WO2022210498A1 - Resin composition and production method for resin composition - Google Patents

Resin composition and production method for resin composition Download PDF

Info

Publication number
WO2022210498A1
WO2022210498A1 PCT/JP2022/014894 JP2022014894W WO2022210498A1 WO 2022210498 A1 WO2022210498 A1 WO 2022210498A1 JP 2022014894 W JP2022014894 W JP 2022014894W WO 2022210498 A1 WO2022210498 A1 WO 2022210498A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocellulose
thermoplastic resin
resin composition
resin
modified polyolefin
Prior art date
Application number
PCT/JP2022/014894
Other languages
French (fr)
Japanese (ja)
Inventor
高寛 五関
弘太 柳
博之 嶋中
亨 ▲高▼橋
充 田尾
隆尋 安達
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022018261A external-priority patent/JP7153152B1/en
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Publication of WO2022210498A1 publication Critical patent/WO2022210498A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a resin composition and a method for producing a resin composition.
  • Nanocellulose also called cellulose microfibrils
  • CNF cellulose nanofibers
  • CNC cellulose nanocrystals
  • nanocellulose which has high strength and low thermal expansion, is a useful material as a sustainable resource material. Based on these advantages, various techniques have been proposed in which nanocellulose is used as a reinforcing material for thermoplastic resins and nanocellulose is contained in thermoplastic resins.
  • nanocellulose is hydrophilic and highly polar due to its abundance of hydroxyl groups, so it has an aspect of poor compatibility with general-purpose thermoplastic resins that are hydrophobic and have low polarity.
  • the surface modification of nanocellulose or the introduction of functional groups to nanocellulose is performed by chemical treatment to improve the compatibility of nanocellulose with general-purpose thermoplastic resins, and to improve the compatibility of nanocellulose with general-purpose thermoplastic resins.
  • Various attempts have been made to improve dispersibility in plastic resins.
  • Patent Document 1 proposes a technique that allows nanocellulose, which is a hydrophilic substance, to be easily dispersed in a highly hydrophobic general-purpose thermoplastic resin by a simple method.
  • nanocellulose and polyolefin including nanocellulose are included, and the polyolefin has a carboxy group, a specific acid value and a melting point, and easily contains 5 to 30% by mass of nanocellulose.
  • a dispersible cellulose composition is disclosed.
  • a simple method is effective for obtaining a resin composition in which nanocellulose is dispersed in a good state in a thermoplastic resin having high hydrophobicity and low polarity.
  • Dispersible nanocellulose can be provided.
  • nano Aggregates of cellulose may occur, and there is room for improvement in dispersibility.
  • the present invention aims to provide a resin composition in which nanocellulose is excellent in dispersibility in a thermoplastic resin and the generation of nanocellulose aggregates is suppressed by a simpler method.
  • the present invention contains a thermoplastic resin and easily dispersible nanocellulose (B) dispersed in the thermoplastic resin, and the easily dispersible nanocellulose (B) is composed of nanocellulose and the nanocellulose. and a modified polyolefin having a carboxyl group, wherein the thermoplastic resin includes a thermoplastic resin (A) having a melting point of 110° C. or lower.
  • the present invention provides an easily dispersible nanocellulose (B) containing nanocellulose, a modified polyolefin having a carboxy group enveloping the nanocellulose (B), and a water-containing cellulose resin treated product containing water, and a melting point of 110 ° C. or less. Heating a certain thermoplastic resin (A) at a temperature not higher than 20 ° C. above the boiling point of water and mixing the thermoplastic resin (A) in a molten state; and heating at a temperature not lower than the boiling point of water, removing water from a mixture of the treated hydrous cellulose resin and the thermoplastic resin (A).
  • a resin composition of one embodiment of the present invention contains a thermoplastic resin and easily dispersible nanocellulose (B) dispersed in the thermoplastic resin.
  • the easily dispersible nanocellulose (B) contains nanocellulose and modified polyolefin having a carboxyl group, which envelops the nanocellulose.
  • the thermoplastic resin includes thermoplastic resin (A) having a melting point of 110° C. or lower. Since the resin composition has a structure in which the easily dispersible nanocellulose (B) is dispersed in the thermoplastic resin, it can take a solid form at room temperature (5 to 35° C.).
  • the technical significance of the configuration in the resin composition is also related to the method for producing the resin composition of one embodiment of the present invention.
  • the resin composition of one embodiment of the present invention is obtained by the method for producing a resin composition of one embodiment of the present invention.
  • the method for producing the resin composition comprises the steps of: easily dispersible nanocellulose (B) containing nanocellulose and modified polyolefin having a carboxyl group enveloping the nanocellulose; and a treated hydrous cellulose resin containing water; including mixing with a thermoplastic resin (A) which is: At this time, the hydrous cellulose resin-treated product and the thermoplastic resin (A) are heated at a temperature not higher than 20° C.
  • the production method includes removing water from the mixture of the treated hydrous cellulose resin and the thermoplastic resin (A) by heating at a temperature equal to or higher than the boiling point of water.
  • easily dispersible nanocellulose (B) containing nanocellulose and a modified polyolefin having a carboxyl group enveloping the nanocellulose is used.
  • a modified polyolefin having a carboxy group in this specification, it may be simply referred to as "modified polyolefin"
  • easily dispersible nanocellulose (B) and a hydrous cellulose resin containing it A processed product can be obtained by a simple method.
  • the easily dispersible nanocellulose (B) is used in a water-containing state. That is, a composition containing easily dispersible nanocellulose (B) and water (herein referred to as "processed product of hydrous cellulose resin") is used. If the easily dispersible nanocellulose (B) mixed with the thermoplastic resin (A) is used in a dry state, the easily dispersible nanocellulose (B) tends to aggregate due to drying.
  • the easily dispersible nanocellulose (B) is more easily dispersed when mixed with the thermoplastic resin (A) than when the easily dispersible nanocellulose (B) is used in a dry state. It is possible to suppress the generation of aggregates.
  • the treated product of the hydrous cellulose resin and the thermoplastic resin (A) are mixed with the thermoplastic resin (A). Mix in the melt. At this time, if the water contained in the hydrous cellulose resin-treated material is completely volatilized while the easily dispersible nanocellulose (B) and the thermoplastic resin (A) are not sufficiently mixed, the thermoplastic Aggregates of the easily dispersible nanocellulose (B) tend to form in the resin (A).
  • thermoplastic resin (A) in mixing the hydrous cellulose resin-treated material and the thermoplastic resin (A), the mixture is heated at a temperature not higher than the boiling point of water +20°C so as to delay the evaporation of the water in the hydrous cellulose resin-treated material. Then, the thermoplastic resin (A) is mixed in a molten state. Then, in the present technology, a thermoplastic resin (A) with a melting point of 110° C. or less is used so that the thermoplastic resin (A) is in a molten state at a temperature of water's boiling point +20° C. or less.
  • the dispersibility of nanocellulose in the thermoplastic resin is excellent and the generation of nanocellulose aggregates is suppressed by a simpler method. It becomes possible to provide a resin composition.
  • the thermoplastic resin (A) is a thermoplastic resin having a melting point of 110° C. or lower.
  • the melting point of the thermoplastic resin (A) is 100° C. or less because the dispersibility of the nanocellulose (easily dispersible nanocellulose (B)) in the resin composition is excellent and the generation of aggregates is easily suppressed.
  • the lower limit of the melting point of the thermoplastic resin (A) is preferably 50° C. or higher, more preferably 55° C. or higher, and 60° C. or higher, from the viewpoint of the mechanical strength of the resin composition. More preferred.
  • the melting point of the thermoplastic resin (A) can be measured by differential scanning calorimetry (DSC).
  • thermoplastic resin (A) examples include polyethylene resins, polypropylene resins, ethylene/propylene copolymers, ethylene/ ⁇ -olefin copolymers, propylene/ ⁇ -olefin copolymers, ethylene/vinyl acetate copolymers, Polyolefin resins such as ethylene/vinyl alcohol copolymers and ethylene/ethyl acrylate copolymers; polyester resins such as polylactic acid; and polyether resins such as polyethylene glycol; Among them, because it has good compatibility with the modified polyolefin contained in the easily dispersible nanocellulose (B) described later, it becomes easy to mix with the easily dispersible nanocellulose (B), so the thermoplastic resin (A) Polyolefin-based resins are preferred as such.
  • polyolefin-based resins include homopolymers of olefin-based monomers and copolymers of monomer components containing olefin-based monomers as main components. That the monomer component forming the copolymer contains an olefinic monomer as a main component means that the total content of monomers corresponding to olefinic monomers in the monomer component is olefin It means that it is higher than the content of any monomer other than the system monomer.
  • the content of the olefinic monomer in the monomer component forming the copolymer is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, still more preferably 80 to 100% by mass.
  • the copolymer includes a copolymer of two or more olefinic monomers, and a copolymer of an olefinic monomer and another monomer that can be copolymerized with the olefinic monomer, A copolymer of two or more olefinic monomers is preferred.
  • olefinic monomers examples include olefins such as ethylene and propylene; -olefins (eg, ⁇ -olefins having 2 to 12 carbon atoms); and cyclic olefins such as cyclopentene and norbornene; As described above, one kind of olefinic monomers may be used alone in the polyolefinic resin, or two or more kinds thereof may be used in combination.
  • polyolefin resins include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polypropylene (PP), polybutene, hydrogenated polybutene, polyisobutylene, Polyolefin resins such as hydrogenated polyisobutylene, ethylene/propylene copolymers, ethylene/ ⁇ -olefin copolymers, and propylene/ ⁇ -olefin copolymers can be mentioned.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • PP polypropylene
  • polybutene hydrogenated polybutene
  • polyisobutylene polybutene
  • Polyolefin resins such as hydrogenated polyisobutylene, ethylene/propylene copolymers, ethylene/ ⁇ -olefin copolymers, and propylene/ ⁇ -olef
  • the thermoplastic resin (A) more preferably contains a metallocene-based polyolefin resin because it easily satisfies the requirement that the melting point be 110°C or lower.
  • a metallocene-based polyolefin resin is a polyolefin resin polymerized using a metallocene catalyst. Among them, at least one selected from the group consisting of metallocene-based polyethylene, metallocene-based polypropylene, metallocene-based ethylene/ ⁇ -olefin copolymer, and metallocene-based propylene/ ⁇ -olefin copolymer is more preferable.
  • the weight average molecular weight (Mw) of the thermoplastic resin (A) is preferably 40,000 to 300,000, more preferably 50,000 to 200,000. It is more preferably 70,000 to 150,000.
  • the Mw of the thermoplastic resin (A) can be a standard polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • the melt flow rate (MFR) of the thermoplastic resin (A) is preferably 500 g/10 min or less.
  • MFR is a value measured with a standard die (length 8.000 mm, hole diameter 2.095 mm) under conditions of a temperature of 190°C and a load of 2.16 kg in accordance with ASTM D1238.
  • the MFR of the thermoplastic resin (A) is more preferably 100 g/10 min or less, even more preferably 50 g/10 min or less.
  • the MFR of the thermoplastic resin (A) is preferably 0.1 g/10 min or more, and 1 g/ It is more preferably 10 min or more, and even more preferably 5 g/10 min or more.
  • the resin composition contains easily dispersible nanocellulose (B).
  • the easily dispersible nanocellulose (B) contains nanocellulose and modified polyolefin having a carboxyl group, which envelops the nanocellulose. Since the easily dispersible nanocellulose (B) has a structure in which the nanocellulose is wrapped in a modified polyolefin having a carboxy group, it is more easily dispersed in water than the nanocellulose alone. Therefore, when producing a resin composition, a treated hydrous cellulose resin containing easily dispersible nanocellulose (B) having excellent dispersibility in water can be used.
  • the content of nanocellulose in the easily dispersible nanocellulose (B) in the resin composition is preferably 30% by mass or less based on the total mass of the resin composition (solid content).
  • Nanocellulose easily dispersible nanocellulose (B)
  • the content of nanocellulose in the resin composition is preferably, for example, 1% by mass or more. From the viewpoint of obtaining a more useful resin composition by increasing the nanocellulose content, the content of nanocellulose in the resin composition is more preferably 5% by mass or more, and more preferably 10% by mass or more. is more preferred.
  • the ratio of nanocellulose and modified polyolefin in the easily dispersible nanocellulose (B) is not particularly limited as long as the modified polyolefin envelops the nanocellulose.
  • the content of nanocellulose in the easily dispersible nanocellulose (B) is 5 to 80% by mass based on the mass of the easily dispersible nanocellulose (B). It is preferably from 25 to 70% by mass, and even more preferably from 40 to 60% by mass.
  • the content of the modified polyolefin in the easily dispersible nanocellulose (B) is preferably 20 to 95% by mass, preferably 30 to 75% by mass, based on the mass of the easily dispersible nanocellulose (B). more preferably 40 to 60% by mass.
  • each content of nanocellulose and modified polyolefin can take a value calculated based on each usage amount of nanocellulose and modified polyolefin.
  • the easily dispersible nanocellulose (B) may form an ester bond through a reaction between the carboxyl group of the modified polyolefin and the hydroxyl group of the nanocellulose.
  • the dispersibility of the easily dispersible nanocellulose (B) in the thermoplastic resin will be further enhanced by bonding the modified polyolefin and the nanocellulose wrapped therein.
  • a thermoplastic resin (A) having excellent compatibility with modified polyolefin is selected, it is expected that the dispersibility of the easily dispersible nanocellulose (B) will be further enhanced.
  • ester bonds are formed when all of the carboxy groups of the modified polyolefin react with the hydroxyl groups of the nanocellulose, or when some of the carboxy groups of the modified polyolefin react with the hydroxyl groups of the nanocellulose. case is included.
  • the above-mentioned ester bond can be formed by dehydration condensation, which can be caused by heat when mixing the easily dispersible nanocellulose (B) and the thermoplastic resin (A) or when removing water from the mixture. it is conceivable that.
  • Nanocellulose in easily dispersible nanocellulose is cellulose with a width (fiber width or crystal width) of nanosize (1 to 1000 nm).
  • nanocellulose examples include cellulose nanofibers (CNF) obtained from wood and the like, and cellulose nanocrystals (CNC), also called cellulose nanowhiskers (CNW); bacterial nanofibers produced by bacteria; and electrospinning. electrospun nanofibers produced from dissolved cellulose by a method; These 1 types can be used individually or in combination of 2 or more types. Among them, at least one of CNF and CNC is preferred. More preferably, the nanocellulose contains cellulose nanofibers.
  • Plant fibers including cellulose, used as raw materials for CNF and CNC, for example, are obtained from natural plant sources such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth, pulp, and Examples include regenerated cellulose fibers such as rayon and cellophane.
  • wood include Sitka spruce, cedar, cypress, eucalyptus and acacia.
  • paper include deinked waste paper, corrugated waste paper, magazines, copy paper, and the like. However, it is not limited to these.
  • One type of vegetable fiber may be used alone, or two or more types may be used in combination.
  • Lignocellulose which is the main component of plant fibers, is mainly composed of cellulose, hemicellulose, and lignin, and has a structure in which each is bound together.
  • pulp By mechanically and/or chemically treating this lignocellulose-containing plant fiber to remove hemicellulose and lignin and increase the purity of cellulose, pulp can be obtained.
  • a bleaching treatment is also performed if necessary, and the amount of delignification can be adjusted to adjust the amount of lignin in the pulp.
  • the nanocellulose is preferably obtained by defibrating pulp.
  • the pulp from the aspect of manufacturing methods such as mechanical treatment and chemical treatment, for example, ground wood pulp (GP), refiner ground pulp (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), etc. mechanical pulp (MP); chemical pulp such as kraft pulp (KP), sulfide pulp (SP), and alkaline pulp (AP); and semi-chemical pulp (SCP), chemigrand pulp (CGP), and chemi-mechanical pulp (CMP). ) etc.
  • GP ground wood pulp
  • RGP refiner ground pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • MP mechanical pulp
  • chemical pulp such as kraft pulp (KP), sulfide pulp (SP), and alkaline pulp (AP)
  • SCP semi-chemical pulp
  • CGP chemigrand pulp
  • CMP chemi-mechanical pulp
  • pulp includes wood pulp such as softwood pulp (NP) and hardwood pulp (LP); rice pulp, kenaf pulp, linen pulp, mulberry pulp, bagasse pulp, straw pulp, cotton pulp, bamboo pulp, and fruit pulp.
  • Non-wood pulp such as pulp; waste paper pulp such as deinked waste paper pulp, corrugated waste paper pulp, and waste magazine pulp;
  • bleached pulp (bleached pulp), unbleached pulp (unbleached pulp), and the like can be mentioned in terms of the presence or absence of bleaching treatment.
  • One type of pulp may be used alone, or two or more types may be used in combination.
  • bleached pulp (bleached pulp) is preferred. Among them, those having a kappa number of 5 or less, as measured according to JIS P8211:2011, are more preferable, and those having a kappa number of 2 or less are even more preferable.
  • Methods for defibrating pulp include chemical defibration, mechanical defibration, and a combination of these.
  • the chemical defibration treatment includes a method of chemically treating a suspension (slurry) containing pulp and water. Examples of the chemical treatment include an oxidation method using a TEMPO catalyst, a phosphorylation method, and a hydrolysis method using an enzyme. In these chemical treatments, a mechanical defibration treatment described below may be performed in addition to the chemical treatments, if necessary.
  • Mechanical fibrillation treatment includes, for example, a method of refining a suspension (slurry) containing pulp and water with a high-pressure water stream; a method of high-speed stirring with a wet stirrer; a method of grinding with a grinder; A method of beating with a beating machine; and a method of combining them;
  • Examples of the method of pulverizing with a high-pressure water stream include a high-pressure jet mill (for example, a counter jet mill) using an underwater counter-impingement method.
  • wet stirring devices include a high-pressure homogenizer and a bead mill.
  • grinders include grinders and stone grinders.
  • the beater include disc refiners and conical refiners.
  • nanocellulose obtained by the above-described defibration treatment mechanically defibrated nanocellulose is preferable, and mechanically defibrated cellulose nanofiber is more preferable.
  • CNF suitable as nanocellulose can be obtained by defibrating plant fibers containing cellulose until the fiber width reaches the nanosize (1 to 1000 nm) level.
  • vegetable fibers preferably pulp, more preferably a suspension containing pulp and water is used.
  • cellulose microfibrils single cellulose nanofibers with a width of about 4 nm exist as the smallest unit in plant cell walls.
  • CNF is nano-sized cellulose formed by aggregation of cellulose microfibrils or multiple cellulose microfibrils.
  • the arithmetic average fiber width of CNF is preferably 4 to 200 nm, more preferably 4 to 150 nm, and even more preferably 4 to 100 nm.
  • the arithmetic mean value of the CNF fiber length is preferably about several ⁇ m, more preferably 5 ⁇ m or more.
  • the specific surface area of CNF is preferably 70 to 300 m 2 /g, more preferably 70 to 250 m 2 /g, even more preferably 100 to 200 m 2 /g.
  • CNC suitable as nanocellulose can be obtained by hydrolyzing plant fibers containing cellulose with an acid.
  • vegetable fibers preferably pulp, more preferably a suspension containing pulp and water is used.
  • the defibration treatment may be performed as necessary.
  • acids include sulfuric acid, hydrochloric acid, and hydrobromic acid.
  • the CNC obtained by hydrolysis treatment with an acid is needle-shaped crystals, and the crystal width is preferably 4 to 100 nm, more preferably 10 to 50 nm, and even more preferably 10 to 30 nm in terms of arithmetic mean value.
  • the arithmetic average crystal length of CNC is preferably 25 to 3000 nm, more preferably 100 to 500 nm, even more preferably 100 to 200 nm.
  • the specific surface area of CNC is preferably 90 to 900 m 2 /g, more preferably 100 to 500 m 2 /g, even more preferably 100 to 300 m 2 /g.
  • the arithmetic average value of the width (fiber width and crystal width) and length (fiber length and crystal length) of the nanocellulose described above is the average value when measuring at least 50 or more nanocelluloses in the field of view of the electron microscope.
  • modified polyolefin The modified polyolefin having a carboxy group in the easily dispersible nanocellulose (B) is also called polyalkene.
  • This modified polyolefin having a carboxy group is a polymer having a structure in which a carboxy group is introduced into the skeleton of a polyolefin synthesized using an olefin (alkene) as a monomer.
  • olefin monomers examples include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene and 1-heptene. , 4-methyl-1-hexene, 5-methyl-1-hexene, 1-octene, and 5-methyl-1-heptene.
  • a skeleton of the polyolefin a skeleton such as a homopolymer of one of the above olefin monomers and a copolymer of two or more kinds of olefin monomers (graft copolymer, block copolymer, random copolymer), etc. can be mentioned.
  • the carboxy group in the modified polyolefin is obtained, for example, by a method of copolymerizing an unsaturated carboxylic acid-based monomer or the like that can be copolymerized with the above-mentioned olefin monomer with an olefin monomer, or a method of polymerizing an esterified product thereof and then hydrolyzing it. , can be introduced. Moreover, a carboxyl group can be introduced into the side chain of the polyolefin by grafting an unsaturated carboxylic acid-based monomer or the like using a peroxide or the like to the polyolefin obtained in advance.
  • unsaturated carboxylic acid-based monomer examples include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid; unsaturated carboxylic anhydrides such as maleic anhydride and itaconic anhydride; and styrene carboxylic acids such as 4-vinylbenzoic acid; and the like.
  • the modified polyolefin In order to obtain the easily dispersible nanocellulose (B) and the hydrous cellulose resin-treated material containing it, the modified polyolefin must have a carboxy group. This allows the modified polyolefin to be dispersed in an aqueous medium. Therefore, by using a modified polyolefin having a carboxy group in the form of an aqueous emulsion, that is, by using an emulsion in which the modified polyolefin is dispersed in an aqueous medium, easily dispersible nanocellulose (B) and containing it A treated product of hydrous cellulose resin can be obtained by a simple method.
  • the acid value of the modified polyolefin is preferably 1 to 60 mgKOH/g from the viewpoint of easy production of easily dispersible nanocellulose (B) and hydrous cellulose resin-treated products containing it.
  • the acid value of the modified polyolefin is more preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more.
  • the acid value of the modified polyolefin is more preferably 50 mgKOH/g or less, even more preferably 40 mgKOH/g or less.
  • the acid value of the modified polyolefin is expressed in mg of potassium hydroxide required to neutralize 1 g of the modified polyolefin, and can be measured as follows. That is, the modified polyolefin to be measured is dissolved in a polyolefin-soluble solvent (e.g., xylene, octane, etc.) and titrated with a 0.1 mol/L potassium hydroxide/ethanol solution using a phenolphthalein solution as an indicator. Desired.
  • a polyolefin-soluble solvent e.g., xylene, octane, etc.
  • the melting point of the modified polyolefin is preferably 160°C or less.
  • the melting point of the modified polyolefin is more preferably 100° C. or lower, more preferably 90° C. or lower, even more preferably 85° C. or lower, and particularly preferably 80° C. or lower.
  • the lower limit of the melting point of the modified polyolefin is preferably 50°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher.
  • the melting point of the modified polyolefin can be measured by differential scanning calorimetry (DSC).
  • the absolute value of the difference between the melting point of the thermoplastic resin (A) and the modified polyolefin is preferably 80°C or less. From the viewpoint of improving the compatibility between the thermoplastic resin (A) and the modified polyolefin and easily increasing the dispersibility of the easily dispersible nanocellulose (B), there is a difference between the melting point of the thermoplastic resin (A) and the modified polyolefin. is more preferably 30° C. or less. Furthermore, the absolute value of the melting point difference is more preferably 20° C. or less, and even more preferably 10° C. or less.
  • the easily dispersible nanocellulose (B) is not particularly limited in its production method as long as nanocellulose wrapped in modified polyolefin having a carboxy group is obtained.
  • a product obtained as a cellulose resin-treated product is preferred.
  • a treated product of hydrous cellulose resin is used in order to obtain the desired resin composition. may contain.
  • a hydrous cellulose resin-treated product can be produced as follows. That is, an acid is added to a mixed dispersion of a nanocellulose aqueous dispersion and a modified polyolefin aqueous emulsion neutralized with an alkali to precipitate the modified polyolefin. As a result, the modified polyolefin precipitated in the mixed dispersion envelops the nanocellulose, making it possible to produce easily dispersible nanocellulose (B) and a hydrous cellulose resin-treated material containing the same.
  • the amount of each of the aqueous dispersion of nanocellulose and the aqueous emulsion of modified polyolefin used is such that the ratio (each content) of nanocellulose and modified polyolefin in the easily dispersible nanocellulose (B) obtained is within the range described above. amount is preferred.
  • An aqueous emulsion of modified polyolefin neutralized with an alkali is a dispersion in which modified polyolefin is emulsified and finely dispersed in an aqueous medium because the carboxyl groups are neutralized and ionized.
  • a mixed dispersion can be easily obtained, and easily dispersible nanocellulose (B) can be easily obtained.
  • an aqueous emulsion of modified polyolefin is added to the aqueous nanocellulose dispersion and stirred so that the modified polyolefin can be precipitated more uniformly by adding an acid to the mixed dispersion.
  • a stirrer such as a stirrer, a stirrer with a motor, a high-speed dissolver, a homomixer, a bead mill, or a high-pressure homogenizer can be used.
  • a water-soluble organic solvent which may be contained as an aqueous medium in the modified polyolefin aqueous emulsion, may be added during homogenization.
  • the average particle size measured for the aqueous emulsion of the modified polyolefin neutralized with an alkali is preferably 300 nm or less. It is more preferably 250 nm or less.
  • the average particle size of the aqueous emulsion of modified polyolefin neutralized with alkali is the particle size (median size) of the cumulative 50% of the volume-based particle size distribution measured by the dynamic light scattering method. take a value.
  • the above acids can include inorganic acids such as hydrochloric, hydrobromic, nitric, sulfuric, and phosphoric acids; and organic acids such as acetic and lactic acid; They may be used alone, or two or more of them may be used in combination.
  • the acid is preferably diluted with water and used in the form of an aqueous solution so that the modified polyolefin can be precipitated uniformly in the mixed dispersion.
  • the acid concentration of the aqueous solution is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass.
  • the acid may be added all at once, added dropwise, or sprayed. Further, after adding the acid, it is preferable to add the acid so that the mixed dispersion becomes acidic. In that case, the pH of the mixed dispersion is more preferably 4 or less, more preferably 3 or less. .
  • the solid content concentration of the hydrous cellulose resin-treated product is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, even more preferably 20 to 50% by mass.
  • the cellulose concentration in the hydrous cellulose resin-treated material is preferably 2 to 40% by mass, more preferably 5 to 30% by mass, even more preferably 10 to 25% by mass.
  • the aqueous emulsion of modified polyolefin used in producing the treated product of hydrous cellulose resin may be a commercially available product or may be produced as described below.
  • Methods for producing an aqueous emulsion of modified polyolefin include, for example, a method in which polyolefin having a carboxy group is melted, neutralized with an alkali, and water is gradually added; a polyolefin having a carboxy group is dissolved in an organic solvent. and then mixing it with alkaline water to form an aqueous solution, and the organic solvent is left as it is or distilled off to form an emulsion;
  • water-soluble organic solvents such as alcohols, glycols, amines, and amides are preferable.
  • alcohols include methanol, ethanol, propanol, and butanol.
  • glycols include ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol methyl ether, propylene glycol methyl ether, propylene glycol propyl ether, diethylene glycol methyl ether, diethylene glycol butyl ether, and diethylene glycol dimethyl ether.
  • amines include methylamine, ethylamine, propylamine, butylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, ethylenediamine, and diethylenetriamine.
  • amides include dimethylformamide, dimethylacetamide, pyrrolidone, methylpyrrolidone, and ethylpyrrolidone.
  • the alkali used for neutralizing the carboxy groups in the modified polyolefin is not particularly limited.
  • alkalis include ammonia; organic amines such as triethylamine, diethanolamine, dimethylaminoethanol, and aminomethylpropanol; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; can be done.
  • One type of alkali may be used alone, or two or more types may be used in combination.
  • the nanocellulose aqueous dispersion used in producing the treated product of hydrous cellulose resin may be a commercially available product or may be produced as described below.
  • the method for producing a resin composition according to an embodiment of the present invention includes producing the above-mentioned hydrous cellulose resin-treated product, when using the nanocellulose aqueous dispersion, the nanocellulose aqueous dispersion is produced.
  • the production method preferably includes producing an aqueous suspension of nanocellulose as the aqueous dispersion of nanocellulose.
  • the aqueous suspension of nanocellulose can be produced by defibrating a suspension containing pulp and water (hereinafter sometimes referred to as "pulp suspension"). .
  • pulp suspension a suspension containing pulp and water
  • various chemical fibrillation treatments, mechanical fibrillation treatments, or a combination thereof can be adopted.
  • the mechanical fibrillation treatment is preferable from the viewpoint of productivity because it is a treatment that does not use a chemical reaction, so that the number of manufacturing steps can be reduced.
  • a pulp suspension with a relatively high pulp concentration can be used compared to other defibration treatments, and as a result, the concentration of nanocellulose is increased. It becomes easier to obtain a high water suspension. It is more preferable to use a stone mill type grinder as the grinder from this point of view and because the number of manufacturing steps is small, so that the manufacturing cost can be suppressed.
  • the pulp concentration in the pulp suspension to be subjected to mechanical defibration treatment with a grinder and the nanocellulose concentration in the resulting aqueous suspension are preferably 0.1 to 10% by mass, and 0 It is more preferably 5 to 5% by mass, and even more preferably 1 to 2% by mass.
  • the above pulp density means the pulp content based on the total mass of the pulp suspension.
  • the nanocellulose concentration means the content of nanocellulose based on the total mass of the nanocellulose aqueous suspension.
  • the viscosity of the nanocellulose aqueous suspension is preferably 0.1 to 100 Pa ⁇ s. This makes it easier to mix the nanocellulose aqueous dispersion with the alkali-neutralized modified polyolefin aqueous emulsion. From this point of view, the viscosity of the nanocellulose aqueous dispersion is more preferably 0.1 to 10 Pa ⁇ s, further preferably 0.1 to 1 Pa ⁇ s.
  • the viscosity of the nanocellulose aqueous dispersion is a value measured using a rotational viscometer (BM type) under conditions of a temperature of 25° C. and a rotation speed of 60 rpm.
  • the particle diameter at which the cumulative value in the volume-based particle size distribution (pseudo particle size distribution) measured by a laser diffraction/scattering particle size distribution analyzer is 10% is the 10% cumulative particle diameter (D 10 )
  • the particle diameter at which the cumulative value is 50% is the 50% cumulative particle diameter ( D50 )
  • the particle diameter at which the cumulative value is 90% is the 90% cumulative particle diameter ( D90 ).
  • D 10 is more preferably 1.0 to 15 ⁇ m, even more preferably 3.0 to 10 ⁇ m.
  • D 50 is more preferably 10-30 ⁇ m, more preferably 12-20 ⁇ m.
  • D 90 is more preferably 30-100 ⁇ m, even more preferably 50-80 ⁇ m. Since nanocellulose has a fibrous or acicular form, the above particle size distribution is a pseudo particle size distribution in which nanocellulose is simulated to have a particle form.
  • the aqueous suspension of nanocellulose obtained after defibration treatment of the pulp suspension is used as it is as the aqueous dispersion of nanocellulose described above, and mixed with an aqueous emulsion of modified polyolefin neutralized with alkali.
  • the nanocellulose aqueous suspension is diluted with water and stirred with the above-described stirrer or the like, and the obtained nanocellulose aqueous dispersion is used as the nanocellulose aqueous dispersion. Good to mix with an emulsion.
  • the nanocellulose concentration in the nanocellulose aqueous dispersion when mixed with the modified polyolefin aqueous emulsion is preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass, More preferably, it is 0.1 to 1% by mass.
  • a treated product of a hydrous cellulose resin can be obtained by a simple method. be able to.
  • Various additives may be used, for example, in the step of precipitating the modified polyolefin by adding an acid in the production of the treated product of the hydrous cellulose resin.
  • additives include antioxidants, surfactants, light stabilizers, ultraviolet absorbers, antistatic agents, and conductive agents.
  • One of the additives may be used alone, or two or more of them may be used in combination.
  • the additive may be compounded with the easily dispersible nanocellulose (B). Therefore, the treated product of hydrous cellulose resin and the easily dispersible nanocellulose (B) contained therein may contain the various additives described above in addition to the nanocellulose and the modified polyolefin.
  • thermoplastic resin composition As described above, in the method for producing a resin composition according to one embodiment of the present invention, the above-described hydrous cellulose resin-treated product and the thermoplastic resin (A) are heated at a temperature not higher than the boiling point of water +20°C to obtain a thermoplastic resin composition. It includes mixing the resin (A) in a molten state. Moreover, this production method includes removing water in the mixture of the treated hydrous cellulose resin and the thermoplastic resin (A) by heating at a temperature equal to or higher than the boiling point of water.
  • the boiling point of water is about 100°C at 1 atmosphere
  • the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed, they should be heated at 1 atmosphere to 120°C (boiling point of water 100°C + 20°C) or less. can be heated and mixed at a temperature of Further, when removing water from the mixture of the hydrous cellulose resin-treated product and the thermoplastic resin (A), the mixture can be heated at a temperature of 100° C. or higher at 1 atm. References to temperature herein are to temperatures under 1 atmosphere unless otherwise specified.
  • the amounts of the hydrous cellulose resin-treated product and the thermoplastic resin (A) used are determined according to the nanocellulose content in the resulting resin composition. It is preferable that the amount is within the range. Further, when the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed, the thermoplastic resin (A) is mixed in a molten state. It is preferably above the melting point.
  • the upper limit of the temperature during mixing is preferably the boiling point of water + 10 ° C. or less (110 ° C. or less), more preferably the boiling point of water + 5 ° C. or less (105 ° C. or less), and the boiling point of water or less (100 ° C. below) is more preferable. By setting the temperature within the above range, it becomes easier to suppress the evaporation of water and to more favorably disperse the treated product of the hydrous cellulose resin in the thermoplastic resin (A).
  • the mixing time of the hydrous cellulose resin-treated material and the thermoplastic resin (A) is not particularly limited, and can be appropriately determined according to the type and scale of the mixer that can be used for mixing, the mixing amount, and the like.
  • the mixing time is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and 15 minutes. ⁇ 30 minutes is even more preferred.
  • Suitable mixers include, for example, mixing rolls, Banbury mixers, kneaders, kneader ruders, single screw extruders, multi-screw extruders, and the like. Among these, it is more preferable to use a kneader.
  • the temperature for removing the water in the mixture is the boiling point of water (100° C.) or higher.
  • the temperature may be the same as the temperature during mixing, or may be adjusted as appropriate.
  • the temperature at which water is removed from the mixture is preferably 105° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher.
  • the upper limit of the temperature when removing water is not particularly limited, but from the economical point of view of suppressing thermal energy due to heating, it is preferably 200° C. or less, more preferably 180° C. or less, and 150° C. or less. is more preferred.
  • the heating for removing water from the mixture may be performed on the mixture taken out from the mixer or may be performed on the mixture in the mixer.
  • the temperature of the mixer can be set to a temperature above the boiling point of water to remove the water in the mixture. In this case, even when water is removed, it is more preferable to continue mixing in the mixer until the generation of water vapor is stopped, because the mixture is quickly dried.
  • thermoplastic resin (A) the thermoplastic resin
  • nanocellulose aggregates the generation of nanocellulose aggregates is suppressed in a simpler method.
  • components other than the above-described thermoplastic resin (A) and easily dispersible nanocellulose (B) may be used.
  • Other components include, for example, colorants such as pigments and dyes, compatibilizers, antioxidants, light stabilizers, surfactants, metal powders, plasticizers, fragrances, ultraviolet absorbers, leveling agents, conductive materials, Also, antistatic agents and the like can be mentioned. One of them may be used alone, or two or more thereof may be used in combination. Therefore, the resin composition may contain the above other components in addition to the thermoplastic resin (A) and the easily dispersible nanocellulose (B).
  • the resin composition can be used after being molded into a sheet or pelletized by a pelletizer.
  • a sheet-like or pellet-like resin composition is preferable because it can be used in combination with other resins.
  • the resin composition is preferably used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A) described above, and the masterbatch mixed with the thermoplastic resin (C) is more preferable.
  • the resin composition is used as a masterbatch or the like by being mixed with another thermoplastic resin (C), so that the resin composition after being mixed with the thermoplastic resin (C) (hereinafter, "mixed resin composition" ) can be obtained.
  • the thermoplastic resin in the resin composition may further contain a thermoplastic resin (C) different from the thermoplastic resin (A), that is, the resin composition of one embodiment of the present invention has the above may be a mixed resin composition.
  • the resin composition is used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A), so that even in the above mixed resin composition, the nanocellulose is excellent in dispersibility, and the nanocellulose is dispersed. It is possible to suppress the generation of aggregates. As a result, in the mixed resin composition, tensile strength, bending strength, compressive strength, shear strength, impact strength, toughness, etc. are improved compared to the thermoplastic resin (A) and the thermoplastic resin (C). Improvement in mechanical properties can be expected.
  • the content of the thermoplastic resin (C) in the mixed resin composition is preferably 20 to 500 parts by mass with respect to 100 parts by mass of the resin composition before containing the thermoplastic resin (C). It is more preferably up to 450 parts by mass, and even more preferably 40 to 400 parts by mass.
  • the content of the thermoplastic resin (C) in the mixed resin composition is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the mixed resin composition. , 30 to 70% by mass.
  • the content of nanocellulose in the mixed resin composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, based on the total mass of the mixed resin composition. , more preferably 1 to 15% by mass.
  • thermoplastic resin (C) As the thermoplastic resin (C), a thermoplastic resin other than the thermoplastic resin (A), that is, a thermoplastic resin (C) having a melting point of more than 110°C can be used.
  • thermoplastic resins (C) include polyolefin resins such as polyethylene, polypropylene, copolymers of ethylene and/or propylene and ⁇ -olefin; nylon 6, nylon 11, nylon 12, nylon 66, and the like.
  • thermoplastic resin (A) is preferably a polyolefin resin
  • thermoplastic resin (C) is also preferably a polyolefin resin because of good compatibility therewith.
  • an embodiment of the present invention can have the following configuration.
  • a thermoplastic resin and an easily dispersible nanocellulose (B) dispersed in the thermoplastic resin are contained, and the easily dispersible nanocellulose (B) comprises nanocellulose and the nanocellulose. and a modified polyolefin having a carboxyl group, wherein the thermoplastic resin comprises a thermoplastic resin (A) having a melting point of 110° C. or less.
  • the melt flow rate (MFR) of the thermoplastic resin (A) measured in accordance with ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190 ° C. and a load of 2.16 kg. 1].
  • thermoplastic resin (A) contains a metallocene-based polyolefin resin.
  • thermoplastic resin (C) which is used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A).
  • thermoplastic resin further contains a thermoplastic resin (C) different from the thermoplastic resin (A).
  • the resin (A) is heated at a temperature not higher than the boiling point of water by 20° C. and mixed in a molten state of the thermoplastic resin (A);
  • a method for producing a resin composition comprising: removing water from a mixture of the treated resin and the thermoplastic resin (A).
  • the melt flow rate (MFR) of the thermoplastic resin (A) measured in accordance with ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190°C and a load of 2.16 kg. 10].
  • MFR melt flow rate
  • a method for producing the resin composition according to [14] above comprising producing.
  • the viscosity of the aqueous suspension of nanocellulose is 0.1 to 100 Pa s as measured using a rotational viscometer under conditions of a temperature of 25 ° C. and a rotation speed of 60 rpm [15] ] or the method for producing a resin composition according to [16].
  • the particle diameter at which the cumulative value in the volume-based particle size distribution measured by a laser diffraction/scattering particle size distribution measuring device is 10% is the 10% cumulative particle diameter (D 10 ), when the particle diameter at which the cumulative value is 50% is 50% cumulative particle diameter (D 50 ), and the particle diameter at which the cumulative value is 90% is 90% cumulative particle diameter (D 90 ), D 10 is 0.1 to 20 ⁇ m, D 50 is 5.0 to 40 ⁇ m, and D 90 is 20 to 150 ⁇ m.
  • a slurry-like pulp suspension having a mass % content was prepared and allowed to stand and immerse for two days.
  • the obtained pulp suspension is mechanically fibrillated with a stone grinder (trade name “Super Mascolloider”, manufactured by Masuko Sangyo Co., Ltd.) with two types of grindstones for a total of 8 passes.
  • the pulp was defibrated to the nanosize level to obtain an aqueous suspension of cellulose nanofibers (CNF) having a nanosize fiber width.
  • the content of CNF in this water suspension is 1.5% by mass.
  • the resulting CNF aqueous suspension had a viscosity of 0.40 Pa ⁇ s measured using a BM-type rotational viscometer at a temperature of 25°C and a rotation speed of 60 rpm.
  • the volume-based particle size distribution (pseudo particle size distribution) of the CNF aqueous suspension was measured using a laser diffraction/scattering particle size distribution analyzer (trade name “MT3300” manufactured by Nikkiso Co., Ltd.). As a result, D10 was 6.6 ⁇ m, D50 was 15.8 ⁇ m, and D90 was 60.8 ⁇ m.
  • the modified polyolefin having a carboxyl group in POE-1 is a polypropylene-type modified polyolefin having a melting point of 75° C., an acid value of 35 mgKOH/g, and an average particle diameter (median diameter) determined by a dynamic light scattering particle size distribution analyzer. ) was 80 nm.
  • CP-2 easily dispersible nanocellulose
  • POE-1 used in Production Example 1 was changed to POE-2.
  • a hydrous cellulose resin-treated material containing water was obtained.
  • the solid content (CP-2) of this hydrous cellulose resin treated product was 35.0% by mass.
  • the CNF content in the solid content (CP-2) of the hydrous cellulose resin treated material is 50.0% by mass, and the CNF content in the hydrous cellulose resin treated material is 17.5% by mass.
  • Example 1 85.7 parts by mass (solid content: 30.0 parts by mass) of the hydrous cellulose resin-treated product (solid content (CP-1): 35 mass%) obtained in Production Example 1, and the thermoplastic resin (A) having a melting point of 80 ° C., MFR of more than 1000 g/10 min (190 ° C./2.16 kg), and a metallocene-based polyolefin resin having a weight-average molecular weight (Mw) of 45000 (trade name “Elmodu S400”, manufactured by Idemitsu Kosan Co., Ltd.; , Sometimes referred to as “PO-1”.) 70.0 parts by mass is placed in a desktop kneader (trade name “Plastograph”, manufactured by Brabender), and the thermoplastic resin ( Melt kneading was carried out in the molten state of A).
  • a desktop kneader trade name “Plastograph”, manufactured by Brabender
  • a masterbatch (hereinafter sometimes referred to as “MB-1”) was obtained as a resin composition having a CNF content of 15.0% by mass.
  • Example 2 Instead of the hydrous cellulose resin-treated product (solid content: CP-1) used in Example 1, the hydrous cellulose resin-treated product (solid content: CP-2) obtained in Production Example 2 was used. Other than that, in the same manner as in Example 1, a masterbatch (hereinafter sometimes referred to as "MB-2") as a resin composition having a CNF content of 15.0% by mass is produced. did.
  • MB-2 masterbatch
  • thermoplastic resin (A) instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a melting point of 80 ° C. and an MFR of 25 g/10 min (190 ° C./2.16 kg), A metallocene-based polyolefin resin having a weight average molecular weight (Mw) of 130,000 (trade name “Elmodu S901” manufactured by Idemitsu Kosan Co., Ltd.; hereinafter sometimes referred to as “PO-2”) was used.
  • Mw weight average molecular weight
  • MB-3 masterbatch
  • MB-3 a masterbatch as a resin composition having a CNF content of 15.0% by mass is produced. did.
  • thermoplastic resin (A) instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a resin having a melting point of 97° C. and an MFR of 3.6 g/10 min (190° C./2.16 kg) was used. A certain metallocene-based ethylene/ ⁇ -olefin copolymer (trade name “Kernel KF370”, manufactured by Japan Polyethylene Co., Ltd.; hereinafter sometimes referred to as “PO-3”) was used. In addition, the temperature during melt-kneading using a desktop kneader was changed to 102°C. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-4") as a resin composition having a CNF content of 15.0% by mass. did.
  • MB-4 masterbatch
  • Example 5 171.4 parts by mass (solid 60.0 parts by mass). Also, the amount of the metallocene-based polyolefin resin (PO-1) used in Example 1 was changed from 70.0 parts by mass to 40.0 parts by mass. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-5") as a resin composition having a CNF content of 30.0% by mass. did.
  • MB-5 masterbatch
  • thermoplastic resin (A) instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a low A density polyethylene resin (trade name “Novatec LD-LJ902”, manufactured by Japan Polyethylene Co., Ltd.; hereinafter sometimes referred to as “PO-4”) was used.
  • PO-4 low A density polyethylene resin
  • the temperature during melt-kneading using a desktop kneader was changed to 110°C.
  • the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-6") as a resin composition having a CNF content of 15.0% by mass. did.
  • Example 7 171.4 parts by mass (solid 60.0 parts by mass). Further, as the thermoplastic resin (A), the same metallocene polyolefin resin (PO- 2) 40.0 parts by mass was used. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-7") as a resin composition having a CNF content of 30.0% by mass. did.
  • MB-7 masterbatch
  • Example 8 Instead of the hydrous cellulose resin-treated product (solid content: CP-1) used in Example 1, the hydrous cellulose resin-treated product (solid content: CP-2) obtained in Production Example 2 was used. Further, as the thermoplastic resin (A), instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, the same metallocene-based polyolefin resin (PO-2) used in Example 3 was used. . Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-8") as a resin composition having a CNF content of 15.0% by mass. did.
  • MB-8 masterbatch
  • AA The average number of aggregates of 40 ⁇ m or more is 5 or less, and the average number of aggregates of 100 ⁇ m or more is less than 1.
  • A The average number of aggregates of 40 ⁇ m or more is more than 5 and 10 or less, and the average number of aggregates of 100 ⁇ m or more is less than 1.
  • B The average number of aggregates of 40 ⁇ m or more is more than 10, and the average number of aggregates of 100 ⁇ m or more is less than 1.
  • C The average number of aggregates of 100 ⁇ m or more is 1 or more.
  • Table 1 shows the components (solid content) and evaluation results of the masterbatch of each of the above examples and comparative examples.
  • Example 9 The masterbatch (MB-1) obtained in Example 1 and the thermoplastic resin (C) were kneaded using a twin-screw extruder (manufactured by Shibaura Kikai Co., Ltd.) to produce a mixed resin composition. Specifically, 67 parts by mass of the masterbatch (MB-1) and 33 parts by mass of polypropylene (trade name “Prime Polypro J-106” manufactured by Prime Polymer Co., Ltd.) as the thermoplastic resin (C) are blended, Mixed. The mixed material was kneaded at a temperature of 200° C.
  • pellet-shaped mixed resin composition having a CNF content of about 10% by mass was obtained.
  • Example 10 In the same manner as in Example 9 except that the masterbatch (MB-3) obtained in Example 3 was used instead of the masterbatch (MB-1) of Example 1 used in Example 9, A pellet-shaped mixed resin composition (CNF content: about 10% by mass) was obtained.
  • Example 11 In the same manner as in Example 9 except that the masterbatch (MB-4) obtained in Example 4 was used instead of the masterbatch (MB-1) of Example 1 used in Example 9, A pellet-shaped mixed resin composition (CNF content: about 10% by mass) was obtained.
  • Example 12 The masterbatch (MB-1) of Example 1 used in Example 9, the amount of 67 parts by mass thereof, and the amount of 33 parts by mass of the thermoplastic resin (C) were added to the masterbatch obtained in Example 7 ( MB-7) and its amount of use was changed to 33 parts by mass and the amount of thermoplastic resin (C) used was changed to 67 parts by mass, in the same manner as in Example 9, pelletized mixed resin composition (CNF content: about 10% by mass).
  • ⁇ Evaluation of mixed resin composition> For the mixed resin compositions obtained in Examples 9 to 12, a test piece was prepared according to the provisions of ASTM D638 and subjected to a tensile test, and a test piece was prepared according to the provisions of ASTM D790. A bend test was performed. In the tensile test, using a precision universal testing machine (trade name "Autograph AG/X-R", manufactured by Shimadzu Corporation), tensile strength (maximum tensile stress) at room temperature (within the range of 20 to 25 ° C.) and tensile fracture strain were measured. In the bending test, bending strength (maximum bending stress) and bending elastic modulus were measured at room temperature (within the range of 20 to 25°C) using the precision universal testing machine. These results are shown in Table 2.
  • Control Examples 9B, 10B, 11B, and 12B which are blank tests corresponding to Examples 9, 10, 11, and 12, respectively.
  • resin compositions (Control Example 9B ⁇ 12B mixed resin composition) was used.
  • Reference Examples 9B to 12B instead of using no masterbatch, the same type and amount of thermoplastic resin (A) as the thermoplastic resin (A) in the masterbatch used in the corresponding examples and the same amount of thermoplastic resin (C) as used in the corresponding example, and a pellet-shaped resin composition obtained by the same method as in Example 9 was used.
  • Table 2 also shows the results of the blank test.
  • test pieces were prepared according to the provisions of ASTM D256. was prepared and the Izod impact strength was measured. As a result, the Izod impact strength was 2.7 kJ/m 2 for Example 9, 6.5 kJ/m 2 for Example 10, 20.3 kJ/m 2 for Example 11, and 2.4 kJ/m 2 for Example 12. was m2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention provides, by means of a simpler method, a resin composition that has excellent dispersibility of nanocellulose in a thermoplastic resin and that suppresses the formation of nanocellulose aggregates. Provided is a resin composition including a thermoplastic resin, and easily-dispersible nanocellulose (B) dispersed in the thermoplastic resin, the easily-dispersible nanocellulose (B) including a nanocellulose and a modified polyolefin that contains a carboxy group and encloses the nanocellulose, and the thermoplastic resin including a thermoplastic resin (A) having a melting point of 110°C or less.

Description

樹脂組成物及び樹脂組成物の製造方法Resin composition and method for producing resin composition
 本発明は、樹脂組成物及び樹脂組成物の製造方法に関する。 The present invention relates to a resin composition and a method for producing a resin composition.
 セルロースナノファイバー(CNF)及びセルロースナノクリスタル(CNC)等のナノセルロース(セルロースミクロフィブリルとも称される。)は、ガラスと比較して熱変形が小さい。また、高強度かつ低熱膨張であるナノセルロースは、持続型資源材料として有用な素材である。これらの利点から、ナノセルロースを熱可塑性樹脂の補強材として使用し、ナノセルロースを熱可塑性樹脂中に含有させる技術が種々提案されている。 Nanocellulose (also called cellulose microfibrils) such as cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) have smaller thermal deformation than glass. In addition, nanocellulose, which has high strength and low thermal expansion, is a useful material as a sustainable resource material. Based on these advantages, various techniques have been proposed in which nanocellulose is used as a reinforcing material for thermoplastic resins and nanocellulose is contained in thermoplastic resins.
 一方、ナノセルロースは、水酸基を豊富に有することから親水性で極性が高いために、疎水性で極性の低い汎用熱可塑性樹脂との相溶性に劣る側面がある。このため、ナノセルロースを用いた材料開発では、化学処理により、ナノセルロースの表面改質又はナノセルロースへの官能基導入を行い、ナノセルロースの汎用熱可塑性樹脂との相溶性を向上させ、汎用熱可塑性樹脂に対する分散性を向上させることが種々検討されている。 On the other hand, nanocellulose is hydrophilic and highly polar due to its abundance of hydroxyl groups, so it has an aspect of poor compatibility with general-purpose thermoplastic resins that are hydrophobic and have low polarity. For this reason, in the development of materials using nanocellulose, the surface modification of nanocellulose or the introduction of functional groups to nanocellulose is performed by chemical treatment to improve the compatibility of nanocellulose with general-purpose thermoplastic resins, and to improve the compatibility of nanocellulose with general-purpose thermoplastic resins. Various attempts have been made to improve dispersibility in plastic resins.
 例えば、特許文献1には、簡便な手法によって、親水性の物質であるナノセルロースを、疎水性の高い汎用熱可塑性樹脂へ容易に分散させることができる技術が提案されている。その技術として、特許文献1では、ナノセルロースと、ナノセルロースを包括するポリオレフィンとを含み、そのポリオレフィンがカルボキシ基、特定の酸価及び融点を有するとともに、ナノセルロースを5~30質量%含有する易分散性セルロース組成物が開示されている。 For example, Patent Document 1 proposes a technique that allows nanocellulose, which is a hydrophilic substance, to be easily dispersed in a highly hydrophobic general-purpose thermoplastic resin by a simple method. As the technology, in Patent Document 1, nanocellulose and polyolefin including nanocellulose are included, and the polyolefin has a carboxy group, a specific acid value and a melting point, and easily contains 5 to 30% by mass of nanocellulose. A dispersible cellulose composition is disclosed.
特開2017-141323号公報JP 2017-141323 A
 特許文献1に開示された技術によれば、簡便な方法で、疎水性が高く極性が低い熱可塑性樹脂中に、ナノセルロースが良好な状態で分散された樹脂組成物を得るのに有効な易分散性ナノセルロースが提供されうる。しかし、そのような易分散性ナノセルロースを用いる場合であっても、それと混合される熱可塑性樹脂の種類や、それらを混合して得る樹脂組成物の製造条件によっては、熱可塑性樹脂中にナノセルロースの凝集物が生じることがあり、分散性に改善の余地があった。 According to the technique disclosed in Patent Document 1, a simple method is effective for obtaining a resin composition in which nanocellulose is dispersed in a good state in a thermoplastic resin having high hydrophobicity and low polarity. Dispersible nanocellulose can be provided. However, even when such easily dispersible nanocellulose is used, depending on the type of thermoplastic resin mixed with it and the manufacturing conditions of the resin composition obtained by mixing them, nano Aggregates of cellulose may occur, and there is room for improvement in dispersibility.
 そこで本発明は、より簡便な方法で、熱可塑性樹脂中のナノセルロースの分散性に優れ、ナノセルロースの凝集物の発生が抑制された樹脂組成物を提供しようとするものである。 Therefore, the present invention aims to provide a resin composition in which nanocellulose is excellent in dispersibility in a thermoplastic resin and the generation of nanocellulose aggregates is suppressed by a simpler method.
 本発明は、熱可塑性樹脂と、前記熱可塑性樹脂中に分散している易分散性ナノセルロース(B)とを含有し、前記易分散性ナノセルロース(B)は、ナノセルロースと、前記ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンとを含むものであり、前記熱可塑性樹脂は、融点が110℃以下である熱可塑性樹脂(A)を含む、樹脂組成物を提供する。 The present invention contains a thermoplastic resin and easily dispersible nanocellulose (B) dispersed in the thermoplastic resin, and the easily dispersible nanocellulose (B) is composed of nanocellulose and the nanocellulose. and a modified polyolefin having a carboxyl group, wherein the thermoplastic resin includes a thermoplastic resin (A) having a melting point of 110° C. or lower.
 また、本発明は、ナノセルロース及び前記ナノセルロースを包み込んでいるカルボキシ基を有する変性ポリオレフィンを含む易分散性ナノセルロース(B)並びに水を含有する含水セルロース樹脂処理物と、融点が110℃以下である熱可塑性樹脂(A)とを、水の沸点より20℃高い温度以下で加熱して前記熱可塑性樹脂(A)の溶融状態で混合すること;及び水の沸点以上の温度で加熱して、前記含水セルロース樹脂処理物と前記熱可塑性樹脂(A)との混合物中の水を除去すること;を含む、樹脂組成物の製造方法を提供する。 In addition, the present invention provides an easily dispersible nanocellulose (B) containing nanocellulose, a modified polyolefin having a carboxy group enveloping the nanocellulose (B), and a water-containing cellulose resin treated product containing water, and a melting point of 110 ° C. or less. Heating a certain thermoplastic resin (A) at a temperature not higher than 20 ° C. above the boiling point of water and mixing the thermoplastic resin (A) in a molten state; and heating at a temperature not lower than the boiling point of water, removing water from a mixture of the treated hydrous cellulose resin and the thermoplastic resin (A).
 本発明によれば、より簡便な方法で、熱可塑性樹脂中のナノセルロースの分散性に優れ、ナノセルロースの凝集物の発生が抑制された樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition in which nanocellulose is excellent in dispersibility in a thermoplastic resin and the generation of nanocellulose aggregates is suppressed by a simpler method.
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
<樹脂組成物及び樹脂組成物の製造方法>
 本発明の一実施形態の樹脂組成物は、熱可塑性樹脂と、熱可塑性樹脂中に分散している易分散性ナノセルロース(B)とを含有する。易分散性ナノセルロース(B)は、ナノセルロースと、ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンとを含むものである。熱可塑性樹脂は、融点が110℃以下である熱可塑性樹脂(A)を含む。樹脂組成物は、熱可塑性樹脂中に易分散性ナノセルロース(B)が分散している構成をとることから、常温(5~35℃)において固体の形態をとりうる。
<Resin composition and method for producing resin composition>
A resin composition of one embodiment of the present invention contains a thermoplastic resin and easily dispersible nanocellulose (B) dispersed in the thermoplastic resin. The easily dispersible nanocellulose (B) contains nanocellulose and modified polyolefin having a carboxyl group, which envelops the nanocellulose. The thermoplastic resin includes thermoplastic resin (A) having a melting point of 110° C. or lower. Since the resin composition has a structure in which the easily dispersible nanocellulose (B) is dispersed in the thermoplastic resin, it can take a solid form at room temperature (5 to 35° C.).
 上記樹脂組成物における構成の技術的意義は、本発明の一実施形態の樹脂組成物の製造方法にも関係する。また、本発明の一実施形態の樹脂組成物は、本発明の一実施形態の樹脂組成物の製造方法によって得られたものであることが好ましい。その樹脂組成物の製造方法は、ナノセルロース及びナノセルロースを包み込んでいるカルボキシ基を有する変性ポリオレフィンを含む易分散性ナノセルロース(B)並びに水を含有する含水セルロース樹脂処理物と、融点が110℃以下である熱可塑性樹脂(A)とを混合することを含む。この際、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを、水の沸点より20℃高い温度以下で加熱して熱可塑性樹脂(A)の溶融状態で混合する。次いで、本製造方法は、水の沸点以上の温度で加熱して、含水セルロース樹脂処理物と熱可塑性樹脂(A)との混合物中の水を除去することを含む。 The technical significance of the configuration in the resin composition is also related to the method for producing the resin composition of one embodiment of the present invention. Moreover, it is preferable that the resin composition of one embodiment of the present invention is obtained by the method for producing a resin composition of one embodiment of the present invention. The method for producing the resin composition comprises the steps of: easily dispersible nanocellulose (B) containing nanocellulose and modified polyolefin having a carboxyl group enveloping the nanocellulose; and a treated hydrous cellulose resin containing water; including mixing with a thermoplastic resin (A) which is: At this time, the hydrous cellulose resin-treated product and the thermoplastic resin (A) are heated at a temperature not higher than 20° C. higher than the boiling point of water and mixed in a molten state of the thermoplastic resin (A). Next, the production method includes removing water from the mixture of the treated hydrous cellulose resin and the thermoplastic resin (A) by heating at a temperature equal to or higher than the boiling point of water.
 本技術では、熱可塑性樹脂中のナノセルロースの分散性を高めるために、ナノセルロースと、ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンと、を含む易分散性ナノセルロース(B)を用いる。カルボキシ基を有する変性ポリオレフィン(本明細書において、単に「変性ポリオレフィン」と記載することがある。)を用いることで、後述する通り、易分散性ナノセルロース(B)及びそれを含有する含水セルロース樹脂処理物を簡便な方法で得ることができる。 In this technology, in order to enhance the dispersibility of nanocellulose in a thermoplastic resin, easily dispersible nanocellulose (B) containing nanocellulose and a modified polyolefin having a carboxyl group enveloping the nanocellulose is used. . By using a modified polyolefin having a carboxy group (in this specification, it may be simply referred to as "modified polyolefin"), as described later, easily dispersible nanocellulose (B) and a hydrous cellulose resin containing it A processed product can be obtained by a simple method.
 また、本製造方法では、ナノセルロース(易分散性ナノセルロース(B))と熱可塑性樹脂(A)とを混合する際、易分散性ナノセルロース(B)を含水状態にて用いる。すなわち、易分散性ナノセルロース(B)及び水を含有する組成物(本明細書において、「含水セルロース樹脂処理物」という。)を用いる。仮に、熱可塑性樹脂(A)と混合する易分散性ナノセルロース(B)を乾燥状態で使用すると、乾燥によって、易分散性ナノセルロース(B)が凝集しやすくなる。一方、含水セルロース樹脂処理物を用いることで、易分散性ナノセルロース(B)を乾燥状態で用いる場合に比べて、熱可塑性樹脂(A)と混合する際に、易分散性ナノセルロース(B)の凝集物の発生を抑えることができる。 In addition, in this production method, when the nanocellulose (easily dispersible nanocellulose (B)) and the thermoplastic resin (A) are mixed, the easily dispersible nanocellulose (B) is used in a water-containing state. That is, a composition containing easily dispersible nanocellulose (B) and water (herein referred to as "processed product of hydrous cellulose resin") is used. If the easily dispersible nanocellulose (B) mixed with the thermoplastic resin (A) is used in a dry state, the easily dispersible nanocellulose (B) tends to aggregate due to drying. On the other hand, by using a hydrous cellulose resin-treated product, the easily dispersible nanocellulose (B) is more easily dispersed when mixed with the thermoplastic resin (A) than when the easily dispersible nanocellulose (B) is used in a dry state. It is possible to suppress the generation of aggregates.
 さらに、本製造方法では、熱可塑性樹脂中に易分散性ナノセルロース(B)を良好に分散させるために、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを、熱可塑性樹脂(A)の溶融状態で混合する。この際、易分散性ナノセルロース(B)と熱可塑性樹脂(A)との混合がまだ十分でない状態で、含水セルロース樹脂処理物に含まれていた水が完全に揮発してしまうと、熱可塑性樹脂(A)中に易分散性ナノセルロース(B)の凝集物が生じやすくなる。そのため、本製造方法では、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを混合するに当たり、含水セルロース樹脂処理物中の水の蒸発を遅らせるように、水の沸点+20℃以下の温度で加熱して熱可塑性樹脂(A)の溶融状態で混合する。そして、水の沸点+20℃以下の温度で熱可塑性樹脂(A)が溶融状態となるように、本技術では、融点が110℃以下の熱可塑性樹脂(A)を用いる。 Furthermore, in this production method, in order to satisfactorily disperse the easily dispersible nanocellulose (B) in the thermoplastic resin, the treated product of the hydrous cellulose resin and the thermoplastic resin (A) are mixed with the thermoplastic resin (A). Mix in the melt. At this time, if the water contained in the hydrous cellulose resin-treated material is completely volatilized while the easily dispersible nanocellulose (B) and the thermoplastic resin (A) are not sufficiently mixed, the thermoplastic Aggregates of the easily dispersible nanocellulose (B) tend to form in the resin (A). Therefore, in the present production method, in mixing the hydrous cellulose resin-treated material and the thermoplastic resin (A), the mixture is heated at a temperature not higher than the boiling point of water +20°C so as to delay the evaporation of the water in the hydrous cellulose resin-treated material. Then, the thermoplastic resin (A) is mixed in a molten state. Then, in the present technology, a thermoplastic resin (A) with a melting point of 110° C. or less is used so that the thermoplastic resin (A) is in a molten state at a temperature of water's boiling point +20° C. or less.
 以上に述べた構成を有する樹脂組成物及び樹脂組成物の製造方法によって、より簡便な方法にて、熱可塑性樹脂中のナノセルロースの分散性に優れ、ナノセルロースの凝集物の発生が抑制された樹脂組成物を提供することが可能となる。 According to the resin composition having the structure described above and the method for producing the resin composition, the dispersibility of nanocellulose in the thermoplastic resin is excellent and the generation of nanocellulose aggregates is suppressed by a simpler method. It becomes possible to provide a resin composition.
[熱可塑性樹脂(A)]
 熱可塑性樹脂(A)は、融点が110℃以下である熱可塑性樹脂である。樹脂組成物中のナノセルロース(易分散性ナノセルロース(B))の分散性に優れ、凝集物の発生をより抑制しやすいことから、熱可塑性樹脂(A)の融点は、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることがさらに好ましい。熱可塑性樹脂(A)の融点の下限は、樹脂組成物の機械的強度の観点等から、50℃以上であることが好ましく、55℃以上であることがより好ましく、60℃以上であることがさらに好ましい。熱可塑性樹脂(A)の融点は、示差走査熱量測定(DSC)による値をとることができる。
[Thermoplastic resin (A)]
The thermoplastic resin (A) is a thermoplastic resin having a melting point of 110° C. or lower. The melting point of the thermoplastic resin (A) is 100° C. or less because the dispersibility of the nanocellulose (easily dispersible nanocellulose (B)) in the resin composition is excellent and the generation of aggregates is easily suppressed. is preferably 95° C. or lower, and even more preferably 90° C. or lower. The lower limit of the melting point of the thermoplastic resin (A) is preferably 50° C. or higher, more preferably 55° C. or higher, and 60° C. or higher, from the viewpoint of the mechanical strength of the resin composition. More preferred. The melting point of the thermoplastic resin (A) can be measured by differential scanning calorimetry (DSC).
 熱可塑性樹脂(A)としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン・プロピレン共重合体、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、及びエチレン・アクリル酸エチル共重合体等のポリオレフィン系樹脂;ポリ乳酸等のポリエステル系樹脂;並びにポリエチレングリコール等のポリエーテル系樹脂;等を挙げることができる。なかでも、後述する易分散性ナノセルロース(B)に含まれる変性ポリオレフィンと相溶性が良好であることで、易分散性ナノセルロース(B)と混合しやすくなることから、熱可塑性樹脂(A)としてはポリオレフィン系樹脂が好ましい。 Examples of the thermoplastic resin (A) include polyethylene resins, polypropylene resins, ethylene/propylene copolymers, ethylene/α-olefin copolymers, propylene/α-olefin copolymers, ethylene/vinyl acetate copolymers, Polyolefin resins such as ethylene/vinyl alcohol copolymers and ethylene/ethyl acrylate copolymers; polyester resins such as polylactic acid; and polyether resins such as polyethylene glycol; Among them, because it has good compatibility with the modified polyolefin contained in the easily dispersible nanocellulose (B) described later, it becomes easy to mix with the easily dispersible nanocellulose (B), so the thermoplastic resin (A) Polyolefin-based resins are preferred as such.
 ポリオレフィン系樹脂としては、オレフィン系単量体の単独重合体、及びオレフィン系単量体を主成分として含む単量体成分の共重合体を挙げることができる。その共重合体を形成する単量体成分がオレフィン系単量体を主成分として含むとは、当該単量体成分中のオレフィン系単量体に該当する単量体の総含有割合が、オレフィン系単量体以外のいずれの単量体の含有割合よりも多いことを意味する。上記共重合体を形成する単量体成分中のオレフィン系単量体の含有割合は好ましくは50~100質量%、より好ましくは60~100質量%、さらに好ましくは80~100質量%である。上記共重合体は、2種以上のオレフィン系単量体の共重合体、及びオレフィン系単量体とオレフィン系単量体に共重合可能な他の単量体との共重合体を含み、好ましくは2種以上のオレフィン系単量体の共重合体である。 Examples of polyolefin-based resins include homopolymers of olefin-based monomers and copolymers of monomer components containing olefin-based monomers as main components. That the monomer component forming the copolymer contains an olefinic monomer as a main component means that the total content of monomers corresponding to olefinic monomers in the monomer component is olefin It means that it is higher than the content of any monomer other than the system monomer. The content of the olefinic monomer in the monomer component forming the copolymer is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, still more preferably 80 to 100% by mass. The copolymer includes a copolymer of two or more olefinic monomers, and a copolymer of an olefinic monomer and another monomer that can be copolymerized with the olefinic monomer, A copolymer of two or more olefinic monomers is preferred.
 オレフィン系単量体としては、例えば、エチレン及びプロピレン等のオレフィン;1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-オクテン、及び1-デセン等のα-オレフィン(例えば炭素原子数2~12のα-オレフィン);並びにシクロペンテン及びノルボルネン等の環状オレフィン;等を挙げることができる。ポリオレフィン系樹脂には、上述の通り、オレフィン系単量体の1種が単独で使用されていてもよく、2種以上が併用されていてもよい。 Examples of olefinic monomers include olefins such as ethylene and propylene; -olefins (eg, α-olefins having 2 to 12 carbon atoms); and cyclic olefins such as cyclopentene and norbornene; As described above, one kind of olefinic monomers may be used alone in the polyolefinic resin, or two or more kinds thereof may be used in combination.
 ポリオレフィン系樹脂のより好適な具体例としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、ポリブテン、水添ポリブテン、ポリイソブチレン、水添ポリイソブチレン、エチレン・プロピレン共重合体、エチレン・α-オレフィン共重合体、及びプロピレン・α-オレフィン共重合体等のポリオレフィン樹脂を挙げることができる。 Specific examples of more preferred polyolefin resins include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polypropylene (PP), polybutene, hydrogenated polybutene, polyisobutylene, Polyolefin resins such as hydrogenated polyisobutylene, ethylene/propylene copolymers, ethylene/α-olefin copolymers, and propylene/α-olefin copolymers can be mentioned.
 上述したポリオレフィン系樹脂のなかでも、融点が110℃以下であることの要件を満たしやすいことから、熱可塑性樹脂(A)は、メタロセン系ポリオレフィン樹脂を含むことがより好ましい。メタロセン系ポリオレフィン樹脂は、メタロセン触媒を用いて重合されたポリオレフィン樹脂である。そのなかでも、メタロセン系ポリエチレン、メタロセン系ポリプロピレン、メタロセン系エチレン・α-オレフィン共重合体、及びメタロセン系プロピレン・α-オレフィン共重合体からなる群より選ばれる少なくとも1種がさらに好ましい。 Among the polyolefin-based resins described above, the thermoplastic resin (A) more preferably contains a metallocene-based polyolefin resin because it easily satisfies the requirement that the melting point be 110°C or lower. A metallocene-based polyolefin resin is a polyolefin resin polymerized using a metallocene catalyst. Among them, at least one selected from the group consisting of metallocene-based polyethylene, metallocene-based polypropylene, metallocene-based ethylene/α-olefin copolymer, and metallocene-based propylene/α-olefin copolymer is more preferable.
 樹脂組成物の機械的強度の観点から、熱可塑性樹脂(A)の重量平均分子量(Mw)は、40,000~300,000であることが好ましく、50,000~200,000であることがより好ましく、70,000~150,000であることがさらに好ましい。熱可塑性樹脂(A)のMwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の値をとることができる。 From the viewpoint of mechanical strength of the resin composition, the weight average molecular weight (Mw) of the thermoplastic resin (A) is preferably 40,000 to 300,000, more preferably 50,000 to 200,000. It is more preferably 70,000 to 150,000. The Mw of the thermoplastic resin (A) can be a standard polystyrene-equivalent value measured by gel permeation chromatography (GPC).
 また、樹脂組成物の機械的強度の観点から、熱可塑性樹脂(A)のメルトフローレート(MFR)は、500g/10min以下であることが好ましい。MFRは、ASTM D1238の規定に準拠して、温度190℃及び荷重2.16kgの条件下、標準ダイ(長さ8.000mm、孔径2.095mm)で測定される値をとる。熱可塑性樹脂(A)のMFRは、100g/10min以下であることがより好ましく、50g/10min以下であることがさらに好ましい。一方、樹脂組成物を製造する際の溶融混練のし易さや樹脂組成物の成形性の観点から、熱可塑性樹脂(A)のMFRは、0.1g/10min以上であることが好ましく、1g/10min以上であることがより好ましく、5g/10min以上であることがさらに好ましい。 Also, from the viewpoint of the mechanical strength of the resin composition, the melt flow rate (MFR) of the thermoplastic resin (A) is preferably 500 g/10 min or less. MFR is a value measured with a standard die (length 8.000 mm, hole diameter 2.095 mm) under conditions of a temperature of 190°C and a load of 2.16 kg in accordance with ASTM D1238. The MFR of the thermoplastic resin (A) is more preferably 100 g/10 min or less, even more preferably 50 g/10 min or less. On the other hand, from the viewpoint of ease of melt-kneading when producing the resin composition and moldability of the resin composition, the MFR of the thermoplastic resin (A) is preferably 0.1 g/10 min or more, and 1 g/ It is more preferably 10 min or more, and even more preferably 5 g/10 min or more.
[易分散性ナノセルロース(B)]
 樹脂組成物は、易分散性ナノセルロース(B)を含有する。易分散性ナノセルロース(B)は、ナノセルロースと、ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンとを含む。易分散性ナノセルロース(B)は、ナノセルロースがカルボキシ基を有する変性ポリオレフィンで包み込まれている構成を有するため、ナノセルロース単独に比べて、水中に分散しやすい。そのため、樹脂組成物を製造する際には、水中での分散性に優れた易分散性ナノセルロース(B)を含有する含水セルロース樹脂処理物を用いることができる。
[Easily dispersible nanocellulose (B)]
The resin composition contains easily dispersible nanocellulose (B). The easily dispersible nanocellulose (B) contains nanocellulose and modified polyolefin having a carboxyl group, which envelops the nanocellulose. Since the easily dispersible nanocellulose (B) has a structure in which the nanocellulose is wrapped in a modified polyolefin having a carboxy group, it is more easily dispersed in water than the nanocellulose alone. Therefore, when producing a resin composition, a treated hydrous cellulose resin containing easily dispersible nanocellulose (B) having excellent dispersibility in water can be used.
 樹脂組成物中の易分散性ナノセルロース(B)におけるナノセルロースの含有量は、樹脂組成物(固形分)の全質量を基準として、30質量%以下であることが好ましい。樹脂組成物中のナノセルロース(易分散性ナノセルロース(B))の分散性に優れ、凝集物の発生をより抑制しやすいことから、ナノセルロースの上記含有量は、25質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。一方、樹脂組成物中のナノセルロースの上記含有量は、例えば1質量%以上であることが好ましい。ナノセルロースの含有量を高めてより有用な樹脂組成物を得る観点から、樹脂組成物中のナノセルロースの上記含有量は、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。 The content of nanocellulose in the easily dispersible nanocellulose (B) in the resin composition is preferably 30% by mass or less based on the total mass of the resin composition (solid content). Nanocellulose (easily dispersible nanocellulose (B)) has excellent dispersibility in the resin composition and is more likely to suppress the generation of aggregates, so the content of nanocellulose should be 25% by mass or less. is more preferable, and 20% by mass or less is even more preferable. On the other hand, the content of nanocellulose in the resin composition is preferably, for example, 1% by mass or more. From the viewpoint of obtaining a more useful resin composition by increasing the nanocellulose content, the content of nanocellulose in the resin composition is more preferably 5% by mass or more, and more preferably 10% by mass or more. is more preferred.
 易分散性ナノセルロース(B)におけるナノセルロースと変性ポリオレフィンの比率は、変性ポリオレフィンがナノセルロースを包み込んでいれば特に制限されない。そのような形態をとりやすい観点から、易分散性ナノセルロース(B)中のナノセルロースの含有量は、易分散性ナノセルロース(B)の質量を基準として、5~80質量%であることが好ましく、25~70質量%であることがより好ましく、40~60質量%であることがさらに好ましい。また、易分散性ナノセルロース(B)中の変性ポリオレフィンの含有量は、易分散性ナノセルロース(B)の質量を基準として、20~95質量%であることが好ましく、30~75質量%であることがより好ましく、40~60質量%であることがさらに好ましい。樹脂組成物を製造する際に用いる含水セルロース樹脂処理物が易分散性ナノセルロース(B)及び水のみからなる場合、その水を除去した分(固形分)が易分散性ナノセルロース(B)の質量である。本明細書において、ナノセルロース及び変性ポリオレフィンの各含有量は、ナノセルロース及び変性ポリオレフィンの各使用量に基づいて算出された値をとることができる。 The ratio of nanocellulose and modified polyolefin in the easily dispersible nanocellulose (B) is not particularly limited as long as the modified polyolefin envelops the nanocellulose. From the viewpoint of easily taking such a form, the content of nanocellulose in the easily dispersible nanocellulose (B) is 5 to 80% by mass based on the mass of the easily dispersible nanocellulose (B). It is preferably from 25 to 70% by mass, and even more preferably from 40 to 60% by mass. In addition, the content of the modified polyolefin in the easily dispersible nanocellulose (B) is preferably 20 to 95% by mass, preferably 30 to 75% by mass, based on the mass of the easily dispersible nanocellulose (B). more preferably 40 to 60% by mass. When the water-containing cellulose resin-treated material used for producing the resin composition consists of only the easily dispersible nanocellulose (B) and water, the amount (solid content) after removing the water is the easily dispersible nanocellulose (B). is mass. In this specification, each content of nanocellulose and modified polyolefin can take a value calculated based on each usage amount of nanocellulose and modified polyolefin.
 樹脂組成物において、易分散性ナノセルロース(B)は、変性ポリオレフィンのカルボキシ基と、ナノセルロースの水酸基との反応によるエステル結合を形成していてもよい。これにより、変性ポリオレフィンとそれに包み込まれたナノセルロースとが結合していることで、熱可塑性樹脂中の易分散性ナノセルロース(B)の分散性をより高めることが期待できる。さらに、変性ポリオレフィンとの相溶性に優れた熱可塑性樹脂(A)を選択すれば、易分散性ナノセルロース(B)の分散性をさらに高めることが期待できる。 In the resin composition, the easily dispersible nanocellulose (B) may form an ester bond through a reaction between the carboxyl group of the modified polyolefin and the hydroxyl group of the nanocellulose. As a result, it can be expected that the dispersibility of the easily dispersible nanocellulose (B) in the thermoplastic resin will be further enhanced by bonding the modified polyolefin and the nanocellulose wrapped therein. Furthermore, if a thermoplastic resin (A) having excellent compatibility with modified polyolefin is selected, it is expected that the dispersibility of the easily dispersible nanocellulose (B) will be further enhanced.
 上記のエステル結合には、変性ポリオレフィンのカルボキシ基の全部がナノセルロースの水酸基と反応して形成された場合や、変性ポリオレフィンのカルボキシ基の一部が、ナノセルロースの水酸基と反応して形成された場合が含まれる。上記のエステル結合は、例えば、易分散性ナノセルロース(B)と熱可塑性樹脂(A)とを混合する際やそれらの混合物中の水を除去する際の熱により生じうる脱水縮合で形成されうると考えられる。 The above ester bonds are formed when all of the carboxy groups of the modified polyolefin react with the hydroxyl groups of the nanocellulose, or when some of the carboxy groups of the modified polyolefin react with the hydroxyl groups of the nanocellulose. case is included. The above-mentioned ester bond can be formed by dehydration condensation, which can be caused by heat when mixing the easily dispersible nanocellulose (B) and the thermoplastic resin (A) or when removing water from the mixture. it is conceivable that.
(ナノセルロース)
 易分散性ナノセルロース(B)におけるナノセルロースは、幅(繊維幅又は結晶幅)がナノサイズ(1~1000nm)のセルロースである。ナノセルロースとしては、木材等を原料として得られる、セルロースナノファイバー(CNF)、及びセルロースナノウィスカー(CNW)とも称されるセルロースナノクリスタル(CNC);細菌によって生成されるバクテリアナノファイバー;並びに電界紡糸法で溶解したセルロースから製造されるエレクトロスピニングナノファイバー;等を挙げることができる。これらの1種を単独で又は2種以上を組み合わせて用いることができる。それらのなかでも、CNF及びCNCのうちの少なくとも1種が好ましい。ナノセルロースは、セルロースナノファイバーを含むことがより好ましい。
(Nanocellulose)
Nanocellulose in easily dispersible nanocellulose (B) is cellulose with a width (fiber width or crystal width) of nanosize (1 to 1000 nm). Examples of nanocellulose include cellulose nanofibers (CNF) obtained from wood and the like, and cellulose nanocrystals (CNC), also called cellulose nanowhiskers (CNW); bacterial nanofibers produced by bacteria; and electrospinning. electrospun nanofibers produced from dissolved cellulose by a method; These 1 types can be used individually or in combination of 2 or more types. Among them, at least one of CNF and CNC is preferred. More preferably, the nanocellulose contains cellulose nanofibers.
 CNF及びCNC等の原料として用いられるセルロースを含む植物繊維は、例えば、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、及び布等の天然植物原料から得られる、パルプ、並びにレーヨン及びセロファン等の再生セルロース繊維等が挙げられる。木材としては、例えば、シトカスプルース、スギ、ヒノキ、ユーカリ及びアカシア等が挙げられる。紙としては、例えば、脱墨古紙、段ボール古紙、雑誌及びコピー用紙等が挙げられる。しかし、これらに限定されるものではない。植物繊維の1種が単独で用いられていてもよく、2種以上が併用されていてもよい。 Plant fibers, including cellulose, used as raw materials for CNF and CNC, for example, are obtained from natural plant sources such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth, pulp, and Examples include regenerated cellulose fibers such as rayon and cellophane. Examples of wood include Sitka spruce, cedar, cypress, eucalyptus and acacia. Examples of paper include deinked waste paper, corrugated waste paper, magazines, copy paper, and the like. However, it is not limited to these. One type of vegetable fiber may be used alone, or two or more types may be used in combination.
 植物繊維の主成分であるリグノセルロースは、主に、セルロース、ヘミセルロース、及びリグニンから構成され、各々が結合した構造をとっている。このリグノセルロースを含む植物繊維を、機械的処理及び/又は化学的処理することにより、ヘミセルロース及びリグニンを除去し、セルロースの純分を高めることで、パルプを得ることができる。必要に応じて漂白処理も行われ、また、脱リグニン量を調整し、当該パルプ中のリグニン量を調整することができる。 Lignocellulose, which is the main component of plant fibers, is mainly composed of cellulose, hemicellulose, and lignin, and has a structure in which each is bound together. By mechanically and/or chemically treating this lignocellulose-containing plant fiber to remove hemicellulose and lignin and increase the purity of cellulose, pulp can be obtained. A bleaching treatment is also performed if necessary, and the amount of delignification can be adjusted to adjust the amount of lignin in the pulp.
 ナノセルロースは、パルプを解繊処理して得られたものであることが好ましい。パルプとしては、機械的処理及び化学的処理等の製法の面から、例えば、砕木パルプ(GP)、リファイナーグランドパルプ(RGP)、サーモメカニカルパルプ(TMP)、及びケミサーモメカニカルパルプ(CTMP)等の機械パルプ(MP);クラフトパルプ(KP)、サルファイドパルプ(SP)、及びアルカリパルプ(AP)等の化学パルプ;並びにセミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、及びケミメカニカルパルプ(CMP)等を挙げることができる。また、パルプとしては、原料の面から、例えば、針葉樹パルプ(NP)及び広葉樹パルプ(LP)等の木材パルプ;イネパルプ、ケナフパルプ、リネンパルプ、クワパルプ、バガスパルプ、ワラパルプ、綿パルプ、竹パルプ、及び果実パルプ等の非木材パルプ;脱墨古紙パルプ、段ボール古紙パルプ、及び雑誌古紙パルプ等の古紙パルプ;等を挙げることができる。さらに、漂白処理の有無の面から、晒パルプ(漂白パルプ)及び未晒パルプ(未漂白パルプ)等を挙げることができる。パルプの1種が単独で用いられていてもよく、2種以上が併用されていてもよい。パルプのなかでも、晒パルプ(漂白パルプ)が好ましい。なかでも、JIS P8211:2011の規定に準じて測定されるカッパー価が5以下であるものがより好ましく、2以下であるものがさらに好ましい。 The nanocellulose is preferably obtained by defibrating pulp. As the pulp, from the aspect of manufacturing methods such as mechanical treatment and chemical treatment, for example, ground wood pulp (GP), refiner ground pulp (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), etc. mechanical pulp (MP); chemical pulp such as kraft pulp (KP), sulfide pulp (SP), and alkaline pulp (AP); and semi-chemical pulp (SCP), chemigrand pulp (CGP), and chemi-mechanical pulp (CMP). ) etc. can be mentioned. In terms of raw materials, pulp includes wood pulp such as softwood pulp (NP) and hardwood pulp (LP); rice pulp, kenaf pulp, linen pulp, mulberry pulp, bagasse pulp, straw pulp, cotton pulp, bamboo pulp, and fruit pulp. Non-wood pulp such as pulp; waste paper pulp such as deinked waste paper pulp, corrugated waste paper pulp, and waste magazine pulp; In addition, bleached pulp (bleached pulp), unbleached pulp (unbleached pulp), and the like can be mentioned in terms of the presence or absence of bleaching treatment. One type of pulp may be used alone, or two or more types may be used in combination. Among pulps, bleached pulp (bleached pulp) is preferred. Among them, those having a kappa number of 5 or less, as measured according to JIS P8211:2011, are more preferable, and those having a kappa number of 2 or less are even more preferable.
 パルプを解繊処理する方法としては、化学的解繊処理、機械的解繊処理、及びそれらを組み合わせた解繊処理を挙げることができる。化学的解繊処理としては、パルプ及び水を含有する懸濁液(スラリー)を化学的処理する方法が挙げられる。化学的処理としては、例えば、TEMPO触媒を用いた酸化法、リン酸エステル化法、及び酵素を用いた加水分解法等を挙げることができる。これらの化学的処理では、必要に応じて、化学的処理に加えて、以下に述べる機械的解繊処理が行われてもよい。 Methods for defibrating pulp include chemical defibration, mechanical defibration, and a combination of these. The chemical defibration treatment includes a method of chemically treating a suspension (slurry) containing pulp and water. Examples of the chemical treatment include an oxidation method using a TEMPO catalyst, a phosphorylation method, and a hydrolysis method using an enzyme. In these chemical treatments, a mechanical defibration treatment described below may be performed in addition to the chemical treatments, if necessary.
 機械的解繊処理としては、例えば、パルプ及び水を含有する懸濁液(スラリー)を、高圧水流で微細化する方法;湿式撹拌装置で高速撹拌する方法;摩砕機で摩砕する方法;及び叩解機で叩解する方法;並びにそれらを組み合わせた方法;等を挙げることができる。高圧水流で微細化する方法としては、例えば、水中対向衝突法を利用した高圧ジェットミル(例えばカウンタージェットミル)等を挙げることができる。湿式撹拌装置としては、例えば、高圧ホモジナイザー及びビーズミル等を挙げることができる。摩砕機としては、例えば、グラインダー及び石臼式摩砕機等を挙げることができる。叩解機としては、例えば、ディスクリファイナー及びコニカルリファイナー等を挙げることができる。上述した解繊処理により得られるナノセルロースのなかでも、機械解繊型ナノセルロースが好ましく、機械解繊型セルロースナノファイバーがより好ましい。 Mechanical fibrillation treatment includes, for example, a method of refining a suspension (slurry) containing pulp and water with a high-pressure water stream; a method of high-speed stirring with a wet stirrer; a method of grinding with a grinder; A method of beating with a beating machine; and a method of combining them; Examples of the method of pulverizing with a high-pressure water stream include a high-pressure jet mill (for example, a counter jet mill) using an underwater counter-impingement method. Examples of wet stirring devices include a high-pressure homogenizer and a bead mill. Examples of grinders include grinders and stone grinders. Examples of the beater include disc refiners and conical refiners. Among the nanocellulose obtained by the above-described defibration treatment, mechanically defibrated nanocellulose is preferable, and mechanically defibrated cellulose nanofiber is more preferable.
 ナノセルロースとして好適なCNFは、セルロースを含む植物繊維を繊維幅がナノサイズ(1~1000nm)レベルとなるまで解繊処理することで得ることができる。植物繊維には、好ましくはパルプ、より好ましくはパルプ及び水を含有する懸濁液が使用される。一般に、植物の細胞壁の中では、幅4nm程のセルロースミクロフィブリル(シングルセルロースナノファイバー)が最小単位として存在する。CNFは、セルロースミクロフィブリル、又はセルロースミクロフィブリルが複数凝集して形成されるナノサイズのセルロースである。CNFの繊維幅は算術平均値で4~200nmが好ましく、4~150nmがより好ましく、4~100nmがさらに好ましい。CNFの繊維長は算術平均値で数μm程度が好ましく、5μm以上がより好ましい。CNFの比表面積は、70~300m/gが好ましく、70~250m/gがより好ましく、100~200m/gがさらに好ましい。 CNF suitable as nanocellulose can be obtained by defibrating plant fibers containing cellulose until the fiber width reaches the nanosize (1 to 1000 nm) level. For vegetable fibers, preferably pulp, more preferably a suspension containing pulp and water is used. In general, cellulose microfibrils (single cellulose nanofibers) with a width of about 4 nm exist as the smallest unit in plant cell walls. CNF is nano-sized cellulose formed by aggregation of cellulose microfibrils or multiple cellulose microfibrils. The arithmetic average fiber width of CNF is preferably 4 to 200 nm, more preferably 4 to 150 nm, and even more preferably 4 to 100 nm. The arithmetic mean value of the CNF fiber length is preferably about several μm, more preferably 5 μm or more. The specific surface area of CNF is preferably 70 to 300 m 2 /g, more preferably 70 to 250 m 2 /g, even more preferably 100 to 200 m 2 /g.
 ナノセルロースとして好適なCNCは、セルロースを含む植物繊維を酸で加水分解処理することで得ることができる。植物繊維には、好ましくはパルプ、より好ましくはパルプ及び水を含有する懸濁液が使用される。酸による加水分解処理に加えて、必要に応じて、上記の解繊処理が行われてもよい。酸としては、例えば、硫酸、塩酸、及び臭化水素酸等を挙げることができる。酸による加水分解処理で得られるCNCは、針状結晶であり、その結晶幅は算術平均値で4~100nmが好ましく、10~50nmがより好ましく、10~30nmがさらに好ましい。CNCの結晶長は算術平均値で25~3000nmが好ましく、100~500nmがより好ましく、100~200nmがさらに好ましい。CNCの比表面積は90~900m/gが好ましく、100~500m/gがより好ましく、100~300m/gがさらに好ましい。 CNC suitable as nanocellulose can be obtained by hydrolyzing plant fibers containing cellulose with an acid. For vegetable fibers, preferably pulp, more preferably a suspension containing pulp and water is used. In addition to the hydrolysis treatment with an acid, the defibration treatment may be performed as necessary. Examples of acids include sulfuric acid, hydrochloric acid, and hydrobromic acid. The CNC obtained by hydrolysis treatment with an acid is needle-shaped crystals, and the crystal width is preferably 4 to 100 nm, more preferably 10 to 50 nm, and even more preferably 10 to 30 nm in terms of arithmetic mean value. The arithmetic average crystal length of CNC is preferably 25 to 3000 nm, more preferably 100 to 500 nm, even more preferably 100 to 200 nm. The specific surface area of CNC is preferably 90 to 900 m 2 /g, more preferably 100 to 500 m 2 /g, even more preferably 100 to 300 m 2 /g.
 上述したナノセルロースの幅(繊維幅及び結晶幅)並びに長さ(繊維長及び結晶長)の算術平均値は、電子顕微鏡の視野内のナノセルロースの少なくとも50本以上について測定したときの平均値をとることができる。 The arithmetic average value of the width (fiber width and crystal width) and length (fiber length and crystal length) of the nanocellulose described above is the average value when measuring at least 50 or more nanocelluloses in the field of view of the electron microscope. can take
(変性ポリオレフィン)
 易分散性ナノセルロース(B)におけるカルボキシ基を有する変性ポリオレフィンは、ポリアルケンとも称される。このカルボキシ基を有する変性ポリオレフィンは、オレフィン(アルケン)をモノマーとして合成されるポリオレフィンの骨格に、カルボキシ基が導入されている構造を有するポリマーである。
(modified polyolefin)
The modified polyolefin having a carboxy group in the easily dispersible nanocellulose (B) is also called polyalkene. This modified polyolefin having a carboxy group is a polymer having a structure in which a carboxy group is introduced into the skeleton of a polyolefin synthesized using an olefin (alkene) as a monomer.
 オレフィンモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘプテン、4-メチル-1-ヘキセン、5-メチル-1-ヘキセン、1-オクテン、及び5-メチル-1-ヘプテン等を挙げることができる。ポリオレフィンの骨格としては、上記のようなオレフィンモノマーの1種の単独重合体、及びオレフィンモノマーの2種以上の共重合体(グラフト共重合体、ブロック共重合体、ランダム共重合体)等の骨格を挙げることができる。 Examples of olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene and 1-heptene. , 4-methyl-1-hexene, 5-methyl-1-hexene, 1-octene, and 5-methyl-1-heptene. As the skeleton of the polyolefin, a skeleton such as a homopolymer of one of the above olefin monomers and a copolymer of two or more kinds of olefin monomers (graft copolymer, block copolymer, random copolymer), etc. can be mentioned.
 変性ポリオレフィンにおけるカルボキシ基は、例えば、上述のオレフィンモノマーと共重合しうる不飽和カルボン酸系モノマー等をオレフィンモノマーと共重合させる方法や、それらのエステル化物を重合した後、加水分解する方法等により、導入されうる。また、予め得たポリオレフィンに、過酸化物等を使用して不飽和カルボン酸系モノマー等をグラフト化することにより、ポリオレフィンの側鎖にカルボキシ基を導入しうる。上記の不飽和カルボン酸系モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、及びフマル酸等の不飽和カルボン酸;無水マレイン酸、及び無水イタコン酸等の不飽和カルボン酸無水物;並びに4-ビニル安息香酸等のスチレンカルボン酸;等を挙げることができる。 The carboxy group in the modified polyolefin is obtained, for example, by a method of copolymerizing an unsaturated carboxylic acid-based monomer or the like that can be copolymerized with the above-mentioned olefin monomer with an olefin monomer, or a method of polymerizing an esterified product thereof and then hydrolyzing it. , can be introduced. Moreover, a carboxyl group can be introduced into the side chain of the polyolefin by grafting an unsaturated carboxylic acid-based monomer or the like using a peroxide or the like to the polyolefin obtained in advance. Examples of the unsaturated carboxylic acid-based monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid; unsaturated carboxylic anhydrides such as maleic anhydride and itaconic anhydride; and styrene carboxylic acids such as 4-vinylbenzoic acid; and the like.
 易分散性ナノセルロース(B)及びそれを含有する含水セルロース樹脂処理物を得るために、変性ポリオレフィンは、カルボキシ基を有することを要する。これにより、変性ポリオレフィンは、水性媒体中に分散可能である。そのため、カルボキシ基を有する変性ポリオレフィンを水性エマルジョンの形態で用いること、すなわち、当該変性ポリオレフィンが水性媒体中に分散しているエマルジョンを用いることで、易分散性ナノセルロース(B)及びそれを含有する含水セルロース樹脂処理物を簡便な方法で得ることができる。 In order to obtain the easily dispersible nanocellulose (B) and the hydrous cellulose resin-treated material containing it, the modified polyolefin must have a carboxy group. This allows the modified polyolefin to be dispersed in an aqueous medium. Therefore, by using a modified polyolefin having a carboxy group in the form of an aqueous emulsion, that is, by using an emulsion in which the modified polyolefin is dispersed in an aqueous medium, easily dispersible nanocellulose (B) and containing it A treated product of hydrous cellulose resin can be obtained by a simple method.
 易分散性ナノセルロース(B)及びそれを含有する含水セルロース樹脂処理物を製造しやすい観点から、変性ポリオレフィンの酸価は、1~60mgKOH/gであることが好ましい。変性ポリオレフィンの酸価は、10mgKOH/g以上であることがより好ましく、20mgKOH/g以上であることがさらに好ましい。一方、変性ポリオレフィンの酸価は、50mgKOH/g以下であることがより好ましく、40mgKOH/g以下であることがさらに好ましい。 The acid value of the modified polyolefin is preferably 1 to 60 mgKOH/g from the viewpoint of easy production of easily dispersible nanocellulose (B) and hydrous cellulose resin-treated products containing it. The acid value of the modified polyolefin is more preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more. On the other hand, the acid value of the modified polyolefin is more preferably 50 mgKOH/g or less, even more preferably 40 mgKOH/g or less.
 本明細書において、変性ポリオレフィンの酸価は、変性ポリオレフィン1gを中和するのに必要な水酸化カリウムのmg数で表し、次のようにして測定される値をとることができる。すなわち、測定対象の変性ポリオレフィンを、ポリオレフィンの可溶性溶媒(例えば、キシレンやオクタン等)に溶解し、フェノールフタレイン溶液を指示薬として、0.1mol/L水酸化カリウム・エタノール溶液にて滴定することで求められる。 In this specification, the acid value of the modified polyolefin is expressed in mg of potassium hydroxide required to neutralize 1 g of the modified polyolefin, and can be measured as follows. That is, the modified polyolefin to be measured is dissolved in a polyolefin-soluble solvent (e.g., xylene, octane, etc.) and titrated with a 0.1 mol/L potassium hydroxide/ethanol solution using a phenolphthalein solution as an indicator. Desired.
 変性ポリオレフィンの融点は、160℃以下であることが好ましい。これにより、樹脂組成物を製造するに当たり、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを、熱可塑性樹脂(A)の溶融状態で混合する際に、易分散性ナノセルロース(B)と熱可塑性樹脂(A)が混ざり合いやすくなる。この際、易分散性ナノセルロース(B)における変性ポリオレフィンも溶融状態であれば、易分散性ナノセルロース(B)と熱可塑性樹脂(A)とがさらに混ざり合いやすく、易分散性ナノセルロース(B)の分散性がさらに良好となり、凝集物の発生をより抑制しやすくなる。この観点から、変性ポリオレフィンの融点は、100℃以下であることがより好ましく、90℃以下であることがさらに好ましく、85℃以下であることがよりさらに好ましく、80℃以下であることが特に好ましい。変性ポリオレフィンの融点の下限は、50℃以上であることが好ましく、55℃以上であることがより好ましく、60℃以上であることがさらに好ましい。変性ポリオレフィンの融点は、示差走査熱量測定(DSC)による値をとることができる。 The melting point of the modified polyolefin is preferably 160°C or less. As a result, in the production of the resin composition, when the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed in the molten state of the thermoplastic resin (A), the easily dispersible nanocellulose (B) and the The thermoplastic resin (A) becomes easy to mix. At this time, if the modified polyolefin in the easily dispersible nanocellulose (B) is also in a molten state, the easily dispersible nanocellulose (B) and the thermoplastic resin (A) are more easily mixed, and the easily dispersible nanocellulose (B ) dispersibility is further improved, making it easier to suppress the generation of aggregates. From this point of view, the melting point of the modified polyolefin is more preferably 100° C. or lower, more preferably 90° C. or lower, even more preferably 85° C. or lower, and particularly preferably 80° C. or lower. . The lower limit of the melting point of the modified polyolefin is preferably 50°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher. The melting point of the modified polyolefin can be measured by differential scanning calorimetry (DSC).
 変性ポリオレフィンと上述した熱可塑性樹脂(A)との関係において、熱可塑性樹脂(A)の融点と変性ポリオレフィンの融点との差の絶対値は、80℃以下であることが好ましい。熱可塑性樹脂(A)と変性ポリオレフィンとの相溶性を良好にし、易分散性ナノセルロース(B)の分散性を高めやすい観点から、熱可塑性樹脂(A)の融点と変性ポリオレフィンの融点との差の絶対値は、30℃以下であることがより好ましい。さらには、上記融点の差の絶対値は、20℃以下であることがさらに好ましく、10℃以下であることがよりさらに好ましい。 Regarding the relationship between the modified polyolefin and the thermoplastic resin (A) described above, the absolute value of the difference between the melting point of the thermoplastic resin (A) and the modified polyolefin is preferably 80°C or less. From the viewpoint of improving the compatibility between the thermoplastic resin (A) and the modified polyolefin and easily increasing the dispersibility of the easily dispersible nanocellulose (B), there is a difference between the melting point of the thermoplastic resin (A) and the modified polyolefin. is more preferably 30° C. or less. Furthermore, the absolute value of the melting point difference is more preferably 20° C. or less, and even more preferably 10° C. or less.
(易分散性ナノセルロース(B)及び含水セルロース樹脂処理物の製造方法)
 易分散性ナノセルロース(B)は、カルボキシ基を有する変性ポリオレフィンで包み込まれたナノセルロースが得られれば、その製造方法は特に制限されないが、易分散性ナノセルロース(B)及び水を含有する含水セルロース樹脂処理物として得られたものが好ましい。本発明の一実施形態の樹脂組成物の製造方法では、目的とする樹脂組成物を得るために、含水セルロース樹脂処理物を用いるが、それを用いるに当たり、含水セルロース樹脂処理物を製造することを含んでもよい。
(Manufacturing method of easily dispersible nanocellulose (B) and hydrous cellulose resin treated product)
The easily dispersible nanocellulose (B) is not particularly limited in its production method as long as nanocellulose wrapped in modified polyolefin having a carboxy group is obtained. A product obtained as a cellulose resin-treated product is preferred. In the method for producing a resin composition according to one embodiment of the present invention, a treated product of hydrous cellulose resin is used in order to obtain the desired resin composition. may contain.
 含水セルロース樹脂処理物は、次のようにして製造することが可能である。すなわち、ナノセルロースの水分散液と、アルカリで中和された変性ポリオレフィンの水性エマルジョンとの混合分散液に、酸を添加して変性ポリオレフィンを析出させる。これにより、混合分散液中に析出した変性ポリオレフィンがナノセルロースを包み込むことで、易分散性ナノセルロース(B)、及びそれを含有する含水セルロース樹脂処理物を製造することができる。 A hydrous cellulose resin-treated product can be produced as follows. That is, an acid is added to a mixed dispersion of a nanocellulose aqueous dispersion and a modified polyolefin aqueous emulsion neutralized with an alkali to precipitate the modified polyolefin. As a result, the modified polyolefin precipitated in the mixed dispersion envelops the nanocellulose, making it possible to produce easily dispersible nanocellulose (B) and a hydrous cellulose resin-treated material containing the same.
 ナノセルロースの水分散液、及び変性ポリオレフィンの水性エマルジョンの各使用量は、得られる易分散性ナノセルロース(B)におけるナノセルロースと変性ポリオレフィンとの比率(各含有量)が前述した範囲となるような量であることが好ましい。 The amount of each of the aqueous dispersion of nanocellulose and the aqueous emulsion of modified polyolefin used is such that the ratio (each content) of nanocellulose and modified polyolefin in the easily dispersible nanocellulose (B) obtained is within the range described above. amount is preferred.
 アルカリで中和された変性ポリオレフィンの水性エマルジョンは、カルボキシ基が中和されてイオン化されていることで、変性ポリオレフィンが水性媒体中に乳化して微分散している分散液である。この水性エマルジョンと、ナノセルロースの水分散液とを混合することで、混合分散液を容易に得ることができ、また、易分散性ナノセルロース(B)を容易に得ることができる。上記混合分散液を得る際には、混合分散液への酸の添加により変性ポリオレフィンをより均一に析出させやすいように、ナノセルロースの水分散液に変性ポリオレフィンの水性エマルジョンを添加し、撹拌して均一化することが好ましい。この際、例えば、スターラー、モーター付き撹拌機、高速ディゾルバー、ホモミキサー、ビーズミル、又は高圧ホモジナイザー等の撹拌機を用いることができる。また、必要に応じて、均一化の際に、変性ポリオレフィンの水性エマルジョンに水性媒体として含有されていてもよい後述する水溶性有機溶剤を添加してもよい。 An aqueous emulsion of modified polyolefin neutralized with an alkali is a dispersion in which modified polyolefin is emulsified and finely dispersed in an aqueous medium because the carboxyl groups are neutralized and ionized. By mixing this aqueous emulsion with an aqueous dispersion of nanocellulose, a mixed dispersion can be easily obtained, and easily dispersible nanocellulose (B) can be easily obtained. When obtaining the mixed dispersion, an aqueous emulsion of modified polyolefin is added to the aqueous nanocellulose dispersion and stirred so that the modified polyolefin can be precipitated more uniformly by adding an acid to the mixed dispersion. Homogenization is preferred. At this time, a stirrer such as a stirrer, a stirrer with a motor, a high-speed dissolver, a homomixer, a bead mill, or a high-pressure homogenizer can be used. If necessary, a water-soluble organic solvent, which may be contained as an aqueous medium in the modified polyolefin aqueous emulsion, may be added during homogenization.
 上記混合分散液への酸の添加により変性ポリオレフィンをより均一に析出させやすい観点から、アルカリで中和された変性ポリオレフィンの水性エマルジョンについて測定される平均粒子径は、300nm以下であることが好ましく、250nm以下であることがより好ましい。本明細書において、アルカリで中和された変性ポリオレフィンの水性エマルジョンについての平均粒子径は、動的光散乱法により測定される体積基準の粒度分布における累積50%となる粒子径(メディアン径)の値をとる。 From the standpoint of facilitating uniform deposition of the modified polyolefin by adding an acid to the mixed dispersion, the average particle size measured for the aqueous emulsion of the modified polyolefin neutralized with an alkali is preferably 300 nm or less. It is more preferably 250 nm or less. In the present specification, the average particle size of the aqueous emulsion of modified polyolefin neutralized with alkali is the particle size (median size) of the cumulative 50% of the volume-based particle size distribution measured by the dynamic light scattering method. take a value.
 ナノセルロースの水分散液と、アルカリで中和された変性ポリオレフィンの水性エマルジョンとの混合分散液に酸を添加する際は、混合分散液を撹拌しながら酸を添加することが好ましい。この際の撹拌にも、上記に挙げた撹拌機を用いることができる。上記混合分散液に酸を添加することで、変性ポリオレフィンにおけるイオン化されているカルボキシ基を脱イオン化し、変性ポリオレフィンの水に対する溶解性を低下させて、変性ポリオレフィンを析出させることができる。これにより、上記混合分散液中に分散しているナノセルロースを、その分散状態において、析出した変性ポリオレフィンが包み込み、易分散性ナノセルロース(B)を得ることができる。 When adding an acid to a mixed dispersion of a nanocellulose aqueous dispersion and an alkali-neutralized modified polyolefin aqueous emulsion, it is preferable to add the acid while stirring the mixed dispersion. The stirrer mentioned above can also be used for stirring at this time. By adding an acid to the mixed dispersion, the ionized carboxy groups in the modified polyolefin are deionized, the water solubility of the modified polyolefin is reduced, and the modified polyolefin can be precipitated. As a result, the nanocellulose dispersed in the mixed dispersion is wrapped in the precipitated modified polyolefin in the dispersed state, and easily dispersible nanocellulose (B) can be obtained.
 上記の酸としては、塩酸、臭化水素酸、硝酸、硫酸、及びリン酸等の無機酸;並びに酢酸、及び乳酸等の有機酸;を挙げることができ、それらのような酸の1種が単独で使用されてもよいし、2種以上が併用されてもよい。上記混合分散液中に変性ポリオレフィンを均一に析出させやすいように、酸は水で希釈して水溶液の形態で使用することが好ましい。その水溶液の酸濃度は、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。酸は一度に添加してもよいし、滴下してもよいし、噴霧してもよい。また、酸を添加した後、混合分散液が酸性になるように酸を加えることが好ましく、その場合、混合分散液のpHを4以下にすることがより好ましく、3以下にすることがさらに好ましい。 The above acids can include inorganic acids such as hydrochloric, hydrobromic, nitric, sulfuric, and phosphoric acids; and organic acids such as acetic and lactic acid; They may be used alone, or two or more of them may be used in combination. The acid is preferably diluted with water and used in the form of an aqueous solution so that the modified polyolefin can be precipitated uniformly in the mixed dispersion. The acid concentration of the aqueous solution is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. The acid may be added all at once, added dropwise, or sprayed. Further, after adding the acid, it is preferable to add the acid so that the mixed dispersion becomes acidic. In that case, the pH of the mixed dispersion is more preferably 4 or less, more preferably 3 or less. .
 上記の混合分散液中に酸の添加により変性ポリオレフィンを析出させた後、ろ過して洗浄することが好ましい。ろ過の前には、ろ過性を早めるために、析出させた後の混合分散液を加熱して析出物(変性ポリオレフィン)をナノセルロースの周囲に集合させることがより好ましい。これにより、混合分散液が濃縮され、後の工程において熱可塑性樹脂(A)と混合する際に扱い易いペースト状の形態の含水セルロース樹脂処理物(含水ペースト)を得ることが可能である。含水セルロース樹脂処理物の固形分濃度は、5~70質量%であることが好ましく、10~60質量%であることがより好ましく、20~50質量%であることがさらに好ましい。また、含水セルロース樹脂処理物中のセルロース濃度は、2~40質量%であることが好ましく、5~30質量%であることがより好ましく、10~25質量%であることがさらに好ましい。 It is preferable to filter and wash after precipitating the modified polyolefin by adding an acid to the mixed dispersion. Prior to filtration, it is more preferable to heat the mixed dispersion after precipitation to aggregate the precipitate (modified polyolefin) around the nanocellulose in order to speed up the filterability. As a result, the mixed dispersion is concentrated, and it is possible to obtain a paste-like hydrous cellulose resin treated product (a hydrous paste) that is easy to handle when mixed with the thermoplastic resin (A) in the subsequent step. The solid content concentration of the hydrous cellulose resin-treated product is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, even more preferably 20 to 50% by mass. In addition, the cellulose concentration in the hydrous cellulose resin-treated material is preferably 2 to 40% by mass, more preferably 5 to 30% by mass, even more preferably 10 to 25% by mass.
 (変性ポリオレフィンの水性エマルジョン)
 含水セルロース樹脂処理物を製造する際に使用する変性ポリオレフィンの水性エマルジョンは、市販品でもよいし、以下に述べるように製造して得られたものでもよい。変性ポリオレフィンの水性エマルジョンの製造方法としては、例えば、カルボキシ基を有するポリオレフィンを溶融してアルカリにて中和して、徐々に水を添加していく方法;有機溶媒にカルボキシ基を有するポリオレフィンを溶解しておき、アルカリ水と混合し水溶液化して、その有機溶媒はそのまま、又は留去してエマルジョンとする方法;等が挙げられる。
(Aqueous emulsion of modified polyolefin)
The aqueous emulsion of modified polyolefin used in producing the treated product of hydrous cellulose resin may be a commercially available product or may be produced as described below. Methods for producing an aqueous emulsion of modified polyolefin include, for example, a method in which polyolefin having a carboxy group is melted, neutralized with an alkali, and water is gradually added; a polyolefin having a carboxy group is dissolved in an organic solvent. and then mixing it with alkaline water to form an aqueous solution, and the organic solvent is left as it is or distilled off to form an emulsion;
 上記の有機溶媒としては、アルコール類、グリコール類、アミン類、及びアミド類等の水溶性有機溶剤が好ましい。アルコール類としては、例えば、メタノール、エタノール、プロパノール、及びブタノール等を挙げることができる。グリコール類としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールプロピルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールブチルエーテル、及びジエチレングリコールジメチルエーテル等を挙げることができる。アミン類としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、エチレンジアミン、及びジエチレントリアミン等を挙げることができる。アミド類としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、メチルピロリドン、及びエチルピロリドン等を挙げることができる。 As the above organic solvent, water-soluble organic solvents such as alcohols, glycols, amines, and amides are preferable. Examples of alcohols include methanol, ethanol, propanol, and butanol. Examples of glycols include ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol methyl ether, propylene glycol methyl ether, propylene glycol propyl ether, diethylene glycol methyl ether, diethylene glycol butyl ether, and diethylene glycol dimethyl ether. Examples of amines include methylamine, ethylamine, propylamine, butylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, ethylenediamine, and diethylenetriamine. Examples of amides include dimethylformamide, dimethylacetamide, pyrrolidone, methylpyrrolidone, and ethylpyrrolidone.
 変性ポリオレフィンにおけるカルボキシ基の中和に使用されるアルカリは、特に制限されない。アルカリとしては、例えば、アンモニア;トリエチルアミン、ジエタノールアミン、ジメチルアミノエタノール、及びアミノメチルプロパノール等の有機アミン;水酸化リチウム、水酸化ナトリウム、及び水酸化カリウム等のアルカリ金属の水酸化物;等を挙げることができる。アルカリの1種が単独で用いられてもよく、2種以上が併用されてもよい。 The alkali used for neutralizing the carboxy groups in the modified polyolefin is not particularly limited. Examples of alkalis include ammonia; organic amines such as triethylamine, diethanolamine, dimethylaminoethanol, and aminomethylpropanol; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; can be done. One type of alkali may be used alone, or two or more types may be used in combination.
 (ナノセルロースの水分散液)
 含水セルロース樹脂処理物を製造する際に使用するナノセルロースの水分散液は、市販品でもよいし、以下に述べるように製造して得られたものでもよい。本発明の一実施形態の樹脂組成物の製造方法が、上述した含水セルロース樹脂処理物を製造することを含む場合、ナノセルロースの水分散液を用いるに当たり、ナノセルロースの水分散液を製造することを含んでもよい。その場合、本製造方法は、ナノセルロースの水分散液として、ナノセルロースの水懸濁液を製造することを含むことが好ましい。
(Nanocellulose aqueous dispersion)
The nanocellulose aqueous dispersion used in producing the treated product of hydrous cellulose resin may be a commercially available product or may be produced as described below. When the method for producing a resin composition according to an embodiment of the present invention includes producing the above-mentioned hydrous cellulose resin-treated product, when using the nanocellulose aqueous dispersion, the nanocellulose aqueous dispersion is produced. may include In that case, the production method preferably includes producing an aqueous suspension of nanocellulose as the aqueous dispersion of nanocellulose.
 上記のナノセルロースの水懸濁液は、パルプ及び水を含有する懸濁液(以下、「パルプ懸濁液」と記載することがある。)を解繊処理することにより、製造することができる。解繊処理の方法としては、前述の通り、種々の化学的解繊処理、機械的解繊処理、又はそれらを組み合わせた解繊処理を採ることができる。それらのなかでも、機械的解繊処理は、化学反応を用いない処理のため、製造工程を少なくすることができ、生産性の観点から好ましい。なかでも、パルプ及び水を含有する懸濁液を摩砕機で摩砕してパルプを解繊することにより、ナノセルロースの水懸濁液を製造することがより好ましい。摩砕機を用いた機械的解繊処理によれば、他の解繊処理を採る場合に比べて、パルプ濃度が比較的高いパルプ懸濁液を用いることができ、その結果、ナノセルロースの濃度が高い水懸濁液を得やすくなる。この観点と、製造工程が少ないことで製造コストを抑えられることから、上記摩砕機として、石臼式摩砕機を用いることがさらに好ましい。 The aqueous suspension of nanocellulose can be produced by defibrating a suspension containing pulp and water (hereinafter sometimes referred to as "pulp suspension"). . As the method of defibration treatment, as described above, various chemical fibrillation treatments, mechanical fibrillation treatments, or a combination thereof can be adopted. Among them, the mechanical fibrillation treatment is preferable from the viewpoint of productivity because it is a treatment that does not use a chemical reaction, so that the number of manufacturing steps can be reduced. Above all, it is more preferable to produce an aqueous suspension of nanocellulose by grinding a suspension containing pulp and water with a grinder to defibrate the pulp. According to the mechanical defibration treatment using a grinder, a pulp suspension with a relatively high pulp concentration can be used compared to other defibration treatments, and as a result, the concentration of nanocellulose is increased. It becomes easier to obtain a high water suspension. It is more preferable to use a stone mill type grinder as the grinder from this point of view and because the number of manufacturing steps is small, so that the manufacturing cost can be suppressed.
 摩砕機で機械的解繊処理を行う対象のパルプ懸濁液中のパルプ濃度、及び得られる上記水懸濁液中のナノセルロース濃度は、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましく、1~2質量%であることがさらに好ましい。上記パルプ濃度は、パルプ懸濁液の全質量を基準としたパルプの含有量を意味する。また、上記ナノセルロース濃度は、ナノセルロースの水懸濁液の全質量を基準としたナノセルロースの含有量を意味する。 The pulp concentration in the pulp suspension to be subjected to mechanical defibration treatment with a grinder and the nanocellulose concentration in the resulting aqueous suspension are preferably 0.1 to 10% by mass, and 0 It is more preferably 5 to 5% by mass, and even more preferably 1 to 2% by mass. The above pulp density means the pulp content based on the total mass of the pulp suspension. In addition, the nanocellulose concentration means the content of nanocellulose based on the total mass of the nanocellulose aqueous suspension.
 ナノセルロースの水懸濁液の粘度は、0.1~100Pa・sであることが好ましい。これにより、ナノセルロースの水分散液を、アルカリで中和された変性ポリオレフィンの水性エマルジョンと混合しやすい。この観点から、ナノセルロースの水分散液の粘度は、0.1~10Pa・sであることがより好ましく、0.1~1Pa・sであることがさらに好ましい。ナノセルロースの水分散液の粘度は、回転粘度計(BM型)を用いて、温度25℃及び回転数60rpmの条件下で測定される値をとる。 The viscosity of the nanocellulose aqueous suspension is preferably 0.1 to 100 Pa·s. This makes it easier to mix the nanocellulose aqueous dispersion with the alkali-neutralized modified polyolefin aqueous emulsion. From this point of view, the viscosity of the nanocellulose aqueous dispersion is more preferably 0.1 to 10 Pa·s, further preferably 0.1 to 1 Pa·s. The viscosity of the nanocellulose aqueous dispersion is a value measured using a rotational viscometer (BM type) under conditions of a temperature of 25° C. and a rotation speed of 60 rpm.
 ナノセルロースの水懸濁液について、レーザー回折・散乱式粒度分布測定装置により測定される体積基準の粒度分布(疑似粒度分布)における累積値が10%となる粒子径を10%累積粒子径(D10)、累積値が50%となる粒子径を50%累積粒子径(D50)、累積値が90%となる粒子径を90%累積粒子径(D90)としたときに、D10が0.1~20μmであり、D50が5.0~40μmであり、D90が20~150μmであることが好ましい。D10は1.0~15μmがより好ましく、3.0~10μmがさらに好ましい。D50は10~30μmがより好ましく、12~20μmがさらに好ましい。D90は30~100μmがより好ましく、50~80μmがさらに好ましい。なお、ナノセルロースは繊維状や針状の形態であることから、上記の粒度分布はナノセルロースを疑似的に粒子形態に見立てた疑似粒度分布である。 For an aqueous suspension of nanocellulose, the particle diameter at which the cumulative value in the volume-based particle size distribution (pseudo particle size distribution) measured by a laser diffraction/scattering particle size distribution analyzer is 10% is the 10% cumulative particle diameter (D 10 ), the particle diameter at which the cumulative value is 50% is the 50% cumulative particle diameter ( D50 ), and the particle diameter at which the cumulative value is 90% is the 90% cumulative particle diameter ( D90 ). It is preferably 0.1-20 μm, with a D 50 of 5.0-40 μm and a D 90 of 20-150 μm. D 10 is more preferably 1.0 to 15 μm, even more preferably 3.0 to 10 μm. D 50 is more preferably 10-30 μm, more preferably 12-20 μm. D 90 is more preferably 30-100 μm, even more preferably 50-80 μm. Since nanocellulose has a fibrous or acicular form, the above particle size distribution is a pseudo particle size distribution in which nanocellulose is simulated to have a particle form.
 上記のパルプ懸濁液の解繊処理後に得られたナノセルロースの水懸濁液を、上述したナノセルロースの水分散液としてそのまま使用して、アルカリで中和された変性ポリオレフィンの水性エマルジョンと混合してもよい。好ましくは、上記のナノセルロースの水懸濁液を水で希釈し、上述した撹拌機等で撹拌して得られたものを、上記のナノセルロースの水分散液として用い、それを変性ポリオレフィンの水性エマルジョンと混合するのがよい。変性ポリオレフィンの水性エマルジョンと混合する際のナノセルロースの水分散液中のナノセルロース濃度は、0.1~5質量%であることが好ましく、0.1~3質量%であることがより好ましく、0.1~1質量%であることがさらに好ましい。 The aqueous suspension of nanocellulose obtained after defibration treatment of the pulp suspension is used as it is as the aqueous dispersion of nanocellulose described above, and mixed with an aqueous emulsion of modified polyolefin neutralized with alkali. You may Preferably, the nanocellulose aqueous suspension is diluted with water and stirred with the above-described stirrer or the like, and the obtained nanocellulose aqueous dispersion is used as the nanocellulose aqueous dispersion. Good to mix with an emulsion. The nanocellulose concentration in the nanocellulose aqueous dispersion when mixed with the modified polyolefin aqueous emulsion is preferably 0.1 to 5% by mass, more preferably 0.1 to 3% by mass, More preferably, it is 0.1 to 1% by mass.
 以上のように、カルボキシ基を有する変性ポリオレフィンを用いるとともに、それがアルカリで中和された水性エマルジョンと、ナノセルロースの水分散液とを用いることで、含水セルロース樹脂処理物を簡便な方法で得ることができる。含水セルロース樹脂処理物の製造において、例えば、酸の添加により変性ポリオレフィンを析出させる工程で、種々の添加剤を使用してもよい。添加剤としては、例えば、酸化防止剤、界面活性剤、光安定剤、紫外線吸収剤、帯電防止剤、及び導電材等を挙げることができる。添加剤は、1種が単独で用いられてもよく、2種以上が併用されてもよい。また、含水セルロース樹脂処理物の製造により得られた易分散性ナノセルロース(B)において、添加剤は、易分散性ナノセルロース(B)と複合化されていてもよい。したがって、含水セルロース樹脂処理物、及びそれに含まれる易分散性ナノセルロース(B)は、ナノセルロース及び変性ポリオレフィン以外にも、上記各種の添加剤を含んでいてもよい。 As described above, by using a modified polyolefin having a carboxyl group, an aqueous emulsion obtained by neutralizing the modified polyolefin with an alkali, and an aqueous dispersion of nanocellulose, a treated product of a hydrous cellulose resin can be obtained by a simple method. be able to. Various additives may be used, for example, in the step of precipitating the modified polyolefin by adding an acid in the production of the treated product of the hydrous cellulose resin. Examples of additives include antioxidants, surfactants, light stabilizers, ultraviolet absorbers, antistatic agents, and conductive agents. One of the additives may be used alone, or two or more of them may be used in combination. Moreover, in the easily dispersible nanocellulose (B) obtained by the production of the hydrous cellulose resin-treated product, the additive may be compounded with the easily dispersible nanocellulose (B). Therefore, the treated product of hydrous cellulose resin and the easily dispersible nanocellulose (B) contained therein may contain the various additives described above in addition to the nanocellulose and the modified polyolefin.
(樹脂組成物の製造方法)
 前述の通り、本発明の一実施形態の樹脂組成物の製造方法は、上述した含水セルロース樹脂処理物と熱可塑性樹脂(A)とを、水の沸点+20℃以下の温度で加熱して熱可塑性樹脂(A)の溶融状態で混合することを含む。また、本製造方法は、水の沸点以上の温度で加熱して、含水セルロース樹脂処理物と熱可塑性樹脂(A)との混合物中の水を除去することを含む。
(Method for producing resin composition)
As described above, in the method for producing a resin composition according to one embodiment of the present invention, the above-described hydrous cellulose resin-treated product and the thermoplastic resin (A) are heated at a temperature not higher than the boiling point of water +20°C to obtain a thermoplastic resin composition. It includes mixing the resin (A) in a molten state. Moreover, this production method includes removing water in the mixture of the treated hydrous cellulose resin and the thermoplastic resin (A) by heating at a temperature equal to or higher than the boiling point of water.
 水の沸点は1気圧において約100℃であるから、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを混合する際は、それらを1気圧で120℃(水の沸点100℃+20℃)以下の温度で加熱して混合することができる。また、含水セルロース樹脂処理物と熱可塑性樹脂(A)との混合物中の水を除去する際には、1気圧で100℃以上の温度で加熱することができる。本明細書における温度の記載は、特に断りのない限り、1気圧下の温度である。 Since the boiling point of water is about 100°C at 1 atmosphere, when the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed, they should be heated at 1 atmosphere to 120°C (boiling point of water 100°C + 20°C) or less. can be heated and mixed at a temperature of Further, when removing water from the mixture of the hydrous cellulose resin-treated product and the thermoplastic resin (A), the mixture can be heated at a temperature of 100° C. or higher at 1 atm. References to temperature herein are to temperatures under 1 atmosphere unless otherwise specified.
 含水セルロース樹脂処理物と熱可塑性樹脂(A)とを混合するに当たり、含水セルロース樹脂処理物及び熱可塑性樹脂(A)の各使用量は、得られる樹脂組成物中のナノセルロースの含有量が前述した範囲となるような量であることが好ましい。また、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを混合する際は、熱可塑性樹脂(A)を溶融状態で混合することから、その混合時の温度は、熱可塑性樹脂(A)の融点以上であることが好ましい。混合時の温度の上限は、水の沸点+10℃以下(110℃以下)であることが好ましく、水の沸点+5℃以下(105℃以下)であることがより好ましく、水の沸点以下(100℃以下)であることがさらに好ましい。上記温度範囲とすることにより、水の蒸発をより抑えやすくしつつ、熱可塑性樹脂(A)に含水セルロース樹脂処理物をより良好に分散させやすくなる。 When the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed, the amounts of the hydrous cellulose resin-treated product and the thermoplastic resin (A) used are determined according to the nanocellulose content in the resulting resin composition. It is preferable that the amount is within the range. Further, when the hydrous cellulose resin-treated product and the thermoplastic resin (A) are mixed, the thermoplastic resin (A) is mixed in a molten state. It is preferably above the melting point. The upper limit of the temperature during mixing is preferably the boiling point of water + 10 ° C. or less (110 ° C. or less), more preferably the boiling point of water + 5 ° C. or less (105 ° C. or less), and the boiling point of water or less (100 ° C. below) is more preferable. By setting the temperature within the above range, it becomes easier to suppress the evaporation of water and to more favorably disperse the treated product of the hydrous cellulose resin in the thermoplastic resin (A).
 含水セルロース樹脂処理物と熱可塑性樹脂(A)との混合時間は、特に制限されず、混合に使用しうる混合機の種類や規模、混合量等に応じて、適宜決めることができる。好適な混合機を使用して、比較的高い生産性で樹脂組成物を製造する場合、上記混合時間は、5~60分であることが好ましく、10~40分であることがより好ましく、15~30分であることがさらに好ましい。好適な混合機としては、例えば、ミキシングロール、バンバリーミキサー、ニーダー、ニーダールーダー、単軸押出機、及び多軸押出機等を挙げることができる。これらのなかでも、ニーダーを用いることがより好ましい。 The mixing time of the hydrous cellulose resin-treated material and the thermoplastic resin (A) is not particularly limited, and can be appropriately determined according to the type and scale of the mixer that can be used for mixing, the mixing amount, and the like. When a suitable mixer is used to produce a resin composition with relatively high productivity, the mixing time is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and 15 minutes. ~30 minutes is even more preferred. Suitable mixers include, for example, mixing rolls, Banbury mixers, kneaders, kneader ruders, single screw extruders, multi-screw extruders, and the like. Among these, it is more preferable to use a kneader.
 含水セルロース樹脂処理物と熱可塑性樹脂(A)とを十分に混合した後、それらの混合物中の水を除去する際の温度は、水の沸点(100℃)以上の温度であれば、前述の混合する際の温度と同じでもよく、適宜調整してもよい。上記混合物中の水を除去する際の温度は、105℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。水を除去する際の温度の上限は特に制限されないが、加熱による熱エネルギーを抑える経済的観点から、200℃以下であることが好ましく、180℃以下であることがより好ましく、150℃以下であることがさらに好ましい。 After sufficiently mixing the treated product of hydrous cellulose resin and the thermoplastic resin (A), the temperature for removing the water in the mixture is the boiling point of water (100° C.) or higher. The temperature may be the same as the temperature during mixing, or may be adjusted as appropriate. The temperature at which water is removed from the mixture is preferably 105° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher. The upper limit of the temperature when removing water is not particularly limited, but from the economical point of view of suppressing thermal energy due to heating, it is preferably 200° C. or less, more preferably 180° C. or less, and 150° C. or less. is more preferred.
 上記混合物中の水を除去する際の加熱は、上記混合機から取り出した混合物に対して行ってもよいし、上記混合機中の混合物に対して行ってもよい。好ましくは、混合機にて、水の沸点+20℃以下の温度で加熱して熱可塑性樹脂(A)の溶融状態で、含水セルロース樹脂処理物と熱可塑性樹脂(A)とを所定時間混合した後、混合機の温度を水の沸点以上の温度に設定して、上記混合物中の水を除去することができる。この場合、水を除去する際にも、水蒸気の発生が無くなるまで混合機における混合を連続的に行うことが、混合物の乾燥が早まることからより好ましい。 The heating for removing water from the mixture may be performed on the mixture taken out from the mixer or may be performed on the mixture in the mixer. Preferably, after mixing the hydrous cellulose resin-treated product and the thermoplastic resin (A) in a molten state by heating at a temperature not higher than the boiling point of water +20°C in a mixer for a predetermined time. , the temperature of the mixer can be set to a temperature above the boiling point of water to remove the water in the mixture. In this case, even when water is removed, it is more preferable to continue mixing in the mixer until the generation of water vapor is stopped, because the mixture is quickly dried.
 以上の製造方法によって、より簡便な方法にて、熱可塑性樹脂(A)中のナノセルロースの分散性に優れ、ナノセルロースの凝集物の発生が抑制された樹脂組成物を製造することができる。樹脂組成物を製造する際には、上述した熱可塑性樹脂(A)、及び易分散性ナノセルロース(B)以外の他の成分を使用してもよい。他の成分としては、例えば、顔料及び染料等の着色剤、相溶化剤、酸化防止剤、光安定剤、界面活性剤、金属粉末、可塑剤、香料、紫外線吸収剤、レベリング剤、導電材、並びに帯電防止剤等を挙げることができる。それらの1種が単独で用いられてもよく、2種以上が併用されてもよい。したがって、樹脂組成物は、熱可塑性樹脂(A)及び易分散性ナノセルロース(B)以外にも、上記の他の成分を含有していてもよい。 With the above production method, it is possible to produce a resin composition in which the nanocellulose is excellent in dispersibility in the thermoplastic resin (A) and the generation of nanocellulose aggregates is suppressed in a simpler method. When producing the resin composition, components other than the above-described thermoplastic resin (A) and easily dispersible nanocellulose (B) may be used. Other components include, for example, colorants such as pigments and dyes, compatibilizers, antioxidants, light stabilizers, surfactants, metal powders, plasticizers, fragrances, ultraviolet absorbers, leveling agents, conductive materials, Also, antistatic agents and the like can be mentioned. One of them may be used alone, or two or more thereof may be used in combination. Therefore, the resin composition may contain the above other components in addition to the thermoplastic resin (A) and the easily dispersible nanocellulose (B).
[樹脂組成物の使用方法の例]
 樹脂組成物は、その一態様において、シート状に成形されたり、ペレタイザーでペレット化されたりして使用されうる。シート状やペレット状の形態の樹脂組成物は、他の樹脂と併用しやすいことから好ましい。このように、樹脂組成物は、前述の熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)と混合されて用いられることが好ましく、当該熱可塑性樹脂(C)と混合されるマスターバッチであることがさらに好ましい。樹脂組成物がマスターバッチ等として、別の熱可塑性樹脂(C)と混合されて用いられることで、熱可塑性樹脂(C)と混合された後の樹脂組成物(以下、「混合樹脂組成物」と記載することがある。)を得ることができる。また、樹脂組成物における熱可塑性樹脂は、熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)をさらに含んでいてもよく、すなわち、本発明の一実施形態の樹脂組成物は、上記の混合樹脂組成物であってもよい。
[Example of how to use the resin composition]
In one aspect, the resin composition can be used after being molded into a sheet or pelletized by a pelletizer. A sheet-like or pellet-like resin composition is preferable because it can be used in combination with other resins. Thus, the resin composition is preferably used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A) described above, and the masterbatch mixed with the thermoplastic resin (C) is more preferable. The resin composition is used as a masterbatch or the like by being mixed with another thermoplastic resin (C), so that the resin composition after being mixed with the thermoplastic resin (C) (hereinafter, "mixed resin composition" ) can be obtained. Further, the thermoplastic resin in the resin composition may further contain a thermoplastic resin (C) different from the thermoplastic resin (A), that is, the resin composition of one embodiment of the present invention has the above may be a mixed resin composition.
 樹脂組成物は、熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)と混合されて用いられることで、上記の混合樹脂組成物においても、ナノセルロースの分散性に優れ、ナノセルロースの凝集物の発生を抑制することが可能である。それにより、混合樹脂組成物において、熱可塑性樹脂(A)や熱可塑性樹脂(C)に比べて、引張強さ、曲げ強さ、圧縮強さ、せん断強さ、衝撃強さ、又は靭性等の機械的性質の向上が期待できる。 The resin composition is used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A), so that even in the above mixed resin composition, the nanocellulose is excellent in dispersibility, and the nanocellulose is dispersed. It is possible to suppress the generation of aggregates. As a result, in the mixed resin composition, tensile strength, bending strength, compressive strength, shear strength, impact strength, toughness, etc. are improved compared to the thermoplastic resin (A) and the thermoplastic resin (C). Improvement in mechanical properties can be expected.
 混合樹脂組成物中の熱可塑性樹脂(C)の含有量は、熱可塑性樹脂(C)を含有させる前の樹脂組成物100質量部に対して、20~500質量部であることが好ましく、30~450質量部であることがより好ましく、40~400質量部であることがさらに好ましい。混合樹脂組成物中の熱可塑性樹脂(C)の含有量は、混合樹脂組成物の全質量を基準として、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。混合樹脂組成物中のナノセルロースの含有量は、混合樹脂組成物の全質量を基準として、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~15質量%であることがさらに好ましい。 The content of the thermoplastic resin (C) in the mixed resin composition is preferably 20 to 500 parts by mass with respect to 100 parts by mass of the resin composition before containing the thermoplastic resin (C). It is more preferably up to 450 parts by mass, and even more preferably 40 to 400 parts by mass. The content of the thermoplastic resin (C) in the mixed resin composition is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the mixed resin composition. , 30 to 70% by mass. The content of nanocellulose in the mixed resin composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, based on the total mass of the mixed resin composition. , more preferably 1 to 15% by mass.
[熱可塑性樹脂(C)]
 熱可塑性樹脂(C)としては、熱可塑性樹脂(A)以外の熱可塑性樹脂、すなわち、融点が110℃超である熱可塑性樹脂(C)を用いることができる。そのような熱可塑性樹脂(C)としては、例えば、ポリエチレン、ポリプロピレン、エチレン及び/又はプロピレンとα-オレフィンとの共重合体等のポリオレフィン樹脂;ナイロン6、ナイロン11、ナイロン12、及びナイロン66等のポリアミド樹脂;ポリスチレン等のポリスチレン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、及びポリ乳酸等のポリエステル樹脂;ポリカーボネート樹脂;トリアセチル化セルロース、及びジアセチル化セルロース等のセルロース系樹脂;並びにポリメタクリル酸メチル等のアクリル系樹脂;等を挙げることができる。前述の通り、熱可塑性樹脂(A)としては、ポリオレフィン樹脂が好ましいことから、それとの相溶性が良好であることから、熱可塑性樹脂(C)もポリオレフィン樹脂であることが好ましい。
[Thermoplastic resin (C)]
As the thermoplastic resin (C), a thermoplastic resin other than the thermoplastic resin (A), that is, a thermoplastic resin (C) having a melting point of more than 110°C can be used. Examples of such thermoplastic resins (C) include polyolefin resins such as polyethylene, polypropylene, copolymers of ethylene and/or propylene and α-olefin; nylon 6, nylon 11, nylon 12, nylon 66, and the like. polystyrene resins such as polystyrene; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid; polycarbonate resins; cellulose resins such as triacetylated cellulose and diacetylated cellulose; acrylic resin; and the like. As described above, the thermoplastic resin (A) is preferably a polyolefin resin, and the thermoplastic resin (C) is also preferably a polyolefin resin because of good compatibility therewith.
 なお、上述した通り、本発明の一実施形態では、以下の構成をとり得る。
 [1]熱可塑性樹脂と、前記熱可塑性樹脂中に分散している易分散性ナノセルロース(B)とを含有し、前記易分散性ナノセルロース(B)は、ナノセルロースと、前記ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンとを含むものであり、前記熱可塑性樹脂は、融点が110℃以下である熱可塑性樹脂(A)を含む、樹脂組成物。
 [2]前記熱可塑性樹脂(A)のASTM D1238の規定に準拠して測定されるメルトフローレート(MFR)は、温度190℃及び荷重2.16kgの条件下で500g/10min以下である上記[1]に記載の樹脂組成物。
 [3]前記変性ポリオレフィンは、融点が100℃以下である上記[1]又は[2]に記載の樹脂組成物。
 [4]前記熱可塑性樹脂(A)の融点と前記変性ポリオレフィンの融点との差の絶対値が、30℃以下である上記[1]~[3]のいずれかに記載の樹脂組成物。
 [5]前記易分散性ナノセルロース(B)における前記ナノセルロースの含有量は、前記樹脂組成物の全質量を基準として、25質量%以下である上記[1]~[4]のいずれかに記載の樹脂組成物。
 [6]前記ナノセルロースは、セルロースナノファイバーを含む上記[1]~[5]のいずれかに記載の樹脂組成物。
 [7]前記熱可塑性樹脂(A)は、メタロセン系ポリオレフィン樹脂を含む上記[1]~[6]のいずれか1項に記載の樹脂組成物。
 [8]前記熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)と混合されて用いられる上記[1]~[7]のいずれかに記載の樹脂組成物。
 [9]前記熱可塑性樹脂は、前記熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)をさらに含む上記[1]~[7]のいずれかに記載の樹脂組成物。
 [10]ナノセルロース及び前記ナノセルロースを包み込んでいるカルボキシ基を有する変性ポリオレフィンを含む易分散性ナノセルロース(B)並びに水を含有する含水セルロース樹脂処理物と、融点が110℃以下である熱可塑性樹脂(A)とを、水の沸点より20℃高い温度以下で加熱して前記熱可塑性樹脂(A)の溶融状態で混合すること;及び水の沸点以上の温度で加熱して、前記含水セルロース樹脂処理物と前記熱可塑性樹脂(A)との混合物中の水を除去すること;を含む、樹脂組成物の製造方法。
 [11]前記熱可塑性樹脂(A)のASTM D1238の規定に準拠して測定されるメルトフローレート(MFR)は、温度190℃及び荷重2.16kgの条件下で500g/10min以下である上記[10]に記載の樹脂組成物の製造方法。
 [12]前記変性ポリオレフィンは、融点が100℃以下である上記[10]又は[11]に記載の樹脂組成物の製造方法。
 [13]前記熱可塑性樹脂(A)の融点と前記変性ポリオレフィンの融点との差の絶対値が、30℃以下である上記[10]~[12]のいずれかに記載の樹脂組成物の製造方法。
 [14]前記含水セルロース樹脂処理物を用いるに当たり、前記ナノセルロースの水分散液と、アルカリで中和された前記変性ポリオレフィンの水性エマルジョンとの混合分散液に、酸を添加して前記変性ポリオレフィンを析出させ、前記混合分散液中に析出した前記変性ポリオレフィンが前記ナノセルロースを包み込むことで、前記含水セルロース樹脂処理物を製造すること;を含む、上記[10]~[13]のいずれかに記載の樹脂組成物の製造方法。
 [15]前記ナノセルロースの前記水分散液を用いるに当たり、パルプ及び水を含有する懸濁液を摩砕機で摩砕して前記パルプを解繊することにより、前記ナノセルロースの水懸濁液を製造することを含む、上記[14]に記載の樹脂組成物の製造方法。
 [16]前記摩砕機が、石臼式摩砕機である上記[15]に記載の樹脂組成物の製造方法。
 [17]前記ナノセルロースの前記水懸濁液の粘度は、温度25℃及び回転数60rpmの条件下で回転粘度計を用いて測定される値で0.1~100Pa・sである上記[15]又は[16]に記載の樹脂組成物の製造方法。
 [18]前記ナノセルロースの前記水懸濁液について、レーザー回折・散乱式粒度分布測定装置により測定される体積基準の粒度分布における累積値が10%となる粒子径を10%累積粒子径(D10)、前記累積値が50%となる粒子径を50%累積粒子径(D50)、前記累積値が90%となる粒子径を90%累積粒子径(D90)としたときに、D10が0.1~20μmであり、D50が5.0~40μmであり、D90が20~150μmである上記[15]~[17]のいずれかに記載の樹脂組成物の製造方法。
In addition, as described above, an embodiment of the present invention can have the following configuration.
[1] A thermoplastic resin and an easily dispersible nanocellulose (B) dispersed in the thermoplastic resin are contained, and the easily dispersible nanocellulose (B) comprises nanocellulose and the nanocellulose. and a modified polyolefin having a carboxyl group, wherein the thermoplastic resin comprises a thermoplastic resin (A) having a melting point of 110° C. or less.
[2] The melt flow rate (MFR) of the thermoplastic resin (A) measured in accordance with ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190 ° C. and a load of 2.16 kg. 1].
[3] The resin composition according to [1] or [2] above, wherein the modified polyolefin has a melting point of 100° C. or lower.
[4] The resin composition according to any one of [1] to [3] above, wherein the absolute value of the difference between the melting point of the thermoplastic resin (A) and the melting point of the modified polyolefin is 30°C or less.
[5] Any of the above [1] to [4], wherein the content of the nanocellulose in the easily dispersible nanocellulose (B) is 25% by mass or less based on the total mass of the resin composition The described resin composition.
[6] The resin composition according to any one of [1] to [5] above, wherein the nanocellulose contains cellulose nanofibers.
[7] The resin composition according to any one of [1] to [6] above, wherein the thermoplastic resin (A) contains a metallocene-based polyolefin resin.
[8] The resin composition according to any one of [1] to [7], which is used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A).
[9] The resin composition according to any one of [1] to [7] above, wherein the thermoplastic resin further contains a thermoplastic resin (C) different from the thermoplastic resin (A).
[10] An easily dispersible nanocellulose (B) containing nanocellulose and a modified polyolefin having a carboxy group enveloping the nanocellulose and a hydrous cellulose resin treated product containing water, and a thermoplastic having a melting point of 110°C or less The resin (A) is heated at a temperature not higher than the boiling point of water by 20° C. and mixed in a molten state of the thermoplastic resin (A); A method for producing a resin composition, comprising: removing water from a mixture of the treated resin and the thermoplastic resin (A).
[11] The melt flow rate (MFR) of the thermoplastic resin (A) measured in accordance with ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190°C and a load of 2.16 kg. 10].
[12] The method for producing a resin composition according to the above [10] or [11], wherein the modified polyolefin has a melting point of 100°C or lower.
[13] Production of the resin composition according to any one of the above [10] to [12], wherein the absolute value of the difference between the melting point of the thermoplastic resin (A) and the melting point of the modified polyolefin is 30°C or less. Method.
[14] When using the treated product of hydrous cellulose resin, an acid is added to a mixed dispersion of the aqueous dispersion of nanocellulose and the aqueous emulsion of the modified polyolefin neutralized with an alkali to convert the modified polyolefin. Precipitating and enveloping the nanocellulose with the modified polyolefin precipitated in the mixed dispersion to produce the treated product of the hydrous cellulose resin, according to any one of [10] to [13] above. A method for producing a resin composition of
[15] In using the aqueous dispersion of nanocellulose, the aqueous suspension of nanocellulose is obtained by grinding a suspension containing pulp and water with a grinder to defibrate the pulp. A method for producing the resin composition according to [14] above, comprising producing.
[16] The method for producing a resin composition according to [15] above, wherein the grinder is a stone grinder.
[17] The viscosity of the aqueous suspension of nanocellulose is 0.1 to 100 Pa s as measured using a rotational viscometer under conditions of a temperature of 25 ° C. and a rotation speed of 60 rpm [15] ] or the method for producing a resin composition according to [16].
[18] For the aqueous suspension of nanocellulose, the particle diameter at which the cumulative value in the volume-based particle size distribution measured by a laser diffraction/scattering particle size distribution measuring device is 10% is the 10% cumulative particle diameter (D 10 ), when the particle diameter at which the cumulative value is 50% is 50% cumulative particle diameter (D 50 ), and the particle diameter at which the cumulative value is 90% is 90% cumulative particle diameter (D 90 ), D 10 is 0.1 to 20 μm, D 50 is 5.0 to 40 μm, and D 90 is 20 to 150 μm.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
<セルロースナノファイバーの水懸濁液の調製>
 リグニン含有量が低い高白色度の漂白クラフトパルプ(カッパー価:2未満、水分:7.0質量%)100.0質量部に、水を6092.0質量部添加し、パルプ濃度が1.5質量%であるスラリー状のパルプ懸濁液を調製し、2日間静置、浸漬させた。得られたパルプ懸濁液を、石臼式摩砕機(商品名「スーパーマスコロイダー」、増幸産業株式会社製」)により、2種類の砥石で摩砕する計8パスの機械的解繊処理を行い、パルプをナノサイズレベルまで解繊し、繊維幅がナノサイズであるセルロースナノファイバー(CNF)の水懸濁液を得た。この水懸濁液中のCNFの含有量は1.5質量%である。
<Preparation of aqueous suspension of cellulose nanofibers>
6092.0 parts by weight of water is added to 100.0 parts by weight of high whiteness bleached kraft pulp (kappa number: less than 2, moisture: 7.0% by weight) with low lignin content, and the pulp concentration is 1.5. A slurry-like pulp suspension having a mass % content was prepared and allowed to stand and immerse for two days. The obtained pulp suspension is mechanically fibrillated with a stone grinder (trade name “Super Mascolloider”, manufactured by Masuko Sangyo Co., Ltd.) with two types of grindstones for a total of 8 passes. , the pulp was defibrated to the nanosize level to obtain an aqueous suspension of cellulose nanofibers (CNF) having a nanosize fiber width. The content of CNF in this water suspension is 1.5% by mass.
 得られたCNFの水懸濁液について、BM型回転粘度計を用いて、温度25℃及び回転数60rpmの条件下で測定された粘度は、0.40Pa・sであった。また、CNFの水懸濁液について、レーザー回折・散乱式粒度分布測定装置(商品名「MT3300」、日機装株式会社製)により体積基準の粒度分布(疑似粒度分布)を測定した。その結果、D10は6.6μm、D50は15.8μm、D90は60.8μmであった。 The resulting CNF aqueous suspension had a viscosity of 0.40 Pa·s measured using a BM-type rotational viscometer at a temperature of 25°C and a rotation speed of 60 rpm. In addition, the volume-based particle size distribution (pseudo particle size distribution) of the CNF aqueous suspension was measured using a laser diffraction/scattering particle size distribution analyzer (trade name “MT3300” manufactured by Nikkiso Co., Ltd.). As a result, D10 was 6.6 μm, D50 was 15.8 μm, and D90 was 60.8 μm.
<易分散性ナノセルロース及び含水セルロース樹脂処理物の製造>
(製造例1)
 上記のCNFの水懸濁液250.0質量部に、イオン交換水500.0質量部を添加して、ホモミキサーにて5000rpmで30分間撹拌し、次いで、水浴が設置されたディスパーにて600rpmで30分間撹拌して、CNFの水分散液を得た。この水分散液中のCNFの含有量は0.5質量%である。
<Production of easily dispersible nanocellulose and hydrous cellulose resin treated product>
(Production example 1)
To 250.0 parts by mass of the above CNF aqueous suspension, 500.0 parts by mass of ion-exchanged water was added, stirred at 5000 rpm for 30 minutes with a homomixer, and then at 600 rpm with a disper equipped with a water bath. for 30 minutes to obtain an aqueous dispersion of CNF. The content of CNF in this aqueous dispersion is 0.5% by mass.
 次いで、水酸化ナトリウムで中和された、カルボキシ基を有する変性ポリオレフィンの水性エマルジョン(固形分:25.0質量%;以下、「POE-1」と記載することがある。)15.0質量部を、上記のCNFの水分散液(750.0質量部)に添加し、ホモミキサーを用いて3000rpmで50分間撹拌し、次いで、水浴が設置されたディスパーを用いて1500rpmで30分間撹拌し、混合分散液を得た。このとき、混合分散液のpHは8.5であった。中和前の上記POE-1には市販品を用いた。上記POE-1におけるカルボキシ基を有する変性ポリオレフィンは、ポリプロピレンタイプの変性ポリオレフィンであって、融点は75℃、酸価は35mgKOH/g、動的光散乱式粒度分布測定装置による平均粒子径(メディアン径)は80nmであった。 Next, 15.0 parts by mass of an aqueous emulsion of a modified polyolefin having a carboxyl group (solid content: 25.0% by mass; hereinafter sometimes referred to as "POE-1") neutralized with sodium hydroxide is added to the aqueous dispersion of CNF (750.0 parts by mass), stirred at 3000 rpm for 50 minutes using a homomixer, then stirred at 1500 rpm for 30 minutes using a disper equipped with a water bath, A mixed dispersion was obtained. At this time, the pH of the mixed dispersion was 8.5. A commercially available product was used as the POE-1 before neutralization. The modified polyolefin having a carboxyl group in POE-1 is a polypropylene-type modified polyolefin having a melting point of 75° C., an acid value of 35 mgKOH/g, and an average particle diameter (median diameter) determined by a dynamic light scattering particle size distribution analyzer. ) was 80 nm.
 上記の混合分散液をディスパーにて回転数1500rpmで撹拌しながら、混合分散液に、混合分散液のpHが2.3になるまで1.0質量%塩酸を徐々に添加し、変性ポリオレフィンを析出させた。この際、pHが5~6付近で増粘が認められた。次いで、水浴で60℃まで加温し、30分撹拌して、吸引ろ過し、イオン交換水でろ液のpHが中性になるまでよく洗浄した。このようにして、混合分散液中に析出した変性ポリオレフィンがCNFを包み込んだ形態の易分散性ナノセルロース(以下、「CP-1」と記載することがある。)、及び水を含有するペースト状の含水セルロース樹脂処理物20.8質量部を得た。この含水セルロース樹脂処理物の固形分(CP-1)を測定したところ、35.0質量%であった。含水セルロース樹脂処理物の固形分は、赤外水分測定機にて130℃で恒量に達した時の値である。含水セルロース樹脂処理物の固形分(CP-1)中のCNFの含有量は50.0質量%であり、含水セルロース樹脂処理物中のCNFの含有量は17.5質量%である。 While stirring the mixed dispersion with a disper at a rotation speed of 1500 rpm, 1.0% by mass hydrochloric acid is gradually added to the mixed dispersion until the pH of the mixed dispersion reaches 2.3, thereby precipitating the modified polyolefin. let me At this time, an increase in viscosity was observed at around pH 5-6. Then, the mixture was heated to 60° C. in a water bath, stirred for 30 minutes, filtered by suction, and thoroughly washed with ion-exchanged water until the pH of the filtrate became neutral. In this way, easily dispersible nanocellulose in a form in which the modified polyolefin precipitated in the mixed dispersion envelops CNF (hereinafter sometimes referred to as "CP-1"), and a paste containing water 20.8 parts by mass of a hydrous cellulose resin treated product was obtained. The solid content (CP-1) of this hydrous cellulose resin treated material was measured and found to be 35.0% by mass. The solid content of the treated product of hydrous cellulose resin is the value when it reaches a constant weight at 130° C. with an infrared moisture meter. The CNF content in the solid content (CP-1) of the hydrous cellulose resin treated material is 50.0% by mass, and the CNF content in the hydrous cellulose resin treated material is 17.5% by mass.
(製造例2)
 製造例1で使用したPOE-1の代わりに、水酸化ナトリウムで中和された、カルボキシ基を有する変性ポリオレフィンの水性エマルジョン(固形分:25.0質量%;以下、「POE-2」と記す。)を使用した。中和前の上記POE-2には市販品を用いた。上記POE-2におけるカルボキシ基を有する変性ポリオレフィンは、ポリプロピレンタイプの変性ポリオレフィンであって、融点は155℃、酸価は20mgKOH/g、平均粒子径は45nmであった。製造例1で使用したPOE-1をPOE-2に変更したこと以外は、製造例1と同様の方法により、易分散性ナノセルロース(以下、「CP-2」と記載することがある。)及び水を含有する含水セルロース樹脂処理物を得た。この含水セルロース樹脂処理物の固形分(CP-2)は35.0質量%であった。含水セルロース樹脂処理物の固形分(CP-2)中のCNFの含有量は50.0質量%であり、含水セルロース樹脂処理物中のCNFの含有量は17.5質量%である。
(Production example 2)
Instead of POE-1 used in Production Example 1, an aqueous emulsion of modified polyolefin having a carboxyl group neutralized with sodium hydroxide (solid content: 25.0% by mass; hereinafter referred to as "POE-2" .)It was used. A commercially available product was used as the POE-2 before neutralization. The modified polyolefin having a carboxyl group in POE-2 was polypropylene type modified polyolefin, and had a melting point of 155° C., an acid value of 20 mgKOH/g, and an average particle size of 45 nm. Easily dispersible nanocellulose (hereinafter sometimes referred to as "CP-2") was prepared in the same manner as in Production Example 1, except that POE-1 used in Production Example 1 was changed to POE-2. and a hydrous cellulose resin-treated material containing water was obtained. The solid content (CP-2) of this hydrous cellulose resin treated product was 35.0% by mass. The CNF content in the solid content (CP-2) of the hydrous cellulose resin treated material is 50.0% by mass, and the CNF content in the hydrous cellulose resin treated material is 17.5% by mass.
<樹脂組成物の製造>
(実施例1)
 製造例1で得た含水セルロース樹脂処理物(固形分(CP-1)35質量%)85.7質量部(固形分30.0質量部)、及び熱可塑性樹脂(A)として、融点が80℃であり、MFRが1000g/10min(190℃/2.16kg)超であり、重量平均分子量(Mw)が45000であるメタロセン系ポリオレフィン樹脂(商品名「エルモーデュS400」、出光興産株式会社製;以下、「PO-1」と記載することがある。)70.0質量部を、卓上型ニーダー(商品名「プラストグラフ」、ブラベンダー社製)に入れ、90℃で20分間、熱可塑性樹脂(A)の溶融状態にて溶融混練した。次いで、卓上型ニーダーの付属ヒーターにより、130℃に加熱しながら、卓上型ニーダー内のブレードを回転させ、水蒸気の発生が無くなるまで(約15分)乾燥を行い、含水セルロース樹脂処理物と熱可塑性樹脂(A)との混合物中の水を除去した。このようにして、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-1」と記載することがある。)を得た。
<Production of resin composition>
(Example 1)
85.7 parts by mass (solid content: 30.0 parts by mass) of the hydrous cellulose resin-treated product (solid content (CP-1): 35 mass%) obtained in Production Example 1, and the thermoplastic resin (A) having a melting point of 80 ° C., MFR of more than 1000 g/10 min (190 ° C./2.16 kg), and a metallocene-based polyolefin resin having a weight-average molecular weight (Mw) of 45000 (trade name “Elmodu S400”, manufactured by Idemitsu Kosan Co., Ltd.; , Sometimes referred to as “PO-1”.) 70.0 parts by mass is placed in a desktop kneader (trade name “Plastograph”, manufactured by Brabender), and the thermoplastic resin ( Melt kneading was carried out in the molten state of A). Next, while heating to 130°C with a heater attached to the tabletop kneader, the blades in the tabletop kneader are rotated to dry until no more steam is generated (about 15 minutes). The water in the mixture with resin (A) was removed. In this way, a masterbatch (hereinafter sometimes referred to as “MB-1”) was obtained as a resin composition having a CNF content of 15.0% by mass.
(実施例2)
 実施例1で使用した含水セルロース樹脂処理物(固形分:CP-1)の代わりに、製造例2で得た含水セルロース樹脂処理物(固形分:CP-2)を使用した。それ以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-2」と記載することがある。)を製造した。
(Example 2)
Instead of the hydrous cellulose resin-treated product (solid content: CP-1) used in Example 1, the hydrous cellulose resin-treated product (solid content: CP-2) obtained in Production Example 2 was used. Other than that, in the same manner as in Example 1, a masterbatch (hereinafter sometimes referred to as "MB-2") as a resin composition having a CNF content of 15.0% by mass is produced. did.
(実施例3)
 熱可塑性樹脂(A)として、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の代わりに、融点が80℃であり、MFRが25g/10min(190℃/2.16kg)であり、重量平均分子量(Mw)が130000であるメタロセン系ポリオレフィン樹脂(商品名「エルモーデュS901」、出光興産株式会社製;以下、「PO-2」と記載することがある。)を使用した。それ以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-3」と記載することがある。)を製造した。
(Example 3)
As the thermoplastic resin (A), instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a melting point of 80 ° C. and an MFR of 25 g/10 min (190 ° C./2.16 kg), A metallocene-based polyolefin resin having a weight average molecular weight (Mw) of 130,000 (trade name “Elmodu S901” manufactured by Idemitsu Kosan Co., Ltd.; hereinafter sometimes referred to as “PO-2”) was used. Other than that, in the same manner as in Example 1, a masterbatch (hereinafter sometimes referred to as "MB-3") as a resin composition having a CNF content of 15.0% by mass is produced. did.
(実施例4)
 熱可塑性樹脂(A)として、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の代わりに、融点が97℃であり、MFRが3.6g/10min(190℃/2.16kg)であるメタロセン系エチレン・α-オレフィン共重合体(商品名「カーネルKF370」、日本ポリエチレン株式会社製;以下、「PO-3」と記載することがある。)を使用した。また、卓上型ニーダーを用いた溶融混練時の温度を102℃に変更した。それら以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-4」と記載することがある。)を製造した。
(Example 4)
As the thermoplastic resin (A), instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a resin having a melting point of 97° C. and an MFR of 3.6 g/10 min (190° C./2.16 kg) was used. A certain metallocene-based ethylene/α-olefin copolymer (trade name “Kernel KF370”, manufactured by Japan Polyethylene Co., Ltd.; hereinafter sometimes referred to as “PO-3”) was used. In addition, the temperature during melt-kneading using a desktop kneader was changed to 102°C. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-4") as a resin composition having a CNF content of 15.0% by mass. did.
(実施例5)
 実施例1で使用した含水セルロース樹脂処理物(固形分(CP-1)35.0質量%)の使用量85.7質量部(固形分30.0質量部)を171.4質量部(固形分60.0質量部)に変更した。また、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の使用量70.0質量部を40.0質量部に変更した。それら以外は、実施例1と同様の方法により、CNFの含有量が30.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-5」と記載することがある。)を製造した。
(Example 5)
171.4 parts by mass (solid 60.0 parts by mass). Also, the amount of the metallocene-based polyolefin resin (PO-1) used in Example 1 was changed from 70.0 parts by mass to 40.0 parts by mass. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-5") as a resin composition having a CNF content of 30.0% by mass. did.
(実施例6)
 熱可塑性樹脂(A)として、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の代わりに、融点が102℃であり、MFRが46g/10min(190℃/2.16kg)である低密度ポリエチレン樹脂(商品名「ノバテックLD―LJ902」、日本ポリエチレン株式会社製;以下、「PO-4」と記載することがある。)を使用した。また、卓上型ニーダーを用いた溶融混練時の温度を110℃に変更した。それら以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-6」と記載することがある。)を製造した。
(Example 6)
As the thermoplastic resin (A), instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, a low A density polyethylene resin (trade name “Novatec LD-LJ902”, manufactured by Japan Polyethylene Co., Ltd.; hereinafter sometimes referred to as “PO-4”) was used. In addition, the temperature during melt-kneading using a desktop kneader was changed to 110°C. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-6") as a resin composition having a CNF content of 15.0% by mass. did.
(実施例7)
 実施例1で使用した含水セルロース樹脂処理物(固形分(CP-1)35.0質量%)の使用量85.7質量部(固形分30.0質量部)を171.4質量部(固形分60.0質量部)に変更した。また、熱可塑性樹脂(A)として、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)70.0質量部の代わりに、実施例3で用いたものと同じメタロセン系ポリオレフィン樹脂(PO-2)40.0質量部を用いた。それら以外は、実施例1と同様の方法により、CNFの含有量が30.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-7」と記載することがある。)を製造した。
(Example 7)
171.4 parts by mass (solid 60.0 parts by mass). Further, as the thermoplastic resin (A), the same metallocene polyolefin resin (PO- 2) 40.0 parts by mass was used. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-7") as a resin composition having a CNF content of 30.0% by mass. did.
(実施例8)
 実施例1で使用した含水セルロース樹脂処理物(固形分:CP-1)の代わりに、製造例2で得た含水セルロース樹脂処理物(固形分:CP-2)を使用した。また、熱可塑性樹脂(A)として、実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の代わりに、実施例3で用いたものと同じメタロセン系ポリオレフィン樹脂(PO-2)を使用した。それら以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-8」と記載することがある。)を製造した。
(Example 8)
Instead of the hydrous cellulose resin-treated product (solid content: CP-1) used in Example 1, the hydrous cellulose resin-treated product (solid content: CP-2) obtained in Production Example 2 was used. Further, as the thermoplastic resin (A), instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, the same metallocene-based polyolefin resin (PO-2) used in Example 3 was used. . Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-8") as a resin composition having a CNF content of 15.0% by mass. did.
(比較例1)
 実施例1で使用したメタロセン系ポリオレフィン樹脂(PO-1)の代わりに、融点が135℃であり、MFRが1000g/10min(190℃/2.16kg)超である酸変性ポリプロピレン樹脂(商品名「ユーメックス1010」、三洋化成工業株式会社製;以下、「PO-5」と記載することがある。)を使用した。また、卓上型ニーダーを用いた溶融混練時及び混合物中の水の除去時の温度をいずれも180℃に変更した。それら以外は、実施例1と同様の方法により、CNFの含有量が15.0質量%である樹脂組成物としてのマスターバッチ(以下、「MB-C1」と記載することがある。)を製造した。
(Comparative example 1)
Instead of the metallocene-based polyolefin resin (PO-1) used in Example 1, an acid-modified polypropylene resin (trade name " Yumex 1010", manufactured by Sanyo Chemical Industries; hereinafter sometimes referred to as "PO-5") was used. Also, the temperature during melt-kneading using a desktop kneader and during removal of water from the mixture was changed to 180°C. Other than that, the same method as in Example 1 was used to produce a masterbatch (hereinafter sometimes referred to as "MB-C1") as a resin composition having a CNF content of 15.0% by mass. did.
<マスターバッチの評価>
 各実施例及び比較例で得たマスターバッチをスライドガラス上に少量置き、ホットプレートを使用して、スライドガラス上のマスターバッチを加熱して溶融させ、その上にさらにスライドガラスを被せて熱プレスし、マスターバッチからなる樹脂膜を得た。1種類のマスターバッチにつき樹脂膜を3つ作製し、各樹脂膜を光学顕微鏡により拡大して460μm×620μmの領域を観察した。この観察像において、凝集物の個数及び大きさを確認し、1種類のマスターバッチにつき、40μm以上の凝集物及び100μm以上の凝集物のそれぞれの個数の平均値を計算することにより、以下の評価基準にしたがって、熱可塑性樹脂(A)中のCNFの分散性を評価した。以下の評価基準において、「AA」、「A」、及び「B」を合格と判断し、「C」を不合格と判断した。
AA:40μm以上の凝集物の個数の平均値が5以下であり、かつ100μm以上の凝集物の個数の平均値が1未満である。
 A:40μm以上の凝集物の個数の平均値が5超10以下であり、かつ100μm以上の凝集物の個数の平均値が1未満である。
 B:40μm以上の凝集物の個数の平均値が10超であり、かつ100μm以上の凝集物の個数の平均値が1未満である。
 C:100μm以上の凝集物の個数の平均値が1以上である。
<Evaluation of Masterbatch>
A small amount of the masterbatch obtained in each example and comparative example is placed on a slide glass, and a hot plate is used to heat and melt the masterbatch on the slide glass. Then, a resin film composed of a masterbatch was obtained. Three resin films were produced for each type of masterbatch, and each resin film was magnified with an optical microscope to observe a region of 460 μm×620 μm. In this observation image, the number and size of aggregates were confirmed, and the average number of aggregates of 40 μm or more and aggregates of 100 μm or more was calculated for each type of masterbatch. The dispersibility of CNF in thermoplastic resin (A) was evaluated according to the standard. In the following evaluation criteria, "AA", "A", and "B" were judged to be acceptable, and "C" was judged to be unacceptable.
AA: The average number of aggregates of 40 µm or more is 5 or less, and the average number of aggregates of 100 µm or more is less than 1.
A: The average number of aggregates of 40 μm or more is more than 5 and 10 or less, and the average number of aggregates of 100 μm or more is less than 1.
B: The average number of aggregates of 40 μm or more is more than 10, and the average number of aggregates of 100 μm or more is less than 1.
C: The average number of aggregates of 100 μm or more is 1 or more.
 以上の各実施例及び比較例のマスターバッチの成分(固形分)及び評価結果を表1に示す。 Table 1 shows the components (solid content) and evaluation results of the masterbatch of each of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
<混合樹脂組成物の製造>
(実施例9)
 実施例1で得たマスターバッチ(MB-1)と熱可塑性樹脂(C)とを二軸押出機(株式会社芝浦機械製)を用いて混練し、混合樹脂組成物を製造した。具体的には、マスターバッチ(MB-1)67質量部、及び熱可塑性樹脂(C)としてのポリプロピレン(商品名「プライムポリプロJ-106」、株式会社プライムポリマー製)33質量部を配合し、混合した。混合した材料を上記二軸押出機により、温度200℃で混練し、棒状(ストランド)に押出成形し、押出成形により吐出されたストランドを冷却し、ペレタイザーでカッティングして、ペレットを得た。このようにして、CNFの含有量が約10質量%であるペレット状の混合樹脂組成物を得た。
<Production of mixed resin composition>
(Example 9)
The masterbatch (MB-1) obtained in Example 1 and the thermoplastic resin (C) were kneaded using a twin-screw extruder (manufactured by Shibaura Kikai Co., Ltd.) to produce a mixed resin composition. Specifically, 67 parts by mass of the masterbatch (MB-1) and 33 parts by mass of polypropylene (trade name “Prime Polypro J-106” manufactured by Prime Polymer Co., Ltd.) as the thermoplastic resin (C) are blended, Mixed. The mixed material was kneaded at a temperature of 200° C. by the twin-screw extruder, extruded into a rod shape (strand), and the extruded strand was cooled and cut with a pelletizer to obtain pellets. Thus, a pellet-shaped mixed resin composition having a CNF content of about 10% by mass was obtained.
(実施例10)
 実施例9で使用した実施例1のマスターバッチ(MB-1)の代わりに、実施例3で得たマスターバッチ(MB-3)を使用したこと以外は、実施例9と同様の方法により、ペレット状の混合樹脂組成物(CNFの含有量:約10質量%)を得た。
(Example 10)
In the same manner as in Example 9 except that the masterbatch (MB-3) obtained in Example 3 was used instead of the masterbatch (MB-1) of Example 1 used in Example 9, A pellet-shaped mixed resin composition (CNF content: about 10% by mass) was obtained.
(実施例11)
 実施例9で使用した実施例1のマスターバッチ(MB-1)の代わりに、実施例4で得たマスターバッチ(MB-4)を使用したこと以外は、実施例9と同様の方法により、ペレット状の混合樹脂組成物(CNFの含有量:約10質量%)を得た。
(Example 11)
In the same manner as in Example 9 except that the masterbatch (MB-4) obtained in Example 4 was used instead of the masterbatch (MB-1) of Example 1 used in Example 9, A pellet-shaped mixed resin composition (CNF content: about 10% by mass) was obtained.
(実施例12)
 実施例9で使用した実施例1のマスターバッチ(MB-1)及びその使用量67質量部並びに熱可塑性樹脂(C)の使用量33質量部を、それぞれ、実施例7で得たマスターバッチ(MB-7)及びその使用量33質量部並びに熱可塑性樹脂(C)の使用量67質量部に変更したこと以外は、実施例9と同様の方法により、ペレット状の混合樹脂組成物(CNFの含有量:約10質量%)を得た。
(Example 12)
The masterbatch (MB-1) of Example 1 used in Example 9, the amount of 67 parts by mass thereof, and the amount of 33 parts by mass of the thermoplastic resin (C) were added to the masterbatch obtained in Example 7 ( MB-7) and its amount of use was changed to 33 parts by mass and the amount of thermoplastic resin (C) used was changed to 67 parts by mass, in the same manner as in Example 9, pelletized mixed resin composition (CNF content: about 10% by mass).
<混合樹脂組成物の評価>
 実施例9~12で得られた混合樹脂組成物について、ASTM D638の規定に準じて、試験片を作製して引張試験を行い、また、ASTM D790の規定に準じて、試験片を作製して曲げ試験を行った。引張試験では、精密万能試験機(商品名「オートグラフ AG/X-R」、株式会社島津製作所製)を用い、室温(20~25℃の範囲内)において、引張強さ(最大引張応力)及び引張破壊ひずみの測定を行った。曲げ試験では、上記精密万能試験機を用い、室温(20~25℃の範囲内)において、曲げ強さ(最大曲げ応力)及び曲げ弾性率の測定を行った。これらの結果を表2に示す。
<Evaluation of mixed resin composition>
For the mixed resin compositions obtained in Examples 9 to 12, a test piece was prepared according to the provisions of ASTM D638 and subjected to a tensile test, and a test piece was prepared according to the provisions of ASTM D790. A bend test was performed. In the tensile test, using a precision universal testing machine (trade name "Autograph AG/X-R", manufactured by Shimadzu Corporation), tensile strength (maximum tensile stress) at room temperature (within the range of 20 to 25 ° C.) and tensile fracture strain were measured. In the bending test, bending strength (maximum bending stress) and bending elastic modulus were measured at room temperature (within the range of 20 to 25°C) using the precision universal testing machine. These results are shown in Table 2.
 上記の引張試験及び曲げ試験は、実施例9、10、11、及び12にそれぞれ対応するブランク試験である対照例9B、10B、11B、及び12Bについても同様に行った。対照例9B~12Bでは、それぞれ対応する実施例9~12の混合樹脂組成物から、易分散性ナノセルロース(CP-1又はCP-2)を抜いたものに相当する樹脂組成物(対照例9B~12Bの混合樹脂組成物)を用いた。具体的には、参考例9B~12Bでは、マスターバッチを使用しない代わりに、対応する実施例で使用されたマスターバッチ中の熱可塑性樹脂(A)と同種及び同量の熱可塑性樹脂(A)と、対応する実施例で使用された量と同量の熱可塑性樹脂(C)を用い、実施例9と同様の方法によって得たペレット状の樹脂組成物を用いた。ブランク試験の結果もあわせて表2に示す。 The above tensile test and bending test were similarly performed for Control Examples 9B, 10B, 11B, and 12B, which are blank tests corresponding to Examples 9, 10, 11, and 12, respectively. In Control Examples 9B to 12B, resin compositions (Control Example 9B ~ 12B mixed resin composition) was used. Specifically, in Reference Examples 9B to 12B, instead of using no masterbatch, the same type and amount of thermoplastic resin (A) as the thermoplastic resin (A) in the masterbatch used in the corresponding examples and the same amount of thermoplastic resin (C) as used in the corresponding example, and a pellet-shaped resin composition obtained by the same method as in Example 9 was used. Table 2 also shows the results of the blank test.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 さらに、実施例9~12で得られた混合樹脂組成物について、アイゾット衝撃試験機(商品名「衝撃試験機」、株式会社東洋精機製作所製)を用い、ASTM D256の規定に準じて、試験片を作製してアイゾット衝撃強さの測定を行った。その結果、アイゾット衝撃強さは、実施例9で2.7kJ/m、実施例10で6.5kJ/m、実施例11で20.3kJ/m、実施例12で2.4kJ/mであった。

 
Furthermore, for the mixed resin compositions obtained in Examples 9 to 12, using an Izod impact tester (trade name "Impact Tester", manufactured by Toyo Seiki Seisakusho Co., Ltd.), test pieces were prepared according to the provisions of ASTM D256. was prepared and the Izod impact strength was measured. As a result, the Izod impact strength was 2.7 kJ/m 2 for Example 9, 6.5 kJ/m 2 for Example 10, 20.3 kJ/m 2 for Example 11, and 2.4 kJ/m 2 for Example 12. was m2 .

Claims (18)

  1.  熱可塑性樹脂と、前記熱可塑性樹脂中に分散している易分散性ナノセルロース(B)とを含有し、
     前記易分散性ナノセルロース(B)は、ナノセルロースと、前記ナノセルロースを包み込んでいる、カルボキシ基を有する変性ポリオレフィンとを含むものであり、
     前記熱可塑性樹脂は、融点が110℃以下である熱可塑性樹脂(A)を含む、樹脂組成物。
    Containing a thermoplastic resin and easily dispersible nanocellulose (B) dispersed in the thermoplastic resin,
    The easily dispersible nanocellulose (B) contains nanocellulose and a modified polyolefin having a carboxy group, which envelops the nanocellulose,
    The thermoplastic resin is a resin composition containing a thermoplastic resin (A) having a melting point of 110° C. or lower.
  2.  前記熱可塑性樹脂(A)のASTM D1238の規定に準拠して測定されるメルトフローレート(MFR)は、温度190℃及び荷重2.16kgの条件下で500g/10min以下である請求項1に記載の樹脂組成物。 2. The melt flow rate (MFR) of the thermoplastic resin (A) measured according to ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190° C. and a load of 2.16 kg. of the resin composition.
  3.  前記変性ポリオレフィンは、融点が100℃以下である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the modified polyolefin has a melting point of 100°C or lower.
  4.  前記熱可塑性樹脂(A)の融点と前記変性ポリオレフィンの融点との差の絶対値が、30℃以下である請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the absolute value of the difference between the melting point of the thermoplastic resin (A) and the melting point of the modified polyolefin is 30°C or less.
  5.  前記易分散性ナノセルロース(B)における前記ナノセルロースの含有量は、前記樹脂組成物の全質量を基準として、25質量%以下である請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the content of the nanocellulose in the easily dispersible nanocellulose (B) is 25% by mass or less based on the total mass of the resin composition. thing.
  6.  前記ナノセルロースは、セルロースナノファイバーを含む請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the nanocellulose contains cellulose nanofibers.
  7.  前記熱可塑性樹脂(A)は、メタロセン系ポリオレフィン樹脂を含む請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the thermoplastic resin (A) contains a metallocene-based polyolefin resin.
  8.  前記熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)と混合されて用いられる請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, which is used by being mixed with a thermoplastic resin (C) different from the thermoplastic resin (A).
  9.  前記熱可塑性樹脂は、前記熱可塑性樹脂(A)とは別の熱可塑性樹脂(C)をさらに含む請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the thermoplastic resin further contains a thermoplastic resin (C) different from the thermoplastic resin (A).
  10.  ナノセルロース及び前記ナノセルロースを包み込んでいるカルボキシ基を有する変性ポリオレフィンを含む易分散性ナノセルロース(B)並びに水を含有する含水セルロース樹脂処理物と、融点が110℃以下である熱可塑性樹脂(A)とを、水の沸点より20℃高い温度以下で加熱して前記熱可塑性樹脂(A)の溶融状態で混合すること;及び
     水の沸点以上の温度で加熱して、前記含水セルロース樹脂処理物と前記熱可塑性樹脂(A)との混合物中の水を除去すること;を含む、
     樹脂組成物の製造方法。
    An easily dispersible nanocellulose (B) containing nanocellulose and a modified polyolefin having a carboxyl group enveloping the nanocellulose, a hydrous cellulose resin treated product containing water, and a thermoplastic resin (A ) at a temperature not higher than 20°C higher than the boiling point of water and mixed in the molten state of the thermoplastic resin (A); and removing the water in the mixture of said thermoplastic resin (A);
    A method for producing a resin composition.
  11.  前記熱可塑性樹脂(A)のASTM D1238の規定に準拠して測定されるメルトフローレート(MFR)は、温度190℃及び荷重2.16kgの条件下で500g/10min以下である請求項10に記載の樹脂組成物の製造方法。 11. The melt flow rate (MFR) of the thermoplastic resin (A) measured according to ASTM D1238 is 500 g/10 min or less under conditions of a temperature of 190° C. and a load of 2.16 kg. A method for producing a resin composition of
  12.  前記変性ポリオレフィンは、融点が100℃以下である請求項10又は11に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 10 or 11, wherein the modified polyolefin has a melting point of 100°C or lower.
  13.  前記熱可塑性樹脂(A)の融点と前記変性ポリオレフィンの融点との差の絶対値が、30℃以下である請求項10~12のいずれか1項に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to any one of claims 10 to 12, wherein the absolute value of the difference between the melting point of the thermoplastic resin (A) and the melting point of the modified polyolefin is 30°C or less.
  14.  前記含水セルロース樹脂処理物を用いるに当たり、
     前記ナノセルロースの水分散液と、アルカリで中和された前記変性ポリオレフィンの水性エマルジョンとの混合分散液に、酸を添加して前記変性ポリオレフィンを析出させ、前記混合分散液中に析出した前記変性ポリオレフィンが前記ナノセルロースを包み込むことで、前記含水セルロース樹脂処理物を製造すること;を含む、
     請求項10~13のいずれか1項に記載の樹脂組成物の製造方法。
    In using the treated product of hydrous cellulose resin,
    Acid is added to a mixed dispersion of the nanocellulose aqueous dispersion and the modified polyolefin aqueous emulsion neutralized with an alkali to precipitate the modified polyolefin, and the modified polyolefin precipitated in the mixed dispersion. Polyolefin enveloping the nanocellulose to produce the hydrous cellulose resin treated product;
    A method for producing the resin composition according to any one of claims 10 to 13.
  15.  前記ナノセルロースの前記水分散液を用いるに当たり、
     パルプ及び水を含有する懸濁液を摩砕機で摩砕して前記パルプを解繊することにより、前記ナノセルロースの水懸濁液を製造することを含む、請求項14に記載の樹脂組成物の製造方法。
    In using the aqueous dispersion of the nanocellulose,
    15. The resin composition according to claim 14, comprising producing an aqueous suspension of the nanocellulose by grinding a suspension containing pulp and water with a grinder to defibrate the pulp. manufacturing method.
  16.  前記摩砕機が、石臼式摩砕機である請求項15に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 15, wherein the grinder is a stone grinder.
  17.  前記ナノセルロースの前記水懸濁液の粘度は、温度25℃及び回転数60rpmの条件下で回転粘度計を用いて測定される値で0.1~100Pa・sである請求項15又は16に記載の樹脂組成物の製造方法。 17. According to claim 15 or 16, the viscosity of the aqueous suspension of the nanocellulose is 0.1 to 100 Pa s as measured using a rotational viscometer under conditions of a temperature of 25° C. and a rotation speed of 60 rpm. A method for producing the described resin composition.
  18.  前記ナノセルロースの前記水懸濁液について、レーザー回折・散乱式粒度分布測定装置により測定される体積基準の粒度分布における累積値が10%となる粒子径を10%累積粒子径(D10)、前記累積値が50%となる粒子径を50%累積粒子径(D50)、前記累積値が90%となる粒子径を90%累積粒子径(D90)としたときに、D10が0.1~20μmであり、D50が5.0~40μmであり、D90が20~150μmである請求項15~17のいずれか1項に記載の樹脂組成物の製造方法。

     
    For the aqueous suspension of the nanocellulose, the particle diameter at which the cumulative value in the volume-based particle size distribution measured by a laser diffraction/scattering particle size distribution analyzer becomes 10% is the 10% cumulative particle diameter (D 10 ), When the particle diameter at which the cumulative value is 50% is 50% cumulative particle diameter (D 50 ) and the particle diameter at which the cumulative value is 90% is 90% cumulative particle diameter (D 90 ), D 10 is 0. 1 to 20 μm, D 50 is 5.0 to 40 μm, and D 90 is 20 to 150 μm.

PCT/JP2022/014894 2021-03-31 2022-03-28 Resin composition and production method for resin composition WO2022210498A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021060806 2021-03-31
JP2021-060806 2021-03-31
JP2022018261A JP7153152B1 (en) 2021-03-31 2022-02-08 Resin composition and method for producing resin composition
JP2022-018261 2022-02-08

Publications (1)

Publication Number Publication Date
WO2022210498A1 true WO2022210498A1 (en) 2022-10-06

Family

ID=83456274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014894 WO2022210498A1 (en) 2021-03-31 2022-03-28 Resin composition and production method for resin composition

Country Status (2)

Country Link
TW (1) TW202246419A (en)
WO (1) WO2022210498A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171037A (en) * 2003-12-10 2005-06-30 Pilot Ink Co Ltd Water-based ink composition for ball-point pen and water-based ball-point pen using it
JP2008540158A (en) * 2005-05-02 2008-11-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for hydrophobizing lignocellulosic material
EP2532707A1 (en) * 2011-06-08 2012-12-12 Borealis AG Flame retardant polymer composition
JP2017019976A (en) * 2015-07-15 2017-01-26 大王製紙株式会社 Thermoplastic resin composition and manufacturing method of thermoplastic resin composition
JP2017141323A (en) * 2016-02-08 2017-08-17 大日精化工業株式会社 Easily-dispersible cellulose composition, method for producing easily-dispersible cellulose composition, cellulose dispersion resin composition, and method for producing cellulose dispersion resin composition
JP2019183022A (en) * 2018-04-12 2019-10-24 東洋インキScホールディングス株式会社 Resin composition and molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171037A (en) * 2003-12-10 2005-06-30 Pilot Ink Co Ltd Water-based ink composition for ball-point pen and water-based ball-point pen using it
JP2008540158A (en) * 2005-05-02 2008-11-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for hydrophobizing lignocellulosic material
EP2532707A1 (en) * 2011-06-08 2012-12-12 Borealis AG Flame retardant polymer composition
JP2017019976A (en) * 2015-07-15 2017-01-26 大王製紙株式会社 Thermoplastic resin composition and manufacturing method of thermoplastic resin composition
JP2017141323A (en) * 2016-02-08 2017-08-17 大日精化工業株式会社 Easily-dispersible cellulose composition, method for producing easily-dispersible cellulose composition, cellulose dispersion resin composition, and method for producing cellulose dispersion resin composition
JP2019183022A (en) * 2018-04-12 2019-10-24 東洋インキScホールディングス株式会社 Resin composition and molded body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG BEI, MOHINI SAIN: " Dispersion of soybean stock-based nanofiber in a plastic matrix", POLYMER INTERNATIONAL, vol. 56, no. 4, 8 December 2006 (2006-12-08), pages 538 - 546, XP055973516, ISSN: 1097-0126 *
YASIM-ANUAR TENGKU ARISYAH TENGKU, ARIFFIN HIDAYAH, NORRRAHIM MOHD NOR FAIZ, HASSAN MOHD ALI, ANDOU YOSHITO, TSUKEGI TAKAYUKI, NIS: "Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion", POLYMERS, vol. 12, no. 4, 17 April 2020 (2020-04-17), pages 927, XP055973518, DOI: 10.3390/polym12040927 *

Also Published As

Publication number Publication date
TW202246419A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6591304B2 (en) Easily dispersible cellulose composition, method for producing easily dispersible cellulose composition, cellulose dispersed resin composition, and method for producing cellulose dispersed resin composition
JP7153152B1 (en) Resin composition and method for producing resin composition
JP5825653B1 (en) Method for producing easily dispersible cellulose composition, and method for producing aqueous dispersion treatment agent for cellulose
WO2018230600A1 (en) Fine cellulose fibers, production method therefor, slurry, and composite
JP6245779B2 (en) Method for producing derivatized CNF and method for producing polymer compound resin composition
JP2014193959A (en) Plant fiber-containing resin composition and production method thereof
JP6681157B2 (en) Thermoplastic resin composition and method for producing thermoplastic resin composition
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
WO2013137449A1 (en) Method for producing plant fiber-containing resin composition, method for producing ground product of molded article, and plant fiber-containing resin composition
JP2019172752A (en) Process for producing microfibrillated cellulose-containing polypropylene resin composite
JP2019059956A (en) Thermoplastic resin composition
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
Lal et al. Old corrugated box (OCB)-based cellulose nanofiber-reinforced and citric acid-cross-linked TSP–guar gum composite film
WO2020262344A1 (en) Cellulose fiber composite recycled resin and production method therefor
JP6886649B2 (en) Modified cellulose and resin composition using it
WO2022210498A1 (en) Resin composition and production method for resin composition
JP2020108969A (en) Thermoplastic resin composition and manufacturing method of thermoplastic resin composition
JP2019094391A (en) Resin composition and molding
JP6968845B2 (en) Fibrous cellulose composite resin and its manufacturing method, and resin reinforcement
JP2022548883A (en) macromolecular complex
JP6954884B2 (en) Cellulose-dispersed resin composition, its production method, and cellulose resin composite material
JP2020158700A5 (en)
JP2020026460A (en) Fibrous cellulose and production method thereof, and fibrous cellulose composite resin and production method thereof
JP7244247B2 (en) Cellulose fiber slurry
JP2020019874A (en) Manufacturing method of fibrous cellulose composite resin and fibrous cellulose inclusion, and fibrous cellulose composite resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780709

Country of ref document: EP

Kind code of ref document: A1