆動源、18…歪み計測器、19…加速度計測器、20…解析システム、21…情報処理装置、22…入力装置、23…表示装置、25…処理部、26…データ記憶部 DESCRIPTION OF SYMBOLS 11... Bedrock, 12... Steel pipe pile, 13... Vibrator, 14... Supply path, 15... Box, 16... Grasping part, 17... Vibration drive source, 18... Strain measuring instrument, 19... Accelerometer, 20... Analysis system , 21... Information processing device, 22... Input device, 23... Display device, 25... Processing unit, 26... Data storage unit

Claims (4)

  1.  振動機を用いて打設した鋼管杭の載荷試験方法であって、
     前記振動機により鋼管杭を上下方向に振動させることで岩盤を粉砕するとともに前記鋼管杭の中空部を通じて前記鋼管杭の先端部にジェット水を供給して岩砕粉を除去しながら前記鋼管杭を打設し、
     支持層に到達後に、前記ジェット水の供給を停止し、前記振動機を加力装置として用いて前記鋼管杭に振動を付与したときの前記鋼管杭の加速度を取得し、
     前記取得した加速度を用いて前記岩盤の地盤抵抗を算出する
     載荷試験方法。
    A load test method for a steel pipe pile driven using a vibrator,
    The vibrator vertically vibrates the steel pipe pile to pulverize the bedrock and supply jet water to the tip of the steel pipe pile through the hollow portion of the steel pipe pile to remove rock crushed powder while the steel pipe pile is removed. cast,
    After reaching the support layer, the supply of the jet water is stopped, and the acceleration of the steel pipe pile is obtained when the vibration is applied to the steel pipe pile using the vibrator as a force adding device,
    A load test method for calculating the ground resistance of the rock using the acquired acceleration.
  2.  前記鋼管杭の加速度を用いた除荷点法により、前記地盤抵抗を算出する
     請求項1に記載の載荷試験方法。
    The loading test method according to claim 1, wherein the ground resistance is calculated by an unloading point method using the acceleration of the steel pipe pile.
  3.  前記鋼管杭の中空部に充填されたグラウト材が未硬化状態にあるときに載荷試験を行う
     請求項1または2に記載の載荷試験方法。
    The load test method according to claim 1 or 2, wherein the load test is performed when the grout material filled in the hollow portion of the steel pipe pile is in an unhardened state.
  4.  振動機を用いて鋼管杭を上下方向に振動させることで岩盤を粉砕するとともに前記鋼管杭の中空部を通じて前記鋼管杭の先端部にジェット水を供給して岩砕粉を除去しながら打設された前記鋼管杭の載荷試験に用いられる解析システムであって、
     前記ジェット水の供給を停止した状態で、前記振動機を加力装置として前記鋼管杭に付与された振動の加速度を計測する加速度計測器と、
     前記加速度を用いて前記岩盤の地盤抵抗を算出する情報処理装置と、を備える
     解析システム。
    A vibrator is used to vertically vibrate the steel pipe pile to crush the bedrock, and jet water is supplied to the tip of the steel pipe pile through the hollow part of the steel pipe pile to remove crushed rock powder. An analysis system used for a load test of the steel pipe pile,
    an accelerometer for measuring the acceleration of the vibration imparted to the steel pipe pile using the vibrator as a force adding device in a state where the supply of the jet water is stopped;
    an information processing device that calculates the ground resistance of the rock using the acceleration; and an analysis system.
PCT/JP2022/015727 2021-03-30 2022-03-29 Load test method and analysis system WO2022210804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057118A JP2022154205A (en) 2021-03-30 2021-03-30 Load test method and analysis system
JP2021-057118 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210804A1 true WO2022210804A1 (en) 2022-10-06

Family

ID=83456457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015727 WO2022210804A1 (en) 2021-03-30 2022-03-29 Load test method and analysis system

Country Status (2)

Country Link
JP (1) JP2022154205A (en)
WO (1) WO2022210804A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398175B1 (en) 2023-04-13 2023-12-14 株式会社地盤試験所 Rapid loading test method for piles using CASE method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339931A (en) * 1992-06-04 1993-12-21 Kawasaki Steel Corp Bearing force analysis of pile foundation and its device
KR20060094879A (en) * 2005-02-25 2006-08-30 가부시키가이샤 지반 시켄조 Pseudostatic pile load testing method
JP2006342579A (en) * 2005-06-09 2006-12-21 Ybm Co Ltd Pile driver equipped with dynamic load test device
JP2017172115A (en) * 2016-03-18 2017-09-28 前田建設工業株式会社 Ground evaluation system, precast pile with acceleration sensor
JP2018017112A (en) * 2016-07-19 2018-02-01 積水化学工業株式会社 Ground investigation device and ground investigation method
JP2020037857A (en) * 2018-08-30 2020-03-12 Jfeスチール株式会社 Construction method of steel pipe pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339931A (en) * 1992-06-04 1993-12-21 Kawasaki Steel Corp Bearing force analysis of pile foundation and its device
KR20060094879A (en) * 2005-02-25 2006-08-30 가부시키가이샤 지반 시켄조 Pseudostatic pile load testing method
JP2006342579A (en) * 2005-06-09 2006-12-21 Ybm Co Ltd Pile driver equipped with dynamic load test device
JP2017172115A (en) * 2016-03-18 2017-09-28 前田建設工業株式会社 Ground evaluation system, precast pile with acceleration sensor
JP2018017112A (en) * 2016-07-19 2018-02-01 積水化学工業株式会社 Ground investigation device and ground investigation method
JP2020037857A (en) * 2018-08-30 2020-03-12 Jfeスチール株式会社 Construction method of steel pipe pile

Also Published As

Publication number Publication date
JP2022154205A (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US10684111B2 (en) Non-destructive detection method and device of effective anchorage depth of full-length bonding anchor
US6804994B2 (en) Dynamic loading system, dynamic loading method and dynamic loading test method for piles
WO2022210804A1 (en) Load test method and analysis system
EP3276085B1 (en) System for calculating construction assistance information
JP2011247700A (en) Soundness diagnosing method, soundness diagnosing apparatus and soundness diagnosing program of concrete member
JP5978029B2 (en) PC steel bar unit tension test method, PC steel bar unit tension test apparatus and unit vibration imparting apparatus
Lorriot Specimen loading determined by displacement measurement in instrumented Charpy impact test
JP5484165B2 (en) Pile quality control method
Hajialilue-Bonab et al. Procedures used for dynamically laterally loaded pile tests in a centrifuge
JP6504016B2 (en) Apparatus and method for confirming vertical bearing capacity of pile
RU2259560C1 (en) Method for determination of characteristics of sensitivity of explosives to dynamic loads
JP4358728B2 (en) Determination of physical properties of reinforced concrete structures
Ngo et al. On modeling the dynamic response induced by fracturing brittle materials
Ivanović et al. Influence of geometry and material properties on the axial vibration of a rock bolt
JP2014202682A (en) Apparatus and method for inspecting soundness of anchor
JP4596147B2 (en) Nondestructive inspection method for existing piles
JP2008019597A (en) Bearing strength measuring method of pile
JP4093580B2 (en) Measuring method for bearing capacity of foundation pile
JP7113442B1 (en) Device and method for measuring dynamic bearing force during pile driving
RU140040U1 (en) BENCH FOR TESTING SAMPLES OF THREADED COMPOUNDS FOR TIRED ENDURANCE
JP4073838B2 (en) Measuring method for bearing capacity of foundation pile
JPH10281955A (en) Three-axis compression tester
US12024846B2 (en) Method for assessing the axial load bearing capacity of an installed pile
JPH05179646A (en) Inspection for pile placing work quality
JP7046126B2 (en) Pile performance estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781015

Country of ref document: EP

Kind code of ref document: A1