WO2022210761A1 - Cold-rolled steel sheet and cold-rolled steel sheet manufacturing method - Google Patents
Cold-rolled steel sheet and cold-rolled steel sheet manufacturing method Download PDFInfo
- Publication number
- WO2022210761A1 WO2022210761A1 PCT/JP2022/015630 JP2022015630W WO2022210761A1 WO 2022210761 A1 WO2022210761 A1 WO 2022210761A1 JP 2022015630 W JP2022015630 W JP 2022015630W WO 2022210761 A1 WO2022210761 A1 WO 2022210761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- rolled steel
- steel sheet
- cold
- annealing
- Prior art date
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 109
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 67
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 53
- 239000010959 steel Substances 0.000 claims abstract description 53
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 34
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 18
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 238000000137 annealing Methods 0.000 claims description 69
- 238000001816 cooling Methods 0.000 claims description 25
- 238000005096 rolling process Methods 0.000 claims description 20
- 238000005452 bending Methods 0.000 claims description 19
- 238000005097 cold rolling Methods 0.000 claims description 19
- 238000005098 hot rolling Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000004080 punching Methods 0.000 abstract description 18
- 238000000034 method Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000012467 final product Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 carbonitrides Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to cold-rolled steel sheets, and more particularly to cold-rolled steel sheets with excellent press punchability.
- the present invention also relates to a method for manufacturing the cold-rolled steel sheet.
- Press punching is widely used as a method for processing cold-rolled steel sheets into component shapes.
- cold-rolled steel sheets are processed into parts by press punching, and then processed by cutting, wire drawing, polishing, etc., and heat treatment such as quenching and tempering. through which the final textile machine parts are manufactured.
- burrs occur on the end face when punching the material.
- the occurrence of burrs reduces dimensional accuracy and causes troubles when parts with burrs are used in textile machines such as knitting machines. Therefore, the burrs are removed by grinding or polishing after the press punching process, but it is difficult to sufficiently remove the burrs depending on the complexity of the dimensions and shapes of the parts.
- cold-rolled steel sheets are required to have excellent punchability, that is, to minimize the occurrence of burrs during press punching.
- Patent Document 1 proposes a medium- and high-carbon cold-rolled steel sheet in which bending due to punching and sagging at the punched end face are suppressed by controlling the structure.
- Patent Document 2 proposes a method of manufacturing a high-carbon steel sheet that is soft and has excellent formability by optimizing the chemical composition and manufacturing conditions.
- Patent Document 3 proposes a high-carbon cold-rolled steel sheet with improved fine blanking workability by optimizing the grain sizes of cementite and ferrite.
- Patent Document 1 by increasing the ratio of pearlite structure in the metal structure and decreasing the ratio of spheroidized carbide, the crack directions are aligned and the punched end surface properties are said to be improved.
- ferrite in pearlite is coarse and deforms in various directions, burrs increase depending on the shearing direction. Therefore, the punchability was still insufficient.
- Patent Document 2 the technique proposed in Patent Document 2 is to suppress the deterioration of workability caused by the variation by reducing the variation in material properties in the coil. does not improve
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cold-rolled steel sheet with excellent punchability.
- burrs can be reduced by suppressing plastic deformation of ferrite grains. That is, when the ferrite grains undergo large plastic deformation, a large number of voids are generated and connected at the ferrite grain boundaries, resulting in high burrs.
- Ferrite grains can be hardened by making the ferrite grains finer and by dispersing fine carbides in the ferrite grains.
- the cementite present at the ferrite grain boundaries (hereinafter sometimes referred to as “grain boundary cementite”) must be fine.
- coarse grain boundary cementite it is possible to suppress the formation of coarse voids at the grain boundaries, and as a result, it is possible to reduce the amount of burrs that are generated.
- the present invention has been completed based on the above findings, and the gist thereof is as follows.
- the average grain size of ferrite is 10 ⁇ m or less
- the cementite present at the ferrite grain boundary has an average grain size of 5 ⁇ m or less
- It has a steel structure in which the average grain size of NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains is 0.5 ⁇ m or less
- the average spacing of the NaCl-type carbides is 710 nm or less.
- the component composition in mass%, Sb: 0.1% or less, Hf: 0.5% or less, REM: 0.1% or less, Cu: 0.5% or less, Ni: 3.0% or less, Sn: 0.5% or less, 2.
- the heated steel slab is hot rolled into a hot rolled steel sheet under the conditions of a hot rolling start temperature of Ac 3 points or more and a finish rolling delivery side temperature of 800° C. or more,
- the hot-rolled steel sheet is cooled under the conditions of time from the end of hot rolling to the start of cooling: 5.0 seconds or less, average cooling rate: 25 ° C./s or more, cooling stop temperature: 740 ° C. to 620 ° C., Winding the cooled hot-rolled steel sheet,
- the coiled hot-rolled steel sheet is subjected to a first annealing under conditions of an annealing temperature of 730° C.
- the hot-rolled steel sheet after bending and unbending is subjected to a second annealing at an annealing temperature of 600 ° C. or higher, Cold-rolled steel sheet obtained by repeatedly subjecting the hot-rolled steel sheet after the second annealing to cold rolling at a rolling reduction of 15% or more and third annealing at an annealing temperature of 600 ° C. or more twice or more. Production method.
- the cold-rolled steel sheet of the present invention suppresses the generation of burrs when press punching is performed, and has a small residual stress. It can be very suitably used as a material for
- the cold-rolled steel sheet of the present invention has the chemical composition described above. The reason for the limitation will be described below. In the following description, "%” as a unit of content means “% by mass” unless otherwise specified.
- C 0.60-1.25%
- C is an element that has the effect of improving hardness by quenching, and plays an important role in punchability.
- C forms cementite with Fe, resulting in a boundary between the formed cementite and ferrite. This boundary becomes the starting point of voids during punching.
- the burr height is reduced.
- carbon is consumed to form cementite, and carbides do not form inside the grains, thereby promoting plastic deformation of the ferrite grains. As a result, the burr height increases, the residual stress increases, and the accuracy of the shape and dimensions deteriorates.
- the C content should be 0.60% or more, preferably 0.65% or more, and more preferably 0.70% or more.
- the C content should be 1.25% or less, preferably 1.20% or less, and more preferably 1.15% or less.
- Si 0.1-0.55%
- Si is an element that has the effect of increasing the strength of the ferrite structure through solid-solution strengthening, and the addition of Si can improve punchability.
- the Si content should be 0.1% or more, preferably 0.12% or more, more preferably 0.14% or more.
- the Si content is excessive, ferrite formation and grain growth are promoted, and ferrite strength is lowered.
- the promotion of ferrite formation promotes the precipitation of coarse cementite at grain boundaries, thereby reducing the void generation frequency. As a result, the amount of plastic deformation increases and the punchability decreases. Therefore, the Si content should be 0.55% or less, preferably 0.52% or less, and more preferably 0.50% or less.
- Mn 0.5-2.0%
- Mn is an element that mixes into cementite and suppresses the growth of cementite. By refining cementite generated at ferrite grain boundaries, plastic deformation of ferrite can be suppressed and punchability can be improved.
- the Mn content should be 0.5% or more, preferably 0.52% or more, and more preferably 0.54% or more.
- the Mn content exceeds 2.0%, segregation of Mn sulfide causes a wide band-like structure in the rolling direction, resulting in abnormal structure formation. As a result, abnormal grain growth of ferrite grains is promoted, and cementite precipitation becomes non-uniform, resulting in a decrease in punchability. Therefore, the Mn content is 2.0% or less, preferably 1.95% or less, more preferably 1.90% or less, still more preferably 1.85% or less.
- P 0.0005 to 0.05%
- P is an element that has the effect of strengthening ferrite. Therefore, by adding a small amount of P, the plastic deformation of ferrite can be suppressed and the punchability can be improved. Therefore, the P content is made 0.0005% or more, preferably 0.0010% or more. On the other hand, when the P content exceeds 0.05%, the grain boundary segregation of P suppresses the formation of cementite at the grain boundaries, and as a result, the amount of plastic deformation of ferrite increases, resulting in a decrease in punchability. Therefore, the P content should be 0.05% or less, preferably 0.04% or less.
- S forms sulfides with Mn contained in steel.
- MnS When MnS is generated at the ferrite grain boundary, like cementite, it becomes a starting point of voids at the boundary between ferrite and precipitates, thereby improving the punchability. Therefore, the S content should be 0.0001% or more, preferably 0.0005% or more.
- the S content should be 0.01% or less, preferably 0.008% or less.
- Al 0.001-0.10% Al disperses in steel as an oxide and solid-solves to strengthen ferrite, thereby suppressing plastic deformation of ferrite and improving punchability. Therefore, the Al content is made 0.001% or more, preferably 0.002% or more. On the other hand, if the Al content exceeds 0.10%, the growth of ferrite grains is accelerated and the amount of plastic deformation increases, resulting in lower punchability. Therefore, the Al content should be 0.10% or less, preferably 0.08% or less, and more preferably 0.06% or less.
- N 0.001 to 0.009% N combines with Al in steel to form AlN. If the N content is less than 0.001%, the ferrite crystal grains become coarse and the punchability deteriorates. Therefore, the N content is made 0.001% or more. On the other hand, if the N content exceeds 0.009%, AlN precipitates at the ferrite grain boundaries of the hot-rolled steel sheet, which is an intermediate product, and the ferrite grains are extended and coarsened, resulting in a decrease in punchability. Therefore, the N content should be 0.009% or less, preferably 0.006% or less.
- Cr 0.05-0.65% Cr is an element that enhances the hardenability of steel and improves strength, and also affects punchability. If the Cr content is less than 0.05%, the cementite tends to coarsen, the void density decreases, and the punchability deteriorates. Therefore, the Cr content should be 0.05% or more, preferably 0.08% or more, more preferably 0.10% or more, and still more preferably 0.15% or more. On the other hand, when the Cr content is excessive, coarse Cr carbides and Cr nitrides are formed, and prior to the voids generated at the interface between cementite and ferrite, Voids are generated.
- the formation of coarse Cr carbides suppresses the formation of carbides in grains, and the strength of ferrite is lowered. This localizes the deformation and reduces the punchability. Therefore, the Cr content should be 0.65% or less, preferably 0.60% or less.
- the above component composition contains at least one selected from the group consisting of Ti: 0.001 to 0.30%, Nb: 0.01 to 0.1%, and V: 0.005 to 0.5% do.
- Ti 0.001-0.30% Ti forms fine TiC in ferrite grains, strengthens the ferrite grains, and suppresses the amount of plastic deformation. Therefore, the punchability can be improved by adding Ti. However, if the Ti content is less than 0.001%, Ti is consumed by precipitation of TiN prior to TiC, so the effect of improving the punchability cannot be obtained. Therefore, when Ti is added, the Ti content should be 0.001% or more, preferably 0.005% or more. On the other hand, when the Ti content exceeds 0.30%, coarse TiC is formed, and void formation and growth occur locally around the coarse TiC. As a result, the plastic deformation is localized and the punchability is lowered. Therefore, the Ti content should be 0.30% or less, preferably 0.28% or less, and more preferably 0.26% or less.
- Nb 0.01-0.1% Nb forms fine NbC in ferrite grains, strengthens the ferrite grains, and suppresses plastic deformation. Therefore, the punchability can be improved by adding Nb. However, if the Nb content is less than 0.01%, the amount of NbC precipitated is so small that the effect of improving punchability cannot be obtained. Therefore, when Nb is added, the Nb content should be 0.01% or more, preferably 0.015% or more. On the other hand, when the Nb content exceeds 0.1%, coarse Nb(CN) is formed, and voids are localized around the coarse Nb(CN), resulting in localized deformation and reduced punchability. Therefore, the Nb content should be 0.1% or less, preferably 0.09% or less.
- V 0.005-0.5%
- V forms fine VCs in ferrite grains, strengthens the ferrite grains, and suppresses plastic deformation. Therefore, the punchability can be improved by adding V.
- the V content should be 0.005% or more, preferably 0.010% or more.
- the V content should be 0.5% or less, preferably 0.45% or less, and more preferably 0.40% or less.
- a cold-rolled steel sheet in an embodiment of the present invention has a chemical composition consisting of the above components and the balance of Fe and unavoidable impurities.
- the above component composition is optionally Sb: 0.1% or less, Hf: 0.5% or less, REM: 0.1% or less, Cu: 0.5% At least one selected from the group consisting of Ni: 3.0% or less, Sn: 0.5% or less, Mo: 1% or less, and Zr: 0.5% or less can be further included.
- Sb 0.1% or less Sb is an element effective in improving corrosion resistance. scratches). Therefore, the Sb content is set to 0.1% or less.
- the lower limit of the Sb content is not particularly limited, the Sb content is preferably 0.0003% or more from the viewpoint of enhancing the effect of addition.
- Hf 0.5% or less Hf is an element that is effective in improving corrosion resistance. scratches). Therefore, the Hf content is set to 0.5% or less.
- the lower limit of the Hf content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Hf content is preferably 0.001% or more.
- REM 0.1% or less REM (rare earth metal) is an element that improves the strength of steel. However, excessive addition of REM delays the refinement of carbides and promotes uneven deformation during cold working, which may deteriorate the surface properties. Therefore, the REM content is set to 0.1% or less. On the other hand, the lower limit of the REM content is not particularly limited, but from the viewpoint of enhancing the effect of addition, the REM content is preferably 0.005% or more.
- Cu 0.5% or less
- Cu is an element effective in improving corrosion resistance. scratches). Therefore, the Cu content is set to 0.5% or less.
- the lower limit of the Cu content is not particularly limited, but from the viewpoint of enhancing the effect of addition, the Cu content is preferably 0.01% or more.
- Ni 3.0% or less
- Ni is an element that improves the strength of steel.
- excessive addition delays the refinement of carbides, promotes non-homogeneous deformation during cold working, and sometimes deteriorates the surface properties. Therefore, the Ni content is set to 3.0% or less.
- the lower limit of the Ni content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Ni content is preferably 0.01% or more.
- Sn 0.5% or less Sn is an element that is effective in improving corrosion resistance. scratches). Therefore, the Sn content is set to 0.5% or less.
- the lower limit of the Sn content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Sn content is preferably 0.0001% or more.
- Mo 1% or less Mo is an element that improves the strength of steel. However, excessive addition delays the refinement of carbides, promotes non-homogeneous deformation during cold working, and sometimes deteriorates the surface properties. Therefore, the Mo content is set to 1% or less. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Mo content is preferably 0.001% or more.
- Zr 0.5% or less
- Zr is an element that is effective in improving corrosion resistance. scratches). Therefore, the Zr content should be 0.5% or less.
- the lower limit of the Zr content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Zr content is preferably 0.01% or more.
- Average grain size of ferrite 10 ⁇ m or less Plastic deformation of ferrite is suppressed as the grain size of ferrite becomes finer. In order to obtain excellent punchability, the average grain size of ferrite is set to 10 ⁇ m or less. On the other hand, since the finer the ferrite, the better, the lower limit of the average particle diameter is not limited. However, from the viewpoint of industrial production, the average particle size may be 0.5 ⁇ m or more. The average grain size of ferrite can be measured by the method described in Examples.
- Average grain size of cementite present at ferrite grain boundaries 5 ⁇ m or less Cementite exists both inside ferrite grains and at ferrite grain boundaries, and cementite at ferrite grain boundaries is relatively coarser than cementite inside ferrite grains. is. The present inventors have found that the punchability can be improved by controlling the average grain size of cementite present in the ferrite grain boundaries.
- the cementite present at the ferrite grain boundaries must be fine. Therefore, the average grain size of cementite present at ferrite grain boundaries is set to 5 ⁇ m or less. On the other hand, since the smaller the average particle size, the better, the lower limit of the average particle size is not particularly limited. However, in the manufacturing method described later, since repeated annealing is performed, cementite at grain boundaries tends to grow. Therefore, in reality, the average particle diameter is 0.5 ⁇ m or more.
- the average grain size of cementite existing at the ferrite grain boundary can be measured by the method described in Examples.
- the spheroidization rate of the grain boundary cementite is not particularly limited, but is preferably 2.5 or less.
- La is the average value of the major diameters of cementite
- Lb is the average value of the minor diameters of cementite.
- La and Lb are obtained by photographing a cross section of the cold-rolled steel sheet in the thickness direction using a scanning electron microscope (SEM) at a magnification of 1000 times for 3 fields of view, and all grain boundary cementite observed in the obtained images. Measure the major axis and the minor axis, and obtain the average value of each. At that time, the major axis and the minor axis are values when the cementite is an ellipsoid or a sphere.
- SEM scanning electron microscope
- the cold-rolled steel sheet of the present invention contains at least one of Ti, Nb, and V. These elements form NaCl-type carbides and precipitate in ferrite grains and at ferrite grain boundaries.
- the ferrite can be hardened and the plastic deformation amount of the ferrite grains can be reduced. As a result, the burr height during press punching can be reduced.
- the average grain size of NaCl-type carbide containing at least one of Nb, Ti, and V present in ferrite grains is set to 0.5 ⁇ m or less.
- the smaller the average particle size, the higher the effect of strengthening ferrite, so the lower limit of the average particle size is not particularly limited.
- the average particle diameter is 0.01 ⁇ m or more.
- the average particle size can be measured by the method described in Examples.
- NaCl-type carbide containing at least one of Nb, Ti, and V present in ferrite grains may be simply referred to as "NaCl-type carbide".
- Average spacing of NaCl-type carbides 710 nm or less
- the strengthening of ferrite by the NaCl-type carbides is due to the finely dispersed NaCl-type carbides functioning as dislocation obstacles, and such strengthening is called precipitation strengthening. be.
- precipitation strengthening the smaller the distance between precipitates, the greater the strengthening.
- the average spacing of the NaCl-type carbides present in ferrite grains is set to 710 nm or less, preferably 250 nm or less.
- the lower limit of the average interval is not particularly limited, it is 30 nm or more in a realistic manufacturing range.
- the average spacing of NaCl-type carbides present in ferrite grains can be measured by the method described in the Examples.
- the number density of NaCl-type carbides containing at least one of Nb, Ti, and V present in the ferrite grains is not particularly limited, it is preferably less than 100/ ⁇ m 2 .
- the number density of grain boundary cementite having a grain size of 0.5 ⁇ m or more is not particularly limited, it is preferably 5 particles/100 ⁇ m 2 or more.
- the upper limit of the number density of grain boundary cementite having a grain size of 0.5 ⁇ m or more is not particularly limited, it is preferably 50 particles/100 ⁇ m 2 or less.
- the cold-rolled steel sheet of the present invention has a structure containing ferrite.
- the area ratio of ferrite is not particularly limited, the cold-rolled steel sheet preferably has a structure mainly composed of ferrite.
- "mainly composed of ferrite” is defined as having an area ratio of ferrite of 50% or more. More preferably, the ferrite area ratio is 68% or more.
- the structure can include any structure other than ferrite.
- the area ratio of cementite is preferably less than 30%.
- a cold-rolled steel sheet according to an embodiment of the present invention can have, for example, a structure consisting of 68% or more ferrite, less than 30% cementite, and the balance of precipitates other than cementite, in terms of area ratio.
- the "precipitates other than cementite” include carbides, nitrides, carbonitrides, sulfides, and carbosulfides other than cementite (Fe 3 C). More specific examples include carbides, nitrides, and carbonitrides of at least one of Ti, V, and Nb, Mn-based sulfides, and Ti-based composite carbosulfides.
- the plate thickness of the cold-rolled steel plate is not particularly limited, and may be any thickness. Considering that the sheet is punched by press and used as a material for textile machine parts, the plate thickness is preferably 0.1 mm or more and 1.6 mm or less. In particular, considering the use as a material for knitting needles, the plate thickness is preferably 0.2 mm or more and 0.8 mm or less.
- the cold-rolled steel sheet can be produced by sequentially subjecting a steel slab having the chemical composition described above to the following steps. (1) Heating (2) Hot rolling (3) Cooling (4) Winding (5) First annealing (6) Bending back (7) Second annealing (8) Cold rolling (9) Third and the above steps (8) and (9) are repeated two or more times. Each step will be described below in sequence.
- the steel slab can be manufactured by any method without particular limitation.
- the composition adjustment of the steel slab may be performed by a blast furnace converter method or by an electric furnace method.
- Casting of molten steel into slabs may be performed by continuous casting or by blooming.
- the heating temperature of the steel slab is not particularly limited, but as will be described later, it may be adjusted so that the temperature of the steel slab is in the austenitic region when the next hot rolling is started.
- Hot rolling Next the heated steel slab is hot rolled to form a hot rolled steel sheet.
- rough rolling and finish rolling can be carried out according to a conventional method.
- Hot rolling start temperature Ac 3 point or higher
- the hot rolling start temperature is set to Ac3 or higher.
- the Ac3 point (° C.) is obtained by the following formula (1).
- Finish rolling delivery side temperature 800 ° C. or higher Similarly, if the finish rolling delivery side temperature is less than 800 ° C., expanded ferrite is generated in the hot rolled steel sheet of the intermediate product and remains in the final product, so burrs Height increases. Therefore, the finish rolling delivery side temperature is set to 800° C. or higher.
- Cooling Time to start of cooling 5.0 seconds or less
- the hot-rolled steel sheet is cooled.
- the time from the end of hot rolling to the start of cooling (hereinafter sometimes simply referred to as "time to start cooling") is 5.0 seconds or less, preferably 4.5 seconds or less, more preferably 4.0 seconds. seconds or less.
- the lower limit of the time until the start of cooling is not particularly limited, but from the viewpoint of adaptability to general production equipment, it is preferably 0.2 seconds or more, more preferably 0.5 seconds or more. preferable.
- Average cooling rate 25° C./s or more If the average cooling rate in the cooling is less than 25° C./s, expanded grains are generated in the cold-rolled steel sheet, which is the final product, and as a result, the punchability is lowered. . Therefore, the average cooling rate is set to 25° C./s or higher.
- the upper limit of the average cooling rate is not particularly limited, but from the viewpoint of suitability for general production equipment, it is preferably 80 ° C./s or less, and more preferably 60 ° C./s or less. It is more preferable to set it to 50° C./s or less.
- Cooling stop temperature 620°C to 740°C If the cooling is stopped at a temperature higher than 740° C., carbides are precipitated at the austenite grain boundaries, and elongated grains are generated in the final product, resulting in poor punchability. Therefore, the cooling stop temperature is set to 740° C. or lower. On the other hand, when the cooling is stopped at a temperature lower than 620° C., ferrite precipitates and pearlite is unevenly distributed. This uneven distribution leads to uneven cementite distribution in the final product. Therefore, the cooling stop temperature should be 620° C. or higher, preferably 630° C. or higher.
- the cooled hot-rolled steel sheet is wound into a coil.
- the winding temperature is not particularly limited, but it is preferably 600 to 730°C.
- the hot-rolled steel sheet after being coiled has a pearlite structure. Therefore, the cementite contained in the pearlite is decomposed by subjecting the coiled hot-rolled steel sheet to the first annealing. By decomposing the cementite, the cementite becomes finer in the subsequent second annealing and cold rolling. As a result, the ferrite becomes finer, and plastic deformation of the ferrite grains can be suppressed.
- Annealing temperature 730° C. or less If the annealing temperature in the first annealing is higher than 730° C., the phase transformation progresses preferentially in one part, so the ferrite grains locally coarsen, and as a result, the amount of plastic deformation increases. . In addition, a locally coarse structure results in non-uniform machining and poor part shape accuracy. Therefore, the annealing temperature is set to 730° C. or lower.
- the lower limit of the annealing temperature is not particularly limited, but the annealing temperature is preferably 450° C. or higher, and 500° C. or higher, from the viewpoint of promoting the decomposition of cementite by redissolving cementite in pearlite. It is more preferable to set the temperature to 520° C. or higher.
- Annealing time 5 hours or more If the annealing time in the first annealing is less than 5 hours, decomposition of cementite does not progress. If the decomposition of cementite does not progress, plate-like cementite will remain, and subsequent processing such as cold rolling will become non-homogeneous, and the shape accuracy of the part will deteriorate. Therefore, the annealing time is set to 5 hours or longer. On the other hand, the upper limit of the annealing time is not particularly limited. However, since the structural change is saturated after the cementite decomposition starts, the annealing temperature is preferably 50 hours or less, more preferably 40 hours or less, from the viewpoint of production efficiency.
- processing strain by bending and unbending can be done by any method without any particular limitation.
- a leveler or skin pass rolling machine used for shape correction, a slitter for shearing the steel plate, etc. may be used to perform bending and unbending. You may apply a return.
- a roll with a diameter of 1100 mm or less is preferably used, and a roll with a diameter of 800 mm or less is more preferably used.
- the diameter of the roll is preferably 300 mm or more, more preferably 450 mm or more.
- the roll may be a bridle roll. If bridle rolls are used, strain is introduced by passing the sheet through the bridle rolls.
- Second Annealing The hot-rolled steel sheet after bending and unbending is subjected to second annealing. As described above, by performing the second annealing after applying the work strain by bending back, the refinement of the cementite is promoted.
- Annealing temperature 600° C. or higher
- the cementite does not become finer, and the formation of NaCl-type carbide containing at least one of Nb, Ti, and V is suppressed. be. If the formation of the NaCl-type carbide is suppressed, the plastic deformation of the ferrite grains cannot be suppressed, resulting in high burrs. Therefore, the annealing temperature in the second annealing is set to 600° C. or higher.
- the upper limit of the annealing temperature is not particularly limited, but if it is too high, the structure becomes coarse and the burr increases, so the annealing temperature is preferably 790°C or less, more preferably 770°C or less. .
- the upper limit of the rolling reduction is not particularly limited, but if the rolling reduction is excessively high, the structure locally coarsens and burrs increase. Therefore, the rolling reduction is preferably 52% or less, more preferably 50% or less.
- the upper limit of the annealing temperature in the third annealing is not particularly limited, but if the annealing temperature is excessively high, the structure becomes coarse and the burr increases. Therefore, the annealing temperature is preferably 750° C. or lower, more preferably 720° C. or lower.
- final cold rolling may be performed.
- the rolling reduction in the final cold rolling is not particularly limited, but is preferably 20% or more.
- the upper limit of the rolling reduction in the final cold rolling is not particularly limited, it is preferably 50% or less.
- cold-rolled steel sheets with good punchability can be produced. Further, the finally obtained cold-rolled steel sheet may be subjected to any surface treatment.
- cold-rolled steel sheets were produced according to the procedure described below, and the punchability of the obtained cold-rolled steel sheets was evaluated.
- steel having the chemical composition shown in Table 1 was melted in a converter and made into a steel slab by continuous casting.
- the steel slab is sequentially subjected to heating, hot rolling, cooling, coiling, pickling, first annealing, pickling, unbending, second annealing, cold rolling, and third annealing.
- a cold-rolled steel sheet having a final thickness of about 0.4 mm was obtained.
- Each step was performed under the conditions shown in Tables 2 and 3, and cold rolling and third annealing were repeated the number of times shown in Tables 2 and 3.
- the bending and unbending was performed using bridle rolls having diameters shown in Tables 2 and 3 when the coil was unwound. For comparison, some examples were not subjected to bending and unbending (comparative example No. 16).
- a test piece for structural observation was taken from the obtained cold-rolled steel sheet. After polishing the rolling direction cross section (L cross section) of the test piece for structure observation, the structure was exposed by corroding the polished surface with a 3 vol % nital solution. Next, the surface of the test piece for tissue observation was imaged with a SEM (scanning electron microscope) at a magnification of 3000 to obtain a tissue image. According to JIS G0551:2020, the ferrite grain size was measured by a cutting method from the obtained structure image. The average value of the ferrite grain sizes measured in five fields of view was calculated and used as the average grain size.
- a test piece for structure observation was taken from the obtained cold-rolled steel sheet. After polishing the rolling direction cross section (L cross section) of the test piece for structure observation, the structure was exposed by corroding the polished surface with a 3 vol % nital solution. Next, the surface of the test piece for tissue observation was imaged using an SEM at a magnification of 3000 to obtain a tissue image. From the obtained structure image, the grain size was measured by the cutting method only for the grain boundary cementite. The average grain size of the grain boundary cementite measured in the three fields of view was calculated and used as the average grain size of the grain boundary cementite. Also, the number density of grain boundary cementite having a grain size of 0.5 ⁇ m or more was obtained from the texture image.
- Average Grain Size of NaCl-Type Carbide The average grain size of NaCl-type carbide containing at least one of Nb, Ti, and V present in ferrite grains was measured by the following procedure. The surface of the test piece was imaged using a transmission electron microscope (TEM) at a magnification of 80000 times to obtain tissue images of 5 fields of view. By image processing using circle approximation, individual particle sizes of NaCl-type carbides containing at least one of Nb, Ti, and V present in the ferrite grains in the obtained structure image are obtained, and the average value thereof was calculated. Whether or not the carbide contains at least one of Nb, Ti, and V was identified using TEM-EPMA.
- TEM-EPMA transmission electron microscope
- Average spacing of NaCl-type carbides The average spacing of NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains was obtained by measuring the spacing of all NaCl-type carbides that can be confirmed within a field of view of 80,000 times. , was determined by calculating the average value for 5 fields of view.
- NaCl-type carbides in Tables 4 and 5 refer to NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains.
- a test piece with a width of 20 mm, a length of 150 mm, and a thickness of 0.4 mm was taken from each cold-rolled steel sheet.
- the test pieces were punched out.
- the clearance in the punching was set to 100 ⁇ m.
- the punching was performed 10 times for one test piece. At that time, when punching for the first time, the distance from the edge of the test piece to the punched hole was set to 5 mm or more. In the second and subsequent punching operations, the distance between adjacent punched holes was set to 5 mm or more.
- the height of the burr generated in the circumferential direction was observed with a microscope, and the height of the burr was measured at 5 locations evenly in the circumferential direction for one hole. An average value was calculated. Next, the same measurement was performed at 10 holes, and the average value of the burr heights calculated for each hole was adopted as the burr height.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
C: 0.6~1.25%、
Si:0.1~0.55%、
Mn:0.5~2.0%、
P :0.0005~0.05%、
S :0.0001~0.01%、
Al:0.001~0.1%、
N :0.001~0.009%、
Cr:0.05~0.65%、ならびに
Ti:0.001~0.3%、Nb:0.01~0.1%、およびV:0.005~0.5%からなる群より選択される少なくとも1つを含み、
残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライトの平均粒径が10μm以下であり、
フェライト粒界に存在するセメンタイトの平均粒径が5μm以下であり、
フェライト粒内に存在する、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の平均粒径が0.5μm以下であり、かつ
前記NaCl型炭化物の平均間隔が710nm以下である鋼組織を有する、冷延鋼板。 in % by mass,
C: 0.6-1.25%,
Si: 0.1 to 0.55%,
Mn: 0.5-2.0%,
P: 0.0005 to 0.05%,
S: 0.0001 to 0.01%,
Al: 0.001 to 0.1%,
N: 0.001 to 0.009%,
Selected from the group consisting of Cr: 0.05 to 0.65%, and Ti: 0.001 to 0.3%, Nb: 0.01 to 0.1%, and V: 0.005 to 0.5% including at least one that is
Having a component composition in which the balance is Fe and unavoidable impurities,
The average grain size of ferrite is 10 μm or less,
The cementite present at the ferrite grain boundary has an average grain size of 5 μm or less,
It has a steel structure in which the average grain size of NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains is 0.5 μm or less, and the average spacing of the NaCl-type carbides is 710 nm or less. , cold-rolled steel.
Sb:0.1%以下、
Hf:0.5%以下、
REM:0.1%以下、
Cu:0.5%以下、
Ni:3.0%以下、
Sn:0.5%以下、
Mo:1%以下、および
Zr:0.5%以下からなる群より選択される少なくとも1つをさらに含む、上記1に記載の冷延鋼板。 2. The component composition, in mass%,
Sb: 0.1% or less,
Hf: 0.5% or less,
REM: 0.1% or less,
Cu: 0.5% or less,
Ni: 3.0% or less,
Sn: 0.5% or less,
2. The cold-rolled steel sheet according to 1 above, further comprising at least one selected from the group consisting of Mo: 1% or less and Zr: 0.5% or less.
加熱された前記鋼スラブを、熱間圧延開始温度:Ac3点以上、かつ仕上圧延出側温度:800℃以上の条件で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、前記熱間圧延終了から冷却開始までの時間:5.0秒以下、平均冷却速度:25℃/s以上、冷却停止温度:740℃~620℃の条件で冷却し、
冷却された前記熱延鋼板を巻取り、
前記巻取り後の熱延鋼板に、焼鈍温度:730℃以下、焼鈍時間:5時間以上の条件での第1の焼鈍を施し、
前記第1の焼鈍後の熱延鋼板に、曲げ曲げ戻し(bending and reverse bending)を施し、
前記曲げ曲げ戻し後の熱延鋼板に、焼鈍温度:600℃以上での第2の焼鈍を施し、
前記第2の焼鈍後の熱延鋼板に、圧延率:15%以上での冷間圧延と、焼鈍温度:600℃以上での第3の焼鈍とを、2回以上繰返し施す、冷延鋼板の製造方法。 3. Heating a steel slab having the composition according to 1 or 2 above,
The heated steel slab is hot rolled into a hot rolled steel sheet under the conditions of a hot rolling start temperature of Ac 3 points or more and a finish rolling delivery side temperature of 800° C. or more,
The hot-rolled steel sheet is cooled under the conditions of time from the end of hot rolling to the start of cooling: 5.0 seconds or less, average cooling rate: 25 ° C./s or more, cooling stop temperature: 740 ° C. to 620 ° C.,
Winding the cooled hot-rolled steel sheet,
The coiled hot-rolled steel sheet is subjected to a first annealing under conditions of an annealing temperature of 730° C. or less and an annealing time of 5 hours or more,
Bending and reverse bending are applied to the hot-rolled steel sheet after the first annealing,
The hot-rolled steel sheet after bending and unbending is subjected to a second annealing at an annealing temperature of 600 ° C. or higher,
Cold-rolled steel sheet obtained by repeatedly subjecting the hot-rolled steel sheet after the second annealing to cold rolling at a rolling reduction of 15% or more and third annealing at an annealing temperature of 600 ° C. or more twice or more. Production method.
本発明の冷延鋼板は、上述した成分組成を有する。以下、その限定理由について説明する。なお、以下の説明において、含有量の単位としての「%」は特に断らない限り「質量%」を指すものとする。 [Component composition]
The cold-rolled steel sheet of the present invention has the chemical composition described above. The reason for the limitation will be described below. In the following description, "%" as a unit of content means "% by mass" unless otherwise specified.
Cは、焼入れにより硬さを向上させる効果を有する元素であり、打ち抜き性に重要な役割を果たす。CはFeとセメンタイトを形成し、その結果、生成したセメンタイトとフェライトとの間に境界が生じる。そして、この境界は、打ち抜き時にボイドの起点になる。せん断がボイドを起点として起こる場合には、フェライトの塑性変形が抑制され、バリ高さは低くなる。C含有量が0.60%未満であるとセメンタイト生成に炭素が消費され、粒内に炭化物が生成しなくなるため、フェライト粒の塑性変形が助長される。そしてその結果、バリが高くなるとともに残留応力が大きくなり、形状および寸法の精度が低下する。そのため、C含有量は0.60%以上、好ましくは0.65%以上、より好ましくは0.70%以上とする。一方、C含有量が1.25%を超えると、冷延鋼板が硬くなりすぎて脆性破断が起こりやすくなるため、打抜きの際にせん断端面に割れが生じる。そのため、C含有量は1.25%以下、好ましくは1.20%以下、より好ましくは1.15%以下とする。 C: 0.60-1.25%
C is an element that has the effect of improving hardness by quenching, and plays an important role in punchability. C forms cementite with Fe, resulting in a boundary between the formed cementite and ferrite. This boundary becomes the starting point of voids during punching. When shearing occurs starting from voids, plastic deformation of ferrite is suppressed and the burr height is reduced. When the C content is less than 0.60%, carbon is consumed to form cementite, and carbides do not form inside the grains, thereby promoting plastic deformation of the ferrite grains. As a result, the burr height increases, the residual stress increases, and the accuracy of the shape and dimensions deteriorates. Therefore, the C content should be 0.60% or more, preferably 0.65% or more, and more preferably 0.70% or more. On the other hand, if the C content exceeds 1.25%, the cold-rolled steel sheet becomes too hard and brittle fracture is likely to occur, so that cracks occur at the sheared edge during punching. Therefore, the C content should be 1.25% or less, preferably 1.20% or less, and more preferably 1.15% or less.
Siは、固溶強化によりフェライト組織の強度を上げる効果を有する元素であり、Siを添加することにより打抜き性を向上させることができる。前記効果を得るために、Si含有量を0.1%以上、好ましくは0.12%以上、より好ましくは0.14%以上とする。一方、Si含有量が過剰であると、フェライトの生成と粒成長が促進されてフェライト強度が低下する。また、フェライトの生成が促進されることにより、粗大なセメンタイトの粒界への析出が促進され、ボイド発生頻度が低下する。そしてその結果、塑性変形量が増大し、打抜き性が低下する。そのため、Si含有量は0.55%以下、好ましくは0.52%以下、より好ましくは0.50%以下とする。 Si: 0.1-0.55%
Si is an element that has the effect of increasing the strength of the ferrite structure through solid-solution strengthening, and the addition of Si can improve punchability. In order to obtain the above effect, the Si content should be 0.1% or more, preferably 0.12% or more, more preferably 0.14% or more. On the other hand, when the Si content is excessive, ferrite formation and grain growth are promoted, and ferrite strength is lowered. In addition, the promotion of ferrite formation promotes the precipitation of coarse cementite at grain boundaries, thereby reducing the void generation frequency. As a result, the amount of plastic deformation increases and the punchability decreases. Therefore, the Si content should be 0.55% or less, preferably 0.52% or less, and more preferably 0.50% or less.
Mnは、セメンタイト中に混入し、セメンタイトの成長を抑制する元素である。フェライト粒界に生成するセメンタイトを微細化することによりフェライトの塑性変形を抑制し、打抜き性を向上させることができる。前記効果を得るために、Mn含有量を0.5%以上、好ましくは0.52%以上、より好ましくは0.54%以上とする。一方、Mn含有量が2.0%を超えると、Mn硫化物の偏析により圧延方向に広範囲なバンド状組織が発生して、組織生成が異常となる。その結果、フェライト粒の異常粒成長が促進されるとともに、セメンタイト析出が不均質となり、打抜き性が低下する。そのため、Mn含有量は2.0%以下、好ましくは1.95%以下、より好ましくは1.90%以下、さらに好ましくは1.85%以下とする。 Mn: 0.5-2.0%
Mn is an element that mixes into cementite and suppresses the growth of cementite. By refining cementite generated at ferrite grain boundaries, plastic deformation of ferrite can be suppressed and punchability can be improved. In order to obtain the above effects, the Mn content should be 0.5% or more, preferably 0.52% or more, and more preferably 0.54% or more. On the other hand, if the Mn content exceeds 2.0%, segregation of Mn sulfide causes a wide band-like structure in the rolling direction, resulting in abnormal structure formation. As a result, abnormal grain growth of ferrite grains is promoted, and cementite precipitation becomes non-uniform, resulting in a decrease in punchability. Therefore, the Mn content is 2.0% or less, preferably 1.95% or less, more preferably 1.90% or less, still more preferably 1.85% or less.
Pは、フェライトを強化する作用を有する元素である。したがって、Pを微量添加することによりフェライトの塑性変形を抑制し、打抜き性を向上させることができる。そのため、P含有量を0.0005%以上、好ましくは0.0010%以上とする。一方、P含有量が0.05%を超えると、Pが粒界偏析することによって粒界でのセメンタイト形成が抑制され、フェライトの塑性変形量が増加する結果、打抜き性が低下する。そのため、P含有量は0.05%以下、好ましくは0.04%以下とする。 P: 0.0005 to 0.05%
P is an element that has the effect of strengthening ferrite. Therefore, by adding a small amount of P, the plastic deformation of ferrite can be suppressed and the punchability can be improved. Therefore, the P content is made 0.0005% or more, preferably 0.0010% or more. On the other hand, when the P content exceeds 0.05%, the grain boundary segregation of P suppresses the formation of cementite at the grain boundaries, and as a result, the amount of plastic deformation of ferrite increases, resulting in a decrease in punchability. Therefore, the P content should be 0.05% or less, preferably 0.04% or less.
Sは、鋼中に含まれるMnと硫化物を形成する。MnSがフェライト粒界に生成すると、セメンタイトと同様、フェライトと析出物との境界におけるボイドの起点となるため、打抜き性が向上する。そのため、S含有量は0.0001%以上、好ましくは0.0005%以上とする。一方、S含有量が0.01%を超えると、展伸したバンド状のMnSが多量に発生して、異常粒成長を促進するので、局部変形を招き、打抜き性が劣化する。そのため、S含有量は0.01%以下、好ましくは0.008%以下とする。 S: 0.0001 to 0.01%
S forms sulfides with Mn contained in steel. When MnS is generated at the ferrite grain boundary, like cementite, it becomes a starting point of voids at the boundary between ferrite and precipitates, thereby improving the punchability. Therefore, the S content should be 0.0001% or more, preferably 0.0005% or more. On the other hand, if the S content exceeds 0.01%, a large amount of stretched band-like MnS is generated, which promotes abnormal grain growth, causing local deformation and deteriorating punchability. Therefore, the S content should be 0.01% or less, preferably 0.008% or less.
Alは、酸化物として鋼中に分散するとともに、固溶してフェライトを強化することで、フェライトの塑性変形を抑制し、打抜き性を向上させる。そのため、Al含有量を0.001%以上、好ましくは0.002%以上とする。一方、Al含有量が0.10%を超えると、フェライト粒の成長が促進され、塑性変形量が増大する結果、打抜き性が低下する。そのため、Al含有量は0.10%以下、好ましくは0.08%以下、より好ましくは0.06%以下とする。 Al: 0.001-0.10%
Al disperses in steel as an oxide and solid-solves to strengthen ferrite, thereby suppressing plastic deformation of ferrite and improving punchability. Therefore, the Al content is made 0.001% or more, preferably 0.002% or more. On the other hand, if the Al content exceeds 0.10%, the growth of ferrite grains is accelerated and the amount of plastic deformation increases, resulting in lower punchability. Therefore, the Al content should be 0.10% or less, preferably 0.08% or less, and more preferably 0.06% or less.
Nは鋼中でAlと結合してAlNとなる。N含有量が0.001%未満であるとフェライト結晶粒が粗大化し、打抜き性が低下する。そのため、N含有量を0.001%以上とする。一方、N含有量が0.009%を超えると、中間製品である熱延鋼板のフェライト粒界にAlNが析出してフェライト粒が展伸し粗大化することから、打抜き性が低下する。そのため、N含有量は0.009%以下、好ましくは0.006%以下とする。 N: 0.001 to 0.009%
N combines with Al in steel to form AlN. If the N content is less than 0.001%, the ferrite crystal grains become coarse and the punchability deteriorates. Therefore, the N content is made 0.001% or more. On the other hand, if the N content exceeds 0.009%, AlN precipitates at the ferrite grain boundaries of the hot-rolled steel sheet, which is an intermediate product, and the ferrite grains are extended and coarsened, resulting in a decrease in punchability. Therefore, the N content should be 0.009% or less, preferably 0.006% or less.
Crは鋼の焼入れ性を高め、強度を向上させる元素であるととともに、打抜き性にも影響する。Cr含有量が0.05%未満であると、セメンタイトが粗大化しやすく、ボイド密度が低下して打抜き性が低下する。そのため、Cr含有量は0.05%以上、好ましくは0.08%以上、より好ましくは0.10%以上、さらに好ましくは0.15%以上とする。一方、Cr含有量が過剰であると粗大なCr炭化物やCr窒化物が形成され、セメンタイトとフェライトとの界面で発生するボイドよりも先行して、Cr炭化物やCr窒化物とフェライトとの界面でボイドが発生する。また、粗大なCr炭化物の生成により粒内の炭化物生成が抑制され、フェライトの強度が落ちてしまう。これにより、変形が局在化して、打抜き性が低下する。そのため、Cr含有量は0.65%以下、好ましくは0.60%以下とする。 Cr: 0.05-0.65%
Cr is an element that enhances the hardenability of steel and improves strength, and also affects punchability. If the Cr content is less than 0.05%, the cementite tends to coarsen, the void density decreases, and the punchability deteriorates. Therefore, the Cr content should be 0.05% or more, preferably 0.08% or more, more preferably 0.10% or more, and still more preferably 0.15% or more. On the other hand, when the Cr content is excessive, coarse Cr carbides and Cr nitrides are formed, and prior to the voids generated at the interface between cementite and ferrite, Voids are generated. In addition, the formation of coarse Cr carbides suppresses the formation of carbides in grains, and the strength of ferrite is lowered. This localizes the deformation and reduces the punchability. Therefore, the Cr content should be 0.65% or less, preferably 0.60% or less.
Tiは、フェライト粒内に微細なTiCを形成し、フェライト粒を強化して塑性変形量を抑制する。したがって、Tiを添加することにより打抜き性を向上させることができる。しかし、Ti含有量が0.001%未満では、TiCよりも先にTiNが析出することによりTiが消費されてしまうため、打抜き性向上効果を得ることができない。そのため、Tiを添加する場合、Ti含有量を0.001%以上、好ましくは0.005%以上とする。一方、Ti含有量が0.30%を超えると粗大なTiCが生成し、ボイドの形成と成長が前記粗大なTiCの周囲で局所的に生じる。そしてその結果、塑性変形が局在化し、打抜き性が低下する。そのため、Ti含有量は0.30%以下、好ましくは0.28%以下、より好ましくは0.26%以下とする。 Ti: 0.001-0.30%
Ti forms fine TiC in ferrite grains, strengthens the ferrite grains, and suppresses the amount of plastic deformation. Therefore, the punchability can be improved by adding Ti. However, if the Ti content is less than 0.001%, Ti is consumed by precipitation of TiN prior to TiC, so the effect of improving the punchability cannot be obtained. Therefore, when Ti is added, the Ti content should be 0.001% or more, preferably 0.005% or more. On the other hand, when the Ti content exceeds 0.30%, coarse TiC is formed, and void formation and growth occur locally around the coarse TiC. As a result, the plastic deformation is localized and the punchability is lowered. Therefore, the Ti content should be 0.30% or less, preferably 0.28% or less, and more preferably 0.26% or less.
Nbは、フェライト粒内に微細なNbCを形成し、フェライト粒を強化して塑性変形を抑制する。したがって、Nbを添加することにより打抜き性を向上させることができる。しかし、Nb含有量が0.01%未満では、NbCの析出量が少ないため打抜き性向上効果を得ることができない。そのため、Nbを添加する場合、Nb含有量を0.01%以上、好ましくは0.015%以上とする。一方、Nb含有量が0.1%を超えると粗大なNb(CN)が生成してボイドが粗大Nb(CN)の周囲に局在し、変形が局在化するため打抜き性が低下する。そのため、Nb含有量は0.1%以下、好ましくは0.09%以下とする。 Nb: 0.01-0.1%
Nb forms fine NbC in ferrite grains, strengthens the ferrite grains, and suppresses plastic deformation. Therefore, the punchability can be improved by adding Nb. However, if the Nb content is less than 0.01%, the amount of NbC precipitated is so small that the effect of improving punchability cannot be obtained. Therefore, when Nb is added, the Nb content should be 0.01% or more, preferably 0.015% or more. On the other hand, when the Nb content exceeds 0.1%, coarse Nb(CN) is formed, and voids are localized around the coarse Nb(CN), resulting in localized deformation and reduced punchability. Therefore, the Nb content should be 0.1% or less, preferably 0.09% or less.
Vは、フェライト粒内に微細なVCを形成し、フェライト粒を強化して塑性変形を抑制する。したがって、Vを添加することにより打抜き性を向上させることができる。しかし、V含有量が0.005%未満では、VCの析出量が少ないため打抜き性向上効果を得ることができない。そのため、Vを添加する場合、V含有量を0.005%以上、好ましくは0.010%以上とする。一方、V含有量が0.5%を超えると、粗大なV(CN)が生成してボイドが粗大なV(CN)の周囲に局在化し、変形量が偏るため、打抜き性が低下する。そのため、V含有量は0.5%以下、好ましくは0.45%以下、より好ましくは0.40%以下とする。 V: 0.005-0.5%
V forms fine VCs in ferrite grains, strengthens the ferrite grains, and suppresses plastic deformation. Therefore, the punchability can be improved by adding V. However, if the V content is less than 0.005%, the amount of VC precipitated is so small that the effect of improving punchability cannot be obtained. Therefore, when V is added, the V content should be 0.005% or more, preferably 0.010% or more. On the other hand, when the V content exceeds 0.5%, coarse V(CN) is formed, voids are localized around the coarse V(CN), and the amount of deformation is biased, resulting in a decrease in punchability. . Therefore, the V content should be 0.5% or less, preferably 0.45% or less, and more preferably 0.40% or less.
Sbは、耐食性向上に有効な元素であるが、過剰に添加すると熱間圧延で生成するスケール下に富Sb層を生成し、熱間圧延後に鋼板の表面へげ(キズ)を発生させる。そのため、Sb含有量は0.1%以下とする。一方、Sb含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Sb含有量を0.0003%以上とすることが好ましい。 Sb: 0.1% or less Sb is an element effective in improving corrosion resistance. scratches). Therefore, the Sb content is set to 0.1% or less. On the other hand, although the lower limit of the Sb content is not particularly limited, the Sb content is preferably 0.0003% or more from the viewpoint of enhancing the effect of addition.
Hfは、耐食性向上に有効な元素であるが、過剰に添加すると熱間圧延で生成するスケール下に富Hf層を生成し、熱間圧延後に鋼板の表面へげ(キズ)を発生させる。そのため、Hf含有量は0.5%以下とする。一方、Hf含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Hf含有量を0.001%以上とすることが好ましい。 Hf: 0.5% or less Hf is an element that is effective in improving corrosion resistance. scratches). Therefore, the Hf content is set to 0.5% or less. On the other hand, the lower limit of the Hf content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Hf content is preferably 0.001% or more.
REM(希土類金属)は、鋼の強度を向上させる元素である。しかし、REMを過剰に添加すると炭化物の微細化を遅延させ、冷間加工の際に不均質な変形を助長して表面性状を劣化させることがある。そのため、REM含有量は0.1%以下とする。一方、REM含有量の下限は特に限定されないが、添加効果を高めるという観点からは、REM含有量を0.005%以上とすることが好ましい。 REM: 0.1% or less REM (rare earth metal) is an element that improves the strength of steel. However, excessive addition of REM delays the refinement of carbides and promotes uneven deformation during cold working, which may deteriorate the surface properties. Therefore, the REM content is set to 0.1% or less. On the other hand, the lower limit of the REM content is not particularly limited, but from the viewpoint of enhancing the effect of addition, the REM content is preferably 0.005% or more.
Cuは、耐食性向上に有効な元素であるが、過剰に添加すると熱間圧延で生成するスケール下に富Cu層を生成し、熱間圧延後に鋼板の表面へげ(キズ)を発生させる。そのため、Cu含有量は0.5%以下とする。一方、Cu含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Cu含有量を0.01%以上とすることが好ましい。 Cu: 0.5% or less Cu is an element effective in improving corrosion resistance. scratches). Therefore, the Cu content is set to 0.5% or less. On the other hand, the lower limit of the Cu content is not particularly limited, but from the viewpoint of enhancing the effect of addition, the Cu content is preferably 0.01% or more.
Niは鋼の強度を向上させる元素である。しかし、過剰に添加すると炭化物の微細化を遅延させ、冷間加工の際に不均質な変形を助長して表面性状を劣化させることがある。そのため、Ni含有量は3.0%以下とする。一方、Ni含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Ni含有量を0.01%以上とすることが好ましい。 Ni: 3.0% or less Ni is an element that improves the strength of steel. However, excessive addition delays the refinement of carbides, promotes non-homogeneous deformation during cold working, and sometimes deteriorates the surface properties. Therefore, the Ni content is set to 3.0% or less. On the other hand, the lower limit of the Ni content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Ni content is preferably 0.01% or more.
Snは、耐食性向上に有効な元素であるが、過剰に添加すると熱間圧延で生成するスケール下に富Sn層を生成し、熱間圧延後に鋼板の表面へげ(キズ)を発生させる。そのため、Sn含有量は0.5%以下とする。一方、Sn含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Sn含有量を0.0001%以上とすることが好ましい。 Sn: 0.5% or less Sn is an element that is effective in improving corrosion resistance. scratches). Therefore, the Sn content is set to 0.5% or less. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Sn content is preferably 0.0001% or more.
Moは鋼の強度を向上させる元素である。しかし、過剰に添加すると炭化物の微細化を遅延させ、冷間加工の際に不均質な変形を助長して表面性状を劣化させることがある。そのため、Mo含有量は1%以下とする。一方、Mo含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Mo含有量を0.001%以上とすることが好ましい。 Mo: 1% or less Mo is an element that improves the strength of steel. However, excessive addition delays the refinement of carbides, promotes non-homogeneous deformation during cold working, and sometimes deteriorates the surface properties. Therefore, the Mo content is set to 1% or less. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Mo content is preferably 0.001% or more.
Zrは、耐食性向上に有効な元素であるが、過剰に添加すると熱間圧延で生成するスケール下に富Zr層を生成し、熱間圧延後に鋼板の表面へげ(キズ)を発生させる。そのため、Zr含有量は0.5%以下とする。一方、Zr含有量の下限は特に限定されないが、添加効果を高めるという観点からは、Zr含有量を0.01%以上とすることが好ましい。 Zr: 0.5% or less Zr is an element that is effective in improving corrosion resistance. scratches). Therefore, the Zr content should be 0.5% or less. On the other hand, the lower limit of the Zr content is not particularly limited, but from the viewpoint of increasing the effect of addition, the Zr content is preferably 0.01% or more.
次に、本発明の冷延鋼板の組織について説明する。 [Organization]
Next, the structure of the cold-rolled steel sheet of the present invention will be explained.
フェライトの粒径が微細であるほどフェライトの塑性変形が抑制される。優れた打抜き性を得るために、フェライトの平均粒径を10μm以下とする。一方、フェライトは微細であるほど好ましいため、前記平均粒径の下限は限定されない。しかし、工業的な生産の観点からは、前記平均粒径は、0.5μm以上であってよい。なお、フェライトの平均粒径は、実施例に記載した方法で測定することができる。 Average grain size of ferrite: 10 µm or less Plastic deformation of ferrite is suppressed as the grain size of ferrite becomes finer. In order to obtain excellent punchability, the average grain size of ferrite is set to 10 μm or less. On the other hand, since the finer the ferrite, the better, the lower limit of the average particle diameter is not limited. However, from the viewpoint of industrial production, the average particle size may be 0.5 μm or more. The average grain size of ferrite can be measured by the method described in Examples.
セメンタイトは、フェライト粒内とフェライト粒界のいずれにも存在しており、フェライト粒内のセメンタイトに比べてフェライト粒界のセメンタイトは比較的粗大である。本発明者らは、このフェライト粒界に存在しているセメンタイトの平均粒径を制御することにより打抜き性を向上できることを見出した。 Average grain size of cementite present at ferrite grain boundaries: 5 μm or less Cementite exists both inside ferrite grains and at ferrite grain boundaries, and cementite at ferrite grain boundaries is relatively coarser than cementite inside ferrite grains. is. The present inventors have found that the punchability can be improved by controlling the average grain size of cementite present in the ferrite grain boundaries.
球状化率=La/Lb
ここで、La:セメンタイトの長径の平均値、Lb:セメンタイトの短径の平均値である。LaおよびLbは、冷延鋼板を板厚方向に切断した断面を、走査電子顕微鏡(SEM)を用いて倍率1000倍で3視野撮影し、得られた画像内に認められるすべての粒界セメンタイトの長径および短径を測定し、それぞれの平均値として求める。その際、前記長径および短径は、セメンタイトを楕円体または球とした場合の値とする。 As described above, in the present invention, it is important that the grain boundary cementite is fine, and as a result, the cementite becomes spheroidized as a result of the fineness. The spheroidization rate of the grain boundary cementite is not particularly limited, but is preferably 2.5 or less. The spheroidization rate of the grain boundary cementite is defined by the following formula.
Spheroidization rate = La/Lb
Here, La is the average value of the major diameters of cementite, and Lb is the average value of the minor diameters of cementite. La and Lb are obtained by photographing a cross section of the cold-rolled steel sheet in the thickness direction using a scanning electron microscope (SEM) at a magnification of 1000 times for 3 fields of view, and all grain boundary cementite observed in the obtained images. Measure the major axis and the minor axis, and obtain the average value of each. At that time, the major axis and the minor axis are values when the cementite is an ellipsoid or a sphere.
さらに、本発明の冷延鋼板は、Ti、Nb、およびVの少なくとも1つを含有する。これらの元素は、NaCl型炭化物を形成してフェライト粒内とフェライト粒界に析出する。前記NaCl型炭化物をフェライト粒内に微細に分散させることによってフェライトを硬質化し、フェライト粒の塑性変形量を低下させることができる。そしてその結果、プレス打抜きの際のバリ高さを低減することができる。 Average grain size of NaCl-type carbide present in ferrite grains: 0.5 µm or less Furthermore, the cold-rolled steel sheet of the present invention contains at least one of Ti, Nb, and V. These elements form NaCl-type carbides and precipitate in ferrite grains and at ferrite grain boundaries. By finely dispersing the NaCl-type carbides in the ferrite grains, the ferrite can be hardened and the plastic deformation amount of the ferrite grains can be reduced. As a result, the burr height during press punching can be reduced.
上記NaCl型炭化物によるフェライトの強化は、微細に分散したNaCl型炭化物が転位の障害物として機能することによるものであり、このような強化は析出強化と称される。析出強化においては、析出物間の距離が小さいほど大きな強化が得られる。前記NaCl型炭化物の平均間隔が710nmより大きいと、析出強化によるフェライト粒の塑性変形量の低下が不十分となり、その結果、プレス打抜き性が低下する。そこで、本発明ではフェライト粒内に存在する前記NaCl型炭化物の平均間隔を710nm以下、好ましくは250nm以下とする。一方、前記平均間隔の下限は特に限定されないが、現実的な製造範囲では30nm以上となる。なお、フェライト粒内に存在するNaCl型炭化物の平均間隔は、実施例に記載した方法で測定することができる。 Average spacing of NaCl-type carbides: 710 nm or less The strengthening of ferrite by the NaCl-type carbides is due to the finely dispersed NaCl-type carbides functioning as dislocation obstacles, and such strengthening is called precipitation strengthening. be. In precipitation strengthening, the smaller the distance between precipitates, the greater the strengthening. If the average spacing of the NaCl-type carbides is larger than 710 nm, the amount of plastic deformation of the ferrite grains is not sufficiently reduced due to precipitation strengthening, and as a result, press punchability is deteriorated. Therefore, in the present invention, the average spacing of the NaCl-type carbides present in ferrite grains is set to 710 nm or less, preferably 250 nm or less. On the other hand, although the lower limit of the average interval is not particularly limited, it is 30 nm or more in a realistic manufacturing range. The average spacing of NaCl-type carbides present in ferrite grains can be measured by the method described in the Examples.
前記冷延鋼板の板厚は特に限定されず、任意の厚さとすることができる。プレス打抜き加工して繊維機械部品の素材として使用することを考慮すると、板厚を0.1mm以上、1.6mm以下とすることが好ましい。特に、メリヤス針用の素材として用いることを考慮すると、板厚は0.2mm以上、0.8mm以下とすることが好ましい。 [Thickness]
The plate thickness of the cold-rolled steel plate is not particularly limited, and may be any thickness. Considering that the sheet is punched by press and used as a material for textile machine parts, the plate thickness is preferably 0.1 mm or more and 1.6 mm or less. In particular, considering the use as a material for knitting needles, the plate thickness is preferably 0.2 mm or more and 0.8 mm or less.
次に、本発明の一実施形態における冷延鋼板の製造方法について説明する。 [Production method]
Next, a method for manufacturing a cold-rolled steel sheet according to one embodiment of the present invention will be described.
(1)加熱
(2)熱間圧延
(3)冷却
(4)巻取り
(5)第1の焼鈍
(6)曲げ曲げ戻し
(7)第2の焼鈍
(8)冷間圧延
(9)第3の焼鈍
そして、上記(8)および(9)の工程は、2回以上繰り返す。以下、各工程について順次説明する。 The cold-rolled steel sheet can be produced by sequentially subjecting a steel slab having the chemical composition described above to the following steps.
(1) Heating (2) Hot rolling (3) Cooling (4) Winding (5) First annealing (6) Bending back (7) Second annealing (8) Cold rolling (9) Third and the above steps (8) and (9) are repeated two or more times. Each step will be described below in sequence.
まず、上記成分組成を有する鋼スラブを加熱する。前記鋼スラブは、特に限定されることなく任意の方法で製造することができる。例えば、前記鋼スラブの成分調整は、高炉転炉法で行ってもよく、電炉法で行ってもよい。また、溶鋼からスラブへの鋳造は、連続鋳造法で行ってもよく、分塊圧延で行ってもよい。 (1) Heating First, a steel slab having the above chemical composition is heated. The steel slab can be manufactured by any method without particular limitation. For example, the composition adjustment of the steel slab may be performed by a blast furnace converter method or by an electric furnace method. Casting of molten steel into slabs may be performed by continuous casting or by blooming.
次いで、加熱された前記鋼スラブを熱間圧延して熱延鋼板とする。前記熱間圧延においては、常法にしたがい、粗圧延と仕上圧延とを行うことができる。 (2) Hot rolling Next, the heated steel slab is hot rolled to form a hot rolled steel sheet. In the hot rolling, rough rolling and finish rolling can be carried out according to a conventional method.
前記熱間圧延においては、熱間圧延開始温度がAc3点未満であると、展伸したフェライトが中間製品の熱延鋼板中に発生し、最終製品にまで残留するため、バリ高さが高くなる。そのため、熱間圧延開始温度をAc3点以上とする。なお、前記Ac3点(℃)は、下記(1)式で求められる。
Ac3(℃) = 910 - (203 × C1/2) + (44.7 × Si) - (30 × Mn) - (11 × Cr) + (400 × Ti) + (460 × Al) + (700 × P) +(104 × V) + 38 …(1)
ここで、上記(1)式における元素記号は、各元素の含有量(質量%)を指し、当該元素が含まれていない場合にはゼロとする。 Hot rolling start temperature: Ac 3 point or higher In the hot rolling, if the hot rolling start temperature is less than Ac 3 point, expanded ferrite is generated in the hot-rolled steel sheet of the intermediate product and remains in the final product. Therefore, the burr height becomes high. Therefore, the hot rolling start temperature is set to Ac3 or higher. The Ac3 point (° C.) is obtained by the following formula (1).
Ac3 (°C) = 910 - (203 x C1/2) + (44.7 x Si) - (30 x Mn) - (11 x Cr) + (400 x Ti) + (460 x Al) + (700 x P ) + (104 × V) + 38 … (1)
Here, the element symbol in the above formula (1) indicates the content (% by mass) of each element, and is zero when the element is not contained.
同様に、仕上圧延出側温度が800℃未満であると、展伸したフェライトが中間製品の熱延鋼板中に発生し、最終製品にまで残留するため、バリ高さが高くなる。そのため、仕上圧延出側温度を800℃以上とする。 Finish rolling delivery side temperature: 800 ° C. or higher Similarly, if the finish rolling delivery side temperature is less than 800 ° C., expanded ferrite is generated in the hot rolled steel sheet of the intermediate product and remains in the final product, so burrs Height increases. Therefore, the finish rolling delivery side temperature is set to 800° C. or higher.
冷却開始までの時間:5.0秒以下
次に、前記熱延鋼板を冷却する。その際、熱間圧延終了から冷却開始までに長時間経過すると、Ti、Nb、およびVの少なくとも1つを含む炭化物がオーステナイト粒界に析出し、最終製品で展伸粒が発生し、その結果、打抜き加工が低下する。そのため、前記熱間圧延終了から冷却開始までの時間(以下、単に「冷却開始までの時間」という場合がある)を5.0秒以下、好ましくは4.5秒以下、より好ましくは4.0秒以下とする。一方、前記冷却開始までの時間の下限は特に限定されないが、一般的な生産設備への適合の観点からは、0.2秒以上とすることが好ましく、0.5秒以上とすることがより好ましい。 (3) Cooling Time to start of cooling: 5.0 seconds or less Next, the hot-rolled steel sheet is cooled. At that time, if a long period of time elapses from the end of hot rolling to the start of cooling, carbides containing at least one of Ti, Nb, and V precipitate at the austenite grain boundaries, and elongated grains occur in the final product. , the stamping process is degraded. Therefore, the time from the end of hot rolling to the start of cooling (hereinafter sometimes simply referred to as "time to start cooling") is 5.0 seconds or less, preferably 4.5 seconds or less, more preferably 4.0 seconds. seconds or less. On the other hand, the lower limit of the time until the start of cooling is not particularly limited, but from the viewpoint of adaptability to general production equipment, it is preferably 0.2 seconds or more, more preferably 0.5 seconds or more. preferable.
また、前記冷却における平均冷却速度が25℃/s未満であると、最終製品である冷延鋼板に展伸粒が発生し、その結果、打抜き性が低下する。そのため、平均冷却速度を25℃/s以上とする。一方、前記平均冷却速度の上限は特に限定されないが、一般的な生産設備への適合の観点からは、80℃/s以下とすることが好ましく、60℃/s以下とすることがより好ましく、50℃/s以下とすることがさらに好ましい。 Average cooling rate: 25° C./s or more If the average cooling rate in the cooling is less than 25° C./s, expanded grains are generated in the cold-rolled steel sheet, which is the final product, and as a result, the punchability is lowered. . Therefore, the average cooling rate is set to 25° C./s or higher. On the other hand, the upper limit of the average cooling rate is not particularly limited, but from the viewpoint of suitability for general production equipment, it is preferably 80 ° C./s or less, and more preferably 60 ° C./s or less. It is more preferable to set it to 50° C./s or less.
前記冷却を740℃よりも高い温度で停止した場合、炭化物がオーステナイト粒界に析出し、最終製品に展伸粒が発生して打抜き性が低下する。そのため冷却停止温度は740℃以下とする。一方、前記冷却を620℃よりも低い温度で停止した場合、フェライトが析出してパーライトが偏在することになる。この偏在は最終製品でのセメンタイト分散の不均一につながる。そのため、冷却停止温度は620℃以上、好ましくは630℃以上とする。 Cooling stop temperature: 620°C to 740°C
If the cooling is stopped at a temperature higher than 740° C., carbides are precipitated at the austenite grain boundaries, and elongated grains are generated in the final product, resulting in poor punchability. Therefore, the cooling stop temperature is set to 740° C. or lower. On the other hand, when the cooling is stopped at a temperature lower than 620° C., ferrite precipitates and pearlite is unevenly distributed. This uneven distribution leads to uneven cementite distribution in the final product. Therefore, the cooling stop temperature should be 620° C. or higher, preferably 630° C. or higher.
前記冷却を停止した後に、冷却された前記熱延鋼板をコイル状に巻取る。その際、巻取り温度は特に限定されないが、600~730℃とすることが好ましい。 (4) Winding After stopping the cooling, the cooled hot-rolled steel sheet is wound into a coil. At that time, the winding temperature is not particularly limited, but it is preferably 600 to 730°C.
前記巻取後の熱延鋼板はパーライト組織を有している。そこで、前記巻取後の熱延鋼板に第1の焼鈍を施すことにより、パーライト中に含まれるセメンタイトを分解する。セメンタイトを分解しておくことで、後の第2の焼鈍や冷間圧延においてセメンタイトが微細になる。そしてその結果、フェライトが微細化し、フェライト粒の塑性変形を抑制することができる。 (5) First Annealing The hot-rolled steel sheet after being coiled has a pearlite structure. Therefore, the cementite contained in the pearlite is decomposed by subjecting the coiled hot-rolled steel sheet to the first annealing. By decomposing the cementite, the cementite becomes finer in the subsequent second annealing and cold rolling. As a result, the ferrite becomes finer, and plastic deformation of the ferrite grains can be suppressed.
前記第1の焼鈍における焼鈍温度が730℃より高いと、一部分で優先的に相変態が進むため、フェライト粒が局所的に粗大化し、その結果、塑性変形量が増加する。また、局所的に粗大な組織では、加工が不均質になり、部品形状精度も悪くなる。そのため、前記焼鈍温度は730℃以下とする。一方、前記焼鈍温度の下限は特に限定されないが、パーライト中のセメンタイトを再固溶させてセメンタイトの分解を促進するという観点からは、焼鈍温度を450℃以上とすることが好ましく、500℃以上とすることがより好ましく、520℃以上とすることがさらに好ましい。 Annealing temperature: 730° C. or less If the annealing temperature in the first annealing is higher than 730° C., the phase transformation progresses preferentially in one part, so the ferrite grains locally coarsen, and as a result, the amount of plastic deformation increases. . In addition, a locally coarse structure results in non-uniform machining and poor part shape accuracy. Therefore, the annealing temperature is set to 730° C. or lower. On the other hand, the lower limit of the annealing temperature is not particularly limited, but the annealing temperature is preferably 450° C. or higher, and 500° C. or higher, from the viewpoint of promoting the decomposition of cementite by redissolving cementite in pearlite. It is more preferable to set the temperature to 520° C. or higher.
また、上記第1の焼鈍における焼鈍時間が5時間未満であると、セメンタイトの分解が進まない。セメンタイトの分解が進行しないと、板状セメンタイトが残存し、その後の冷間圧延などによる加工が不均質になり、部品形状精度が悪くなる。そのため、前記焼鈍時間は5時間以上とする。一方、前記焼鈍時間の上限は特に限定されない。しかし、セメンタイト分解が開始した後に組織変化は飽和することから、製造効率の観点からは、前記焼鈍温度を50時間以下とすることが好ましく、40時間以下とすることがより好ましい。 Annealing time: 5 hours or more If the annealing time in the first annealing is less than 5 hours, decomposition of cementite does not progress. If the decomposition of cementite does not progress, plate-like cementite will remain, and subsequent processing such as cold rolling will become non-homogeneous, and the shape accuracy of the part will deteriorate. Therefore, the annealing time is set to 5 hours or longer. On the other hand, the upper limit of the annealing time is not particularly limited. However, since the structural change is saturated after the cementite decomposition starts, the annealing temperature is preferably 50 hours or less, more preferably 40 hours or less, from the viewpoint of production efficiency.
次に、前記第1の焼鈍後の熱延鋼板に、曲げ曲げ戻しを施す。最終的に得られる冷延鋼板の組織を所望のものとするためには、この曲げ曲げ戻しが極めて重要である。すなわち、上記第1の焼鈍によってセメンタイトを分解した後に曲げ曲げ戻しを行って加工歪を与えることにより、歪エネルギーが導入される。その後、後述する第2の焼鈍を行うことで、セメンタイトの微細化が促進される。曲げ曲げ戻しを行わない場合、粗大化したセメンタイトが局在化し、塑性変形量が局部的に増大するため、打抜き性が低下する。 (6) Unbending Next, the hot-rolled steel sheet after the first annealing is subjected to unbending. This bending and unbending is extremely important in order to obtain the desired structure of the finally obtained cold-rolled steel sheet. That is, strain energy is introduced by bending back to give working strain by decomposing cementite by the first annealing. Thereafter, a second annealing, which will be described later, is performed to promote the refinement of cementite. When bending and unbending is not performed, coarsened cementite is localized and the amount of plastic deformation locally increases, resulting in a decrease in punchability.
前記曲げ曲げ戻し後の熱延鋼板に第2の焼鈍を施す。上述したように、曲げ曲げ戻しを行って加工歪を与えた後に第2の焼鈍を行うことにより、セメンタイトの微細化が促進される。 (7) Second Annealing The hot-rolled steel sheet after bending and unbending is subjected to second annealing. As described above, by performing the second annealing after applying the work strain by bending back, the refinement of the cementite is promoted.
前記第2の焼鈍における焼鈍温度が600℃未満であると、セメンタイトの微細化が進行せず、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の生成が抑制される。前記NaCl型炭化物の生成が抑制されると、フェライト粒の塑性変形を抑えることができないため、バリが高くなる。そのため、前記第2の焼鈍における焼鈍温度を600℃以上とする。一方、前記焼鈍温度の上限は特に限定されないが、高すぎると組織が粗大化し、かえってバリが高くなるため、前記焼鈍温度は790℃以下とすることが好ましく、770℃以下とすることがより好ましい。 Annealing temperature: 600° C. or higher When the annealing temperature in the second annealing is lower than 600° C., the cementite does not become finer, and the formation of NaCl-type carbide containing at least one of Nb, Ti, and V is suppressed. be. If the formation of the NaCl-type carbide is suppressed, the plastic deformation of the ferrite grains cannot be suppressed, resulting in high burrs. Therefore, the annealing temperature in the second annealing is set to 600° C. or higher. On the other hand, the upper limit of the annealing temperature is not particularly limited, but if it is too high, the structure becomes coarse and the burr increases, so the annealing temperature is preferably 790°C or less, more preferably 770°C or less. .
(9)第3の焼鈍
前記第2の焼鈍後の熱延鋼板に、冷間圧延と第3の焼鈍とを、2回以上繰返し施す。前記冷間圧延により、最終的な冷延鋼板の板厚が調整される。また、冷間圧延の後に第3の焼鈍を行うことにより、前記冷間圧延で生じた歪が除去される。前記冷間圧延と第3の焼鈍を2回以上行うことで組織の均一性が向上するとともに、フェライト組織の微細化によりフェライトが強化され、その結果、打抜き性が向上する。前記効果を得るために、前記冷間圧延における圧延率を15%以上、前記第3の焼鈍における焼鈍温度を600℃以上とする。一方、前記圧延率の上限は特に限定されないが、圧延率が過度に高いと、組織が局所的に粗大化し、かえってバリが高くなる。そのため、前記圧延率は52%以下とすることが好ましく、50%以下とすることがより好ましい。また、前記第3の焼鈍における焼鈍温度の上限についても特に限定されないが、焼鈍温度が過度に高いと組織が粗大化し、かえってバリが高くなる。そのため、前記焼鈍温度は750℃以下であることが好ましく、720℃以下とすることがより好ましい。 (8) Cold rolling (9) Third annealing The hot-rolled steel sheet after the second annealing is repeatedly subjected to cold rolling and third annealing twice or more. The cold rolling adjusts the thickness of the final cold-rolled steel sheet. Further, by performing the third annealing after the cold rolling, the strain caused by the cold rolling is removed. By performing the cold rolling and the third annealing twice or more, the uniformity of the structure is improved, and the ferrite is strengthened by refining the ferrite structure. As a result, the punchability is improved. In order to obtain the above effects, the rolling reduction in the cold rolling is set to 15% or higher, and the annealing temperature in the third annealing is set to 600° C. or higher. On the other hand, the upper limit of the rolling reduction is not particularly limited, but if the rolling reduction is excessively high, the structure locally coarsens and burrs increase. Therefore, the rolling reduction is preferably 52% or less, more preferably 50% or less. Also, the upper limit of the annealing temperature in the third annealing is not particularly limited, but if the annealing temperature is excessively high, the structure becomes coarse and the burr increases. Therefore, the annealing temperature is preferably 750° C. or lower, more preferably 720° C. or lower.
次に、得られた冷延鋼板の組織を以下の手順で評価した。 (organization)
Next, the structures of the obtained cold-rolled steel sheets were evaluated by the following procedures.
まず、得られた冷延鋼板から組織観察用試験片を採取した。前記組織観察用試験片の圧延方向断面(L断面)を研磨した後、前記研磨面を、3vol%ナイタール液を用いて腐食させることにより組織を現出させた。次いで、前記組織観察用試験片の表面を、SEM(走査型電子顕微鏡)を用いて倍率3000倍にて撮像し、組織画像を得た。JIS G0551:2020に準じ、得られた組織画像から切断法にてフェライト粒径を測定した。5視野において測定されたフェライト粒径の平均値を算出し、平均粒径とした。 Average Grain Size of Ferrite First, a test piece for structural observation was taken from the obtained cold-rolled steel sheet. After polishing the rolling direction cross section (L cross section) of the test piece for structure observation, the structure was exposed by corroding the polished surface with a 3 vol % nital solution. Next, the surface of the test piece for tissue observation was imaged with a SEM (scanning electron microscope) at a magnification of 3000 to obtain a tissue image. According to JIS G0551:2020, the ferrite grain size was measured by a cutting method from the obtained structure image. The average value of the ferrite grain sizes measured in five fields of view was calculated and used as the average grain size.
まず、得られた冷延鋼板から組織観察用試験片を採取した。前記組織観察用試験片の圧延方向断面(L断面)を研磨した後、前記研磨面を、3vol%ナイタール液を用いて腐食させることにより組織を現出させた。次いで、前記組織観察用試験片の表面を、SEMを用いて倍率3000倍にて撮像し、組織画像を得た。得られた組織画像から、粒界セメンタイトについてのみ、切断法にて粒径を測定した。3視野において測定された粒界セメンタイトの粒径の平均値を算出し、粒界セメンタイトの平均粒径とした。また、前記組織画像から、粒径0.5μ以上の粒界セメンタイトの数密度を求めた。 Average Grain Size and Number Density of Grain Boundary Cementite First, a test piece for structure observation was taken from the obtained cold-rolled steel sheet. After polishing the rolling direction cross section (L cross section) of the test piece for structure observation, the structure was exposed by corroding the polished surface with a 3 vol % nital solution. Next, the surface of the test piece for tissue observation was imaged using an SEM at a magnification of 3000 to obtain a tissue image. From the obtained structure image, the grain size was measured by the cutting method only for the grain boundary cementite. The average grain size of the grain boundary cementite measured in the three fields of view was calculated and used as the average grain size of the grain boundary cementite. Also, the number density of grain boundary cementite having a grain size of 0.5 μm or more was obtained from the texture image.
フェライト粒内に存在する、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の平均粒径を以下の手順で測定した。試験片の表面を、透過型電子顕微鏡(TEM)を用いて倍率80000倍で撮像し、5視野の組織画像を得た。円近似を用いた画像処理により、前記得られた組織画像中の、フェライト粒内に存在する、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の個々の粒径を求め、その平均値を算出した。なお、炭化物がNb、Ti、Vの少なくとも1つを含むかどうかは、TEM-EPMAを用いて同定した。 Average Grain Size of NaCl-Type Carbide The average grain size of NaCl-type carbide containing at least one of Nb, Ti, and V present in ferrite grains was measured by the following procedure. The surface of the test piece was imaged using a transmission electron microscope (TEM) at a magnification of 80000 times to obtain tissue images of 5 fields of view. By image processing using circle approximation, individual particle sizes of NaCl-type carbides containing at least one of Nb, Ti, and V present in the ferrite grains in the obtained structure image are obtained, and the average value thereof was calculated. Whether or not the carbide contains at least one of Nb, Ti, and V was identified using TEM-EPMA.
フェライト粒内に存在する、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の平均間隔は、80000倍の視野内に確認できる全てのNaCl型炭化物の間隔を測定し、5視野に対する平均値を算出することで決定した。 Average spacing of NaCl-type carbides The average spacing of NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains was obtained by measuring the spacing of all NaCl-type carbides that can be confirmed within a field of view of 80,000 times. , was determined by calculating the average value for 5 fields of view.
次に、得られた冷延鋼板の打抜き性を評価するために、次の条件でポンチ打抜き試験を実施し、バリ高さを測定した。 (punchability)
Next, in order to evaluate the punchability of the obtained cold-rolled steel sheet, a punch punch test was conducted under the following conditions to measure the burr height.
Claims (3)
- 質量%で、
C :0.60~1.25%、
Si:0.1~0.55%、
Mn:0.5~2.0%、
P :0.0005~0.05%、
S :0.0001~0.01%、
Al:0.001~0.10%、
N :0.001~0.009%、
Cr:0.05~0.65%、ならびに
Ti:0.001~0.30%、Nb:0.01~0.1%、およびV:0.005~0.5%からなる群より選択される少なくとも1つを含み、
残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライトの平均粒径が10μm以下であり、
フェライト粒界に存在するセメンタイトの平均粒径が5μm以下であり、
フェライト粒内に存在する、Nb、Ti、Vの少なくとも1つを含むNaCl型炭化物の平均粒径が0.5μm以下であり、かつ
前記NaCl型炭化物の平均間隔が710nm以下である鋼組織を有する、冷延鋼板。 in % by mass,
C: 0.60 to 1.25%,
Si: 0.1 to 0.55%,
Mn: 0.5-2.0%,
P: 0.0005 to 0.05%,
S: 0.0001 to 0.01%,
Al: 0.001 to 0.10%,
N: 0.001 to 0.009%,
Selected from the group consisting of Cr: 0.05 to 0.65%, and Ti: 0.001 to 0.30%, Nb: 0.01 to 0.1%, and V: 0.005 to 0.5% including at least one that is
Having a component composition in which the balance is Fe and unavoidable impurities,
The average grain size of ferrite is 10 μm or less,
The cementite present at the ferrite grain boundary has an average grain size of 5 μm or less,
It has a steel structure in which the average grain size of NaCl-type carbides containing at least one of Nb, Ti, and V present in ferrite grains is 0.5 μm or less, and the average spacing of the NaCl-type carbides is 710 nm or less. , cold-rolled steel. - 前記成分組成が、質量%で、
Sb:0.1%以下、
Hf:0.5%以下、
REM:0.1%以下、
Cu:0.5%以下、
Ni:3.0%以下、
Sn:0.5%以下、
Mo:1%以下、および
Zr:0.5%以下からなる群より選択される少なくとも1つをさらに含む、請求項1に記載の冷延鋼板。 The component composition, in mass%,
Sb: 0.1% or less,
Hf: 0.5% or less,
REM: 0.1% or less,
Cu: 0.5% or less,
Ni: 3.0% or less,
Sn: 0.5% or less,
The cold-rolled steel sheet according to claim 1, further comprising at least one selected from the group consisting of Mo: 1% or less and Zr: 0.5% or less. - 請求項1または2に記載の成分組成を有する鋼スラブを加熱し、
加熱された前記鋼スラブを、熱間圧延開始温度:Ac3点以上、かつ仕上圧延出側温度:800℃以上の条件で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、前記熱間圧延終了から冷却開始までの時間:5.0秒以下、平均冷却速度:25℃/s以上、冷却停止温度:620℃~740℃の条件で冷却し、
冷却された前記熱延鋼板を巻取り、
前記巻取り後の熱延鋼板に、焼鈍温度:730℃以下、焼鈍時間:5時間以上の条件での第1の焼鈍を施し、
前記第1の焼鈍後の熱延鋼板に、曲げ曲げ戻しを施し、
前記曲げ曲げ戻し後の熱延鋼板に、焼鈍温度:600℃以上での第2の焼鈍を施し、
前記第2の焼鈍後の熱延鋼板に、圧延率:15%以上での冷間圧延と、焼鈍温度:600℃以上での第3の焼鈍とを、2回以上繰返し施す、冷延鋼板の製造方法。 Heating a steel slab having the composition according to claim 1 or 2,
The heated steel slab is hot rolled into a hot rolled steel sheet under the conditions of a hot rolling start temperature of Ac 3 points or more and a finish rolling delivery side temperature of 800° C. or more,
The hot-rolled steel sheet is cooled under the conditions of time from the end of hot rolling to the start of cooling: 5.0 seconds or less, average cooling rate: 25 ° C./s or more, cooling stop temperature: 620 ° C. to 740 ° C.,
Winding the cooled hot-rolled steel sheet,
The coiled hot-rolled steel sheet is subjected to a first annealing under conditions of an annealing temperature of 730° C. or less and an annealing time of 5 hours or more,
Bending back the hot-rolled steel sheet after the first annealing,
The hot-rolled steel sheet after bending and unbending is subjected to a second annealing at an annealing temperature of 600 ° C. or higher,
Cold-rolled steel sheet obtained by repeatedly subjecting the hot-rolled steel sheet after the second annealing to cold rolling at a rolling reduction of 15% or more and third annealing at an annealing temperature of 600 ° C. or more twice or more. Production method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022545945A JP7472992B2 (en) | 2021-03-31 | 2022-03-29 | Cold-rolled steel sheet and method for producing the same |
CN202280020985.7A CN117043374A (en) | 2021-03-31 | 2022-03-29 | Cold-rolled steel sheet and method for producing cold-rolled steel sheet |
EP22780972.0A EP4317484A1 (en) | 2021-03-31 | 2022-03-29 | Cold-rolled steel sheet and cold-rolled steel sheet manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021061952 | 2021-03-31 | ||
JP2021-061952 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210761A1 true WO2022210761A1 (en) | 2022-10-06 |
Family
ID=83459362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015630 WO2022210761A1 (en) | 2021-03-31 | 2022-03-29 | Cold-rolled steel sheet and cold-rolled steel sheet manufacturing method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4317484A1 (en) |
JP (1) | JP7472992B2 (en) |
CN (1) | CN117043374A (en) |
TW (1) | TWI792968B (en) |
WO (1) | WO2022210761A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097109A (en) * | 2004-09-30 | 2006-04-13 | Jfe Steel Kk | High-carbon hot-rolled steel sheet and manufacturing method therefor |
JP2008133514A (en) * | 2006-11-29 | 2008-06-12 | Jfe Steel Kk | High-strength hot-rolled steel plate showing superior formability for extension flange and elongation properties after having been worked, and manufacturing method therefor |
JP2015105384A (en) * | 2013-11-28 | 2015-06-08 | 新日鐵住金株式会社 | High strength steel material excellent in impact absorption property |
JP2017075349A (en) * | 2015-10-14 | 2017-04-20 | 日新製鋼株式会社 | Fiber mechanical component |
JP2017193752A (en) * | 2016-04-20 | 2017-10-26 | 新日鐵住金株式会社 | High carbon steel sheet excellent in abrasion resistance after heat treatment and manufacturing method therefor |
JP2019039056A (en) | 2017-08-28 | 2019-03-14 | 日新製鋼株式会社 | Steel sheet and production method of steel sheet |
WO2019163828A1 (en) | 2018-02-23 | 2019-08-29 | Jfeスチール株式会社 | High-carbon cold-rolled steel sheet and production method therefor |
JP6690792B1 (en) * | 2019-04-17 | 2020-04-28 | 日本製鉄株式会社 | Steel sheet, method of manufacturing the same, and molded body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI665310B (en) * | 2018-10-02 | 2019-07-11 | 日商新日鐵住金股份有限公司 | Carburizing steel sheet and manufacturing method of carburizing steel sheet |
KR102570145B1 (en) * | 2019-01-30 | 2023-08-23 | 제이에프이 스틸 가부시키가이샤 | High-carbon hot-rolled steel sheet and manufacturing method thereof |
-
2022
- 2022-03-29 JP JP2022545945A patent/JP7472992B2/en active Active
- 2022-03-29 EP EP22780972.0A patent/EP4317484A1/en active Pending
- 2022-03-29 WO PCT/JP2022/015630 patent/WO2022210761A1/en active Application Filing
- 2022-03-29 CN CN202280020985.7A patent/CN117043374A/en active Pending
- 2022-03-31 TW TW111112571A patent/TWI792968B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097109A (en) * | 2004-09-30 | 2006-04-13 | Jfe Steel Kk | High-carbon hot-rolled steel sheet and manufacturing method therefor |
JP2008133514A (en) * | 2006-11-29 | 2008-06-12 | Jfe Steel Kk | High-strength hot-rolled steel plate showing superior formability for extension flange and elongation properties after having been worked, and manufacturing method therefor |
JP2015105384A (en) * | 2013-11-28 | 2015-06-08 | 新日鐵住金株式会社 | High strength steel material excellent in impact absorption property |
JP2017075349A (en) * | 2015-10-14 | 2017-04-20 | 日新製鋼株式会社 | Fiber mechanical component |
JP2017193752A (en) * | 2016-04-20 | 2017-10-26 | 新日鐵住金株式会社 | High carbon steel sheet excellent in abrasion resistance after heat treatment and manufacturing method therefor |
JP2019039056A (en) | 2017-08-28 | 2019-03-14 | 日新製鋼株式会社 | Steel sheet and production method of steel sheet |
WO2019163828A1 (en) | 2018-02-23 | 2019-08-29 | Jfeスチール株式会社 | High-carbon cold-rolled steel sheet and production method therefor |
JP6690792B1 (en) * | 2019-04-17 | 2020-04-28 | 日本製鉄株式会社 | Steel sheet, method of manufacturing the same, and molded body |
Also Published As
Publication number | Publication date |
---|---|
CN117043374A (en) | 2023-11-10 |
JP7472992B2 (en) | 2024-04-23 |
TWI792968B (en) | 2023-02-11 |
JPWO2022210761A1 (en) | 2022-10-06 |
EP4317484A1 (en) | 2024-02-07 |
TW202239975A (en) | 2022-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107614726B (en) | Steel sheet and method for producing same | |
TWI592500B (en) | Cold rolled steel sheet and manufacturing method thereof | |
CN113840934B (en) | High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member | |
EP3272892A1 (en) | High-strength cold-rolled steel sheet and method for manufacturing same | |
WO2016190397A9 (en) | Steel sheet and manufacturing method therefor | |
JP4465057B2 (en) | High carbon steel sheet for precision punching | |
CN117940597A (en) | Hot rolled steel sheet | |
JP5197076B2 (en) | Medium and high carbon steel sheet with excellent workability and manufacturing method thereof | |
CN115943224B (en) | Hot rolled steel sheet | |
JP2016216809A (en) | Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor | |
CN114829652A (en) | Hot press molded body | |
JP2022064241A (en) | Steel sheet and method for producing the same, and member | |
WO2023149374A1 (en) | Hot-rolled steel sheet | |
JP7239071B1 (en) | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet | |
JP4974285B2 (en) | Medium and high carbon steel sheet with excellent workability and manufacturing method thereof | |
CN116113716B (en) | Hot rolled steel sheet | |
JP7226564B2 (en) | Stainless steel plate and its manufacturing method, cutlery, and cutlery | |
JP3909939B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability | |
JP7472992B2 (en) | Cold-rolled steel sheet and method for producing the same | |
JPH11264049A (en) | High carbon steel strip and its production | |
JP7329780B2 (en) | Cold-rolled steel and steel parts | |
JP7239072B1 (en) | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet | |
JP7334868B2 (en) | steel parts | |
CN114651078B (en) | Hot rolled steel sheet | |
WO2023037878A1 (en) | Cold-rolled steel sheet and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022545945 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780972 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280020985.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022780972 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022780972 Country of ref document: EP Effective date: 20231023 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |